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S U M M A R Y

Paper sheets reveal pronounced changes in shape and dimensions upon exposure to variations in
moisture, which comprises digital printing operations. These are observed in the form of curls,
waviness and buckling at the sheet-scale of paper. In digital printing, this undesired behavior is due
to the fact that the moisture is rapidly absorbed in paper and thereafter evaporated within a short
period of time.

These dimensional changes originate from the single fibre level, which affects the fibre network
through the inter-fibre bonds (regions where the fibres overlap). At these bonds, an interaction of the
hygroscopic and mechanical response of the fibres occurs, entailing micro-stresses and associated
sheet-scale deformations. In order to understand this macro-scale behavior of paper, it is essential to
study the complex fibrous network at the micro-scale.

In Chapter 2, a level-set based XFEM approach is used to model the hygro-elastic response
of complex fibrous networks in a two dimensional framework. The fibres are assumed to be com-
pletely bonded in the inter-fibre bonds. The fibre edges are described by the zero level-set of a
higher dimensional function. The level-set method coupled with X-FEM captures the geometrical
description of the fibres adequately with a lower system size, since the discretization is decoupled
from the geometry. Therefore, LS-XFEM formalism is shown to be successful in modeling the
hygo-mechanical response of complex networks of fibres.

During the manufacturing process of paper, when the pulp is dried under restraint, internal stress-
es/strains are developed as explained by the fibre segment activation mechanism. Upon exposure to
a moisture cycle (e.g. during printing), these strains are released at the fibre level which induces
permanent deformations at the macro-scale accompanied by dimensional instabilities. To capture
such phenomena, a rate-independent kinematic hardening plasticity model is developed for the
individual fibres in Chapter 3. The results obtained from the numerical network simulations using
this model illustrate the influence of microstructural properties of the network (e.g. the fraction of
free-standing fibres versus bonded fibres) on the macroscopic irreversible strains.

In addition to printing, the moisture infiltration in paper occurs also via the environment. Un-
der sustained loading over a period of time, creep takes place in paper networks. These macroscopic
deformations observable in paper networks over time are of great interest due to the lack of a suitable
model that explains this behavior. Furthermore, this intrinsic time-dependence is of significant
importance for the service conditions of paper packaging products. In order to understand the effects
of time scales on the dimensional alterations in paper, a rate-dependent plasticity model based on a
power law is adopted in Chapter 4. The model parameters are identified from experimental results
performed on single paper fibres (Jentzen [32] and Sedlachek [64]). Thereafter, network simulations
are performed, which demonstrate the time dependence at the sheet level.

In order to understand the role of the degree of bonding between the fibres in bonded regions
on the sheet-scale response of the network, the assumption in Chapters 2, 3 and 4 of a full kinematic
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constraint between fibres at the bonds is partially relaxed in Chapter 5. In the relaxed bond model,
the fibres in bonds can have independent displacements, whereby the displacement difference is
governed by interfacial stiffness. This is modeled numerically by embedded interfacial elements that
connect the fibres in the bonded regions of network. The computational results reveal the influence
of the kinematic constraints in the bonds at the sheet-level behavior of the network in addition to
the anisotropic response of the network.

With the research undertaken in this thesis, it has been made possible to capture the complex
geometry of paper networks adequately, enabling the prediction of their hygro-expansive response.
A clear understanding has been achieved on the role of various network parameters in determin-
ing the hygro-mechanical behavior of paper. The developed numerical models allowed to gain
insight into the hygro-mechanical response of paper fibres and can be further developed to model
macro-level properties of paper.
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1
I N T R O D U C T I O N

This chapter provides a highlight of previous work in the literature on the modeling of the hygro-
scopic response of paper fibres and networks. Limitations of existing work are assessed, providing
the motivation for the approach adopted here. This is followed by an outline of the objectives of the
thesis. In the final section, the structure of the thesis is presented.
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2 I N T RO D U C T I O N

1.1 M OT I VAT I O N

At a microscopic level, paper consists of fibres produced from wood pulp. Because of the papermak-
ing process, these fibres have a preferential orientation called the machine direction, [56]. When
they are subjected to a change in moisture content e.g. in printing operations, swelling of these
fibres occurs which translates in macroscopic expansion which in turn may give rise to curl and
buckling. Such dimensional stability issues are to be avoided in industrial applications.

Since this behavior originates at the fibre level, it becomes essential to understand the swelling
phenomena of the complex fibrous network at the micro-scale and to assess its influence on the
macroscopic response of the network. Some earlier works were devoted to the modeling of fibrous
networks, mostly addressing the mechanical response only [12, 36, 63, 66, 67]. There were certain
works [9, 36, 72] that involved the modeling of the hygro-expansivity and determining the dimen-
sional stability of paper. They modeled the network using the regular FEM approaches in 2D as
well as 3D, thereby becoming computationally expensive. Also, they were not concerned about
discretizing the fibre edges at the bonded regions with a higher accuracy in the complex geometry of
a paper network. Therefore, there is a need to devise a simple constitutive model in 2D and a numeri-
cal method that can model the geometry of complex network of fibres accurately using a regular grid.

Experimental observations made by [43], showed that a permanent macroscopic deformation
arises in paper sheets when they are subjected to a moisture cycle after being initially dried under
restraint in the papermaking process. This was explained by the fact that the restrained drying
induces dried-in strains in the manufactured paper. Upon subsequent exposure to a moisture cycle,
e.g. printing operations, these strains get released, causing irreversible deformations. Some works
have been conducted to model the micromechanical mechanisms responsible for this property [7]. In
addition, some earlier works were carried out to establish a connection between the microstructural
network properties and the macroscopic behavior for certain fibrous networks [2, 5, 15, 76, 77].
However, these papers did not address the micro-scale parameters for a complex paper network that
govern the sheet-scale hygro-mechanical response when exhibiting irreversible deformations. Hence,
a numerical model is required that captures those sheet-scale phenomena, allowing to identify the
network properties affecting it in a complex network.

Paper products such as printing paper, corrugated boxes or packaging also suffer deformations due
to changes in ambient humidity and applied loading extending over a period of time. It was found
through experiments that the time scales play a crucial role in determining the hygro-mechanical
response of single paper fibres and paper fibre networks [16, 32, 64]. Alfthan [3] developed and
extended the Cox [17] network model by adding hygro-expansion, creep and bonds. Strömbro and
Gudmundson [68] captured the experimental results by a theoretical network model they devel-
oped. What remains a challenge is to simulate the creep response of the paper network based on
constitutive laws formulated at the level of fibres, which are instrumental for acquiring a proper
understanding of the microstructural parameters affecting the creep strain rates and irreversible
strains at the network level.

In the fibrous network of paper, the fibres interact mechanically via bonded regions. These bonds
play a crucial role in the hygro-mechanics of paper because the hygroscopic behavior develops
in each fibre and gets transferred across the network through the bonded regions, leading to the
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observed macroscopic response. Therefore, the extent of bonding between fibres is of key importance
in determining the sheet-level behavior. Literature suggests that there is a scientific scope to explore
the role of the inter-fibre stiffness in the sheet-level hygro-expansivity. In the earlier 2D models,
a full kinematic coupling is assumed between the fibres which are a part of bond even across the
entire thickness of the network [9, 12, 38, 40, 67]. This may well introduce too a strong coupling.
One way to avoid this is a full 3D model, but that is expensive. Therefore, we need to study the
effect by relaxing the full kinematic coupling and introducing a finite stiffness in the 2D model.

1.2 O B J E C T I V E S

In order to predict the hygro-mechanical response of paper at the sheet-scale, it is important to
establish the relation with the underlying microstructure. Therefore, the central theme of the thesis
is to identify the micro-level parameters that determine the macro-level behavior of paper networks
under hygroscopic and mechanical loading. This can be achieved by developing a numerical model
to represent the microstructure of paper and further study its response to changes in moisture content.
However, in order to deal with the geometrical complexity of the fibres in a network, a suitable
computational approach is essential that adequately serves the purpose of the anticipated model.
This leads to the following questions addressed in the thesis.

Is it possible to model complex fibrous network by capturing the fibre geometry adequately
with less computational effort than in conforming finite element discretizations?

As discussed earlier, the occurrence of irreversible strains upon a wetting cycle after papermaking
is one of the causes of the dimensional instabilities in paper. A suitable fine-scale mechanism can be
invoked to explain such phenomena. Here, the aim is to understand the parameters at the fibre scale
that govern this behavior at the sheet-scale. This gives rise to the second set of questions posed in
the thesis.

How to model the mechanism of sheet-scale irreversibility based on the fibre level in a net-
work? Which microstructural properties of the network determine primarily the irreversibility
observed at macro-scale?

Moreover, the time scales have a considerable influence on the overall sheet-level response of
paper fibres subjected to humidity changes. In order to understand this influence, a micro mechanical
model needs to be developed that predicts this behavior. Therefore, the third research question reads:

How to incorporate the time dependency in the model in accordance with experimental re-
sults? Can it be further applied to study the various fine-scale parameters in a network that
govern the rate effects of a paper network?

In the models developed so far the inter-fibre bonds of the network are assumed to be completely
rigid in the considered 2D network idealizations. However, the fibres in bonds may undergo in-
dependent displacements in reality, which affects the macroscopic deformation and anisotropic
response. Therefore, the assumptions on the kinematic constraints in the bonds needs to be relaxed.
This entails the final research theme:
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What micromechanical model needs to be adopted for relaxation of kinematic constraints in
inter-fibre bonds? How does it affect the macro-scale deformation of networks of different cov-
erages?

Several difficulties have been encountered in the past for identifying the causes of hygro-
mechanical behavior of paper fibres. However, in the present work, attempts have been made
to mitigate these difficulties and analyze the hygro-mechanical response of networks with these
outlined objectives.

1.3 S T RU C T U R E O F T H E S I S

The core of this thesis consists of 4 chapters explaining in detail the methods adopted to reach the
objectives, leading to the concluding chapter in this thesis.

Chapter 2: This chapter presents a novel level-set based XFEM formalism applied to a fibrous
network. It discusses the efficiency of level-set functions in capturing complex fibre and bond
boundaries and of XFEM in modeling the strong geometrical discontinuities within the network.
Finally, simulation results are presented, which measure the performance of the adopted method.

Chapter 3: The irreversible strains at the sheet-level as observed in experiments involving a
wetting-drying cycle after papermaking are modeled in this chapter. A suitable mechanism responsi-
ble for this behavior is discussed. It involves the implementation of a rate-independent kinematic
hardening plasticity model with a moisture dependent yield stress. It is implemented at the fibre
level in order to investigate its effect at the macro-scale of the network. The findings obtained in
the simulations give adequate insights in the dependence of the irreversible strain on the network
properties.

Chapter 4: This chapter discusses the time-dependent behavior of paper. A suitable rate-dependent
model is adopted at the fibre level for this purpose. It highlights the results of this rate-dependent
model identified on the basis of existing experimental results on single fibres. Finally, these identi-
fied parameters are used in the network model to compute its response under an applied strain and
changes in humidity.

Chapter 5: The assumption of a perfect kinematic bonding in the inter-fibre bonds is relaxed
by allowing the fibre midplanes to exhibit relative displacements. For this purpose, an interfacial
element is used in each of the bonded regions of the fibrous network. The overall response of the
network is studied for a varying bond stiffness between fibres in inter-fibre bonds when subjected to
moisture changes and tensile loading. Also, the role of these kinematic constraints between fibres in
the bonds on the anisotropy of the network is analyzed.

Chapter 6: The final chapter presents the major findings of the work reported in this thesis.
It highlights the assumptions used in the adopted approaches and the results achieved. Additionally,
other interesting areas of research are also suggested.
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L E V E L - S E T B A S E D E X T E N D E D F I N I T E E L E M E N T M O D E L I N G O F
T H E R E S P O N S E O F F I B R O U S N E T W O R K S U N D E R H Y G R O S C O P I C
S W E L L I N G

Materials like paper, consisting of a network of natural fibres, exposed to variations in moisture,
undergo changes in geometrical and mechanical properties. This behavior is particularly important
for understanding the hygro-mechanical response of sheets of paper in applications like digital
printing. A two-dimensional microstructural model of a fibrous network is therefore developed to
upscale the hygro-expansion of individual fibres, through their interaction, to the resulting overall
expansion of the network. The fibres are modeled with rectangular shapes and are assumed to be
perfectly bonded where they overlap. For realistic networks the number of bonds is large and the
network is geometrically so complex that discretizing it by conventional, geometry-conforming,
finite elements is cumbersome. The combination of a level-set and XFEM formalism enables the
use of regular, structured grids in order to model the complex microstructural geometry. In this
approach, the fibres are described implicitly by a level-set function. In order to represent the fibre
boundaries in the fibrous network, an XFEM discretization is used together with a Heaviside en-
richment function. Numerical results demonstrate that the proposed approach successfully captures
the hygro-expansive properties of the network with fewer degrees of freedom compared to classical
FEM, preserving desired accuracy.

Keywords: Fibrous network, hygro-expansion, Level-set functions, XFEM

2 This chapter is based on: P. Samantray, R.H.J. Peerlings, E. Bosco, M.G.D. Geers, T.J. Massart, O. Rokos, 2019.
Level set based eXtended finite element modeling of the response of fibrous networks under hygroscopic swelling. In
preparation.
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6 M O D E L I N G F I B RO U S N E T W O R K S : L E V E L S E T A N D X F E M F O R M A L I S M

(a) Micrograph of the surface of a printing
paper sheet

(b) An idealized bond between two fibres

Figure 1: Illustration of the microstructure of a paper sheet and the role of fibre bonds in hygro-expansion.

2.1 I N T RO D U C T I O N

At the micro-scale, a paper sheet consists of a network of fibres that is produced from wood pulp as
shown in Fig. 1a. The paper fibres have a preferential orientation (machine direction) due to the
manufacturing process, which results in the observed anisotropic behavior [56]. In the network,
fibres are bonded with each other in certain regions and free standing elsewhere. Upon exposure of
a sheet of paper to a humid environment or liquid water, moisture-induced swelling takes place,
which is called hygro-expansion [37].

In practical applications related to printing, this results in macro-scale effects such as curling,
waviness and cockling. At the microstructural level, the changes in each individual fibre due to the
variation in moisture content are transmitted to the neighboring fibres by the bonds in the fibrous
network as sketched in Fig. 1b. These changes include geometrical variations of the shape in each
fibre and the accompanying stress concentrations induced by the bonded areas. Understanding these
phenomena and their dependence on the properties of the individual fibres and the network geometry
is essential for predictive modeling of sheet-scale phenomena in paper as well as other networks of
natural fibres.

Gaining insight in the behavior of a fibrous network subjected to hygroscopic swelling is es-
sential to unravel the influence of different properties of the fibres and network on the overall
hygro-expansive response. Among the early attempts to model the mechanical response of paper,
Cox [17] studied the effect of orientation of fibres on stiffness and strength of paper by assuming
that fibres carry only axial forces. The flexural stiffness of the fibres was also taken into account [1].
The deformation of bonds and the elasto-plastic behavior of fibres was also studied [53]. Assuming
constant strain, the transverse properties of fibres were included [63]. Later, a model incorporating
shear forces, axial and bending and torsional moments between rigid bonds was developed for a
network of fibres [67]. Inter-fibre bonding was also considered in modeling the fibrous network [12].
Some of the recently developed numerical models for fibrous networks mostly modeled the fibrous
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material with two dimensional assumptions considering the individual fibres as trusses or beams
with only isotropic properties [20, 36, 66]. Most of these works were carried out for the description
of the mechanical behavior of the fibrous network, without any coupling to the hygroscopic response.

Several other studies addressed the hygro-expansivity and dimensional stability of paper. Some
studies focused on the hygro-expansion in order to understand the factors affecting it [47, 59, 72]
which included shrinkage during drying, effect of fibre curl and bonding between the fibres . Also,
studies on the dimensional stability of paper at the macro-scale were carried out [8, 21, 37, 45, 46,
49, 71] which included studies on shrinkage as a function of the beating of the pulp, characterization
of hygroexpansion in MD and CD, hygroexpansivity of fibres, effect of interaction of paper with
surrounding air on the strain rates, established correlation between drying shrinkage and dimen-
sional stability, relation between drying shrinkage and hygro-expansion coefficient and finally a
meso-scale model to predict hygro-expansive response respectively . Several other works were done
on studying the hygro-expansion of paper fibres. However, most of these studies lack in modeling
the hygro-mechanical behavior of complex fibrous networks like paper subjected to moisture fields.

The aim of the present study is to model the hygro-mechanical behavior of fibrous materials
through a multi-scale analysis of the network using periodic homogenization [10, 22, 52]. The fibres
are modelled as two dimensional ribbon like elements in a network subjected to hygro-expansion,
for which a finite element framework was used in [9]. This study used a regular grid of triangular
finite elements to model the network which inevitably is not aligned with most of fibres. However,
the use of such non-conforming finite elements does not allow to accurately capture the geometry
of the fibres and of the voids and bonded regions between them. Non-conforming FEM considers
any fibre lying inside the centroid of a finite element to contribute to its stiffness. This leads to
a geometrical representation of a fibre in the network with jagged boundaries. To better resolve
the fibre boundaries, a very fine discretization was therefore employed in [9], which increases the
computational effort. Note that, in a two dimensional microstructure with overlapping fibres at the
bonds, a mesh conforming to the different fibre geometries present in the same bonded regions is dif-
ficult to generate. This may result in a very fine mesh which will result in high computational effort
required for the subsequent simulations. In complex networks as shown in Fig. 2 (a paper network
represented as ribbon shaped rectangular fibres), it will be difficult to generate a conforming mesh
as shown in the magnified view for all fibres in the densely bonded regions . There is thus a need to

Figure 2: A model of a fibrous network represented as a periodic unit cell.
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develop models that capture the fibre boundaries with a better accuracy and less computational effort.

Here, an advanced discretization scheme is combined with the hygro-mechanical model devel-
oped by [9] to enable modeling of larger systems in two-dimensional configurations, with the
potential to be extended towards three dimensions. The level-set formalism is used in combination
with the Extended Finite Element Method (XFEM) to capture the geometrical complexity of the
network - here in two dimensions. The level-set methodology is a mathematical tool to describe
boundaries (or, more generally, geometry) implicitly (Sethian [65]). The boundary of a fibre is repre-
sented by the zero level-set of a higher dimensional function. This results in a versatile geometrical
description that is de-coupled from the spatial discretization. XFEM [18] allows to account for the
effect of interfaces (boundaries of fibres) on the mechanical behavior of the problem. In the bonded
regions, the interpolation functions classically used in the elements are modified by discontinuous
enrichment functions, so that geometrical discontinuities associated with the fibre interfaces can
be resolved. This allows to capture the fibre’s boundaries in the bonded regions accurately using
reasonably coarse meshes by coupling of the level-set functions with the XFEM enrichment.

This chapter is organized as follows: In section 2, the geometry of the fibre network model is
discussed briefly, along with the level-set formalism used to represent it. In section 3, the XFEM
discretization used for the fibrous network is described, together with the required specific nu-
merical integration scheme to accommodate it. Section 4 presents the simulation results of the
hygro-mechanical behavior of paper using the XFEM enrichment, first for the simplified models
presented in [8], and subsequently for more complex networks with different coverages. The local
and global responses are analyzed for complex networks. Finally, section 5 reports the conclusions
and perspectives.

Throughout this contribution, the following notations are used for operations on the Cartesian
tensors. Scalars, vectors and tensors are denoted by a,~a and A respectively. The 4th order tensors
are represented by 4A. For tensor and vector operations, the following equivalent notations are
used with Einstein’s summation convention on indices: A:B=AijBji with (i =x,y,z for the global
reference system and i =l,t,z for the local reference system). The Voigt notation used to represent
tensors and tensor operations in a matrix format is depicted as follows: a and A denote a column
matrix and a matrix of scalars respectively. The matrix multiplication is denoted as (A a = Aijaj).

2.2 F I B R E N E T W O R K M O D E L

2.2.1 Fibre Model

The fibre level constitutive model formulated in [8] is adopted here. A two dimensional plane stress
model is assumed. The fibres in consideration are oriented in the (x,y) plane of the (x,y,z) global
reference frame, and subjected to a uniform moisture change. The moisture content χ is defined
as the ratio of the weight of the moisture in paper to the total weight of the paper. For the fibre
constitutive model, a local reference frame (l,t,z) is considered along the directions of the fibre
as shown in the Fig. 3. The hygro-mechanical properties of the paper fibres are assumed to be
transversely isotropic with respect to their longitudinal axis. The general elastic constitutive law
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Figure 3: The local and global coordinate axes.

for a fibre, assuming plane stress state in the z-direction, and subjected to a moisture change ∆χ is
expressed as

σ f = 4D f : (ε f − hε f ) (1)

where the hygroscopic strain hε f is given by
hε f = β f ∆χ (2)

In these expression, 4D f , ε f and β f are the elastic constitutive tensor, the strain tensor and the
hygro-expansivity tensor of the fibre respectively. In matrix notation, 4D f and β f are represented as

D f =


El

(1−νltνtl)
Elνtl

(1−νltνtl)
0

Etνlt
(1−νltνtl)

Et
(1−νltνtl)

0

0 0 Glt

 , β f =

βl

βt

0

 (3)

In Eq. (3), El and Et denote the elastic moduli in the longitudinal and transverse direction with
respect to the fibre axis, Glt is the in-plane shear modulus, νlt and νtl the in-plane Poisson ratios.
The coefficients of hygroscopic expansion, βl, βt, are different in the longitudinal and transverse
directions of the fibre. It was observed by Bosco, Peerlings, and Geers [8] that the value of the
Poisson’s ratio has a minor effect on the effective hygro-expansivity of the network. All the material
parameters are assumed to be independent of the moisture content χ. In this study, the main objective
being the analysis of the performance of the LS-XFEM formalism, the material properties were
kept constant. Also, this serves the purpose of having a simplified description of the material.

The local reference system of a fibre m is oriented at an angle θ(m) with respect to the global
reference system (x,y,z). Therefore, the relationships (Eq. (1)-Eq. (3)) need to be transformed
from the local (fibre) frame to the global frame of the paper material for each fibre in the network
(Roylance [55]).

