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Abstract

Based on a General Dynamic Factor Model with infinite-dimensional fac-
tor space, we develop a new estimation and forecasting procedures for condi-
tional covariance matrices in high-dimensional time series. The performance of
our approach is evaluated via Monte Carlo experiments, outperforming many
alternative methods. The new procedure is used to construct minimum vari-
ance portfolios for a high-dimensional panel of assets. The results are shown
to achieve better out-of-sample portfolio performance than alternative existing

procedures.
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1 Introduction

Volatility forecasting plays an essential role in a variety of economic and financial
applications, such as portfolio allocation, risk management, option pricing, hedging
strategies, etc.: see Engle (2009), Hlouskova et al. (2009), Aramonte et al. (2013),
Becker et al. (2015), Trucios et al. (2018) and Engle et al. (2019), to quote only
a few.

Several multivariate models have been proposed to model and forecast the con-
ditional covariance matrix of a collection of assets; see Bauwens et al. (2006) or
de Almeida et al. (2018) for some reviews. Unfortunately, most of multivariate
GARCH (MGARCH) type models badly suffer from the so-called “curse of dimen-
sionality” as the number of assets grows, and cannot be implemented in a high-
dimensional context. Therefore, alternative procedures have been proposed, such as
Fan et al. (2008), Alessi et al. (2009), Matteson and Tsay (2011), Engle and Kelly
(2012), Hu and Tsay (2014), Santos and Moura (2014), Li et al. (2016), Pakel et al.
(2017), Chang et al. (2018) and Engle et al. (2019), among others.

Dynamic factor models with high-dimensional asymptotics offer a promising al-
ternative in that context; see the surveys by Barhoumi et al. (2014) and Bai and
Wang (2016) for details. Factor models are based on the assumption that prices
and volatilities of different assets are driven by a small number of latent factors,
which account for their co-movements. They have been used by several authors to
model and forecast conditional covariance matrices: see Diebold and Nerlove (1989),
Harvey et al. (1992), Aguilar and West (2000), Vrontos et al. (2003), Han (2005),
Sentana et al. (2008), Aguilar (2009), Alessi et al. (2009), Garcia-Ferrer et al. (2012),
Aramonte et al. (2013) and Dovonon (2013), among others. All these contributions
are based on a static factor-loading scheme! (Bai and Ng, 2002; Stock and Watson,

IThe latent factors are loaded contemporaneously via some loading matrix, so that the dimension

of the factor space reduces to the (finite) number of linearly independent factors.



2002a,b)? leading to finite-dimensional factor spaces whose main advantage is to
allow for estimation methods based on traditional principal components, which are
easy to implement and widely used in practice.

However, as pointed out in Forni and Lippi (2011) and Section 1.1 of Forni et al.
(2015), the assumption of a static factor-loading scheme considered in that literature
is quite restrictive and rules out some very simple and plausible cross-correlation
patterns, leading to infinite-dimensional factor spaces. To overcome this issue, Forni
et al. (2000) introduced the so-called generalized or general dynamic factor model
(GDFM), in which factors (equivalently, common shocks) are loaded through filters
rather than matrices. As shown in Hallin and Lippi (2013), the GDFM actually
follows from a representation result which holds, essentially, without placing any
restrictions—beyond second-order stationarity and the existence of a spectrum—on
the data-generating process.

The role of traditional principal components in the GDFM is taken over by
Brillinger’s dynamic principal components® (Brillinger, 1981), and the estimation
method proposed by Forni et al. (2000) naturally relies on this concept. Dynamic
principal components, however, involve two-sided filters, producing estimators that
are inadequate in forecasting problems. Forni and Lippi (2011) and Forni et al.
(2015, 2017)* therefore developed an alternative estimation method involving only
one-sided filters. Moreover, Monte Carlo simulations indicate that, for estimating
impulse-response functions and predicting returns, this one-sided approach outper-
forms the static method of Stock and Watson (2002a,b) and Bai and Ng (2002) even
when the actual loading scheme is of the static type (see Section 4 in Forni et al.
(2017)).

The Forni et al. (2015, 2017) procedure has been successfully used to forecast
inflation and financial returns; see Della Marra (2017), Forni et al. (2018) and Gio-

2Similar ideas have been developed also in a non-econometric context, see, e.g., Pefia and Box

(1987), Stoffer (1999), or Pan and Yao (2008).
3Hallin et al. (2018) show that those dynamic principal components, based on the factorization

of spectral density matrices, inherit, in a time-series context, the optimality properties that make

traditional principal components a successful dimension-reduction device in i.i.d. samples.
4The assumptions in those three references yield slight variations; in this paper, unless otherwise

stated, we refer to the assumptions in Barigozzi and Hallin (2018).



vannelli et al. (2018). It has also been used in the prediction of conditional variances
by (Barigozzi and Hallin, 2016, 2017, 2018), but never, as far as we know, in the pre-

5 This point

diction of conditional covariance matrices and portfolio optimization.
constitutes the main goal of this paper.

The rest of the paper is organised as follows. Section 2 briefly describes the
GDFM and Section 3 introduces our forecasting procedure. Section 4.1 reports a
Monte Carlo study of the finite-sample properties of the proposed procedure. In
Section 5, we apply the new procedure in the problem of constructing minimum
variance portfolios from a large collection of assets. In Sections 4.1 and 5 we also
compare the proposed procedure with other methods. Finally, Section 6 presents

the main conclusions and discusses some directions for future research.

2 The general dynamic factor model

In this section, we briefly describe the GDFM to be considered throughout, which
basically contains as particular cases all other factor models proposed in the econo-
metric and time series literature, along with the regularity assumptions we need for
consistency, which are borrowed, essentially, from Barigozzi and Hallin (2018).

Let {X; := (X1t Xot...), t € Z}, be a double-indexed zero-mean second-order
stationary stochastic process, where the first index is cross-sectional and typically
refers to assets, while ¢, as usual, stands for time. The GDFM is based on the
decomposition

Xit = Xit + it i€Ng, teZ (1)

with
q o0 o)
Xit = ZZ ijktji—k = bi(L)wy and & =Y digvi—k = di(L)vir,  (2)
=1 k=0 k=0

where the common components xi:, the idiosyncratic components &;;, the common
shocks or factors uy := (u1¢ ug ... ug) driving the common components, and the

1diosyncratic shocks v driving the idiosyncratic components all are non-observable.

®See, however, Alessi et al. (2009) who assume a factor model decomposition with finite-

dimensional factor space on te model of Forni et al. (2005 and 2009).



Letting X, := {Xuli = 1,...n,t € Z}, xn = {xa |t = 1,..,n, t € Z}, and

&ni={&li=1,..,n,t € Z}, equation (2) in vector notation takes the form
Xnt = Xnt + £nt = Bn(L)ut7 +Dn(L)Vnt7 nc N07 teZ (3)

with By, (L) := (b1(L)...b, (L)), Dy, (L) := (di(L)...dn (L)), and vy := (vig ... vn)"
On the decomposition (1), we assume the following:
(i) the vector process u; is a zero-mean g-dimensional second-order white noise
process, with full-rank covariance I'%;
(i) writing by := (bi1g...bigr)’ for the ¢ x 1 coefficient of LF in b;(L), there exists
a constant M; > 0 such that > 3% |[by||k/2 < M; for all i € N;
(iii) vnt is a zero-mean second-order stationary process with positive definite co-
variance I'Y; moreover, E[v;|v;s] = 0 for all i € N and t > s € Z;
(iv) there exists a constant C,, > 0 such that |[|[T'h||i < C, for all n € N, and a
constant My > 0 such that 322 |dix|k'/? < My for all i € N;
(v) Cov(ujt,vis) =0foralli €N, j=1,...,q, and t, s € Z;5
(vi) there exists a constant M3 > 0 such that, for all ji, jo, j3, Jja,

> Byt 1y Uy kU = )| < M,
k1,ko,k3€Z

and a constant My > 0 such that, for all iy, io, i3, i4,

Y VBtV ks Vi ks Vi -k )| < M
k1,ko,k3€Z
(vii) for all i € N, j = 1,...,¢ and z € C, b;(z) = Zzozobijkzk has square-
summable coefficients, and is the ratio of two finite-order polynomials in z,
S S
bij(2) = 7ij(2)/0ij(2), where 7ij(2) = Y070 72" and 055(2) = Y202 dijwz",
with 6;;(0) = 1, have roots outside the closed unit disk only and no common
roots, and the orders S, and Ss are independent of i’
Assumption (iii) is the typical assumption of martingale difference innovations used

in the GARCH literature. Assumption (vii) entails the existence of a VAR filtering

5This implies that the common and idiosyncratic processes are mutually uncorrelated at all leads

and lags.
"As a consequence, the common components have rational spectral densities; see Assump-

tion (L2) in Barigozzi and Hallin (2018) for more details.



of X,, satisfying the assumptions of the static factor model where the common
shocks u; are loaded contemporaneously (see (4) below).

These assumptions also guarantee the existence of the spectral densities X% (6),
35(0), and =X(0) = BX(0) + 25(0), 6 € [—7, 7], of Xn, &» and X,,, respectively.
Then, let )\ﬁj(Q), )\ij(Q) and )\T)fj(ﬁ) be the jth eigenvalues (in decreasing order
of magnitude) of X%(6), ¥5(6) and 3X(0), respectively, satisfying the following
assumption.

(vidi) there exist a positive integer 7 and continuous functions o; and ;1 from [—, 7]
toR, j=1,...,q, independent of n, and such that, for all j = 1,...,¢, and
alln > n, 0 < B;-1() < a;(0) < )\zj(O)/n < Bj(0) < o0, B-a.e. in [—m, 7],
while \X

n,q+1
Hence, as n — oo, the ¢ idiosyncratic dynamic eigenvalues are exploding linearly (the

(#) and )\il(ﬁ) are bounded, uniformly in 6 € [—7, 7], as n — oo.

assumption of factor pervasiveness), while all idiosyncratic eigenvalues are bounded
(this is the definition of idiosyncrasy).

The main theoretical result behind the one-sided approach of Forni et al. (2015)
is the existence of a block-diagonal VAR filtering of the observations turning the
GDFM representation (1) into a static one. More precisely, Forni and Lippi (2011)
and Forni et al. (2015) show that, for generic values of the coeflicients v;;, and 6
(i.e., except for a subset with Lebesgue measure zero in the (¢ + 1)(Sy + Ss)-
dimensional space of the relevant ;;, and d;;;, coefficients), any (¢ + 1)-dimensional
vector Xil"'i‘”l = (Xists - - > Xigsrt) With i1 < ... <1441 admits a VAR representa-
tion of the form A(L)il“"'q“Xil"'iqul = R+, ® where A(L)"%+ has degree
S < ¢S, +¢*Ss and the (¢+1) x ¢ matrix Rit+a+1 is of rank ¢. It follows that gener-
ically, for any n = m(q + 1), partitioning Xt = (X1t,-- -, Xnt) into m subvectors of

dimension (g + 1), Xxnt admits a block-VAR representation of the form

AYL) o ... 0 R!
0  A*L) ... 0 R?

An(L)Xnt = . . . Xnt = . u, te€ 7. (4)
0 0 ... A™L) | R™|

8See Assumption (L4) in Barigozzi and Hallin (2018) for more details about this VAR represen-

tation.



Hence, for X,z = (X1, ..., Xnt)', we have
An(L)Xnt = An(L)Xmg + An(L)Ent =R,u;+€,:, tEZ (5)

with R,, = [Rl’ RY ... Rm’]/ and €, = A, (L)€, where it can be shown that
the process € := {(e1t €2¢...)', t € Z} is still idiosyncratic. In other words, using

obvious notation

ALy o ... 0 R!
0  A*L) ... 0 R?

A(L) := : f : and R:=| : |, (6)
0 0 ... A™L) ... R™

the filtered process Y; := A(L)X; admits a static factor model representation
Y. =Ru+¢, teZ (7)

with ¢g-dimensional factor space spanned by u;. While R and u; are not individually
identified, the product Ruy is.

The static representation (7), under assumptions (7)-(ixz), holds generically. As-
suming that it holds for the panel under study thus is not a strong requirement; we
nevertheless need to make it an assumption:

(iz) For all n* > ¢+ 1, letting n = [n*/(q +1)|(g + 1), there exist block-diagonal
filters A, (L) and n x g matrices R,, such that (5) holds, irrespective of the
cross-sectional ordering.

Assumptions (7)-(iz) are the main assumptions in Barigozzi and Hallin (2018); on
top of these, they also require two less important and more technical ones (Assump-
tions (L4) and (L5), respectively), which we do not reproduce here. Under those
assumptions, Barigozzi and Hallin (2018) show that a consistent reconstruction,
based on Xy, X;_1, ..., of the unobserved x; and &; is possible. It follows that x;
and &; are F;-measurable, where F; denotes the o-field generated by Xy, X;_1, ...
It is worth noting that, reinforcing the same assumptions (e.g., assuming that u,
and v, are jointly i.i.d., which rules out GARCH-type behaviors), Forni et al.

(2017) derive estimators for (1)-(2) and provide a complete asymptotic analysis for



the same. On the other hand, Barigozzi and Hallin (2018) do not require i.i.d.ness
and, under assumptions that include (7)-(iz), provide consistency and consistency
rates for the Forni et al. (2017) estimators. Finally, we assume the following.

