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A B S T R A C T

Species distribution models (SDMs) have been increasingly used over the past decades to characterise the spatial
distribution and the ecological niche of various taxa. Validating predicted species distribution is important, es-
pecially when producing broad-scale models (i.e. at continental or oceanic scale) based on limited and spatially
aggregated presence-only records. In the present study, several model calibration methods are compared and
guidelines are provided to perform relevant SDMs using a Southern Ocean marine species, the starfish Odontaster
validus Koehler, 1906, as a case study. The effect of the spatial aggregation of presence-only records on model-
ling performance is evaluated and the relevance of a target-background sampling procedure to correct for this
effect is assessed. The accuracy of model validation is estimated using k-fold random and spatial cross-validation
procedures. Finally, we evaluate the relevance of the Multivariate Environmental Similarity Surface (MESS) in-
dex to identify areas in which SDMs accurately interpolate and conversely, areas in which models extrapolate
outside the environmental range of occurrence records.

Results show that the random cross-validation procedure (i.e. a widely applied method, for which training
and test records are randomly selected in space) tends to over-estimate model performance when applied to spa-
tially aggregated datasets. Spatial cross-validation procedures can compensate for this over-estimation effect but
different spatial cross-validation procedures must be tested for their ability to reduce over-fitting while providing
relevant validation scores. Model predictions show that SDM generalisation is limited when working with aggre-
gated datasets at broad spatial scale. The MESS index calculated in our case study show that over half of the pre-
dicted area is highly uncertain due to extrapolation. Our work provides methodological guidelines to generate
accurate model assessments at broad spatial scale when using limited and aggregated presence-only datasets. We
highlight the importance of taking into account the presence of spatial aggregation in species records and using
non-random cross-validation procedures. Evaluating the best calibration procedures and correcting for spatial
biases should be considered ahead the modelling exercise to improve modelling relevance.

1. Introduction

Species Distribution Models (SDMs) have been increasingly used
during the past decades. The diversity of applications has widened to
include a vast panel of topics from studies of invasive species distri-
bution range shifts to assessment of species responses to environmen-
tal drivers and conservation issues from local to global scales (Guisan
and Thuiller, 2005, Ficetola et al., 2007, Guisan et al., 2013, Beaumont
et al., 2016, Phillips et al., 2017). In vast and remote areas such as
the Southern Ocean, modelling species distributions is challenged by
(1) the paucity of biotic data available (a serious constraint when de-
scribing species realised niche), (2) by the heterogeneous quality of
environmental data describing environmental conditions (e.g.. miss-
ing data in coastal areas, low resolution of environmental layers, lim-
ited number of environmental descriptors available), and (3) by the
sampling bias (spatial and temporal aggregation of data collection)
(Barry and Elith, 2006, Robinson et al., 2011, Hortal et al., 2012,
Tessarolo et al., 2014, Guillaumot et al., in press). Sampling

effort has mostly been carried out offshore or in the vicinity of research
stations during the austral summer while remote shallow areas are sel-
dom accessed and dense winter sea ice conditions limit oceanographic
studies (Gutt et al., 2012).

Several studies have proposed model corrections or alternatives to
separately mitigate the induced impacts of spatial and temporal bi-
ases on modelling performance (Phillips et al., 2009, Newbold, 2010,
Barbet-Massin et al., 2012, Hijmans, 2012, Tessarolo et al., 2014,
Guillera-Arroita et al., 2015, Guillaumot et al., in press, Valavi et al.,
2018). However, to our knowledge, no study has yet proposed method-
ological guidelines to address such issues when dealing with data-poor
and broad spatial areas (i.e. at continental or oceanic scales).

Several statistical tools such as the Area Under the Curve of the
Receiver Operating characteristic (AUC), the True Skill Statistic, or
the Point Biserial Correlation are commonly used to evaluate the rel-
evance of SDMs predictions (Fielding and Bell, 1997, Allouche et al.,
2006). Using these indices for models performed with presence-only
data has been widely discussed because back
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ground-data are usually considered as absences, leading to confusion
in model interpretation and violating most test assumptions (i.e. com-
puting AUC and TSS statistics requires the use of true absences)
(Jimenez-Valverde, 2012, Li and Guo, 2013). These methods can also
be biased when applied to limited and broadly distributed data. Ma-
chine-learning algorithms are widely used in SDMs to fit complex re-
lationships between species occurrences and environmental data (Elith
et al., 2006). The resulting models may be highly complex and poorly
efficient under changing environmental conditions as they may fit a re-
sponse to any variation including the random noise (=model overfit-
ting), (Wenger and Olden, 2012). Models’ ability to predict in new envi-
ronmental conditions is described as the generalisation performance by
Friedman et al. (2001).