The fibre bonds are important because of their influence on the overall behavior of the network.
In the 2D modeling, the fibres are assumed to be perfectly bonded to simulate the interplay between
hygro-expansion and elasticity of the fibres. This implies full displacement strain compatibility
inside a bond for all the fibres interconnected in that bond.
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2.2.2 level-set formalism

The level-set formalism [48, 65] is here used to describe the geometry of fibres. In this method, the
fibres is described as the zero level-set of a higher dimensional level-set function φ(~x) (see Fig. 4) .
In most cases, including the current , the level-set function gives the signed distance of a point ~x to

Figure 4: Sign convention used for signed distance function representing the rectangular fibres.

the interface of the rectangular fibre defined by dT in Fig. 4. The level-set function φ(~x) is defined
as

φ(~x) = ± min
~xT∈dT

|~x−~xT| (4)

where the sign is negative if ~x is outside and positive if it is inside the contour defined by dT.

2.2.3 Random fibre network creation

In order to understand the hygroscopic behavior of a complex network of fibres, a set of rectangular

fibres having a length l f and width w f =
l f
10 is randomly generated in a unit cell of length l= 5l f /3.

1. The length of the periodic unit cell is 1500 µm. Each of the fibres is generated with random
coordinates for its centroid [x,y]∈[0,l] as shown in fig. 5b. Fibre parts which extend beyond the
boundary of the unit cell are periodically copied into the cell at the opposite edge. Now, depending
on the number of fibres n generated in the unit cell, a coverage c is defined as the ratio of the total
area occupied by all fibres and the area of unit cell. It is related to the grammage g via

g = cρ f t

where ρ f is the density of fibres and t is the thickness of the fibres.

For example, considering a density of the fibres of ρ f =1500kg/m3 ([45]), a thickness 10µm and a
coverage of 0.9 as used in the results of section 2.4.2, the corresponding grammage is 13.5g/m2.
As the coverage increases, with density and thickness remaining constant, the grammage scales
linearly with the coverage. The orientations of the randomly generated fibres in the network satisfy
a probability density function based on reference [17]:

f (θ) =
1
π

1− q2

1 + q2 − 2qcos(2θ)
(5)

where θ is the angle between the fibre and the machine direction, with −π/2 < θ < π/2. Fig. 5a
shows the probability density function for the orientation for two values of the anisotropy parameter
q: for the isotropic case q=0 and an arbitrary degree of anisotropy q=0.51 [8].
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(a) Fibre orientation distribution function (b) Periodic Unit cell

Figure 5: Anisotropic orientation function and a random network of fibres.

Once the fibres are generated and each of them is assigned a level-set function (φ1(~x), φ2(~x),
φ3(~x), .....,φn(~x)), a periodicity condition is enforced on the unit cell. The level-set function that
allows identifying the fibres and voids for the network, can be described as

ψ(~x) = max(φ1(~x),φ2(~x),φ3(~x), .....φn(~x)) (6)

where ψ(~x) > 0 in fibres and ψ(~x) < 0 in voids.
Here, we have assumed the same size for all the fibres, which renders the microstructure idealized

in nature. The reason for the adoption of identical shape and size of fibres throughout the thesis
is to understand the trends and qualitative relationships between the microstructural parameters
and the effective hygroexpansivity of the network. With these simplifications, the relationships are
better understood from the observed trends. In the current chapter, we are interested in assessing
the numerical efficiency of a discretization scheme by comparison with standard FEM for same
networks only, which is least affected by the choice of the geometrical parameters. The use of
a plane stress assumption is justified due to a negligible thickness of the paper compared to its
in-plane dimensions. One of the main advantages of the 2D framework is the reduced computational
expense in obtaining the hygro-mechanical behaviour of the network compared with a full 3D model.
Moreover, it is relatively straight forward to produce the microstructure and to mesh it. Also, the out
of plane deformations and stresses are ignored. Finally, the assumption of full kinematic constraint
between fibres in the bond in the current chapter has consequences on the overall behaviour of the
network. This will be further relaxed in the final chapter of the thesis.

2.3 M O D E L I N G M E T H O D O L O G Y

2.3.1 XFEM methodology

The extended finite element method (XFEM) is a numerical discretization method developed to
model material discontinuities, singularities and moving boundaries independently of the under-
lying finite element mesh. With the microstructures considered in this work, it is not feasible to
produce a geometry conforming mesh for the free standing parts of fibres and even more in the
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bonded regions where fibres partially overlap. Accurate local results cannot be obtained by the
conventional finite element method (FEM) if the mesh does not conform to the boundaries of the
fibres. XFEM can be used instead to capture the fibre boundaries both in free standing and bonded
regions accurately even with a regular non-conforming mesh. In terms of accuracy, an adequate
solution can be obtained by enriching the classical shape functions with special functions capturing
the geometrical discontinuities in XFEM.

Depending on the nature of problem under consideration, a suitable enrichment function needs to
be adopted in XFEM. To model the geometrical discontinuity between solid (fibres) and voids in a
fibrous network with a regular mesh, a Heaviside function defined in terms of the level-set function
φ is adopted (Sukumar, Chopp, Moes, and Belytschko [69]) as an enrichment function, since the
geometry is already described by the level-set functions φi . The displacement interpolation on the
solid domain reads

~u(~x) = ∑ Ni(~x)~uiH(ψ(~x)) (7)

in which, H(ψ(~x)) = 1 for ψ(~x) >0 inside fibres and H(ψ(~x)) = 0 for ψ(~x) ≤0 (inside void re-
gions).

The interconnection between XFEM (to model discontinuities) and level-set (to capture the
geometry) is achieved in the LS-XFEM approach which is discussed in detail in the next section.
Therefore, a LS-XFEM formalism that makes use of the level-set information in this particular
XFEM setting greatly simplifies the set up of the model under consideration.

2.3.2 Discretization with the level-set and XFEM formalism (LS-XFEM)

In the current thesis, the behavior of the fibres is assumed elastic and small strains and displacements
are considered. The total potential energy in the unit cell consisting of network of fibres is given by

π =
1
2

∫
V

n

∑
i=1

H(φi(~x))
(

ε f − hε
f
i

)
: D f

i :
(

ε f − hε
f
i

)
tidA (8)

where, n is the total number of fibres occupying the periodic cell area A, φi(~x) is the signed distance
function of the ith fibre, ε the strain tensor associated with Eq. (7), hε

f
i the hygroscopic strain in

fibre i and ti its thickness. This expression may be written in matrix format as .

π =
∫

V

n

∑
i=1

H(φi(~x))
1
2
(ε f − hε

f
i )

TD f
i (ε

f − hε
f
i )dV

=
∫

V

n

∑
i=1

H(φi(~x))
1
2

[
(ε f )TD f

i ε f − 2(ε f )TD f
i

hε
f
i + ( hε

f
i )D f

i
hε

f
i

]
dV (9)

in which D f
i and hε

f
i are the transformed elastic constitutive matrix and hygroscopic strain matrix,

respectively, transformed to the global frame, for a particular fibre i aligned at an angle θi with
respect to the global frame as discussed earlier.

Using the strain-displacement relationship for each finite element, ε f = Beue, where Be is the
strain-displacement matrix and ue is the nodal displacement column of the finite element e, the
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integration over the entire network of fibres in Eq (9) is carried out element wise. Swapping the
summations over all m finite elements with areas Ae and the n fibres, the assembled potential energy
is obtained as

π =
1
2

m

∑
e=1

[
uT

e

∫
Ae

n

∑
i=1

H(φi(~x))(BT
e D f

i Be) tidAue

− 2
∫

Ae
uT

e

n

∑
i=1

H(φi(~x))(BT
e D f

i
hε

f
i ) tidA +

∫
Ae

n

∑
i=1

H(φi(~x)) hε
f
i D f

i
hε

f
i tidA

] (10)

Of all the possible displacements that satisfy the boundary conditions of an elastic structural system,
the ones corresponding to the equilibrium configuration minimize the total potential energy, i.e.

∂π

∂u
= 0

or, using Eq.(10),

m

∑
e=1

n

∑
i=1

∫
Ae

H(φi(~x)) BT
e D f

i Be tidAue −
m

∑
e=1

n

∑
i=1

∫
Ae

H(φi(~x)) BT
e D f

i
hε

f
i tidA = 0

This equation is of the form of a linear system

K u− f = 0 (11)

in which, u collects all nodal displacements and stiffness matrix and the hygroscopic load vector
are given by

K =
m

∑
e=1

n

∑
i=1

∫
Ae

H(φi(~x)) BT
e D f

i Be tidA (12)

f =
m

∑
e=1

n

∑
i=1

∫
Ae

H(φi(~x)) BT
e D f

i
hε

f
i tidA (13)

Linear triangular finite elements are used for the discretization. It is straight forward to implement
such a formulation of linear triangular FE. Also, it is convenient to have constant strain within
each element for the purpose of computing the respective fibre contributions to an element - see
the next section. Finally, mesh of triangular elements can be easily adapted to represent a complex
geometry. Three cases can be distinguished for mapping fibres onto a finite element. First, if the
finite element lies entirely in a void, the Heaviside function in Eqs. (12) – (13) vanishes and the
element does not contribute to the stiffness matrix and hygroscopic load vector. If the finite element
lies entirely in one or more fibres, its full contribution is accounted for in the computation of the
stiffness matrix and hygroscopic load vector. Finally, if the finite element is intersected by fibre
boundaries, a specific integration technique needs to be used, as described next.
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2.3.3 Numerical integration scheme

In this section, the integration scheme used for elements intersected by fibre boundaries is detailed.
The integration over a particular finite element for all fibres passing in it is considered for the
stiffness and force vector for an element in the Eqs. (14) and (15) respectively.

Ke =
n

∑
i=1

BT
e D f

i Be

∫
Ae

H(φi(~x)) tidA (14)

f
e
=

n

∑
i=1

BT
e D f

i
hε

f
i

∫
Ae

H(φi(~x)) tidA (15)

In the computation of the contribution of each fibre to the finite element, it is therefore only required
to determine the area occupied by each fibre, i.e. A1, . . . ,An in this particular element, where
Ai =

∫
Ae

H(φi(~x))dA. The algorithm used to compute this area of each fibre in the finite element
is illustrated by considering two fibres lying in the region occupied by a triangular element with
vertices (A, B, C) as shown in Fig. 6.
Using the level-set function for a particular fibre i, if one of the vertices of the finite element triangle
is identified to lie inside the fibre, then the element is considered to lie in the fibre. Therefore, the
triangle is sub-divided along its longest edge. The sub-triangulation continues and stops only when
a tolerance is met in terms of the smallest triangle area. This procedure is executed for all fibres
lying partially inside the finite element.

The integration scheme can be summarized as follows:
Step 1: Check for first fibre if all element vertices lie in it (i.e. φ1(A)>0, φ1(B)>0, φ1(C)>0). If the
particular fibre lies partially in the element, then it is split into two new triangles as shown in Fig. 6.
Step 2: The subdivision continues for triangles intersected by the fibre’s boundaries. If a triangle
lies completely inside or outside the fibre, the subdivision is not performed.
Step 3: The sub-triangulation is terminated when a specified tolerance limit is achieved. In the
examples below, we terminate it when the area of sub-triangulated element is one-hundredth the
area of the coarsest finite element.
Step 4: After the termination of the sub-triangulation, the area occupied by the fibre in the finite
element is determined as the sum of the areas of triangles lying completely in the fibre and the ones
the centroid of which lies inside the fibre. Thereafter, the above steps are repeated for the next fibre.

2.3.4 Mesh Refinement

Considering a unit cell consisting of a network of fibres with complex topology, a coarse triangu-
lation is naturally insufficient for an accurate description of the interfaces. Using a globally fine
triangulation would however dramatically increase the computational cost. Therefore, a refinement
strategy based on the backward longest edge bisection algorithm [54] is adopted here for elements
intersected by boundaries. This approach preserves adequate accuracy at a lower cost, still allow-
ing for large triangles in regions with little strain fluctuation within fibres and voids. This mesh
refinement should not be confused with the sub-triangulation discussed in the previous section. The
sub-triangulation is used to accurately capture the geometry, i.e. the volume of an element occupied
by a particular fibre. Mesh refinement, on the other hand, improves the accuracy of the kinematics
of the problem.
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Figure 6: Partitioning of a triangular finite element intersected by the boundaries of two (rectangular fibres)
for the area integration. (a) The finite element r1 is partially covered by two fibres (b) As a first step,
fibre 1 is considered. Since the finite element lies partially in the fibre (the level-set values at the
vertices are not all of the same sign), it is bisected along the longest edge, resulting in triangles r10
and r11. (c) Both of the newly formed triangles r10 and r11 are again lying partially in fibre 1. They
are hence further bisected (d) Triangles r100, r101 and r110 are further split; r111 remains unaffected
as it is completely outside the fibre. The partitioning further continues until a certain tolerance is
reached.
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Figure 7: Illustration of the Longest Edge Propagation path (LEPP) refinement in a triangular mesh. (a) The
LEPP is given by r0,r1,r2,r3 with r3 being the terminal triangle. (b) r3 is bisected along its longest
edge and the new LEPP is r0,r1,r2,r31 (c) r31 and r2, being the terminal triangles, are bisected
along their longest edge. The LEPP is r0,r1,r21. (d) r21 and r1 are bisected along their longest edge.
The LEPP is r0 and r1. (e) r11 and r0 are bisected. This concludes the refinement.

After the generation of the geometry of a network of fibres, the finite elements located at the
boundaries of the fibres are revisited for mesh refinement. For each such element, the corresponding
fibre signed distance functions are evaluated at all of its vertices of considered triangular finite
element. When all three vertices are contained inside all fibres passing through it, or when none of
them belong to the fibres, the element is not categorized as a boundary element. In all other cases,
the element is identified as boundary element to be refined, for which a mesh refinement algorithm
is applied.

As defined by [54], for a triangle r0 of any triangulation T, the longest edge propagation path
(LEPP) is an ordered list of triangles r0,r1,r2, . . . . . . ,rn such that ri is neighbor to ri−1 along its
longest edge. The (LEPP) terminates with a) one triangle with its longest edge along the external
boundary of the mesh , or b) a pair of triangles sharing the same longest edge. Now, based on the
LEPP of triangle r0 marked for refinement, a backward longest edge refinement algorithm is used
in which the longest edge of rn is bisected in the former case and both triangles rn−1 and rn are
bisected along longest edge for the later case. The LEPP is updated and the procedure is repeated
until the initial triangle r0 is bisected as well. In Fig. 7, the longest edge bisection algorithm is
illustrated for a simple triangulation. In the current thesis, the elements at the interfaces between
a free standing fibre segment and void, as well as at the boundaries of bonds are refined. The
newly generated refined triangular elements at these locations also better capture multiple fibres
passing through the finite elements. Therefore, the accuracy of the mesh improves in representing
the fibre geometry and, more importantly, its kinematics in these complex networks. In addition, the
boundary edges of the unit which is periodic in nature are also refined to maintain periodicity of the
nodes.

However, the refined mesh, as seen in Fig. 8 will not be conforming to the fibre boundaries. As
mentioned earlier, the high number of fibre interfaces particularly in the bonds, would render it
difficult to capture with a conforming mesh at cheaper computational effort. This again emphasizes
the motivation to use the proposed LS-XFEM formalism, which allows to decouple the mesh and
fibre boundaries with a structured mesh that still captures the fibre edges adequately.
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Figure 8: (a) A refined mesh. (b) Zoomed view depicting the non-conforming character of the mesh relative
to fibre interfaces.

2.4 R E S U LT S A N D D I S C U S S I O N

To demonstrate the benefits of the LS-XFEM formalism for fibrous networks, simplified illustrations
are first presented below. Subsequently, the formalism is used for a complex network to study the
effect of microstructural features on the sheet-scale properties due to moisture infiltration.

2.4.1 Simplified networks

First, the stress level in a single family of parallel fibres subjected to a tensile load is assessed,
followed by the study of the stress concentrations in the bond regions of an elementary network
consisting of two families of fibres subjected to a macroscopic tensile load.

2.4.1.1 Parallel fibres subjected to uniaxial tension

In this problem, an infinite number of parallel, equispaced, infinitely long fibres is considered, as
shown in Fig. 9b. The fibres are subjected to a horizontal stress, σ0. Using a square periodic unit
cell of length l for this simple geometry, half of a fibre occurs at the top and the another half at the
bottom of the cell, see Fig 9a. The chief reason to use this unit cell in the example because there are
regions with fibre and voids which is also the case in the complex fibrous network considered later.
Also, in the discretized unit cell, the mesh in this case is non-conforming and this is mainly for the
purpose of illustrations of the benefit of the LS-XFEM formalism as compared to the standard FEM.
The input parameters for the anisotropic fibres are an elastic modulus in longitudinal direction,
El, and in transverse direction, Et=El/4, shear modulus, Glt=0.1El, Poisson ratios νlt=0.2 and
νtl=νlt/4. The fibre has a width w=0.43l and thickness t. The exact area of the fibre is A0 = 0.43l2.

The problem is formulated as a plane stress case and solved with a non-conforming fixed grid
by the standard FEM and the LS-XFEM approach. In the standard finite element setting, a finite
element is considered to be part of the fibre if the centroid of the finite element is located inside the
fibre. Accordingly, these fibres contribute to the finite element stiffness in the FEM solutions. In the
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(a) Discretized unit cell with 20 elements in each
direction

(b) Infinitely long fibres and loading considered

Figure 9: A single fibre in a periodic unit cell.

l/h (uniform
mesh)

σxx(FEM)/σ0
σxx(LS-
XFEM)/σ0

Area captured
(FEM)/A0

Area cap-
tured (LS-
XFEM)/A0

10 1.0750 1.0043 0.9302 0.9957

20 1.0750 0.9998 0.9302 1.0000

40 1.0117 0.9998 0.9883 1.0000

Table 1: Computed stresses and areas obtained by the standard FEM and LS-XFEM.

LS-XFEM formalism, a finite element partially covering a fibre still represents that fibre but the area
of the fibre in that finite element is determined using the area integration method presented in earlier
section and it contributes to the element stiffness accordingly. The results obtained by these two
approaches for different grid spacings (element edge lengths) h are presented in Tab. 1 in terms of the
(local) fibre stress component σxx as computed and the fibre area considered by the numerical model.

As expected, the standard FEM does not yield a good estimate of the stresses with a coarse
non-conforming mesh of 10 elements along the cell edge. On the contrary, the LS-XFEM formalism
yields an accurate stress distribution with the same mesh. As the mesh is refined, the standard
FEM still struggles to yield the expected accuracy. However, the LS-XFEM formalism captures the
geometry with a better accuracy, which also results in a more accurate prediction of the stress level.

2.4.1.2 Bonded elementary network under tension

The attention is next shifted towards the simplest fibre arrangement that involves bonds, between
two orthogonal families of parallel fibres subjected to a stress σ0, as introduced in [8], see Fig. 10b.
Because of periodicity, the unit cell depicted in Fig. 10a is used, with half fibres along the edges. The
material parameters are identical to the those of the previous example. The LS-XFEM formalism,
with a regular mesh with h=l/50, as shown in Fig. 10a, is used to predict the mechanical response
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(a) Discretized unit cell with (50×50 ×2=5000 ele-
ments) non-conforming to the geometry

(b) Infinitely long fibre network and loading considered

Figure 10: Fibre network with a regular mesh non-conforming to the geometry. The σxx profiles along the
cross-sections A-A and B-B are depicted in Fig.13.

especially focusing on the stress distribution, in the bonded regions.

(a) Reference solution (h=l/400) (b) LS-XFEM (h=l/50)

Figure 11: Stress distributions, σxx/σ0, in horizontal fibre.

This network is also modeled with a very fine FE mesh of size 400×400×2 elements conforming
to the geometry, serving as a reference solution. It is emphasized that such a conforming mesh is of
course only achievable for simple configurations as considered in this example.

Figs. 11 and 12 show the normalized stress distribution σxx in the bonded regions for the horizon-
tal and vertical fibres as computed by the LS-XFEM with a non-conforming mesh and the FEM
reference solution. The coarse triangular mesh used for the LS-XFEM formalism is evident in the
jagged normalized stress distribution in the free standing and bonded regions in Fig. 11b. Also,
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(a) Reference solution (h=l/400) (b) LS-XFEM (h=l/50)

Figure 12: Stress distributions, σxx/σ0, in the vertical fibre.

these are noticed near the bonded region of the vertical fibres in Fig. 12.

Note that only at locations (x/l = 0.2), close to the edges of the bond, the stress distribution
predicted by LS-XFEM differs from the reference solution with a deviation of < 20%, as observed
in Fig.13(a). This is because with the LS-XFEM formalism employing a geometry non-conforming
coarse mesh, the finite element at this location lies in the bond as well as in the free standing
fibre. Now, the stress distribution σxx is high in the free standing fibre resulting in the stress jumps
obtained by LS-XFEM. However, in the geometry conforming the mesh employed by the FEM
solution, the finite element (with a finer mesh) is still lying inside a bond at this location with
low σxx. As x/l > 0.2, the finite element now lies in a free-standing fibre with a higher stress and
therefore the stress distribution by the FEM also attains the same value as predicted by LS-XFEM
formalism in the free-standing fibre areas. Most importantly, as noticed in these plots, the normalized
stress distributions predicted by the LS-XFEM formalism are qualitatively and quantitatively similar
to the reference solutions at other regions which is further ascertained in the cross-sectional plots
through the bonds shown in Fig. 13.

In a fibrous network, the bonded regions are vital for an accurate prediction of the overall network
response, as well as for the proper reproduction of the local behavior of the fibres [8]. Therefore, the
ability of LS-XFEM formalism to make adequate predictions of the mechanical stress state inside
the bond at a lower computational cost as compared to a fine FEM discretization, makes it a suitable
tool for modeling the fibrous networks.