(z) The common shocks u; and the idiosyncratic shocks v;; are stable by aggre-
gation MGARCH and univariate GARCH processes, respectively, and satisfy
the conditions for consistent QMLE estimation.

The assumption that the MGARCH driving the common shocks is stable by ag-
gregation is motivated by the fact that u; is not fully identifiable (see the remark
after (7)): under Assumption (z), any linear transform Ru, is driven by a MGARCH
model of the same type as uy itself. Examples of stable by aggregation MGARCH
models are the full VECH (Bollerslev et al., 1988) and full BEKK (Engle and Kroner,
1995) models, which moreover can be consistently estimated via QMLE methods:

see Theorems 11.2 and 11.4 in Francq and Zakoian (2010).

3 Predicting the conditional covariance matrix

We present a procedure to predict one-step ahead conditional covariance matrices,”

i.e, to estimate the conditional covariance matrix V(X;|F;_1) of the observable pro-
cess X;. Section 3.1 provides a theoretical expression for that conditional covariance,

and Section 3.2 introduces the estimation procedure.

3.1 The conditional covariance matrix

We start with a theoretical expression for the conditional covariance matrix of X;

in terms of the static representation (7).

Proposition 1. Let Assumptions (i)-(ix) of Section 2 hold—ensuring the exis-
tence of the static representation (7). Assume moreover that w; and &, conditional

on Fy—1, are uncorrelated at all leads and lags. Then, the covariance matrix of X;

9The terminology (conditional) covariance matriz is used here with a slight abuse: by V(X4|F:—1)
we mean the infinite array with (i, j)-element the (conditional) covariance of X;; and Xz, (4,7) € N2
The same notation V(.|Fi—1), and the notation Cov(., .|F¢—1) are used in an obvious fashion for

other processes.



conditional on Fi_1 18
V(X[ Fi—1) = RV(ug| Fr1)R + V(& Fio1). (8)
Proof. From (7), we have that

V(Yt|.7:t71) = V(Rut + €t|]:t71)
= RV(ut|]-"t_1)R' + V(€t|ft_1) + Cov(Rut, €t|ft—1)

+COV(€t, Rut|.7-"t_1), t e Z. (9)
Without loss of generality we can assume that all VAR filters A¥(L) in (5) are of
the form AF(L) = I,41 — QFL — - — @ELS (with ¢ # 0 for at least one k).
Consequently, A(L) can be written as A(L) =1 — ®;L —--- — &gL°. Then, it is
easy to check that
V(e Fim1) = VAL)E|F1) =V ([T ®1L — - — BgLY] &|F—1)
= V(&|Fi-1), (10)

since &;_r, is JF¢_1-measurable for k£ > 1.

Similarly, we have
V(Yt|ft71) = V(A(L)Xﬂ./_"tfl) = V(Xt|ft71). (11)

Moreover, since u; and &; are conditionally uncorrelated, both Cov(Ruy, €¢|Fi—1)

and Cov (e, Ru¢|Fi—1) in (9) equal zero. Whence,

Cov(Ruy, €| Fi—1) = Cov(Ruy, A(L)&|Fi—1) = RCov(ug, A(L)E|Fi—1).

Now,
Cov(ug, A(L)&|Fi—1) = Cov(uy, [I — &1L — ... — BL3] &|Fi—1)
=E(w[& — ®1&-1 — ... — ®s&i—s]' | Fi1)
— E(w|F—1)E([& — ®1&-1 — ... — Ps&—s] | Fim1)

= E(w&|Fi-1)
— E(w|Fi—1)E(&|Fi—1) — [E(wé_ @1 Fim1) — E(ue| F—1)E(&_ @1 | Fi1)]
0
— o= [B(w_g®s|Fio1) — E(w|Fr-1)E(&_gP's| Fi1)]
0
= E(w&| Fi—1) — E(ue| Fe-1)E(&]Fi-1) = Cov(ur&i| Fi-1) = 0




since Cov(us&;, | Fi—1) = 0 for any k. It then follows from (8)-(11), along with the
fact that Cov(er, Ru¢|Fi—1) = 0, that

V(X¢|Fi-1) = V(Y| Fio1) = RV(ug| Fro1)R + V(& Fiov),

as was to be proved. O

3.2 Estimation

It follows from Proposition 1 that, if V(X¢|F;—1) is to be estimated at time (f — 1),
assumptions have to be made on the dynamics of V(us|F;—1) and V(&|Fi—1).

As in Alessi et al. (2009) and Aramonte et al. (2013), we therefore assume that
the conditional covariance matrices of the common shocks can be modelled as some
g-dimensional MGARCH process. Since ¢ is typically small, this approach escapes
the curse of dimensionality. As for the idiosyncratic conditional covariance ma-
trix V(& Fi—1), since idiosyncratic cross-correlations are small, it can be approxi-
mated by a diagonal matrix where each diagonal element (each marginal conditional
variance) is modelled by a univariate GARCH-type model—in the sequel, we use
GARCH(1,1) models. In both cases, the MGARCH and the n GARCH(1,1) models
are estimated by Gaussian quasi-maximum likelihood (QMLE) (we refer to Francq
and Zakoian (2010) for sufficient consistency conditions).

In practice, the actual number of observed series is large, but finite: denote it

by N. The estimation of V(X¢|F;_1) proceeds as follows.

e Step 1. Determine the number ¢ of common shocks, for instance via the
Hallin and Liska (2007) criterion.

e Step 2. Randomly reorder the NV observed series.

th

e Step 3. Compute a consistent™ estimator

$X (9):i %T: ik [ B\ px

10Consistency requires conditions on K, Mz and Br, for which again we refer to Barigozzi and
Hallin (2018).

10



of the N x N spectral density matrix of the X;’s, where K(-) is a kernel
function, My a truncation parameter, By the bandwidth, and f‘? the sample
lag-k cross-covariance matrix computed from the observed N x T panel of X;

values.

e Step 4. Collecting the ¢ normalized column eigenvectors associated with E%T(ﬁ) 'sq
largest eigenvalues into the N x ¢ matrix ﬁJ{,(T(G) (with complex conjugate ﬁji,(:}ﬁ)
and the corresponding eigenvalues into the ¢ x ¢ diagonal matrix K)]\(,T(Hh),
compute
=X (0) := PAr(O)AX 7 () PL7(6)

as an estimator of the spectral density matrix of the x;’s.

e Step 5. Let N, :=m(q+1) with m := L%—‘ Dropping the last N —m(q+1)
series, denote by EA]?(VT(G) the N, x N, spectral density matrix corresponding

to the remaining N, series'!.

e Step 6. By inverse Fourier transform of i?‘V*T(O), compute the estimated auto-
covariance matrices f‘i‘ of the m (¢ + 1)-dimensional sub-vectors
X = (X(k=1)(q+1)41,t - - - Xie(g+1),t)"s B = 1,...; m. Then, from the latter, obtain,
via Akaike order identification and Yule-Walker equations, estimators Ak(L)
of the m VAR filters A¥(L); stacking them into a block-diagonal matrix A (L),
compute the estimates Y, := A(L)X,.

e Step 7. Obtain the estimates ﬂt of Ruy by computing the first ¢ standard
principal components of ?t; inverting'? the block-diagonal filters A(L) then
using appropriate identification constraints, we obtain the identified quanti-
ties R and U, and the corresponding estimates of the impulse-response func-
tion B,, = [A(L)]"'R.

Following Forni et al. (2017) we chose a Cholesky identification scheme to obtain
the identification of R and 1y (see Section 4.1 of Forni et al. (2017) for more details)—

other choices are possible, though.

HEor the sake of simplicity we keep the same notation for the N, reordered observed series.
2The inverse of A (L) being the block-diagonal filter with (g41)x (¢+1) diagonal blocks [Ak(L)] -1

where ¢ is small; this inversion thus is easily performed.

11



Steps 1-7 are those described in Forni et al. (2015, 2017) and Barigozzi and
Hallin (2018), where we refer to for details. The resulting estimator X, however,
depends on the ordering of the panel obtained at Step 2: that ordering indeed
determines which elements of f?XNT(G) are kept in ﬁfV*T(G) and belong to the diagonal
blocks of X, ;(f). Forni et al. (2017) and Barigozzi and Hallin (2018) explain how
to deal with this by iterating Steps 2-7 (going back to Step 2, choosing a new
random permutation, hence a new N,-dimensional subpanel, etc.) until numerical
stabilization of the averaged (over the permutations) x; values; this typically takes

place after few iterations!'3.

e Step 8. Iterate Steps 2 through 7; average (after obvious reordering of the
cross-section) the resulting estimates ﬁ, u; and ]§n Denote, for the sake
of simplicity, the final estimates also by f{, 4; and B,,. Let Xt = ﬁnﬁt
and Et =Xy — Xt

The procedure described so far is the one that has been used in Della Marra
(2017), Forni et al. (2018), and Giovannelli et al. (2018) in their forecasting of infla-
tion and financial returns. In order to estimate conditional covariance matrices, we
will now exploit the MGARCH and GARCH features of Assumption (z). Thanks
to the assumption of stability under aggregation, the choice of identification con-
straints has no impact, and VECH or BEKK QMLESs can be computed from the u;’s
obtained in Step 8. We then proceed with the following final steps.

e Step 9a. Run, over the ¢-dimensional T-tuple uy, ..., ur, a QML estimation
procedure for the parameters of the MGARCH model of Assumption (z); this
yields an estimator V(u;|F—1) of V(uy|F_1).

e Step 9b. Similarly run, over each of the N univariate T-tuples El, ... 7§T7 a
GARCH QML estimation procedure. This yields N estimators ?(fl-t|]:fil) of
the variances V(&t|]~"§il) of the &;;’s conditional on their past values; the N x N
diagonal matrix V(& F;_1) with diagonal entries i/\(fit|ffjl) is our estimator

of V(&|Fi—1).

13 Averaging, of course, is performed after rearrangement of the cross-sectional items in the original

ordering.

12



Our estimator V(X¢|F;_1) finally is defined as
~ ~ o~ —~/ ~
V(X¢|Fi—1) := RV(ut|Fe—1)R + V(&|F-1). (12)
The following proposition establishes its consistency properties.

Proposition 2. Assume that Br = o(v/T) and My = o(\/T). Under Assumptions
(i)-(xz) and Assumptions (L4) and (L5) in Barigozzi and Hallin (2018), we have

V(X4 Fio1) = V(X4 | Fio1) = op(1) (13)
for anyt € Z as n,T — oo with n = O(T°) for some finite ¢ > 0.
Proof. 1t follows from Proposition 1 in Barigozzi and Hallin (2018) that, under the

assumptions made, letting p,7 := max (BT/\/T, 1/Brp, 1/\/71),

1 —~
—|IR-RJ| = d a, — Juy|| = log T
\/ﬁll | = Op(pnt), an t:rrllﬁ?fT\IUt ug|| = Op(pnTlogT),

for some ¢ x ¢ diagonal matrix J with entries £1, and

/\. — . pr— O 1 T .
max 1rélt3éXT|§zt §it| = Op(purlog T)

Consequently, R-RJ , Uy — Ju; and Et — & all are op(1). The same “two-step
estimator” arguments as in Proposition 4 of Alessi et al. (2009) thus apply: since 0,
and Ez-t consistently estimate u; and &;; in “the first step”, computing in “the second
step” a maximum likelihood estimator from w; and Eit is asymptotically equivalent to
computing it from the actual values u; and &, and thus leads to consistent estimates
of V(Juy|Fi—1) and V(&|Fi—1), respectively. Now,

RIV(Ju|Fi1)I R’ = RITV(w|F,_1)IIR = RV(w|F_1)R/,
so that
RV (w|F-1)R + V(&|F_1) — RIVIw|F 1) IR — V(&|Fi_1) = op(1)

implies

RV (w7 )R + V(&|F1) — V(X Fr1) = op(1),

as was to be proved. O
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In practice, VECH and BEKK QMLES, however, are numerically quite unstable,
and typically strongly depend on the initial values considered in the numerical so-
lution of the likelihood equations. This is a well-documented fact; see, for instance,
Lien et al. (2002) and Asai (2015). Rather than VECH or BEKK, we therefore com-
pute DCC QMLEs which are known to be quite robust to missespecification; see
Chang et al. (2011), Chevallier (2012), Laurent et al. (2012), Amendola and Candila
(2017), or de Almeida et al. (2018). Our Monte Carlo experiments (see Section 4)
confirm that, even though the actual data-generating process is BEKK, misspecified
DCC QMLEs outperform the correctly specified full BEKK ones.

4 Finite-sample performances

4.1 Monte Carlo experiments

In this section, we investigate the finite-sample performance of the proposed proce-
dure through Monte Carlo simulations.

Simulations were performed from four data generating processes (DGPs). The
first two DGPs are static factor models with one and two common factors, respec-
tively; the third and fourth DGPs are dynamic factor models with finite and infinite-
dimensional factor spaces, respectively. The common shocks and the idiosyncratic
components in all four cases are conditionally heteroscedastic. The first three DGPs
are particular cases of the GDFM with static representation and can be consistently
estimated by the procedure of Alessi et al. (2009) which, however, cannot consis-
tently estimate the fourth DGP, where the assumption of a finite-dimensional factor
space does not hold.