Producing reliable SDMs implies finding a good trade-off between
model complexity and predictive and generalisation performances
(Anderson and Gonzalez, 2011, Radosavljevic and Anderson, 2014). The
relevance of modelling and generalisation performance, and the optimal
level of model complexity can be tested using independent data. The
method has been commonly applied and referred to as the cross-vali-
dation procedure (Araujo and Guisan, 2006, Valavi et al., 2018). The
cross-validation procedure uses a training subset of occurrence data to
fit the model and a separate test subset to validate the predictions and
the statistical relationships between the studied variables (Fielding and
Bell, 1997). ‘Random cross-validation’ procedures are widely used and
randomly split the occurrence dataset into training and test subsets.
However, the spatial aggregation of occurrence data can lead to the vi-
olation of the independence assumption between training and test data
randomly sampled, and in turn to false confidence in modelling val-
idation performances (Hijmans, 2012). The violation of the indepen-
dence assumption can also lead to generate highly complex and overfit-
ted models (Boria et al., 2014, Merow et al., 2013, Radosavljevic and
Anderson, 2014). Therefore, the cross-validation procedure should be
adapted to each given dataset and case study, so that, different ‘spa-
tial cross-validation’ procedures have been developed and compared in
this study. The spatial cross-validation procedures aim at spatially split-
ting the occurrence dataset into a training and a test subset by increas-
ing the geographical distance between the two subsets (Veloz, 2009,
Brenning, 2012, Muscarella et al., 2014, Radosavljevic and Anderson,
2014, Brown et al., 2017, Valavi et al., 2018). The spatial cross-vali-
dation reduces spatial correlation between training and test data in sit-
uations where spatial autocorrelation is significant in the occurrence
dataset, a common issue in ecology (Roberts et al., 2017).

Uncertainties in SDMs represent another limitation to model usage
that should be quantified and the effects must be specifically assessed or
taken into account during model interpretation (Barry and Elith, 2006,
Carvalho et al., 2011, Beale and Lennon, 2012, Guisan et al., 2013).
Model extrapolation outside the range of the known species environ-
mental conditions leads to misinterpretation of SDM outputs and can
be a real issue when using SDM predictions as a support tool for con-
servation decisions. Therefore, areas of optimal predictions and limited
uncertainties must be identified. This can be achieved using indicators
such as the Multivariate Environmental Similarity Surface (MESS). De-
veloped for SDMs, the MESS index highlights areas where environmen-
tal conditions are outside the range of conditions observed in data (Elith
et al., 2010).

In the present study, model uncertainties and the performance of
several spatial cross-validation procedures were analysed using the case
study of the sea star Odontaster validus Koehler, 1906. Distributed over
the entire Southern Ocean (<45°S), O. validus is a common and abun-
dant species in shallow-water benthic habitats (McClintock et al., 2008,
Lawrence, 2013), characterised by an opportunistic feeding behaviour
(from suspension-feeding to algivory, deposit-feeding and predation). It
has been shown to play a significant role in structuring benthic com-
munities and regulating populations of other benthic taxa (McClintock
et al., 2008). The species physiology was recently modelled using the
Dynamic Energy Budget approach (Agüera et al., 2015) which allows
for the assessment of the metabolic performance of the species un-
der different environmental conditions. Here, SDMs were produced to
interpolate the known distribution of O. validus over its entire ge-
ographic range using an available

dataset of environmental descriptors. The influence of spatial data ag-
gregation on model outputs was analysed and the performance of cor-
rection procedures evaluated. In a second step, several cross-validation
procedures were assessed and compared to test for modelling accuracy,
optimal level of complexity and predictive performance. A final ‘op-
timum’ model is proposed, which takes into account uncertainty esti-
mates. Results are generalised and formalised as guidelines for further
SDM works, showing the relevance of the approach when working at
broad spatial scale with a limited number of spatially aggregated pres-
ence-only records.

2. Material and methods

2.1. Model selection and calibration procedures

SDMs were generated using the Boosted Regression Trees (BRTs) al-
gorithm. BRTs were selected for their ability to fit complex relationships
between species records and the related environment, while guarding
against over-fitting (Elith et al., 2008, Reiss et al., 2011). BRTs are also
adapted to deal with incomplete datasets (Elith et al., 2008), can per-
form well with low prevalence datasets (Barbet-Massin et al., 2012), are
weakly sensitive to species niche width (Qiao et al., 2015) and were
recognised to transfer well in space and time (Elith et al., 2006, Elith
and Graham, 2009, Heikkinen et al., 2012).

BRTs were calibrated using the method proposed by Elith et al.
(2008) to select the optimal number of trees in the final model (Appen-
dix A). The combination of parameters that minimises the optimal num-
ber of trees to build the model (reduction of complexity) while reach-
ing a minimum predictive deviance to the test data (reduction of error)
was selected. The following parameters were used to calibrate the mod-
els: tree complexity=4, bag fraction=0.75 and learning rate=0.007
(Fig. S2). The number of background data sampled in the area was set at
1000 sampled points after evaluating the optimal number of data points
to be sampled (see Appendix A for details). This number constitutes the
best trade-off between describing environmental conditions and being
as close as possible to the number of species presence records available
(Barbet-Massin et al., 2012). All background sampling was restricted in
space to areas shallower than 1500m depth, which corresponds to the
species deepest record, in order to avoid model extrapolation at depths
known as unsuitable for the species survival based on knowledge of the
species ecology (McClintock et al., 2008, Lawrence, 2013). Sampling
was restricted to a single background data per pixel. Similarly, presence
records falling on a same 0.1° grid-cell pixel were filtered before model
calibration in order to reduce spatial over-weighting (Segurado et al.,
2006, Boria et al., 2014).

