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Abstract

Based on a General Dynamic Factor Model with infinite-dimensional fac-

tor space, we develop a new estimation and forecasting procedures for condi-

tional covariance matrices in high-dimensional time series. The performance of

our approach is evaluated via Monte Carlo experiments, outperforming many

alternative methods. The new procedure is used to construct minimum vari-

ance portfolios for a high-dimensional panel of assets. The results are shown

to achieve better out-of-sample portfolio performance than alternative existing

procedures.
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Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique (F.R.S.-
FNRS) under grant No. 2.5020.11.

1



Keywords. Dimension reduction, Large panels, High-dimensional time series, Minimum variance portfolio,

Volatility, Multivariate GARCH.

JEL classifications. C38, C53, C55, C59, G11.

2010 Mathematics Subject Classification. 62H99, 62M20, 62P20, 91G10.

1 Introduction

Volatility forecasting plays an essential role in a variety of economic and financial

applications, such as portfolio allocation, risk management, option pricing, hedging

strategies, etc.: see Engle (2009), Hlouskova et al. (2009), Aramonte et al. (2013),

Becker et al. (2015), Trućıos et al. (2018) and Engle et al. (2019), to quote only

a few.

Several multivariate models have been proposed to model and forecast the con-

ditional covariance matrix of a collection of assets; see Bauwens et al. (2006) or

de Almeida et al. (2018) for some reviews. Unfortunately, most of multivariate

GARCH (MGARCH) type models badly suffer from the so-called “curse of dimen-

sionality” as the number of assets grows, and cannot be implemented in a high-

dimensional context. Therefore, alternative procedures have been proposed, such as

Fan et al. (2008), Alessi et al. (2009), Matteson and Tsay (2011), Engle and Kelly

(2012), Hu and Tsay (2014), Santos and Moura (2014), Li et al. (2016), Pakel et al.

(2017), Chang et al. (2018) and Engle et al. (2019), among others.

Dynamic factor models with high-dimensional asymptotics offer a promising al-

ternative in that context; see the surveys by Barhoumi et al. (2014) and Bai and

Wang (2016) for details. Factor models are based on the assumption that prices

and volatilities of different assets are driven by a small number of latent factors,

which account for their co-movements. They have been used by several authors to

model and forecast conditional covariance matrices: see Diebold and Nerlove (1989),

Harvey et al. (1992), Aguilar and West (2000), Vrontos et al. (2003), Han (2005),

Sentana et al. (2008), Aguilar (2009), Alessi et al. (2009), Garćıa-Ferrer et al. (2012),

Aramonte et al. (2013) and Dovonon (2013), among others. All these contributions

are based on a static factor-loading scheme1 (Bai and Ng, 2002; Stock and Watson,

1The latent factors are loaded contemporaneously via some loading matrix, so that the dimension

of the factor space reduces to the (finite) number of linearly independent factors.
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2002a,b)2 leading to finite-dimensional factor spaces whose main advantage is to

allow for estimation methods based on traditional principal components, which are

easy to implement and widely used in practice.

However, as pointed out in Forni and Lippi (2011) and Section 1.1 of Forni et al.

(2015), the assumption of a static factor-loading scheme considered in that literature

is quite restrictive and rules out some very simple and plausible cross-correlation

patterns, leading to infinite-dimensional factor spaces. To overcome this issue, Forni

et al. (2000) introduced the so-called generalized or general dynamic factor model

(GDFM), in which factors (equivalently, common shocks) are loaded through filters

rather than matrices. As shown in Hallin and Lippi (2013), the GDFM actually

follows from a representation result which holds, essentially, without placing any

restrictions—beyond second-order stationarity and the existence of a spectrum—on

the data-generating process.

The role of traditional principal components in the GDFM is taken over by

Brillinger’s dynamic principal components 3 (Brillinger, 1981), and the estimation

method proposed by Forni et al. (2000) naturally relies on this concept. Dynamic

principal components, however, involve two-sided filters, producing estimators that

are inadequate in forecasting problems. Forni and Lippi (2011) and Forni et al.

(2015, 2017)4 therefore developed an alternative estimation method involving only

one-sided filters. Moreover, Monte Carlo simulations indicate that, for estimating

impulse-response functions and predicting returns, this one-sided approach outper-

forms the static method of Stock and Watson (2002a,b) and Bai and Ng (2002) even

when the actual loading scheme is of the static type (see Section 4 in Forni et al.

(2017)).

The Forni et al. (2015, 2017) procedure has been successfully used to forecast

inflation and financial returns; see Della Marra (2017), Forni et al. (2018) and Gio-

2Similar ideas have been developed also in a non-econometric context, see, e.g., Peña and Box

(1987), Stoffer (1999), or Pan and Yao (2008).
3Hallin et al. (2018) show that those dynamic principal components, based on the factorization

of spectral density matrices, inherit, in a time-series context, the optimality properties that make

traditional principal components a successful dimension-reduction device in i.i.d. samples.
4The assumptions in those three references yield slight variations; in this paper, unless otherwise

stated, we refer to the assumptions in Barigozzi and Hallin (2018).
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vannelli et al. (2018). It has also been used in the prediction of conditional variances

by (Barigozzi and Hallin, 2016, 2017, 2018), but never, as far as we know, in the pre-

diction of conditional covariance matrices and portfolio optimization.5 This point

constitutes the main goal of this paper.

The rest of the paper is organised as follows. Section 2 briefly describes the

GDFM and Section 3 introduces our forecasting procedure. Section 4.1 reports a

Monte Carlo study of the finite-sample properties of the proposed procedure. In

Section 5, we apply the new procedure in the problem of constructing minimum

variance portfolios from a large collection of assets. In Sections 4.1 and 5 we also

compare the proposed procedure with other methods. Finally, Section 6 presents

the main conclusions and discusses some directions for future research.

2 The general dynamic factor model

In this section, we briefly describe the GDFM to be considered throughout, which

basically contains as particular cases all other factor models proposed in the econo-

metric and time series literature, along with the regularity assumptions we need for

consistency, which are borrowed, essentially, from Barigozzi and Hallin (2018).

Let {Xt := (X1t X2t . . . )
′, t ∈ Z}, be a double-indexed zero-mean second-order

stationary stochastic process, where the first index is cross-sectional and typically

refers to assets, while t, as usual, stands for time. The GDFM is based on the

decomposition

Xit = χit + ξit, i ∈ N0, t ∈ Z (1)

with

χit =

q∑
j=1

∞∑
k=0

bijkujt−k = b′i(L)ut and ξit =

∞∑
k=0

dikvit−k = di(L)vit, (2)

where the common components χit, the idiosyncratic components ξit, the common

shocks or factors ut := (u1t u2t ... uqt)
′ driving the common components, and the

idiosyncratic shocks vit driving the idiosyncratic components all are non-observable.

5See, however, Alessi et al. (2009) who assume a factor model decomposition with finite-

dimensional factor space on te model of Forni et al. (2005 and 2009).
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Letting Xn := {Xit|i = 1, ..., n, t ∈ Z}, χn := {χit | i = 1, ..., n, t ∈ Z}, and

ξn := {ξit|i = 1, ..., n, t ∈ Z}, equation (2) in vector notation takes the form

Xnt = χnt + ξnt = Bn(L)ut,+Dn(L)vnt, n ∈ N0, t ∈ Z (3)

with Bn(L) := (b1(L)...bn(L))′, Dn(L) := (d1(L)...dn(L))′, and vnt := (v1t . . . vnt)
′.

On the decomposition (1), we assume the following:

(i) the vector process ut is a zero-mean q-dimensional second-order white noise

process, with full-rank covariance Γu;

(ii) writing bik := (bi1k...biqk)
′ for the q × 1 coefficient of Lk in bi(L), there exists

a constant M1 > 0 such that
∑∞

k=0 ||bik||k1/2 ≤M1 for all i ∈ N;

(iii) vnt is a zero-mean second-order stationary process with positive definite co-

variance Γvn; moreover, E[vit|vis] = 0 for all i ∈ N and t > s ∈ Z;

(iv) there exists a constant Cv > 0 such that ||Γvn||1 ≤ Cv for all n ∈ N, and a

constant M2 > 0 such that
∑∞

k=0 |dik|k1/2 ≤M2 for all i ∈ N;

(v) Cov(ujt, vis) = 0 for all i ∈ N, j = 1, ..., q, and t, s ∈ Z;6

(vi) there exists a constant M3 > 0 such that, for all j1, j2, j3, j4,∑
k1,k2,k3∈Z

|E(uj1tuj2,t−k1uj3,t−k2uj4,t−k3)| ≤M3,

and a constant M4 > 0 such that, for all i1, i2, i3, i4,∑
k1,k2,k3∈Z

|E(vi1tvi2,t−k1vi3,t−k2vi4,t−k3)| ≤M4;

(vii) for all i ∈ N, j = 1, . . . , q and z ∈ C, bij(z) =
∑∞

k=0 bijkz
k has square-

summable coefficients, and is the ratio of two finite-order polynomials in z,

bij(z) = γij(z)/δij(z), where γij(z) =
∑Sγ

k=0 γijkz
k and δij(z) =

∑Sδ
k=0 δijkz

k,

with δij(0) = 1, have roots outside the closed unit disk only and no common

roots, and the orders Sγ and Sδ are independent of i.7

Assumption (iii) is the typical assumption of martingale difference innovations used

in the GARCH literature. Assumption (vii) entails the existence of a VAR filtering

6This implies that the common and idiosyncratic processes are mutually uncorrelated at all leads

and lags.
7As a consequence, the common components have rational spectral densities; see Assump-

tion (L2) in Barigozzi and Hallin (2018) for more details.
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of Xn satisfying the assumptions of the static factor model where the common

shocks ut are loaded contemporaneously (see (4) below).

These assumptions also guarantee the existence of the spectral densities Σχ
n(θ),

Σξ
n(θ), and ΣX

n (θ) = Σχ
n(θ) + Σξ

n(θ), θ ∈ [−π, π], of χn, ξn and Xn, respectively.

Then, let λχnj(θ), λ
ξ
nj(θ) and λXnj(θ) be the jth eigenvalues (in decreasing order

of magnitude) of Σχ
n(θ), Σξ

n(θ) and ΣX
n (θ), respectively, satisfying the following

assumption.

(viii) there exist a positive integer n̄ and continuous functions αj and βj−1 from [−π, π]

to R , j = 1, . . . , q, independent of n, and such that, for all j = 1, . . . , q, and

all n > n̄, 0 < βj−1(θ) < αj(θ) ≤ λχnj(θ)/n ≤ βj(θ) < ∞, θ-a.e. in [−π, π],

while λχn,q+1(θ) and λξn1(θ) are bounded, uniformly in θ ∈ [−π, π], as n→∞.

Hence, as n→∞, the q idiosyncratic dynamic eigenvalues are exploding linearly (the

assumption of factor pervasiveness), while all idiosyncratic eigenvalues are bounded

(this is the definition of idiosyncrasy).

The main theoretical result behind the one-sided approach of Forni et al. (2015)

is the existence of a block-diagonal VAR filtering of the observations turning the

GDFM representation (1) into a static one. More precisely, Forni and Lippi (2011)

and Forni et al. (2015) show that, for generic values of the coefficients γijk and δijk

(i.e., except for a subset with Lebesgue measure zero in the (q + 1)(Sγ + Sδ)-

dimensional space of the relevant γijk and δijk coefficients), any (q+ 1)-dimensional

vector χ
i1...iq+1

t := (χi1t, . . . , χiq+1t)
′ with i1 < . . . < iq+1 admits a VAR representa-

tion of the form A(L)i1...iq+1χ
i1...iq+1

t = Ri1...iq+1ut,
8 where A(L)i1...iq+1 has degree

S ≤ qSγ+q2Sδ and the (q+1)×q matrix Ri1...iq+1 is of rank q. It follows that gener-

ically, for any n = m(q + 1), partitioning χnt = (χ1t, . . . , χnt)
′ into m subvectors of

dimension (q + 1), χnt admits a block-VAR representation of the form

An(L)χnt =


A1(L) 0 . . . 0

0 A2(L) . . . 0
...

...
. . .

0 0 . . . Am(L)

χnt =


R1

R2

...

Rm

ut, t ∈ Z. (4)

8See Assumption (L4) in Barigozzi and Hallin (2018) for more details about this VAR represen-

tation.
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Hence, for Xnt = (X1t, . . . , Xnt)
′, we have

An(L)Xnt = An(L)χnt + An(L)ξnt = Rnut + εnt, t ∈ Z (5)

with Rn =
[
R1′R2′ . . . Rm′]′ and εnt = An(L)ξnt, where it can be shown that

the process εt := {(ε1t ε2t . . . )′, t ∈ Z} is still idiosyncratic. In other words, using

obvious notation

A(L) :=



A1(L) 0 . . . 0 . . .

0 A2(L) . . . 0 . . .
...

...
. . .

...

0 0 . . . Am(L) . . .
...

... . . . . . .
. . .


and R :=



R1

R2

...

Rm

...


, (6)

the filtered process Yt := A(L)Xt admits a static factor model representation

Yt = Rut + εt, t ∈ Z (7)

with q-dimensional factor space spanned by ut. While R and ut are not individually

identified, the product Rut is.

The static representation (7), under assumptions (i)-(ix), holds generically. As-

suming that it holds for the panel under study thus is not a strong requirement; we

nevertheless need to make it an assumption:

(ix) For all n∗ ≥ q + 1, letting n = bn∗/(q + 1)c(q + 1), there exist block-diagonal

filters An(L) and n × q matrices Rn such that (5) holds, irrespective of the

cross-sectional ordering.

Assumptions (i)-(ix) are the main assumptions in Barigozzi and Hallin (2018); on

top of these, they also require two less important and more technical ones (Assump-

tions (L4) and (L5), respectively), which we do not reproduce here. Under those

assumptions, Barigozzi and Hallin (2018) show that a consistent reconstruction,

based on Xt, Xt−1, . . ., of the unobserved χt and ξt is possible. It follows that χt

and ξt are Ft-measurable, where Ft denotes the σ-field generated by Xt,Xt−1, . . .

It is worth noting that, reinforcing the same assumptions (e.g., assuming that ut

and vnt are jointly i.i.d., which rules out GARCH-type behaviors), Forni et al.

(2017) derive estimators for (1)-(2) and provide a complete asymptotic analysis for
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the same. On the other hand, Barigozzi and Hallin (2018) do not require i.i.d.ness

and, under assumptions that include (i)-(ix), provide consistency and consistency

rates for the Forni et al. (2017) estimators. Finally, we assume the following.