In all DGPs, the idiosyncratic components satisfy &/|F;—1 ~ N(0,P;), where P,
is an NV x N diagonal matrix containing the conditional variances P;; of GARCH(1,1)

processes of the form
Ht:wi—i_aigzgt—"_ﬁipi,t—lv Z.:17"'7]\[7

where w; > 0, «;,8; > 0 and o; + B; < 1; the parameters values «; and ; are
generated independently from uniform distributions over [0.01, 0.045] and [0.85,

0.95], respectively, and w; := 1 — a; — f3;, so that the unconditional variance of &;
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is V(&) = 1. As for the factors u; driving the common components x;, they were
generated from the following four DGPs.
DGP1. (one common shock; static loadings) One common shock u; is generated

from a univariate GARCH(1,1) model
w|Fi_1 ~ N(0,02) with 02 =1+ 0.07u? | +0.8302 ;

here x; = Ruy, where R is an N x 1 matrix with modulus one randomly generated
via the RandOrthMat Matlab function.

DGP2. (two common shocks; static loadings) Two common shocks uy = (uyy, ug)’

generated from a BEKK(1,1,1) model
w|Fi-1 ~ N(0,Q,) with Q, = C;Co + Ciup—1u;_;C1 + C5Q,_,Co. (14)

In order to guarantee E(Q,) = E(w_1u,_;) = I, we set C{;Cy = I, — C]C; — C,Co.
Parameters of the BEKK are extracted from uniform distributions with ranges
as in Alessi et al. (2009): C; has diagonal in [0.1,0.5] and off-diagonal elements
in [-0.2,0.2], while Cy has diagonal in [0.8,0.95] and off-diagonal elements
in [-0.15,0.15]. At each extraction of the parameters, covariance stationary of the
BEKK model has been checked before proceeding. Here, x; = Ru; where R is
an N x 2 matrix with orthonormal columns randomly generated via the RandOrth-
Mat Matlab function.

DGP3. (four factors driven by ¢ = 2 common shocks; static loadings) Four
factors ¥y = (Fit, ..., Fy) driven by ¢ = 2 common shocks uy, yielding a GDFM
with finite-dimensional factor space. The shocks are generated from the same BEKK
model as in DGP2, the factors are a VAR(4) driven by u;:

Ft = ‘I’Ft71 + Kut and ut|]-"t,1 ~ N(O, Qt),

with Q; as in (14), A is n x 4, ® is 4 x 4 and K is 4 x 2. The entries of A
and K are independently uniformly distributed over [—1,1]. The entries of ® are
generated as follows: first we generate entries independently uniformly distributed
on the interval[-1,1]; second, we divide the resulting matrix by its spectral norm;

third, we multiply the resulting matrix by a random variable uniformly distributed
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on the interval [0.4,0.9] to ensure stationarity while preserving sizeable dynamic
responses'4.

DGP4. (two common shocks; dynamic loadings) The two common shocks
u; = (uyg,ug)’ are generated from the same bivariate BEKK model as in (14);

the model is a GDFM with infinite-dimensional factor space. Here,

Xit = ( ainll = ail)_l ) uy,
aia(l — aip) ™"
where a;; and «;5, @ = 1,...,n, j = 1,2 are independent and uniformly distributed
over the intervals [-1,1] and [-0.8,0.8], respectively.

For each DGP, we simulated 500 replications of a panel of dimensions N=60
and T=1000. From each replication, the conditional covariance matrix Y ;7 was
estimated using

(a) classical PCA'® combined with (M)GARCH modelling,

(b) the DCC model with composite likelihood, as described in Pakel et al. (2017),

(c) the procedure of Alessi et al. (2009), and

(d) our method,'®
denoted as PCA-(M)GARCH, DCC, ABC, and GDFM-CHF, respectively'”. For
simplicity, the correct numbers of factors (for DGP3) and common shocks (for DGPs
1-4) are assumed to be known, since this does not play a role in the comparative
performances of procedures (a)-(d). For DGP4, since there are not static factors in
its representation, the identification procedure by Bai and Ng (2002) was used in

each simulated panel to compute the number of static factors for the estimation of
the PCA-(M)GARCH and ABC procedures.!8

'4This DGP is similar to the one considered by Alessi et al. (2009).
5Tn the spirit of Diebold and Nerlove (1989) and Van der Weide (2002), static factors are extracted

via principal component analysis; an (M)GARCH model then is fitted to the extracted factors.

Idiosyncratic components are modelled as independent univariate GARCH processes.
8 Throughout, we considered 30 cross-sectional permutations and set the order S of the VAR

block-diagonal models to one.
"GDFM-CHF: General Dynamic Factor Model with Conditionally Heteroscedastic Factors.
'8Tn practice, the identification procedures by Bai and Ng (2002) or Alessi et al. (2010) in the

static case, by Hallin and Ligka (2007) in the GDFM case, should be used prior to the estimation

procedure in each replication.
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As mentioned in the previous section, estimation of BEKK models is numerically
quite unstable and strongly depends on the choice of initial values. For the sake
of comparison, for DGPs 2-4 we considered both a DCC(1,1) and a BEKK(1,1,1)
estimate of the conditional covariance matrix of the common shocks in the PCA-
(M)GARCH, ABC and GDFM-CHF procedures: the DCC-based procedures are de-
noted as PCA-(M)GARCH-DCC and ABC-DCC and GDFM-CHF-DCC, the BEKK-
based ones as PCA-(M)GARCH-BEKK, ABC-BEKK and GDFM-CHF-BEKK, re-
spectively.!?

In order to compare the performances of those four procedures, we compute,
for each simulated panel and each method, a distance between the estimated one-
step-ahead conditional covariance matrix §T+1\T and the theoretical one X7 7.
Let

Hrpr = R V(ury1|Fr)R + V(éri1|Fr) for DGP1 and DGP2,

HT+1\T = AKV(UT+1|I"T)K,A/ + V(€T+1|]:T) for DGP3,

and
Hyyqr = AV(urg|Fr)A' + V(éra|Fr)  for DGP4,

where A is the matrix with elements a; j, 7 = 1,..., N, j = 1,2. Following Amendola

and Candila (2017), we consider four distances, Dy, ,..., Dy, of the form
R N N
D(Hyy7, Brayr) = 3 Y w(i, ) (hij — 5ij)* (15)
i=1 j=i

where h; ; and 0, ; are the (i, j) entries of Hp 7 and §T+1|T, respectively, and the
weights w(i, j) are provided in Table 1.

Distance D1, which gives equal weights for the variance and covariances, yields a
“total” unweighted squared Euclidean distance between Vech(iT +1y7) and Vech(Hpq7);
distance Dy is an unweighted squared Euclidean distance between Diag(f]TH‘T)
and Diag(Hp1)7) (hence disregards the covariances);*” distance D3 penalizes nega-

tive errors, while D4 penalizes the positive ones. It is important to note that, in D3

19DCC and BEKK estimations were performed by using the MFE toolbox of Kevin K. Sheppard,

freely available at http://www.kevinsheppard.com/MFE_Toolbox.
20The classical notation Vech(M) stands for the vector stacking the upper diagonal entries of a

square matrix M, and Diag(M) for the vector of its diagonal elements.
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Table 1: Weights w(i,j),i=1,...,N, j=14,..., N in the distances D;-Dy in (15).

D w(i,j) =1 for alliand j

Dy w(i,j) =1 when i=j; 0 otherwise

Ds w(i,j) =2 when 7;; > h;j; 1 otherwise
Dy w(i,j) =2 when g;; < h;j;; 1 otherwise

and Dy, the weights themselves are data-driven, so that, for a given replication,

different methods lead to different weights.

4.2 Simulation results

The results of the Monte Carlo experiments are summarized in Figures 1-4 and Ta-
ble 2. Figures 1-4 present boxplots of the distances defined in (15), in logarithmic
scale and for DGP1, DGP2, DGP3, and DGP4, respectively. Table 2 reports the
number of times each estimation procedure achieves the smallest values of the dis-
tances for each DGP.

FIGURES 1-4 and TABLE 2 AROUND HERE

Inspection of Figure 1 (DGP1) reveals that ABC and GDFM-CHF perform as
well as the simpler PCA-(M)GARCH procedure (with higher variability for GDFM-
CHF, though), while DCC is, by far, the worst. According to Figures 2-3, the BEKK-
based procedures present much higher variability than the DCC-based ones due,
probably, to the numerical instability of BEKK QMLEs. Even when misspecified,
DCC-based methods thus are preferable. In Figures 3 (DGP3) and 4 (DGP4), we
can observe the good performance of GDFM-CHF-DCC, while ABC-DCC for DGP4,
as well as PCA-(M)GARCH-DCC and DCC for DGP3 and DGP4, perform quite
poorly.

Due to the high instability of BEKK-based procedures, Table 2 only reports the
DCC-based procedures. It appears clearly that, in agreement with the results in
Figures 1-4, the DCC method performs worst, except for DGP2. For DGP1 and
DGP2, the GDFM-CHF-DCC procedure overperforms PCA-(M)GARCH-DCC and
ABC-DCC for all distances but Dy (where only the conditional variances, not the
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covariances, are taken into account). In the DGP3 case, the GDFM-CHF-DCC
procedure is best for all distances, closely followed by ABC. Finally, for DGP4, the
GDFM-CHF-DCC procedure is by far the best for all distances while ABC-DCC
performs poorly and PCA-(M)GARCH-DCC even worse. When both conditional
variances and covariances are considered (distances D1, D3, and D4), the GDFM-

CHF-DCC procedure, irrespective of the DGP, is uniformly best.

Table 2: For each choice of a DGP (DGP1-DGP4) and a distance (D1-Dy), this
table provides the number of times each of the four estimation procedures (PCA-
(M)GARCH, DCC, ABC and GDFM-CHF) is the winner across 500 Monte Carlo
replications. For DGPs 2-4 we use the DCC-based versions of the PCA-(M)GARCH,
ABC, and GDFM-CHF procedures. Highest values are in bold.

DGP1 DGP2
Procedure D; Do D3 Dy Dy Do Ds Dy
PCA-(M)GARCH | 103 155 114 88 35 75 39 34
DCC 13 38 13 12 45 214 45 43
ABC 92 164 82 109 | 59 87 53 62
GDFM-CHF 292 143 291 291 | 361 124 363 361

DGP3 DGP4
Procedure Dy Do D3 Dy Dy Do Ds Dy
PCA-(M)GARCH | 42 67 41 40 9 1 11 7
DCC 19 7 20 20 3 1 4 3
ABC 211 208 207 219 | 92 80 91 91
GDFM-CHF 228 218 232 221 | 396 418 394 399

5 An application to dynamic portfolio optimization

In this section, we assess our proposal (GDFM-CHF-DCC) in the problem of dy-
namic portfolio optimisation. The dataset we are considering consists in returns X,

from stocks entering the composition of the S&P 500 index, the National Associ-
ation of Securities Dealers Automated Quotations (NASDAQ-100) and the NYSE
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Amex Composite Index (AMEX), on July 27, 2018 and traded from January 2, 2011
through June 29, 2018 (T=1884). It was obtained from Yahoo Finance using the R
package quantmod by Ryan and Ulrich (2017). Because we only considered stocks
traded through the whole period, we ended up with NV = 656 assets.

A window size of 750 days is used for estimation, which represents a concentration
ratio of 656/750 = 0.875; the out-of-sample period was set to 1134 days. An
estimator f)tﬂ‘t of V(X¢41|F) is computed from the 656 x 750 subpanel {X;;|1 <
1 <656, t— 749 < s <t} for t =750,...,T — 1 = 1883. That estimator is used in
the construction, at times ¢t = 750, ..., 1883 (1134 time points), of a one-step ahead

minimal variance portfolio (optimality at time ¢ + 1)—viz., a vector of weights

~ ~ ~ / . =
Wipafe = (@rerafes - Dosgse 1) = argminw 3y pw

where minimisation is with respect to all w = (wi,...,wgs6) such that w; > 0

and 265? w; = 1. The resulting (out-of-sample) portfolio return

1=
656
Tpt+1 ‘= g wi;t+1|tXi,t+1

i=1
at time ¢ + 1 then is computed from the observation at time ¢ + 1.

The minimum-variance portfolio we are proposing is the one based on §t+1|t =
V(X;41|F), as described in Section 3.2 (but computed from the adequate subpan-
els), denoted as GDFM-CHF-DCC. For the sake of comparison, we also include the
results of the GDFM-CHF-BEKK procedure. We compare its performance with
those of (a) the naive equal-weighted portfolio strategy, denoted here by 1/N, (b)
the RiskMetrics 2006 methodology (Zumbach, 2007), (c) the OGARCH approach
of Alexander and Chibumba (1996), (d) the ABC method of Alessi et al. (2009),
(e) the generalized principal volatility components (GPVC)?! of Li et al. (2016),
and (f) the procedure called PCA4TS proposed by Chang et al. (2018), which ex-

2L A robust version of the GPVC procedure, denoted by RPVC, was proposed by Trucios et al.
(2019). That procedure is based on a robust estimator of the unconditional covariance matrix which
can be applied only when the concentration ratio N/T is lower than 0.5. For this reason we did not
implement it here. Of course, an adequate robust estimator in an high-dimensional context would
be welcome. However, the performance of the RPVC in a N/T > 0.5 context has not been analyzed

yet.
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tends the principal component analysis to second-order stationary vector time series.
Those procedures were selected for their feasibility in high-dimensional data.

The GDFM-CHF with DCC or BEKK was implemented with 30 cross-sectional
permutations; the order of the VAR block-diagonal models was set to S = 1. In
practice (when one portfolio is to be estimated at a time), information criteria can be
used to determine the order of those VARs. Likewise, following Alessi et al. (2009),
the number of static factors, common shocks, volatility components (Li et al., 2016)
and groups (Chang et al., 2018) were determined once for all.