2.2. Occurrence dataset

SDMs were generated using presence-only data made available for
the sea star O. validus by Moreau et al. (2018). Presence-only records of
O. validus are strongly aggregated in space (i.e. concentrated in “easily”
accessible and frequently visited areas characterised by relatively low
sea ice concentrations), a condition also prevailing in the total dataset
available for Southern Ocean benthic taxa (updated from Griffiths et al.
(2014), Fig. S3), making O. validus a representative case study for South-
ern Ocean benthic studies.

Models were generated using the environmental descriptors pub-
lished as raster layers by Fabri-Ruiz et al. (2017). They were collected
from different sources and modified to fit modelling requirements at the
scale of the Southern Ocean (from 45°S latitude to Antarctica coasts).
Collinearity between environmental descriptors was tested using the
Variance Inflation Factor (VIF) stepwise procedure of the ‘usdm’ R pack-
age (Naimi et al., 2014) and Spearman correlations (rs) (R Core Team,
2017). Surface temperature and roughness, a depth-derived variable,
were respectively correlated to ice cover and depth. They were omit-
ted according to the commonly used thresholds of VIF>5 and rs>0.85
(Pierrat et al., 2012, Dormann et al., 2013, Duque-Lazo et al., 2016). A
final set of 16 environmental descriptors at 0.1° resolution was compiled
to build the models (Table S5).
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2.3. Evaluation and correction of spatial aggregation

The significance of spatial aggregation of occurrence data was tested
by measuring spatial autocorrelation (Legendre and Fortin, 1989) on
model residuals using the Moran’s I index (Segurado et al., 2006,
Dormann, 2007, Crase et al., 2012). A positive Moran’s I value (be-
tween 0 and 1) indicates that spatially close residuals will share sim-
ilar values. A negative (close to −1) or null value respectively indi-
cates a maximal dispersion or a random dispersion of residuals in space
(Cliff and Ord, 1981). Detecting significant spatial autocorrelation in
presence-only records will assess the degree of aggregation of species
records in the studied area.

Two null models were generated and their respective outputs com-
pared to each other in order to evaluate the importance of spatial aggre-
gation in the total Southern Ocean benthic dataset (Fig. S3). Null model
#1 was produced to evaluate the overall spatial aggregation of benthic
records in the Southern Ocean due to sampling effort. It was generated
by randomly sampling n=309 occurrence records (corresponding to
the number of non-duplicate presence-only data available for O. validus)
in the total Southern Ocean benthic dataset (Fig. S3). 1000 background
records were randomly sampled in the entire Southern Ocean. The
Moran’s I score was calculated by comparing model #1 predictions to
the distribution of the total Southern Ocean benthic dataset (Fig. S3).
Null model #2 was built to compute a reference Moran’s I score for a
model generated with randomly distributed records. 309 presence data
and 1000 background data were randomly sampled in the entire South-
ern Ocean. Null model #2 would provide a reference value for spatial
autocorrelation scores due to the intrinsic structure of environmental
data. It will serve as a reference model for comparison with Moran’s I
scores of model null #1 and to assess the degree of spatial aggregation
due to sampling effort.

To correct for the effect of spatial aggregation on modelling perfor-
mance, a target-background correction method was applied (Phillips et
al., 2009). The total Southern Ocean benthic dataset (Fig. S3) was used
to create a Kernel Density Estimation layer that provides an estimate of
the probability to find a benthic presence data for each pixel. The Ker-
nel Density Estimation was calculated with the ‘kde2d’ function of the
MASS R package (Ripley, 2015) on the extent of the Southern Ocean (n
and lims parameters defined to fit a raster layer of extent (−180, 180,
−80, −45) and 0.1° resolution). Null model #1 was corrected by ran-
domly sampling 1000 background records according to the weighting
scheme of the Kernel Density Estimation layer.

After evaluating spatial aggregation in the total Southern Ocean
benthic dataset, spatial autocorrelation was specifically assessed for O.
validus. Spatial autocorrelation was measured for two models generated
without (model A) and with (model B) Kernel Density Estimation cor-
rection. Comparison between the two models aimed at assessing the effi-
ciency of the Kernel Density Estimation correction for O. validus. Model
A (without correction) was built using all presence-only data available
for O. validus and 1000 background records randomly sampled in the
Southern Ocean. Model B (with correction) was built using all pres-
ence-only data available for O. validus and 1000 background records
that were sampled following the weighting scheme of the Kernel Density
Estimation layer. Each model was generated 100 times and the two av-
eraged models (average models A and B) were compared to each other.
Differences between models A and B quantify the importance of spatial
aggregation on model outputs.

Finally, model relevance was assessed using three statistics: the Area
Under the Receiver Operating Curve (AUC) (Fielding and Bell, 1997),
the Point Biserial Correlation between predicted and observed values
(COR, Elith et al., 2006) and the True Skill Statistic (TSS, Allouche et
al., 2006).

2.4. Testing different cross-validation procedures

SDMs validation was performed using different cross-validation pro-
cedures. Background data were first sampled in the entire area fol-
lowing the Kernel Density Estimation scheme and the compilation of
presence-only and background data was then split into a training and
a test subset to build the cross-

validation procedure. Two splitting procedures were followed; they dif-
fer between each other in the spatial independence between the training
and the test subset. (1) The random cross-validation procedure, com-
monly used in SDMs, aims at randomly splitting the dataset into train-
ing and test subsets (Fielding and Bell, 1997, Hijmans, 2012) which may
lead to close spatial vicinity between the two datasets (Hijmans, 2012),
and, (2) the spatial cross-validation procedure that aims at spatially spit-
ting the dataset in order to reduce spatial correlation and may improve
independence between the two subsets (Hijmans, 2012, Muscarella et
al., 2014).

