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Abstract. We study the problem of assigning indivisible goods to individuals
where each is to receive one good. To guarantee fairness in the absence of monetary
compensation, we consider random assignments that individuals evaluate according
to first order stochastic dominance (sd). In particular, we find that solutions which
guarantee sd-no-envy (e.g. the Probabilistic Serial) are incompatible even with
the weak sd-core from equal division. Solutions on the other hand that produce
assignments in the strong sd-core from equal division (e.g. Hylland and Zeckhauser’s
Walrasian Equilibria from Equal Incomes) are incompatible with the strong sd-
equal-division-lower-bound. As an alternative, we present a solution, based on
Walrasian equilibria, that is sd-efficient, in the weak sd-core from equal division
and satisfies the strong sd-equal-division-lower-bound.
Keywords: Probabilistic Serial; Walrasian Equilibrium; Sd-efficiency; Sd-envy-free;
Sd-core from equal division; Sd-equal-division-lower-bound
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1. Introduction

In many allocation problems, we have to assign indivisible objects to individuals
where each is to receive at most one. Public housing associations assign apartments
to residents, school districts assign seats to students and childcare cooperatives assign
chores to its members.

If fairness is understood as equity, the indivisibility of assigned objects will often
render any eventual allocation unfair. In order to guarantee fairness at least from an
ex-ante perspective, many theorists as well as policy makers have considered lotteries.
While the design of such lotteries has received a lot of attention in recent years, most
of the work concentrates on their efficiency and incentive properties (i.e. what are
the incentives for participants to reveal their true preferences) – see for example
Erdil and Ergin [2008], Pathak and Sethuraman [2011], Abdulkadiroğlu et al. [2015],
Kesten et al. [2017]. In this paper, we try to complement the literature by taking
a closer look at the original motivation for applying a lottery and ask “when is a
lottery fair?”. For this, we draw on the rich literature on fair allocation (see Thomson
[2011] for an overview) and adapt various equity criteria to random assignments.

Adherence to formal equity criteria may be particularly important when allocating
publicly funded (or subsidised) private goods such as school seats, where no individual
– or group of individuals – should be discriminated against. In the following, we focus
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2 FAIR SOLUTIONS TO THE RANDOM ASSIGNMENT PROBLEM

on equity criteria that compare each individual’s assignment to the assignments of
others or to the average over all assignments. In addition we consider variants of the
core from equal division, which can be seen as an equity criterion for groups. Perhaps
surprisingly, we find that all equity criteria are compatible with Pareto-efficiency,1
while (some) equity criteria for individuals are in conflict with (some) equity criteria
for groups. To bridge this gap, we derive a new solution based on Walrasian Equilibria,
an approach pioneered by Hylland and Zeckhauser [1979] that has enjoyed renewed
attention in recent years – see for example Budish [2011], Miralles and Pycia [2014],
He et al. [2018].

Since preferences over lotteries are often difficult to elicit, assignment mechanisms
typically take individuals’ preferences over sure objects as input. For example school
choice mechanisms typically ask students to submit a ranking of schools that they
would like to attend. To extend these preferences over sure objects to preferences
over lotteries, we follow Bogomolnaia and Moulin [2001] and rely on first order
stochastic dominance (sd). This extension can be seen as the most conservative
possible extension, in the sense that an individual will sd-prefer one lottery over
another only if she prefers it for any von Neumann Morgenstern utility function
compatible with her preferences over sure objects.

The paper is organised as follows. In Section 2, we formally define the set of
allocation problems under consideration. Section 3 lays out equity criteria and
Section 4 describes which of these are satisfied by the most prominent existing
solutions. Section 5 contains our main results, Section 6 discusses the new solution
and Section 7 concludes.

2. Random Assignments

Let A be a set of objects and I be a set of individuals, both of size n.2 Each
individual i ∈ I is to receive one object a ∈ A and holds preferences over objects
given by a weak order ≿i. Let ≻i and ∼i denote the associated strict preference and
indifference relation, respectively.

A preference profile is denoted as ≿= (≿i)i∈I . We restrict preference profiles to cases
of objective indifference, i.e. an individual may only be indifferent between objects,
if every other individual is indifferent as well:3 ∀a, b ∈A, i, j ∈ I ∶ a ∼i b ⇐⇒ a ∼j b.

We will refer to the tuple (A, I,≿) as an assignment problem (of size n). Let pi,a

denote the probability that individual i is assigned object a. An individual (random)
assignment is a probability distribution over A, i.e. a vector pi = (pi,a)a∈A such that
∑a∈A pi,a = 1. The set of probability distributions over A is denoted ∆(A). A random
assignment, p = (pi)i∈I , is a collection of individual assignments such that for all a,
∑i∈I pi,a = 1.4 A solution maps assignment problems to (sets of) random assignments.

1This is in contrast to the class of (group) strategy-proof mechanisms, where equity and efficiency
are conflicting objectives – see for example Nesterov [2017], Aziz and Kasajima [2017], Zhang [2017].

2The case of fewer objects than individuals can be accommodated by introducing null-objects.
3Objects that everyone is indifferent between may be interpreted as null-objects or as multiple

copies of the same object, such as for example multiple seats at the same school.
4The Birkhoff–von Neumann-Theorem ensures that any random assignment can be represented

as a convex combination of deterministic assignments where each individual receives one object.
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In order to evaluate random assignments and solutions, we extend individuals’
preferences over objects to preferences over individual assignments, using first order
stochastic dominance (sd).5 In words, an individual weakly prefers an individual
assignment if it guarantees her a weakly higher chance of receiving her most preferred
object(s) and a weakly higher chance of receiving the most or second most preferred
object(s) and ... so on. Formally, define i’s weak upper contour set of a as

Ui(a) = {b ∈ A ∣ b ≿i a}
and write pi ≿sd

i p̃i if
∀a ∈ A ∶ ∑

b∈Ui(a)

pi,a ≥ ∑
b∈Ui(a)

p̃i,a.

If one of the inequalities is strict write pi ≻sd
i p̃i. Note that stochastic dominance

induces only a partial order over assignments.
At times, we will also evaluate individual assignments according to a vector of

weights wi = (wi,a)a∈A ∈ Rn. In some contexts – in particular where a social planner
is able to elicit them – wi may be interpreted as von Neumann–Morgenstern (vNM)
utilities, associating an expected utility of wi ⋅ pi with each individual assignment pi.
The vector wi is said to be compatible with ≿i if

∀a, b ∈ A ∶ wi,a > wi,b ⇐⇒ a ≻i b.

Analogously, a collection of weight vectors w = (wi)i∈I is compatible with preference
profile ≿, if the same can be said for each component. The set of all such collections
w is denoted W (≿).