2.4.2 Complex networks

The attention is now focused on more complex (realistic) networks, to illustrate the ability of the
proposed formalism to recover information at both the microstructural and macroscopic level.
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(a) Horizontal fibre along cross-section A-A (b) Vertical fibre along at cross-section B-B

Figure 13: Stress, σxx/σ0, in cross-sections as defined in figure 10a.

2.4.2.1 Network parameters

Different network configurations are considered, with coverages of c = 0.9 and c = 1.8 (defined
as the ratio of total area occupied by the fibres in the network to the area of the microstructural
unit cell). The characteristic size of the finite elements used in the mesh to model the unit cell is
chosen as hL =

l
100 . After application of the refinement strategy at the fibre edges, the smallest finite

element size reduces to hS = l
400 . For the anisotropic behavior of the fibres, the material parameters

used are identical to that of the previous examples. The coefficients of hygroscopic expansion are
taken according to βt = 20βl for all cases. A unit change in moisture content, ∆χ = 1, is adopted
which is assumed uniform over the entire unit cell.

2.4.2.2 Average expansivity and deformed geometry

The initial anisotropic network for coverage c=0.9 and anisotropy parameter q=0.5 is shown in
Fig. 14a. The hygro-mechanical response of the unit cell is computed by solving the static equi-
librium problem for a unit change in moisture content, ∆χ. This generates a hygroscopic load
causing deformation in the network, which is computed by means of the LS-XFEM formalism on
a discretization with 4 levels of refinements, see Fig. 14b). The response of the same network is
computed as well using a regular mesh of size equal to the smallest element size of the refined mesh
hS with a standard finite element method.

It can be observed in Fig. 15 that the deformed geometry obtained by the LS-XFEM (with a
relatively coarse mesh), in Fig. 15b, is similar to the deformed network obtained by standard FEM
with a very fine mesh in Fig 15a. This result demonstrates the added value of LS-XFEM in terms of
solving a network with a system of smaller size. This is further illustrated by the overall behavior
on the basis of the computed overall hygroscopic coefficients of the network, as listed in Tab. 2. The
anisotropic network fabric (q =0.5) causes a pronounced overall anisotropy: the expansivity βyy in

the CD direction exceeds that of the MD direction, βxx, by more than a factor of three.
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(a) Initial network of coverage c=0.9 and q=0.5 (b) Refined mesh for LS-XFEM

Figure 14: Geometry of the complex network and the zoom of mesh used.

(a) FEM with uniform mesh size hS (160801 nodes) (b) LS-XFEM with refined mesh (48475 nodes)

Figure 15: Deformed network as computed by FEM and LS-XFEM. The displacements have been magnified
by a factor of 50.
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Approach βxx/βl βyy/βl βxy/βl

LS-XFEM 2.4278 8.6910 -1.6682

FEM 2.4042 8.5020 -1.6380

Table 2: Computed effective hygro-expansive coefficients normalized with βl for the anisotropic network
(c=0.9 and q=0.5).

Figure 16: Convergence of the effective hygroscopic coefficients normalized with βl∆χ obtained by the
LS-XFEM as a function of the characteristic element size.

This is due to the fact that the fibres are on average more oriented in the MD direction, i.e. their
expansion occurs predominantly in the CD direction. The values obtained by LS-XFEM have a
relative deviation of less than 1% for βxx and 2.2 % for βyy, when compared against the fine mesh
FEM solution for the same network.

If we consider a curved shape of fibres instead of rectangular straight fibres, a single fibre will
exhibit less stiffness comparatively. On a network scale at low coverages its difficult to predict the
effect this would have on effective hygro-expansivity. However, at higher coverages the response is
expected to be same because the spacing of bonds is small and the fibre segments in between them
are practically straight at this scale.

In Fig. 16, convergence of the normalized effective hygro-expansivity of the network with an
increasing number of elements in the mesh for the LS-XFEM formalism is shown. There is no
significant change in the effective coefficients of the network with an increase in the number of
elements. Even with the coarsest discretization considered, i.e. hL=l/50, we obtain a response which
is within 10% of the response obtained at hL=l/200. This demonstrates the advantage of using the
LS-XFEM formalism.

In Fig. 17, an anisotropic network with a higher coverage is considered (c = 1.8). For this case,
the bonded area in the network is larger, resulting in a comparatively higher hygroscopic strain and
overall deformation. As in the previous case, the anisotropic orientation of fibres in the network
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(a) Initial network, coverage (b) Deformed network

Figure 17: A high coverage network (c=1.8 and q=0.5). The displacements have been magnified by a factor
of 50.

βxx/βl βyy/βl βxy/βl

2.7989 3.1457 1.3573

Table 3: Computed effective hygro-expansive coefficients normalized with βl for the isotropic network (c=0.9
and q=0).

results in a higher expansion along the cross-direction.

Hence, both the anisotropy and higher coverage contribute to a higher expansion in the cross-
direction when compared with networks having low coverages. Let us emphasize again that the
use of a conforming mesh with the finite element method for networks with a high coverage is
computationally highly expensive, because meshes have to be very fine to capture such complex
bonds with many overlapping fibres of different orientations.

Finally, an isotropic network (q = 0) with low coverage is also considered. The values of the
expansivity in MD (βxx/βl) and CD (βyy/βl) are listed in Tab 3. Theoretically, the listed values
should be identical, if the network would be truly isotropic. However, they differ by approximately
10% due to the sparsity and the statistically small size of the network used.

2.4.2.3 Local behaviour

Local strain distributions in the complex fibrous networks obtained by the LS-XFEM formalism are
analyzed in this section by comparing them against the high resolution FEM solutions. In Fig. 18
& 19, the normalized strain distributions are plotted for, respectively, the LS-XFEM (48475 nodes)
and standard FEM solution with a fine mesh (160801 nodes).
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(a) Normalized strain distribution, εxx/(βl∆χ) (b) Magnified view of the dashed region

Figure 18: LS-XFEM solution obtained with refined mesh (48475 nodes, c=0.9 and q=0.5).

(a) Normalized strain distribution, εxx/(βl∆χ) (b) Magnified view of the dashed region

Figure 19: FEM with mesh size hS=l/400 for the network (c=0.9 and q=0.5).
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(a) Cross section A–A (b) Cross section B–B

Figure 20: Normalized strain in the network at cross-sections A–A and B–B unresolved regions.

The strain distribution obtained by the LS-XFEM is accurately computed in the overall network
as well as in the bonds. For a better comparison, the magnified views of the normalized strain
distribution are plotted in Fig. 18b and 19b. The normalized strains along the cross-section A–A and
B–B are further plotted in Fig. 20. At a few locations, e.g. at x/l=0.16 in the dashed box in Fig. 20a,
a strain value is predicted by LS-XFEM, whereas there is no value for the reference FEM. This is
because in the FEM this element is in a void whereas in the LS-XFEM solution, the corresponding
finite element is identified as an interfacial element, as is noticeable in Fig. 21b. The area of fibre
in the element is captured accurately by the element through the sub-triangulation stated earlier.
However, there is no strain predicted at this location by the standard FEM employing the fine mesh
used here. As the position of the centroid of the finite element inside the fibre is the sole criterion
for modeling the fibres in standard FEM, it is observed in Fig. 21a that the corresponding finite
element centroid lies outside the fibre thereby modeling it as a void with no strains. Similar effects
would occur in bonded areas, with unresolved regions in FEM where it fails to capture the fibres
despite its fine mesh. Therefore, the LS-XFEM results in a more accurate strain distribution in the
cross-section A–A of the network with a smaller system size, even though the fibre geometry and
the mesh are decoupled.

The results presented above demonstrate the ability of the proposed LS-XFEM formalism to
resolve the effect of the network’s geometry and fibre hygro-mechanical properties on the hygro-
mechanical behavior at the sheet-scale, in spite of making use of a rather coarse discretization. This
opens the possibility to systematically study the effect of different microstructural parameters at an
affordable computational cost.

2.5 C O N C L U S I O N S

This chapter presented a computational methodology for analysis of the hygro-mechanical re-
sponse of fibre networks using an XFEM framework with a level set based geometry description.
A two-dimensional unit cell consisting of a network of fibres has been considered to this end. It
was subjected to free expansion by a uniform field of hygroscopic loading caused by a change
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(a) FEM(160801 nodes) (b) LS-XFEM formalism (48475 nodes)

Figure 21: The discretized network with the finite element triangle at c/s A-A and x=0.16 are highlighted.

in moisture. Rectangular fibres were generated randomly to produce periodic cells representing
complex networks. The initial geometry of each fibre was described using a level-set function.
The coupling between level-sets and the XFEM was carried out by means of a Heaviside function
enrichment based on the level-set function. The edges of the fibres were captured from the nodal
values of the level-set function. In this manner, a connection was established between the finite
element mesh and the internal fibre geometry using the level-set formalism, which simplifies and
improves the efficiency of computations for complex geometries in XFEM.

An accurate tracking of the boundaries of the fibres in the network was achieved, especially in the
bonded regions, which matter for the prediction of the hygro-mechanical response of the network
subjected to moisture infiltration. Local fields in the network (stress, strains and displacements) could
be evaluated accurately as compared to a reference finite element solution with a fine mesh. The LS-
XFEM results were obtained with a relatively small system size. The LS-XFEM formalism is thus a
suitable tool for modeling fibrous networks while capturing the interfaces with an adequate accuracy.

In the LS-XFEM formalism as we saw in 2D with a lower system size, it does good work in
prediction of the hygro-mechanical response of complex fibrous network. Consequently in 3D,
with a lower system size this may result in reduced computational efforts and therefore might be
a big advantage. At the sametime, it has benefits of capturing the geometry accurately with this
lower system size. In the subsequent chapters, the standard FEM approach was used for modelling
because the simulations presented there are two-dimensional and the computational expenses were
affordable. Also, we are interested in assessing certain hygro-mechanical behaviour of the networks
qualitatively. The hygro-mechanical response of the networks does not undergo any significant
changes qualitatively upon adoption of the standard FEM as compared to LS-XFEM.

Possible extensions of this work include the modeling of irreversible shrinkage behavior in
paper like materials. During the manufacturing process of paper, internal stresses are developed
when the paper is dried under tension. They are released when the paper is subjected to a moisture
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cycle, resulting in irreversible shrinkage [7]. This behavior can be included by considering suitable
constitutive models.



3
M I C R O - M E C H A N I C A L M O D E L I N G O F I R R E V E R S I B L E
H Y G R O S C O P I C S T R A I N I N PA P E R S H E E T S E X P O S E D T O
M O I S T U R E C Y C L E S

Paper is a complex material consisting of a network of cellulose fibres at the micro-level. During
manufacturing, the network is dried under restraint conditions due to tension in the paper web
in machine direction. This prevents it from shrinking and gives rise to internal strains that get
stored in the produced sheet. Upon exposure to a moisture cycle, these strains may be released.
This results in permanent shrinkage that may cause curls or waviness in the printed sheet. The
prime objective of this chapter is to model this irreversible shrinkage and to link its magnitude
to the properties of the fibres and the network. For this purpose, randomly generated isotropic
fibrous networks of different coverages (ratio of the area occupied by fibres over the cell face) are
modeled by means of a periodic representative volume element (RVE). Within such RVEs, a finite
element method combined with a kinematic hardening model at the scale of the fibres is used to
capture the irreversible response. Computational results obtained demonstrate that the irreversible
strains increase until a certain coverage and thereafter subsequently decrease in magnitude. This
phenomenon is explained by considering the area fraction of free-standing fibre segments relative
to bonded fibre segments in the network. A structure-property dependency of irreversible strains at
the sheet-level on the microstructural parameters of the network is thereby established.

Keywords: Fibrous network, restrained drying, irreversible strains, coverage

3 This chapter is based on: P. Samantray, R.H.J. Peerlings, T.J. Massart, M.G.D. Geers, 2019. Micro-mechanical modelling
of irreversible hygroscopic strain in paper sheets exposed to moisture cycles. In preparation.
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3.1 I N T RO D U C T I O N

Paper belongs to a category of materials that are composed of a network of fibres produced from
wood pulp. At the micro-level, parts of fibres are bonded with each other at some locations while
they are free standing elsewhere as seen in the two fibres periodic cell in Fig. 22b of a network
of parallel fibres infinitely long as shown in Fig. 22c. This meso-scale network for paper was
used earlier by Bosco, Peerlings, and Geers [7] to analyze the irreversible strains. During the
manufacturing process, the paper fibres obtain a preferential orientation (in machine direction)
which results in an anisotropic behavior of paper [56]. Upon exposure of a sheet of paper to a humid
environment, anisotropic moisture induced swelling, or hygro-expansion takes place [37]. This
swelling originates at the scale of fibres and gets propagated through the network by the inter-fibre
bonds, where interactions between the hygroscopic and the mechanical properties of the fibres occur.

(a) Wet state (X) & re-
strained dried (Y)

(b) Two fibres of the network in a
periodic unit cell

(c) An orthogonal family of par-
allel fibres (Meso-scale net-
work)

Figure 22: Fibre segment activation mechanism and Meso-scale network representation.

In applications like printing, the consequences of these deformations may be observed through
curl, waviness and cockling at the macro-scale. Understanding these phenomena and their depen-
dence on the properties of the fibres and the network is essential to predict the overall response of
the material at the sheet-level.

The overall behavior of paper is dependent on the drying phase during its manufacturing process.
In the case of restrained drying, an initial strain is generated in the paper fibres due to the fibre
segment activation mechanism [74]. According to this mechanism, restrained drying of the paper
fibres leads to a decrease in the orientation angle of the microfibrils with respect to the axis of the
fibres, as sketched in Fig 22a. As a result, the fibres are stretched and develop an internal stress.
This mechanism induces dried-in strains that remain in the paper after manufacturing. When the
manufactured paper is exposed to a moisture cycle beyond a certain moisture content, the initial
dried-in strains are released to some extent resulting in irreversible shrinkage. This effect was
measured for instance by Mäkelä [43] as illustrated in the experimental data in Fig 23b. This is
generally interpreted as a permanent or irreversible hygroscopic strain. However, these dried-in
strains are absent if paper would be dried freely in the manufacturing process. Therefore, a reversible
hygroscopic response is observed upon exposure to a moisture cycle as noticed in Fig. 23a. In
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(a) Freely dried (b) Restrained dried

Figure 23: Experimental results for a hand sheet obtained by Mäkelä [43].

order to fully understand this characteristic behavior of paper and assess the microstructural factors
affecting it, a model of the underlying complex fibrous network is essential.

Published works on the relationship between the macroscopic behavior of fibrous networks and
the microstructural parameters include the dependence of stress transfer on the correlation length
in a network [5]; fracture of the network dominated by fibres longer than the average length [2];
the mechanical response of fibrous networks depending on the curl ratio [77]; the magnetic and
mechanical response of bonded networks of metal fibres due to filling in voids [15]; the influence of
the aspect ratio and fibre concentration on the effective stiffness of planar fibre networks [76]. Early
attempts at structure-property relations for fibrous networks specifically addressed the mechanical
response. [1, 12, 17] studied the stiffness of fibre networks by taking into account i.e. the axial forces
and transverse properties of fibres. Some of the papers considered the bonds in the networks enabling
models to transmit axial and shear forces along with torsional and bending moments [53, 63, 67].
In Kulachenko and Uesaka [36], it was shown that the strength and the elastic modulus of the fibre
network had little variation as long as the average number of fibres and degree of the orientations are
kept constant. In Shahsavari and Picu [66], a simple relation was formulated which creates the least
model size at which the size effect does not exist anymore. Dirrenberger, Forest, and Jeulin [20]
determined RVE sizes after carrying out homogenization for thermal and elastic properties by FEM
with mixed and uniform boundary conditions for many realizations.

Among the available studies, some focused on the hygro-expansion and dimensional stability of
the paper, e.g. [47, 59, 71, 72]. In them, the hygro-expansivity of networks is studied by establishing
a relation between the dimensional stability and different parameters that affect it, like the fibre-fibre
contact ratio, relative humidity, wet pressing of sheets, density or exchange of heat and moisture
between paper and surroundings. Considering the irreversible strains at sheet scale of paper as
discussed a little earlier, several complex phenomena occur at different scales at the micro-level that
may be responsible for such behavior. Therefore, it is difficult to associate a particular mechanism to
the irreversible hygro-mechanical response. The mechanisms responsible for such behavior of paper
sheets are still being discussed currently in the literature. However, the literature provided insight
on the influence of fibre segment activation mechanism on the irreversible hygroscopic strains.
Recently, Bosco, Peerlings, and Geers [7] studied the irreversible shrinkage response of a meso-scale
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simplified network as shown in Fig. 22b that is subjected earlier to restrained drying. In order to gain
insight into the irreversibility phenomenon occurring at the sheet scale, we have also described it by
adopting the fibre segment activation mechanism. Our main goal is to understand the dependence
of the results on the network by considering a random network model instead of meso-scale network.

The main objective of the present work is to gain a qualitative understanding of the irreversible
hygroscopic response of a complex fibrous network of paper by modelling it numerically. For this
purpose, a two-dimensional periodic random network model similar to that of Bosco, Peerlings, and
Geers [7] is used, exploiting the kinematic hardening plasticity model with a moisture dependent
yield strength. The use of plastic models as well as a yield strength for the fibres is currently under
discussion in literature. One of the main features of the constitutive model is the occurrence of
irreversible shrinkage in the longitudinal direction of fibres based on the fibre segment activation
mechanism. This particular modeling aspect of irreversible shrinkage of complex paper fiber net-
works was not addressed so far.

Following earlier work by Bosco, Peerlings, and Geers [9], the fibre network is generated in a 2D
framework with fibres being modeled as ribbon like rectangular domains. In the present contribution,
an isotropic orientation distribution function of the fibres is used in the generation of the network,
to resemble a hand sheet. A linear kinematic hardening model is used to represent the irreversible
shrinkage in longitudinal direction of the fibres associated with the activation mechanism. The
phenomenon of manufacturing induced dried-in strains is explicitly incorporated. The release of
strains is represented as a quasi static phenomenon and therefore a rate-independent model is
adopted. This is an adequate assumption for understanding the effects of network properties on the
sheet-scale behavior.

This chapter is organized as follows. In Section 2, the modeling methodology for capturing the
irreversible behavior of fibres is described, along with the details of the fibre constitutive model.
Results highlighting the irreversible shrinkage of the complex network are presented in Section 3.
Interactions between the activation mechanism and microstructural features (e.g. coverage) are also
investigated in this section. Finally, in section 4, conclusions and perspectives are provided.

Throughout this contribution, the following notations are used. Scalars, vectors and (Cartesian)
tensors are denoted by a,~a and A respectively; 4th order tensors are represented by 4A. For tensor
and vector operations, the following equivalent notations are used with Einstein’s summation
convention on indices: A:B=AijBji with i =x,y,z for the global reference system and i =l,t,z for the
local, fibre-reference system. The dyadic product between vectors is represented as~a~a. The Voigt
notation used to represent tensors and tensor operations in a matrix format is as follows: a and A
denote a column matrix and a matrix of scalars respectively. Matrix multiplication is denoted as
A a = Aijaj.
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3.2 M I C RO S T RU C T U R A L M O D E L I N G B Y K I N E M AT I C H A R D E N I N G P L A S T I C I T Y

3.2.1 Random network creation

In the current study, assuming the paper fibres to be ribbon shaped in nature, a set of rectangular
shaped fibres are randomly generated. The length of the fibres is denoted by l f and the width by,
w f =l f /50. The centroids of the fibres are randomly generated in the domain [x,y]∈ [0, l]× [0, l]
within a periodic unit cell of edge length, l=l f as shown in Fig. 24.

Figure 24: A periodic random fibrous network of coverage, c=0.5 represented by a periodic unit cell.

The orientation of the fibres are randomly generated. All the fibres have identical rectangular
shape and dimensions. The entire network is periodic along its boundary edges. Fibre parts which
extend beyond the boundary of the unit cell are periodically copied into the cell at the opposite
edge. At the regions of overlap, the fibres are assumed to be perfectly bonded. In order to depict the
denseness of the network, the coverage c (ratio of the total area occupied by all fibres and the area
of the periodic unit cell) is defined, which will be used in the next section for analysis of results.

3.2.2 Modeling fibre longitudinal and transverse behavior

In order to describe the irreversibility phenomenon in the longitudinal direction of a fibre only due
to tension, a plane stress plasticity model with linear kinematic hardening is adopted. After the paper
is manufactured under restrained conditions, it is subjected to free expansion due to a moisture cycle
representing the absorption of moisture from the environment as well as the evaporation of moisture.
Accordingly, there is no externally applied stress responsible for the irreversible phenomenon as
observed in the experiments described earlier [43]. However, the decreasing moisture content and the
initially stored backstress during the restrained drying process determine when plasticity may occur
in the re-wetting phase via the release of the initially dried-in strains or backstress. A kinematic
hardening model will thus be used for modeling the release of strains in absence of an external
stress, but triggered by the internal backstress only. We will assume that this phenomenon takes
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place over a sufficiently long period of time so that time-dependent deformations can be ignored.

In this contribution, a two-dimensional generalization of the fibre constitutive model proposed by
Bosco, Peerlings, and Geers [8] is adopted. The general constitutive law for a fibre makes use of a
plane stress assumption in the thickness (z) direction.

In the kinematic hardening plasticity model with linear hardening used, the total strain in a fibre
has an additional component of plastic strain in addition to the elastic and hygroscopic strains so as
to model the irreversible hygroscopic strains.

ε f = eε f + pε f + hε f (16)

where ε f , pε f , pε f and hε f are the strain tensor, the elastic strain tensor, plastic strain tensor and
hygroscopic strain tensor of the fibre respectively.
When subjected to a moisture change ∆χ, the fibres develop a hygroscopic strains hε f given by.

hε f = β f ∆χ (17)

where β f is the hygro-expansivity tensor.

Figure 25: The local and global coordinate axes.