The random procedure was therefore compared to four different spa-
tial cross-validation procedures. (1) In the ‘BLOCK’ method developed
by Muscarella et al. (2014), different subsets of equal occurrence num-
bers are created. For each replicate, this k-fold procedure divides the
dataset into four equal subsets according to the mean latitude and mean
longitude positions of occurrence data (Fig. 1C), then three of these four
subsets are randomly selected to train the model (75%) and the last one
is used to test the model (25%). (2) In the ‘CLOCK’ methods, the dataset
was divided according to random longitudinal transects, splitting the
Antarctic Circle into two parts (2-fold ‘CLOCK’ method, Fig. 1B), (3)
three parts (3-fold ‘CLOCK’ method, Fig. 1D) or (4) four parts (4-fold
‘CLOCK” method, Fig. 1E). In the 2-fold ‘CLOCK’ method, one subset
was considered as the training subset, the second one as the test sub-
set; in the 3-fold ‘CLOCK’ method, two subsets were defined for train-
ing and the third one for testing; in the 4-fold ‘CLOCK’ method, three
subsets were considered for training and one for testing (Fig. 1). Dif-
ferent cross-validation procedures were tested using the ‘gbm.step’ pro-
cedure available in the dismo R package (Elith et al., 2008, Hijmans et
al., 2016). Once the dataset is split in different folds, Elith et al. (2008)
apply an iterative procedure that enable to find the minimum deviance
to the test data, and relates it to the optimal number of trees (optimal
model complexity) to generate the model. If test and training data are
spatially correlated, the number of trees required to build BRTs will be
overestimated. Therefore, the use of Elith et al. (2008) procedure will
enable to accurately interpret and compare optimal complexity and per-
formance scores of models calibrated with either randomly or spatially
segregated folds (i.e. with contrasting distances between training and
test subsets), and thus will help explain the influence of occurrence spa-
tial aggregation on model complexity and performance.

R scripts written to generate the models and the different cross-val-
idation procedures are provided online at: https://github.com/
charleneguillaumot/THESIS/.

Independence between training and test subsets was evaluated us-
ing the Spatial Sorting Bias index (SSB) (Hijmans, 2012). SSB com-
pares the distance between training-presence and testing-presence data
with the distance between training-presence and training-background.
SSB∼0 (non independence) means that the ‘’distance between train-
ing-presence and test-presence sites will tend to be smaller than the dis-
tance between training-presence and test-background sites’’ (Hijmans,
2012). SSB∼1 indicates that the two distances are comparable (enough
independent) (Hijmans, 2012). SSB was calculated with the dismo R
package (Hijmans et al., 2016).

SDMs evaluation was generated by computing the percentage of test
data that fall on grid-cell pixels predicted as suitable. Suitable pixels
were defined using the Maximum sensitivity plus specificity threshold
(MaxSSS) that splits models into suitable (>MaxSSS value) and unsuit-
able areas (<MaxSSS value). MaxSSS is accepted as a relevant threshold
for presence-only SDMs (Liu et al., 2013). The averaged optimal number
of trees required to generate BRTs was compared between models and
used as a proxy of model complexity.

Statistical differences between models generated with the different
cross-validation procedures (AUC, TSS, COR, percentage of correctly
classified test data, number of trees) were tested using the non-paramet-
ric Mann-Whitney Wilcoxon pairwise comparison.

2.5. Assessment of model uncertainty

The Multivariate Environmental Similarity Surface (MESS) index
was estimated following the procedure described by Elith et al. (2010)
using the dismo
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Fig. 1. Comparison of the different cross-validation procedures. Dots represent Odontaster validus presence-only records and a random set of 1000 background data, sampled according to
the Kernel Density Estimation weighting scheme. Colors indicate data splitting into training (pink) and test (green) subsets. Blue background corresponds to bathymetry and grey areas to
emerged lands. For each case, 100 replicates of random background-data sampling and transects partitioning are performed. (A) Random cross-validation procedure, with a random split-
ting into 75% training and 25% test data. (B) ‘2-fold CLOCK’ clustering by random spatial partition of the dataset into two groups (one training, one test). (C) ‘BLOCK’ splitting, generated
according to the median latitudinal and longitudinal values (Muscarella et al., 2014). After generation of four groups (corresponding to the four colors), one group is randomly defined as
the test subset, the other three groups as the training subset. A different system of projection was used to represent this map to highlight the latitudinal and longitudinal definition of the
transects. (D) ‘3-fold CLOCK’ clustering by random spatial partition of the dataset into three groups (2 training, 1 test). (E) ‘4-fold CLOCK’ clustering by random spatial partition of the
dataset into four groups (3 training, 1 test). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

R package (Hijmans et al., 2016). The MESS calculation consists in ex-
tracting the environmental conditions where presence-only data were
recorded and determining for each pixel of the model projection layer
if environmental conditions are covered by presence-only records. Neg-
ative MESS values indicate areas of model extrapolation in which the
value of at least one environmental descriptor is beyond the environ-
mental range covered by available presence-only records. Conversely,
positive MESS values indicate areas of model projection

in which values of environmental descriptors are within the environ-
mental range covered by presence-only records. According to the num-
ber of environmental descriptors that are not included inside the range
of presence records values, MESS outcome can strongly vary. The MESS
evaluation deals with each environmental descriptor equally (un-
weighted analysis) and in this study, a pixel was considered as un-
suitable as soon as a single descriptor value does not match the en-
vironmental range of presence-only records. On a projection
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map, SDMs prediction was darkened according to the MESS extrapola-
tion range to visualise the uncertain area due to extrapolation. Extrapo-
lation performance of SDMs was assessed by comparing the proportion
of the environment predicted as suitable by the model with the total set
of environmental conditions.