The ABC-DCC procedure (Alessi et al., 2009) was implemented with eight static
factors and three common shocks determined by the criteria of Bai and Ng (2002)
and Hallin and Liska (2007), respectively. The same number of common shocks
was used in the GDFM-CHF approach. The GPVC procedure was applied with
eight volatility components determined by the criterion of Bai and Ng (2002), the
PCAATS one with 654 groups (two of them with two assets and the remaining ones
with only one asset; the groups were obtained following Chang et al. (2018)). The
OGARCH procedure was applied as in Becker et al. (2015), that is, with the number
of components equal to the number of series.

Following Gambacciani and Paolella (2017), Trucios et al. (2018), or Engle et al.
(2019), among many others, we use annualized performance measures to evaluate
out-of-sample portfolio performances. These measures are defined as follows.

(i) Annualized average portfolio (AV):

1134

1 1883
AV := 2527, = 252 [ > rp,m]
t=750

(average of the out-of-sample portfolio returns multiplied by 252);
(7i) Annualized standard deviation (SD):

| 13 1/2
_ /o5 Z 2
SD = v252 [1134 = (Tp,t-i-l T'p) ]

(standard deviation of the out-of-sample portfolio return multiplied by v/252);
(111) Annualized information ratio (AV): IR = AV/SD;
(iv) Annualized Sortino’s ratio (SR): SR = AV/ (Sv/252), where
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1883 1/2

Z min (0,7, 111 — MAR)? ,
t="750

_ 1
1134
and the minimal accepted return (MAR) is set to zero.

Because our objective is the selection of a minimum variance portfolio, the most
pertinent performance measure should be the SD criterion, as stressed out also by
Ledoit and Wolf (2017) and Engle et al. (2019).

The results are reported in Table 3. They reveal that the best performance, for
the SD, IR and SR criteria, is achieved by the GDFM-CHF-DCC. The OGARCH
model has the second best performance, according to the SD criterion, followed by
the ABC-DCC method. The GPVC and the OGARCH procedures exhibit the worst
performance according to the AV criterion while ABC has the best performance
according to the same criterion, followed by the GDFM-CHF-DCC proposal. The
worst out-of-sample performance is obtained by the equal-weight portfolio strategy
according to all criteria, but for the AV one. It is worth noting the relative good
performance of RM2006, which outperforms GPVC and PCA4TS according to all
criteria and loses for OGARCH only through the SD criterium. Finally, note that the
results of GDFM-CHF-BEKK are worse than those of GDFM-CHF-DCC, mainly
in terms of the SD criterion. This is not surprising since, as mentioned previously,
the estimation of the Full BEKK model is hard, unstable and strongly dependent on
the initial values, leading to a poor performance (Lien et al., 2002; Laurent et al.,
2012; Asai, 2015; Amendola and Candila, 2017; de Almeida et al., 2018).

Taking into account all criteria, the GDFM-CHF-DCC proposal exhibits the best
performance, followed by the ABC-DCC procedure.
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Table 3: Annualized performance measures: AV, SD, IR and SR stand for the
annualized average, standard deviation, information ratio and Sortino’s ratio of the
out-of-sample portfolio returns, respectively. The dataset is formed by 656 stocks
used in the composition of the S&P500, NASDAQ-100 and AMEX indexes and the
window size for estimation is equal to 750 days (concentration ratio N/T equal to
0.875). The out-of-sample period goes from January 2, 2014 to June 29, 2018. A

ranking of the various methods is provided in parenthesis for each criterion.

AV SD IR SR
1/N 5.7708 (3) 11.5067 (8) 0.5015 (8) 0.6834 (8)
RM2006 55083 (4) 4.5447 (4) 1.2318 (3) 1.7229 (3)
OGARCH 4.9227 (7)  4.4551 (2) 1.1050 (6) 1.5614 (6)
ABC-DCC 6.5267 (1) 4.5313 (3) 1.4404 (2) 1.9677 (2)
GPVC 4.5989 (8) 4.5889 (5) 1.0022 (7) 1.4077 (7)
PCAATS 5.3677 (6)  4.7255 (6) 1.1359 (5) 1.6024 (5)
GDFM-CHF-DCC | 6.2369 (2) 4.0209 (1) 1.5511 (1) 2.2137 (1)
GDFM-CHF-BEKK | 5.5834 (5) 4.8954 (7) 1.1405 (4) 1.6287 (4)

6 Conclusions

Based on the one-sided procedure of Forni et al. (2015, 2017) and Barigozzi and
Hallin (2018), we propose a forecasting method for the conditional covariance matrix
in high-dimensional time series, which we apply to dynamic portfolio optimization.

A Monte Carlo performance comparison of our method with alternative methods
is conducted over four different DGPs, using the distance measures proposed in
Amendola and Candila (2017). Overall, our method has an excellent performance,
and outperforms all its competitors—except, under static factor model DGPs, for
the distance D2 which disregards the covariances.

The superiority of our estimator is also empirically established in an application
to dynamic portfolio optimisation based on a dataset of 656 assets. Our method
achieves the best out-of-sample performance according to the (annualized) standard
deviation SD (arguably, the most relevant criterion in the context), information ratio
(IR) and Sortino’s ratio (SR) criteria, and is second best (after Alessi et al. (2009))
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with respect to the (annualized) average criterion.
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Abstract

Based on a General Dynamic Factor Model with infinite-dimensional factor
space and MGARCH common shocks, we develop new estimation and forecast-
ing procedures for conditional covariance matrices in high-dimensional time
series. The finite-sample performance of our approach is evaluated via Monte
Carlo experiments, outperforming most alternative methods. The new pro-
cedure is used to construct one-step-ahead minimum variance portfolios for a
high-dimensional panel of assets. The results are shown to achieve better out-

of-sample portfolio performance than alternative existing procedures.
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1 Introduction

Volatility forecasting plays an essential role in a variety of economic and financial
applications, such as portfolio allocation, risk management, option pricing, hedging
strategies, etc.: see Engle (2009), Hlouskova et al. (2009), Aramonte et al. (2013),
Becker et al. (2015), Trucios et al. (2018), and Engle et al. (2019), to quote only
a few.

Several multivariate models have been proposed to model and forecast the con-
ditional covariance matrix of a collection of n assets; see Bauwens et al. (2006) or
de Almeida et al. (2018) for reviews. For n small, multivariate GARCH (MGARCH)
type models, in that context, constitute fundamental prediction tools. Unfortu-
nately, these models badly suffer from the so-called “curse of dimensionality” as the
number n of assets grows, and cannot be implemented in a high-dimensional con-
text. Therefore, alternative procedures have been proposed, see Fan et al. (2008),
Alessi et al. (2009), Matteson and Tsay (2011), Engle and Kelly (2012), Hu and
Tsay (2014), Santos and Moura (2014), Li et al. (2016), Chang et al. (2018), Engle
et al. (2019), Trucios et al. (2019a) and Pakel et al. (2020), among others.

Dynamic factor models with high-dimensional asymptotics offer a promising ap-
proach in that context; see the surveys by Barhoumi et al. (2014) and Bai and Wang
(2016) for details. Factor models are based on the assumption that cross-correlations,
in a large cross-section of time series data, are accounted by a small number of la-
tent factors or common shocks, which account for their co-movements and have been
used by several authors to model and forecast conditional covariance matrices: see
Diebold and Nerlove (1989), Harvey et al. (1992), Aguilar and West (2000), Vron-
tos et al. (2003), Han (2005), Sentana et al. (2008), Aguilar (2009), Alessi et al.
(2009), Garcia-Ferrer et al. (2012), Aramonte et al. (2013) and Dovonon (2013),

among others. All these contributions are based on a static factor-loading scheme?

In this static loading scheme, latent factors are loaded contemporaneously via some loading
matrix, so that the dimension of the factor space reduces to the (finite) number of linearly inde-

pendent factors; the number of shocks driving those factors, however, may be strictly less than the
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(Bai and Ng, 2002; Stock and Watson, 2002a,b)? leading to finite-dimensional factor
spaces whose main advantage is to allow for consistent estimation methods based
on traditional principal components, which are familiar to most practitioners, easy
to implement, and widely used in practice.

However, as pointed out in Forni and Lippi (2011) and Section 1.1 of Forni
et al. (2015), the assumption of a static factor-loading scheme considered in that
literature is quite restrictive and rules out some very simple and plausible cross-
correlation patterns leading to infinite-dimensional factor spaces. To overcome this
issue, Forni et al. (2000) introduced the so-called generalized or general dynamic
factor model (GDFM), in which factors (equivalently, common shocks) are loaded
through filters rather than matrices; see the monograph by Hallin et al. (2020) for
details. As shown in Hallin and Lippi (2013), the GDFM actually follows from a
representation result which holds, essentially, without placing any restrictions on
the data-generating process—beyond second-order stationarity and the existence of
a spectrum.

The role of traditional principal components in the GDFM is taken over by
Brillinger’s dynamic principal components® (Brillinger, 1981), and the estimation
method proposed by Forni et al. (2000) naturally relies on this concept. Dynamic
principal components, however, involve two-sided filters, producing estimators that
are inadequate in forecasting problems. Forni and Lippi (2011) and Forni et al. (2015,
2017)* therefore developed an alternative consistent estimation method involving
one-sided filters only. Monte Carlo simulations indicate that, for estimating impulse-
response functions and predicting returns, this one-sided approach outperforms the
static methods of Stock and Watson (2002a,b) and Bai and Ng (2002) even when
the actual loading scheme is of the static type (see Section 4 in Forni et al. (2017)).

The Forni et al. (2015, 2017) procedure has been successfully used to forecast

dimension of the factor space.
2Similar ideas have been developed also in a non-econometric context, see, e.g., Pefia and Box

(1987), Stoffer (1999), or Pan and Yao (2008).
3Hallin et al. (2018) show that those dynamic principal components, based on the factorization

of spectral density matrices, inherit, in a time-series context, the optimality properties that make

traditional principal components a successful dimension-reduction device in i.i.d. samples.
4The assumptions in those three references yield slight variations; in this paper, unless otherwise

stated, we refer to the assumptions in Barigozzi and Hallin (2020).
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inflation and financial returns; see Della Marra (2017), Forni et al. (2018) and Gio-
vannelli et al. (2018). It has also been used in the prediction of conditional variances
by Barigozzi and Hallin (2016, 2017, 2020), but never, as far as we know, in the pre-

5 These two

diction of conditional covariance matrices and portfolio optimization.
points constitute the main goal of this paper.

The rest of the paper is organised as follows. Section 2 briefly describes the
GDFM. Section 3 introduces our forecasting procedure and establishes its consis-
tency properties. Section 4 reports a Monte Carlo study of the finite-sample perfor-
mance of the proposed procedure and their comparison with existing competitors.
In Section 5, the new procedure is applied to dynamic portfolio optimization, that
is, the problem of constructing, at time 7', portfolios with minimum (at time 7'+ 1)
conditional variance from a large collection of assets. In Sections 5 we also compare

the proposed procedure with other methods. Section 6 concludes.

2 The general dynamic factor model

In this section, we briefly describe the GDFM to be considered throughout, which
basically contains as particular cases all other factor models proposed in the econo-
metric and time series literature, along with the regularity assumptions we need for
consistency, which are borrowed, essentially, from Barigozzi and Hallin (2020).

Let {X; := (X1t Xot...), t € Z}, be a double-indexed zero-mean second-order
stationary stochastic process, where the first index is cross-sectional and typically
refers to assets, while ¢, as usual, stands for time. The GDFM is based on the
decomposition

Xit = xit + &it, 1€Ny, teZ (1)

of X into two non-observable mutually orthogonal components x;: (the common

components) and & (the idiosyncratic components), where

q o0 [e%e)
Xit = Z Z bijkuji—r = bi(L)uy and & = Z digvit—k = di(L)vi; (2)
=1 k=0 k=0

®See, however, the unpublished paper by Alessi et al. (2009) who assume a factor model decom-

position with finite-dimensional factor space on the model of Forni et al. (2005 and 2009).



99

100

101

102

1

o

3

1

o

4

1

o

5

1

o
(=}

1

o

7

168

110

1

-

1

112

1

jan

3

114

1

jan

5

116

1

jan
]

118

119

120

the common shocks uy = (uys ugt ... uqt)’ driving the common components, and
the idiosyncratic shocks v; driving the idiosyncratic components, are also non-
observable.

Letting X,, := {Xuli = 1,..,n,t € Z}, xn = {xat |7 = 1,..,n, t € Z},

and &, := {&|i = 1,...,n,t € Z}, equation (2) in vector notation takes the form
Xnt = Xnt + £nt = Bn(L)ut7 +Dn(L)Vnt7 nc N07 teZ (3)

with B, (L) := (by(L)...b, (L))", Dy (L) := diag(di(L)...dn (L)), and vy := (v1¢ .. . vnt)’.
Let [|All, stand for the LP norm (3, A%)l/p of a real matrix A = (4;;)
(for p = 2, we simply write ||A||). On the GDFM decomposition (1), we assume the

following.

