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Abstract 21 

In recent decades, intensification of animal production has been occurring rapidly in 22 

transition economies to meet the growing demands of increasingly urban populations. This 23 

comes with significant environmental, health and social impacts. To assess these impacts, 24 

detailed maps of livestock distributions have been developed by downscaling census data at 25 

the pixel level (10km or 1km), providing estimates of the density of animals in each pixel. 26 

However, these data remain at fairly coarse scale and many epidemiological or 27 

environmental science applications would make better use of data where the distribution and 28 

size of farms are predicted rather than the number of animals per pixel. Based on detailed 29 

2010 census data, we investigated the spatial point pattern distribution of extensive and 30 

intensive chicken farms in Thailand. We parameterized point pattern simulation models for 31 

extensive and intensive chicken farms and evaluated these models in different parts of 32 

Thailand for their capacity to reproduce the correct level of spatial clustering and the most 33 

likely locations of the farm clusters. We found that both the level of clustering and location of 34 

clusters could be simulated with reasonable accuracy by our farm distribution models. 35 

Furthermore, intensive chicken farms tended to be much more clustered than extensive 36 

farms, and their locations less easily predicted using simple spatial factors such as human 37 

populations. These point-pattern simulation models could be used to downscale coarse 38 

administrative level livestock census data into farm locations. This could be of particular 39 

value in countries where farm location data are unavailable. 40 

 41 
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1. Introduction  46 

Following demographic and economic development, the per capita consumption of animal-47 

source food has increased continuously over the past few decades, with significant 48 

consequences for livestock production (Delgado, 1999; Food and Agriculture Organization of 49 

the United Nations, 2013; Steinfeld, 2004). The growth in demand for animal products, 50 

mainly meat, eggs and milk, was met primarily through intensification of livestock production, 51 

which was particularly marked for monogastric species such as poultry and pigs (Gilbert et 52 

al., 2015; Smil, 2002). Today, production from monogastric species continues to grow, while 53 

production from ruminants is relatively stable (FAO, 2014). 54 

 55 

The level of intensification of livestock production varies considerably across countries. 56 

Intensive systems represent the large majority of pig and poultry production in high-income 57 

countries (Gilbert et al., 2015), where extensive systems remains marginal in terms of output 58 

volumes, despite growing interest in small-scale and organic production (Willer, 2011). In 59 

low-income countries, pig and poultry production is mostly extensive, and in transition 60 

economies, both extensive backyard production and intensive farming systems coexist with a 61 

gradient of intensification that can be correlated to per capita gross domestic product (Gilbert 62 

et al., 2015). Demand for animal products in high-income countries has mostly levelled off 63 

and in some countries is decreasing, while it is still increasing in developing countries 64 

(Alexandratos and Bruinsma, 2012). Therefore, changes in livestock production system 65 

conferring productivity increases are much more pronounced in developing and emerging 66 

countries. 67 

 68 

Intensification of pig and poultry production comes with significant environmental, health and 69 

societal impacts (Leibler et al., 2009; Mennerat et al., 2010; Steinfeld et al., 2010; Pulliam et 70 

al., 2012; Jones et al., 2013a; P.J. Gerber et al., 2013; Slingenbergh et al., 2013; Van 71 

Boeckel et al., 2014). Health impacts, notably through pathogen emergence and re-72 

emergence, has a potential global relevance, as illustrated by the threat of pandemic 73 
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influenza (Leibler et al., 2009; Li et al., 2004; Monne et al., 2014). Intensified systems 74 

promote high densities of genetically similar individuals, which promotes pathogen 75 

amplification, selection of more virulent pathogens and risk of pathogen spill-over (Jones et 76 

al., 2013b). Owing to their close interactions with humans, particularly in peri-urban 77 

environments, and possible contacts with wild animals, intensive production systems can 78 

also serve as an intermediate between wildlife and human populations and as amplifier 79 

(Childs et al., 2007). Transmission of pathogens through livestock to humans and virulence 80 

shifts of pathogens are thus very real risks.     81 

  82 

Detailed spatial distribution data on livestock numbers and farms are an important element in 83 

understanding livestock-environment interactions, the spread of epidemics and in assessing 84 

and preventing zoonotic transmissions (Burdett et al., 2015; Martin et al., 2015; Steinfeld et 85 

al., 2006). In most high-income countries, like Europe or the USA, detailed farm registers 86 

exist. However, public access to these detailed data sets is not straightforward, in order to 87 

preserve the confidentiality and privacy of farmers’ data. Access to anonymous data can be 88 

granted for research following specific applications. In some instances, privacy is protected 89 

by providing only aggregated data. This is the case in the USA where data on livestock are 90 

only made available at county level. In low and middle-income countries, registers rarely 91 

exist and the most accurate data sets are produced through agricultural censuses. However, 92 

when such censuses are performed, the level of detail of the data released by the authorities 93 

varies considerably from one country to another (Robinson et al., 2014; Wint et al., 2007). 94 