3. Results

3.1. Available data and spatial autocorrelation

Distribution records available for Odontaster validus display a circum-
polar and patchy spatial pattern (Fig. 2A). The niche occupied by O.
validus does not cover the entire range of environmental conditions pre-
vailing in the projection area (Fig. 2B). O. validus is recorded in condi-
tions close to zero and sub-zero seafloor temperatures (Fig. 2B) and is
mainly distributed in shallow and coastal areas. Most of O. validus pres-
ence records are aggregated in regions where scientific benthic surveys
are most often led and where sampling effort was privileged due to ac-
cess facilities (e.g. the Ross Sea and the Antarctic Peninsula). Overall,
this holds true for presence records of all benthic Southern Ocean taxa
as well (Fig. S3), although, in this case, most environmental conditions
are covered by the total benthic samples (Fig. 2B).

Spatial autocorrelation was measured for both the total Southern
Ocean benthic dataset (null models) and for O. validus alone (mod-
els A and B) (Table 1). Moran’s I scores were tested significant for
all models, null model #2 ex

cepted. The absence of spatial autocorrelation (I=0.005±0.004;
p=0.19) in null model #2 shows that environmental data are not
strongly aggregated in space. In contrast, presence-only records of the
total Southern Ocean benthic dataset are spatially aggregated. The de-
gree of spatial aggregation due to sampling effort is evidenced by the
comparison between null model #1 and #2, scores of model #1 being
10 times higher than those of null model #2 (Moran’s I=0.050±0.011
and 0.005±0.004, respectively).

Values of Moran’s I computed for models of O. validus (models A and
B) are higher than those computed for the total Southern Ocean benthic
dataset (null model #1 and #1 with Kernel Density Estimation). The
sampling bias is therefore more pronounced for O. validus than for the
majority of other benthic species.

Model correction by the Kernel Density Estimation procedure was
shown to reduce spatial autocorrelation with Moran’s I values decreas-
ing from 0.050 to 0.034 for null model #1, and from 0.085 to 0.069 for
O. validus models A and B (Table 1). However, although lower, Moran’s
I values remain significant after correction, indicating that the applied
corrections do not entirely remove the presence of spatial autocorrela-
tion.

3.2. Comparison of cross-validation procedures

For the BRT fitted with the random cross-validation procedure,
all overall goodness-of-fit metrics (AUC, TSS, COR) were good with
predictive accuracy Area Under the Curve (AUC) values higher than
0.9 (Table 2). However, when

Fig. 2. (A) Presence-only records of the sea star Odontaster validus in the Southern Ocean. Duplicates (occurrences falling on a same 0.1° resolution pixel) were removed from the display.
(B) Values of the environmental range covered by the entire benthos sampling dataset presented in Fig. S3 (black dots), by presence-only records of O. validus (green dots) in comparison
with a 1000 background dots randomly sampled according to the Kernel Density Estimation scheme (grey dots) for two environmental descriptors: mean seafloor temperature (°C) and
mean seafloor salinity (PSU). A part of the environment (grey dots) does not contain benthic occurrence samples (black dots), illustrating that sampling effort is not geographically ex-
haustive. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Comparison between models of spatial autocorrelation values measured on model residuals (average and standard deviation of Moran’s I values computed for 100 model replicates).
Moran’s I significance is indicated by p-values; for p<0.05, the absence of spatial autocorrelation (null hypothesis) is rejected. Null model #1: 309 presence records were randomly
sampled among occurrences of the total Southern Ocean benthic dataset (Fig. S3) and background data are composed of 1000 points randomly sampled in the entire Southern Ocean;
model #2: 309 records (to define presence records) and 1000 background data both randomly sampled in the entire Southern Ocean; model #1 with Kernel Density Estimation: similar to
model null #1 but with 1000 background data randomly sampled following the Kernel Density Estimation weighting scheme; model A: 309 presence records of Odontaster validus and 1000
background data were randomly sampled in the entire Southern Ocean; model B: similar to model A but with the 1000 background data sampled following the Kernel Density Estimation
weighting scheme. AUC: Area Under the Receiver Operating Curve, TSS: True Skill Statistic, COR: Point Biserial Correlation.