Under an alternative interpretation, the weights might constitute a value judgement
on behalf of a social planer, who chooses between different random assignments. For
example, a school board might find that moving to a different random assignment
where in expectation some additional k students receive their first rather than their
second choice school is preferable even as another l students receive only their
third rather than their second most preferred school. Inevitably, such decisions have
to be made and making them with respect to fixed weight vectors may increase
transparency and accountability.

Finally, a random assignment p is sd-efficient6 unless there exists another assign-
ment p̃ such that

∀i ∈ I ∶ p̃i ≿sd
i pi and ∃i ∈ I ∶ p̃i ≻sd

i pi.

It is weakly sd-efficient unless there exists p̃ with p̃i ≻sd
i pi, for all i ∈ I. A random

assignment p is efficient with respect to w unless there exists another assignment p̃
such that

∀i ∈ I ∶ wi ⋅ p̃i ≥ wi ⋅ pi and ∃i ∈ I ∶ wi ⋅ p̃i > wi ⋅ pi.

5We abstract from consumption externalities, so preferences over random assignments only
depend on the individual component.

6Bogomolnaia and Moulin [2001] introduced this concept as ordinal efficiency, to highlight the
coarse informational underpinning of the preference relation ≿sd

i .
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Observe that p is sd-efficient if there exists a collection of compatible weight vectors
w ∈W (≿) such that p is efficient with respect to w7 – absent possible improvements
in expected utilities, there cannot be improvements w.r.t stochastic dominance.

3. Equity Criteria

3.1. Individuals. A minimal fairness requirement on random assignments demands
equal treatment of equals: two individuals with identical preferences should receive
the same amount of all objects that fall in the same indifference class.

Definition 1. Given an assignment problem (A, I,≿), a random assignment p satisfies
equal treatment of equals if for all i, j in I we have

≿i =≿j Ô⇒ (∀a ∈ A ∶ ∑
b∼i a

pi,b = ∑
b∼i a

pj,b).

Note that where preferences are strict, this reduces to ≿i =≿j ⇒ pi= pj.
Equitable treatment of individuals who differ in their preferences is harder to

conceptualize. If one refrains from interpersonal comparisons of utility (as we do here)
envy-freeness is arguably the most prominent such criterion.8 To check whether an
allocation is envy-free, we need to compare individuals’ assignments - each individual
should then prefer her own over anyone else’s assignment.

Definition 2. Given an assignment problem (A, I,≿), a random assignment p is
sd-envy-free if for all i, j in I we have pi ≿sd

i pj.9

Observe that sd-envy-freeness implies equal treatment of equals: if two individuals
i, j share the same preferences, sd-envy-freeness implies pi ≿sd

i pj ≿sd
i pi which is only

possible if both receive the same amount of all objects in the same indifference class.
Sd-envy-freeness is satisfied whenever p is envy-free with respect to all compatible

weight vectors, i.e. if

∀w ∈W (≿), i, j ∈ I ∶ wi ⋅ pi ≥ wi ⋅ pj.

For a social planer who assumes that individuals evaluate random assignments in
an expected utility framework, but who is informed only about their preferences
over sure objects, sd-envy-freeness allows her to ensure envy-freeness with respect to
individuals’ expected utilities despite her limited information on the latter.

Another natural yardstick to measure individuals’ assignments is equal division
giving rise to the equal-division-lower-bound. In the context of random assignments,
Nesterov [2017] shows that for strategy-proof mechanisms it conflicts with sd-efficiency
and Heo [2014] invokes it to characterize a generalized version of Probabilistic Serial.
To define it, denoted by ( 1

n) the individual assignment that grants each object with
probability 1

n .
7The converse holds as well, as proven (non-constructively) by McLennan [2002] and (construc-

tively) by Manea [2008].
8The criterion was introduced to economic theory by Tinbergen [1946] (p. 55 f.) who credits

his professor, Dutch physicist Paul Ehrenfest, to have formulated the criterion in 1925 when they
discussed the problem of interpersonal (non-)comparability. It was independently formulated in a
dissertation by Foley [1967].

9Bogomolnaia and Moulin [2001] are the first to formulate this property in the context of
random assignments and refer to it simply as ‘envy-free’.
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Definition 3. Given an assignment problem (A, I,≿), a random assignment p satisfies
● the strong sd-equal-division-lower-bound if ∀i ∈ I ∶ pi ≿sd

i ( 1
n).

● the weak sd-equal-division-lower-bound if ∄ i ∈ I ∶ ( 1
n) ≻sd

i pi.

The weak notion is satisfied if the equal division lower bound is met for some
compatible weight vectors w ∈W (≿),10 while the strong notion requires it to be met
for all such w. A social planer who only knows individual preferences over objects but
chooses a random assignment that meets the strong sd-equal-division-lower-bound
ensures that each individual’s expected utility is greater than under equal division.

Observe that any random assignment that is sd-envy-free also meets the strong sd-
equal-division-lower-bound [Heo, 2014]: as each individual’s assignment stochastically
dominates all individual assignments, it also dominates the average ( 1

n).

3.2. Groups. In addition, there are various equity criteria for groups of individuals,
which ensure that no group receives less than their ‘fair share’ (see Thomson [2011]).
Perhaps the most notable such criterion is the core from equal division.

Definition 4. Consider an assignment problem (A, I,≿). A group of individuals G ⊂ I
objects to a random assignment p̃ if there is an alternative assignment p such that

● ∀a ∈ A ∶ ∑i∈G pi,a = ∣G∣n and
● ∀ i ∈ G ∶ pi ≻sd

i p̃i.

If there is no such objection that can be raised against a random assignment, the
assignment is said to be in the weak sd-core (from equal division).

Core assignments satisfy the weak sd-equal-division-lower-bound, as can be easily
verified by restricting attention to cases G = {i} in Definition 4. The core strength-
ens the weak sd-equal-division-lower-bound, in that groups of individuals whose
assignments are barely above the bound (e.g. individuals who receive their least
preferred object with probability 1/n−ε and with converse probability the second-least
preferred) would object, provided there is some heterogeneity in preferences (e.g., in
the case above, when they differ in their least preferred object).