Both situations, from data-rich or -poor countries, may lead to livestock statistics being only 95 

available at coarse spatial scales, such as a province or a district.  96 

 97 

In addition to a lack of spatial detail in available data, a distinction between intensive and 98 

extensive production systems is rarely made, though this is an important distinction in terms 99 

of their health and environmental impacts (Van Boeckel et al., 2012; P. J. Gerber et al., 2013; 100 

Jones et al., 2013b; Gilbert et al., 2015). Differentiating between extensive and intensive 101 
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systems, or simply knowing where the largest farms are, is particularly important in regions 102 

where production is currently undergoing intensification, as the relative distributions of 103 

extensive and intensive production may have different spatial patterns and are likely to 104 

change rapidly over time. 105 

 106 

In order to increase the spatial detail of coarse livestock data, previous studies on livestock 107 

distribution mapping developed spatial statistical algorithms linking densities to pixel-level 108 

environmental variables to downscale census data from administrative census boundaries to 109 

finer resolution estimates at the pixel level, where each pixel contains the estimated density 110 

for a particular species. This leads to a representation of livestock densities as continuous 111 

surface, pixel-level variables changing in space, and this is typically the output of databases 112 

such as the Gridded Livestock of the World (GLW) version 1 (Wint et al., 2007) and version 2 113 

(Robinson et al., 2014). Other authors have also applied similar approaches to map different 114 

livestock species at country or continental scale (Neumann et al., 2009; Prosser et al., 2011; 115 

Van Boeckel et al., 2011). Thus far, few attempts have been made to distinguish extensive 116 

from intensive production systems. Gilbert et al. (2015) developed an approach to separate 117 

extensive from intensively raised animals in global chicken and pig maps. At the country 118 

scale, Van Boeckel et al. (2012) observed a distinct bimodal distribution in poultry farms in 119 

Thailand that could be used to distinguish extensive from intensive farms. Based on this 120 

distinction they modelled extensive and intensive poultry separately using a methodology 121 

similar to that of GLW, and noted a relatively poor predictive accuracy for intensively-raised 122 

chickens compared to extensive chickens using that approach.  123 

A continuous surface, pixel-based model may not be the best way to represents intensive 124 

farms. Indeed, intensification of poultry production is such that a very large number of birds 125 

can be present in a single location (e.g. typically more than 100 000 birds can be found in a 126 

farm or site), with perhaps none, or very few in an adjacent pixel. A discrete spatial 127 

representation of individual farms as single point locations, with the number of birds as an 128 

attribute, may thus be a more appropriate representation of intensive farms than a 129 
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continuous surface image. Another issue with regards to modelling farm locations instead of 130 

animal densities is that such models would better fit the needs of mathematical models of 131 

livestock diseases (Martin et al., 2015). Epidemic mathematical transmission models may be 132 

sensitive to the spatial clustering, distribution, type and overall density of farms (Reeves, 133 

2012; Tildesley and Ryan, 2012), and mitigation measures of disease transmission are in 134 

part based on the distance between farms. Fine-scale maps of farm distribution, including 135 

farm position and level of clustering, could thus make an important contribution to models 136 

that can inform control strategies (Bruhn et al., 2012). While broad-scale clusters of farms 137 

may be captured by aggregated data, the factors influencing farm distribution are poorly 138 

known at finer scales (Burdett et al., 2015). In the presence of aggregated census data, the 139 

distribution of individual farm locations have tended to be based on random allocation of 140 

points, regardless of other geographic information (Tildesley et al., 2010) or, in some cases, 141 

constrained by geographical information contained in probability surfaces (Bruhn et al., 2012; 142 

Burdett et al., 2015; Emelyanova et al., 2009; Tildesley and Ryan, 2012). However, none of 143 

these methods have captured both first and second order characteristics to predict the 144 

spatial clustering of farms as well as differences in their broader distributions.  145 

 146 

In this paper, we investigated the use of point-pattern models as a way to predict the 147 

distribution of individual farms both in terms of dependency on external variables influencing 148 

their presence and in terms of spatial clustering. This approach may provide more realistic 149 

representations of animal distribution at fine spatial scales than continuous pixel-based 150 

distributions, especially for species such as poultry and pigs that may be raised in high 151 

numbers in single premises. Our analyses focused on Thailand chicken farms, as an 152 

example of a middle-income country where extensive production systems (backyard poultry 153 

farms) coexist with intensive ones (large-scale chicken farms) (Van Boeckel et al., 2012). 154 