Null model #1 Null model #2 Null model #1 with KernelDensity Estimation Model A Model B

Spatial autocorrelation
(Moran’s I)

0.050±0.011
p<0.001

0.005±0.004
p=0.19

0.034±0.011
p<0.001

0.085±0.009
p<0.001

0.069±0.006
p<0.001

AUC 0.976±0.010 0.710±0.014 0.964±0.015 0.997±0.001 0.948±0.003
TSS 0.674±0.013 0.331±0.020 0.660±0.019 0.698±0.002 0.696±0.003
COR 0.850±0.028

p<0.001
0.336±0.018
p<0.001

0.801±0.037
p<0.001

0.944±0.011
p<0.001

0.923±0.015
p<0.001
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Table 2
Average Spatial Sorting Bias (SSB) and standard deviation values for the 100 model replicates (background sampling+test/training clustering). AUC: Area Under the Receiver Operating
Curve; Correctly classified test data (%): percentage of presence-test and background-test records falling on predicted suitable areas (prediction>maximum sensitivity plus specificity
(maxSSS) threshold); TSS: True Skill Statistic; COR: Point Biserial Correlation; ntrees: averaged optimal number of trees required to generate BRTs. Stars are indicated for spatial cross-val-
idation groups significantly different from the random cross-validation procedure (non-parametric pairwise Mann-Whitney Wilcoxon test, p-value<0.01).

Random cross-validation
Random splitting

Spatial cross-validation
Block method

Spatial cross-validation
2-fold Clock method

Spatial cross-validation
3-fold Clock method

Spatial cross-validation
4-fold Clock method

Mean SSB 0.101±0.04 0.802±0.37 0.832±0.09 0.803±0.23 0.848±0.32
AUC 0.947±0.013 0.854*±0.06 0.811*±0.053 0.818*±0.078 0.824*±0.089
Correctly classified test data (%) 89.452±1.523 80.946*±7.504 80.039*±3.489 80.713*±5.421 79.471*±8.538
Test data (% of total dataset) 25% [13–38]% [19–81%] [1–68%] [1–66%]
TSS 0.715±0.041 0.542*±0.188 0.465*±0.088 0.490*±0.136 0.576*±0.165
COR 0.792±0.029 0.632*±0.126 0.584*±0.089 0.591*±0.12 0.483*±0.197
ntrees 1580±251.058 543.5*±88.9 375*±91.9 424.5*±131.1 379*±98.5

evaluated through spatial cross-validation procedure, the AUC scores
decreased in all BRTs. These results show that BRTs tend to overfit the
data if the independence between training and test data is not ensured.
Indeed, the random cross-validation procedure presents SSB values close
to zero, indicating that training and test subsets may be highly corre-
lated (Fig. 1A). In contrast, all spatial cross-validation procedures have
SSB values close to 1, indicating a better spatial independence between
training and test data (Table 2).

The generalisation performance (AUC and correctly classified test
data) are very high for the random cross-validation procedure, with
more than 89.4% of test-presence records falling correctly in areas pre-
dicted as suitable by the model (Table 2).

The random cross-validation procedure generates more complex
BRTs compared to the spatial methods (significantly higher number of
trees for the random cross-validation procedure compared to the spatial
cross-validation procedures). As the model closely fits the dataset used
for its construction, high AUC, TSS and COR scores were obtained but
these results may be misleading and overestimated. In contrast, spatial
cross-validation procedures generate less complex models (more gen-
eral), which could account for lower AUC, TSS and COR scores.

3.3. Proposed model and uncertainty map

We decided to maximise the spatial independence between train-
ing and test subsets, minimise model complexity and optimise gener-
alisation performances in O. validus model. Using these criteria, we
found that the ‘2-fold CLOCK‘ modelling method was well adapted to
O. validus dataset (second highest TSS and COR scores; high propor-
tion of test data being correctly classified, with the lowest standard
deviation score (80.04±3.49%); an important proportion of the total
dataset used a test subset [19–81%] and the lowest model complexity
(ntrees=375±91.9).

The MESS index was calculated in order to define the part of this
extrapolated area, that is, the part of the geography for which at least
one environmental descriptor is outside the environmental conditions
of the sampled presence records. The MESS index was compiled as a
raster layer and projected on the probability distribution map by dark-
ening uncertain areas (Fig. 3). Uncertain areas due to extrapolation rep-
resent 64.2% of the entire projected surface, the major part being also
predicted by the model as unsuitable (Table 3). Almost 9.5% of the area
was however predicted as suitable by the model although considered as
an extrapolated area.

Fig. 3. SDMs performed with the spatial cross-validation ‘2-fold CLOCK’ method. Average of 100 model replicates. Distribution probabilities are darkened according to the Multivariate
Environmental Similarity Surface (MESS) layer, with dark pixels corresponding to regions where the model extrapolates outside of the environmental conditions in which the species was
sampled. Dark pixels represent 64.2% of the entire projected area. Probabilities of presence are contained between 0 and 1 but the colorbar was scaled until 0.6 to enhance visual contrast.
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Table 3
Proportion of interpolated and extrapolated pixels according to the averaged SDMs pre-
dictions. Interpolation (or uncertain extrapolation respectively) refers to areas where en-
vironmental conditions within the pixel are inside (or outside, respectively) of the species
ecological range, as defined by the Multivariate Environmental Similarity Surface (MESS).
Suitable pixels were defined using the MaxSSS threshold that splits model predictions into
suitable (>maxSSS mean score) or unsuitable areas (<maxSSS mean score).