Assumption (GDFM) (i) the vector process u; is a zero-mean g¢-dimensional

second-order white noise process, with full-rank covariance I'%;

(ii) writing b := (bi1g...bigr)’ for the ¢ x 1 coefficient of LF in b;(L), there exists
a constant Mj > 0 such that > 3% ||bix||k/2 < M; for all i € N;

(iii) vpt is a zero-mean second-order stationary process with positive definite co-
variance I'Y; moreover, E[v;¢|vis] =0 for all i € N and t > s € Z;

(iv) there exists a constant C,, > 0 such that ||[T'}]; < C, for all n € N, and a
constant My > 0 such that 3222 |dix|k'/2 < My for all i € N;

(v) Cov(uj,vis) =0foralli €N, j=1,...,q and t, s € Z;5

(vi) there exists a constant M3 > 0 such that, for all ji, jo, j3, Jj4,

B (g ety ey Uyt U t—ks)| < M,
k1,ko,k3€Z
and a constant M, > 0 such that, for all iy, 9, i3, i4,
E |E(U’i1tvi2,t—k1Uig,t—kzvi4,t—k3)| S M47
k1,k2,k3s€Z

(vit) for all i € N and j = 1,...,q, bij(z) = > 72 bijkzk, z € C, has square-
summable coefficients and is the ratio ~;;(2)/d;;(2) of two finite-order polyno-

mials in z, v;;(2) = Zilo Yijkz® and 8;;(z) = Zg‘io 8ijk2" with roots outside

5This implies that the common and idiosyncratic processes are mutually uncorrelated at all leads

and lags.
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the closed unit disk only, d;;(0) = 1, and no common roots; the orders S,
and Sj, moreover, are independent of 4.7
Assumption GDFM (74i) is the typical assumption of martingale difference innova-
tions used in the GARCH literature. Assumption (vii) entails the existence of a VAR
filtering of X,, satisfying the assumptions of the static factor model where the com-
mon shocks u; are loaded contemporaneously (see (4) below).

These assumptions also guarantee the existence of the spectral density matri-
ces BX(0), T5(0), and TX(0) = TX(0) + =5(0), 6 € [—m, 7], of Xn, &n, and X,,,
respectively. Denoting by )\zj(ﬁ), /\ij(G) and )\ffj(ﬁ) be the jth eigenvalues (in de-
creasing order of magnitude) of XX(0), 35(6) and 3X(6), respectively, let them

satisfy the following assumption.

Assumption (GDFM) (viii) There exist an integer n > 0 and continuous func-
tions a; and B;_1 from [—m, 7] to R, j =1,...,¢, independent of n and such

that, for all j =1,...,q, and all n > n,
0 < pBi-1(8) < () < )\zj(ﬁ)/n < Bj(0) < oo, b-ae. in [—m, 7],

while A} 1 ;(#) and )\fﬂ(O) are bounded, uniformly in 6 € [—7, 7], as n — oo.

Hence, as n — 0o, the ¢ common dynamic eigenvalues are exploding linearly (the
assumption of factor pervasiveness), while all idiosyncratic eigenvalues are bounded
(this is the definition of idiosyncrasy).

The main theoretical result behind the one-sided approach of Forni et al. (2015)
is the generic existence® of a block-diagonal VAR filtering of the observations turn-
ing the GDFM representation (1) into a static one. More precisely, Forni and Lippi
(2011) and Forni et al. (2015) show that, for generic values of the coefficients ;i
and d;j;, (i.e., except for a subset with Lebesgue measure zero in the (g+1)(Sy + Ss)-
dimensional space of the relevant ~;;; and d;j; coefficients), any (¢ + 1)-dimensional
vector xil'“iq“ = (Xiyty - - ,Xiq+1t)/ with iy < ... < ig41 admits a VAR repre-

sentation of the form A(L)-iat1y ittt — Rit-iatiy, 9 where A(L)%-is+1 has

"As a consequence, the common components have rational spectral densities; see Assump-

tion (L2) in Barigozzi and Hallin (2020) for more details.
8This goes back to results on reduced rank processes: see, e.g., Anderson and Deistler (2008).
9See Assumption (L4) in Barigozzi and Hallin (2018) for more details about this VAR represen-

tation.



148

149

1

o

0

151

1

o1

2

153

154

1

o1

5

156

1

o1

7

158

1

o

9

1

o

0

1

o

2

163

164

degree S < ¢S, + ¢*Ss and the (¢ + 1) x ¢ matrix Ri1+ia+1 ig of rank ¢. It follows

that generically, for any n = m(q + 1), partitioning xnt = (x1t, - - -

9 Xnt)

" into m

subvectors of dimension (¢ + 1), xn: admits a block-VAR representation of the form

Al(L)

0
An(L)Xnt —

0

Hence, for X,y = (X4, ...

0o ...
A%(L) ... 0
0 ... A™(L)

, Xnt)', we have

Xnt =

Rl
R2

Rm

An(L)Xnt = An(L)Xnt + An(L)gnt =Ryu; + €Ent,

Ui,

te

teZ. (4)

Z

()

with R,, = [Rl’ RY ... Rm’]/ and €,; = A, (L)&y, where it can be shown that

the process € := {(e1¢ €2¢...)', t € Z} is still idiosyncratic. In other words, using

obvious notation

0 . 0
A*(L)
0 A™(L)

and R :=

Rl
R2

Rm

the filtered process Y, := A(L)X; admits a static factor model representation

Yt = Rllt + €¢,

teZ

(7)

with ¢-dimensional factor space spanned by u;. While R and u; are not individually

identified, the product Ruy is.

The static representation (7), under assumptions (i)-(viii), holds generically.

Assuming that it holds for the panel under study this is a very mild requirement;

we nevertheless need to make it an assumption:

Assumption (GDFM)(iz) For all n* > ¢ + 1, letting n = [n*/(¢+ 1)](¢ + 1),
there exist block-diagonal filters A, (L) and n x ¢ matrices R,, such that (5)

holds, irrespective of the cross-sectional ordering.
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Assumptions (GDFM) (i)-(iz) are the main assumptions in Barigozzi and Hallin
(2020); on top of these, they also require two less important and more technical
ones on the regularity of the VAR operators A™(L) (Assumptions (L4) and (L5),
respectively), which we do not reproduce here. Under those assumptions, Barigozzi
and Hallin (2020) show that a consistent reconstruction, based on Xy, X;_1, ..., of
the unobserved x; and &; is possible. It follows that x; and & are F;-measurable,
where F; denotes the o-field generated by X, X;_1, ... It is worth noting that,
reinforcing the same assumptions (e.g., assuming that u; and v, are jointly i.i.d.,
which rules out GARCH-type behaviors), Forni et al. (2017) derive estimators for
(1)-(2) and provide a complete asymptotic analysis for the same. On the other hand,
Barigozzi and Hallin (2020) do not require i.i.d.-ness and, under assumptions that
include (i)-(iz), provide consistency and consistency rates for the Forni et al. (2017)
estimators.

If, however, Var(X,:|Fpn;t—1) is to be estimated at time (¢ — 1), assumptions
have to be made on the dynamics of Var(u|F ) and Var(&,|Fn;—1). As in Alessi
et al. (2009) and Aramonte et al. (2013), we therefore assume that the conditional
covariance matrices of the common shocks can be modelled as some ¢-dimensional
MGARCH process. Since q is typically small, this approach escapes the curse of di-
mensionality. As for the idiosyncratic conditional covariance matrix Var(&p¢|Fn.t—1),
since idiosyncratic cross-correlations are non-pervasive (mild enough that idiosyn-
cratic dynamic eigenvalues remain bounded), it can be approximated by a diagonal
matrix where each diagonal element (each marginal conditional variance) is modelled
by a univariate GARCH-type model—in the sequel, we use GARCH(1,1) models.!°
In both cases, the MGARCH and the n GARCH(1,1) models are estimated by Gaus-
sian quasi-maximum likelihood (QMLE). We refer to the monograph by Francq and
Zakoian (2019) for sufficient QMLE consistency conditions; note, however, that those
QMLES, here, will be computed from the Forni et al. (2017) estimated shocks u,
and estimated idiosyncratic components éit.

More precisely, we assume the following.

Assumption (GARCH). The common shocks u; and the idiosyncratic compo-

10From a numerical perspective, this diagonal approximation of idiosyncratic covariances can be

seen as a simple regularization device.
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106 nents §;; are stable by aggregation MGARCH (with parameter 8 € ©,) and

107 univariate AR-GARCH (with parameters ¢; € ©1, i € N) stationary processes,
108 respectively; they are conditionally (on Fp—1) uncorrelated at all leads and
199 lags; the parameter spaces ®, and ©®; are compact; the densities of u; and
200 the idiosyncratic shocks v;; and the parameters 8 € ®, and 9; € O jointly
201 satisfy the conditions for consistent QMLE.

202 The assumption that the MGARCH model generating the common shocks is stable
203 by aggregation is motivated by the fact that u; is not fully identified (see the remark
24 after (7)): under Assumption (GARCH), any linear transform Ru, is driven by an
200 MGARCH model of the same type as u; itself. Examples of stable by aggregation
206  MGARCH models are the full VECH (Bollerslev et al., 1988) and full BEKK (En-
207 gle and Kroner, 1995) models, which moreover can be consistently estimated via
208 QMLE methods; see Comte and Lieberman (2003), Hafner and Preminger (2009),
200 and Theorems 10.2 and 10.4 in Francq and Zakoian (2019).

210 As mentioned before, the idiosyncratic conditional covariance matrix Var(&,| Fpnt—1)
2 is approximated by a diagonal matrix where each diagonal element (each marginal
212 conditional variance) is modelled by a univariate GARCH-type model. That approx-
213 imation, which is justified by the boundedness of idiosyncratic dynamic eigenvalues,
214 is on line with the factor model paradigm, where cross-correlations are essentially
215 accounted for by the common shocks, and the idiosyncratic contribution are negli-
216 gible. Rather than making the comfortable but unrealistic assumption of mutually
217 orthogonal idiosyncratics, in Section 3.2, we will use the notation Var*(&,:|Fn.—1)
28 and Var*(X,:|Fp;—1) for the approximate conditional covariance matrices of &

20 and X,; resulting from neglecting that off-diagonal idiosyncratic contribution.

» 3 Predicting covariance matrices

21 In this section, we propose an estimator, based on past observations up to time T,
222 of the covariance matrix of X,, 741 conditional on X,,7,X,, 7_1,.... More precisely,
23 denoting by V;ft(fl the covariance matrix Var(Xm‘}'n;t_l) of X,,; conditional on
24 the o-field Fj4—1 generated by {X;s|i = 1,...,n;s <t — 1}, we are interested in
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estimating the n X n matrix V or some ng X ng submatrix V thereo

+1|T +1|T

from the observed n x T panel.'?
Section 3.1 provides a theoretical expression for V;‘ ) =Var( m‘fm 1); Sec-
tion 3.2 describes the estimation procedure; Section 3.3 establishes the consistency

properties of the estimator.

3.1 The conditional covariance matrix

We start with a theoretical decomposition of the conditional covariance matrix tffnl

of X,,; in terms of the elements of the static representation (7). Similar to V
the notation V+1\T’ VT—',-I\T’ VT+1|T, V+1|T,
for Var(Ym‘}'n;t_l , Var( Xnt‘]:n;t—l Var(&nt|Fni—1), etc. Note, however, that
the ¢ X g covariance Var(ut‘]:n;t_l) of u; conditional on F,.;_1, in view of Assump-
tion (GARCH), reduces to Var(ut‘]:

values of Xxpn¢, which in turn, for n large enough, coincides with the o-field F*

+1\T’
is used in an obvious fashion

1), where FX nit—1 is generated by the past

generated by u;’s own past. That o-field no longer involves n—justifying the nota-
tion V|t | or V|t (g, up g, ).

All those conditional covariances can be interpreted as (oracle) predictors, based
on observations up to time ¢ — 1, of the corresponding stochastic covariance the

nonobservable realization of which is to take place at time t.

Proposition 1. Let Assumption (GDFM) (i)-(iz) hold. Then, the covariance ma-

trix V;|t 1 of Xt conditional on Fp.—1 decomposes into

\ s

i = RV Ry, + V;t|t 1 (8)

Proof. From (7), we have that

Var(Ynt]fmt_l) = Var(Rnut + Ent|fn;t—1)
= R, Var(w|F,—1)R,, + Var(ent| Fri—1) + Cov(Ryuy, €nt]| Frii—1)
+COV(€mg, Rnut\]:n;t_l), teZ. (9)

1YWithout loss of generality, we always consider the ng X ng left upper corner.
2Gince the (random) covariance matrix to be estimated is associated with time T + 1 while

observations are limited to time T, this estimator also will be called a predictor, although the

estimand is never to be observed, which makes this association with time T'+1 somewhat immaterial.

10
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Without loss of generality we can assume that all VAR filters A¥(L) in (5) are of

the form AF(L) = I,41 — QFL — - — @ELS (with ¢ # 0 for at least one k).

Consequently, A, (L) can be written as A, (L) =1 — &L —--- — ®gL°. Then, it is

easy to check that

Var(€nt| Fpi—1) = Var(Ay(L)é&ne|Fny—1) = Var ([I— @1L — -+ — QSLS} Ent| Frst—1)
= Var(sm‘]:n;tfl)a (10)

since &, t—k 18 Fp;—1-measurable for k > 1.