 155 

2. Methods 156 

2.1. Data 157 



 7 

A detailed census was conducted in 2010 at the household level by the Department of 158 

Livestock Development (DLD), Bangkok, Thailand. The census included the number of 159 

chickens per owner for all farms in Thailand. The coordinates of the village were 160 

subsequently linked to each farm. 1,936,590 chicken owners, or farms, were recorded in a 161 

total of 62,091 villages. Henceforth, we will use the term ‘farm’ to represent both 162 

smallholders, who may be a single family with a few chickens, and large-scale farms having 163 

several thousand birds. Farms with no chickens were removed from the dataset. The precise 164 

locations of individual farms were assigned randomly within a set of Voronoi polygons 165 

(Okabe et al., 2000) built from the village coordinates (the median area of the Voronoi 166 

polygons was 4 km2
, the mean area was 8 km2). A mask excluding permanent water bodies 167 

and the province and city of Bangkok (1,569 km2, which is by far the largest city of Thailand, 168 

populated by more than 20 times the second largest city of Thailand) was used prior to 169 

distributing the farms within the Voronoi polygons. So, our input data set did not include the 170 

exact locations of individual farms, but an approximate location within a 2 x 2 km area for 171 

50% of the 62,091 villages. However, given the extent (all of Thailand) and resolution (1km) 172 

of our analyses, this loss of accuracy was considered to be of a negligible impact on our 173 

potential results.  174 

 175 

The distribution of chickens per farm showed a clear bimodal pattern (Van Boeckel et al., 176 

2012) and a threshold of 500 chickens per farm was used in order to separate extensive 177 

small-scale producers from intensive large-scale systems. This threshold was used as it 178 

maximized the correlation coefficient between the quantiles of the respective intensive and 179 

extensive distribution of animals per farm in the two groups and the quantiles of two normal 180 

distributions of same mean and standard deviation. This resulted in two datasets of 181 

1,930,003 extensive farms with a median number of 20 chickens per farm, and 6,587 182 

intensive farms with a median number of 8,000 chickens per farm. Although extensive and 183 

intensive farming should in principle be based on the quantification of inputs and outputs, 184 

farm size was considered a good proxy in the context of Thailand poultry production systems 185 
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as large farms necessarily use high amounts of inputs such as specialized feeds and breeds 186 

as well as significant infrastructure (such as buildings for protective housing). 187 

 188 

Spatial predictor variables were selected to be both generic and available in databases with 189 

a global extent (Erreur ! Nous n’avons pas trouvé la source du renvoi., Supplementary 190 

material) so that the models and approaches followed in this study could be transferred to 191 

data-poor countries. The predictor variables were chosen amongst those previously identified 192 

as having strong predictive capacity by Van Boeckel (2012) and included: (i) the logarithm 193 

(base 10) of human population density from the Worldpop database 194 

(http://www.worldpop.org.uk), (ii) the “remoteness” or travel time to Bangkok and to the 195 

closest provincial capital, which were recomputed from (Nelson, 2008) friction surfaces  to 196 

include provincial capitals, (iii) the tree cover or percentage of land covered by forest (Ellison 197 

and Bachtrog, 2013) and (iv) the cropland or percentage of land covered by crops (Fritz et 198 

al., 2015). Human population density was assumed to be an important predictor variable of 199 

farm location, since farms are unlikely to be located either in city centres or in completely 200 

remote areas. Remoteness accounted for differences in accessibility to provincial or national 201 

markets through the road and railway networks. Since remoteness also captures friction to 202 

movement due to water bodies, high elevation or slope, it also helps in identifying areas 203 

where chicken farms would be unlikely to be placed. Areas covered by dense and permanent 204 

forest may also be exclusive to poultry farming, which is why forest cover was included as a 205 

spatial variable. Finally, the distribution of croplands may be correlated with areas favourable 206 

to chicken farming because they provide access to grain for feed.   207 

 208 

Table 1. Predictor variables tested in our models 209 

 Resolution (m) Units 

Human population density 1000 People per km2 

Remoteness 1000 Minute 

Cropland 1000 Pixel % covered by crops 

Tree cover 30 Pixel % covered by forest 

 210 
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2.2. Analysis 211 

The distribution of extensive and intensive farm locations was investigated using point 212 

pattern analysis and modelling.  213 

 214 

First, we used the Besag’s L-function, a transformation of Ripley’s K-function, to describe 215 

different point patterns. The K-function is a summary statistic of a point process, defined as 216 

the expected number of r-neighbours of a point of X divided by the intensity 𝜆:  217 