The stress in the fibre is given by

σ f = 4D f : eε f , (18)

= 4D f : (ε f − pε f − hε f ) (19)

Here, where 4D f , is the elastic constitutive tensor. In Voigt matrix notation, 4D f and β f are
represented as

D f =


El

(1−νltνtl)
Elνtl

(1−νltνtl)
0

Etνlt
(1−νltνtl)

Et
(1−νltνtl)

0

0 0 Glt

 , β f =

βl

βt

0

 (20)

where El and Et are the elastic moduli in the longitudinal and transverse direction with respect to
the fibre axis, Glt is the in-plane shear modulus, νlt and νtl are the in-plane Poisson’s ratios. βl and
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βt denote the coefficients of hygroscopic expansion in the longitudinal and transverse direction of
the fibre axis respectively. These material parameters are assumed to be independent of χ. This will
give a better picture of the sole qualitative effect of the microstructural parameters like coverage,
free-standing fibres etc on the irreversible strains, while keeping the model relatively simple and the
number of parameters manageable.
The local reference system (l,t,z), of a fibre m is oriented at an angle θ(m) with respect to the global
reference system (x,y,z), see Fig. 25. Therefore, it is important to transform the above expression
from the local frame of the fibre to the global frame for each fibre in the network. The rotated elastic
constitutive tensor and effective hygroscopic coefficient, as described (Roylance [55]), are thereby
obtained.

In the kinematic hardening model, an associative flow rule is used to determine the plastic strain

rate tensor, pε̇ f and kinematic strain hardening stensor,
˙

ξ
f
.

˙pε f = γ̇N ,
˙

ξ
f
= −γ̇N (21)

where γ̇ is the plastic multiplier and N gives the direction of plastic flow. The plastic strain tensor
pε f , contains only one non-zero component i.e. in the longitudinal direction.

pε f =

 pε
f
l

0
0

 , ξ̄
f
=

 ξ̄
f
l

0
0

 (22)

q f = - 4H f : ξ
f

(23)

F f = |(σ f − q f ) : ~p~p| − σy (24)

The Kuhn Tucker consistency conditions must be satisfied γ̇ ≥ 0, γ̇Ḟ f = 0, F f ≤ 0,

N =
∂F f

∂σ f = −∂F f

∂q f

= sign((σ − q) : ~p~p)~p~p (25)

4H f is the kinematic hardening tensor and 4q f is the backstress for the fibre respectively in Eq. (23).
The tensor N denotes the direction of the plastic flow as given in the (25).
In Voigt matrix notation, 4H f is represented as

H f =

H 0 0
0 H 0
0 0 H/2

 (26)

where H is the kinematic hardening modulus of the fibre. The yield function F f for the fibre is
expressed as (24). In this expression, the first term gives the difference of the mechanical stress
σ f and the backstress q f in the longitudinal direction of the fibre with the help of the longitudinal
projection vector ~p which is defined as ~p= cosθ~ex + sinθ~ey, with θ representing the angle between
the fibre direction and the machine direction of the paper. In this way, only the plastic deformation
caused by the stresses in the longitudinal direction of the fibres is taken in account.
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The yield function in (24) also depends on the yield stress for the particular fibre. To simulate the
hygroscopic response, the yield stress is postulated as a piece wise linear function of the moisture
content such that it decreases with an increase of the moisture content.

σy =

σy0(1− χ
χw

), if χ < χw

0 if χ ≥ χw.
(27)

Here, σy0 is the maximum yield stress corresponding to a vanishing moisture content. χw is the
moisture content at which the yield stress vanishes.

In the bonded regions, the hygro-elasto plastic response of each fibre is computed individually
and the resulting force vector and stiffness contribution from each of the fibres is added for the
particular finite element. The periodic unit cell containing the fibrous network is discretized with
a regular finite elements mesh and solved with a non linear incremental-iterative standard finite
element method using the Newton-Raphson scheme. In order to update the stresses in the linear
kinematic hardening model, a return mapping algorithm based on trial states is adopted. For the
solution procedure, the expressions for the plastic multiplier and the consistent tangent operators
are required which are derived in the appendix ((71) and (73)).

The longitudinal behavior in compression and the transverse behavior of the fibres both in tension
and compression are assumed to follow a hygro-elastic constitutive behavior. This is justified by the
fact that the irreversibility is attributed to tensile stresses in the longitudinal direction of the fibres
according to the fibre segment activation mechanism explained before.

3.3 R E S U LT S A N D D I S C U S S I O N S

In this section, the different phases of the manufacturing process of paper followed by its exposure
to a wetting-drying cycle is described. This entails the irreversible shrinkage of the simplified and
complex fibrous networks, which is investigated as a function of the micro-structural properties
of the fibres and the overall properties of the network. For this purpose, the constitutive model
discussed in the previous section is used at the fibre level within a finite element context.

3.3.1 Modeling the effects of manufacturing constraints

During the manufacturing process of paper especially the hand sheets, the wet pulp is initially dried
under tension and then the restraints are removed. This is followed by free drying. In the current
work, this sequential drying process in manufacturing, followed by the subsequent moisture cycle
on the paper sheets can be represented schematically for a paper sheet by the diagram given in
Fig. 26. Here χlow is the lowest moisture content reached, in the as-manufactured sheet as well as
at the end of the moisture cycle, χhigh is the highest moisture content at the start of fibre bonding
and also during the moisture cycle, χcons is the moisture content until which the fibre is dried under
restraint, which is subsequently removed for lower moisture contents. The moisture content range
is chosen in accordance with the work performed by Larsson and Wagberg [37] with χlow=0.038,
χcons=0.08, χhigh=0.12 and χw=0.13.
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Figure 26: Schematic diagram of the entire paper making process and subsequent exposure to a wetting-drying
cycle.

The paper sheet initially is restrained dried leading to the development of plastic strains in the
fibres. Next, the stress is gradually released by removing the restraints in the second phase (release
of restraint - phase 2). This causes the paper to shrink in the direction in which it was previously
restrained. Thereafter, it is dried freely (phase 3) which results in more shrinkage of the fibres
thereby concluding the manufacturing process (free drying). In the manufacturing process, even
though there is no application of external stress on the paper sheet, internal stress (back stress) exists
in the fibres due to the plastic deformation undergone by them in restraint drying.

Thereafter, the paper sheet is subjected to a moisture cycle (χlow − χhigh and vice-versa). This
corresponds to a uniform increase of moisture without any restraint upon exposure to a humid
environment (free swelling/Rewetting - phase 4). As the moisture content is increased, the yield
stress decreases, the backstreses are sufficient enough to drive plastic yielding (back flow) even if
there is no externally applied stress. Subsequently, it is dried freely causing again shrinkage (Free
drying/Re-drying - phase 5).

3.3.2 Input parameters for fibres and networks

In this study, the periodic unit cells (as described earlier) with coverages c=0.25, 0.5, 1, 1.5, 2.0
and 5.0 will be analyzed. Here, the material parameters chosen are different in comparison to
the previous chapter because a different model is adopted to gain insight into the sheet-scale irre-
versible strains. Following the work performed by Bosco, Peerlings, and Geers [7] and adopting
its values for all the mentioned parameters, the longitudinal elastic stiffness of the fibre is taken as
El=5.176×102σy0, whereas in the transverse direction, Et=El/6 (Strömbro and Gudmundson [68]).
The shear modulus is taken as, G=El/10. The hygro-expansive coefficients along the longitudinal
and transverse directions are given by βl=0.03, βt=20βl=0.6 (Niskanen [45]). The in-plane Poisson
ratios are, νlt=0.3 and νtl=0.05 (Schulgasser and Page [63]). The kinematic hardening modulus
adopted in the plasticity model presented earlier is H=100σy0. All of the above quantities are as-
sumed to be constant irrespective of the moisture content. The numerical simulations are performed
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with a uniform mesh size h=l/200.

Now, depending on the number of fibres n generated in the unit cell, a coverage c is defined as the
ratio of the total area occupied by all fibres and the area of unit cell. It is related to the grammage g
via

g = cρ f t

where ρ f is the density of fibres and t is the thickness of the fibres. For example, considering a
density of the fibres ρ f =1500kg/m3 ([45]), a thickness t=10µm and a coverage c=1.0 as used in the
results section, the corresponding grammage is 15g/m2. As the coverage increases, with density and
thickness remaining constant, the grammage scales linearly with the coverage as indicated by the
above relation.

3.3.3 Simplified meso-scale network

The fibrous network is first modeled using a periodic network consisting of two perpendicular
families of equidistant fibres as seen in Fig. 22c using a plane stress model, see also (Bosco, Peer-
lings, and Geers [7]). This is the same network model as used by Bosco, Peerlings, and Geers [7]
but solved numerically. The irreversible behavior of a meso-scale network with coverage c=0.5,

(a) Start of phase 4. (b) End of phase 4.

Figure 27: Normalized local plastic strain (longitudinal component) distribution pεl/(βl∆χ), in meso-scale
network of coverage, c=0.5.

consisting of two perpendicular fibres, when subjected to the papermaking and subsequent moisture
cycle, is computed numerically using the kinematic hardening model described previously. In
Fig. 27a, it can be noticed that at the end of the paper manufacturing process, the dried-in strains
or plastic strains, pε

f
l (normalized by βl∆χ, where ∆χ = χhigh − χlow, have developed in the

idealized paper network. After subjecting it subsequently to an increase in moisture content, these
dried-in strains (normalized by βl∆χ) are largely released as depicted in Fig. 27b. Note that these
plastic strains do not develop in (and are not subsequently released from) the bonded regions but
rather in the free-standing parts of the fibres. In these free standing fibre regions, the dried-in strains
(plastic strains) or corresponding backstresses are initially developed at the end of restrained drying
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(a) Normalized local longitudinal plastic strain
pεl/βl∆χ vs moisture content χ.

(b) Normalized hygro-expansive strain εxx/(βl∆χ) vs
moisture content (χ).

Figure 28: History of the normalized local plastic strain (longitudinal component) in the free standing fibre
region of the network and the normalized macroscopic hygro-expansive strain εxx/(βl∆χ) during
the moisture cycle (χlow− χhigh and vice-versa) for different coverages of the meso-scale network.
Note: Curves have been shifted such that εxx=0 corresponds to as-produced sheet in (b)

as can be seen in Fig. 28a. Thereafter, the restraint is released at a constant moisture content and
then it is dried freely. In both of these phase, the dried -in or plastic strains remain constant as there
is no restraint to produce stress to cause plastic yielding. As the network is subjected to a moisture
increase (in the moisture cycle), the yield stress decreases but the back stresses cause yielding in
reverse direction leading to release of these dried-in strains. Finally, when the moisture is decreased,
the yield stress increases and there is no plasticity evolution. Therefore, the plastic strain remains
constant.

At the macro-scale, this local behavior of the fibres results in a global release of strain or
permanent strain as depicted in Fig. 28b for the three values of the coverage. In the initial phase
of moisture cycle when the moisture content increases, there is a change in the slope (a kink is
observed) after a certain moisture content. At this point, the plastic strains start to get released until
the moisture content starts to decrease. This occurs for the meso-scale network of all coverages.
Also, we can notice, that as the coverage increases, the irreversible shrinkage also increases in
magnitude. This computed response is in agreement with the findings by Bosco, Peerlings, and
Geers [7] if not quantitatively.

However, in reality the networks are complex and have high coverage (more bonded regions).
Therefore, they have different magnitudes of irreversible strains which are discussed in the next
subsection.

3.3.4 Complex networks

In this section, the numerical model is exploited for more complex 2D fibrous networks. Random
isotropic fibrous networks are generated for coverages c = 0.5, 1.0, 2.0 and 5.0. The local plastic
strains in the networks are computed at the end of the manufacturing process. Fig. 29 illustrates the
corresponding distribution of plastic strains normalized with βl∆χ. When these networks are next
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Figure 29: Normalized local longitudinal plastic strain distribution pε
f
l /(βl∆χ) in networks with coverage,

c=0.5, 1.0, 2.0 and 5.0 (left to right) after paper is manufactured.

subjected to a moisture cycle χlow to χhigh and vice-versa, the plastic strains are partly released as
can be observed in Fig. 30. At the macroscopic scale, this release in the networks is observed as
an overall irreversible shrinkage as illustrated in Fig. 31. Fig. 29 reveals that the area of plastically

Figure 30: Normalized local longitudinal plastic strain distribution pε
f
l /(βl∆χ) in networks with coverage,

c=0.5, 1.0, 2.0 and 5.0 (left to right) after release of strains.

deformed fibre segments increase as the coverage increases from c=0.5 to c=2.0, followed by
a decrease for higher coverages, e.g. c=5.0. At the macro-level, the irreversible shrinkage also
increases from c=0.5 to c=1.0 and decreases thereafter as noticed in the hygro-expansive strain
plots (normalized with βl∆χ) in Fig. 31. Additionally, at the macro-scale, the release of these
irreversible strains in the moisture cycle are not observed as a kink anymore like in the meso-scale
networks but as a smoother transition. Despite the fact that a linear hardening law was used, which
in the highly idealized model of Bosco, Peerlings, and Geers [7] resulted in a bi-linear hygroscopic
network response, the response of the present random network is nonlinear, as is also observed
in experiments. This is due to the heterogeneity of the network, as a result of which the plastic
strain release is initiated at different moisture contents in different fibre segments. As reported in the
experiments [43], the irreversible strains in MD for paper of grammage g=149g/m2 (paper ID-4)
of around εirr =1.4×10−3. In comparison, the value of irreversible deformations predicted by the
numerical model at c=1.0 is around 9.2×10−4 but at c=5.0 it reduces to 1.1×10−4. One of the
possible reasons could be that the model does not take into account the plasticity in compression
which occurs more at higher coverage like c=5.0, thereby leading to negligible irreversible strains.

To establish that the irreversible strain is stemming from the free standing fibre parts, the hygro-
mechanical response of networks with a low coverage c= 0.5 and c=1.0 is computed by allowing for
plasticity only in the free standing part of the fibres or conversely only in the bonded part of fibres.
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Figure 31: Normalized macroscopic strains εxx/(βl∆χ) in the networks subjected to a moisture cycle after
manufacturing.

(a) c=0.5 (b) c=1.0

Figure 32: Hygro-expansive strain, εxx normalized with βl∆χ in the fibrous network 1 obtained by numerical
model.

The corresponding results for the normalized macro-level hygro-expansive strain, highlighting the
irreversible strains, are provided in Fig. 32. Clearly, at the sheet-level, the irreversible shrinkage
depends on plasticity occurring in the free-standing part of fibres in the network, as the response
obtained with plasticity only in the free standing parts is virtually identical to that of the reference
network.

On the other hand, when only the bonded parts of fibres in the network are subjected to plasticity,
the irreversible shrinkage at the sheet-level becomes negligible. This further confirms the finding
that the observed irreversibility phenomenon is essentially due to dried-in strains in the free standing
fibre regions.

So far, we showed results for for a single network with coverage c=0.5, 1.0, 2.0 and 5.0. The
simulations have been repeated for five realizations at each coverage, still using randomly generated
isotropic complex networks. The irreversible shrinkage is defined as difference of the hygro-
expansive strain, εxx at the beginning of moisture cycle and end of moisture cycle. The magnitude
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(a) Area-fraction of free standing fibres in a network. (b) Normalized irreversible strains εirr/(βl∆χ) at the
sheet-level.

Figure 33: Plots of area fractions and irreversible shrinkage for five network realizations of different cover-
ages.

Figure 34: Coefficient of effective hygro-expansion normalized with βl at the sheet-level for different cover-
ages of complex networks.

of the irreversible shrinkage εirr normalized with (βl∆χ) observed at the sheet-level for each of
these networks and the area fraction distribution of free-standing fibre parts are depicted in Fig 33.
It is observed in Fig. 33b that as the coverage increases, the irreversible shrinkage increases until a
coverage c=1 with a subsequent decrease until coverage, c=5.0. This dependency is closely related
to the area fraction of the free standing part of fibres which peaks in Fig. 33a at c=1.0. This confirms
that the free standing fibre parts in the network are responsible for the irreversible behavior of the
networks upon exposure to a moisture cycle. In the restrained drying, the bonded segments of the
fibres subjected to a mutual compression from the its constituting fibres, do not develop sufficient
stress to generate dried-in strains.

With higher coverages (c>2.0), the bonds also increase in area fraction while the fraction of free
standing fibre parts decreases, resulting in less plastic strains as already noticed in Fig. 29. Upon
exposure to a moisture cycle, this causes a lower irreversible shrinkage.

Additionally, as the fraction of bonded regions increases with the coverage, there is also more ex-
pansion of the network for a given change in moisture content. Therefore, the effective macroscopic
coefficient of hygroscopic expansion also increases in magnitude with an increase in coverage as
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observed in Fig. 34.

The average time taken for a single simulation of network of each coverage c=0.25-5.0 are in the
range of 16-85 hrs.

3.4 C O N C L U S I O N S

In the present chapter, the dependency of the (experimentally observed) irreversible shrinkage at
the sheet-level on the microstructural parameters in a fibrous network of paper is studied. The
irreversible shrinkage is associated with microstructural dried-in strains caused by the restrained
drying during the manufacturing process. Such dried-in strains get subsequently released upon
wetting, e.g. during printing operations. For this study, ribbon shaped fibres are randomly generated.
Using a standard homogenization approach, the paper consisting of a fibrous network is represented
as a periodic RVE. Relying on the hypothesis that the fibre segment activation mechanism is the
physical cause of these permanent deformations in paper, it is assumed that the irreversible shrinkage
occurs in the longitudinal direction of the fibres.

A constitutive model implementing kinematic hardening plasticity is adopted to model the
irreversibility in the longitudinal direction of the fibres in the network. This allows modeling the
irreversible deformation in paper subjected to moisture change with no applied external stresses,
reflecting the real conditions to which the paper is subjected during manufacturing with restraint.
The key findings of the current chapter are:

1. The magnitude of the irreversible shrinkage at the macro-scale in the fibrous network model
is a function of the coverage, i.e. density, of the network. Initially it increases with coverage until
c=1.0 but subsequently decreases to small values at higher coverages, c=5.0.

2. The irreversible phenomenon directly relates to the area fraction of the free standing parts of
fibres in the network. A higher coverage in network causes a reduction in free standing fibres, which
further results in a decrease of irreversible shrinkage.

3. The non-linear response at the macro-scale of the network during the moisture cycle is captured
even with a linear kinematic hardening model.

One of the limitations of the present work is the assumption of full kinematical bonding of fibres
in the bonded regions. This may influence the observed decrease of irreversible shrinkage predicted
by the model at higher coverages. The present work may be extended by the relaxing the kinematic
constraints at the bonds.

In the future, the material parameters El , Et, Glt could be modelled as a non-linear functions of
the moisture content of the fibres. Also, the model does not predict irreversible strains for coverages
beyond 5.0. In our current formulation, the rate independent model generates plastic strains only
in tension which can be extended to compression in a future task. This would entail generation
of different magnitude of plastic strains at the local fibre level and further permanent deforma-
tion. Additionally, incorporating relaxation of the assumption of the rigid bonds (allowing relative
displacements between fibres in bond) in the model would be interesting to further compute the
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irreversible strains at higher coverage too.

Experimentally, the moisture cycles do not lead to total release of the initially dried in strains.
There may be other phenomena responsible for such irreversible strains observed at the macroscale
which may be further explored.

Furthermore, in the current study, the release of the dried-in strains is represented as quasi-static
phenomenon. As a next step, a suitable rate-dependent model can be adopted to study the influence
of time on the irreversible shrinkage in fibrous networks.



4
M O D E L I N G T H E E F F E C T O F C R E E P I N PA P E R F I B R E S U N D E R
T H E I N F L U E N C E O F E X T E R N A L L O A D I N G A N D C H A N G E S I N
M O I S T U R E

Paper is composed of a network of fibres at the micro-scale. When subjected to external loading or
variations in moisture over different time scales, changes in strain that are non-linear with respect
to time are observed at the sheet level. In order to investigate this time-dependent behavior of
paper, a creep power law model is implemented within a finite element approach at the level of
single paper fibres. The rate-dependent model for single fibres adequately captures experimental
results taken from the literature. With the identified model at the level of single fibres, the time-
dependent hygro-mechanical response is upscaled towards the paper network-scale. To this end,
ribbon shaped fibres are generated randomly to form a periodic network represented by a unit cell.
The network-scale response, emerging from the rate-dependent fibre model, demonstrate the ability
to predict the response of networks subjected to relaxation at a constant moisture level. The model
also reproduces the release of irreversible strains upon exposure of a previously constrained dried
paper to a moisture cycle. Based on the study of these computational results, a better understanding
is achieved regarding the influence of mechanical and rate-dependent properties of single fibres on
the hygro-expansion of complete fibre networks and in particular of paper sheets.

Keywords: Fibrous network, creep hygro-mechanics

4 This chapter is based on: P. Samantray, R.H.J. Peerlings, T.J. Massart, M.G.D. Geers, 2019. Studying the effect of creep
in paper fibres under the influence of an external loading and changes in moisture. In preparation.
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4.1 I N T RO D U C T I O N

Paper is a complex material consisting of elongated, ribbon-shaped fibres exhibiting an anisotropic
behavior in nature. Exposure to changes in moisture content causes changes in the shape of fibres
leading to the development of hygroscopic strains. Such hygroscopic strains in individual fibres
are 20 times higher in the transverse direction as compared to the longitudinal direction [45]. More
importantly, it has been also observed that deformations in paper present a time-dependent character.

As observed earlier [43], paper dried under restraint, develops semi-permanent dried in strain
that gets released upon subjecting the paper to a moisture cycle. In view of the rate-dependent
response of paper, the magnitude of the dried-in strains generated in the manufacturing process
and their subsequent release become time-dependent as well. This for instance affects printing
operations, during which the printed paper may develop waviness or deformations, depending on
the rates of absorption and evaporation of the water contained in water based inks. Rate dependency
may also affect subsequent stages after printing, when the paper is exposed to ambient conditions,
during which the humidity varies over a period of time, possibly entailing macroscopic curls at the
sheet-level.