Similarly, we have
Var(Ym|.7-"n;t,1) = Var(An(L)XmLFn;tfl) = Var(Xm]}"n;t,l). (11)

Moreover, since u; and §,,; are conditionally uncorrelated, both Cov(Ry,uy, €,¢| Frit—1)

and Cov(€nt, Rpyue|Fpe—1) in (9) equal zero. Hence,

Cov(Ryuy, €4t Frii—1) = Cov(Rpuy, Ay (L)€ni| Frsi—1) = RyCov(uy, Ay (L)&nt| Fryi—1)-

Now,
Cov(ug, An(L)€nt| Fr—1) = Cov(uy, [I — ®1L — ... — ®gL] &t Frse—1)
- E(ut [ént - 1£n,t—1 e T q)Sgn,th]/ |Jrn;t—1)
- E(ut‘fn;t—l)E([gnt - q’lEt—l e T <I’SSn,t—S]/ ’fn;t—l)

= E(w& | Frie—1) — E(g| Frt—1)E(& | Frst—1)
— [E(u&), ;1@ Frie—1) — E(we| Fry—1)E(E, 1 @ Frse—1)]
0
— o= [E(wén s P Fre—1) — B(ue| Frst—1)E(&r - g Pl Frst—1)]

~~

0
= E(w&p| Frst—1) — B(we|Fri—1)E(&i | Frst—1) = Cov(ug, €nt| Fre—1) = 0.
It then follows from (8)-(11), along with the fact that Cov(ent, Ryug|Fpii—1) = 0,
that

Var(Xnt]fn;t_l) = Var(Ynt]]:n;t_l) = RnVar(ut]}"n;t_l)R;I + Var(Ent]]:n;t_l)
with Var(u|Fp—1) = Vtﬁ,l, as was to be proved. O

The same decomposition (8) applies to the regularized covariances resulting from
neglecting idiosyncratic cross-covariances; to avoid overloading notation any further,

we do not, however, introduce any formal symbol for the latter.

11
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3.2 Estimation

We start with estimating the GDFM decomposition of the observed n x T' panel.

e Step 1. Determine the number g of common shocks, for instance via the

Hallin and Liska (2007) criterion.
Step 2. Randomly reorder the n observed series.

Step 3. Compute a consistent!'3 estimator

~ 1 4 k\ =~
X = —1k0 o X
¥or(0) = o E e K (BT> r;

of the n x n spectral density matrix of the X;’s, where K(-) is a kernel func-
tion, M7 a truncation parameter, By the bandwidth, and fi( the sample lag-k

cross-covariance matrix computed from the observed n x T panel of X; values.

Step 4. Collecting the normalized column eigenvectors associated with ifT(H) 'sq
largest eigenvalues into the n x ¢ matrix 1375%(0) (with complex conjugate 1375%*)
and the corresponding eigenvalues into the g x ¢ diagonal matrix KnXT(Hh), com-
pute

SX(0) = PR(O)AYH(0) P (0)

as an estimator of the spectral density matrix of .

Step 5. Let n* := m(q+1) with m := hi—l—‘ Dropping the last n—m(q+1)

series, denote by izT(G) the n* x n* spectral density matrix corresponding

to the remaining n* series'.

Step 6. By inverse Fourier transform of EZ*T(H), compute the estimated

autocovariance matrices IA‘;; of the m (q + 1)-dimensional sub-vectors

Xf = (X(k—1)(q+1)+1,t . '-Xk(q—i-l),t)/v k=1,..,m.

3Consistency requires conditions on K, Mr and Br, for which again we refer to Barigozzi and

Hallin (2020).
MFor the sake of simplicity we keep the same notation for the n* reordered observed series.

12
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Then, from the latter, obtain, via Akaike order identification and Yule-Walker
equations, estimators Ak(L) of the m VAR filters A¥(L); stacking them into
a block-diagonal matrix An(L), compute the estimates ?nt = An(L)Xnt.

e Step 7. Obtain the estimates mt of R,u; by computing the first ¢ stan-
dard principal components of ?nt; inverting!® the block-diagonal filters An(L)
and then using appropriate identification constraints, we obtain the identified
quantities f{n and Uy, and the corresponding estimates of the impulse-response
function B, = [A,(L)]"'R,.

Following Forni et al. (2017) we adopt a Cholesky identification scheme to obtain
the identification of R, and u (see Section 4.1 of Forni et al. (2017) for more
details)—other choices are possible, though.

Steps 1-7 are those described in Forni et al. (2015, 2017) and Barigozzi and
Hallin (2020), where we refer to for details. The resulting estimator X, however,
depends on the ordering of the panel obtained at Step 2: that ordering indeed
determines which elements of £X,.(6) are kept in 3%, .(6) and belong to the diagonal
blocks of f]ﬁ*T(O). Forni et al. (2017) and Barigozzi and Hallin (2020) explain how
to deal with this by iterating Steps 2-7 (going back to Step 2, choosing a new
random permutation, hence a new n*-dimensional subpanel, etc.) until numerical
stabilization of the averaged (over the permutations) X,: values; this typically takes

place after few iterations'S.

e Step 8. Iterate Steps 2 through 7; average (after obvious reordering of the
cross-section) the resulting estimates f{n, u;, and ﬁn Denote, for the sake
of simplicity, the final estimates also as ﬁn, u;, and ]§n. Let Xpnt = ﬁnﬁt
and &, = Xt — Xnt-

All these estimators actually are sequences indexed by (n,7"). Whenever this

= (n,T) ﬁgn,T)’ A(nT E(nT)

is to be emphasized, the notation R, , and, for ng-dimen-

sional (ng < n) subvectors, R , €n0t etc. will be adopted.

®The inverse of A, (L) being the block-diagonal filter with (¢ + 1) x (¢ + 1) diagonal

~k
blocks [A"(L)]™* where ¢ is small, this inversion is easily performed.
16 Averaging, of course, is performed after rearrangement of the cross-sectional items in the original

ordering.

13
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The procedure described so far is the one that has been used in Della Marra
(2017), Forni et al. (2018), and Giovannelli et al. (2018) in their forecasting of
inflation and financial returns. In order to go one step further and estimate con-
ditional covariance matrices, we will exploit the MGARCH and GARCH features
of Assumption (GARCH). Note that, thanks to the assumption of stability under
aggregation, the choice of identification constraints has no impact on the validity of
Assumption (GARCH), so that VECH or BEKK QMLESs safely can be computed
from the ﬁgn’T)’s and égt"’T)’s obtained in Step 8.

We now proceed with the following final steps. For given 8, the variance of w,
conditional on F;_; (equivalently, F}* ;) is a function V;E_l;e of us_1,us_o,... which,
due to stationarity, does not depend on t. Denote by Vt“'ﬂ ;g(vl, ..., V) its evaluation

at (vi,...,v-,0,0,...): then,

t\lifl;e = Tliglo ‘/;f}lﬂ;e(ut—la s ut—T) (12)
a.s. for any @ and t. The notation Vt%—l;ﬁi and Vt&% .9, (V1,-..,vr) is used in an
obvious similar way for each variable &;;, with
&i R &i
Vii—v, = 1 Vi (155 &ip—r) (13)

a.s. for any ¥, i, and ¢. Now, since € is unknown, denote by (1) its QMLE;
more precisely, denote by 6(r) the mapping from (vr,...,vi) € R to the max-
imizer 6p)(vr,...,v1) € O, of the MGARCH likelihood computed at vr,...,vi.

The notation 9;,(7) is used in an obvious similar way for each (§, ..., &1).

e Step 9a. Run, over the g-dimensional T-uple ﬁgn’T), . .,ﬁ(T"’T), a QML es-
timation procedure for the parameter 6 of the MGARCH model of Assump-
tion (GARCH); this yields an estimator

A(n, T ~(n,T ~(n,T
OET) );: G(T)(ugp ),...,ug ))

of 8. Choose a finite lag 7 < T and let!”

A“;(an) R u /\(TL,T) A(an)
Vriim = To1m:6mT) Uy, apy). (14)
7‘|7 (T)

7 The subscript (r) indicates that G(OTL’)T% as a QMLE, is defined over T values of the g-dimensional
space of common shocks, that is, is mapping (vr,...,v1) € R to OA((;‘)T)(VT, ..., V1) € Og; the”
and the ™) superscript are the indication that this QMLE é(T)(vT, ...,Vv1) is to be computed

_ (30, T) =(n,T)
at (vp,...,vi)=(up 7,4y ).

14
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e Step 9b. Similarly run, over each of the n univariate T-uples égl ’T), e A};’T) ,
a QML estimation procedure for the parameters 9;, 7 = 1,...,n of the univari-
ate idiosyncratic AR-GARCH models of Assumption (GARCH); this yields n
estimators

q(n,T)  _ £(n,T) £(n,T)
19z‘;72T) = i1 (fi; v &)
i 5 »T 7 A 7T A 7T
Let Vé_ﬁ{% ) = V;+1f|51§(~-72¥;) (gz(; )7 cee v§§9_1—+1) and, for ng < n, denote by
&n ;(n7T) I I Aélv( 1T) 5én, ;(TL,T)
VT+01,?| = diag (VT+17,Z?| ey VT+01,ﬂ ) (15)

the ng x ng diagonal matrix of the predicted (regularized) conditional variances

of the idiosyncratic variables &1 741, ..., &ny,7+1-

The diagonal matrix (15), however, is neglecting the possible idiosyncratic cross-
covariances, which, as explained at the end of Section 2, are mild (non-pervasive)
but not nil. As a consequence, (15) yields a predictor of Var*(&:|Fn.t—1) rather
than Var(&¢|Fpn;t—1). Similarly, (16) below is the predictor of Var*(X:|Fpn.t—1).

e Step 9c. Compute our predictor of the ng x ng conditional covariance matrix

of (X17T+1, . 7XnO,T+1) (no S n) as
5 Xng;(n,T) ST Su;(n,T)g (T €y (n,T)
Vritn w = Ry VT+(1,ﬂ )Rno +Vria (16)

3.3 Consistency

Consistency, as well as any other asymptotic property, consists in embedding the
actual finite-sample model into a sequence of models indexed by n and T going to
infinity. This, however, can be achieved in several ways. Here, we let ng denote
the (fixed) dimension of the covariance matrix to be predicted and 7j the point in
time where one-step ahead prediction is to be made, while n and T are indexing
the sequence of fictitious “future” panels along which asymptotic statements are to
be made. As already explained, we are neglecting idiosyncratic cross-covariances;
to avoid introducing heavier notation, from now on, we are writing V:,?OC —7—01\T0 for the
resulting conditional covariance matrix Var*(Xy,, 1,+1 ‘fn;TO). With that notation,

15
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we are interested in estimating V and the estimator (16) we are proposing

+1|T
takes the form

5 X (no, T ’\(an)’\u;n,T 5 (no,To)/ Eng i (no, T
Vi g oot = Ry VR R o), (16")

That estimator is to be considered as an element of the (n,T')-indexed sequence

AXn ;(H,T) A(n’T)All; n,T A( ) £n ,( )
Vo =Ry VTOL#R + Vst nzne, T2 T

based (see (14) and (15)) on the QMLE mappings 67, and 9y, i = 1,...,n9

involving the Ty arguments ﬁ%ﬁ’T), o 7ﬁgn,T)

and éi(;(;T), e ,éz(? ’T), respectively.
The following proposition establishes the consistency properties of (16') as n

and T tend to infinity (ng and Ty large enough but fixed).

Proposition 2. Let Assumptions (GDFM) (i)-(ix) and (GARCH), and Assump-
tions (K), (T), (L4), and (L5) in Barigozzi and Hallin (2020) hold. Then, for
any no € N, any 0 € O, and 91,...,9,, in O, any € > 0 and n > 0, there ex-
ist T"(no, 0,1, ..., 9y:€,m) and T (no, 0,Y1,...,9:€,n) and, for any Ty > T,
n*(no,0,91,...,9,,;To;€,m), and T*(ng, 0,1, ..., 9; To;€,n) such that

nov n T
[H To+1,7) VT0+1|T

H > e} <n (17)
forallng e N, 7 > 7%, Ty >T5, n>n*, and T > T™.
A stronger form of (17), allowing Ty = T, would be

Xn0 (n,T) ‘/,Xn0
Vet T+1|T

IZE]STI,

for all ng € N, 7 > 7*, n > n*, and T" > T*; this holds true if the values n* = ng
and T* = Ty are admissible in Proposition 2; establishing this latter fact, how-
ever, would require sharper (namely, sharper than the Barigozzi and Hallin (2020)

bound (23) below) results on the magnitude of the differences Hﬁgn’T)

— lltH .
The proof of Proposition 2 relies on two lemmas establishing the consistency

u;(n,T) s T) - _ :
of VTJrl = and VTJrlj , 1 =1,...,n9, respectively.
Lemma 1. Under the assumptions of Proposition 2, for any 0 € @4, any €1 > 0, and
any m > 0, there exist 71 (ey,m1,0) and Tg(el, n1;0) and, for any 91,...,9,, in O

16
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and Ty > TJ, there exist n' (€1, m1; To; 0,91, ..., 00,) and TT(e1,m1;To; 0,91, ..., 90,)
such that

u;(n,T") u
[Hvoﬂj Viern|| 2 61] =m (18)
for all T > TT, Ty > TO, n > nT, and T > TT.
Lemma 2. Under the assumptions of Proposition 2, for anyng € N, any ¥4, ..., 9y,

in ©1, any e > 0, and any ne > 0, there ewist 71(62,772;710;'191,...,’19”0)
and Toj;(@,ng;no;ﬁl,...,ﬂno) and, for any 8 € O, and Ty > Toi, there exist
n*(e2, 2310, To; 0,91, . . ., Ony) and TH(eg,m2;n0,T0; 0,91, ..., 9,) such that

&i;(n,T) &
max P[[TE0D - vE

262i|§7’2 /L.:]-u"'ano (19)

for all T > Ti, To zTg’, n > ni, and T > T,

These two lemmas rely on a repeated application of the following elementary

result.