𝐾 𝑟 = 	
1
𝜆
𝔼 number	of	neighbours	of	𝑢	|	𝐗	has	a	point	at	location	𝑢  218 

for any 𝑟 ≥ 0 at any location u, where r is the radius, 𝜆 is the homogeneous intensity of 219 

points, X is the point process and u is any location. This assumes that the intensity is 220 

constant and does not depend on the location, so the process is considered stationary 221 

(Baddeley et al., 2015). The empirical K-function is a summary of the pairwise distances of a 222 

point pattern, which allows point patterns with different intensities to be compared, and the 223 

analysis of a pattern at different scales, since the function is normalized by the intensity. The 224 

empirical K-function is defined as 225 

𝐾 𝑟 = 	
𝑎

𝑛 𝑛 − 1
𝐼

B,DEF

𝑑 𝑖, 𝑗 ≤ 𝑟 𝑒 𝑖, 𝑗  226 

where a is the study area, n is the total number of points in a, the sum is taken over all 227 

ordered pairs of points i and j, 𝑑 𝑖, 𝑗  is the distance between two points and 𝐼 𝑑 𝑖, 𝑗 	≤ 𝑟  is 228 

the indicator that equals 1 if the distance is less than or equal to r. The term 𝑒 𝑖, 𝑗   is the 229 

edge correction weight, which is a border method or “reduced sample” estimator (Ripley, 230 

1988). By using L
M MNF

, the K-function assumes that the process is a stationary process. 231 

Comparing the empirical and theoretical K-functions of a point pattern enables us to 232 

determine if a pattern is clustered, random or regular, with K-functions higher than, close to 233 

or lower than the random case, respectively. Besag’s L-function 𝐿 𝑟 = 	 P(R)
T

  is a 234 

transformation of the K-function for which a random point pattern is a straight line 235 

𝐿RLMUVW 𝑟 = 𝑟 when 𝐿(𝑟) is plotted against 𝑟.  236 
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 237 

2.3. Point pattern simulation 238 

In order to predict the spatial distribution of intensive and extensive farms as points, the Log 239 

Gaussian Cox Processes (LGCP) model was used (Møller et al., 1998), with the Palm 240 

maximum likelihood method of optimizing the parameters (Tanaka et al., 2008). Preliminary 241 

investigation involved visual comparison of the pattern produced by the five processes 242 

designed to model clustered point patterns. These five processes are the Matérn cluster 243 

process, the Thomas process, the Cauchy cluster process, the Variance gamma cluster 244 

process and the LGCP (Fig. 1) (Baddeley et al., 2015). In addition, we quantified how these 245 

different models were able to reproduce the clustering of the observed point pattern by 246 

estimating the root mean squared error (RMSE) between the L-function of the observed point 247 

pattern and the L-function of 100 simulations of each model (Fig. 2), with the RMSE defined 248 

as: 249 

𝑅𝑀𝑆𝐸 = 	
𝑦B − 𝑦B ]M

BEF
𝑢

 250 

where 𝑦B is the value of le L-function of the observed pattern, 𝑦B is the value of the L-function 251 

of the ith simulated point pattern and 𝑢 is the total number of r values of the L-function being 252 

compared. The conclusion of this preliminary analysis was that the LGCP performed best so 253 

it was used for all subsequent modelling. 254 

 255 

In order to address potential processing problems linked to the very high number of points of 256 

all chicken farms in Thailand, we parameterised a series of models based on subsets of 257 

squares of equal area (see Supplementary material). For the intensive farms dataset, 258 

Thailand was divided into squares of 200 x 200 km, and we retained only the 12 squares with 259 

over 250 farms in the analyses. For the more numerous extensive farms, 43 squares of 112 260 

x 112 km (which included more than 50 percent of Thailand) were used.  261 

 262 
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Three different types of model were built and compared: (i) a random (null) model, which 263 

randomly distributed farms within the squares, (ii) a LGCP model with a homogeneous 264 

intensity (without any covariates), which distributed clusters of farms randomly within the 265 

squares and (iii) a LGCP model with covariates predicting an inhomogeneous intensity and 266 

identifying highly probable locations for clusters. For the later model, the Akaike Information 267 

Criterion (AIC) was used to select the best combination of predictor variables,  268 