(x) The common shocks ut and the idiosyncratic shocks vit are stable by aggre-

gation MGARCH and univariate GARCH processes, respectively, and satisfy

the conditions for consistent QMLE estimation.

The assumption that the MGARCH driving the common shocks is stable by ag-

gregation is motivated by the fact that ut is not fully identifiable (see the remark

after (7)): under Assumption (x), any linear transform Rut is driven by a MGARCH

model of the same type as ut itself. Examples of stable by aggregation MGARCH

models are the full VECH (Bollerslev et al., 1988) and full BEKK (Engle and Kroner,

1995) models, which moreover can be consistently estimated via QMLE methods:

see Theorems 11.2 and 11.4 in Francq and Zakoian (2010).

3 Predicting the conditional covariance matrix

We present a procedure to predict one-step ahead conditional covariance matrices,9

i.e, to estimate the conditional covariance matrix V(Xt|Ft−1) of the observable pro-

cess Xt. Section 3.1 provides a theoretical expression for that conditional covariance,

and Section 3.2 introduces the estimation procedure.

3.1 The conditional covariance matrix

We start with a theoretical expression for the conditional covariance matrix of Xt

in terms of the static representation (7).

Proposition 1. Let Assumptions (i)-(ix) of Section 2 hold—ensuring the exis-

tence of the static representation (7). Assume moreover that ut and ξt, conditional

on Ft−1, are uncorrelated at all leads and lags. Then, the covariance matrix of Xt

9The terminology (conditional) covariance matrix is used here with a slight abuse: by V(Xt|Ft−1)

we mean the infinite array with (i, j)-element the (conditional) covariance of Xit and Xjt, (i, j) ∈ N2.

The same notation V( . |Ft−1), and the notation Cov( ., . |Ft−1) are used in an obvious fashion for

other processes.
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conditional on Ft−1 is

V(Xt|Ft−1) = RV(ut|Ft−1)R′ + V(ξt|Ft−1). (8)

Proof. From (7), we have that

V(Yt|Ft−1) = V(Rut + εt|Ft−1)

= RV(ut|Ft−1)R′ + V(εt|Ft−1) + Cov(Rut, εt|Ft−1)

+Cov(εt,Rut|Ft−1), t ∈ Z. (9)

Without loss of generality we can assume that all VAR filters Ak(L) in (5) are of

the form Ak(L) = Iq+1 − φk1L − · · · − φkSLS (with φkS 6= 0 for at least one k).

Consequently, A(L) can be written as A(L) = I −Φ1L − · · · −ΦSL
S . Then, it is

easy to check that

V(εt|Ft−1) = V(A(L)ξt|Ft−1) = V
([

I−Φ1L− · · · −ΦSL
S
]
ξt|Ft−1

)
= V(ξt|Ft−1), (10)

since ξt−k is Ft−1-measurable for k ≥ 1.

Similarly, we have

V(Yt|Ft−1) = V(A(L)Xt|Ft−1) = V(Xt|Ft−1). (11)

Moreover, since ut and ξt are conditionally uncorrelated, both Cov(Rut, εt|Ft−1)

and Cov(εt,Rut|Ft−1) in (9) equal zero. Whence,

Cov(Rut, εt|Ft−1) = Cov(Rut,A(L)ξt|Ft−1) = RCov(ut,A(L)ξt|Ft−1).

Now,

Cov(ut,A(L)ξt|Ft−1) = Cov(ut,
[
I− Φ1L− ...− ΦSLS

]
ξt|Ft−1)

= E(ut [ξt −Φ1ξt−1 − ...−ΦSξt−S ]′ |Ft−1)

− E(ut|Ft−1)E([ξt −Φ1ξt−1 − ...−ΦSξt−S ]′ |Ft−1)

= E(utξ
′
t|Ft−1)

− E(ut|Ft−1)E(ξ′t|Ft−1)−
[
E(utξ

′
t−1Φ

′
1|Ft−1)− E(ut|Ft−1)E(ξ′t−1Φ

′
1|Ft−1)

]︸ ︷︷ ︸
0

− . . .−
[
E(utξ

′
t−SΦ′S |Ft−1)− E(ut|Ft−1)E(ξ′t−SΦ′S |Ft−1)

]︸ ︷︷ ︸
0

= E(utξ
′
t|Ft−1)− E(ut|Ft−1)E(ξ′t|Ft−1) = Cov(utξ

′
t|Ft−1) = 0

9



since Cov(utξ
′
t+k|Ft−1) = 0 for any k. It then follows from (8)-(11), along with the

fact that Cov(εt,Rut|Ft−1) = 0, that

V(Xt|Ft−1) = V(Yt|Ft−1) = RV(ut|Ft−1)R′ + V(ξt|Ft−1),

as was to be proved.

3.2 Estimation

It follows from Proposition 1 that, if V(Xt|Ft−1) is to be estimated at time (t − 1),

assumptions have to be made on the dynamics of V(ut|Ft−1) and V(ξt|Ft−1).
As in Alessi et al. (2009) and Aramonte et al. (2013), we therefore assume that

the conditional covariance matrices of the common shocks can be modelled as some

q-dimensional MGARCH process. Since q is typically small, this approach escapes

the curse of dimensionality. As for the idiosyncratic conditional covariance ma-

trix V(ξt|Ft−1), since idiosyncratic cross-correlations are small, it can be approxi-

mated by a diagonal matrix where each diagonal element (each marginal conditional

variance) is modelled by a univariate GARCH-type model—in the sequel, we use

GARCH(1,1) models. In both cases, the MGARCH and the n GARCH(1,1) models

are estimated by Gaussian quasi-maximum likelihood (QMLE) (we refer to Francq

and Zakoian (2010) for sufficient consistency conditions).

In practice, the actual number of observed series is large, but finite: denote it

by N . The estimation of V(Xt|Ft−1) proceeds as follows.

• Step 1. Determine the number q of common shocks, for instance via the

Hallin and Lǐska (2007) criterion.

• Step 2. Randomly reorder the N observed series.

• Step 3. Compute a consistent10 estimator

Σ̂X
NT (θ) =

1

2π

MT∑
k=−MT

e−ikθK

(
k

BT

)
Γ̂Xk

10Consistency requires conditions on K, MT and BT , for which again we refer to Barigozzi and

Hallin (2018).
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of the N × N spectral density matrix of the Xt’s, where K(·) is a kernel

function, MT a truncation parameter, BT the bandwidth, and Γ̂Xk the sample

lag-k cross-covariance matrix computed from the observed N × T panel of Xt

values.

• Step 4. Collecting the q normalized column eigenvectors associated with Σ̂X
NT (θ)’s q

largest eigenvalues into theN×q matrix P̂XNT (θ) (with complex conjugate P̂X∗NT )

and the corresponding eigenvalues into the q × q diagonal matrix Λ̂X
NT (θh),

compute

Σ̂χ
NT (θ) := P̂XNT (θ)Λ̂X

NT (θ)P̂X∗NT (θ)

as an estimator of the spectral density matrix of the χt’s.

• Step 5. Let N∗ := m(q+1) with m :=
⌈
N
q+1

⌉
. Dropping the last N−m(q+1)

series, denote by Σ̂χ
N∗T

(θ) the N∗ ×N∗ spectral density matrix corresponding

to the remaining N∗ series11.

• Step 6. By inverse Fourier transform of Σ̂χ
N∗T

(θ), compute the estimated auto-

covariance matrices Γ̂χk of the m (q + 1)-dimensional sub-vectors

χkt = (χ(k−1)(q+1)+1,t . . . χk(q+1),t)
′, k = 1, ...,m. Then, from the latter, obtain,

via Akaike order identification and Yule-Walker equations, estimators Â
k
(L)

of the m VAR filters Ak(L); stacking them into a block-diagonal matrix Â(L),

compute the estimates Ŷt := Â(L)Xt.

• Step 7. Obtain the estimates R̂ut of Rut by computing the first q standard

principal components of Ŷt; inverting12 the block-diagonal filters Â(L) then

using appropriate identification constraints, we obtain the identified quanti-

ties R̂ and ût, and the corresponding estimates of the impulse-response func-

tion B̂n = [Â(L)]−1R̂.

Following Forni et al. (2017) we chose a Cholesky identification scheme to obtain

the identification of R̂ and ût (see Section 4.1 of Forni et al. (2017) for more details)—

other choices are possible, though.

11For the sake of simplicity we keep the same notation for the N∗ reordered observed series.
12The inverse of Â(L) being the block-diagonal filter with (q+1)×(q+1) diagonal blocks [Â

k
(L)]−1

where q is small; this inversion thus is easily performed.

11



Steps 1-7 are those described in Forni et al. (2015, 2017) and Barigozzi and

Hallin (2018), where we refer to for details. The resulting estimator χ̂t, however,

depends on the ordering of the panel obtained at Step 2: that ordering indeed

determines which elements of Σ̂χ
NT (θ) are kept in Σ̂χ

N∗T
(θ) and belong to the diagonal

blocks of Σ̂χ
N∗T

(θ). Forni et al. (2017) and Barigozzi and Hallin (2018) explain how

to deal with this by iterating Steps 2-7 (going back to Step 2, choosing a new

random permutation, hence a new N∗-dimensional subpanel, etc.) until numerical

stabilization of the averaged (over the permutations) χ̂t values; this typically takes

place after few iterations13.

• Step 8. Iterate Steps 2 through 7; average (after obvious reordering of the

cross-section) the resulting estimates R̂, ût and B̂n. Denote, for the sake

of simplicity, the final estimates also by R̂, ût and B̂n. Let χ̂t := B̂nût

and ξ̂t := Xt − χ̂t.

The procedure described so far is the one that has been used in Della Marra

(2017), Forni et al. (2018), and Giovannelli et al. (2018) in their forecasting of infla-

tion and financial returns. In order to estimate conditional covariance matrices, we

will now exploit the MGARCH and GARCH features of Assumption (x). Thanks

to the assumption of stability under aggregation, the choice of identification con-

straints has no impact, and VECH or BEKK QMLEs can be computed from the ût’s

obtained in Step 8. We then proceed with the following final steps.

• Step 9a. Run, over the q-dimensional T -tuple û1, . . . , ûT , a QML estimation

procedure for the parameters of the MGARCH model of Assumption (x); this

yields an estimator V̂(ut|Ft−1) of V(ut|Ft−1).

• Step 9b. Similarly run, over each of the N univariate T -tuples ξ̂1, . . . , ξ̂T , a

GARCH QML estimation procedure. This yields N estimators v̂(ξit|Fξit−1) of

the variances v(ξit|Fξit−1) of the ξit’s conditional on their past values; the N×N
diagonal matrix V̂(ξt|Ft−1) with diagonal entries v̂(ξit|Fξit−1) is our estimator

of V(ξt|Ft−1).
13Averaging, of course, is performed after rearrangement of the cross-sectional items in the original

ordering.
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Our estimator V̂(Xt|Ft−1) finally is defined as

V̂(Xt|Ft−1) := R̂V̂(ut|Ft−1)R̂
′
+ V̂(ξt|Ft−1). (12)

The following proposition establishes its consistency properties.

Proposition 2. Assume that BT = o(
√
T ) and MT = o(

√
T ). Under Assumptions

(i)-(x) and Assumptions (L4) and (L5) in Barigozzi and Hallin (2018), we have

V̂(Xt|Ft−1)−V(Xt|Ft−1) = oP(1) (13)

for any t ∈ Z as n, T →∞ with n = O(T c) for some finite c > 0.

Proof. It follows from Proposition 1 in Barigozzi and Hallin (2018) that, under the

assumptions made, letting ρnT := max
(
BT /
√
T , 1/BT , 1/

√
n
)

,

1√
n
‖R̂−RJ‖ = OP(ρnT), and max

t=1,...,T
‖ût − Jut‖ = OP(ρnT log T),

for some q × q diagonal matrix J with entries ±1, and

max
1≤i≤n

max
1≤t≤T

|ξ̂it − ξit| = OP(ρnT log T).

Consequently, R̂ − RJ, ût − Jut and ξ̂t − ξt all are oP(1). The same “two-step

estimator” arguments as in Proposition 4 of Alessi et al. (2009) thus apply: since ût

and ξ̂it consistently estimate ut and ξit in “the first step”, computing in “the second

step” a maximum likelihood estimator from ût and ξ̂it is asymptotically equivalent to

computing it from the actual values ut and ξt, and thus leads to consistent estimates

of V(Jut|Ft−1) and V(ξt|Ft−1), respectively. Now,

RJV(Jut|Ft−1)J′R′ = RJJV(ut|Ft−1)JJR′ = RV(ut|Ft−1)R′,

so that

R̂V̂(ut|Ft−1)R̂
′
+ V̂(ξt|Ft−1)−RJV(Jut|Ft−1)J′R′ −V(ξt|Ft−1) = oP(1)

implies

R̂V̂(ut|Ft−1)R̂
′
+ V̂(ξt|Ft−1)−V(Xt|Ft−1) = oP(1),

as was to be proved.
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In practice, VECH and BEKK QMLEs, however, are numerically quite unstable,

and typically strongly depend on the initial values considered in the numerical so-

lution of the likelihood equations. This is a well-documented fact; see, for instance,

Lien et al. (2002) and Asai (2015). Rather than VECH or BEKK, we therefore com-

pute DCC QMLEs which are known to be quite robust to missespecification; see

Chang et al. (2011), Chevallier (2012), Laurent et al. (2012), Amendola and Candila

(2017), or de Almeida et al. (2018). Our Monte Carlo experiments (see Section 4)

confirm that, even though the actual data-generating process is BEKK, misspecified

DCC QMLEs outperform the correctly specified full BEKK ones.

4 Finite-sample performances

4.1 Monte Carlo experiments

In this section, we investigate the finite-sample performance of the proposed proce-

dure through Monte Carlo simulations.

Simulations were performed from four data generating processes (DGPs). The

first two DGPs are static factor models with one and two common factors, respec-

tively; the third and fourth DGPs are dynamic factor models with finite and infinite-

dimensional factor spaces, respectively. The common shocks and the idiosyncratic

components in all four cases are conditionally heteroscedastic. The first three DGPs

are particular cases of the GDFM with static representation and can be consistently

estimated by the procedure of Alessi et al. (2009) which, however, cannot consis-

tently estimate the fourth DGP, where the assumption of a finite-dimensional factor

space does not hold.