Lemma 3. Let € = €5, + ¢, and n = ng + mp with €4, €, Na, and ny strictly posi-
tive. Denote by a and b two d-dimensional random vectors with unspecified joint

distribution such that P[||al| > €4] < ng and P[||b|| > €] < np. Then,
Pllla+ bl =€ <n.

Proof of Lemma 1. Considering the difference

VT:(I)+1|T0 - ﬁﬁﬁ?
=Vrys1yr, (W0 UTo-1, ) VYl’(l)JrlT 10r) (@5 ,ﬁi"’“)(ﬁ%j)v“-vﬁ%’—Tf)ﬂ)a
decompose it into
Vi ey (01011~ Vi ()
+V7:;+1,ﬂ;0(uTO’ cy Uy 1) = V'Z%Jrl,ﬂ;e(TO)(uTO,...,ul)(uTO’ c UTy—r41)
+V3;:J+1ﬂ%9<To>(uTov-~vu1)(uTO’ s W) V7%+1,ﬂ;B(To)(ﬁ(T:L)’T)v---,ﬁﬁn’T))(ug% Yo 7ﬁ%72+1)

::El + E2 + E37 say.
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The conditions for stationarity in Assumption (GARCH) imply that, uniformly

in ¢, (12) and (13) hold in probability as 7 — oo. Hence, for all ¢, > 0, n; > 0,

and 8 € O, there exists a 71 such that, for all 7 > 71, all Ty, and, since ®, is
compact, all @ € ©,

PlE:1]| = e1/3] <m/3. (20)

QMLE consistency, on the other hand, implies that, for all 8 € ©,, ¢ > 0,
and 7, > 0, there exists a TOT such that, for all Ty > TOT ,

P[HO(TQ)(uTm"'?ul)_OH ZE] §n1/3. (21)

Continuity over a compact implies uniform continuity. Hence, continuity
of 0 — VTI(J) 1170 entails uniform continuity over ®, and the existence of ¢ > 0
such that HG(TO)(U-Toa ...,u1) — 6] < e implies || Es|| < /3 for all @ € ©,. It follows
that, for all 8 € ®, and Tp > T(;r,

Pl Bzl > e /3] <m/3. (22)
Finally, ﬁﬁ"’T) is uniformly consistent for u;: Proposition 1 of Barigozzi and
Hallin (2020)) entails
G T _ )| = Br 1 1
o |67~ w]| = Op (max ( o )T (23)

meaning that, for alle > 0 and ; > 0, any 0, and (94, ..., Yy,, ), there exists (n°, T°)
such that

~(nT) H> <
P s [ ] =] < s 2

for all n > n® and T' > T°. Now, for given Tj, the mapping
(VTO7 e ,Vl) — Vj::)“rlvﬂ;e(TO)(VToa---vvl)(VTO’ s 7VT0*T+1) (25)

is continuous, hence uniformly continuous, over any compact subset C, of R470
such that P [(ug,...,u1) € Cy] > 1 —n1/3. The continuous mapping theorem thus
guarantees the existence, for any Ty, any 6 and (91, ...,Y,,), any €, > 0 and 71 > 0,
of nT and T such that, for n > nt and T > TT,

Pl|Es[| > e /3] <m/3. (26)
The desired result follows from (20), (22), (26), and Lemma 3 applied to Fs+ E3,

then to Ey + (Eq + E3). L]
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Proof of Lemma 2. The proof, for each 1 < i < ng, hence for a finite collection of ng
of them, goes along the same lines as for Lemma 1, with a univariate AR-GARCH
instead of a ¢g-dimensional MGARCH. O

Proof of Lemma 3. Basic probabilistic operations yield

Mo+ 1 > Plllall > ea] + P[[[b]| > ]
> Plllal| = e, or [[b]| = ] = Pllla+b|| = €a + € = €]. O

Proof of Proposition 2. The result follows from Lemmas 1 and 2, the consistency,
= 7T . . .
as n,T — oo, of RE:; ) as an estimator of R,,,, and an application of Slutsky’s

Lemma. O

4 Finite-sample performances

In practice, VECH and BEKK QMLEs, however, are reported to be numerically
quite unstable, and typically strongly depend on the initial values considered in
the numerical solution of the likelihood equations. This is a well-documented fact;
see, for instance, Lien et al. (2002) and Manabu (2015). Rather than VECH or
BEKK, we therefore compute DCC QMLEs which are known to be quite robust to
missespecification; see Chang et al. (2011), Chevallier (2012), Laurent et al. (2012),
Amendola and Candila (2017), or de Almeida et al. (2018). Our Monte Carlo ex-
periments confirm that, even though the actual data-generating process is BEKK,
misspecified DCC QMLEs outperform the correctly specified full BEKK ones.

4.1 Monte Carlo experiments

In this section, we investigate the finite-sample performance of the proposed proce-
dure through Monte Carlo simulations.

Simulations were performed from three data-generating processes (DGPs). The
first DGP is a static factor model with two common factors, the second and third
ones are dynamic factor models with finite- and infinite-dimensional factor spaces,
respectively. The common shocks and the idiosyncratic components in all four DGPs

are conditionally heteroscedastic.
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In all DGPs, the idiosyncratic components are defined as & := (&it,...,&nt)
with & = Ptl/ 2@, where P, is an n X n diagonal matrix containing the conditional
variances Py of &5 ¢ = (City---,Cnt), where (i, @ = 1,...,n, t = 1,2,...,T are
sequences of i.i.d. innovations generated either from a standard N(0,1) or a cen-
tered and standardized Student ¢5 distribution. The conditional variances P;; follow

GARCH(1,1) processes with parameters ¥; = (w;, a;, 5;), of the form
Py =w+ &+ BiPyq, i=1,..,n,

where w; > 0, a; > 0, 5; > 0, and o; + B; < 1; the parameters values «;
and f; are independently generated from uniform distributions over [0.01, 0.045]
and [0.85, 0.95], respectively, and w; := 1 — a; — f3;, so that the unconditional vari-
ance of &; is V(&) = 1. As for the shocks u; driving the common components x;,
they were generated from the following four DGPs.

DGP1 (two common shocks; static loadings). Two common shocks u; = (uyy, ugt)’,
generated from a BEKK(1,1,1) model

w=Q? ( e ) with Q, = C)Co + C\u_1u, | C; + C4Q, ,Cs.  (27)
2t

Here, i, i = 1,2, are i.i.d. innovations generated by a N(0,1) or a centered and stan-
dardized Student ¢5 distribution. In order to guarantee E(Q,) = E(u;—ju;_;) = I,
we set CjCy = I, — C[Cy — C,C,. Parameters of the BEKK are extracted from
uniform distributions with ranges as in Alessi et al. (2009): C; has diagonal ele-
ments uniformly distributed over [0.1,0.5] and off-diagonal elements uniformly dis-
tributed over [-0.2,0.2], while the diagonal elements of Cy and the off-diagonal ones
are uniformly distributed over [0.8,0.95] and [-0.15,0.15], respectively (all uniforms
mutually independent). For each randomly generated set of parameters, the covari-
ance stationary of the resulting BEKK model has been checked before proceeding.
Here, x; = Ru; where R is an n X 2 matrix with orthonormal columns randomly
generated via the RandOrthMat Matlab function.

DGP2 (four factors driven by ¢ = 2 common shocks; static loadings). Four
factors ¥y = (Fyy,. .., Fy)' driven by ¢ = 2 common shocks uy, yielding a GDFM

with finite-dimensional factor space. The shocks are generated from the same BEKK
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model as in DGP2 and the factors are a u;-driven VAR(4)
1/2
Ft = ‘PFt_l + Kut and uy = Qt U

with Q, as in (27) and 7 generated as in DGP2 (® is 4 x 4 and K is 4 x 2).
The entries of A and K are independent and uniformly distributed over [—1,1].
The entries of ® are generated as follows: first we generate independent entries
uniformly distributed over the interval[-1,1]; second, we divide the resulting matrix
by its spectral norm; third, we multiply the resulting matrix by a random variable
uniformly distributed on the interval [0.4,0.9] to ensure stationarity while preserving

sizeable dynamic responses'®

. Here, xy = Au;, where A is an n X 4 matrix with
independent entries uniformly distributed over [—1, 1].

DGP3 (two common shocks; dynamic loadings). The common shocks u; = (u1¢, uat)’
are generated from the same bivariate BEKK model as in (27); the model is a GDFM

with infinite-dimensional factor space. Here,

Xit = ( ainll = a“)_l ) uy,
aia(l — aip) ™"
where a;; and 45, i = 1,...,n, j = 1,2 are independent and uniformly distributed
over the intervals [-1,1] and [-0.8,0.8], respectively.

For each DGP, we simulated 500 replications of a panel of dimensions n=60
and T=1000 (moderate dimension, T' >> n) and 500 replications of a high-dimensional
panel with n=600 and T'=700 (7" ~ n). From each replication, the covariance ma-
trix Vpqpr of Xp1 conditional on Xr, ..., X1 was estimated!? using

(a) classical PCA20 combined with (M)GARCH modelling,
(b) the DCC model with composite likelihood, as described in Pakel et al. (2020),
(c) the Alessi et al. (2009) model, and

(d) our model?!,

'8 This DGP is similar to the one considered by Alessi et al. (2009).
19 As we are not interested in asymptotics here, we set ng =n, To =T, and 7 =T — 1.
20Tn the spirit of Diebold and Nerlove (1989) and Van der Weide (2002), static factors are extracted

via principal component analysis; an (M)GARCH model then is fitted to the extracted factors.

Idiosyncratic components are modelled as independent univariate GARCH processes.
21 Throughout, we considered 30 cross-sectional permutations and set the order S of the VAR

block-diagonal filters to one.
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labeled as PCA, DCC, ABC, and GDFM-CHF, respectively.?? For simplicity, the
correct numbers of factors (for DGP2) and common shocks (for DGPs 1-3) are as-
sumed to be known, since this does not play a role in the comparative performances
of procedures (a)-(d). For DGP3, no static factor representation exists and any cri-
terion based on static representation is inappropriate. However, the PCA and ABC
methods are based on the surmise that a static factor representation exists. There-
fore, before running the PCA and ABC methods, we first determine a (fictitious)
number of static factors via the Bai and Ng (2002) procedure.?

As mentioned in the previous section, estimation of BEKK models is numerically
quite unstable and strongly depends on the choice of initial values. For the sake
of comparison, for all DGPs we considered both the DCC(1,1) and BEKK(1,1,1)
estimates of the conditional covariance matrix of common shocks in the PCA, ABC
and GDFM-CHF models, with lables such as PCA-BEKK, ABC-DCC, etc.?*

Hereafter, for the sake of simplicity, we denote by Vp 1 the simulated covari-
ance matrix of X7 conditional on X7, ..., X and by VTJFHT its various estimated
versions. In order to compare the performances of those various estimators, we
compute, for each simulated panel and each method, a distance between ‘A/'T 1T

and VT+1|T' Let

VT+1|T = RV&T(UTH’]:n,T)R/ + Var(&r41|Fo,1) for DGP1

Vrir == AKVar(ury1| For)K' A" + Var(§r41| Fo,r) for DGP2,
and

Vi = A Var(w, 71| Fr) A’ + Var(711|Fo 1) for DGP3,

where A is the matrix with elements a; ;,7 =1,..., N, j = 1,2. Following Amendola

22GDFM-CHF stand for General Dynamic Factor Model with Conditionally Heteroscedastic Fac-

tors.
23In practice, the identification procedures by Bai and Ng (2002) or Alessi et al. (2010) in the static

case, by Hallin and Liska (2007) in the GDFM-CHF case, should be used prior to the estimation

procedure in each replication.
24DCC and BEKK estimations were performed by using the MFE toolbox of Kevin K. Sheppard,

freely available at http://www.kevinsheppard.com/MFE_Toolbox.
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w6 and Candila (2017), we consider four distances, Dq,, ..., Dy, of the form
R N
D(Vryyr, Vryyr) = Z Zw<i7j)(02‘,j - 3@13’)27 (28)
i=1 j=i

w7 where o; j and o, ; are the (4, j) entries of Vri1r and VT+1|T, respectively, and the

weights w(i, j) are provided in Table 1.

Table 1: Weights w(i,j), i =1,...,n, j =1,...,n in the distances D1-D4 in (28).

D1 w
D2 w
D3 w(?

Dy w

) =1 for all i and j

)=1 when i=75; 0 otherwise

) =2 when 7;; > h;j; 1 otherwise
) =2

when 0; s < h;;: 1 otherwise
(2% 2,79

468

469 Distance D1, which gives equal weights for the variance and covariances, yields a
a0 “total” unweighted squared Euclidean distance between Vech(‘A/'TJr”T) and Vech(Vrq7);
ann distance D9 is an unweighted squared Euclidean distance between Diag(‘A/'TH‘T)
a2 and Diag(Vyyqr) (hence disregards the covariances)?%; distance D3 penalizes nega-
a3 tive errors, while D4 penalizes the positive ones. It is important to note that, in Dj
azaand Dy, the weights themselves are data-driven, so that, for a given replication,

a7s  different methods lead to different weights.

w6 4.2  Simulation results

a7 The results of the Monte Carlo experiments for moderate and high-dimensional data
a7s  are summarized in Figure 1 and Table 2 and in Figure 2 and Table 3, respectively.
a9 Figures 1 and 2 present the boxplots of the distances defined in (28), in logarithmic
a0 scale, and Tables 2 and 3 report the average distances in logarithmic scale and indi-
ss1  cate the subset of models with best performance obtained using the Model Confident
2 Set (MCS) approach (Hansen et al., 2011) at 10% level.