For assignments that satisfy the strong sd-equal-division-lower-bound, being in
the core ensures that the welfare improvements of trade from equal division are not
too heavily concentrated within a particular subgroup:

Example 1. Consider I = {1,2,3,4} with preferences of the first individual given as
a ≻1 b ≻1 c ≻1 d. The other individuals mostly share these preferences, but with small
deviations: b ≻2 a, c ≻3 b and d ≻4 c. If the first individual monopolizes trade – trading
a for b with 2, b for c with 3 and c for d with 4 – we arrive at assignment p:

a b c d

p1: 1/2 1/4 1/4 0
p2: 0 1/2 1/4 1/4
p3: 1/4 0 1/2 1/4
p4: 1/4 1/4 0 1/2

10I.e. for all i ∈ I, wi ⋅ pi ≥ wi ⋅ ( 1
n).
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While not in violation of the strong sd-equal-division-lower-bound, a less lopsided
distribution of trades would make individuals 2,3 and 4 better off. In fact, faced
with p, they would object as a group so that p is not in the weak sd-core.11

Finally, observe that any element of the weak sd-core is weakly sd-efficient as it
could otherwise be improved upon by the grand coalition G=I. Still, the weak sd-core
is comparatively large – strictly larger even, than the union over all w-cores12 with
weights w ∈W (≿) (see Basteck [2016], Example 4). To narrow it down and ensure
sd-efficiency, we consider a prominent subset – the strong sd-core – that guards
against objections by coalitions that would make their members weakly better off.

Definition 5. Consider an assignment problem (A, I,≿). A group of individuals G ⊂ I
objects to a random assignment p̃ if there is an alternative assignment p such that

● ∀a ∈ A ∶ ∑i∈G pi,a = ∣G∣n and
● ∀ i ∈ G ∶ pi ≿sd

i p̃i and ∃ j ∈ G ∶ pj ≻sd
j p̃j.

If there is no such objection that can be raised against a random assignment, the
assignment is said to be in the strong sd-core (from equal division).

The strong sd-core is a strict13 subset of the weak sd-core. A fortiori, a random
assignment in the strong sd-core will satisfy the weak sd-equal-division-lower-bound.
However, it may violate equal treatment of equals and the strong sd-equal-division-
lower-bound (see Appendix, Example 5).

Conversely, equal division necessarily satisfies the strong sd-equal-division-lower-
bound and equal treatment of equals, but will typically not be an element of the
strong sd-core,14 as the latter implies sd-efficiency.

Figure 1 provides a summary of all equity concepts discussed thus far, including
their logical relations. In the center column, there are two independent and compara-
tively weak equity criteria. The weak sd-equal-division-lower-bound in particular can
be strengthened in different ways by either allowing for group comparisons (right
hand side) or by replacing ‘not strictly worse’ by a stronger ‘weakly better’ (left hand
side). Also note that sd-envy-freeness implies all other individual equity criteria.

The absence of any connecting arrow(s) between two properties marks their logical
independence. To be explicit,

● (strong sd-equal-division-lower-bound + strong sd-core)
/Ô⇒ equal treatment of equals (see Appendix, Example 6).

● equal treatment of equals
/Ô⇒ weak sd-equal-division-lower-bound.15

11Proposition 1 revisits this example and shows that sd-envy-freeness forces us to be too generous
to individual 1, once again leading to assignments outside of the weak sd-core.

12A random assignment p̃ lies in the w-core, unless there exist G ⊂ I and assignment p, such
that for all a ∈ A we have ∑G pi,a = ∣G∣

n
and for each member i of G we have wi ⋅ pi > wi ⋅ p̃i.

13Consider n = 3, with a ≻1,2 b ≻1,2 c and b ≻3 a ≻3 c. Then p1,2 = (1/2, 1/6, 1/3) and p3 = (0, 2/3, 1/3)
is in the weak but not in the strong core, as p̃1 = (2/3, 0, 1/3) and p̃3 = p3 is an objection by G = {1, 3}.

14Nor would it constitute an element of the weak sd-core – consider n = 2, a ≻1 b and b ≻2 a.
15For example, consider the case n = 3 where a ≻1,2 b ≻1,2 c and b ≻3 a ≻3 c, individuals 1 and 2

receive the same assignment pi = (pi,a, pi,b, pi,c) = (1/2, 1/2, 0) and 3 receives object c.
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Figure 1. Logical relations between equity criteria and 2 prominent solutions

sd-envy-
freeness
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equal-division-
lower-bound

equal
treatment
of equals

weak sd-
equal-division-
lower-bound
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core from

equal division

weak sd-
core from

equal division

Probabilistic Serial
Walrasian Equilibrium from Equal Incomes

● sd-envy-freeness
/Ô⇒ weak sd-core (follows from Proposition 1).

● (strong sd-core + equal treatment of equals)
/Ô⇒ strong sd-equal-division-lower-bound (follows from Proposition 2).

4. Prominent Solutions

So far, we have discussed efficiency and equity criteria for individual assignment
problems. Let us extend these criteria to solutions that map individual assignment
problems to sets of random assignments.

We say that a solution S satisfies criterion X (where X could stand for sd-efficiency,
equal treatment of equals, sd-envy-freeness etc.) if for any assignment problem e in
the domain of S, all random assignments in S(e) satisfy X.

In the following, we consider three prominent solutions to see which efficiency and
equity criteria they satisfy. As we will see, all three solutions can be interpreted
as taking equal division as a starting point and differ only in the manner in which
trades towards the efficiency frontier are conducted.

4.1. Random Serial Dictatorship. A common approach towards assignment prob-
lems, is Random Serial Dictatorship (RSD). It requires us to order our n individuals
randomly (where all n! orderings are equally likely); the first individual may then
choose her most preferred object, while the next in line chooses the most preferred
among the remaining objects.16 So it continues, until the last in line receives the last

16If an individual is indifferent between multiple objects, this tie can be broken in any way –
since under our assumption of objective indifference all others will similarly be indifferent between
the same objects, her choice does not affect any individual that has to choose at a later stage.
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object available. From an ex-ante perspective – that is before we have decided on a
particular ordering of individuals – this procedure generates a random assignment. 17

With respect to the equity criteria analysed in Section 3, let us first point out
that a random assignment generated via RSD satisfies equal treatment of equals and
meets the strong sd-equal-division-lower-bound: each individual has a chance of k

n to
be among the first k individuals to choose, in which case she is guaranteed one of
her k-most preferred objects. However, for some preference profiles, RSD falls short
of sd-envy-freeness [Bogomolnaia and Moulin, 2001].

The main weakness of RSD lies in the fact that it fails to ensure even weak
sd-efficiency [Bogomolnaia and Moulin, 2001]:

Example 2. Consider the case n = 4 for the preferences profile a ≻1,2 b ≻1,2 c ≻1,2 d

and b ≻3,4 a ≻3,4 d ≻3,4 c. Here RSD produces the following random assignment
a b c d

p1, p2: 5/12 1/12 5/12 1/12

p3, p4: 1/12 5/12 1/12 5/12

which is Pareto inferior to p̃1,2 = (1/2,0, 1/2,0), p̃3,4 = (0, 1/2,0, 1/2).