In all DGPs, the idiosyncratic components satisfy ξt|Ft−1 ∼ N(0,Pt), where Pt

is an N×N diagonal matrix containing the conditional variances Pit of GARCH(1,1)

processes of the form

Pit = ωi + αiξ
2
it + βiPi,t−1, i = 1, ..., N,

where ωi > 0, αi, βi ≥ 0 and αi + βi < 1; the parameters values αi and βi are

generated independently from uniform distributions over [0.01, 0.045] and [0.85,

0.95], respectively, and ωi := 1 − αi − βi, so that the unconditional variance of ξit
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is V(ξit) = 1. As for the factors ut driving the common components χt, they were

generated from the following four DGPs.

DGP1. (one common shock; static loadings) One common shock ut is generated

from a univariate GARCH(1,1) model

ut|Ft−1 ∼ N(0, σ2t ) with σ2t = 1 + 0.07u2t−1 + 0.83σ2t−1;

here χt = Rut, where R is an N × 1 matrix with modulus one randomly generated

via the RandOrthMat Matlab function.

DGP2. (two common shocks; static loadings) Two common shocks ut = (u1t, u2t)
′,

generated from a BEKK(1,1,1) model

ut|Ft−1 ∼ N(0,Qt) with Qt = C′0C0 + C′1ut−1u
′
t−1C1 + C′2Qt−1C2. (14)

In order to guarantee E(Qt) = E(ut−1u
′
t−1) = Iq, we set C′0C0 = Iq−C′1C1−C′2C2.

Parameters of the BEKK are extracted from uniform distributions with ranges

as in Alessi et al. (2009): C1 has diagonal in [0.1,0.5] and off-diagonal elements

in [-0.2,0.2], while C2 has diagonal in [0.8,0.95] and off-diagonal elements

in [-0.15,0.15]. At each extraction of the parameters, covariance stationary of the

BEKK model has been checked before proceeding. Here, χt = Rut where R is

an N × 2 matrix with orthonormal columns randomly generated via the RandOrth-

Mat Matlab function.

DGP3. (four factors driven by q = 2 common shocks; static loadings) Four

factors Ft = (F1t, . . . , F4t)
′ driven by q = 2 common shocks ut, yielding a GDFM

with finite-dimensional factor space. The shocks are generated from the same BEKK

model as in DGP2, the factors are a VAR(4) driven by ut:

Ft = ΦFt−1 + Kut and ut|Ft−1 ∼ N(0,Qt),

with Qt as in (14), Λ is n × 4, Φ is 4 × 4 and K is 4 × 2. The entries of Λ

and K are independently uniformly distributed over [−1, 1]. The entries of Φ are

generated as follows: first we generate entries independently uniformly distributed

on the interval[-1,1]; second, we divide the resulting matrix by its spectral norm;

third, we multiply the resulting matrix by a random variable uniformly distributed
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on the interval [0.4,0.9] to ensure stationarity while preserving sizeable dynamic

responses14.

DGP4. (two common shocks; dynamic loadings) The two common shocks

ut = (u1t, u2t)
′ are generated from the same bivariate BEKK model as in (14);

the model is a GDFM with infinite-dimensional factor space. Here,

χit =

(
ai1(1− αi1)−1

ai2(1− αi2)−1

)
ut,

where aij and αij , i = 1, ..., n, j = 1, 2 are independent and uniformly distributed

over the intervals [-1,1] and [-0.8,0.8], respectively.

For each DGP, we simulated 500 replications of a panel of dimensions N=60

and T=1000. From each replication, the conditional covariance matrix ΣT+1|T was

estimated using

(a) classical PCA15 combined with (M)GARCH modelling,

(b) the DCC model with composite likelihood, as described in Pakel et al. (2017),

(c) the procedure of Alessi et al. (2009), and

(d) our method,16

denoted as PCA-(M)GARCH, DCC, ABC, and GDFM-CHF, respectively17. For

simplicity, the correct numbers of factors (for DGP3) and common shocks (for DGPs

1-4) are assumed to be known, since this does not play a role in the comparative

performances of procedures (a)-(d). For DGP4, since there are not static factors in

its representation, the identification procedure by Bai and Ng (2002) was used in

each simulated panel to compute the number of static factors for the estimation of

the PCA-(M)GARCH and ABC procedures.18

14This DGP is similar to the one considered by Alessi et al. (2009).
15In the spirit of Diebold and Nerlove (1989) and Van der Weide (2002), static factors are extracted

via principal component analysis; an (M)GARCH model then is fitted to the extracted factors.

Idiosyncratic components are modelled as independent univariate GARCH processes.
16Throughout, we considered 30 cross-sectional permutations and set the order S of the VAR

block-diagonal models to one.
17GDFM-CHF: General Dynamic Factor Model with Conditionally Heteroscedastic Factors.
18In practice, the identification procedures by Bai and Ng (2002) or Alessi et al. (2010) in the

static case, by Hallin and Lǐska (2007) in the GDFM case, should be used prior to the estimation

procedure in each replication.
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As mentioned in the previous section, estimation of BEKK models is numerically

quite unstable and strongly depends on the choice of initial values. For the sake

of comparison, for DGPs 2-4 we considered both a DCC(1,1) and a BEKK(1,1,1)

estimate of the conditional covariance matrix of the common shocks in the PCA-

(M)GARCH, ABC and GDFM-CHF procedures: the DCC-based procedures are de-

noted as PCA-(M)GARCH-DCC and ABC-DCC and GDFM-CHF-DCC, the BEKK-

based ones as PCA-(M)GARCH-BEKK, ABC-BEKK and GDFM-CHF-BEKK, re-

spectively.19

In order to compare the performances of those four procedures, we compute,

for each simulated panel and each method, a distance between the estimated one-

step-ahead conditional covariance matrix Σ̂T+1|T and the theoretical one ΣT+1|T .

Let

HT+1|T := R V(uT+1|FT)R′ + V(ξT+1|FT) for DGP1 and DGP2,

HT+1|T := ΛKV(uT+1|FT )K′Λ′ + V(ξT+1|FT ) for DGP3,

and

HT+1|T = A V(uT+1|FT )A′ + V(ξT+1|FT ) for DGP4,

where A is the matrix with elements ai,j , i = 1, ..., N , j = 1, 2. Following Amendola

and Candila (2017), we consider four distances, D1, , . . . ,D4, of the form

D(HT+1|T , Σ̂T+1|T ) =
N∑
i=1

N∑
j=i

ω(i, j)(hi,j − σ̂i,j)2, (15)

where hi,j and σ̂i,j are the (i, j) entries of HT+1|T and Σ̂T+1|T , respectively, and the

weights ω(i, j) are provided in Table 1.

Distance D1, which gives equal weights for the variance and covariances, yields a

“total” unweighted squared Euclidean distance between Vech(Σ̂T+1|T ) and Vech(HT+1|T );

distance D2 is an unweighted squared Euclidean distance between Diag(Σ̂T+1|T )

and Diag(HT+1|T ) (hence disregards the covariances);20 distance D3 penalizes nega-

tive errors, while D4 penalizes the positive ones. It is important to note that, in D3

19DCC and BEKK estimations were performed by using the MFE toolbox of Kevin K. Sheppard,

freely available at http://www.kevinsheppard.com/MFE Toolbox.
20The classical notation Vech(M) stands for the vector stacking the upper diagonal entries of a

square matrix M, and Diag(M) for the vector of its diagonal elements.
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Table 1: Weights ω(i, j), i = 1, . . . , N , j = i, . . . , N in the distances D1-D4 in (15).

D1 w(i, j) = 1 for all i and j

D2 w(i, j) = 1 when i = j; 0 otherwise

D3 w(i, j) = 2 when σ̂i,j > hi,j ; 1 otherwise

D4 w(i, j) = 2 when σ̂i,j < hi,j ; 1 otherwise

and D4, the weights themselves are data-driven, so that, for a given replication,

different methods lead to different weights.

4.2 Simulation results

The results of the Monte Carlo experiments are summarized in Figures 1-4 and Ta-

ble 2. Figures 1-4 present boxplots of the distances defined in (15), in logarithmic

scale and for DGP1, DGP2, DGP3, and DGP4, respectively. Table 2 reports the

number of times each estimation procedure achieves the smallest values of the dis-

tances for each DGP.

FIGURES 1-4 and TABLE 2 AROUND HERE

Inspection of Figure 1 (DGP1) reveals that ABC and GDFM-CHF perform as

well as the simpler PCA-(M)GARCH procedure (with higher variability for GDFM-

CHF, though), while DCC is, by far, the worst. According to Figures 2-3, the BEKK-

based procedures present much higher variability than the DCC-based ones due,

probably, to the numerical instability of BEKK QMLEs. Even when misspecified,

DCC-based methods thus are preferable. In Figures 3 (DGP3) and 4 (DGP4), we

can observe the good performance of GDFM-CHF-DCC, while ABC-DCC for DGP4,

as well as PCA-(M)GARCH-DCC and DCC for DGP3 and DGP4, perform quite

poorly.

Due to the high instability of BEKK-based procedures, Table 2 only reports the

DCC-based procedures. It appears clearly that, in agreement with the results in

Figures 1-4, the DCC method performs worst, except for DGP2. For DGP1 and

DGP2, the GDFM-CHF-DCC procedure overperforms PCA-(M)GARCH-DCC and

ABC-DCC for all distances but D2 (where only the conditional variances, not the
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covariances, are taken into account). In the DGP3 case, the GDFM-CHF-DCC

procedure is best for all distances, closely followed by ABC. Finally, for DGP4, the

GDFM-CHF-DCC procedure is by far the best for all distances while ABC-DCC

performs poorly and PCA-(M)GARCH-DCC even worse. When both conditional

variances and covariances are considered (distances D1, D3, and D4), the GDFM-

CHF-DCC procedure, irrespective of the DGP, is uniformly best.

Table 2: For each choice of a DGP (DGP1-DGP4) and a distance (D1-D4), this

table provides the number of times each of the four estimation procedures (PCA-

(M)GARCH, DCC, ABC and GDFM-CHF) is the winner across 500 Monte Carlo

replications. For DGPs 2-4 we use the DCC-based versions of the PCA-(M)GARCH,

ABC, and GDFM-CHF procedures. Highest values are in bold.

DGP1 DGP2

Procedure D1 D2 D3 D4 D1 D2 D3 D4

PCA-(M)GARCH 103 155 114 88 35 75 39 34

DCC 13 38 13 12 45 214 45 43

ABC 92 164 82 109 59 87 53 62

GDFM-CHF 292 143 291 291 361 124 363 361

DGP3 DGP4

Procedure D1 D2 D3 D4 D1 D2 D3 D4

PCA-(M)GARCH 42 67 41 40 9 1 11 7

DCC 19 7 20 20 3 1 4 3

ABC 211 208 207 219 92 80 91 91

GDFM-CHF 228 218 232 221 396 418 394 399

5 An application to dynamic portfolio optimization

In this section, we assess our proposal (GDFM-CHF-DCC) in the problem of dy-

namic portfolio optimisation. The dataset we are considering consists in returns Xit

from stocks entering the composition of the S&P 500 index, the National Associ-

ation of Securities Dealers Automated Quotations (NASDAQ-100) and the NYSE
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Amex Composite Index (AMEX), on July 27, 2018 and traded from January 2, 2011

through June 29, 2018 (T=1884). It was obtained from Yahoo Finance using the R

package quantmod by Ryan and Ulrich (2017). Because we only considered stocks

traded through the whole period, we ended up with N = 656 assets.

A window size of 750 days is used for estimation, which represents a concentration

ratio of 656/750 = 0.875; the out-of-sample period was set to 1134 days. An

estimator Σ̂t+1|t of V(Xt+1|Ft) is computed from the 656× 750 subpanel {Xis|1 ≤
i ≤ 656, t − 749 ≤ s ≤ t} for t = 750, . . . , T − 1 = 1883. That estimator is used in

the construction, at times t = 750, . . . , 1883 (1134 time points), of a one-step ahead

minimal variance portfolio (optimality at time t+ 1)—viz., a vector of weights

ω̂t+1|t = (ω̂1;t+1|t, . . . , ω̂656;t+1|t)
′ = argmin

ω
ω′Σ̂t+1|tω

where minimisation is with respect to all ω = (ω1, . . . , ω656)
′ such that ωi ≥ 0

and
∑656

i=1 ωi = 1. The resulting (out-of-sample) portfolio return

rp,t+1 :=
656∑
i=1

ω̂i;t+1|tXi,t+1

at time t+ 1 then is computed from the observation at time t+ 1.

The minimum-variance portfolio we are proposing is the one based on Σ̂t+1|t =

V̂(Xt+1|Ft), as described in Section 3.2 (but computed from the adequate subpan-

els), denoted as GDFM-CHF-DCC. For the sake of comparison, we also include the

results of the GDFM-CHF-BEKK procedure. We compare its performance with

those of (a) the naive equal-weighted portfolio strategy, denoted here by 1/N, (b)

the RiskMetrics 2006 methodology (Zumbach, 2007), (c) the OGARCH approach

of Alexander and Chibumba (1996), (d) the ABC method of Alessi et al. (2009),

(e) the generalized principal volatility components (GPVC)21 of Li et al. (2016),

and (f) the procedure called PCA4TS proposed by Chang et al. (2018), which ex-

21A robust version of the GPVC procedure, denoted by RPVC, was proposed by Trućıos et al.

(2019). That procedure is based on a robust estimator of the unconditional covariance matrix which

can be applied only when the concentration ratio N/T is lower than 0.5. For this reason we did not

implement it here. Of course, an adequate robust estimator in an high-dimensional context would

be welcome. However, the performance of the RPVC in a N/T > 0.5 context has not been analyzed

yet.
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tends the principal component analysis to second-order stationary vector time series.

Those procedures were selected for their feasibility in high-dimensional data.

The GDFM-CHF with DCC or BEKK was implemented with 30 cross-sectional

permutations; the order of the VAR block-diagonal models was set to S = 1. In

practice (when one portfolio is to be estimated at a time), information criteria can be

used to determine the order of those VARs. Likewise, following Alessi et al. (2009),

the number of static factors, common shocks, volatility components (Li et al., 2016)

and groups (Chang et al., 2018) were determined once for all.

The ABC-DCC procedure (Alessi et al., 2009) was implemented with eight static

factors and three common shocks determined by the criteria of Bai and Ng (2002)

and Hallin and Lǐska (2007), respectively. The same number of common shocks

was used in the GDFM-CHF approach. The GPVC procedure was applied with

eight volatility components determined by the criterion of Bai and Ng (2002), the

PCA4TS one with 654 groups (two of them with two assets and the remaining ones

with only one asset; the groups were obtained following Chang et al. (2018)). The

OGARCH procedure was applied as in Becker et al. (2015), that is, with the number

of components equal to the number of series.