𝐴𝐼𝐶 = 2 log 𝑃𝐿 + 	𝑘(𝑒𝑑𝑓) 269 

where PL is the maximised Palm likelihood of the fitted model, and edf is the effective 270 

degrees of freedom of the model (Tanaka et al., 2008). The AIC values of the models with 271 

different combination of covariates were compared on the 12 areas for the intensive farms 272 

dataset using the standardized difference with null model AIC,   273 

𝐴𝐼𝐶Meff − 𝐴𝐼𝐶WVUgfh
𝐴𝐼𝐶Meff

 274 

where 𝐴𝐼𝐶Meff is the AIC of a LGCP model without covariates and 𝐴𝐼𝐶WVUgfh is the AIC of ith 275 

LGCP models with a certain combination of variables. The model showing the greatest 276 

(positive) difference with the 𝐴𝐼𝐶Meff model was selected. 277 

 278 

We aimed to evaluate the goodness-of-fit of our simulated patterns in their capacity to 279 

reproduce both the level of clustering and the location of clusters in comparison to the 280 

observed patterns. For each square and type of model, and using the best-fit parameters, we 281 

simulated the distribution of 100 point patterns. For each point pattern, in order to quantify 282 

the similarities in the level of clustering, the RMSE between the simulated and observed 283 

point-pattern L-function was estimated, as explained above. This function allows a point 284 

pattern to be characterised independently from the density of points, which enabled us to 285 

compare RMSEs across simulations and areas. In order to evaluate the goodness-of-fit of 286 

the 100 simulated patterns in terms of location of the clusters, each square study area was 287 

further divided into 64 square quadrats. The correlation coefficient between the observed and 288 

modelled number of farms per quadrat for each simulation was computed. Quadrats 289 
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intersecting the Thai border were removed when less than 95% of their area was in Thailand. 290 

Quadrat size was chosen to have a sufficient number of quadrats and of points per quadrat 291 

to produce a meaningful correlation coefficient. In addition to goodness-of-fit metrics 292 

estimated for each model type (random, LGCP and LGCP with covariates) on the calibration 293 

area, we also estimated goodness-of-fit metrics (RMSE and correlation coefficient) on a 294 

different square from the model calibration area, henceforth referred to as the validation 295 

area. The relative importance of each predictor variable was estimated as the exponential of 296 

the coefficient value of a covariate multiplied by the range of values of the covariate 297 

(Baddeley et al., 2015).   298 

 299 

3. Results  300 

The distributions of both extensive and intensive farms were found to be clustered, but the 301 

intensive farms appeared more clustered than the extensive ones, as assessed by the L-302 

function (Fig. 3). All four spatial predictors and their quadratic terms were included in the 303 

LGCP model with covariates following the comparison of AIC on the intensive farms dataset 304 

(Fig. 4).  305 

 306 

Fig. 5 shows examples of simulations produced by the three types of models (random, LGCP 307 

and LGCP with covariates) applied to intensive and extensive farms datasets and a plot of 308 

the observed farm pattern. In both cases, the LGCP model with covariates produced the 309 

pattern the most similar to the observed pattern. The model captured the clustering of the 310 

observed farm locations and located them better than the two other models.  311 

 312 

Goodness-of-fit indices showed that the LGCP models with covariates gave better results 313 

than the two other models (Fig. 6). In terms of indicators of level of clustering (Fig. 6a and 314 

6b), LGCP with and without covariates reproduced the observed level of clustering better 315 

than the random model, but did not differ from each other. When the models were evaluated 316 

into the validation area, they showed a higher variability in their goodness-of-fit metrics 317 



 13 

compared to the calibration area, but their average indicators remained better than the 318 

random model. For the extensive farms, the RMSE of models in the validation area were only 319 

slightly lower than the random model and their variability was larger. RMSE values were 320 

always higher for the intensive than for the extensive datasets, but the difference between 321 

RMSE values of the random model and clustered models was higher for the intensive than 322 

the extensive dataset. The median of the RMSE values of the different models (random, 323 

LGCP and LGCP with covariates (calibration and validation)) were 55.3, 27.5, 21.9 and 24.5 324 

for the intensive dataset while there were 29.5, 7.9, 10.0 and 27.7 for the extensive dataset. 325 

In terms of location of clusters (Fig. 6c and 6d), the LGCP model with covariates model 326 

performed better than the two other models. The two sets of metrics of the LGCP models 327 

with covariates in the calibration and validation areas had significantly higher correlation 328 

coefficients than the other models (random model and LGCP model without covariates). This 329 

difference was apparent for both intensive and extensive farm point patterns. The medians of 330 

the correlation coefficients of LGCP models with covariates were generally higher for the 331 

extensive than for the intensive dataset. The medians of the correlation coefficients of the 332 

different models (random, LGCP and LGCP with covariates (calibration and validation)) were 333 