Investigations of the rate-dependent behavior of paper at different scales have been reported in
the literature. Some of the early experiments were performed on single fibres, allowing to analyze
creep at a constant moisture content under tensile loading [28, 32, 64]. It was observed in these
experiments that as single fibres are dried under tension, an increase in the strains occurs. This
behavior was explained by Page and Tydemann [50]. At the micro-level, the microfibrils in the
fibres form a helical structure. During drying, a reduction in the diameter of a fibre occurs, but the
length of the microfibrils and the number of revolutions along the fibre are preserved. This results
in a slight increase of the fibre length. Hence, an increasing in strain was reported in experiments
performed on single fibres after removal of water, subjected to a constant load. Later, this behavior
was also observed for single fibres subjected to cyclic humidity [64]. Moreover, single fibres were
also found to exhibit creep recovery upon removal of the load [64]. The influence of the presence of
hemicellulose on creep was also investigated.

At a much larger scale, tensile experiments performed on hand sheets revealed creep as well [11].
The time-dependent response of sheets of paper was also investigated to find high creep strain rates
in cyclic humidity compared to constant humidity [13], and by developing a method for quantifying
mechano-sorptive creep [51]. It was observed that the creep strain rate in single fibres is significantly
higher than in paper sheets [16]. Furthermore, inter-fibre breaking of bonds was also observed
during paper creep [50]. A linear relation was found between the creep strain rate under cyclic
humidity and constant humidity for both fibres and paper sheets [57].

For an increase in moisture content of paper, the creep is accelerated to a higher value, often
known as mechanosorptive creep or accelerated creep [13]. This is detrimental to the dimensional
stability of paper, either used in packaging or other applications. Many works have been per-
formed to establish a physical understanding for the occurrence of this phenomenon in paper sheets,
fiberboards and wood [4, 16, 19, 23, 29–31, 42, 58, 73]). These works focused in identifying the
parameters that cause the mechanosorptive creep like humidity cycling, bonding of fibres, redistri-
bution of the stresses in the network, fibril angle and slip planes and obtaining a mechanosorptive



4.1 I N T RO D U C T I O N 47

creep limit as well as developing constitutive models for it.

Several mechanisms were invoked to explain the creep behavior of paper. A moisture induced
stress concentration mechanism [23] as well as physical mechanisms at all structural levels of
paper, i.e. creation of free volume, microcompressions in inter-fibre bonds, anisotropic swelling and
change in fibril angle [24] and [25] were all used to explain mechanosorptive creep.

In order to gain insight into the rate-dependent response of paper, it is essential to capture the
main physical processes at play in a model. Earlier computational attempts were made based on
Cox’s network model [17], further extended to account for hygro-expansion, creep and bonds
(Alfthan [3]). Later, fibre kinks were incorporated allowing the model to capture the experimental
response in compression and tension (Strömbro and Gudmundson [68]). These models also con-
sidered anistropic fibre distributions and moisture dependent material properties (Strömbro and
Gudmundson [68]). Other works performed earlier were concerned with establishing a relationship
between the micro-structural and the macroscopic responses of fibrous network [2, 5, 15, 70, 76].

Some of the recent works on modeling fibrous materials described the mechanical and thermal
response of the network [20, 36, 66]. Some contributions addressing the mechanical response of
paper, incorporated the role of the bonds [53, 63, 67]. Recent work focussed on the modeling of
hygro-mechanical response of paper (Bosco, Peerlings, and Geers [8]).

Our main interest in this chapter is in rate and creep effects in the irreversible hygro-mechanics
of paper sheets and in identifying the fibre and network properties that affect the creep response
at sheet-scale. The present contribution extends recent work by Bosco, Peerlings, and Geers [8]
by incorporating the creep response in two-dimensional models of random fibre networks using
a rate-dependent plasticity model at the fibre-scale. This allows to investigate to which extent
microstructural parameters like fibre properties and coverage influence the macroscopic creep
response, i.e. the creep strain rates at the network-level. Also, the effect of rate dependency on the
release of irreversible strains upon moisture cycling of restrained dried paper is studied.

To achieve these goals, a rate-dependent creep model based on a power law is formulated at the
fibre-scale. One of the main features of the model is the implementation of the creep behavior in
the longitudinal direction of the fibre as suggested by the fibre segment activation mechanism, as
reported earlier in chapter 3 (Samantray, Peerlings, Massart, and Geers [62]). First, the response
is computed for single fibres and compared with available experimental results. The identification
of the creep parameters of the model is based on single fibre results taken from the literature.
Thereafter, the fibre-scale numerical model is used to obtain the rate-dependent response of the
fibre networks subjected to constant moisture and cyclic moisture conditions under the presence
of tensile loads. Using a random fibre network contained in a periodic cell and incorporating the
rate-dependent constitutive model in a finite element discretization of the network, the overall creep
response is determined.

The chapter is organized as follows: In Section 2, the constitutive model used at the scale of
the single fibres is described. The selected rate-dependent model is explained in Section 3. The
calibration of the single fibre constitutive model parameters is performed in this section based on
the results of single fibres tests presented in the literature. These results are next extended to the
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fibrous network-scale in Section 4. Finally, the conclusions are given in Section 5.

Throughout this contribution, the following notations are used. Scalars, vectors and tensors
are denoted by a,~a and A respectively. For Cartesian tensor and vector products, the following
equivalent notations are used, with Einstein’s summation convention on indices: A:B=AijBji with
i =x,y,z for the global reference system and i =l,t,z for the local reference system. The Voigt
notation used to represent tensors and tensor operations in a matrix format is as follows: a and A
denote a column matrix and a matrix of scalars respectively. Matrix multiplication is denoted as
(A a = Aijaj).

4.2 F I B R E S C A L E C O N S T I T U T I V E M O D E L

4.2.1 Fibre model

A single fibre-scale model is proposed to incorporate plastic strain rate effects when a fibre is
subjected to a tensile stress under a given moisture content. A partition of the total strain tensor ε f

is considered according to

ε f = eε f + cε f + hε f (28)

with eε f , cε f and hε f representing the elastic, creep and hygroscopic contribution respectively.

The hygroscopic strain tensor in the fibre, hε f is expressed as

hε f = β f ∆χ (29)

where χ is the current moisture content, ∆χ = χ− χre f is the change of moisture content with
respect to the reference moisture content, χre f and β f is the fibre hygro-expansivity tensor; in Voigt
notation relative to the local frame of reference (l,t,z) as shown in Fig. 35, it is given by

β f =

βl

βt

0

 (30)

For the mechanical response of the fibre, a plane stress condition in the z-direction (out of plane
direction, along fibre thickness) is assumed. The elasticity law for the fibre is expressed as

σ f = eε f = 4D f : (ε f − cε f − β f ∆χ)

where σ f , 4D f are the stress tensor and the elasticity tensor of the fibre respectively. In Voigt
notation (with respect to the local basis), the latter is represented as

D f =


El

(1−νltνtl)
Elνtl

(1−νltνtl)
0

Etνlt
(1−νltνtl)

Et
(1−νltνtl)

0

0 0 Glt

 (31)

The fibre elasticity being anisotropic in Eq. (31), El and Et denote the elastic moduli in the longitu-
dinal and transverse direction respectively. Glt represents the in-plane shear modulus, νlt and νtl are
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Figure 35: The local and global coordinate axes.

the in-plane Poisson ratios.

In order to describe the time-dependent plasticity effects associated with mechanical loading or
changes in moisture content, a non-linear creep law is adopted. The underlying mechanism which
we envision is the fibre segment activation mechanism: the microfibrils in the fibre wall tend to
align themselves towards the fibre axis upon application of a tensile load or restrained drying of
fibres. Internal stresses or strains thereby develop in the fibres, which may later be released upon
exposure to a moisture cycle. The plastic deformation and internal stress due to the realignment
of microfibrils was modeled by Samantray, Peerlings, Massart, and Geers [62] by a kinematically
hardening rate-independent plasticity model. Here, we extend this modeling with a rate dependence.
The rate-dependent plasticity model is based on a power law and defines the creep strain rate tensor
cε̇ f according to the flow rule

cε̇ f = γ̇ N (32)

where γ̇ determines the magnitude and N the direction of the plastic flow. The former is given in
terms of the stress tensor σ f and the backstress q̄ f by the power law

γ̇ =
γ0

τ

{
(σ f − q̄ f ) : ~p~p

σy

} 1
m

(33)

where γ0 is a constant characteristic strain, τ is a characteristics time, ~p a unit vector parallel to the
fibre’s longitudinal axis, σy the moisture dependent yield stress and m the rate sensitivity exponent.
In the limit of m→0, the model reduces to a rate-independent plasticity model. The projection
on the longitudinal vector ~p implies that only normal stress in longitudinal direction drives the
evolution of creep strain. Consistent with that, the direction of plastic flow, given by the tensor N
which is defined as

N = sign((σ f − q̄ f ) : ~p~p)~p~p (34)

The double product product with ~p~p allows projecting the stress and backstress on longitudinal direc-
tion in consideration to enforce the rate-dependent model. These are defined as ~p=cosθ~ex + sinθ~ey
where θ is the angle between the longitudinal fibre direction and the machine direction of the paper.
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The backstress q f which models the internal stresses in the fibre due to fibre activation, evolves
with plastic straining according to the evolution law

q f = −4H
f

: ξ
f

(35)

where 4H f is the 4th order kinematic hardening moduli which we define in Voigt notation as

H f =

H 0 0
0 H 0
0 0 H/2

 (36)

and ξ
f

is the strain like internal variable which follows the evolution law

ξ
f
= −γ̇N (37)

Both quantities are equal to zero in the initial, relaxed state of the fibre.

The yield stress σy, finally, which appears in the denominator in the power law Eq. (33), depends
solely on the moisture content χ, according to the bilinear law

σy =

σy0(1− χ
χw

), if χ < χw

0 if χ ≥ χw.
(38)

where σy0 is the yield stress in the fully dry state (χ = 0) and χw represents a moisture content at
which the strength of the fibre is fully gone and no energy can hence be stored in it anymore.

4.2.2 Implementation aspects

A return mapping algorithm is used to solve the rate-dependent creep model at the fibre-level. It is
represented as

σ f ,t+∆t = σ
f ,t+∆t
trial − ∆γ 4D f : N (39)

q f ,t+∆t = q f ,t+∆t
trial + ∆γ 4H f : N, (40)

F f ,t+∆t
trial =

(
σ

f ,t+∆t
trial − q f ,t+∆t

trial : ~p~p
σy

)
sign

(
(σ

f ,t+∆t
trial − q f ,t+∆t

trial ) : ~p~p
σy

)
(41)

∆cε f = ∆γN (42)

∆ξ
f
= −∆γN (43)

where σ
f ,t+∆t
trial and q f ,t+∆t

trial are the trial stress and trial back stress tensors in the fibres respectively.
Upon further derivation (see Appendix (87)), the equation allowing to compute the plastic multiplier
is derived as

G(γ) = ∆γ− γ0∆t
τ

[F f ,t+∆t
trial − ~p~p : (4D f + 4H

f
) : ~p~p ∆γ]

1
m = 0 (44)



4.3 I D E N T I F I C AT I O N O F S I N G L E F I B R E PA R A M E T E R S F RO M E X P E R I M E N TA L T E S T S 51

Since the creep strain evolution is based on a power law, a non-linear equation is obtained for the
computation of the plastic multiplier at the local fibre-level. A Newton-Raphson scheme is therefore
used to solve the above equation.

The return mapping scheme is implemented at the local level of fibres in the fibrous network.
The discretized set of equilibrium equations for the complex unit cell is solved within a non-linear
incremental-iterative (global) Newton-Raphson scheme by means of the standard finite element
method for the current work. This requires deriving the material tangent modulus at the fibre Gauss
points. The material tangent modulus is also computed after derivation (see Appendix (93)) as

4D f ,t+∆t
ep = 4D f − AA

1 + AA N trial : (4D f + 4H f ) : N trial

4D f : ~p~p ~p~p : 4D f (45)

AA =
γ0∆t
mτσy

[
(σ

f ,t+∆t
trial − q̄ f ,t+∆t

trial ) : N trial − ∆γN trial : (4D f + 4H f ) : N trial

σy

] 1
m−1

4.3 I D E N T I F I C AT I O N O F S I N G L E F I B R E PA R A M E T E R S F RO M E X P E R I M E N TA L T E S T S

Various experimental tests on single fibres were reported in the literature. Creep tests were per-
formed on single, wetted fibres subjected to external tensile loads by Jentzen [32]. Other creep
tests were carried out by Sedlachek [64] with changes in moisture content on loaded specimens
(cyclic humidity test), and also by removing the applied tensile load (creep recovery tests). The
parameters in the creep model proposed here, are now identified using these experimental results,
yielding γ0,m,τ, H,σy0 and the longitudinal elastic modulus El . The experimental tests are briefly
described, and the parameter identification is discussed next.

4.3.1 Jentzen’s creep tests on wetted single fibres

Among the early experiments performed on single fibres of wood, Jentzen [32] tested the creep
response of longleaf pine fibres. After subjecting the freshly cut wood to the pulping procedure and
chemical treatment, single fibres were separated. For drying the single fibre under load, a mass of
1gm was initially applied to keep the fibre straight while submerged in water and a reading of the
elongation of the fibre was taken. The reference of the elongation reading was now set to this value.
Thereafter, the desired mass (3gm and 5gm) was gradually applied in 1.5 minutes (Stage 1). The
fibre elongation was measured at this point and after 3, 6, 9 and 15 minutes. Next, the water was
removed from the tank stage (Stage 2) and finally the load was reduced gradually to the initial 1gm
mass in 1.5 minutes (Stage 3) with readings taken.

The results of the tests are reproduced as the blue curves in Fig. 36.
Stage (1) corresponds to the increase of the strain up to point A and the subsequent strain evolution
at constant load until point B in Fig. 36.
In Stage 2, the removal of water and subsequent drying of the fibre results in a steep increase of the
elongation (right after point B in Fig. 36), followed by a mild decrease of the elongation until Point
C (Fig. 36).
In Stage 3, the mass is finally reduced to 1gm which results in a decrease in the elongation further
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followed by shrinkage.

Figure 36: Results of Jentzen’s experimental tests (overall strain vs time) reproduced from Jentzen [32], and
comparison with simulated response.

Now, using the identical sequence of events for the moisture conditions and load application
(1gm, 3gm and 5 gm), the numerical model is used to reproduce the strains in the fibre, from
which the parameters are identified. The applied tensile stresses corresponding to the 1, 3 and
5gm loads are 24.7MPa, 98.9MPa and 148.5MP respectively. The values of the parameters are
H=16GPa, τ=100s, m=0.2, γ0=10−5, El=53.7GPa, Et=El/6, Glt=0.1El, νlt=0.3, νtl=0.05 (the
ratios of Et being computed from Strömbro and Gudmundson [68] and νlt and νtl Schulgasser
and Page [63]), σy0=100MPa and βt=0.6, βl=-0.03 (coefficients of hygro-expansion by Niskanen
[45]). The moisture contents are assumed to be χ = 0.11 in the wet state and 0.06 in the dry state,
χw=0.13 and χre f =0.11.

As shown in Jentzen’s experimental result, just a few minutes after the water is removed, the
fibre gets completely dried, and there is a sharp increase in the strain. This was further explained
by Page and Tydemann [50] arguing that a reduction in moisture content leads to a decrease in
the fibre diameter. This entails an elongation of the fibre, given the fact that the number of fibrils
remains constant. In order to capture this behavior in the numerical model, a negative value of βl
was assumed, giving rise to a positive hygroscopic strain, (εh

l =βl∆χ) when the moisture content is
reduced as observed in the test. This occurrence of negative values of βl has been further observed
in the first moisture cycle in experiments on single paper fibres subjected to cyclic humidity [75].

Fig. 36 illustrates that the simulated results are in close agreement with the experimental results
for the three different loading cases with the identified parameters for the viscoplastic behavior
(γ0, σy0, m, H, βl , βt and τ) and the elastic properties of the fibre (El , Et). Only the contraction in
the stage 2 is not captured accurately by the adopted creep model. Therefore, these values can be
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regarded as a calibrated set of parameters for the rate-dependent model for this test, as the model is
rich enough to capture the experimental results. Later, this calibrated set of parameters is used for
each fibre in a network model to compute their relaxation response.

4.3.2 Sedlachek’s creep recovery and cyclic humidity tests on single fibres

One of the most popular sets of experimental results obtained on single fibres was reported by
Sedlachek [64] on loblolly pine wood. Sedlachek performed two types of experiments, i.e. consisting
of creep recovery tests and cyclic humidity tests.

In the creep recovery tests, the single fibres were loaded with a mass of 20 grams in 20 seconds at
a constant moisture content of 50%. The mass was held for 20 minutes and then reduced suddenly
to 1 gram. The mechanical responses measured under these conditions for 5 fibres are reproduced
as the blue curves in Fig. 37. The total strain response of different single fibres of the same wood
was measured in the experiments. The scatter due to the natural inhomogeneity in the material
properties of wood. In order to reproduce these experimental results, the model parameters have been

Figure 37: Results of Sedlachek’s experimental creep recovery test (overall strain vs time) reproduced from
Sedlachek [64], and comparison with simulated results.

identified as, H=2.415GPa, τ=100s, γ0=10−5, El=8GPa, Et=El/6 Glt=0.1El, νlt=0.3, νtl=0.05,
σy0=155MPa, βt=0.6, βl=-0.12, m=0.1. The moisture content is assumed to be, χ=0.028 (adopted
after calibration of the creep model to obtain the best match with experimental results), reference
moisture content, χre f =0.12 and χw=0.13. The applied tensile stress, σ0 equals 309MPa. From this
reference set of parameters the numerical model captures the scatter in the experimental results by
multiplying each of the parameters El , Et, σy0 and H by a factor f , where f =0.97, 1.03, 1.12, 1.22
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and 1.60 for the 5 considered fibres, while keeping all other parameters constant.

Generally, the moisture content in manufactured paper sheets varies from 4% to 6% for a relative
humidity of around 50% at 22.22◦C (72◦F). As the relative humidity increases, the moisture content
in the paper exposed to this environment also increases. In this test, the moisture content of extracted
hollocellulose fibre samples at 50%RH and at 90%RH was 8.7% and 14.3% respectively.

Due to the natural scatter in properties of the fibres, it is relevant to consider for each of the fibres
slightly different material properties. The simplest way to do so is to modify all stress-like parame-
ters with the same factor for a given fibre to capture the varying strain response of the different fibres
taken from same wood. The results show that the model adequately captures the response of single
fibres in the non-homogeneous wood under creep recovery conditions. Considering an individual
variation of each of the parameters comprising f , the experimental response can be captured even
more accurately. But, the main idea to vary them together is to highlight the strength of the model,
which can capture the experimental response without having to vary each of them separately.

Finally, cyclic humidity tests were conducted by Sedlachek [64] on single fibres using humidity
cycles (high (90%) to low (50%) and vice-versa) for 10 cycles under an applied tensile stress, σ0.
The time duration of each of the cycles is 10 minutes. Fig. 38a reports both the experimental and
the rate-dependent model responses. It is observed that the rate-dependent model reproduces the
experimental results accurately for the cyclic humidity conditions using the previously identified
fibre parameters matching the creep recovery tests.

With this set of identified parameters, the reverse cyclic humidity test within the moisture content
range (0.028-0.042) (again adopted after calibration of the creep model to obtain the best match
with experimental results) is simulated and compared with the experimental results. The model
results are hence true predictions. Even though some quantitative differences between the numerical
and experimental results can be observed in Fig. 38b a good prediction is obtained. Therefore, the
model is considered to be validated. Modifying the hardening modulus H for the reverse cyclic test,
would allow to capture this test with a higher accuracy as well. However, since out interest follows
is in qualitative trends, we refrain from such fine-tuning of the parameters.

With this comparison with experimental results it can be ascertained that the numerical model is
robust enough to capture the main experimental trends on single fibres. The identified model can be
further used to analyze the time-dependent hygro-mechanical response of the fibre network in paper
sheets.

4.4 R AT E D E P E N D E N T F I B R E N E T W O R K R E S P O N S E

In this section, the response of a two-dimensional fibre network model under creep loading con-
ditions is investigated. Modeling at the network-level is essential to understand the macroscopic
response of paper at the sheet-scale by upscaling the fibre-scale behavior. Several aspects of the
time-dependent behavior of paper at the sheet-level can be explained with the results obtained by
such an upscaling procedure.
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(a) Cyclic humidity test

(b) Reverse cyclic humidity test

Figure 38: Sedlachek’s single fibre cyclic humidity tests (overall strain vs time), reproduced from Sedlachek
[64] and comparison with numerical model.
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4.4.1 Random fibre network generation

In the model, the paper fibres are represented as long rectangles. They are randomly generated
with a length l f , width, w f =l f /50 with centroids in (x,y)∈ [0, l]× [0, l] and orientation θ within
a periodic unit cell Samantray, Peerlings, Massart, and Geers [62] as can be seen in Fig.39. Fibre
parts which extend beyond the boundary of the unit cell are periodically copied into the cell at the
opposite edge. The centroid coordinates x,y as well as the angles θ are generated according to a
uniform probability distribution function, i.e. the networks are nominally uniform and isotropic. To
characterize, the density of the network, we define the coverage c as as,

c =
A f

Ac
, (46)

where A f is the area occupied by all fibres and Acell is the total area of the unit cell. Typical values

Figure 39: A periodic unit cell representing an infinite random network of coverage c=1.0.

of c for paper are on the order of 10. However, in the current analysis we have also considered lower
coverages.

4.4.2 Hygro-mechanical model

As discussed in earlier Section, a hygroscopic strain is triggered at the fibre-level when the fibre is
subjected to a change in moisture content. This fibre expansion ultimately causes deformation at
the sheet-level in the network. The hygro-expansive strain at the macro-level of a network due to a
uniform change in moisture content ∆χ in the absence of external stress can be represented as

hε = β∆χ (47)

where β is the effective hygro-expansive coefficient tensor. This is a measure of the overall hygro-
scopic response of the network at the macro-level as a result of the hygro-expansion of the fibres in
the network and their mutual interaction. Considering the occurrence of internal stresses within the
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network, the total macroscopic strain is represented as an additive decomposition of elastic strain,
creep strain and hygroscopic strain tensors

ε = eε + cε + hε (48)

In the current study, the average stress response of the network is determined to analyze the stress
relaxation of the networks. It is computed from the reaction forces at the control nodes of the
periodic network.