Following Gambacciani and Paolella (2017), Trućıos et al. (2018), or Engle et al.

(2019), among many others, we use annualized performance measures to evaluate

out-of-sample portfolio performances. These measures are defined as follows.

(i) Annualized average portfolio (AV):

AV := 252r̄p = 252

[
1

1134

1883∑
t=750

rp,t+1

]

(average of the out-of-sample portfolio returns multiplied by 252);

(ii) Annualized standard deviation (SD):

SD =
√

252

[
1

1134

1883∑
t=750

(rp,t+1 − r̄p)2
]1/2

(standard deviation of the out-of-sample portfolio return multiplied by
√

252);

(iii) Annualized information ratio (AV): IR = AV/SD;

(iv) Annualized Sortino’s ratio (SR): SR = AV/
(
S
√

252
)
, where
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S =

[
1

1134

1883∑
t=750

min (0, rp,t+1 −MAR)2
]1/2

,

and the minimal accepted return (MAR) is set to zero.

Because our objective is the selection of a minimum variance portfolio, the most

pertinent performance measure should be the SD criterion, as stressed out also by

Ledoit and Wolf (2017) and Engle et al. (2019).

The results are reported in Table 3. They reveal that the best performance, for

the SD, IR and SR criteria, is achieved by the GDFM-CHF-DCC. The OGARCH

model has the second best performance, according to the SD criterion, followed by

the ABC-DCC method. The GPVC and the OGARCH procedures exhibit the worst

performance according to the AV criterion while ABC has the best performance

according to the same criterion, followed by the GDFM-CHF-DCC proposal. The

worst out-of-sample performance is obtained by the equal-weight portfolio strategy

according to all criteria, but for the AV one. It is worth noting the relative good

performance of RM2006, which outperforms GPVC and PCA4TS according to all

criteria and loses for OGARCH only through the SD criterium. Finally, note that the

results of GDFM-CHF-BEKK are worse than those of GDFM-CHF-DCC, mainly

in terms of the SD criterion. This is not surprising since, as mentioned previously,

the estimation of the Full BEKK model is hard, unstable and strongly dependent on

the initial values, leading to a poor performance (Lien et al., 2002; Laurent et al.,

2012; Asai, 2015; Amendola and Candila, 2017; de Almeida et al., 2018).

Taking into account all criteria, the GDFM-CHF-DCC proposal exhibits the best

performance, followed by the ABC-DCC procedure.
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Table 3: Annualized performance measures: AV, SD, IR and SR stand for the

annualized average, standard deviation, information ratio and Sortino’s ratio of the

out-of-sample portfolio returns, respectively. The dataset is formed by 656 stocks

used in the composition of the S&P500, NASDAQ-100 and AMEX indexes and the

window size for estimation is equal to 750 days (concentration ratio N/T equal to

0.875). The out-of-sample period goes from January 2, 2014 to June 29, 2018. A

ranking of the various methods is provided in parenthesis for each criterion.

AV SD IR SR

1/N 5.7708 (3) 11.5067 (8) 0.5015 (8) 0.6834 (8)

RM2006 5.5983 (4) 4.5447 (4) 1.2318 (3) 1.7229 (3)

OGARCH 4.9227 (7) 4.4551 (2) 1.1050 (6) 1.5614 (6)

ABC-DCC 6.5267 (1) 4.5313 (3) 1.4404 (2) 1.9677 (2)

GPVC 4.5989 (8) 4.5889 (5) 1.0022 (7) 1.4077 (7)

PCA4TS 5.3677 (6) 4.7255 (6) 1.1359 (5) 1.6024 (5)

GDFM-CHF-DCC 6.2369 (2) 4.0209 (1) 1.5511 (1) 2.2137 (1)

GDFM-CHF-BEKK 5.5834 (5) 4.8954 (7) 1.1405 (4) 1.6287 (4)

6 Conclusions

Based on the one-sided procedure of Forni et al. (2015, 2017) and Barigozzi and

Hallin (2018), we propose a forecasting method for the conditional covariance matrix

in high-dimensional time series, which we apply to dynamic portfolio optimization.

A Monte Carlo performance comparison of our method with alternative methods

is conducted over four different DGPs, using the distance measures proposed in

Amendola and Candila (2017). Overall, our method has an excellent performance,

and outperforms all its competitors—except, under static factor model DGPs, for

the distance D2 which disregards the covariances.

The superiority of our estimator is also empirically established in an application

to dynamic portfolio optimisation based on a dataset of 656 assets. Our method

achieves the best out-of-sample performance according to the (annualized) standard

deviation SD (arguably, the most relevant criterion in the context), information ratio

(IR) and Sortino’s ratio (SR) criteria, and is second best (after Alessi et al. (2009))
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with respect to the (annualized) average criterion.
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1 Introduction23

Volatility forecasting plays an essential role in a variety of economic and financial24

applications, such as portfolio allocation, risk management, option pricing, hedging25

strategies, etc.: see Engle (2009), Hlouskova et al. (2009), Aramonte et al. (2013),26

Becker et al. (2015), Trućıos et al. (2018), and Engle et al. (2019), to quote only27

a few.28

Several multivariate models have been proposed to model and forecast the con-29

ditional covariance matrix of a collection of n assets; see Bauwens et al. (2006) or30

de Almeida et al. (2018) for reviews. For n small, multivariate GARCH (MGARCH)31

type models, in that context, constitute fundamental prediction tools. Unfortu-32

nately, these models badly suffer from the so-called “curse of dimensionality” as the33

number n of assets grows, and cannot be implemented in a high-dimensional con-34

text. Therefore, alternative procedures have been proposed, see Fan et al. (2008),35

Alessi et al. (2009), Matteson and Tsay (2011), Engle and Kelly (2012), Hu and36

Tsay (2014), Santos and Moura (2014), Li et al. (2016), Chang et al. (2018), Engle37

et al. (2019), Trućıos et al. (2019a) and Pakel et al. (2020), among others.38

Dynamic factor models with high-dimensional asymptotics offer a promising ap-39

proach in that context; see the surveys by Barhoumi et al. (2014) and Bai and Wang40

(2016) for details. Factor models are based on the assumption that cross-correlations,41

in a large cross-section of time series data, are accounted by a small number of la-42

tent factors or common shocks, which account for their co-movements and have been43

used by several authors to model and forecast conditional covariance matrices: see44

Diebold and Nerlove (1989), Harvey et al. (1992), Aguilar and West (2000), Vron-45

tos et al. (2003), Han (2005), Sentana et al. (2008), Aguilar (2009), Alessi et al.46

(2009), Garćıa-Ferrer et al. (2012), Aramonte et al. (2013) and Dovonon (2013),47

among others. All these contributions are based on a static factor-loading scheme148

1In this static loading scheme, latent factors are loaded contemporaneously via some loading

matrix, so that the dimension of the factor space reduces to the (finite) number of linearly inde-

pendent factors; the number of shocks driving those factors, however, may be strictly less than the

2



(Bai and Ng, 2002; Stock and Watson, 2002a,b)2 leading to finite-dimensional factor49

spaces whose main advantage is to allow for consistent estimation methods based50

on traditional principal components, which are familiar to most practitioners, easy51

to implement, and widely used in practice.52

However, as pointed out in Forni and Lippi (2011) and Section 1.1 of Forni53

et al. (2015), the assumption of a static factor-loading scheme considered in that54

literature is quite restrictive and rules out some very simple and plausible cross-55

correlation patterns leading to infinite-dimensional factor spaces. To overcome this56

issue, Forni et al. (2000) introduced the so-called generalized or general dynamic57

factor model (GDFM), in which factors (equivalently, common shocks) are loaded58

through filters rather than matrices; see the monograph by Hallin et al. (2020) for59

details. As shown in Hallin and Lippi (2013), the GDFM actually follows from a60

representation result which holds, essentially, without placing any restrictions on61

the data-generating process—beyond second-order stationarity and the existence of62

a spectrum.63

The role of traditional principal components in the GDFM is taken over by64

Brillinger’s dynamic principal components 3 (Brillinger, 1981), and the estimation65

method proposed by Forni et al. (2000) naturally relies on this concept. Dynamic66

principal components, however, involve two-sided filters, producing estimators that67

are inadequate in forecasting problems. Forni and Lippi (2011) and Forni et al. (2015,68

2017)4 therefore developed an alternative consistent estimation method involving69

one-sided filters only. Monte Carlo simulations indicate that, for estimating impulse-70

response functions and predicting returns, this one-sided approach outperforms the71

static methods of Stock and Watson (2002a,b) and Bai and Ng (2002) even when72

the actual loading scheme is of the static type (see Section 4 in Forni et al. (2017)).73

The Forni et al. (2015, 2017) procedure has been successfully used to forecast74

dimension of the factor space.
2Similar ideas have been developed also in a non-econometric context, see, e.g., Peña and Box

(1987), Stoffer (1999), or Pan and Yao (2008).
3Hallin et al. (2018) show that those dynamic principal components, based on the factorization

of spectral density matrices, inherit, in a time-series context, the optimality properties that make

traditional principal components a successful dimension-reduction device in i.i.d. samples.
4The assumptions in those three references yield slight variations; in this paper, unless otherwise

stated, we refer to the assumptions in Barigozzi and Hallin (2020).
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inflation and financial returns; see Della Marra (2017), Forni et al. (2018) and Gio-75

vannelli et al. (2018). It has also been used in the prediction of conditional variances76

by Barigozzi and Hallin (2016, 2017, 2020), but never, as far as we know, in the pre-77

diction of conditional covariance matrices and portfolio optimization.5 These two78

points constitute the main goal of this paper.79

The rest of the paper is organised as follows. Section 2 briefly describes the80

GDFM. Section 3 introduces our forecasting procedure and establishes its consis-81

tency properties. Section 4 reports a Monte Carlo study of the finite-sample perfor-82

mance of the proposed procedure and their comparison with existing competitors.83

In Section 5, the new procedure is applied to dynamic portfolio optimization, that84

is, the problem of constructing, at time T , portfolios with minimum (at time T + 1)85

conditional variance from a large collection of assets. In Sections 5 we also compare86

the proposed procedure with other methods. Section 6 concludes.87

2 The general dynamic factor model88

In this section, we briefly describe the GDFM to be considered throughout, which89

basically contains as particular cases all other factor models proposed in the econo-90

metric and time series literature, along with the regularity assumptions we need for91

consistency, which are borrowed, essentially, from Barigozzi and Hallin (2020).92

Let {Xt := (X1t X2t . . . )
′, t ∈ Z}, be a double-indexed zero-mean second-order93

stationary stochastic process, where the first index is cross-sectional and typically94

refers to assets, while t, as usual, stands for time. The GDFM is based on the95

decomposition96

Xit = χit + ξit, i ∈ N0, t ∈ Z (1)

of Xit into two non-observable mutually orthogonal components χit (the common97

components) and ξit (the idiosyncratic components), where98

χit =

q∑
j=1

∞∑
k=0

bijkujt−k = b′i(L)ut and ξit =
∞∑
k=0

dikvit−k = di(L)vit; (2)

5See, however, the unpublished paper by Alessi et al. (2009) who assume a factor model decom-

position with finite-dimensional factor space on the model of Forni et al. (2005 and 2009).
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the common shocks ut := (u1t u2t ... uqt)
′ driving the common components, and99

the idiosyncratic shocks vit driving the idiosyncratic components, are also non-100

observable.101

Letting Xn := {Xit|i = 1, ..., n, t ∈ Z}, χn := {χit | i = 1, ..., n, t ∈ Z},102

and ξn := {ξit|i = 1, ..., n, t ∈ Z}, equation (2) in vector notation takes the form103

Xnt = χnt + ξnt = Bn(L)ut,+Dn(L)vnt, n ∈ N0, t ∈ Z (3)

with Bn(L) := (b1(L)...bn(L))′, Dn(L) := diag(d1(L)...dn(L)), and vnt := (v1t . . . vnt)
′.104

Let ‖A‖p stand for the Lp norm
(∑

i,j A
p
ij

)
1/p of a real matrix A = (Aij)105

(for p = 2, we simply write ‖A‖). On the GDFM decomposition (1), we assume the106

following.107

Assumption (GDFM)(i) the vector process ut is a zero-mean q-dimensional108109

second-order white noise process, with full-rank covariance Γu;110

(ii) writing bik := (bi1k...biqk)
′ for the q × 1 coefficient of Lk in bi(L), there exists111

a constant M1 > 0 such that
∑∞

k=0 ‖bik‖k1/2 ≤M1 for all i ∈ N;112

(iii) vnt is a zero-mean second-order stationary process with positive definite co-113

variance Γvn; moreover, E[vit|vis] = 0 for all i ∈ N and t > s ∈ Z;114

(iv) there exists a constant Cv > 0 such that ‖Γvn‖1 ≤ Cv for all n ∈ N, and a115

constant M2 > 0 such that
∑∞

k=0 |dik|k1/2 ≤M2 for all i ∈ N;116

(v) Cov(ujt, vis) = 0 for all i ∈ N, j = 1, ..., q, and t, s ∈ Z;6117

(vi) there exists a constant M3 > 0 such that, for all j1, j2, j3, j4,∑
k1,k2,k3∈Z

|E(uj1tuj2,t−k1uj3,t−k2uj4,t−k3)| ≤M3,

and a constant M4 > 0 such that, for all i1, i2, i3, i4,∑
k1,k2,k3∈Z

|E(vi1tvi2,t−k1vi3,t−k2vi4,t−k3)| ≤M4;