0.01, 0.00, 0.41 and 0.31 for the intensive dataset and 0.01, 0.01, 0.67 and 0.60 for the 334 

extensive dataset.  335 

Table 2 presents the averaged coefficients of the different model parameters for both 336 

intensive and extensive datasets. Human population density was by far the most important 337 

predictor of intensive and extensive models on average, followed by tree cover, cropland and 338 

remoteness (Fig. 7), and the relative importance of predictor variables were similar for the 339 

intensive and extensive farms.  340 

 341 

Table 2. Averaged coefficients of the different model parameters  342 

 𝜎2 𝛂	 Intercept Hpop Crop Tree Remot Hpop2 Crop2 Tree2 Remot2 

Extensif 0,749 3,17E-03 -16,8 3,31 3,18E-3 -0,012 -9,07E-05 -0,519 -6,83E-06 1,50E-04 -6,84E-07 
Intensif 2,707 7,82E-03 -24,8 6,00 7,57E-03 0,013 -190E-05 -1,16 -9,84E-05 -12,8E-04 -4,95E-06 

  343 
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4. Discussion 344 

Our LGCP models with covariates were able to produce simulated point patterns reproducing 345 

both the level of clustering of farms and the local density of farms better than could the 346 

random models. The observed distribution of extensive farms was closer to a random model 347 

than that of the intensive farms. The benefit of the LGCP extensive models over the random 348 

models was therefore more limited, but this was partially balanced by a better predictability of 349 

the local density as quantified by the correlation coefficients. Conversely, intensive farms 350 

were more clustered, so the LGCP models reproduced these point patterns much better than 351 

the random model, but the quality of the prediction of local densities was lower.  352 

 353 

The higher clustering of intensive farms and the higher difficulty in predicting their location 354 

was already noted by Van Boeckel et al. (2012), and may be linked to two causes. First, the 355 

initial establishment of an intensive farm is probably influenced both by fine-scale spatial 356 

factors (land availability, location suitability and access to inputs and markets, for example) 357 

and to individual farmer characteristics (where they live, and the locations of their other 358 

investments, for example). It would be difficult to obtain such information from a census-359 

based approach. At the scale of the variables used in our models, several sites may seem 360 

equally suitable for setting up a farm, for example, by having an easy access to markets and 361 

inputs such as feed. However, many factors occurring at finer scale, such as land availability, 362 

may make areas more suitable than others. The factors making those sites suitable will result 363 

in a higher overall density of farms than in less suitable areas, where other type of economy 364 

could then be developed. Therefore, there is an inherent amount of variability in intensive 365 

farm location that our models are unable to capture. Second, the establishment of a farm at a 366 

location may induce other farms to establish in close proximity, which may lead to 367 

geographical clustering of farms. Such clustering of farms may enable farmers to benefit 368 

from economies of scale (Van Boeckel et al., 2012). Many farms in Thailand are owned by 369 

contract farmers who work for large consolidator companies such as Charoen Pokphand 370 

(CP) who provide them with inputs and take the outputs. Farms directly owned by CP may 371 
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also be clustered for these reasons. Imitation effects may also operate in the establishment 372 

of farm clusters. As described by (Feder et al., 1985), the adoption of agricultural innovations 373 

in developing countries is also affected by group influences on individual behaviour. The 374 

presence of a well-established, successful, intensive poultry farm may stimulate similar 375 

economic activity within a neighbourhood. The improved prediction of intensive farm 376 

locations by including clustering thus makes sense. More surprising was the dominance of 377 

human population density as a predictor variable compared to others since broiler production 378 

in Thailand is mainly located around hatcheries, feed mills and processing plants (Costales, 379 

2004; NaRanong, 2007), but these may themselves correlate to human population too. The 380 

association with high human population density can be explained through market access, 381 

and the model parameters for the intensive farms typically placed them in areas with 382 

intermediate human population density, i.e. peri-urban areas. The establishment of a chicken 383 

farm is thus constrained by a trade-off between market access (for the easy delivery of 384 

outputs) and the cost of land, which may become prohibitive in more urbanized areas. Our 385 

results contrasted with the results of Van Boeckel et al. (2012), where they used a cropping 386 

intensity (number of cycle of crops/year), irrigated areas, human population density, travel 387 

time to main citites and rural population as predictor variables. It showed cropping factor with 388 

a stronger effect than human population in their logistic regression models of 389 

presence/absence of intensively raised chickens. Despite, this cropping factor, i.e. number of 390 

crop cycles per year, was previously found to be correlated with chicken distributions. This 391 

variable was not included in our model since it was not available globally. Another difference 392 

between the protocols may also explain the lower effect of some factors. Van Boeckel et al. 393 