MESS classification Model prediction

Suitable pixels Unsuitable pixels

Interpolation 10.24% 25.57%
Uncertain extrapolation 9.42% 54.77%

4. Discussion

4.1. Evaluating SDM performance

Using independent datasets to test SDM performance is a prerequi-
site for relevant validation analyses (Peterson et al., 2011). At broad
spatial scale and in data-poor areas, the number of available data is
limited and data distribution often patchy, which really challenges the
success of validation procedures. Estimating the performance of SDMs
predictions and the level of extrapolation in such areas is a necessity.
The cross-validation procedure has been proposed as a reliable approach
to evaluate modelling performances (Fielding and Bell, 1997, Hijmans,
2012, Dhingra et al., 2016, Roberts et al., 2017). Cross-validation pro-
cedures must however be adapted to spatially aggregated data because
training and test subsets may be sampled in close areas, violating the in-
dependence assumption (Segurado et al., 2006, Hijmans, 2012). Such a
potential bias is rarely taken into account. In the present work, we com-
pared SDM performance using five different cross-validation procedures
for modelling, at broad spatial scale, the distribution of a species for
which available data are limited in number and are spatially aggregated.
Results show strong differences between procedures, which highlights
the importance of testing and selecting the most appropriate method
when evaluating model performance.

4.2. Correction for spatial autocorrelation and spatial bias

Strong significant Moran’s I scores were measured on model residu-
als, revealing the presence of spatial autocorrelation in the total South-
ern Ocean benthic dataset (Fig. S3). The difference between null mod-
els #1 and #2 evidences the influence of sampling aggregation on spa-
tial autocorrelation values (Table 1) as discussed by Guillaumot et al.
(in press). O. validus presence-only dataset follows the same pattern,
with records aggregated in coastal areas where sampling effort has been
mostly concentrated (Table 1, Fig. 2). A target-group background sam-
pling was applied and proved to be efficient to reduce spatial autocorre-
lation (as assessed using Moran’s I statistic), although it still remains at
a significant level. Spatial autocorrelation scores are strongly dependent
on the resolution of environmental raster layers. The coarse resolution
of environmental data used in the present study may be responsible for
the over-estimation of spatial autocorrelation scores. This could account
for spatial autocorrelation remaining significant even after the Kernel
Density Estimation correction.

4.3. Selection of cross-validation procedures

The random cross-validation procedure has been widely used in
ecological modelling to evaluate model predictions (Fielding and Bell,
1997, Merow et al., 2013, Mainali et al., 2015, Torres et al., 2015,
Phillips et al., 2017) but the method has been rarely compared to al-
ternative procedures. The present study shows that contrasting model
assessments are obtained when using different cross-validation proce-
dures (Radosavljevic and Anderson, 2014, Roberts et al., 2017). Apply-
ing a random cross-validation to an aggregated dataset at a broad spatial
scale can result in training and test subsets being sampled in the same

area, and leads to an inflation of modelling performances (Veloz, 2009,
Hijmans, 2012, Radosavljevic and Anderson, 2014, Wenger and Olden,
2012). In the context of this study, SDMs produced with a broad-scale
and spatially aggregated occurrence dataset and a random cross-valida-
tion procedure are more complex and likely over-fit the training dataset.
This also may account for the high evaluation scores obtained (AUC,
TSS, COR) and may also explain the apparent high generalisation perfor-
mance of BRTs fitted with random cross-validation. The lack of model
generality can a posteriori lead to strong caveats and unreliable models
with poor transferability performance when projected on a new environ-
mental space (Wenger and Olden, 2012, Crimmins et al., 2013). Meth-
ods that select the most parsimonious BRT, combine low model com-
plexity and high modelling performance should therefore be preferred.

The spatial cross-validation procedures tested in this study were
shown to produce less complex models than the random cross-validation
procedure. Increased model generality (i.e. decrease in model over-fit-
ting) and forced spatial segregation between training and test subsets
result in decreasing SDMs validation scores. These results show that ap-
plying a random cross-validation procedure for a patchy dataset can
lead to over-estimation of SDMs predictive performance if training and
test subsets are not independent. This is in line with several works
(Brenning et al., 2005, Elith et al., 2010, Andersen, 2013, Muscarella
et al., 2014) in which a decrease of AUC scores can be reported when
using a spatial cross-validation procedure instead of a random proce-
dure. Machine-learning algorithms have been reported to be the best ap-
proaches to generate SDMs but the influence of over-fitting on model
evaluation are underestimated (Reiss et al., 2011, Duan et al., 2014,
Beaumont et al., 2016, Thuiller et al., 2016, Guillaumot et al., in press)
although its effect has been pointed out in several works (Elith et al.,
2008, Jimenez-Valverde, 2008, Wenger and Olden, 2012). Our results
show that the evaluation of SDMs performance can be strongly influ-
enced by the choice of the evaluation procedure.