Moreover, such inefficient random assignments are not in the weak sd-core from
equal division. This contrasts with an alternative description of RSD by Abdulka-
diroğlu and Sönmez [1998], who characterize the solution on the domain of strict
preferences as “core from random endowments”. More precisely, they consider a
random, uniformly distributed initial allocation of objects to individuals; given
their endowments, individuals then trade towards the respective unique core alloca-
tion. From an ex-ante perspective, the convex combination of these core allocations
coincides with the convex combination of allocations generated by fixed pecking
orders.

4.2. Probabilistic Serial. One solution that overcomes RSD’s lack of efficiency is
the Probabilistic Serial (PS) mechanism, introduced by Bogomolnaia and Moulin
[2001]. It generates random assignments via “simultaneous eating” where individuals
accumulate probability shares, starting with their most preferred object until it is
exhausted, before moving down to their second most preferred object and so on.18

Not only does PS generate sd-efficient random assignments, it also ensures sd-envy-
freeness [Bogomolnaia and Moulin, 2001]. However, as will follow from Proposition 1,
these assignments can not in general lie in the weak sd-core from equal division.

Again, if we think of the core as the set of allocations that might be reached from
an initial allocation through trade among individuals, this is in contrast with an
alternative description of PS by Kesten [2009], who characterizes PS on the domain
of strict preferences as “Top Trading Cycles from Equal Division”. For each individual
i, her initial assignment ( 1

n) is managed by n “pseudo-agents” ia, a ∈ A. Each ia

17Typically, once we have found a random assignment p, we then need to construct a Birkhoff–von
Neumann decomposition to implement p as a lottery over deterministic assignments. One of the
practical advantages of RSD, is that the randomization occurs in the very first step where we choose
an ordering of individuals. Given this order, the algorithm returns a deterministic assignment.

18Bogomolnaia and Moulin [2001] consider strict preferences. The mechanism can be easily
generalized to objective indifferences, i.e. multiple copies of objects (e.g. Hashimoto et al. [2014]).



FAIR SOLUTIONS TO THE RANDOM ASSIGNMENT PROBLEM 9

controls an initial probability share 1
n of object a and shares i’s preferences over

objects. In each round, pseudo-agent ia will offer shares of a in exchange for an
equal share of her most preferred among those objects still available in the market.
Wherever there is a double coincidence of wants, probability shares are exchanged
and withdrawn from the market. Over time ia will have exchanged the whole of her
initial share of object a, or she finds that object a is the most preferred among all
remaining objects. In both cases, ia exits the market. After at most n steps, this
trading algorithm terminates and the sum of probability shares acquired by each i’s
pseudo-agents is found to coincide with the individual assignments pi generated by
simultaneous eating.

4.3. Walrasian equilibrium from equal incomes. A third prominent solution is of-
fered by Hylland and Zeckhauser [1979], who adapt the familiar concept of a Walrasian
equilibrium from equal incomes (WEEI) to assignment problems.19 In contrast to our
setting, individuals report vNM utilities wi. Nevertheless, as a random assignment
that is maximal with respect to expected utility will also be maximal with respect
to stochastic dominance, we find that their solution not only satisfies sd-efficiency,
but also many of the equity criteria formulated in Section 3.

Formally, define the set of price vectors as Q = {q = (qa)a∈A ∈ Rn ∣ ∀a ∈ A ∶ qa ≥ 0}.
Individuals purchase probability shares, maximizing their expected utility wi ⋅ pi

subject to a constraining budget B ∈ R+ and the constraint ∑A pi,a = 1.
Fact 1. Hylland and Zeckhauser [1979]. Consider an assignment problem (A, I,≿). For
any collection of compatible weights w ∈W (≿), their exists a Walrasian equilibrium
from equal incomes, i.e. a tuple (p, q,B) ∈ ∆(A)n ×Q ×R+ such that both

∀ i ∈ I, p̃i ∈ ∆(A) ∶ q ⋅ pi ≤ B and (wi ⋅ p̃i > wi ⋅ pi ⇒ q ⋅ p̃i > B)
(preference maximisation),

and ∀a ∈ A ∶ ∑
i∈I

pi,a = 1 (feasibility).

Not surprisingly, such a WEEI will be efficient and in the strong core with respect
to w. Moreover, the associated random assignment will also be sd-efficient and an
element of the strong sd-core from equal division: any trade (resp. objection) that
would make everyone (resp. members of G) weakly better off with respect to first
order stochastic dominance would also yield an increase in individuals expected
utility. Similarly, preference maximisation and equal budgets guarantee envy-freeness
with respect to w, i.e. for all i, j we have wi ⋅ pi ≥ wi ⋅ pj.

One condition that is not automatically satisfied, is equal treatment of equals.
If however, we chose wi = wj whenever ≿i=≿j, and constrain these individuals to
consume the same probability shares (whenever they are indifferent and might choose
different shares), this will guarantee equal treatment without violating preference
maximisation or feasibility. Hence, using appropriately chosen weights w, there exists
a (sub)solution of WEEIs that selects from the strong sd-core from equal division
and satisfies equal treatment of equals.

19Hylland and Zeckhauser [1979] also allow for differences in income, justified for example by the
seniority of individuals. In the spirit of our equity criteria identified in Section 3, we will concentrate
on the case of equal incomes.
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However, in contrast to both RSD and PS, Hylland and Zeckhauser’s solution (and
any sub-solution) will necessarily violate the strong sd-equal-division-lower-bound,
at least for some preference profiles - see Section 5, Proposition 2.

Figure 1 relates the two sd-efficient solutions discussed so far to the equity criteria
that they satisfy.

5. Main Results

In light of Figure 1, we may ask whether there exists a solution that is able to
satisfy all of our equity criteria. Unfortunately, the answer is no.

Proposition 1. For every n ≥ 4 there exist assignment problems of size n, for which
no random assignment simultaneously satisfies sd-envy-freeness and lies in the weak
sd-core from equal division.

The conflict between the two equity criteria arises in particular where, as it is
common in many applications, preferences are (sufficiently) correlated. Intuitively
then, objects may be seen as ordered from most to least valuable from a societal
point of view. An individual whose preferences are very closely aligned with that
ordering has ‘expensive tastes’ in that she, for example, most prefers the object that
is also most valuable to society. To satisfy sd-envy-freeness, we would be forced to
accommodate these expensive tastes to such a degree, that the remaining individuals
would object and prefer to trade exclusively amongst themselves. The proof of
Proposition 1 rests on an example that demonstrates such a situation.