(vii) for all i ∈ N and j = 1, . . . , q, bij(z) =
∑∞

k=0 bijkz
k, z ∈ C, has square-118

summable coefficients and is the ratio γij(z)/δij(z) of two finite-order polyno-119

mials in z, γij(z) =
∑Sγ

k=0 γijkz
k and δij(z) =

∑Sδ
k=0 δijkz

k with roots outside120

6This implies that the common and idiosyncratic processes are mutually uncorrelated at all leads

and lags.
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the closed unit disk only, δij(0) = 1, and no common roots; the orders Sγ121

and Sδ, moreover, are independent of i.7122

Assumption GDFM(iii) is the typical assumption of martingale difference innova-123

tions used in the GARCH literature. Assumption (vii) entails the existence of a VAR124

filtering of Xn satisfying the assumptions of the static factor model where the com-125

mon shocks ut are loaded contemporaneously (see (4) below).126

These assumptions also guarantee the existence of the spectral density matri-127

ces Σχ
n(θ), Σξ

n(θ), and ΣX
n (θ) = Σχ

n(θ) + Σξ
n(θ), θ ∈ [−π, π], of χn, ξn, and Xn,128

respectively. Denoting by λχnj(θ), λ
ξ
nj(θ) and λXnj(θ) be the jth eigenvalues (in de-129

creasing order of magnitude) of Σχ
n(θ), Σξ

n(θ) and ΣX
n (θ), respectively, let them130

satisfy the following assumption.131

Assumption (GDFM)(viii)132 There exist an integer n̄ > 0 and continuous func-133

tions αj and βj−1 from [−π, π] to R , j = 1, . . . , q, independent of n and such134

that, for all j = 1, . . . , q, and all n > n̄,135

0 < βj−1(θ) < αj(θ) ≤ λχnj(θ)/n ≤ βj(θ) <∞, θ-a.e. in [−π, π],

while λχn,q+1(θ) and λξn1(θ) are bounded, uniformly in θ ∈ [−π, π], as n→∞.136

Hence, as n→∞, the q common dynamic eigenvalues are exploding linearly (the137

assumption of factor pervasiveness), while all idiosyncratic eigenvalues are bounded138

(this is the definition of idiosyncrasy).139

The main theoretical result behind the one-sided approach of Forni et al. (2015)140

is the generic existence8 of a block-diagonal VAR filtering of the observations turn-141

ing the GDFM representation (1) into a static one. More precisely, Forni and Lippi142

(2011) and Forni et al. (2015) show that, for generic values of the coefficients γijk143

and δijk (i.e., except for a subset with Lebesgue measure zero in the (q+1)(Sγ+Sδ)-144

dimensional space of the relevant γijk and δijk coefficients), any (q+ 1)-dimensional145

vector χ
i1...iq+1

t := (χi1t, . . . , χiq+1t)
′ with i1 < . . . < iq+1 admits a VAR repre-146

sentation of the form A(L)i1...iq+1χ
i1...iq+1

t = Ri1...iq+1ut,
9 where A(L)i1...iq+1 has147

7As a consequence, the common components have rational spectral densities; see Assump-

tion (L2) in Barigozzi and Hallin (2020) for more details.
8This goes back to results on reduced rank processes: see, e.g., Anderson and Deistler (2008).
9See Assumption (L4) in Barigozzi and Hallin (2018) for more details about this VAR represen-

tation.
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degree S ≤ qSγ + q2Sδ and the (q + 1) × q matrix Ri1...iq+1 is of rank q. It follows148

that generically, for any n = m(q + 1), partitioning χnt = (χ1t, . . . , χnt)
′ into m149

subvectors of dimension (q+ 1), χnt admits a block-VAR representation of the form150

An(L)χnt =


A1(L) 0 . . . 0

0 A2(L) . . . 0
...

...
. . .

0 0 . . . Am(L)

χnt =


R1

R2

...

Rm

ut, t ∈ Z. (4)

Hence, for Xnt = (X1t, . . . , Xnt)
′, we have151

An(L)Xnt = An(L)χnt + An(L)ξnt = Rnut + εnt, t ∈ Z (5)

with Rn =
[
R1′R2′ . . . Rm′]′ and εnt = An(L)ξnt, where it can be shown that152

the process εt := {(ε1t ε2t . . . )′, t ∈ Z} is still idiosyncratic. In other words, using153

obvious notation154

A(L) :=



A1(L) 0 . . . 0 . . .

0 A2(L) . . . 0 . . .
...

...
. . .

...

0 0 . . . Am(L) . . .
...

... . . . . . .
. . .


and R :=



R1

R2

...

Rm

...


, (6)

the filtered process Yt := A(L)Xt admits a static factor model representation155

Yt = Rut + εt, t ∈ Z (7)

with q-dimensional factor space spanned by ut. While R and ut are not individually156

identified, the product Rut is.157

The static representation (7), under assumptions (i)-(viii), holds generically.158

Assuming that it holds for the panel under study this is a very mild requirement;159

we nevertheless need to make it an assumption:160

Assumption (GDFM)(ix)161 For all n∗ ≥ q + 1, letting n = bn∗/(q + 1)c(q + 1),162

there exist block-diagonal filters An(L) and n × q matrices Rn such that (5)163

holds, irrespective of the cross-sectional ordering.164
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Assumptions (GDFM) (i)-(ix) are the main assumptions in Barigozzi and Hallin165

(2020); on top of these, they also require two less important and more technical166

ones on the regularity of the VAR operators Am(L) (Assumptions (L4) and (L5),167

respectively), which we do not reproduce here. Under those assumptions, Barigozzi168

and Hallin (2020) show that a consistent reconstruction, based on Xt, Xt−1, . . ., of169

the unobserved χt and ξt is possible. It follows that χt and ξt are Ft-measurable,170

where Ft denotes the σ-field generated by Xt,Xt−1, . . . It is worth noting that,171

reinforcing the same assumptions (e.g., assuming that ut and vnt are jointly i.i.d.,172

which rules out GARCH-type behaviors), Forni et al. (2017) derive estimators for173

(1)-(2) and provide a complete asymptotic analysis for the same. On the other hand,174

Barigozzi and Hallin (2020) do not require i.i.d.-ness and, under assumptions that175

include (i)-(ix), provide consistency and consistency rates for the Forni et al. (2017)176

estimators.177

If, however, Var(Xnt|Fn;t−1) is to be estimated at time (t − 1), assumptions178

have to be made on the dynamics of Var(ut|Fu
t−1) and Var(ξnt|Fn;t−1). As in Alessi179

et al. (2009) and Aramonte et al. (2013), we therefore assume that the conditional180

covariance matrices of the common shocks can be modelled as some q-dimensional181

MGARCH process. Since q is typically small, this approach escapes the curse of di-182

mensionality. As for the idiosyncratic conditional covariance matrix Var(ξnt|Fn;t−1),183

since idiosyncratic cross-correlations are non-pervasive (mild enough that idiosyn-184

cratic dynamic eigenvalues remain bounded), it can be approximated by a diagonal185

matrix where each diagonal element (each marginal conditional variance) is modelled186

by a univariate GARCH-type model—in the sequel, we use GARCH(1,1) models.10187

In both cases, the MGARCH and the n GARCH(1,1) models are estimated by Gaus-188

sian quasi-maximum likelihood (QMLE). We refer to the monograph by Francq and189

Zakoian (2019) for sufficient QMLE consistency conditions; note, however, that those190

QMLEs, here, will be computed from the Forni et al. (2017) estimated shocks ût191

and estimated idiosyncratic components ξ̂it.192

More precisely, we assume the following.193

Assumption (GARCH). The common shocks ut and the idiosyncratic compo-194

10From a numerical perspective, this diagonal approximation of idiosyncratic covariances can be

seen as a simple regularization device.
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195

nents ξit are stable by aggregation MGARCH (with parameter θ ∈ Θq) and196

univariate AR-GARCH (with parameters ϑi ∈ Θ1, i ∈ N) stationary processes,197

respectively; they are conditionally (on Fn;t−1) uncorrelated at all leads and198

lags; the parameter spaces Θq and Θ1 are compact; the densities of ut and199

the idiosyncratic shocks vit and the parameters θ ∈ Θq and ϑi ∈ Θ1 jointly200

satisfy the conditions for consistent QMLE.201

The assumption that the MGARCH model generating the common shocks is stable202

by aggregation is motivated by the fact that ut is not fully identified (see the remark203

after (7)): under Assumption (GARCH), any linear transform Rut is driven by an204

MGARCH model of the same type as ut itself. Examples of stable by aggregation205

MGARCH models are the full VECH (Bollerslev et al., 1988) and full BEKK (En-206

gle and Kroner, 1995) models, which moreover can be consistently estimated via207

QMLE methods; see Comte and Lieberman (2003), Hafner and Preminger (2009),208

and Theorems 10.2 and 10.4 in Francq and Zakoian (2019).209

As mentioned before, the idiosyncratic conditional covariance matrix Var(ξnt|Fn;t−1)210

is approximated by a diagonal matrix where each diagonal element (each marginal211

conditional variance) is modelled by a univariate GARCH-type model. That approx-212

imation, which is justified by the boundedness of idiosyncratic dynamic eigenvalues,213

is on line with the factor model paradigm, where cross-correlations are essentially214

accounted for by the common shocks, and the idiosyncratic contribution are negli-215

gible. Rather than making the comfortable but unrealistic assumption of mutually216

orthogonal idiosyncratics, in Section 3.2, we will use the notation Var∗(ξnt|Fn;t−1)217

and Var∗(Xnt|Fn;t−1) for the approximate conditional covariance matrices of ξnt218

and Xnt resulting from neglecting that off-diagonal idiosyncratic contribution.219

3 Predicting covariance matrices220

In this section, we propose an estimator, based on past observations up to time T ,221

of the covariance matrix of Xn,T+1 conditional on XnT ,Xn,T−1, . . .. More precisely,222

denoting by V Xn

t|t−1 the covariance matrix Var(Xnt

∣∣Fn;t−1) of Xnt conditional on223

the σ-field Fn;t−1 generated by {Xis| i = 1, . . . , n; s ≤ t − 1}, we are interested in224
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estimating the n × n matrix V Xn

T+1|T or some n0 × n0 submatrix V
Xn0

T+1|T thereof11225

from the observed n× T panel.12226

Section 3.1 provides a theoretical expression for V Xn

t|t−1 =Var(Xnt

∣∣Fn;t−1); Sec-227

tion 3.2 describes the estimation procedure; Section 3.3 establishes the consistency228

properties of the estimator.229

3.1 The conditional covariance matrix230

We start with a theoretical decomposition of the conditional covariance matrix V Xn

t|t−1231

of Xnt in terms of the elements of the static representation (7). Similar to V Xn

T+1|T ,232

the notation V Yn

T+1|T , V χn
T+1|T , V ξn

T+1|T , V εn
T+1|T , ... is used in an obvious fashion233

for Var(Ynt

∣∣Fn;t−1), Var(χnt
∣∣Fn;t−1), Var(ξnt

∣∣Fn;t−1), etc. Note, however, that234

the q × q covariance Var(ut
∣∣Fn;t−1) of ut conditional on Fn;t−1, in view of Assump-235

tion (GARCH), reduces to Var(ut
∣∣Fχn;t−1), where Fχn;t−1 is generated by the past236

values of χnt, which in turn, for n large enough, coincides with the σ-field Fu
t−1237

generated by ut’s own past. That σ-field no longer involves n—justifying the nota-238

tion V u
t|t−1 or V u

t|t−1(ut−1,ut−2, . . .).239

All those conditional covariances can be interpreted as (oracle) predictors, based240

on observations up to time t − 1, of the corresponding stochastic covariance the241

nonobservable realization of which is to take place at time t.242

Proposition 1. Let Assumption (GDFM) (i)-(ix) hold. Then, the covariance ma-243

trix V Xn
t|t−1 of Xnt conditional on Fn;t−1 decomposes into244

V Xn
t|t−1 = RnV

u
t|t−1R

′
n + V ξn

t|t−1. (8)

Proof. From (7), we have that245

Var(Ynt|Fn;t−1) = Var(Rnut + εnt|Fn;t−1)

= RnVar(ut|Fn;t−1)R′n + Var(εnt|Fn;t−1) + Cov(Rnut, εnt|Fn;t−1)

+Cov(εnt,Rnut|Fn;t−1), t ∈ Z. (9)

11Without loss of generality, we always consider the n0 × n0 left upper corner.
12Since the (random) covariance matrix to be estimated is associated with time T + 1 while

observations are limited to time T , this estimator also will be called a predictor, although the

estimand is never to be observed, which makes this association with time T+1 somewhat immaterial.
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Without loss of generality we can assume that all VAR filters Ak(L) in (5) are of246

the form Ak(L) = Iq+1 − φk1L − · · · − φkSLS (with φkS 6= 0 for at least one k).247

Consequently, An(L) can be written as An(L) = I−Φ1L− · · · −ΦSL
S . Then, it is248

easy to check that249

Var(εnt|Fn;t−1) = Var(An(L)ξnt|Fn;t−1) = Var
([

I−Φ1L− · · · −ΦSL
S
]
ξnt|Fn;t−1

)
= Var(ξnt|Fn;t−1), (10)

since ξn,t−k is Fn;t−1-measurable for k ≥ 1.250

Similarly, we have251

Var(Ynt|Fn;t−1) = Var(An(L)Xnt|Fn;t−1) = Var(Xnt|Fn;t−1). (11)

Moreover, since ut and ξnt are conditionally uncorrelated, both Cov(Rnut, εnt|Fn;t−1)
and Cov(εnt,Rnut|Fn;t−1) in (9) equal zero. Hence,

Cov(Rnut, εnt|Fn;t−1) = Cov(Rnut,An(L)ξnt|Fn;t−1) = RnCov(ut,An(L)ξnt|Fn;t−1).

Now,252

Cov(ut,An(L)ξnt|Fn;t−1) = Cov(ut,
[
I −Φ1L− ...−ΦSL

S
]
ξnt|Fn;t−1)

= E(ut [ξnt −Φ1ξn,t−1 − ...−ΦSξn,t−S ]′ |Fn;t−1)

− E(ut|Fn;t−1)E([ξnt −Φ1ξt−1 − ...−ΦSξn,t−S ]′ |Fn;t−1)

= E(utξ
′
nt|Fn;t−1)− E(ut|Fn;t−1)E(ξ′nt|Fn;t−1)

−
[
E(utξ

′
n,t−1Φ

′
1|Fn;t−1)− E(ut|Fn;t−1)E(ξ′n,t−1Φ

′
1|Fn;t−1)

]︸ ︷︷ ︸
0

− . . .−
[
E(utξ

′
n,t−SΦ′S |Fn;t−1)− E(ut|Fn;t−1)E(ξ′n,t−SΦ′S |Fn;t−1)

]︸ ︷︷ ︸
0

= E(utξ
′
nt|Fn;t−1)− E(ut|Fn;t−1)E(ξ′nt|Fn;t−1) = Cov(ut, ξnt|Fn;t−1) = 0.