In this work, several spatial cross-validation procedures were com-
pared with each other but no single and best procedure emerged, a com-
mon case in ecological modelling (Qiao et al., 2015). The appropriate
method to be used is highly dependent on the species and dataset un-
der study. For instance, the ‘BLOCK’ method introduced by Muscarella
et al. (2014) should not be used at broad spatial scale, where too im-
portant latitudinal contrasts in environmental conditions are present.
In this study, such contrasting environmental conditions (due to the
presence of an environmental latitudinal gradient between sub-Antarc-
tic and Antarctic regions, with occurrence aggregation in the two re-
gions) lead to higher variability in generalisation performance during
model projection, depending on the data subsets selected to train and
test the model (Roberts et al., 2017). The ‘BLOCK’ method favors the
independence between training and test subsets but models are slightly
more complex because they are calibrated on contrasting environmen-
tal conditions (sub-Antarctic vs. Antarctic areas) and over-fit the train-
ing dataset that could also present a patchy distribution. The ‘BLOCK’
method is therefore more adapted to case studies without strong patchy
and contrasting environmental conditions. The ‘CLOCK’ procedures de-
veloped in this study helped reduce the effect of latitudinal patchy oc-
currences distribution by mixing presence records sampled in Antarc-
tic and sub-Antarctic regions to define training and test subsets. The
‘CLOCK’ methods generate less complex models and were proved more
efficient to define spatially independent training and test subsets. How-
ever, the number of training and test records sampled between model
replicates is not constant, which contributes to an important variability
in validation performance scores. The selection of the different ‘CLOCK’
methods also depends on the importance of data aggregation and patchy
patterns within environmental conditions. For strong data aggregation,
the ‘2-fold CLOCK’ approach will help reduce the influence of patchy
patterns during model calibration and will help generalise the model
and decrease its complexity. ‘3 or 4-fold CLOCK’ methods present close
modelling performances but the proportion of occurrence records used
to test the model might be very low.

Alternative SDM evaluation procedures can be found in the liter-
ature: for instance, calibrated cross-validation procedures aim at re-
moving occurrences from the test subset when considered too close
to the training subset (and considered as non-informative according
to a statistical threshold) (Hijmans,
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2012). For limited presence-only datasets, removing a part of the avail-
able occurrence data may lead to the removal of a proportion of in-
formative records, which does not constitute a reasonable option (Bean
et al., 2012, van Proosdij et al., 2016). The leave-one-out method can
also provide a relevant estimate of model goodness-of-fit, even for spa-
tially aggregated datasets (Olden et al., 2002, Wenger and Olden, 2012).
The method aims at randomly excluding a single record from the total
dataset. The model is trained on the remaining data and predicts the
model response on the single removed point to test for model prediction.
The procedure is replicated several times, providing a powerful evalu-
ation of model accuracy. However, assessment of generalisation perfor-
mances is not permitted with this approach (Wenger and Olden, 2012).

In addition to cross-validation procedures, the relevance of model
validation performance is also strongly dependent on the quality of en-
vironmental descriptors available. The number of no-data pixels as well
as grid-cell resolution can critically affect model evaluation. This is es-
pecially true in the present study because environmental variables, mea-
sured or interpolated, rarely extend to coastal areas, and resolution in
the Southern Ocean can rarely be better than 10km2. Good quality
datasets are needed and such limitations must be taken into account
when interpreting model outputs.

4.4. Uncertainty assessment in SDMs predictions

SDM uncertainty assessment has been a widely discussed topic
(Barry and Elith, 2006, Carvalho et al., 2011, Beale and Lennon, 2012,
Guisan et al., 2013). Uncertainty in model predictions has been often
assessed as the variation among the predicted distribution probabilities
(Buisson et al., 2010) but this approach does not provide precise infor-
mation on the origin of uncertainty (Tessarolo et al., 2014).

The MESS metric is a relevant indicator of SDMs extrapolation per-
formance (Elith et al., 2010, Dhingra et al., 2016). The Mobility Ori-
ented Parity (MOP) introduced by Owens et al. (2013) was recently pro-
posed as an alternative to the MESS index. MESS considers extrapola-
tion on a pixel as uncertain when at least one environmental value falls
outside the environmental range of presence records. In contrast, MOP
offers more flexibility by defining an extrapolated area when all envi-
ronmental values fall outside the sampled environmental range. There-
fore, MESS is more conservative than MOP to define species ecological
envelope.

Here, MESS was used to assess the proportion of the projected area
for which models extrapolate. Our results show that more than half
of the area corresponds to environmental conditions for which pres-
ence records have not been sampled. 9.5% of this extrapolated area is
even predicted as a suitable environment. This highlights the weakness
of SDMs for spatial generalisation and the risk of providing inaccurate
SDMs for conservation purposes, especially if the communication be-
tween modellers and environmental managers is neglected (Guisan et
al., 2013). Our results show the importance of providing uncertainty
maps along with SDM outputs in order to help interpret models with the
necessary caution.

5. Conclusion

This work highlights the importance of assessing the relevance of
SDM evaluation procedures. When applied to occurrence datasets, spa-
tially autocorrelated and broad-scale presence-only datasets, the ran-
dom cross-validation procedure may over-estimate model validation
scores due to the violation of independence between training and test
subsets. Applying a spatial cross-validation procedure that spatially seg-
regates training and test data was shown to be effective to provide a re-
liable analysis of model performance. Spatial cross-validation methods
also help reduce model complexity and therefore improve generalisa-
tion performances. The ‘CLOCK’ methods developed in this paper were
proved to be appropriate to our Southern Ocean case study and could
be applied to other non-polar case studies. This study proves the im-
portance of testing and comparing several spatial cross-validation pro-
cedures to identify the procedure most adapted to each case study.

The MESS index was used to visualise areas where SDMs extrapo-
late outside the range of the environmental conditions where presence
records were sampled. Such results show the importance of providing
information on model uncertainty to correctly interpret SDM outputs.
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