483 For moderate sample size (Figure 1 and Table 2), the conditional covariance of

s8¢ the common shocks were estimated using both BEKK and DCC-based procedures.

25The classical notation Vech(M) stands for the vector stacking the upper diagonal entries of a

square matrix M, and Diag(M) for the vector of its diagonal elements.
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Table 3: Average distances D1, Do, D3, and D4 (in logarithmic scale)for DGP1 (top
panel), DGP2 (middle panel) and DGP3 (bottom panel) across 500 Monte Carlo

replications using Gaussian innovations (left panel) and Student ¢5 innovations (right
panel). Shadowed cells stand for the MCS at 90%. N = 600, T' = 700.

Gaussian Student t5
Dist. | PCA-DCC  ABC-DCC  GDFM-CHF-DCC | PCA-DCC  ABC-DCC  GDFM-CHF-DCC
- Dy 2.9983 2.9948 2.3326 3.8527 3.8465 3.6217
o Do 1.7752 1.7749 1.7642 3.4126 3.4079 3.4512
8 D3 3.3913 3.3902 2.7233 4.1567 4.1531 3.8953
Dy 3.4159 3.4101 2.7519 4.3449 4.3364 4.1365
~ Dy 9.3117 7.7120 7.7699 9.3860 8.1186 8.1406
o Do 4.6340 3.1794 3.2568 5.0980 4.3034 4.3374
8 D3 9.7148 8.1176 8.1752 9.7856 8.5182 8.5390
Dy 9.7195 8.1174 8.1755 9.7968 8.5292 8.5523
o Dy 8.5597 7.2742 7.1764 8.6601 7.6307 7.5554
A Do 4.7223 3.0885 2.8640 5.0452 4.1039 4.0418
8 D3 8.9581 7.6772 7.5805 9.0551 8.0257 7.9504
Dy 8.9722 7.6821 7.5831 9.0755 8.0456 7.9704

Considering the six DGPs (counting Gaussian and Student ¢ as distinct models) and
four measures of distance, we have a total of 24 comparisons among the models.

The DCC and PCA-DCC models are in the MCS in one case and in two cases,
respectively, while the PCA-BEKK does not appear in the MCS. Comparing the
estimation of common shocks by BEKK and DCC models, in only one case the
BEKK has a slight better performance than DCC in terms of average distance
(Gaussian, DGP3, PCA case). In fact, in the majority of cases, the performance
is far better using DCC-based models than using the BEKK-based ones. Thus, in
Figure 1, we only present the boxplots of the DCC-based models.? In general, DCC
and PCA procedures achieve the worst performance and in the sequel we concentrate
the comparison on the ABC and GDFM-CHF models.

For DGP1, although ABC-DCC and GDFM-CHF-DCC models show similar
performance in Figure 1, the ABC-DCC model is included in the MCS only when
considering the second distance for both Gaussian and Student t5 innovations. For
DGP2, where ABC models are adequate, the boxplots of ABC-DCC and GDFM-

CHF-DCC are very similar. Considering Gaussian innovations, both models belong

26The boxplots of the BEKK-based models present much higher variability than those of the
DCC-based ones, due, probably, to the numerical instability of BEKK QMLEs as commented in

Section 3.2 (figures are available upon request).
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to the MCS, as well as their BEKK-based counterparts. For the DGP2 with Stu-
dent t5 innovations, ABC-BEKK and GDFM-CHF-BEKK are included in the MSC
only for the D3 measure, while GDFM-CHF-DCC is not in the MSC only for the D2
measure. For DGP3, in Figure 1, the GDFM-CHF-DCC model is always performing
better than ABC-DCC, and it is the only procedure in the MCS. Finally, we can
observe that the distances when the innovations are generated by the Student ts
distribution are larger than those with Gaussian innovations. Nevertheless, the con-
clusions in the comparison among the estimated procedures are almost the same for
both distributions.

Due to the high instability of BEKK-based procedures, for the high-dimensional
data, we only report the results of the DCC-based procedures. We also do not report
the results of the DCC model, since it yields the worst performance for n=60 and
becomes computationally very expensive for n=600, even when using the composite
likelihood method. The results are presented in Figure 2 and Table 3. For DGP1,
GDFM-CHF-DCC is among the best procedures in all cases, and in most of them it
performs significantly better than all other procedures according to the MCS test,
while PCA-DCC has the worst performance. For DGP2, ABC-DCC and GDFM-
CHF-DCC are selected as the best procedures when the innovations have Student ¢5
distributions, while for Gaussian innovations ABC-DCC is the only procedure in
the MCS. Finally, for DGP3, GDFM-CHF-DCC is selected as the only procedure in
the MCS, regardless of the distribution of the innovations.

5 An application to dynamic portfolio optimization

In this section, we are applying our (GDFM-CHF-DCC) method in the problem of
dynamic portfolio optimisation.

The dataset we are considering consists in returns X;; from n = 656 stocks
entering the composition of the S&P 500 index, the National Association of Secu-
rities Dealers Automated Quotations (NASDAQ-100), and the NYSE Amex Com-
posite Index (AMEX), on July 27, 2018 and traded from January 2, 2011 through
June 29, 2018 (T=1884). This dataset was obtained from Yahoo Finance using the
R package quantmod by Ryan and Ulrich (2017). Because we only considered stocks
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traded through the whole period, we ended up with n = 656 assets.

A window size of 750 days is used for estimation, which represents a concen-
tration ratio of 656/750 = 0.875; the out-of-sample period was set to 1134 days.
An estimator ‘7}+1|t of Var(X,, ¢++1|Fn+) is computed from the 656 x 750 subpan-
els {X;s|1 <@ <656, t—749 < s <t} fort="750,...,7—1=1883. That estimator
is used in the construction, at time ¢t = 750, ...,1883 (1134 time points), of a one-
step ahead minimal variance portfolio (optimality at time ¢ + 1)—that is, a vector

of weights
~ o~ ~ . . /‘7
Wit = (wl;t+1|t> “ee aw656;t+1\t) = argiinw Vi)W

where minimisation is with respect to all w = (wi,...,wgss) such that w; > 0
and 265? w; = 1 and ‘Aftﬂ‘t is obtained as in Section 3.2 (with ¢ instead of Tp). The

1=

resulting (out-of-sample) portfolio return

656
Tpatt = Y Byt Xipin

i=1
at time ¢ + 1 then is computed from the observation at time ¢ 4 1.

For the sake of comparison, we also include the results for the GDFM-CHF-
BEKK model and compare them with those of (a) the naive equal-weighted portfolio
strategy, denoted here by 1/n, (b) the DCC model with composite likelihood of Pakel
et al. (2020), (c) the RiskMetrics 2006 methodology of Zumbach (2007), (d) the
OGARCH model of Alexander and Chibumba (1996), (e) the ABC-DCC model of
Alessi et al. (2009), (f) the generalized principal volatility components (GPVC) of Li
et al. (2016), and (g) the procedure called PCA4TS proposed by Chang et al. (2018),
which extends the principal component analysis to second-order stationary vector
time series. Those procedures were selected for their feasibility in high-dimensional
data.

The GDFM-CHF method with DCC or BEKK models was implemented with 30
cross-sectional permutations; the order of the VAR block-diagonal models was set
to S = 1. In practice (when one portfolio is to be estimated at a time), information
criteria can be used to determine the order of those VARs. Likewise, following Alessi
et al. (2009), the number of static factors, common shocks, volatility components

(Li et al., 2016) and groups (Chang et al., 2018) were determined once for all.
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The ABC-DCC model (Alessi et al., 2009) was implemented with eight static
factors and three common shocks determined by the criteria of Bai and Ng (2002)
and Hallin and Liska (2007), respectively. The same number of common shocks
was used in the GDFM-CHF models. The GPVC procedure was applied with eight
volatility components determined by the criterion of Bai and Ng (2002), and the
PCAA4TS with 654 groups (two of them with two assets and the remaining ones
with only one asset; the groups were obtained following Chang et al. (2018)). The
OGARCH model was applied as recommended in Becker et al. (2015), that is, with
the number of components equal to the number of series.

Following Gambacciani and Paolella (2017), Engle et al. (2019), Trucios et al.
(2019b), among many others, we use various annualized measures to evaluate out-
of-sample portfolio performance. These measures are defined as follows:

(i) annualized average portfolio (AV)

1883
AV := 2527, = 252 [ > r,,,m]
1134 &

(average of the out-of-sample portfolio returns multiplied by 252);

(11) annualized standard deviation (SD)

| 883 1/2
D:=+v252 | —— — )2

(standard deviation of the out-of-sample portfolio return multiplied by v/252);
(#i) annualized information ratio (IR) IR := AV/SD;
() annualized Sortino’s ratio (SR) SR := AV/ (Sv/252), where
1/2

)

1134

1 1883
S = [ Z min (O,Tp7t+]_ - MAR)2
t="750

and the minimal accepted return (MAR) is set to zero.
The results are reported in Table 4. They reveal that the best performance,

for the SD, IR and SR criteria, is achieved by the GDFM-CHF-DCC model. The
OGARCH model is second best, according to the SD criterion, followed by ABC-
DCC. The GPVC and the OGARCH procedures exhibit the worst performance

according to the AV criterion while DCC achieves the best one under the same
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criterion, followed by ABC-DCC. The worst out-of-sample performance is by the
equal-weight portfolio strategy according to all criteria but the AV one. It is worth
noting the relatively good performance of RM2006, which outperforms GPVC and
PCAA4TS according to all criteria and loses to DCC and OGARCH models only
through the AV and SD criteria, respectively. Finally, note that the results of
GDFM-CHF-BEKK are worse than those of GDFM-CHF-DCC, mainly in terms of
the SD criterion. This is not surprising since, as mentioned previously, the estimation
of the Full BEKK model is hard, unstable and strongly dependent on initial values,
leading to a poor performance (Lien et al., 2002; Laurent et al., 2012; Manabu,
2015; Amendola and Candila, 2017; de Almeida et al., 2018). Taking into account
all criteria, the GDFM-CHF-DCC proposed model exhibits the best performance,
followed by the ABC-DCC model.

In view of our minimum variance objective, the most pertinent performance
measure should be the SD criterion, as stressed also by Ledoit and Wolf (2017) and
Engle et al. (2019). With that criterion, the GDFM-CHF-DCC methodl is achieving
the best performance, followed by the ABC-DCC one.

Table 4: Annualized performance measures: AV, SD, IR, and SR stand for the
annualized average, standard deviation, information ratio, and Sortino’s ratio of the
out-of-sample portfolio returns, respectively. The dataset is formed by 656 stocks
used in the composition of the S&P500, NASDAQ-100 and AMEX indexes and the
window size for estimation is equal to 750 days (concentration ratio n/T equal to
0.875). The out-of-sample period goes from January 2, 2014 to June 29, 2018. A

ranking of the various methods is provided in parenthesis for each criterion.

AV SD IR SR
1/N 5.7708 (4) 11.5067 (9) 0.5015 (9) 0.6834 (9)
DCC 6.8899 (1)  5.9901 (8)  1.1502 (4) 1.6262 (5)
RM2006 56022 (5)  4.5446 (4) 1.2327 (3) 1.7241 (3)
OGARCH 4.9235 (8)  4.4551 (2)  1.1051 (7) 1.5616 (7)
ABC 6.5267 (2)  4.5313 (3)  1.4404 (2) 1.9677 (2)
GPVC 4.5991 (9)  4.5889 (5)  1.0022 (8) 1.4077 (8)
PCAATS 5.3701 (7)  4.7256 (6)  1.1364 (6) 1.6032 (6)
GDFM-CHF 6.2369 (3)  4.0209 (1)  1.5511 (1) 2.2137 (1)
GDFM-CHF-BEKK | 5.5819 (6) 4.8958 (7)  1.1401 (5) 1.6281 (4)
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6 Conclusions

Based on the one-sided procedures of Forni et al. (2015, 2017) and Barigozzi and
Hallin (2020), we propose a forecasting method for the conditional covariance matrix
in high-dimensional time series, which we apply to dynamic portfolio optimization.

A Monte Carlo performance comparison with alternative methods is conducted
over three different DGPs, using the distance measures proposed in Amendola and
Candila (2017). Overall, our method has an excellent performance, and outperforms
all its competitors irrespective of the criterion considered—except, under static fac-
tor model DGPs, for the distance D2 which disregards the covariances.

The superiority of our estimator is also empirically established in the context
of dynamic portfolio optimisation based on a dataset of 656 assets. Our model,
GDFM-CHF-DCC, achieves the best out-of-sample performance according to the
(annualized) standard deviation SD (arguably, the most relevant criterion here),
information ratio (IR) and Sortino’s ratio (SR) criteria, and is third best (after

DCC and ABC-DCC models) with respect to the (annualized) average criterion.
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