Proof of Proposition 1. Consider an assignment problem (A, I,≿) of size n ≥ 4, label
objects as a, b, c, d and o5, o6, . . . , on, individuals as 1, 2, 3, ..., n and let their preferences
over objects be given by the following rank-order lists:

1 ∶ b, a, c, d, o5, o6, . . . , on,
2 ∶ a, c, b, d, o5, o6, . . . , on,
3 ∶ a, b, d, c, o5, o6, . . . , on,
j: a, b, c, d, o5, o6, . . . , on, ∀j = 4,5 . . . , n.

Intuitively, preferences of individuals j ≥ 4 could be described as ‘mainstream’
and hence ‘expensive’ tastes while in the preferences of the first 3 individuals there
are reversals in the ranking of objects a, b, c, d that create opportunities for welfare
improving trade. We will consider an arbitrary sd-envy-free random assignment p
and show that there exists a valid objection by G = {1,2,3}.

As p is assumed to be sd-envy-free, and all individuals agree on the ranking of
alternatives o5, o6, . . . , on, we know that pi,ok

= 1
n for all i ∈ I, k ≥ 5. As p also satisfies

equal treatment of equals, we can express the individual assignment for j ≥ 4 as

pj = (pj,a, pj,b, pj,c, pj,d, ...pj,ok
...) = (1/n + α, 1/n − α + β, 1/n − β + γ, 1/n − γ, ...1/n...)

with α,β, γ ≥ 0. Sd-envy-freeness then implies that p takes the form
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a b c d ok

p1: 1/n − (n − 1)α 1/n + (n − 1)α + β 1/n − β + γ 1/n − γ 1/n
p2: 1/n + α 1/n − α − (n − 1)β 1/n + (n − 1)β + γ 1/n − γ 1/n
p3: 1/n + α 1/n − α + β 1/n − β − (n − 1)γ 1/n + (n − 1)γ 1/n
pj: 1/n + α 1/n − α + β 1/n − β + γ 1/n − γ 1/n

Individuals 2 and 3 agree with j ≥ 4 on the most preferred object and hence receive it
with probability p2,a = p3,a = pj,a = 1/n+α. Individual 1 receives object a with remaining
probability p1,a = 1/n − (n − 1)α. Similarly, individuals i ≠ 2 agree on the weak upper
contour set Ui(b) = {a, b} and hence receive a or b with probability pi,a + pi,b = 2/n + β
- leaving individual 2 with the remaining probability p2,b = 1/n − α − (n − 1)β. Finally,
individuals i ≠ 3 agree on the upper contour set Ui(c) = {a, b, c} and hence receive
a, b or c with probability pi,a + pi,b + pi,c = 3/n + γ - leaving individual 3 with the
remaining probability p3,c = 1/n − β − (n − 1)γ. The entries pi,d then follow from the
condition ∑x∈A pi,x = 1.

As all entries are non-negative, we find three additional constraints on α,β, γ:

(I) α ≤ 1
n(n−1) (⇔ p1,a = 1/n − (n − 1)α ≥ 0)

(II) β ≤ 1
n(n−1) − 1

n−1α (⇔ p2,b = 1/n − α − (n − 1)β ≥ 0)
(III) γ ≤ 1

n(n−1) − 1
n−1β (⇔ p3,c = 1/n − β − (n − 1)γ ≥ 0)

We claim that the following random assignment p̃ constitutes a valid objection by
group G = {1,2,3}, who can do better by trading exclusively amongst themselves:

a b c d ok

p̃1: 0 3/n − α − β α + β + γ 1/n − γ 1/n
p̃2: 1/n + α 0 3/n − α − β − γ β + γ 1/n
p̃3: 2/n − α α + β 0 2/n − β 1/n
p̃j: 1/n 1/n 1/n 1/n 1/n

The random assignment is well defined, as all sums ∑x∈A p̃i,x = 1 = ∑i∈I p̃i,x and all
entries are non-negative, given that α,β, γ ≤ 1/n - see (I)-(III). Moreover, G’s resource
constraint is met, as ∑i∈G p̃i,x = 3

n , for all x ∈ A.
It remains to show that for all i ∈ G, p̃i ≻sd

i pi. First, consider individual 1. Here
we find that she receives her most preferred object with strictly greater probability

p̃1,b − p1,b =
2
n
− nα − 2β > 2

n
− 1
n − 1 − 2 1

n(n − 1) =
n − 4

n(n − 1) ≥ 0

where (I) and (II) are used in the inequality. Moreover, she also receives her first or
second object with greater probability than before:

(p̃1,b + p̃1,a) − (p1,b + p1,a) =
1
n
− α − 2β > 1

n
− 3
n(n − 1) =

n − 4
n(n − 1) ≥ 0.

As she receives her least preferred object d with the same probability as before
(p̃1,d = p1,d = 1

4 − γ), we conclude that p̃1 ≻sd
1 p1.
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Next, consider individual 2. She receives her most preferred object a with the
same probability as before (p̃2,a = p2,a = 1

n +α) but receives her second most preferred
object with higher probability:

p̃2,c−p2,c =
2
n
−α−nβ−2γ ≥ 2

n
−α− 1

n − 1+
nα

n − 1−2γ ≥ 2
n
− 1
n − 1−

2
n(n − 1) =

n − 4
n(n − 1) ≥ 0,

where we use (II) in the first and (III) in the second inequality. For the probability
of receiving her least preferred object d, we find (using (III))

p̃2,d − p2,d = β −
1
n
< 0

so that in conclusion p̃2 ≻sd
2 p2. Finally, consider individual 3. Her most preferred

object is a, which she now receives with strictly greater probability:

p̃3,a − p3,a =
1
n
− 2α ≥ 1

n
− 2
n(n − 1) =

n − 3
n(n − 1) > 0.

As the probability of receiving one of her two most preferred objects remains un-
changed (p̃3,a + p̃3,b = p3,a + p3,b = 2

n + β) and as she now receives her least preferred
object d with zero probability, she too strictly prefers p̃ over p, rendering p̃ a valid
objection by group G = {1,2,3}. �

Proposition 1 reveals a weakness of the Probabilistic Serial and other sd-envy-free
solutions in general, in that they allow individuals with ‘expensive tastes’ to seize
too much of the gains from trade that arise out of preference heterogeneity.

This raises the question, whether there exist solutions that are able to satisfy all
remaining equity criteria once we give up sd-envy-freeness. Again, the answer is no.

Proposition 2. For every n ≥ 3 there exist assignment problems of size n, for which no
random assignment simultaneously satisfies the strong sd-equal-division-lower-bound
and lies in the strong sd-core from equal division.

Proof. Consider the assignment problem (A, I,≿) where I = {1, 2, 3} and preferences
over A are given as a ≻1,2 b ≻1,2 c and b ≻3 a ≻3 c.