It then follows from (8)-(11), along with the fact that Cov(εnt,Rnut|Fn;t−1) = 0,

that

Var(Xnt|Fn;t−1) = Var(Ynt|Fn;t−1) = RnVar(ut|Fn;t−1)R′n + Var(ξnt|Fn;t−1)

with Var(ut|Fn;t−1) = V u
t|t−1, as was to be proved.253

The same decomposition (8) applies to the regularized covariances resulting from254

neglecting idiosyncratic cross-covariances; to avoid overloading notation any further,255

we do not, however, introduce any formal symbol for the latter.256
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3.2 Estimation257

We start with estimating the GDFM decomposition of the observed n× T panel.258

• Step 1. Determine the number q of common shocks, for instance via the259

Hallin and Lǐska (2007) criterion.260

• Step 2. Randomly reorder the n observed series.261

• Step 3. Compute a consistent13 estimator

Σ̂X
nT (θ) =

1

2π

MT∑
k=−MT

e−ikθK

(
k

BT

)
Γ̂Xk

of the n × n spectral density matrix of the Xt’s, where K(·) is a kernel func-262

tion, MT a truncation parameter, BT the bandwidth, and Γ̂Xk the sample lag-k263

cross-covariance matrix computed from the observed n×T panel of Xt values.264

• Step 4. Collecting the normalized column eigenvectors associated with Σ̂X
nT (θ)’s q

largest eigenvalues into the n×q matrix P̂X
nT (θ) (with complex conjugate P̂X∗

nT )

and the corresponding eigenvalues into the q×q diagonal matrix Λ̂X
nT (θh), com-

pute

Σ̂χ
nT (θ) := P̂X

nT (θ)Λ̂X
nT (θ)P̂X∗

nT (θ)

as an estimator of the spectral density matrix of χnt.265

• Step 5. Let n∗ := m(q+1) with m :=
⌈

n
q+1

⌉
. Dropping the last n−m(q+1)266

series, denote by Σ̂χ
n∗T (θ) the n∗ × n∗ spectral density matrix corresponding267

to the remaining n∗ series14.268

• Step 6. By inverse Fourier transform of Σ̂χ
n∗T (θ), compute the estimated

autocovariance matrices Γ̂χk of the m (q + 1)-dimensional sub-vectors

χkt = (χ(k−1)(q+1)+1,t . . . χk(q+1),t)
′, k = 1, ...,m.

13Consistency requires conditions on K, MT and BT , for which again we refer to Barigozzi and

Hallin (2020).
14For the sake of simplicity we keep the same notation for the n∗ reordered observed series.
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Then, from the latter, obtain, via Akaike order identification and Yule-Walker269

equations, estimators Â
k
(L) of the m VAR filters Ak(L); stacking them into270

a block-diagonal matrix Ân(L), compute the estimates Ŷnt := Ân(L)Xnt.271

• Step 7. Obtain the estimates R̂nut of Rnut by computing the first q stan-272

dard principal components of Ŷnt; inverting15 the block-diagonal filters Ân(L)273

and then using appropriate identification constraints, we obtain the identified274

quantities R̂n and ût, and the corresponding estimates of the impulse-response275

function B̂n = [Ân(L)]−1R̂n.276

Following Forni et al. (2017) we adopt a Cholesky identification scheme to obtain277

the identification of R̂n and ût (see Section 4.1 of Forni et al. (2017) for more278

details)—other choices are possible, though.279

Steps 1-7 are those described in Forni et al. (2015, 2017) and Barigozzi and280

Hallin (2020), where we refer to for details. The resulting estimator χ̂nt, however,281

depends on the ordering of the panel obtained at Step 2: that ordering indeed282

determines which elements of Σ̂χ
nT (θ) are kept in Σ̂χ

n∗T (θ) and belong to the diagonal283

blocks of Σ̂χ
n∗T (θ). Forni et al. (2017) and Barigozzi and Hallin (2020) explain how284

to deal with this by iterating Steps 2-7 (going back to Step 2, choosing a new285

random permutation, hence a new n∗-dimensional subpanel, etc.) until numerical286

stabilization of the averaged (over the permutations) χ̂nt values; this typically takes287

place after few iterations16.288

• Step 8. Iterate Steps 2 through 7; average (after obvious reordering of the289

cross-section) the resulting estimates R̂n, ût, and B̂n. Denote, for the sake290

of simplicity, the final estimates also as R̂n, ût, and B̂n. Let χ̂nt := B̂nût291

and ξ̂nt := Xnt − χ̂nt.292

All these estimators actually are sequences indexed by (n, T ). Whenever this293

is to be emphasized, the notation R̂
(n,T )

n , û
(n,T )
t , χ̂

(n,T )
nt , ξ̂

(n,T )
nt , and, for n0-dimen-294

sional (n0 ≤ n) subvectors, R̂
(n,T )

n0
, ξ̂

(n,T )
n0t

, etc. will be adopted.295

15The inverse of Ân(L) being the block-diagonal filter with (q + 1) × (q + 1) diagonal

blocks [Â
k
(L)]−1 where q is small, this inversion is easily performed.

16Averaging, of course, is performed after rearrangement of the cross-sectional items in the original

ordering.
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The procedure described so far is the one that has been used in Della Marra296

(2017), Forni et al. (2018), and Giovannelli et al. (2018) in their forecasting of297

inflation and financial returns. In order to go one step further and estimate con-298

ditional covariance matrices, we will exploit the MGARCH and GARCH features299

of Assumption (GARCH). Note that, thanks to the assumption of stability under300

aggregation, the choice of identification constraints has no impact on the validity of301

Assumption (GARCH), so that VECH or BEKK QMLEs safely can be computed302

from the û
(n,T )
t ’s and ξ̂

(n,T )
nt ’s obtained in Step 8.303

We now proceed with the following final steps. For given θ, the variance of ut304

conditional on Ft−1 (equivalently, Fu
t−1) is a function V u

t|t−1;θ of ut−1,ut−2, . . . which,305

due to stationarity, does not depend on t. Denote by V u
t,τe;θ(v1, . . . ,vτ ) its evaluation306

at (v1, . . . ,vτ ,0,0, . . .): then,307

V u
t|t−1;θ = lim

τ→∞
V u
t,τe;θ(ut−1, . . . ,ut−τ ) (12)

a.s. for any θ and t. The notation V ξi
t|t−1;ϑi and V ξi

t,τe;ϑi(v1, . . . , vτ ) is used in an308

obvious similar way for each variable ξit, with309

V ξi
t|t−1;θi = lim

τ→∞
V ξi
t,τe;ϑi(ξi,t−1, . . . , ξi,t−τ ) (13)

a.s. for any ϑi, i, and t. Now, since θ is unknown, denote by θ(T ) its QMLE;310

more precisely, denote by θ(T ) the mapping from (vT , . . . ,v1) ∈ RqT to the max-311

imizer θ(T )(vT , . . . ,v1) ∈ Θq of the MGARCH likelihood computed at vT , . . . ,v1.312

The notation ϑi;(T ) is used in an obvious similar way for each (ξiT , . . . , ξi1).313

• Step 9a. Run, over the q-dimensional T -uple û
(n,T )
1 , . . . , û

(n,T )
T , a QML es-

timation procedure for the parameter θ of the MGARCH model of Assump-

tion (GARCH); this yields an estimator

θ̂
(n,T )
(T ) := θ(T )(û

(n,T )
T , . . . , û

(n,T )
1 )

of θ. Choose a finite lag τ < T and let17314

V̂
u;(n,T )
T+1,τe := V

u

T+1,τe;θ̂(n,T )
(T )

(û
(n,T )
T , . . . , û

(n,T )
T−τ+1). (14)

17The subscript(T ) indicates that θ̂
(n,T )

(T ) , as a QMLE, is defined over T values of the q-dimensional

space of common shocks, that is, is mapping (vT , . . . ,v1) ∈ RqT to θ̂
(n,T )

(T ) (vT , . . . ,v1) ∈ Θq; theˆ

and the (n,T ) superscript are the indication that this QMLE θ̂(T )(vT , . . . ,v1) is to be computed

at (vT , . . . ,v1) = (û
(n,T )
T , . . . , û

(n,T )
1 ).
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• Step 9b. Similarly run, over each of the n univariate T -uples ξ̂
(n,T )
i1 , . . . , ξ̂

(n,T )
iT ,

a QML estimation procedure for the parameters ϑi, i = 1, . . . , n of the univari-

ate idiosyncratic AR-GARCH models of Assumption (GARCH); this yields n

estimators

ϑ̂
(n,T )
i;(T ) := ϑi;(T )(ξ̂

(n,T )
iT , . . . , ξ̂

(n,T )
i1 ).

Let V̂
ξi;(n,T )
T+1,τe := V ξi

T+1,τe;ϑ̂(n,T )
i;(T )

(ξ̂
(n,T )
iT , . . . , ξ̂

(n,T )
i,T−τ+1) and, for n0 ≤ n, denote by315

V̂
ξn0 ;(n,T )

T+1,τe := diag
(
V̂
ξi;(n,T )
T+1,τe , . . . , V̂

ξn0 ;(n,T )

T+1,τe

)
(15)

the n0×n0 diagonal matrix of the predicted (regularized) conditional variances316

of the idiosyncratic variables ξ1,T+1, . . . , ξn0,T+1.317

The diagonal matrix (15), however, is neglecting the possible idiosyncratic cross-318

covariances, which, as explained at the end of Section 2, are mild (non-pervasive)319

but not nil. As a consequence, (15) yields a predictor of Var∗(ξnt|Fn;t−1) rather320

than Var(ξnt|Fn;t−1). Similarly, (16) below is the predictor of Var∗(Xnt|Fn;t−1).321

• Step 9c. Compute our predictor of the n0×n0 conditional covariance matrix322

of (X1,T+1, . . . , Xn0,T+1) (n0 ≤ n) as323

V̂
Xn0 ;(n,T )

T+1,τe := R̂
(n,T )

n0
V̂

u;(n,T )
T+1,τe R̂

(n,T )′
n0

+ V̂
ξn0 ;(n,T )

T+1,τe . (16)

3.3 Consistency324

Consistency, as well as any other asymptotic property, consists in embedding the325

actual finite-sample model into a sequence of models indexed by n and T going to326

infinity. This, however, can be achieved in several ways. Here, we let n0 denote327

the (fixed) dimension of the covariance matrix to be predicted and T0 the point in328

time where one-step ahead prediction is to be made, while n and T are indexing329

the sequence of fictitious “future” panels along which asymptotic statements are to330

be made. As already explained, we are neglecting idiosyncratic cross-covariances;331

to avoid introducing heavier notation, from now on, we are writing V
Xn0

T0+1|T0 for the332

resulting conditional covariance matrix Var∗(Xn0,T0+1

∣∣Fn;T0). With that notation,333
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we are interested in estimating V
Xn0

T0+1|T0 and the estimator (16) we are proposing334

takes the form335

V̂
Xn0 ;(n0,T0)

T0+1,τe := R̂
(n0,T0)

n0
V̂

u;(n0,T0)
T0+1,τe R̂

(n0,T0)′
n0

+ V̂
ξn0 ;(n0,T0)

T0+1,τe . (16′)

That estimator is to be considered as an element of the (n, T )-indexed sequence336

V̂
Xn0 ;(n,T )

T0+1,τe := R̂
(n,T )

n0
V̂

u;(n,T )
T0+1,τe R̂

(n,T )′
n0

+ V̂
ξn0 ;(n,T )

T0+1,τe n ≥ n0, T ≥ T0

based (see (14) and (15)) on the QMLE mappings θ(T0) and ϑi;(T0), i = 1, . . . , n0337

involving the T0 arguments û
(n,T )
T0

, . . . , û
(n,T )
1 and ξ̂

(n,T )
iT0

, . . . , ξ̂
(n,T )
i1 , respectively.338

The following proposition establishes the consistency properties of (16′) as n339

and T tend to infinity (n0 and T0 large enough but fixed).340

Proposition 2. Let Assumptions (GDFM) (i)-(ix) and (GARCH), and Assump-341

tions (K), (T), (L4), and (L5) in Barigozzi and Hallin (2020) hold. Then, for342

any n0 ∈ N, any θ ∈ Θq and ϑ1, . . . ,ϑn0 in Θ1, any ε > 0 and η > 0, there ex-343

ist τ∗(n0,θ,ϑ1, . . . ,ϑn0 ; ε, η) and T ∗0 (n0,θ,ϑ1, . . . ,ϑn0 ; ε, η) and, for any T0 ≥ T ∗0 ,344

n∗(n0,θ,ϑ1, . . . ,ϑn0 ;T0; ε, η), and T ∗(n0,θ,ϑ1, . . . ,ϑn0 ;T0; ε, η) such that345

P
[∥∥∥V̂ Xn0 ;(n,T )

T0+1,τe − V Xn0
T0+1|T0

∥∥∥ ≥ ε] ≤ η (17)

for all n0 ∈ N, τ ≥ τ∗, T0 ≥ T ∗0 , n ≥ n∗, and T ≥ T ∗.346

A stronger form of (17), allowing T0 = T , would be347

P
[∥∥∥V̂ Xn0 ;(n,T )

T+1,τe − V Xn0

T+1|T

∥∥∥ ≥ ε] ≤ η,
for all n0 ∈ N, τ ≥ τ∗, n ≥ n∗, and T ≥ T ∗; this holds true if the values n∗ = n0348

and T ∗ = T0 are admissible in Proposition 2; establishing this latter fact, how-349

ever, would require sharper (namely, sharper than the Barigozzi and Hallin (2020)350

bound (23) below) results on the magnitude of the differences ‖û(n,T )
t − ut‖.351

The proof of Proposition 2 relies on two lemmas establishing the consistency352

of V̂
u;(n,T )
T+1,τe and V̂

ξi;(n,T )
T+1,τe , i = 1, . . . , n0, respectively.353

Lemma 1. Under the assumptions of Proposition 2, for any θ ∈ Θq, any ε1 > 0, and354

any η1 > 0, there exist τ †(ε1, η1,θ) and T †0 (ε1, η1;θ) and, for any ϑ1, . . . ,ϑn0 in Θ1355
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and T0 ≥ T †0 , there exist n†(ε1, η1;T0;θ,ϑ1, . . . ,ϑn0) and T †(ε1, η1;T0;θ,ϑ1, . . . ,ϑn0)356

such that357

P
[∥∥∥V̂ u;(n,T )

T0+1,τe − V
u
T0+1|T0

∥∥∥ ≥ ε1] ≤ η1 (18)

for all τ ≥ τ †, T0 ≥ T †0 , n ≥ n†, and T ≥ T †.358

Lemma 2. Under the assumptions of Proposition 2, for any n0 ∈ N, any ϑ1, . . . ,ϑn0359

in Θ1, any ε2 > 0, and any η2 > 0, there exist τ ‡(ε2, η2;n0;ϑ1, . . . ,ϑn0)360

and T ‡0 (ε2, η2;n0;ϑ1, . . . ,ϑn0) and, for any θ ∈ Θq and T0 ≥ T ‡0 , there exist361

n‡(ε2, η2;n0, T0;θ,ϑ1, . . . ,ϑn0) and T ‡(ε2, η2;n0, T0;θ,ϑ1, . . . ,ϑn0) such that362

max
1≤i≤n0

P
[∥∥∥V̂ ξi;(n,T )

T0+1,τe − V
ξi
T0+1|T0

∥∥∥ ≥ ε2] ≤ η2 i = 1, . . . , n0 (19)

for all τ ≥ τ ‡, T0 ≥ T ‡0 , n ≥ n‡, and T ≥ T ‡.363

These two lemmas rely on a repeated application of the following elementary364

result.365

Lemma 3. Let ε = εa + εb and η = ηa + ηb with εa, εb, ηa, and ηb strictly posi-366

tive. Denote by a and b two d-dimensional random vectors with unspecified joint367

distribution such that P[‖a‖ ≥ εa] ≤ ηa and P[‖b‖ ≥ εb] ≤ ηb. Then,368

P [‖a + b‖ ≥ ε] ≤ η.