(2012)  analysed the entire extent of Thailand, whereas our models were trained within much 394 

smaller spatial units. Cropping patterns influencing the distribution of chicken farms at broad 395 

spatial scales, but not at fine scales, and explain why the cropping variable had a lower 396 

influence in our models. 397 

 398 
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The distribution of extensive farms was less clustered, and more readily predicted, with the 399 

main predictor variable being human population density. This fitted our expectations because 400 

extensively raised chickens are typically owned as backyard poultry by rural populations. 401 

Therefore, with the exception of urban centres, where people would be less likely to raise 402 

chickens, a strong correlation was expected as it was previously shown (Van Boeckel et al., 403 

2012).  404 

 405 

The geography of chicken farming thus appears to be structured by the level of 406 

intensification. During the pre-industrial period, chickens and pigs were associated with the 407 

human settlements in which they were raised to provide meat and eggs. At this time, they 408 

were probably homogeneously distributed within rural populations. This still occurs today in 409 

low and middle-income countries, where traditional production systems are still in practice, 410 

as is the case for extensive farms in Thailand. Intensification of production most likely 411 

occurred as people began to move into cities. Larger farms started to be located in the peri-412 

urban belt around major consumption centres. However, as the cities expand, the land value 413 

in the periphery increases, and thanks to improvement in transport infrastructures, farms can 414 

be move further from peri-urban belts, with the advantage of being closer to feed production 415 

areas. This was also driven by factors such as labour prices, availability, costs and quality of 416 

feeds, and the risk of disease spread from livestock to cities (Steinfeld et al., 2006). As 417 

production intensifies, a segmentation of production steps occurs and each stage is located 418 

so that operating costs are minimised. In Thailand, this process of relocation of intensive 419 

production away from the most immediate peri-urban belt of Bangkok, was already observed 420 

for poultry sector between 1992 and 2000 (Thanapongtharm et al., 2016) for intensive pig 421 

sector.  422 

 423 

Other global predictors may be considered in future developments of this model. For 424 

example, the SPAM database (You and Wood, 2005) contains global data on the distribution 425 

of several crop commodities at a 10 km resolution that could possibly allow considering only 426 
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cropland relevant to animal feed. In monsoon Asia, the model may also include rice cropping 427 

intensity (Xiao et al., 2006), i.e. number of rice production cycles as this would be an 428 

important feed resource that was previously shown to be correlated with chicken (Van 429 

Boeckel et al., 2012) and duck (Gilbert et al., 2006) distributions. Another possible 430 

improvement may be gained from the inclusion of other accessibility predictors, such as 431 

travel distance to ports where feed could be imported, or where outputs could be exported. 432 

However, we did not view this as a major concern because to some extent, the factors 433 

influencing the macro-scale distribution of chickens may be already captured in coarse level 434 

censuses used as input in the models. What matters is that those data could be downscaled 435 

into a spatial distribution of farms that has the same spatial point pattern characteristics as 436 

the observed ones. Finally, settlement locations could provide valuable information on 437 

access to service and markets.   438 

 439 

An important next step would be to apply and validate the models developed here in a 440 

country with a similar level of intensification, such as Vietnam for example, where detailed 441 

census data exist. At a later stage, it would be interesting to investigate how the extensive 442 

and intensive models could predict the distribution of farms according to different situations. 443 

One could imagine high-income countries where 99% of the production is intensive to be 444 

best predicted by the intensive model alone, and, conversely, that the extensive model could 445 

be tested in low-income countries. In intermediate situations, one could apply both models 446 

according to the proportion of extensively raised poultry predicted at the national level by 447 

Gilbert et al. (2015). This study helped understanding the patterns and the underlying causes 448 

of farm locations. Further extension of this work will lead to the development of entire farm 449 

allocation models, where the total number of animals of an administrative unit could be 450 

allocated to farms at locations predicted by the LGCP simulation model in such a way to 451 

reproduce a given distribution of animals per farm.  452 

 453 
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The problem that this paper addressed is not limited to chicken production, and other types 454 

of livestock farming may benefit from similar approaches. Pig farming, for example, is also 455 

disconnected from the land and could be expected to be subject to similar spatial constraints 456 

linked to feed availability and market access. In contrast, the distribution of grazing ruminant 457 

farms may have very different spatial determinants. Except for feedlot cattle, dependence on 458 

large areas for grazing may result in a more homogenous spatial distribution. Land-use 459 

predictor variables such as rangeland or pastures may thus become more important factors. 460 