Any random assignment p that satisfies the strong sd-equal-division-lower-bound
will assign object c with probabilities pi,c ≤ 1

3 . But then, pi,c = 1
3 and p takes the form

a b c

p1: 1/3 + α 1/3 − α 1/3
p2: 1/3 + β 1/3 − β 1/3
p3: 1/3 − α − β 1/3 + α + β 1/3

with α,β ≥ 0 and α + β ≤ 1
3 . For p to lie in the strong sd-core it has to be sd-efficient,

i.e. α+β = 1
3 . Either α or β will then be less than 1

3 - assume w.l.o.g. that α < 1
3 . But

then, starting from equal division, individual 3 could exclusively trade with 1 and
arrive at the following alternative random assignment p̃:
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a b c

p̃1: 1/3 + α + β 1/3 − α − β 1/3
p̃2: 1/3 1/3 1/3
p̃3: 1/3 − α − β 1/3 + α + β 1/3

While this is a matter of indifference for individual 3, it is strictly preferred by 1.
Thus, p̃ is a valid objection to p by the group of individuals {1, 3} which completes the
proof for n = 3. The example extends immediately to the case n > 3 with preferences
a ≻i b ≻i c ≻i o4 ≻i ⋅ ⋅ ⋅ ≻i on for i ∈ {1,2..., n − 1} and b ≻n a ≻n c ≻n o4 ≻n ⋅ ⋅ ⋅ ≻n on. �

Proposition 2 can be seen as a negative result with regard to extending the pseudo-
market approach of Hylland and Zeckhauser to a situation where information on
preferences is limited in that the true underlying vNM utilities are unknown. In
their set-up, trade from equal division will both be in the strong core from equal
division and satisfy the equal division lower bound. Yet if we account for the coarser
information on preferences by modelling the result of such trade as an assignment in
the strong sd-core from equal division, we will not be able to simultaneously satisfy
the equal division lower bound for all possible underlying utility functions.

However, the next Proposition demonstrates that once we model trade as merely
delivering a result in the weak sd-core, this goal can be achieved.

Proposition 3. For any assignment problem (A, I,≿), there exist random assignments
that simultaneously satisfy equal treatment of equals, meet the strong sd-equal-division-
lower-bound, are in the weak sd-core from equal division and sd-efficient.

We will prove Proposition 3 by analysing a sequence of Walrasian equilibria with
equal incomes. The limit of this sequence will then inherit many desirable properties,
even if it is not itself a Walrasian equilibrium.

Our setting raises a number of problems for the existence of Walrasian equilibria.
For one, individuals may be satiated and hence leave part of their budget unspent,
leading to a violation of Walras’ law.

Second, if we restrict individuals’ consumption sets to random assignments that
meet the sd-equal-division-lower-bound, an equal division endowment lies on the
boundary of individuals’ consumption sets. Then, depending on the price vector,
there may be no assignment cheaper than the initial endowment. This violates the so
called strong survival assumption, typically used to show that any quasi-equilibrium
(whose existence may be established more easily) is in fact a Walrasian equilibrium.

Third, the preference relation given by first order stochastic dominance is not
continuous. For example an individual with preference a ≻i b ≻i c would (strictly)
prefer pi = (pi,a, pi,b, pi,c) = (1/3, 2/3, 0) over (1/3, 1/3, 1/3) but not over (1/3+ ε, 1/3− ε, 1/3).

To overcome the third problem, we let individuals act as expected utility maxi-
mizers whose vNM utilities are compatible with their strict ordering of objects – a
consumption bundle that is maximal with respect to these vNM utilities will then
also be maximal with respect to first order stochastic dominance. To resolve the
second problem, we relax the sd-equal-division-lower-bound by ε – letting ε go to
zero will then yield a limit allocation satisfing all our desired criteria. To overcome
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the problem of satiated individuals, we allow for some ‘slack’ or a ‘dividend’ that
increases the income of unsatiated individuals. In that, we follow Mas-Colell [1992]:

Let individuals’ consumption sets Xi ⊂ Rn be closed, bounded and convex and let
each individual’s endowment yi be in the interior of of Xi. Let the set of possible
price vectors be given as Q = {q = (qa)a∈A ∈ Rn∣∥q∥ = ∑∣qa∣ ≤ 1} and the state space be
denoted as Z =X1 ×X2 ×⋯×Xn ×Q. Individuals’ demand is guided by a (set-valued)
preference map Pi ∶Xi ⇉Xi and constrained by a budget q ⋅ yi + 1−∥q∥

∥q∥ where the term
1−∥q∥
∥q∥ may be used by the Walrasian auctioneer to increase budgets beyond the value
of endowments.

If Pi is irreflexive (i.e. xi /∈ Pi(xi) for every xi ∈ Xi), convex-valued (i.e. Pi(xi) is
convex for every xi ∈Xi) and has an open graph (i.e. if xi ∈ Pi(x′i), the same holds
for all ṽi, w̃i in some small neighbourhood of vi and wi) we have the following.

Fact 2. Theorem 1 in Mas-Colell [1992].
There exists a Walrasian equilibrium with slack, i.e. a state z = (x, q) such that both

∀ i ∈ I ∶ q ⋅ xi ≤ q ⋅ yi +
1 −∥q∥
∥q∥ and (x̃i ∈ Pi(xi) Ô⇒ q ⋅ x̃i > q ⋅ yi +

1 −∥q∥
∥q∥ )

(preference maximisation),
and ∀a ∈ A ∶ ∑

i∈I

xi,a = ∑
i∈I

yi,a (feasibility).

Proof of Proposition 3. Consider an assignment problem (A, I,≿) and a compatible
collection of weight vectors w ∈W (≿). Define individuals’ consumption sets as

Xε
i =
⎧⎪⎪⎨⎪⎪⎩
xi = (xi,a)a∈A ∈ Rn∣ ∑

a∈A

xi,a ≤ 1 + ε, ∀a ∈ A ∶ xi,a ≥ 0 and ∑
b∈Ui(a)

xi,b ≥
∣Ui(a)∣
n

− ε
⎫⎪⎪⎬⎪⎪⎭

and endow each individual with a share of 1
n of each object, i.e. yi = ( 1

n). Note that
consumption sets are closed, bounded and convex and that for ε > 0, endowments lie
in the interior. Moreover, in the limit as ε goes to zero, individuals are restricted to
consume bundles that can be interpreted as lotteries and that (weakly) stochastically
dominate ( 1

n). Let the set of possible price vectors be given as

Q = {q = (qa)a∈A ∈ Rn∣∥q∥ = ∑∣qa∣ ≤ 1} ,
and the state space as Zε = Xε

1 × Xε
2 × ⋅ ⋅ ⋅ ×Xε

n × Q. To provide individuals with
continuous (strict) preferences, we define

Pi ∶Xε
i ⇉Xε

i ∶ Pi(xi) = {x̃i ∈Xε
i ∣wi ⋅ x̃i > wi ⋅ xi}.