Proof of Lemma 1. Considering the difference

V
u
T0+1|T0 − V̂

u;(n,T )
T0+1,τe

=V
u
T0+1|T0(uT0 ,uT0−1, . . .)− V u

T0+1,τe;θ(T0)(û
(n,T )
T0

,...,û
(n,T )
1 )

(û
(n,T )
T0

, . . . , û
(n,T )
T0−τ+1),

decompose it into

V
u
T0+1|T0(uT0 ,uT0−1, . . .)− V

u
T0+1,τe;θ(uT0 , . . . ,uT0−τ+1)

+V
u
T0+1,τe;θ(uT0 , . . . ,uT0−τ+1)− V u

T0+1,τe;θ(T0)(uT0 ,...,u1)
(uT0 , . . . ,uT0−τ+1)

+V
u
T0+1,τe;θ(T0)(uT0 ,...,u1)

(uT0 , . . . ,uT0−τ+1)− V u

T0+1,τe;θ(T0)(û
(n,T )
T0

,...,û
(n,T )
1 )

(û
(n,T )
T0

, . . . , û
(n,T )
T0−τ+1)

=:E1 +E2 +E3, say.
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The conditions for stationarity in Assumption (GARCH) imply that, uniformly369

in t, (12) and (13) hold in probability as τ → ∞. Hence, for all ε1 > 0, η1 > 0,370

and θ ∈ Θq, there exists a τ † such that, for all τ ≥ τ †, all T0, and, since Θq is371

compact, all θ ∈ Θ,372

P [‖E1‖ ≥ ε1/3] ≤ η1/3. (20)

QMLE consistency, on the other hand, implies that, for all θ ∈ Θq, ε > 0,373

and η1 > 0, there exists a T †0 such that, for all T0 ≥ T †0 ,374

P
[∥∥θ(T0)(uT0 , . . . ,u1)− θ

∥∥ ≥ ε] ≤ η1/3. (21)

Continuity over a compact implies uniform continuity. Hence, continuity375

of θ 7→ V
u
T0+1,τe;θ entails uniform continuity over Θq and the existence of ε > 0376

such that
∥∥θ(T0)(uT0 , . . . ,u1)− θ

∥∥ ≤ ε implies ‖E2‖ ≤ ε/3 for all θ ∈ Θq. It follows377

that, for all θ ∈ Θq and T0 ≥ T †0 ,378

P [‖E2‖ ≥ ε1/3] ≤ η1/3. (22)

Finally, û
(n,T )
t is uniformly consistent for ut: Proposition 1 of Barigozzi and379

Hallin (2020)) entails380

max
1≤t≤T

‖û(n,T )
t − ut‖ = OP

(
max

(
BT√
T
,

1

BT
,

1√
n

)
log T

)
, (23)

meaning that, for all ε > 0 and η1 > 0, any θ, and (ϑ1, . . . ,ϑn0), there exists (n◦, T ◦)381

such that382

P

[
max
1≤t≤T

∥∥∥û(n,T )
t − ut

∥∥∥ ≥ ε] ≤ η1/3 (24)

for all n ≥ n◦ and T ≥ T ◦. Now, for given T0, the mapping383

(vT0 , . . . ,v1) 7→ V
u
T0+1,τe;θ(T0)(vT0 ,...,v1)

(vT0 , . . . ,vT0−τ+1) (25)

is continuous, hence uniformly continuous, over any compact subset Cη of RqT0384

such that P [(uT0 , . . . ,u1) ∈ Cη] ≥ 1− η1/3. The continuous mapping theorem thus385

guarantees the existence, for any T0, any θ and (ϑ1, . . . ,ϑn0), any ε1 > 0 and η1 > 0,386

of n† and T † such that, for n ≥ n† and T ≥ T †,387

P [‖E3‖ ≥ ε1/3] ≤ η1/3. (26)

The desired result follows from (20), (22), (26), and Lemma 3 applied to E2+E3,388

then to E1 + (E2 + E3).389
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Proof of Lemma 2. The proof, for each 1 ≤ i ≤ n0, hence for a finite collection of n0390

of them, goes along the same lines as for Lemma 1, with a univariate AR-GARCH391

instead of a q-dimensional MGARCH.392

Proof of Lemma 3. Basic probabilistic operations yield

ηa + ηb ≥ P[‖a‖ ≥ εa] + P[‖b‖ ≥ εb]

≥ P[‖a‖ ≥ εa or ‖b‖ ≥ εb] ≥ P[‖a + b‖ ≥ εa + εb = ε].

393

394

Proof of Proposition 2. The result follows from Lemmas 1 and 2, the consistency,395

as n, T → ∞, of R̂
(n,T )

n0
as an estimator of Rn0 , and an application of Slutsky’s396

Lemma. �397

4 Finite-sample performances398

In practice, VECH and BEKK QMLEs, however, are reported to be numerically399

quite unstable, and typically strongly depend on the initial values considered in400

the numerical solution of the likelihood equations. This is a well-documented fact;401

see, for instance, Lien et al. (2002) and Manabu (2015). Rather than VECH or402

BEKK, we therefore compute DCC QMLEs which are known to be quite robust to403

missespecification; see Chang et al. (2011), Chevallier (2012), Laurent et al. (2012),404

Amendola and Candila (2017), or de Almeida et al. (2018). Our Monte Carlo ex-405

periments confirm that, even though the actual data-generating process is BEKK,406

misspecified DCC QMLEs outperform the correctly specified full BEKK ones.407

4.1 Monte Carlo experiments408

In this section, we investigate the finite-sample performance of the proposed proce-409

dure through Monte Carlo simulations.410

Simulations were performed from three data-generating processes (DGPs). The411

first DGP is a static factor model with two common factors, the second and third412

ones are dynamic factor models with finite- and infinite-dimensional factor spaces,413

respectively. The common shocks and the idiosyncratic components in all four DGPs414

are conditionally heteroscedastic.415
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In all DGPs, the idiosyncratic components are defined as ξt := (ξ1t, . . . , ξnt)

with ξt = P
1/2
t ζt, where Pt is an n × n diagonal matrix containing the conditional

variances Pit of ξit; ζt := (ζ1t, . . . , ζnt), where ζit, i = 1, . . . , n, t = 1, 2, ..., T are

sequences of i.i.d. innovations generated either from a standard N(0,1) or a cen-

tered and standardized Student t5 distribution. The conditional variances Pit follow

GARCH(1,1) processes with parameters ϑi = (ωi, αi, βi), of the form

Pit = ωi + αiξ
2
it + βiPi,t−1, i = 1, ..., n,

where ωi > 0, αi > 0, βi ≥ 0, and αi + βi < 1; the parameters values αi416

and βi are independently generated from uniform distributions over [0.01, 0.045]417

and [0.85, 0.95], respectively, and ωi := 1− αi − βi, so that the unconditional vari-418

ance of ξit is V(ξit) = 1. As for the shocks ut driving the common components χt,419

they were generated from the following four DGPs.420

DGP1 (two common shocks; static loadings). Two common shocks ut = (u1t, u2t)
′,421

generated from a BEKK(1,1,1) model422

ut = Q
1/2
t

(
η1t

η2t

)
with Qt = C′0C0 + C′1ut−1u

′
t−1C1 + C′2Qt−1C2. (27)

Here, ηit, i = 1, 2, are i.i.d. innovations generated by a N(0,1) or a centered and stan-423

dardized Student t5 distribution. In order to guarantee E(Qt) = E(ut−1u
′
t−1) = Iq,424

we set C′0C0 = Iq − C′1C1 − C′2C2. Parameters of the BEKK are extracted from425

uniform distributions with ranges as in Alessi et al. (2009): C1 has diagonal ele-426

ments uniformly distributed over [0.1,0.5] and off-diagonal elements uniformly dis-427

tributed over [-0.2,0.2], while the diagonal elements of C2 and the off-diagonal ones428

are uniformly distributed over [0.8,0.95] and [-0.15,0.15], respectively (all uniforms429

mutually independent). For each randomly generated set of parameters, the covari-430

ance stationary of the resulting BEKK model has been checked before proceeding.431

Here, χt = Rut where R is an n × 2 matrix with orthonormal columns randomly432

generated via the RandOrthMat Matlab function.433

DGP2 (four factors driven by q = 2 common shocks; static loadings). Four

factors Ft = (F1t, . . . , F4t)
′ driven by q = 2 common shocks ut, yielding a GDFM

with finite-dimensional factor space. The shocks are generated from the same BEKK
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model as in DGP2 and the factors are a ut-driven VAR(4)

Ft = ΦFt−1 + Kut and ut = Q
1/2
t ηt,

with Qt as in (27) and ηt generated as in DGP2 (Φ is 4 × 4 and K is 4 × 2).434

The entries of Λ and K are independent and uniformly distributed over [−1, 1].435

The entries of Φ are generated as follows: first we generate independent entries436

uniformly distributed over the interval[-1,1]; second, we divide the resulting matrix437

by its spectral norm; third, we multiply the resulting matrix by a random variable438

uniformly distributed on the interval [0.4,0.9] to ensure stationarity while preserving439

sizeable dynamic responses18. Here, χt = Λut, where Λ is an n × 4 matrix with440

independent entries uniformly distributed over [−1, 1].441

DGP3 (two common shocks; dynamic loadings). The common shocks ut= (u1t, u2t)
′

are generated from the same bivariate BEKK model as in (27); the model is a GDFM

with infinite-dimensional factor space. Here,

χit =

(
ai1(1− αi1)−1

ai2(1− αi2)−1

)
ut,

where aij and αij , i = 1, ..., n, j = 1, 2 are independent and uniformly distributed442

over the intervals [-1,1] and [-0.8,0.8], respectively.443

For each DGP, we simulated 500 replications of a panel of dimensions n=60444

and T=1000 (moderate dimension, T >> n) and 500 replications of a high-dimensional445

panel with n=600 and T=700 (T ≈ n). From each replication, the covariance ma-446

trix VT+1|T of XT+1 conditional on XT , . . . ,X1 was estimated19 using447

(a) classical PCA20 combined with (M)GARCH modelling,448

(b) the DCC model with composite likelihood, as described in Pakel et al. (2020),449

(c) the Alessi et al. (2009) model, and450

(d) our model21,451

18This DGP is similar to the one considered by Alessi et al. (2009).
19As we are not interested in asymptotics here, we set n0 = n, T0 = T , and τ = T − 1.
20In the spirit of Diebold and Nerlove (1989) and Van der Weide (2002), static factors are extracted

via principal component analysis; an (M)GARCH model then is fitted to the extracted factors.

Idiosyncratic components are modelled as independent univariate GARCH processes.
21Throughout, we considered 30 cross-sectional permutations and set the order S of the VAR

block-diagonal filters to one.
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labeled as PCA, DCC, ABC, and GDFM-CHF, respectively.22 For simplicity, the452

correct numbers of factors (for DGP2) and common shocks (for DGPs 1-3) are as-453

sumed to be known, since this does not play a role in the comparative performances454

of procedures (a)-(d). For DGP3, no static factor representation exists and any cri-455

terion based on static representation is inappropriate. However, the PCA and ABC456

methods are based on the surmise that a static factor representation exists. There-457

fore, before running the PCA and ABC methods, we first determine a (fictitious)458

number of static factors via the Bai and Ng (2002) procedure.23459

As mentioned in the previous section, estimation of BEKK models is numerically460

quite unstable and strongly depends on the choice of initial values. For the sake461

of comparison, for all DGPs we considered both the DCC(1,1) and BEKK(1,1,1)462

estimates of the conditional covariance matrix of common shocks in the PCA, ABC463

and GDFM-CHF models, with lables such as PCA-BEKK, ABC-DCC, etc.24464

Hereafter, for the sake of simplicity, we denote by VT+1|T the simulated covari-

ance matrix of XT+1 conditional on XT , . . . ,X1 and by V̂T+1|T its various estimated

versions. In order to compare the performances of those various estimators, we

compute, for each simulated panel and each method, a distance between V̂T+1|T

and VT+1|T . Let

VT+1|T := R Var(uT+1|Fn,T)R′ + Var(ξT+1|Fn,T) for DGP1

VT+1|T := ΛKVar(uT+1|Fn,T )K′Λ′ + Var(ξT+1|Fn,T ) for DGP2,

and

VT+1|T = A Var(un,T+1|FT )A′ + Var(ξT+1|Fn,T ) for DGP3,

where A is the matrix with elements ai,j , i = 1, ..., N , j = 1, 2. Following Amendola465

22GDFM-CHF stand for General Dynamic Factor Model with Conditionally Heteroscedastic Fac-

tors.
23In practice, the identification procedures by Bai and Ng (2002) or Alessi et al. (2010) in the static

case, by Hallin and Lǐska (2007) in the GDFM-CHF case, should be used prior to the estimation

procedure in each replication.
24DCC and BEKK estimations were performed by using the MFE toolbox of Kevin K. Sheppard,

freely available at http://www.kevinsheppard.com/MFE Toolbox.
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and Candila (2017), we consider four distances, D1, , . . . ,D4, of the form466

D(VT+1|T , V̂T+1|T ) =
N∑
i=1

N∑
j=i

ω(i, j)(σi,j − σ̂i,j)2, (28)

where σi,j and σ̂i,j are the (i, j) entries of VT+1|T and V̂T+1|T , respectively, and the467

weights ω(i, j) are provided in Table 1.

Table 1: Weights ω(i, j), i = 1, . . . , n, j = i, . . . , n in the distances D1-D4 in (28).