4.4.3 Bond constitutive model

In the present contribution, the fibres are assumed to be perfectly bonded wherever they (partially)
overlap. This implies, as described earlier (Samantray, Peerlings, Massart, and Geers [60]), that the
total stiffness of the bond is the sum of the stiffnesses of the individual fibres constituting the bond.
Likewise, the hygro-expansive behavior of all fibres involved in the bonds is taken into account and
the fibres compete against each other via the mechanics.
The creep strain in each point of each fibre is computed by the return mapping algorithm discussed
in Section 3. The creep model and the modeling methodology adopted for the single fibre discussed
earlier is adopted for all the fibres in the network.

4.4.4 Moisture cycle simulation on networks

In our previous work [62], network models were subjected to a moisture cycle after the modeling
of the irreversible strains associated with the papermaking process. It was shown that a fibre-level
kinematic hardening plasticity model is able to reproduce the macroscopic irreversible strain release
occurring during the first moisture cycle after production. Here, this effort is extended to capture
the time-dependent response of the networks. For this purpose, five realizations each of coverages,
c=0.25, 0.5, 1.0, 1.5, 2.0, 3, 5.0 and 10.0 with isotropic fibre orientations are considered. These
networks are subjected to five different stages of moisture development and loading. The papermak-
ing process is modeled by three stages, i.e. (1) Restrained drying (χ reduces from 0.11 to 0.055);
(2) Stress release at a constant moisture level; (3) free drying (χ reduces to 0.038). Thereafter, the
networks are subjected to a moisture cycle consisting of free wetting (χ increases to 0.11) and free
drying (χ reduces again to 0.038).

The values of σy0, γ0, χw, El , Et, G ,νlt, νtl , βt, H, χre f , m and τ for the individual fibres are the
same as obtained by the calibration on Jentzen’s single fibre experimental results. In view of the
identification performed in the earlier section on single fibre tests, we have adopted a negative value
of βl=−

βt
20 . The numerical simulations are performed with a uniform mesh of size, h=l/200.

The average time taken for a single simulations of network for each coverage c=0.25-10.0 is in the
range of 25-125 hrs.
Fig. 40 depicts the irreversible strain release during the first moisture cycle after production as
a function of the network coverage. Fig. 40 reveals that the irreversible strains, normalized with
|βl |∆χ, where ∆χ=0.072, increases initially until approximately c=3.0 and thereafter decreases
again. The local creep strains develop mostly in the free standing parts of the fibres within the
networks in the constrained drying phase of the manufacturing stage. They later get released in the
moisture cycle comparable to the rate-independent plastic strains in our earlier work [62]. As the
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Figure 40: Macroscopic irreversible strain release during first wetting-drying cycle, normalized with |βl |∆χ,
as a function of the network coverage.

coverage increases, the area fraction of the free standing parts of fibres initially increases but later
decreases [62] resulting in the development of lower creep strains at higher coverage. Therefore,
a trend emerges in which an increase of the irreversible strain release is observed until a certain
coverage, followed by a reduction at higher coverage. This explains the limit appearing at c=10.0
where there is no irreversible strain. This is in contrast with the experimental findings of [43],
showing a considerable amount of irreversible strains at the sheet-scale. Note that a quantitative
comparison cannot be made with the earlier study of irreversible strains (in networks subjected to
moisture cycles) modeled with a rate independent kinematic hardening model, in chapter 3, because
the material parameters and the model parameters are not identical. Also, the sign of βl values
considered in both studies is different. Now, with the adoption of a negative value of βl in the
rate-dependent model, an effect does exist in the magnitude of the irreversible strains quantitatively
in comparison with the rate-independent model but qualitatively, the trend remains unaffected. The
model fails to capture irreversible strains at coverages higher than c=5.0. Certain assumptions in the
model including the generation of the creep strains under only tension and the fibres being fully
bonded in the regions of overlap may be the cause of this lack of irreversible strain at the sheet scale.

4.4.5 Influence of moisture content and coverage on the network relaxation

In this section, the relaxation response of a network at different moisture contents is analyzed. For
this purpose, a network with coverage, c = 1.0 as shown in Fig. 41 is considered. A global strain
of 1/50 is applied to the network in the horizontal level direction and kept constant over the entire
duration of the simulation. Three different constant moisture contents (χ = 0.06,χ = 0.09,χ = 0.12)
are considered. The elastic and creep properties of the fibres are the same as in the previous section.
Also, to understand the relaxation response of the networks, the same problem set up is applied
to a single fibre and its results are compared with the network response. The paper networks are
conditioned to the moisture contents (χ = 0.06,χ = 0.09,χ = 0.12) and thereafter the global strain
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is applied as mentioned above. The average time taken for the simulations of networks for all
moisture contents is 14 hrs.

Figure 41: Relaxation of a network of coverage, c=1.0 and single fibre at different moisture content.

The relaxation response of the network over the considered period of time can be a consequence
of both the the fibre creeping behavior and the network complexity. In order to distinguish both
effects, the average σxx stress response of the networks normalized with respect to the elastic
response is computed for the relaxation tests. Fig. 41b shows that as the moisture content decreases,
the stress level in the network increases, i.e less stress is released from the network. This can be
explained by the fact that a lower moisture content leads to a higher yield stress and therefore to
less creep strains, thereby producing more elastic strain and stress as the total mechanical strain is
constant in a relaxation test.

Interestingly, the relaxation of the single fibres occurs faster as compared to the network. This is
in agreement with the experimental observation made by [16] that the creep strain rates in single
fibres under a constant humidity is very high as compared to paper handsheets. In a single fibre,
there is only a free standing fibre which is less constrained leading to development of high creep
strains. However, in a network with same coverage c=1 as of a single fibre, due to occurrence
of bonds, the area fraction of free standing fibres responsible for creep strain is relatively lower.
Therefore, the model is strong enough to capture this experimentally observed behavior qualitatively
at the sheet-level too.

There is similarity between the stress relaxation observed in the current simulations and the stress
relaxation response in cross-direction in reference [33], with the wetter network relaxing faster
as compared to dry networks. However, the curves have different shapes. A cause could be that
the networks considered for the simulations are isotropic as compared to the kraft paper having a
preferential fibre orientation direction, different material properties comparatively and the non-linear
rate dependent model in consideration.
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Figure 42: The stress relaxation response of a network with creep (normalized with the elastic response) at
different coverages (4 different realizations of each).

In order to assess the dependency on the network coverage, relaxation tests were simulated for
four realizations of each coverage, c=1.0 and c=2.0. The simulation times for networks of coverage
c= 1.0 and 2.0 are on order of 18 and 32 hrs respectively. Identical global strains were applied
on the network conditioned at moisture content ∆χ=0.09. Fig. 42 reveals that the average stress
response (normalized with the stress obtained with only elastic response) at a network coverage
c=2.0 is higher compared to its value at a network coverage, c=1.0. Also, it is observed that the
relaxation is faster for a coverage, c=1.0 in comparison with c=2.0. This is due to the higher area
fraction of free-standing fibres in networks with c=1.0 as compared with c=2.0. Higher creep strains
are generated in the free standing regions of the networks as a function of time. This results in lower
values of elastic strains in the fibres with the applied mechanical strain being constant. This leads
to a relative reduction in stress. It can be observed in these stress relaxation plots that there is less
change in stress for t > 10s, with most of the relaxation already happening before. A cause could be
that the applied strain is large, that the yield stress considered, that is moisture dependent, has low
values and that the rate sensitivity parameter is high.

4.5 C O N C L U S I O N S

In this chapter, the time dependent hygro-mechanical response of a single fibre and of a fibre network
was studied under an external loading and under changes in moisture content. Paper fibres, during
papermaking process and printing, are subjected to different rates of drying and wetting, which
cause time-dependent deformations. Additionally, when they are subjected to varying levels of mois-
ture in environmental conditions over long periods of time, macro-level curls or waviness may occur.
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In order to understand such behavior, a rate dependent creep model is adopted at the scale of fibres.
Assuming that the fibre segment activation mechanism governs this behavior (Bosco, Peerlings, and
Geers [7]), the creep strains are incorporated in the longitudinal fibre response only. A backstress
plasticity creep model was formulated in order to capture the rate dependent deformation, even in
the absence of an externally applied stress. The model was used to reproduce the hygro-mechanical
response of single fibres, which was compared with the results of experimental tests Jentzen [32]
and Sedlachek [64]. The results obtained by the rate dependent model demonstrate an adequate
match with the experimental results, which allowed to identify the material parameters (hygroelastic
and creep) for the model. It has been shown that the rate-dependent model is robust enough to
capture the time dependent response of single fibres. Furthermore, a validation was performed to
capture the experimental test on reverse cyclic humidity test with the identified parameters obtained
for the reference cyclic humidity test.

The numerical simulations exploiting this rate dependent model were next extended to the relax-
ation of networks subjected to externally applied strains at different moisture contents. The results
were also compared with single fibres. It is observed that single fibres relax faster than the networks,
which stems from the fact that the single fibres consist completely of free standing regions thereby
generating more creep strains and resulting in a faster relaxation. This observation was also made
by experiments conducted by Coffin and Boese [16] and the adopted rate-dependent model was
able to capture this creep behavior successfully. Therefore, it can be concluded that the adopted
creep model is very good in capturing this experimentally observed behavior qualitatively at the
sheet-scale of the network in addition to the good match obtained with the experimental results (as
illustrated earlier) of single fibres with the same set of the identified parameters for both of them.

Also, relaxation tests were performed for four network realizations with coverages c=1.0 and
c=2.0. The networks with coverage c=1.0 relaxed faster than the networks of coverage c=2.0 due to
presence of more free-standing parts. Also, relatively high stress levels were observed in networks
with coverage c=2.0 as expected. With the incorporation of the time-dependent response of individ-
ual fibres, the irreversible strain release at the first moisture cycle after manufacturing was shown to
gradually increase with the coverage, until a coverage of about c=3.0, followed by a steady decline
for coverages higher than 3.0. The latter was due to the increase of the area of bonded fibres relative
to the free-standing fibre parts.

There is currently a discussion in the literature on the material parameters of fibres and the
corresponding experimental hygro-mechanical response. There is a lack of comprehensive experi-
mental characterization of the material parameters for the fibres. Therefore, we have adopted only
certain values from the experiments and not the rest of them. We are interested in the trends of
the hygro-mechanical response of the network rather than in quantitative predictions. For this, we
consider the current parameter set to be adequate.

Earlier in the thesis, a positive value was assumed for βl but with the progress of studies on paper
fibres in this thesis, a negative value of beta was found to be necessary to match the experimental
responses. However, the results obtained in the previous chapters are still relevant because even
with a negative value of βl the trends do not change qualitatively.
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One of the strong assumptions in the present contribution is the assumption of perfect bonding
between the fibres in the regions of overlap in the network. This can be mitigated by relaxing the
kinematic constraints in the bonds, which forms the basis for future work. An investigation can be
carried out to understand the exact role of such kinematic constraints in the generation of the creep
strains in bonds and their impact on the macroscale behavior of the network.
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In fibrous paper materials, an exposure to a variation in moisture content causes changes in the geo-
metrical and mechanical properties. Such changes are strongly affected by the inter-fibre bonds, i.e.
the places where the fibres overlap, which are responsible for the transfer of the hygro-mechanical
response from one fibre to its neighbors in the network, resulting in macro-scale deformations. Most
models developed in literature simply assume perfect bonding between fibres. Using a homogeniza-
tion approach, a random network of fibres is generated with different coverages and modeled using
finite elements. In order to understand the role of bonding between fibres in the hygro-expansive
behavior of network, a bond model is developed. Fibres are modeled using regular bulk finite
elements. Bonds are represented by interfacial elements of finite stiffness introduced between each
couple of fibres bonded in the network. These embedded interfacial elements form a connection
between two respective fibres, allowing relative displacements between them. The hygro-elastic
response of networks obtained with this bond model is investigated by varying the bond stiffness
and the network coverage under the application of mechanical loading and changes in moisture.
Further, the bond model is used to analyze the influence of inter-fibre bonds on the anisotropic
response of the paper fibre network.

Keywords: Fibrous network, hygro-expansion, irreversible strains, coverage, interfacial elements

4 This chapter is based on: P. Samantray, R.H.J. Peerlings, T.J. Massart, M.G.D. Geers, 2019. Effect of kinematic
constraints in the bonded regions of paper network at the sheet-scale. In preparation.
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5.1 I N T RO D U C T I O N

Fibrous materials like paper consist of natural fibres that are bonded in overlapping regions, as
observed in the microstructure in Fig. 43a. During manufacturing of paper, the fibres are prefer-
entially oriented in the machine direction, which entails anisotropy in the mechanical behavior of
the paper network [37]. The principal directions of the paper material are denoted as the machine
direction (MD) and cross direction (CD) as used in the two dimensional meso-scale idealization
of the paper network in Fig. 43b by [8]. In paper, the fibres are interconnected to each other in
overlapping regions, i.e. the bonds as shown in Fig 43b. The coefficient of hygro-expansion of fibres
in the lateral direction was found to be nearly 20 times the corresponding value in the longitudinal
direction [45] of a paper fibre.

This can be observed experimentally from the swelling of the free standing parts of fibres in the
lateral and longitudinal direction as exploited in idealized representations, see Fig. 43b. The fibres
in these inter-fibre bonds are connected together by hydrogen bonding and van der Waal’s forces
[26]. The anisotropic behavior originating at the scale of individual fibre gets transferred from one

(a) Micrograph of paper fibres
(Niskanen [45])

(b) An idealized meso-scale ideal-
ization of paper fibre network

Figure 43: A two fibre meso-scale idealized network subjected to hygroscopic strain.

region to another in the network through these inter-fibre bonds.

It is emphasized that the degree of bonding between fibres and their quantity in the network have
a crucial influence on the hygro-mechanical response of the network. Earlier studies demonstrated
that the effective stiffness of the network is mainly dependent on the density of the network, the fibre
orientations, fibre properties and the inter-fibre connectivity resulting from the bonds [6, 17, 27, 34,
41]). Also, when subjected to moisture changes, it was noticed that the effective hygro-expansivity of
the paper network is influenced by the bonded regions of the network as discussed in Chapter 2 and
in references [7, 21, 37, 45, 59, 62, 71, 72]. These hygro-mechanical properties of the paper which
are dependent on the inter-fibre connectivity hold significance in understanding the dimensional
stability of paper products like packaging materials, printed papers, corrugated boxes, tissue papers
or paper boards. Instabilities appear as curls or waviness at the paper sheet-scale. Therefore, the
main objective of the present study is to examine the effects of the inter-fibre bonds on the behavior
at the sheet-scale level and on the anisotropy of paper, subjected to tensile loading and a uniform
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moisture gradient.

In some earlier works, fibrous networks were modeled in 2D and 3D configurations as trusses or
beam elements with the bonds between the fibres assumed to be rigid [9, 12, 38, 41, 67]. A limitation
of such a bond description is its inability to describe the influence of inter-fibre connectivity on the
sheet-scale deformations, as well as the extent to which certain fibre network properties (e.g. bond
area, bonding strength) affect the macro-scale response that can be modified in the manufacturing
process. On the other hand, some other works describing the bonds as not rigid e.g. model the bonds
as springs ([27];). The fibres were partially bonded in regions of overlap ([35]). They were modeled
based on a non-linear contact law with bond failure in ([36]), and as two node line elements in ([39]).

In a relevant recent paper [44], beam elements were used to model the network in 3D and the
change in hygro-expansion as well as effective stiffness of the network were studied by a variation
of density or deactivating the bonds. This approach was found to model the hygro-expansion of
networks of large sizes and capture the experimental results also successfully. It was found that the
usage of a 2D bond model in the simulation of the hygro-expansion, results in an underestimation
of the out of plane deformations and overestimation of the effect of the transverse shrinkage on
the overall inplane hygroexpansivity. Most of the literature that incorporates the deformation in
bonds did not address the effect of bond stiffness on the anisotropic response of the network. The
analysis of the modeling of hygro-mechanical behavior in 3D with non-perfect bonds entails costly
computational efforts, preventing parametric variations of the bond effect. Therefore, there is a need
to understand the hygro-mechanical response of the networks due to varying bonding properties
(stiffness) connecting the fibres, along with its influence on the anisotropy of the network using a
2D modeling framework with cheaper computational efforts. This serves as a motivation for the
current chapter. Here, these issues are addressed by describing the inter-fibre connectivity through
an appropriate bond model.

Initially, the fibrous network is represented with a 2D periodic unit cell [52] of randomly gen-
erated rectangular strips [60] that represent ribbon-shaped paper fibres. Each fibre in the unit cell
network is discretized with standard triangular finite elements. At the regions of inter-fibre bonds, an
additional triangular interfacial element with a suitable stiffness, connecting two successive fibres
(in thickness direction) is inserted in the model. These finite stiffness elements render the bonds
to be no longer rigid and the connected fibre can therefore have relative displacements. With this
model, the macroscopic behavior of the paper network with different values for the bond stiffness,
can be computed when subjected to an external mechanical load and a uniform moisture gradient.
This provides clear insights in the sheet-level response using a 2D network model with moderate
computational efforts only. Furthermore, the influence of connectivity between fibres at the bonds
on the anisotropy of the paper network at the sheet-scale will also be assessed. The main idea of this
chapter is the development and application of the bond model to study the effect of the inter-fibre
bonding quality on the hygro-elastic response of the network. Therefore, the irreversible and rate
effects are not included in this study.

In Section 2, the hygro-mechanical model for the fibre and the network is described. The genera-
tion of random networks, the bond model and the numerical discretization adopted are explained in
Section 2 together with the considered stacking of fibres in the network. The results illustrating the
influence of the bond stiffness at the sheet-level response of the network along with its anisotropy
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are detailed in Section 3. Finally the conclusions are drawn in the Section 4.

Throughout this contribution, the following notations are used for operations on Cartesian tensors
and tensor products. Scalars, vectors and tensors are denoted by a, ~a and A respectively. For
tensor and vector operations, the following equivalent notations are used with Einstein’s summation
convention on indices: A:B=AijBji with (i =x,y,z for the global reference system and i =l,t,z for
the fibre local reference system). The Voigt notation used to represent tensors and tensor operations
in a matrix format is depicted as follows: a and A denote a column matrix and a matrix of scalars
respectively. The matrix multiplication is denoted as (A a = Aijaj).

5.2 H Y G RO - M E C H A N I C A L C O N S T I T U T I V E M O D E L A N D N U M E R I C A L D I S C R E T I Z A -
T I O N

5.2.1 Fibre model

Lets consider a 2D configuration with plane stress in the z-direction (with z normal to the paper
sheet). The hygroscopic strain tensor hε f and the stress tensor in a fibre upon exposure to a unit
change in the moisture content ∆χ are given by the constitutive relation

hε f = β f ∆χ (49)

σ f = 4D f : (ε f − β f ∆χ) (50)

where σ f , 4D f and β f are the stress tensor, the elastic stiffness tensor and the hygroscopic expansion
tensor of the fibre respectively. In the Voigt matrix notation, the stiffness and hygro-expansion
coefficients are represented as

D f =


El

(1−νltνtl)
Elνtl

(1−νltνtl)
0

Etνlt
(1−νltνtl)

Et
(1−νltνtl)

0

0 0 Glt

 , β f =

βl

βt

0

 (51)

where El and Et are the elastic moduli in the longitudinal and transverse direction with respect to the
fibre material axes. βl and βt represent the coefficients of hygroscopic expansion in the longitudinal
and transverse directions associated to the fibre axis. νlt and νtl are the in-plane Poisson’s ratios and
Glt is the in-plane shear modulus. The constitutive relationships Eq. (49) - Eq. (51) are expressed in
the local reference system (l,t,z) attached to the fibre as described in Fig. 44 for a fibre m oriented at
an angle θ(m). This relationship can be transformed to the global reference system (x,y,z) yielding
the global elastic constitutive tensor and hygroscopic coefficient tensor (Roylance [55]).

5.2.2 Bond model

In the network, regions in which the fibres overlap are called inter-fibre bonds, as shown in
Fig. 46a. In the 2D models discussed so far, the bonds are assumed to be fully rigid with no relative
displacements between the fibres in the bond. The interface model is developed to represent the exact
behaviour of the fibres in the bonded region in 3D as shown in Fig. 45 with the shear forces acting
between fibres allowing relative displacements between them. The corresponding representation of
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Figure 44: The local and global coordinate axes.

these fibres in 2D plane stress setting by the bond model is depicted with the mid-planes of fibres in
the figure.

The nature of the bond between fibres can be represented with three interconnect models as
depicted in the cross-section A-A in Fig. 46b. In the fully uncoupled case, the transverse and
longitudinal regions of the fibres involved in the bond are completely detached from each other,
which results in free swelling across the mid-planes. In the fully coupled case, both fibres are
connected by a rigid bond between the fibres. This entails compatible displacements in the bond
plane, as often used in the literature [8].

In the partially coupled case, the fibres are constrained to some extent but may exhibit relative
displacements. This closely resembles the case where the springs interconnect the fibres to enforce
a kinematic coupling. In this case, the fibres are partially tied to each other and do not exhibit free
swelling.

This is implemented by adding an elastic interfacial element of thickness t between the midplanes
of fibres. Interface elements thus connect two fibres in the bond, allowing them to deform with
respect to each other, and thereby relaxing the rigid constraints often used in the literature as
mentioned in the introduction. The extent to which the stacked fibres may have relative displacements
depends on the stiffness of the interfacial element adopted. Let us consider a bond which is governed
by the following constitutive law

~τ =
kh
t

∆~g

∆~g =
[
∆u ∆v

] [ex

ey

]
where ~τ is the shear stress vector acting in the plane of the interface, kh is the interfacial stiffness

modulus of the bond between both fibres, that has same units as the shear modulus G of a fibre,
∆~g is the differential displacement vector, ∆u and ∆v are the differential displacements in x and y
direction between the fibres in the inter-fibre bonds and t is the thickness of a fibre.
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Figure 45: Representation of the fibres in 3D by the bond model in 2D.
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(a) 3D representation of two fibres

(b) Cross-section A-A

Figure 46: The mechanism of the bond model interconnecting overlapping fibres.
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When kh=G, the bond represents the physical shear between the mid-planes of both fibres, taking
their thickness into account for this 2D setting. Hence, it is a potential value of kh, representing a
rigid bond in a 3D setting. However, the hygro-mechanical response of the networks at different
values of interfacial stiffness, kh is illustrated later in the results section to render a complete picture
in this regard.