Intuitively one may say, that under Pi a consumption bundle is preferred over an
other if it yields a higher expected utility with respect to vNM utilities wi – except
that bundles only approximate lotteries in that 1 − ε ≤ ∑A xi,a ≤ 1 + ε. Clearly, Pi is
irreflexive, convex-valued and has an open graph.

By Fact 2, for any ε, there exists a Walrasian equilibrium with slack. Moreover, if
we assume that all individuals with the same ordinal preferences, i ∈ G, share the
same weight vector wi, there exists a Walrasian equilibrium with xi = x for all i ∈ G –
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for any other equilibrium, replacing individuals consumption bundles with

xi =
∑G x

′

j

∣G∣
retains preference maximisation and feasibility yet attains equal treatment of equals.

Consider a sequence (εk)k∈N with εk↘0 and a sequence of associated equilibria
ek = (xεk , qεk) satisfying equal treatment of equals. As the sequence of equilibria is
bounded by Xε1

1 ×Xε1
2 × ⋅ ⋅ ⋅ ×Xε1

n ×Q, it has a convergent subsequence and we may
assume w.l.o.g. that (ek) is convergent itself. Denote its limit as e⋆ = (x⋆, q⋆). Then
x⋆ satisfies equal treatment of equals and, by construction of our consumption sets,
is a random assignment that satisfies the strong sd-equal-division-lower-bound.

Claim 1. The random assignment x⋆ is in the weak sd-core from equal division.

Proof of Claim: Towards a contradiction, assume there exists a group G ⊂ I and
another random assignment p such that ∑i∈G pi = ∣G∣ ( 1

n) and, for all i ∈ G, pi ≻sd
i x⋆i .

The latter implies
∀i ∈ G,ε > 0 ∶ pi ∈Xε

i ,

and for some sufficiently large k̄ we have

∀i ∈ G,k > k̄ ∶ wi ⋅ pi > wi ⋅ xεk
i .

Then by preference maximization we have

∀i ∈ G,k > k̄ ∶ qεk ⋅ pi > qεk ⋅ (1
n
) + 1 −∥qεk∥

∥qεk∥ ≥ qεk ⋅ (1
n
) .

But this contradicts ∑G q
εk ⋅ pi = qεk ∑G pi = qεk ∣G∣ ( 1

n).
◇

Claim 2. The random assignment x⋆ is sd-efficient.

Proof of Claim: Towards a contradiction, assume there are individuals that can trade
among themselves to be strictly better off.20 That is, assume there exists another
random assignment p and a group G ⊂ I such that ∑G(pi − x⋆i ) = 0 and pi ≻sd

i x⋆i for
all i ∈ G. As the trade (pi − x∗i ) sd-improves individuals’ assignments, we know that
wi ⋅ (pi − x⋆i ) > 0 for all i ∈ G. Moreover, as xεk approaches x∗, we know that there
exists an ε ∈ (εk)k∈N such that

∀ i ∈ G,a ∈ A ∶ xε
i,a ≥ 1/2 ⋅ x∗i,a.

Hence for a (scaled down) trade from xε, we find xε
i,a + 1/2(pi,a − x∗i,a) ≥ 0. Since the

trade moreover leaves the total sum of probability shares unchanged and constitutes
an sd-improvement, this ensures that

∀ i ∈ G ∶ xε
i + 1/2(pi − x∗i ) ∈Xε

i .

Then, by preference maximization, we have

∀ i ∈ G ∶ qε ⋅ 1/2(pi − x⋆i ) > 0,

and in the aggregate qε ⋅ ∑G(pi − x⋆i ) > 0. But this contradicts ∑G(pi − x⋆i ) = 0. ◇
20W.l.o.g, we can ignore individuals that are made only weakly better off, as they would exchange

probability shares of objects that not only they, but everyone else is indifferent between.



16 FAIR SOLUTIONS TO THE RANDOM ASSIGNMENT PROBLEM

This completes the proof. �

6. Discussion

While Proposition 3 establishes the existence of a solution satisfying a range of
efficiency and equity criteria, its proof identifies a particular sub-solution – namely
assignments x∗ that arise in the limit of a sequence of Walrasian equilibria ek(xεk , qεk)
where along the sequence individuals evaluate bundles with respect to weights
w ∈W (≿). In this section, we will describe further properties of the limit assignment
x∗, illustrate it in an example, discuss how the weights w may be chosen in applications
and how our approach protects against the negative effects of misspecified weights.

6.1. Further properties of e∗(x∗, q∗). The first thing to note about the limit e∗ is
that it not necessarily constitutes a Walrasian equilibrium from equal incomes, as
can be seen from the following example.

Example 3. Consider the assignment problem used in the proof of Proposition 2 –
three individuals I ={1, 2, 3}, with preferences a≻1,2 b≻1,2 c and b≻3a≻3 c. Sd-efficiency,
equal treatment of equals and the strong sd-equal-division-lower-bound together
pin down the limit x∗ as x∗1,2 = (1/2, 1/6, 1/3), x∗3 = (0, 2/3, 1/3). For these individual
assignments to be of equal value, requires prices q∗a = q∗b – yet in a Walrasian
equilibrium at these prices, individuals 1 and 2 would not demand b.

Nevertheless, e∗(x∗, q∗) is a quasi-equilibrium with respect to individuals’ con-
sumption sets and the chosen weights w ∈W (≿) (which may be interpreted as vNM-
utilities consistent with preferences over sure objects) – that is, there are no cheaper
lotteries that stochastically dominate the uniform lottery and provide weakly higher
expected utility. To see this, observe that if there were such lotteries for an individual
i unsatiated at x∗i , they would have been cheaper and in i’s consumption sets along
the sequence that led to x∗i – violating preference maximization as preferred bundles
had been affordable. Moreover at x∗, a satiated individual consumes probability
shares of her most preferred object(s) that sum to one; if one of her most preferred
objects was cheaper, she would have consumed more than one of that objects along
the sequence where the consumption set was relaxed – violating feasibility.

To illustrate how a quasi-equilibrium can arise as the limit of Walrasian equilibria,
consider again the preference profile of example 3.