Approaches may become further complicated in the case of mixed farms that produce a 461 

combination of crops and a variety of livestock types. 462 

 463 

The extensions of this type of farm distribution model, upon validation, will be relevant in 464 

diverse situations. In high income countries, access to detailed farm distribution data can be 465 

impossible for confidentiality reasons. The lack of individual farm information may pose 466 

difficulties to the management of human and animal health risk, for example in the US 467 

(Burdett et al., 2015). However, high-income countries also have more economic resource to 468 

prevent and control infectious diseases (Perry et al., 2013). In contrast, low-income countries 469 

have few resource for agricultural censuses, often have coarse-resolution and outdated 470 

livestock statistics, and these are precisely where the impact of livestock diseases on 471 

livelihoods, animal and human health are greatest (Childs et al., 2007) and where good 472 

quality data may help with disease prevention. Such areas are also precisely where farming 473 

is mostly extensive, and where farm distribution models show a better predictability, and may 474 

prove particularly useful. In middle-income countries, the situation is more complex. While in 475 

Brazil livestock data are available at fine scale, in some other large livestock producing 476 

countries, such as China and India, livestock data are only available at coarse resolution. 477 

Combining models of extensive and intensive production may be particularly useful in 478 

middle-income counties since both production systems usually coexist in high number in 479 

these countries.   480 

 481 
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5. Conclusions  482 

We developed farm distribution models using a point pattern modelling technique, which 483 

allowed the simulation of chicken farm distributions both in terms of spatial clustering and 484 

location of clusters. The methods developed here no longer predict livestock distribution as a 485 

continuous variable but as a discrete variable (i.e. point locations), which is better suited for 486 

situations in which animals are raised in very large numbers in a single premises. Upon 487 

validation in other countries, this may facilitate several applications in epidemiology or 488 

environmental science in countries where such detailed data are lacking, or where livestock 489 

data are aggregated to protect privacy.  490 
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Figure captions 652 
 653 

Fig. 1. Observed point pattern of a sample area from Thailand (a) compared to 654 

simulations with (b) a Matérn process model (c) a Thomas process model (d) a Cauchy 655 

process model (d) a Variance Gamma process model (e) a Log-Gaussian Cox 656 

Processes model.  657 

 658 

Fig. 2. Comparaison of the different processes. Boxplot of the RMSE of L-function values 659 

of each simulations comparing the five processes: Matérn, Thomas, Cauchy, Variance 660 

Gamma and Log-Gaussian Cox Processes (LGCP). 661 

   662 

Fig. 3 Descriptive analysis of intensive and extensive farms datasets using L-function. 663 

Color lines: L estimates of the observed point pattern from each square area; black line: 664 

random distribution.  665 

 666 

Fig. 4. Comparison of models with different combination of covariates (human 667 

population density (Hpop), remoteness (Remot), cropland (Crop) and tree cover (Tree)) 668 

with AIC standardized difference. The first model is fitted with Hpop, the second model is 669 

fitted with Hpop + Remot, the third model is fitted with Hpop + Remot + Crop, the fourth is 670 

fitted with Hpop + Remot + Crop + Tree, for the four variables de square term is also added. 671 

Grey lines represent values for each square area and the black line the average line.  672 

 673 

Fig. 5. Examples of simulations of intensive and extensive chicken farm point pattern 674 

using 3 different models and the observed point pattern. (a) Observed point pattern (b) 675 

Random simulated point pattern with a random model (c) Clustered simulated point pattern 676 

using a LGCP model (d) Clustered simulated point pattern with spatial predictors using a 677 

LGCP model with covariates. 678 
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Fig. 6. Intensive and extensive systems goodness-of-fit indexes RMSE between L-679 

function value of the observed and each simulated pattern for a) extensive and b) intensive 680 

farms. The distribution of RSME values for all 100 simulations on each area is plotted with a 681 

violin plot for the random model, the LGCP model, the LGCP model with covariates and the 682 

Validation model (LGCP with covariates). Correlation coefficient between the numbers of 683 

points per quadrat between all quadrats in observed and each simulated pattern for c) 684 

extensive and d) intensive farms. The distribution of correlation coefficient values for all 100 685 

simulations on each area is plotted for the four models, random, LGCP, LGCP with 686 

Covariates and Validation models. 687 

 688 

Fig. 7. Relative covariates importance of LGCP models with covariates. Logarithm of 689 

the relative importance of each covariate and its quadratic term: human population density 690 

(Hpop + Hpop2), tree cover (Tree + Tree2), cropland (Crop + Crop2) and the remoteness or 691 

accessibility (Remot + Remot2). 692 
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