5.2.3 Network Model

In a 2D representation, the paper fibres are assumed to be ribbon-shaped elements. Hence, networks
are represented by a set of randomly generated rectangular shaped fibres. The fibre length is denoted
l f , the fibre width w f =l f /50 and the thickness is assumed to be t=l f /150. The positions of the
centroids of the rectangular fibres are randomly generated within the domain [x,y]∈[0,l] of the
periodic unit cell of length l=l f as shown in Fig. 47a.

During the generation of fibres, they are numbered and stacked in the corresponding sequence.
The orientation of the fibres in the network can be random, which makes the corresponding networks
isotropic. Reflecting the amount of fibres added to a given RVE, the coverage c is defined as the
ratio of the area of all fibres with that of the unit cell, a number that will be used later in this study.
The coverage is a measure of the density of fibres in the network.

Stacking of fibres
The randomly generated fibres in the network are assigned a number. The fibres are deposited

(a) Random fibrous network of cov-
erage, c=0.5

(b) Simple network

Figure 47: Periodic unit cell of a random fibrous network and a simple sparse network.

subsequently with the highest numbered fibre lying below the lower ones as shown in Fig. 47b.

Layers for each fibres

Each of the fibres in the network is assumed to occupy a particular layer pertaining to the fibre
number as shown in Fig. 49. In order to compute the hygro-mechanical response of such RVE, we
have adopted a finite element based method. With this method and using a structured triangular
mesh, the finite elements and nodes are created to represent only the fibres in each of the layers.
They are numbered in a sequential manner with each fibre i.e. fibre after fibre or equivalently layer
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by layer in the mesh. Therefore, a stack of elements are created representing the stack of overlapping
fibres.

Overlapping of fibres

Figure 48: Interfacial elements at the bonds

The fibres that overlap a fibre immediately below them are assumed to be bonded to it, and an
interfacial element is introduced accordingly see Fig. 48. Such interfacial elements at the inter-fibre
bonds between fibres are thus defined between stacked fibres at a point of the RVE, linking fibres
two by two in ascending sequence of their layer number. For example in the Fig. 47b, it can be
seen that fibre 1 and fibre 2 have a bond at region P. Also, fibre 1 and fibre 3 (which is in a layer not
immediately below) are also connected through an inter-fibre bond at R in the model. In similar
manner, the pair of fibres that are touching each other or on top of each other in the bonded regions
are linked by an interfacial element. Only the pairs closest to each other in the thickness direction
are connected by an interface.

Implementation of periodicity

Each of the layers is periodic and modeled accordingly. The 1st layer contains the control nodes
1, 2 and 3 see Fig. 49. Nodes are assigned at the boundary of the layers, whenever a fibre crosses
the boundary.
The periodic implementation for layer 2 and layer 3 is given by

Periodicity for Layer 2: ~g23 −~g21 = ~g3 −~g1 (52)

~g24 −~g22 = ~g3 −~g1 (53)

Periodicity for Layer 3: ~g33 −~g31 = ~g2 −~g1 (54)

~g34 −~g32 = ~g2 −~g1 (55)

5.2.4 Macroscopic Response

The overall hygro-mechanical response of a network can be assessed by its effective macroscopic
properties. These depend on the material and geometrical properties of the individual fibres interact-
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Figure 49: A periodic unit cell with three stacked fibres.

ing at the bonded regions. At the sheet-scale, the hygro-expansive strain under stress free conditions,
due to a uniform change in moisture content ∆χ can be defined as

hε = β∆χ (56)

where β is the effective hygroexpansive coefficient tensor of the paper network. The total strain ε is
represented by an additive decomposition into the elastic strain eε and the hygro-expansive strain hε

ε = eε + hε (57)

σ = 4D : (ε− β∆χ) (58)

Here, Eq. 58 represents the constitutive relation at the sheet-scale in which 4D represents the
effective elastic stiffness tensor and σ the macroscopic stress tensor applied on the network.

5.2.5 Numerical discretization

In this section, the numerical implementation of the interfacial element in the inter-fibre bonds of
the paper network is discussed. In this study, the hygro-elastic response of the network is considered.
After the generation of random fibres in the periodic unit cell, the constitutive models outlined
earlier for the fibre and bonds are used in the discretization to generate the linear system of equations
to be solved.

In the periodic unit cell consisting of fibres, the total energy E associated with a unit change in
moisture content is the sum of the strain energy contribution from the n fibres and the s interfacial
elements over the entire volume V under a uniform moisture gradient[14]. It can be represented as

E =
1
2

∫
V

n

∑
i=1

σ
f
i : (ε f

i −
hε

f
i )dV +

1
2

s

∑
j=1

∫
A

∆~g.~τdA

=
1
2

∫
V

n

∑
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(ε
f
i −

hε
f
i )

T : D f
i : (ε f

i −
hε

f
i )dV +

1
2

∫
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s

∑
j=1

∆~g.
kh
t

.∆~gdA (59)

(1st term) (2nd term)
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Figure 50: (a) A randomly generated fibrous network of paper(top left) (b) Bond region (top right) (c)
Interfacial element(bottom center)

In Voigt matrix notation, the total energy of the periodic unit cell reads

E =
1
2

∫
V

n

∑
i=1

(ε
f
i −

hε
f
i )

TD f
i (ε

f
i −

hε
f
i )dV +

1
2

∫
A

s

∑
j=1

(∆g)
kh
t
(∆g)dA (60)

In Fig. 50, part of the bonded region of two fibres in the network is considered, in which there are
two triangular finite elements. These are connected through an interfacial element at their nodes.
The components of the relative displacement ∆~g for an interfacial element can be represented by
∆u = ξ(u1 − u4) + η(u2 − u5) + (1− ξ − η)(u3 − u6)
∆v = ξ(v1 − v4) + η(v2 − v5) + (1− ξ − η)(v3 − v6)
where ξ and η are the shape functions associated with the interfacial element. This can be further
represented in matrix form as

∆g =

[
∆u
∆v

]
= Bcw

Bc =

[
ξ 0 η 0 (1− ξ − η) 0 − ξ 0 − η 0 − (1− ξ − η) 0
0 ξ 0 η 0 (1− ξ − η) 0 − ξ 0 − η 0 − (1− ξ − η)

]

The nodal displacements at the nodes of both the connected bulk finite elements is represented by
a column matrix w = [u1 v1 u2 v2 u3 v3 u4 v4 u5 v5 u6 v6]

T.

Upon substituting ∆g in the 2nd term of Eq. 60, the expression for the energy of all interfacial
elements over all the bonds is obtained, as is further discussed below. A standard finite element
method is used in the bond model to compute the hygro-mechanical response of the network. The
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stiffness computation for each of the interfacial element is carried out by a six point Gauss-legendre
quadrature rule for triangular finite elements.

Discretizing the entire network domain with m finite elements and s interfacial elements, Eq. 60
reduces to

1
2

m

∑
e=1

n

∑
i=1
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e D f
i BetdAu +
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s
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∑
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e D f
i

hε
f
i tdA (61)

Ku + Kcu = Fh (62)

where t is the thickness of the fibre and the interfacial elements, K is the stiffness of the bulk finite
elements representing the fibres, Kc is the stiffness of the s interfacial elements in the bonded
regions and Fh is the hygroscopic load column vector of the fibres lying in the bulk finite elements.
Finally, the linear system of Eq. 62 is solved to determine the response of the network to changes
in moisture content. The load column vector can also be load vector pertaining to external loads
applied on network. This is illustrated in the results section where the effective stiffness response of
the network is evaluated under tensile loading.

One of the main motivation of using interfacial elements is that the Kc changes with mesh in such
a way that the stiffness enforced in the bonded region remains the same. However, in the case of
springs, the number of springs changes with discretization (may be more or less nodes in a particular
bonded region) but individual spring stiffness remains same thereby leading to different stiffness in
the bonded regions.

5.3 R E S U LT S A N D D I S C U S S I O N S

In this section, the influence of inter-fibre bonding on the macro-scale properties of the network
is assessed through the numerical results obtained using the proposed bond model. Initially, the
simplified case of a two fibre network [8] is analyzed to illustrate the behavior of the bond model at
a local level. Thereafter, complex networks of different coverages subjected to hygroscopic strains
and tensile loading are analyzed to evaluate the relation between the sheet-level network response
and the fibre bonding.

5.3.1 Simplified two fibre network (A meso-scale model)

In this case, a simple two fibre network is considered with a single bond between them. Due to
periodicity, the unit cell shown in Fig. 51a only contains half fibres near the edges of the RVE.
The mechanical behavior of the fibres is assumed transversely anisotropic with the elastic modulus
in longitudinal direction El, the elastic modulus in transverse direction Et=El/6 [68], shear mod-
ulus, Glt=El/10, in-plane Poisson’s ratios, νlt=0.3, νtl=0.05 [63] and a thickness, t=l f /50. The
coefficient of hygro-expansion adopted for the fibres is also anisotropic with, βl=-0.03 (based on
Jentzen creep tests on single fibres Samantray, Peerlings, Massart, and Geers [61], βt=20|βl |=0.6.
The network is subjected to a unit change ∆χ=1 in moisture content, for different values of the
bond interface element modulus kh in the inter-fibre bonds. The periodic unit cell is fixed in both
directions at the left bottom corner and fixed in vertical direction at the right bottom corner, allowing
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(a) Discretized unit cell with 51 nodes in each
direction

(b) Normalized local strains in bonded region at (x/l=1,y/l=0)
in the unit cell diagram (left) with varying interfacial element
modulus

Figure 51: A two fibre meso-scale idealized network subjected to hygroscopic strain.

expansion in both directions.

In the bond region located at the right corner of the unit cell in Fig. 51a, the horizontal fibre
has a low hygro-expansivity in the horizontal direction as compared to the vertical fibre. When the
fibres are loosely bonded with a low value of kh, they behave independently, which leads to the
development of negative local strains in the horizontal fibre, corresponding to -1 when normalized
with |βl |∆χ as shown in Fig. 51b. Similarly, a positive local strain (normalized) with a higher value
corresponding to the βt

βl
=20 is reached in the horizontal direction for the vertical fibre.

As the bonding between the fibres becomes stiffer (kh increases), an interaction occurs between
the fibres due to their different directional expansion coefficients. This induces an increase of the
local strains εxx (normalized with |βl | as ∆χ=1) of the horizontal fibre and a decrease in the local
strains εxx in the vertical fibre. When the interfacial element modulus kh, is equal to the shear
modulus of the fibres (representing the 3D case with perfect bonding), the local strains in both
fibres attain almost equal values. At higher values of kh, both local strains are identical. Also, this
strain is found similar to the one obtained for the same problem by assuming that the fibres are fully
bonded in this inter-fibre bonds as noticed in Fig. 51b (as used in Samantray, Peerlings, Massart, and
Geers [60], where no relative displacement was allowed). As expected, the bond model at higher kh
reduces to the case where the fibres are completely bonded. for this meso-scale model idealization
of a paper network.

Therefore, it can concluded that different bond properties trigger different local strains in the
fibres, not captured in earlier work assuming fully coupled fibres in the bonds.
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(a) Coverage, c=0.5 (b) c=1.0 (c) c=2.0 (d) c=5.0

Figure 52: Random isotropic networks in a periodic unit cell.

5.3.2 Complex networks

In the present subsection, more complex networks are considered with a nearly isotropic orientation
distribution of fibres for coverage, c=0.5, 1.0, 2.0, 5.0 as shown in periodic unit cell of length, l
in Fig. 52. The paper fibres are transversely anisotropic with a longitudinal elastic modulus El,
transverse elastic modulus Et=El/6, shear modulus, G=El/10 and the dimensions as mentioned
earlier. The in-plane Poisson’s ratios are νlt = 0.3 and νtl = 0.05. The dimensions of the unit cell
and fibres have been detailed before. The size of the finite element discretization adopted for the
complex networks were taken sufficiently fine to obtain converged results.

5.3.3 Hygro-expansion

The hygro-mechanical response of these complex networks with finite stiffness bonds is next
assessed by subjecting it to a unit change in moisture content, ∆χ=1 for a varying bond element
modulus (kh) using the same boundary conditions as in simplified two fibre network. A range of
values of kh was used for the inter-fibre bonds, see Fig. 53. The time taken for the simulations ranges
from 17 to 330 mins. For all coverages, at a low value of the interfacial element modulus kh (region
A), the normalized effective hygro-expansivity in both direction is equal to the longitudinal swelling
of a single fibre that is completely free in the considered periodic framework. At low kh, the fibres
are not bonded or very loosely connected with each other. Therefore, there is no interaction between
the transverse swelling of a given fibre and the longitudinal swelling of another. As a result, the high
transverse swelling of fibres cannot be transferred through the network and the network expands by
longitudinal swelling of fibres only. This situation approximates fibre bonds that act as pinjoints
only where only the longitudinal expansion governs the entire network. The lateral expansion of
fibres does not have any influence on the macro-level response of the network. This explains the
lower hygro-expansivity in both directions in the network. Moreover, in Fig. 54a and 55a, it can
be observed that fibres in the network have rather independent strains (normalized with |βl |∆χ,
∆χ=1), as a consequence of the absence of bonding between them.

With an increase of the interfacial element modulus kh to a value corresponding to the fibre shear
modulus (region B in Fig. 53), an increased interaction takes place between the fibres. As a result,
the transverse hygroscopic swelling of one fibre may cause another fibre to swell more through
these inter-fibre bonds. Therefore, a larger average hygro-expansivity in the networks emerges. In
Fig. 54b and 55b, the strain distributions in the bond regions and free standing parts of fibres of the
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Figure 53: Normalized effective hygro-expansivity of the networks averaged in both direction vs the ratio of
bond stiffness and shear modulus of fibre. The dashed lines represent the case of fully coupled
bonding between fibres.

(a) A (b) B (c) C (d) Fully bonded

Figure 54: Strain distribution εxx/|βl | in the network of coverage, c=1.0.

network with c=1.0 and c=5.0 are affected by the partial kinematic constraint. Also, it is worth to
note that the network with higher coverage have high fibre density, which causes a higher average
expansivity as compared to lower coverage at this value of kh.

With further increase of kh, the average expansivity further increases for the networks of all
coverages. The local strain distribution plots in Fig. 54c and 55c demonstrate more interaction
between fibres, trigerring different strain distributions in the fibre bond regions when compared
to free standing regions. Note the tendency of fibres in a particular bond to attain identical strain
values as the interfacial element modulus rises. As expected, the strain distribution in the network
becomes similar to the earlier case in Fig. 54d and 55d, for which fibres are fully bonded. Likewise,
the effective hygro-expansivity tends towards the same limit value for fibres. Hence, the sheet-scale
results for rigid bonds is recovered as a limit case by the current bond model in the higher limit of
kh.
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(a) A (b) B (c) C (d) Fully bonded

Figure 55: Strain distribution εxx/|βl | in the network of coverage, c=5.0.

5.3.4 Tensile loading

In order to understand the effect of bonding between fibres on the effective stiffness of the nearly
isotropic networks, they are subjected to an external uniaxial tensile load in the absence of hygro-
scopic strains. As can be noticed in Fig. 56, in the lower limit of the bond stiffness modulus kh, the

Figure 56: Normalized effective stiffness of networks averaged in both direction vs the ratio of the bond
stiffness versus the fibre shear modulus. The dashed lines represent the case of fully coupled
bonding between fibres.

fibres are loosely connected with each other at the inter-fibre bonds. This leads to less interaction
between fibres, and hence a reduced ability to transfer stresses between fibres in the network. Since
the effective stiffness of the fibrous network mostly depends on the ability of single fibres to transmit
stresses, it results in a low effective stiffness of the networks for all coverages. As the bonding
between the fibres becomes stiffer (kh increases), the effective stiffness response of the networks
also enhances as expected. Like in the previous case, for high values of kh, the average stiffness of
the networks approaches the case of full kinematic constraints between fibres in the bonded regions.
Furthermore, as expected, the higher coverages exhibit a higher stiffness due to presence of more
bonds as the number of fibres is higher. Also, for a particular value of kh, a lower coverage network
has fewer bonds between fibres as compared to a higher coverage. Therefore, it has a relatively
reduced ability to transfer the stresses as compared to a network with higher coverage, resulting
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in less effective stiffness. It can be seen in Fig. 56 that networks with higher coverage have higher
effective stiffness for a particular value of kh.

Based on the response of networks to hygro-expansion and tensile loading, some conclusions
emerge. Firstly, a different effective response for each coverage results for different values of
the bond stiffness. Therefore, even after relaxation of the kinematic constraints between fibres in
the bonded regions of the network, the coverage still plays an essential role in determining the
hygro-mechanical response of networks. This is consistent with earlier findings on the effect of
coverage on hygro-expansivity [60, 61]. Even though at a high value of kh the rigid bond case is
recovered, the observed trend may be different. Having said this, the LS-XFEM method remains
valid and attractive. Next, for each coverage, the effective response of network at kh=G (the value
which describes the 3D case with perfect bonding), is substantially lower with respect to the 2D
rigid case. This outlines the effect of the kinematics of the bond on the macroscopic response of the
networks and highlights the limitation of the rigid bond assumption.

5.3.5 Anisotropy

The effect of the bond stiffness on the sheet-scale response for anisotropic networks is further studied
here. The orientation of the generated fibres in a network representing paper can be described by a
probability density function based on Cox [17] as represented in Fig. 57

f (θ) =
1
π

1− q2

1 + q2 − 2qcos(2θ)
(63)

where, θ is the angle between the fibre and the machine direction −π/2 < θ < π/2 and q is a

Figure 57: Probability distribution function for fibre orientations in networks with different anisotropy levels
[8].

measure of the anisotropy of network.

In this study, networks of coverage, c=2.0 are considered with three different degrees of anisotropy,
q=0.25, 0.5 and 0.75 respectively. These networks are subjected to a change in moisture content
(hygroscopic loading) in one case and a uniaxial tensile loading in other, as done for the previous
cases.
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(a) Difference of effective hygro-expansivity in both
directions normalized with |βl |

(b) Difference of effective stiffness in both directions
normalized with El

Figure 58: Anisotropic response of networks with a varying interfacial element modulus kh.

For rigidly connected inter-fibre bonds (dashed line in Fig. 58a) more fibres oriented along the
machine direction for q=0.25 entail a larger expansion in the cross direction of the network at the
sheet-level, as βt=20βl for each individual fibre. The transverse expansivity of these fibres oriented
close to the machine direction becomes more aligned with the network cross-direction for q=0.25 as
compared to q=0.0. This effect becomes more pronounced for higher values of q=0.75 leading to a
higher hygro-expansivity in cross-direction of the networks for full bonding.

For the developed bond model, at a low value of kh, the fibres in the networks behave like pinjoint
fibres exhibiting independent strains pertaining to the local longitudinal strain of each of the fibres
(|βl |∆χ, ∆χ=1) in both the machine and cross directions irrespective of the values of q. Therefore, in
Fig. 58a, it can be observed that the difference between the effective hygro-expansivity coefficients
in both directions almost vanishes. As the bonding increases between fibres, the difference between
the expansivity of the networks in vertical and horizontal directions increases, implying a higher
degree anisotropy in the response at higher q values.

Let us consider the case where the networks of different anisotropy are subjected to tensile
loading. In terms of the effective stiffness of networks, considering the full kinematic constraint
case for q=0.25 with more fibres oriented along the machine direction compared to cross-direction
results in a higher stiffness in the machine direction as the El=6Et for the fibres. Therefore, Fig. 58b
shows that as the anisotropy increases the effective stiffness increases in machine direction, and
hence also the difference in effective stiffness in both directions. A similar trend is again observed
in the effective stiffness for different values of the bond stiffness for each of the values of q under
consideration. Therefore, the assumption of fully coupled bonding between fibres is not appropriate
for predicting the anisotropic response of a paper fibre network because, it depends significantly on
the extent of kinematic constraints or bonding between the fibres in the network.
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5.4 C O N C L U S I O N S

In this chapter, the influence of bonding between fibres at inter-fibre bonds on the sheet-level
behavior of paper fibrous networks subjected to tensile loading and hygro-expansion was studied.
The response of individual fibres was considered to be hygro-elastic for the sake of simplicity.

Initially, a random fibrous network is generated with rectangular shaped fibres. These fibres are
generated sequentially such that each fibre lies in a separate layer. Periodic boundary conditions
are imposed for all the configurations considered. The entire network is discretized with triangular
finite elements numbered in the same sequence as the fibres. In the bond regions, an additional
triangular interfacial element is added between each couple of fibres in contact, allowing both fibres
to be partially coupled with relative displacements between them. The extent to which both fibres in
a bond undergo relative displacements depends on the stiffness modulus kh of the bond represented
by the interfacial element. In order to investigate the influence of this modulus (bond stiffness) on
the macro-scale response of the networks, numerical simulations for hygro-expansion and tensile
uniaxial loading have been performed.

1. At low values of kh, the macro-level hygro-expansive response corresponds to the individual/s-
ingle fibre longitudinal expansion in a free state. At high values of kh, the corresponding macro-level
response tends towards the fully coupled case for both hygro-expansion and tensile load cases.

2. Given the substantial difference between the effective hygro-expansivity of a particular network
at kh=G and the fully bonded case, it is concluded that the extent of kinematic constraints in the
bonds are important in influencing the sheet-scale behavior of the network. Hence, the bond model
with kh=G (representing the physics between the mid-plane of fibres) is a more realistic approach
for predicting the hygro-mechanical behavior of paper.

3. At different coverages, a different effective response of the network results for the bond model.
This is in accordance with earlier findings Samantray, Peerlings, Massart, and Geers [60, 62].