D1 w(i, j) = 1 for all i and j

D2 w(i, j) = 1 when i = j; 0 otherwise

D3 w(i, j) = 2 when σ̂i,j > hi,j ; 1 otherwise

D4 w(i, j) = 2 when σ̂i,j < hi,j ; 1 otherwise

468

Distance D1, which gives equal weights for the variance and covariances, yields a469

“total” unweighted squared Euclidean distance between Vech(V̂T+1|T ) and Vech(VT+1|T );470

distance D2 is an unweighted squared Euclidean distance between Diag(V̂T+1|T )471

and Diag(VT+1|T ) (hence disregards the covariances)25; distance D3 penalizes nega-472

tive errors, while D4 penalizes the positive ones. It is important to note that, in D3473

and D4, the weights themselves are data-driven, so that, for a given replication,474

different methods lead to different weights.475

4.2 Simulation results476

The results of the Monte Carlo experiments for moderate and high-dimensional data477

are summarized in Figure 1 and Table 2 and in Figure 2 and Table 3, respectively.478

Figures 1 and 2 present the boxplots of the distances defined in (28), in logarithmic479

scale, and Tables 2 and 3 report the average distances in logarithmic scale and indi-480

cate the subset of models with best performance obtained using the Model Confident481

Set (MCS) approach (Hansen et al., 2011) at 10% level.482

For moderate sample size (Figure 1 and Table 2), the conditional covariance of483

the common shocks were estimated using both BEKK and DCC-based procedures.484

25The classical notation Vech(M) stands for the vector stacking the upper diagonal entries of a

square matrix M, and Diag(M) for the vector of its diagonal elements.
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Table 3: Average distances D1, D2, D3, and D4 (in logarithmic scale)for DGP1 (top

panel), DGP2 (middle panel) and DGP3 (bottom panel) across 500 Monte Carlo

replications using Gaussian innovations (left panel) and Student t5 innovations (right

panel). Shadowed cells stand for the MCS at 90%. N = 600, T = 700.

Gaussian Student t5

Dist. PCA-DCC ABC-DCC GDFM-CHF-DCC PCA-DCC ABC-DCC GDFM-CHF-DCC

D
G
P
1

D1 2.9983 2.9948 2.3326 3.8527 3.8465 3.6217

D2 1.7752 1.7749 1.7642 3.4126 3.4079 3.4512

D3 3.3913 3.3902 2.7233 4.1567 4.1531 3.8953

D4 3.4159 3.4101 2.7519 4.3449 4.3364 4.1365

D
G
P
2

D1 9.3117 7.7120 7.7699 9.3860 8.1186 8.1406

D2 4.6340 3.1794 3.2568 5.0980 4.3034 4.3374

D3 9.7148 8.1176 8.1752 9.7856 8.5182 8.5390

D4 9.7195 8.1174 8.1755 9.7968 8.5292 8.5523

D
G
P
3

D1 8.5597 7.2742 7.1764 8.6601 7.6307 7.5554

D2 4.7223 3.0885 2.8640 5.0452 4.1039 4.0418

D3 8.9581 7.6772 7.5805 9.0551 8.0257 7.9504

D4 8.9722 7.6821 7.5831 9.0755 8.0456 7.9704

Considering the six DGPs (counting Gaussian and Student t as distinct models) and485

four measures of distance, we have a total of 24 comparisons among the models.486

The DCC and PCA-DCC models are in the MCS in one case and in two cases,487

respectively, while the PCA-BEKK does not appear in the MCS. Comparing the488

estimation of common shocks by BEKK and DCC models, in only one case the489

BEKK has a slight better performance than DCC in terms of average distance490

(Gaussian, DGP3, PCA case). In fact, in the majority of cases, the performance491

is far better using DCC-based models than using the BEKK-based ones. Thus, in492

Figure 1, we only present the boxplots of the DCC-based models.26 In general, DCC493

and PCA procedures achieve the worst performance and in the sequel we concentrate494

the comparison on the ABC and GDFM-CHF models.495

For DGP1, although ABC-DCC and GDFM-CHF-DCC models show similar496

performance in Figure 1, the ABC-DCC model is included in the MCS only when497

considering the second distance for both Gaussian and Student t5 innovations. For498

DGP2, where ABC models are adequate, the boxplots of ABC-DCC and GDFM-499

CHF-DCC are very similar. Considering Gaussian innovations, both models belong500

26The boxplots of the BEKK-based models present much higher variability than those of the

DCC-based ones, due, probably, to the numerical instability of BEKK QMLEs as commented in

Section 3.2 (figures are available upon request).
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to the MCS, as well as their BEKK-based counterparts. For the DGP2 with Stu-501

dent t5 innovations, ABC-BEKK and GDFM-CHF-BEKK are included in the MSC502

only for the D3 measure, while GDFM-CHF-DCC is not in the MSC only for the D2503

measure. For DGP3, in Figure 1, the GDFM-CHF-DCC model is always performing504

better than ABC-DCC, and it is the only procedure in the MCS. Finally, we can505

observe that the distances when the innovations are generated by the Student t5506

distribution are larger than those with Gaussian innovations. Nevertheless, the con-507

clusions in the comparison among the estimated procedures are almost the same for508

both distributions.509

Due to the high instability of BEKK-based procedures, for the high-dimensional510

data, we only report the results of the DCC-based procedures. We also do not report511

the results of the DCC model, since it yields the worst performance for n=60 and512

becomes computationally very expensive for n=600, even when using the composite513

likelihood method. The results are presented in Figure 2 and Table 3. For DGP1,514

GDFM-CHF-DCC is among the best procedures in all cases, and in most of them it515

performs significantly better than all other procedures according to the MCS test,516

while PCA-DCC has the worst performance. For DGP2, ABC-DCC and GDFM-517

CHF-DCC are selected as the best procedures when the innovations have Student t5518

distributions, while for Gaussian innovations ABC-DCC is the only procedure in519

the MCS. Finally, for DGP3, GDFM-CHF-DCC is selected as the only procedure in520

the MCS, regardless of the distribution of the innovations.521

5 An application to dynamic portfolio optimization522

In this section, we are applying our (GDFM-CHF-DCC) method in the problem of523

dynamic portfolio optimisation.524

The dataset we are considering consists in returns Xit from n = 656 stocks525

entering the composition of the S&P 500 index, the National Association of Secu-526

rities Dealers Automated Quotations (NASDAQ-100), and the NYSE Amex Com-527

posite Index (AMEX), on July 27, 2018 and traded from January 2, 2011 through528

June 29, 2018 (T=1884). This dataset was obtained from Yahoo Finance using the529

R package quantmod by Ryan and Ulrich (2017). Because we only considered stocks530
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traded through the whole period, we ended up with n = 656 assets.531

A window size of 750 days is used for estimation, which represents a concen-

tration ratio of 656/750 = 0.875; the out-of-sample period was set to 1134 days.

An estimator V̂t+1|t of Var(Xn,t+1|Fn,t) is computed from the 656 × 750 subpan-

els {Xis|1 ≤ i ≤ 656, t−749 ≤ s ≤ t} for t = 750, . . . , T −1 = 1883. That estimator

is used in the construction, at time t = 750, . . . , 1883 (1134 time points), of a one-

step ahead minimal variance portfolio (optimality at time t + 1)—that is, a vector

of weights

ω̂t+1|t = (ω̂1;t+1|t, . . . , ω̂656;t+1|t)
′ := argmin

ω
ω′V̂t+1|tω

where minimisation is with respect to all ω = (ω1, . . . , ω656)
′ such that ωi ≥ 0

and
∑656

i=1 ωi = 1 and V̂t+1|t is obtained as in Section 3.2 (with t instead of T0). The

resulting (out-of-sample) portfolio return

rp,t+1 :=
656∑
i=1

ω̂i;t+1|tXi,t+1

at time t+ 1 then is computed from the observation at time t+ 1.532

For the sake of comparison, we also include the results for the GDFM-CHF-533

BEKK model and compare them with those of (a) the naive equal-weighted portfolio534

strategy, denoted here by 1/n, (b) the DCC model with composite likelihood of Pakel535

et al. (2020), (c) the RiskMetrics 2006 methodology of Zumbach (2007), (d) the536

OGARCH model of Alexander and Chibumba (1996), (e) the ABC-DCC model of537

Alessi et al. (2009), (f) the generalized principal volatility components (GPVC) of Li538

et al. (2016), and (g) the procedure called PCA4TS proposed by Chang et al. (2018),539

which extends the principal component analysis to second-order stationary vector540

time series. Those procedures were selected for their feasibility in high-dimensional541

data.542

The GDFM-CHF method with DCC or BEKK models was implemented with 30543

cross-sectional permutations; the order of the VAR block-diagonal models was set544

to S = 1. In practice (when one portfolio is to be estimated at a time), information545

criteria can be used to determine the order of those VARs. Likewise, following Alessi546

et al. (2009), the number of static factors, common shocks, volatility components547

(Li et al., 2016) and groups (Chang et al., 2018) were determined once for all.548
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The ABC-DCC model (Alessi et al., 2009) was implemented with eight static549

factors and three common shocks determined by the criteria of Bai and Ng (2002)550

and Hallin and Lǐska (2007), respectively. The same number of common shocks551

was used in the GDFM-CHF models. The GPVC procedure was applied with eight552

volatility components determined by the criterion of Bai and Ng (2002), and the553

PCA4TS with 654 groups (two of them with two assets and the remaining ones554

with only one asset; the groups were obtained following Chang et al. (2018)). The555

OGARCH model was applied as recommended in Becker et al. (2015), that is, with556

the number of components equal to the number of series.557

Following Gambacciani and Paolella (2017), Engle et al. (2019), Trućıos et al.558

(2019b), among many others, we use various annualized measures to evaluate out-559

of-sample portfolio performance. These measures are defined as follows:560

(i) annualized average portfolio (AV)

AV := 252r̄p = 252

[
1

1134

1883∑
t=750

rp,t+1

]

(average of the out-of-sample portfolio returns multiplied by 252);561

(ii) annualized standard deviation (SD)

SD :=
√

252

[
1

1134

1883∑
t=750

(rp,t+1 − r̄p)2
]1/2

(standard deviation of the out-of-sample portfolio return multiplied by
√

252);562

(iii) annualized information ratio (IR) IR := AV/SD;563

(iv) annualized Sortino’s ratio (SR) SR := AV/
(
S
√

252
)
, where

S =

[
1

1134

1883∑
t=750

min (0, rp,t+1 −MAR)2
]1/2

,

and the minimal accepted return (MAR) is set to zero.564

The results are reported in Table 4. They reveal that the best performance,565

for the SD, IR and SR criteria, is achieved by the GDFM-CHF-DCC model. The566

OGARCH model is second best, according to the SD criterion, followed by ABC-567

DCC. The GPVC and the OGARCH procedures exhibit the worst performance568

according to the AV criterion while DCC achieves the best one under the same569
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criterion, followed by ABC-DCC. The worst out-of-sample performance is by the570

equal-weight portfolio strategy according to all criteria but the AV one. It is worth571

noting the relatively good performance of RM2006, which outperforms GPVC and572

PCA4TS according to all criteria and loses to DCC and OGARCH models only573

through the AV and SD criteria, respectively. Finally, note that the results of574

GDFM-CHF-BEKK are worse than those of GDFM-CHF-DCC, mainly in terms of575

the SD criterion. This is not surprising since, as mentioned previously, the estimation576

of the Full BEKK model is hard, unstable and strongly dependent on initial values,577

leading to a poor performance (Lien et al., 2002; Laurent et al., 2012; Manabu,578

2015; Amendola and Candila, 2017; de Almeida et al., 2018). Taking into account579

all criteria, the GDFM-CHF-DCC proposed model exhibits the best performance,580

followed by the ABC-DCC model.581

In view of our minimum variance objective, the most pertinent performance582

measure should be the SD criterion, as stressed also by Ledoit and Wolf (2017) and583

Engle et al. (2019). With that criterion, the GDFM-CHF-DCC methodl is achieving584

the best performance, followed by the ABC-DCC one.585

Table 4: Annualized performance measures: AV, SD, IR, and SR stand for the

annualized average, standard deviation, information ratio, and Sortino’s ratio of the

out-of-sample portfolio returns, respectively. The dataset is formed by 656 stocks

used in the composition of the S&P500, NASDAQ-100 and AMEX indexes and the

window size for estimation is equal to 750 days (concentration ratio n/T equal to

0.875). The out-of-sample period goes from January 2, 2014 to June 29, 2018. A

ranking of the various methods is provided in parenthesis for each criterion.

AV SD IR SR

1/N 5.7708 (4) 11.5067 (9) 0.5015 (9) 0.6834 (9)

DCC 6.8899 (1) 5.9901 (8) 1.1502 (4) 1.6262 (5)

RM2006 5.6022 (5) 4.5446 (4) 1.2327 (3) 1.7241 (3)

OGARCH 4.9235 (8) 4.4551 (2) 1.1051 (7) 1.5616 (7)

ABC 6.5267 (2) 4.5313 (3) 1.4404 (2) 1.9677 (2)

GPVC 4.5991 (9) 4.5889 (5) 1.0022 (8) 1.4077 (8)

PCA4TS 5.3701 (7) 4.7256 (6) 1.1364 (6) 1.6032 (6)

GDFM-CHF 6.2369 (3) 4.0209 (1) 1.5511 (1) 2.2137 (1)

GDFM-CHF-BEKK 5.5819 (6) 4.8958 (7) 1.1401 (5) 1.6281 (4)
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6 Conclusions586

Based on the one-sided procedures of Forni et al. (2015, 2017) and Barigozzi and587

Hallin (2020), we propose a forecasting method for the conditional covariance matrix588

in high-dimensional time series, which we apply to dynamic portfolio optimization.589

A Monte Carlo performance comparison with alternative methods is conducted590

over three different DGPs, using the distance measures proposed in Amendola and591

Candila (2017). Overall, our method has an excellent performance, and outperforms592

all its competitors irrespective of the criterion considered—except, under static fac-593

tor model DGPs, for the distance D2 which disregards the covariances.594

The superiority of our estimator is also empirically established in the context595

of dynamic portfolio optimisation based on a dataset of 656 assets. Our model,596

GDFM-CHF-DCC, achieves the best out-of-sample performance according to the597

(annualized) standard deviation SD (arguably, the most relevant criterion here),598

information ratio (IR) and Sortino’s ratio (SR) criteria, and is third best (after599

DCC and ABC-DCC models) with respect to the (annualized) average criterion.600
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