Example 4. Assume normalized weights w1,a,w2,a,w3,b = 1, w1,c,w2,c,w3,c = 0 and
w1,b,w2,b,w3,a ∈ (0,1). As εk becomes sufficiently small, prices

qεk
a = 1 + 6εk

2 + 6εk

, qεk

b = 1
2 + 6εk

, qεk
c = 0

support the bundles

xεk
1 , x

εk
2 = (1/2, 1/6 − εk, 1/3 + 1/2εk), xεk

3 = (0, 2/3 + 2εk, 1/3 − εk)
as a Walrasian equilibrium from equal incomes. As εk goes to zero, these bundles
converge to the random assignment x∗ of example 3 above, which constitutes a
quasi-equilibrium with respect to q∗ = (1/2, 1/2,0).
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Given that e∗(x∗, q∗) is a quasi-equilibrium, the limit price vector q∗ may be seen
as an intuitive measure on the general desirability of objects, namely an ordering
of objects from most to least expensive.21 Relative to q∗, each individual’s random
assignment is of equal value – which may be seen as an additional, strong equity
characteristic of the assignment, beyond the fact that it lies in the weak sd-core
from equal division. If preferences are sufficiently correlated so that q∗ yields a strict
ordering of objects, an individual i whose preferences coincide with this ordering, will
be assigned each object with equal probability, x∗i = ( 1

n), as any other assignment that
stochastically dominates equal division would imply that the value of i’s assignment
exceeds the average value of others’ assignments. In this sense, the limit assignment
x∗ ensures that ‘expensive tastes’ are not accommodated to an unwarranted degree.

Furthermore, an individual for whom an object is comparatively less valuable than
for the rest of the society – in the sense that the individual ranks it lower than it is
ranked according to q∗ – will receive the object with zero probability, which can be
seen intuitively as an expression of efficiency.

6.2. Choosing w ∈W (≿). On possible way of setting w ∈W (≿) is to estimate them
as vNM-utilities using historical application data by means of a random utility model.
For example in a school choice context, it seems plausible that applicants who live
closer to a particular school or have siblings attending it, should receive a higher
utility from that school. The size of these effects can be estimated using a random
utility model, see e.g. Ashlagi and Shi [2015], Pathak and Shi [2017].22

Another approach is used in the current Israeli medical match [Bronfman et al.,
2015a,b]. For that, applicants were asked to choose hypothetically between different
exemplary lotteries that assigned them to different hospitals with various probabilities.
Based on these survey answers, it was estimated that being assigned to the ith-most
preferred option gives utility (m − i + 1)2 where m denotes the number of hospitals.
Using submitted rank order lists and these estimates, the matching algorithm uses
Random Serial Dictatorship to find a first, intermediate random assignment before
maximizing expected utility subject to the constraint that no applicant receives a
lower expected utility than under the intermediate assignment.

A drawback of this approach is that if an applicants vNM-utilities do not coincide
with the common estimates, the final random assignment may provide her with a
lower expected utility than she would have received from Random Serial Dictatorship
or even from the uniform lottery. The same problem arises of course for any other
estimation procedure, say a random utility model, that is used in conjunction with an
unconstrained Walrasian equilibrium approach, as in Hylland and Zeckhauser [1979].
Only the hard constraints that our approach puts on individuals consumption sets
ensures that each individual indeed receives an assignment that yields (weakly) higher
expected utility than the uniform lottery even when the estimated vNM-utilities are
incorrect.

21In applications where assignment problems arise repeatedly, for example the assignment of
school seats, such a measure may be helpful to guide supply.

22To use such additional information, one would have to redefine ‘equal treatment of equals’ –
applicants who both submit the same rank order list and have the same additional characteristics
should be treated equally.
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7. Concluding Remarks

We end this paper with two remarks. First, our impossibility results Proposition 1
and 2 illuminate the difference between two of the most prominent efficient solutions
to the random assignment problem, namely the Probabilistic Serial (which is sd-envy-
free) and Hylland and Zeckhauser’s WEEI (which selects from the strong sd-core) and
show that no assignment mechanism may satisfy all equity criteria satisfied by either
of the two. Such impossibility results may also be of practical importance where an
assignment mechanism is challenged in court, for example by individuals who are
unsatisfied with their eventual assignment. Here, claimants may argue against an
assignment mechanism by identifying specific equity criteria that have been violated.
To judge the validity of such arguments, we would have to know whether the identified
equity criteria are at least feasible – if that is not the case, the violation cannot serve
as an argument for rejecting the assignment mechanism or the specific assignment
that it produced.

Proposition 3 offers a way to adapt Hylland and Zeckhauser’s pseudo-market
approach – which can be used to generate assignments in the core from equal division
with respect to known vNM-utilites – to situations where the true underlying vNM
utilities of individuals are unknown. Namely it shows, that it is possible to trade
from equal division to arrive at assignments in the weak sd-core while simultaneously
satisfying the equal-division-lower-bound for all possible underlying utility functions.
Moreover, the proof can be straightforwardly adapted to account for general fractional
endowments, as considered by Athanassoglou and Sethuraman [2011], to establish
existence of allocations that are sd-efficient, lie in the sd-core from initial endowments
and satisfy the strong sd-initial-endowment-lower-bound. For example in a school
choice setting, a student’s fractional initial endowments could be given by a convex
combination between a deterministic assignment to the closest school and a uniform
lottery over all schools (similar to Harless and Phan [2017]) or as a uniform lottery
over a small number of close neighbourhood schools.

Appendix

Example 5. A random assignment in the strong sd-core from equal division, may
neither satisfy the strong sd-equal-division-lower-bound, nor equal treatment of
equals. Consider n = 3 and suppose i ∈ 1,2 hold preference a ≻i b ≻i c while individual
3 prefers object c. Then the random assignment given by p1,a = 1, p2,b = 1 and p3,c = 1
lies in the strong sd-core – individual 2 cannot object on her own, as ( 1

n) /≻
sd
2 p2. Also,

there is no objection involving either individuals 1 or 3 who both receive their most
preferred object, and could not be made as well off by any coalition of size two. In a
blocking coalition involving all three individuals, 1 and 3 would still have to receive
their most preferred object, so that 2 could not be made better off.

Example 6. A random assignment in the strong sd-core from equal division, satisfying
the strong sd-equal-division-lower-bound may violate equal treatment of equals.
Suppose i ∈ {1, 2, 3} hold preferences a ≻i b ≻i c ≻i d while 4 prefers object d. Then the
following random assignment p satisfies the strong sd-equal-division-lower-bound:
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a b c d
p1,2: 1/4 1/2 1/4 0
p3: 1/2 0 1/2 0
p4: 0 0 0 1

To see that p lies in the strong sd-core from equal division, observe first that it
is sd-efficient – 4 receives her most preferred object and 1,2 and 3 have identical
preferences. Thus, the grand coalition will not object to p. Next, consider objections
by groups of size k < 4. Individual 4 cannot support such an objection, as she
would receive her most preferred object with probability p4,d ≤ k/4 < 1. Nor could the
remaining individuals form a coalition, as someone would have to accept pi,d > 0.

However, p does not satisfy equal treatment of equals, as p1 = p2 ≠ p3.
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