4. The anisotropic response at the sheet-level also increases with an increase in kh and vice-versa
highlighting significance of the bonding between fibres.

Therefore, clear insights have been obtained on the variability of the sheet-scale hygro-mechanical
response of fibrous networks at different values of the bonding stiffness between fibres. Moreover,
the degree to which the anisotropic response of the network is affected by the bond modulus in
the inter-fibre bonds is also studied for anisotropic orientation fibre distributions. This study also
showed that with relatively low computational efforts an adequate representation of 3D fibres in a
two dimensional framework can be made using the bond model.

In future, this work could be extended further by adopting a moisture dependent interfacial
element modulus so as to study its role on the effective hygro-expansivity of network. However, this
can be a difficult task as its formulation can be better achieved by a comprehensive experimental
characterization. Also, the statistical variation of the bond properties like stiffness of the interfacial
element in the bonds shall be taken in to account.
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Another possible scope of future work would be to investigate the hygro-inelastic response of
the networks. This requires include modeling of the plastic deformation in the fibres (Samantray,
Peerlings, Massart, and Geers [62]), still preserving the interfacial elements in bonds so as to under-
stand their role on the development of irreversible deformations in the network at different coverages.

As a further extension, the interfacial elements can be extended to account for a non-linear
response. Furthermore, a damage model can be incorporated in these interfacial elements, so that at
certain stress levels bond failure is induced and the fibres in the inter-fibre bonds will get detached.
In this case, a suitable relation may be developed between the kh and damage variable by a relevant
methodology.
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C O N C L U S I O N S A N D F U T U R E W O R K

In this thesis, the influence of the hygro-mechanical response of paper fibres at the scale of paper
sheet was investigated. For this purpose, a complex fibrous network was modeled using an advanced
numerical discretization scheme to describe their complex geometries. Next, the irreversible strains
in paper sheets dried under restraint is modeled using a numerical model. Thereafter, the time-
dependent response of paper fibres subjected to changes in moisture and external loading is
adequately captured by adopting a suitable creep model. After a thorough analysis of the results,
the micro-level parameters influencing the macro-level behavior of paper were identified. Up to
this point, the fibres were assumed to be fully constrained in the bonds. In order to determine the
influence of bonding between fibres on the sheet-scale response of a paper network, the kinematic
constraints between fibres were relaxed in the bonds. This was achieved by the bond model developed
in Chapter 5 of the thesis.

83
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6.1 R E S U LT S A N D D I S C U S S I O N

With the models developed and the results obtained, a better understanding of the fine-scale pa-
rameters influencing the sheet-level hygroscopic swelling of paper is achieved. Hence, the central
objective of the thesis has been properly addressed.
In response to the research questions formulated in the introduction of the thesis, the results obtained
that address each of them are enumerated briefly in this section.

Modeling the complex geometry in a fibrous network accurately with less computational effort
than in conforming finite element discretization.

The fibres in a network are represented by randomly generated rectangular fibres with an
anisotropic orientation distribution function within a periodic unit cell framework. Generally,
in such complex networks, capturing the geometry of fibres poses a big challenge as it requires the
use of strongly refined meshes, leading to large computational efforts.
In the proposed approach, each fibre is implicitly described by a level-set function that is coupled
with XFEM to compute the hygro-mechanical response of the overall network. In the LS-XFEM
formalism, the fibre edges are tracked by nodal values of a level-set function in the discretized
geometry, employing a relatively coarse grid in comparison with the reference solution. The solution
obtained (local fields like displacements, stresses and strains) is validated by comparison with a
standard FEM (reference) solution computed using a very fine conforming mesh. Therefore, the
results by LS-XFEM formalism demonstrate its ability to capture the fibre edges in a sufficiently
accurate manner in a complex geometry, with a lower computational system size. This is more
advantageous for modeling of a 3D network.

Modeling the irreversibility mechanism at the fibre level and its sheet-scale dependence on mi-
crostructural parameters.

As noticed in experiments (Mäkelä [43]), paper fibres dried under constraint during the man-
ufacturing process exhibit irreversible strains upon exposure to a subsequent moisture cycle, i.e.
during printing operations. At the sheet-scale, such irreversible strains appear as curls, waviness and
cause instabilities occurring in paper. Here, the entire sequence of events i.e from manufacturing to
printing was modeled using a rate-independent kinematic hardening model at the level of fibres. The
sheet-scale irreversible strains were captured qualitatively for complex paper networks of different
coverages by this model.
One of the remarkable findings of these numerical simulations for the complex networks is the
dependence of the magnitude of the irreversible strain on the area fractions of the free standing fibres.
The irreversible strain was observed to decrease at higher coverages, containing less free standing
fibres. Therefore, a better understanding of the microstructural parameters governing dimensional
instabilities observed in paper was inferred.

Modeling the time dependence of paper fibres and its influence on network properties.

Over the past years, the time-dependent response of paper when subjected to a constant and
fluctuating ambient humidity has been a concern, especially in packaged paper products. Therefore,
a rate-dependent model was adopted to capture such time dependence of the paper network. It was
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identified on the basis of experimental results (Jentzen [32] and Sedlachek [64]) obtained on single
paper fibres. The model was able to capture the rate effects qualitatively and quantitatively for single
fibres with an adequate agreement. With these identified parameters for single fibres, the numerical
simulations were extended towards the relaxation response of complete fibre networks. The results
obtained for the networks demonstrate the ability of the model to predict the response of networks
at different coverages. Among the significant effects, two main observations were noted i.e. (i) a
faster relaxation at lower coverages and moisture content (ii) a faster relaxation for single fibre
as compared to the networks. Using this time-dependent model, the magnitude of the irreversible
strains for different coverage subjected to a moisture cycle was found to increase significantly until
c=2.0 and started to decrease after c=3.0.

Which type of mechanical model needs to be adopted for relaxing the kinematic constraints
in the inter-fibre bonds? How does it affect the macro-scale deformation of networks of different
coverages?

A bond model comprising of an interfacial element between each set of two fibres in the inter-fibre
bonds is developed. The extent to which the fibres in such regions undergo relative displacements
depends on the modulus kh of the interfacial element. At the macro-scale, the network response
corresponds to the longitudinal expansion of an individual fibre when low values of kh are consid-
ered, and this for all coverages resemble to a pinjoint frame. Conversely, for a high value of kh, the
macro-level response tends to that obtained with the earlier assumption of rigid bonding between fi-
bres. For intermediate values of the bond stiffness, the effect of the coverage on the hygro-expansive
response of a network is clearly observable. For a particular coverage, the sheet-scale response at
kh=G is considerably lower than the perfect bonding case. This is a clear indication of the influence
of inter-fibre bonds on the macro-scale response of the network. Additionally, a similar influence of
the bond stiffness kh on the anisotropic response of the network is noticed. Therefore, the role of
the stiffness of inter-fibre bonds on the sheet-scale behavior of the network has been unravelled,
which paves the way for its incorporation in the nonlinear models.

The main novelties of the work performed in thesis are thus summarized as

1. Development of a framework to capture the fibre geometry with a good accuracy and limited com-
putational efforts, applicable to a fibrous network for analyzing its hygro-mechanical behavior.

2. Modeling of the irreversible strains in single fibres through an appropriate plasticity model, allow-
ing to study the dependency at the level of a paper network on microstructural parameters.

3. Modeling of the creep response of single paper fibres with a rate-dependent model followed by
its application to complex network, allowing to analyze the relaxation response of paper networks.

4. Investigating the hygro-mechanical response in paper networks due to partially bonded fibres in
the inter-fibre bonds. Further, its role is studied on the anisotropic behavior of a network at the
macro-level.
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6.2 F U T U R E S C O P E

As stated above, even though most of the objectives of the thesis had been reached, there is still
room for further improvements based on the proposed developments.

6.2.1 Material and modeling aspects

A. Paper network: The network of paper consists of fibres only in the present work, which can be
extended to include filler materials. Also, with more experimental data and the use of statistical
tools, heterogeneous properties can be assigned to different fibres in the network to represent a more
realistic paper network. It will be interesting to perform simulations on such heterogenous networks
and assess the resulting sheet-level behavior.

B. Material properties: Material properties like the elastic modulus and hardening modulus were
taken to be independent of the moisture content. The behavior of network to moisture changes can
be further studied with these material properties being moisture dependent. Additionally, the yield
stress can be formulated as a quadratic function or logarithmic function of the moisture content.
Since, these require minimal implementation efforts, this path can be easily pursued.

C. Other aspects: The interfacial element model adopted to capture relative displacements in
the inter-fibre bonds can be incorporated in the kinematic hardening plasticity model. This will be
helpful in understanding the influence of the relaxation of kinematic constraints on the irreversible
strains observed in paper at the macro-level. Moreover, the hygro-mechanical response of the net-
work can be studied with a moisture dependent interfacial element modulus. Since, the formulation
should not pose any serious difficulty, its implementation can be subject of future work.

6.2.2 Other realms for possible exploration linked with the hygro-mechanical response of paper

A. Modeling in three dimensions: The hygro-elastic model described earlier can be modified to
model the out of plane macroscopic behaviour of curl and waviness in paper by incorporating the
constitutive model in 3D. For this purpose, a moisture profile needs to be prescribed along the
thickness of the sheet. The entire 3D RVE can be modelled using three dimensional finite elements
like tetrahedrons/hexahedrons. The boundary conditions should be generalized and compared with
the periodicity employed here in order to allow for bending. Also, the computational advantages of
the LS-XFEM formalism may be more pronounced in 3D. In 3D, with the LS-XFEM formalism,
the geometry can be captured accurately even with a coarse mesh with smaller system size. This
would be beneficial in reduction of the computational efforts and time. At the bonded regions in the
3D framework, contact modelling is necessary to describe the interaction between fibres touching
each other.

B. Including thermal effects in model: A more accurate deformation response of paper networks
can be achieved by taking into consideration the thermal effects which occur in tandem with the
hygroscopic changes in ambient conditions and printing operations.
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C. Mechanosorptive creep modeling: Upon exposure to subsequent cyclic humidity, creep ac-
celerates which is termed as mechanosorptive creep. Many mechanisms have been suggested to
explain this phenomena. Modeling these mechanisms to simulate mechanosorptive creep in paper
fibres, in order to study its influence on the rate effects of a network subjected to cyclic humidity,
forms an important topic to pursue in future work.

C. Other: As a part of future efforts, more experiments can be performed on the paper sheets
to gain even more understanding on the behaviour of the paper sheets. Since the numerical simula-
tions to predict the irreversible response of networks were performed until a coverage c=10.0, it
will be interesting to run the simulations for higher coverages to observe the irreversible strains. A
sensitivity analysis of the materials parameters like El , Et, Glt can be performed to study their effect
on the sheet scale response. In the current work, the material and model parameters are assumed to
be constant irrespective of the moisture content. As another future effort, these can be modelled as
moisture dependent, with linear or non-linear variation with the moisture content. The plasticity
models used in the current thesis assume plasticity only under tension. As a future work, these
models can be extended to include plasticity in compression as well.
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The trial stress and trial backstress represented by the return mapping algorithm are

σ
f ,t+∆t
trial = 4D f : (ε f ,t+∆t − pε f ,t − hε f ,t+∆t) (64)

q f ,t+∆t
trial = − 4H : ξ

f ,t
(65)

F f ,t+∆t
trial = |(σ f ,t+∆t

trial − q f ,t+∆t
trial ) : ~p~p| − σy, F f ,trial is trial yield function (66)

Therefore, the stress and the backstress can now be computed as

σ f ,t+∆t = σ
f ,t+∆t
trial − ∆γ 4D f : N (67)

q f ,t+∆t = q f ,t+∆t
trial + ∆γ 4H f : N , where N = sign((σ f ,t+∆t − q f ,t+∆t) : ~p~p) ~p~p (68)

σ f ,t+∆t − q f ,t+∆t = σ
f ,t+∆t
trial − q f ,t+∆t

trial − ∆γ( 4D f : N + 4H f : N )

We need to derive the expression for the plastic multiplier ∆γ. For this, we write the yield
function

F f ,t+∆t = |(σ f ,t+∆t − q f ,t+∆t) : ~p~p| − σy

= (σ f ,t+∆t − q f ,t+∆t) : ~p~p sign[(σt+∆t − qt+∆t) : ~p~p]− σy

= (σ f ,t+∆t − q f ,t+∆t) : N − σy

= (σ f ,t+∆t − q f ,t+∆t) : N trial − σy

Here, we have used the fact that for sufficiently small increments, we have (69)

N = N trial = sign((σ f ,t+∆t
trial − q f ,t+∆t

trial ) : ~p~p) ~p~p (70)

Now, introducing the σ f ,t+∆t and q f ,t+∆t from Eq. (67) and (68), we have

F f ,t+∆t = (σ
f ,t+∆t
trial − q f ,t+∆t

trial ) : N trial − ∆γ( 4D f : N trial +
4H f : N trial) : N trial − σy

= F f ,t+∆t
trial − ∆γ(N trial : 4D f : N trial + N trial : 4H f : N trial)

F f ,t+∆t = F f ,t+∆t
trial − ∆γ(~p~p : (4D f + 4H f ) : ~p~p)

The yield condition expresses that F f ,t+∆t should vanish, which gives the plastic multiplier ∆γ as

∆γ =
F f ,t+∆t

trial

~p~p : (4D f + 4H f ) : ~p~p
(71)

To derive the consistent elastoplastic material tangent, 4Dep, the plastic multiplier is linearized as

δγ =
δF f ,t+∆t

trial

~p~p : ( 4D f + 4H f ) : ~p~p
=

N trial : δσ
f ,t+∆t
trial

~p~p : ( 4D f + 4H f ) : ~p~p
(72)
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The stress operator is linearized as

δσ f ,t+∆t = δσ
f ,t+∆t
trial − δγ 4D f : N trial

Here, the contribution of δq̄ f ,t+∆t
trial = 0 as it depends on ξ

f ,t
of previous time step. Substitution of

δγ according to Eq. (72) now gives

δσ f ,t+∆t = δσ
f ,t+∆t
trial − 4D f : N trial

N trial : δσ
f
trial

~p~p : ( 4D f + 4H f ) : ~p~p

= 4D f : δε f ,t+∆t − 1
~p~p : ( 4D f + 4H f ) : ~p~p

4D f : N trial N trial : 4D f : δε f ,t+∆t

=

(
4D f − ~p~p : 4D f 4D f : ~p~p

~p~p : ( 4D f + 4H f ) : ~p~p

)
: δε f ,t+∆t (73)

Therefore, the consistent tangent operator is denoted as

Dep =
4D f − (~p~p : 4D f 4D f : ~p~p)

~p~p : ( 4D f + 4H f ) : ~p~p
(74)
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A.2 N O N - L I N E A R G L O B A L E Q U I L I B R I U M E Q UAT I O N S

In order to predict the irreversible response of a fibrous network as discussed in the first section, a
finite element scheme is adopted using a non-linear incremental iterative methodology based on the
Newton Raphson scheme. The fibrous network in the periodic unit cell is discretized using a regular
grid with constant strain triangular finite elements. The finite elements with their centroid lying
inside the fibres contribute to the stiffness and hygroscopic load in the assembly of the global system
of equations, while the other elements lie in voids. Now, as we are incorporating the hygro-expansion
model in the non-linear equilibrium equations, it is important to obtain the correct initial guess
of the plastic multiplier ∆γ in the first iteration of every time increment to achieve convergence.
Therefore, this is followed for only the first iteration of each time increment. So,

∆pε f = ∆γN = ∆γN trial (75)

Now, the stress at time t+∆t is denoted by

σ f ,t+∆t = σ f ,t + ∆σ f

= σ f ,t + 4D f : (∆ε f − ∆hε f − ∆pε f )

= σ f ,t + 4D f : (∆ε f − ∆hε f − ∆γN trial) (76)

= σ
f ,t+∆t
trial − ∆γ 4D f : N trial , σ

f ,t+∆t
trial = σ f ,t + 4D f : (∆ε f − ∆hε f ) (77)

Now, the plastic multiplier as derived earlier and the trial yield function are represented as

∆γ =
F f ,t+∆t

trial

(~p~p : ( 4D f + 4H f ) : ~p~p)
, F f ,t+∆t

trial = |(σ f ,t+∆t
trial − q f ,t+∆t

trial ) : ~p~p| − σy (78)

Substituting the value of σ
f ,t+∆t
trial in F f ,t+∆t

trial , we have

F f ,t+∆t
trial = |(σ f ,t + 4D f : ∆ε f − 4D f : ∆hε f − q f ,t) : ~p~p| − σt+∆t

y

= [(σ f ,t + 4D f : ∆ε f − 4D f : ∆hε f − q f ,t) : N trial − (σt
y + ∆σy)

= ((σ f ,t − q f ,t) : N trial − σy + ( 4D f : ∆ε f − 4D f : ∆hε f ) : N trial − ∆σy

Assuming continued plastic flow in the same direction, we have N trial=N t and hence, (σ f ,t− q f ,t) :
N t - σy =|(σ f ,t − q f ,t) : ~p~p| − σy = F f ,t=0, this simplifies to

F f ,t+∆t
trial = ( 4D f : ∆ε f − 4D f : ∆hε f ) : N trial − ∆σy, (79)

Substituting this expression for F f ,t+∆t
trial in the plastic multiplier in Eq. 71, we have,

∆γ =
( 4D f : ∆ε f − 4D f : ∆hε f ) : N t − ∆σy

~p~p : ( 4D f + 4H f ) : ~p~p
(80)
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Now, substituting the value of ∆γ in Eq. 76, we have

σ f ,t+∆t = σ f ,t − 4D f : ∆hε f + 4D f : ∆ε f

− D f :
( 4D f : ∆ε f − 4D f : ∆hε f ) : N t − ∆σy

~p~p : ( 4D f + 4H f ) : ~p~p
N t

= σ f ,t +

(
4D f − (~p~p : 4D f 4D f : ~p~p)

~p~p : ( 4D f + 4H f ) : ~p~p

)
: ∆ε f

−
(

4D f − (~p~p : 4D f 4D f : ~p~p)
~p~p : ( 4D f + 4H f ) : ~p~p

)
: ∆hε f +

4D f : N t∆σy

~p~p : ( 4D f + 4H f ) : ~p~p
(81)

= σ f ,t + Dep : ∆ε f − Dep : ∆hε f +
4D f : N t∆σy

~p~p : ( 4D f + 4H f ) : ~p~p
(82)

Therefore, we obtained the prediction of stress at (t + ∆t) based on data at t.
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γ̇ =
γ0

τ

(
|σ f ,t+∆t − q̄ f ,t+∆t : ~p~p|

σy

) 1
m

∆γ =
γ0∆t

τ

(
(σ f ,t+∆t − q̄ f ,t+∆t) : N

σy

) 1
m

(83)

=
γ0∆t

τ

(
(σ f ,t+∆t − q̄ f ,t+∆t) : N trial

σy

) 1
m

(84)

where N = sign((σ f ,t+∆t − q̄ f ,t+∆t) : ~p~p) ~p~p = N trial

σ f ,t+∆t = σ
f ,t+∆t
trial − ∆γ 4D f : N trial (85)

q f ,t+∆t = q f ,t+∆t
trial + ∆γ4H f : N trial (86)

Substituting the expression of σ f and q f from Eq. (85) and Eq. (86) respectively in Eq. (84), we
have

∆γ =
γ0∆t

τ

[
(σ

f ,t+∆t
trial − q̄ f ,t+∆t

trial ) : N trial − ∆γN trial : (4D f + 4H f ) : N trial

σy

] 1
m

G(γ) = ∆γ− γ0∆t
τ

[
(σ

f ,t+∆t
trial − q̄ f ,t+∆t

trial ) : N trial − ∆γN trial : (4D f + 4H f ) : N trial

σy

] 1
m

(87)

where G(γ) = 0

Therefore, the non-linear equation to be solved for the plastic multiplier is given by Eq. (87).
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A.4 D E R I VAT I O N O F M AT E R I A L TA N G E N T M O D U L U S

In order to derive the tangent operator, a variation of the non-linear equation obtained above in
Eq. (87) is used

δγ =
γ0∆t

τ

[
(σ

f ,t+∆t
trial − q̄ f ,t+∆t

trial ) : N trial − ∆γN trial : (4D f + 4H f ) : N trial

σy

] 1
m−1

× 1
mσy

[
δσ

f ,t+∆t
trial : N trial − δγN trial : (4D f + 4H f ) : N trial

]
Here, δq̄ f ,t+∆t

trial = 0 as it depends on cε f ,t of the previous time step. (88)

Now, the above equation can be represented as

[1 + AA N trial : (4D f + 4H f ) : N trial ]δγ = AA N trial : δσ
f ,t+∆t
trial ,

Here AA =
γ0∆t
mτσy

[
(σ

f ,t+∆t
trial − q̄ f ,t+∆t

trial ) : N trial − ∆γN trial : (4D f + 4H f ) : N trial

σy

] 1
m−1

One thus obtains (89)

δγ =
AA N trial

1 + AA N trial : (4D f + 4H f ) : N trial
: δσ

f ,t+∆t
trial (90)

Now, the stress variation is represented as

δσ f ,t+∆t = δσ
f ,t+∆t
trial − δγ4D f : N

= δσ
f ,t+∆t
trial − D f : N trial

AA N trial

1 + AA N trial : (4D f + 4H f ) : N trial
: δσ

f ,t+∆t
trial

= 4D f : δε f ,t+∆t − AA
1 + AA N trial : (4D f + 4H f ) : N trial

(91)

× 4D f : N trial N trial : 4D f : δε f ,t+∆t

=

[
4D f − AA ∆t 4D f : N trial N trial : 4D f

1 + AA N trial : (4D f + 4H f ) : N trial

]
: δε f ,t+∆t (92)

δσ f ,t+∆t = 4D f ,t+∆t
ep : δε f ,t+∆t

The tangent modulus is thus obtained as

4D f ,t+∆t
ep = 4D f − AA

1 + AA N trial : (4D f + 4H f ) : N trial

4D f : ~p~p ⊗ ~p~p : 4D f (93)
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