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Abstract Computational homogenization techniques nowadays are extensively
used to gain a better understanding of the links between complex microstructural
features in materials and their corresponding (evolving) macroscopic properties.
This requires robust tools to discretize complex microstructural geometries and
enable simulations. To achieve this, the present contribution presents an inte-
grated approach for the conformal discretization of complex inclusion-based RVE
geometries defined implicitly based on experimental techniques or through compu-
tational RVE generation methodologies. The conforming mesh generator extends
the Persson-Strang truss analogy in order to deal with complex periodic hetero-
geneous RVEs. Such an approach, based on signed distance fields, carries the
advantage that the level set information maintained in previously presented RVE
generation methodologies [55] can seamlessly be used in the discretization pro-
cedure. This provides a natural link between the RVE geometry generation and
the mesh generator to obtain high quality optimized FEM meshes exploitable in
regular codes and softwares.
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1 Introduction

1.1 Context

Materials with various degrees of randomness at the microscale are met in many
different engineering problems related for instance to rocks, bones, masonry, con-
crete or metallic foams. For instance, heterogeneities strongly affect the perme-
ability of rocks, thereby influencing the transient fluid transport processes in crit-
ical geo-environmental applications. In such processes, mechanical loading may
alter the material microstructure, thereby impacting the fluid transfer proper-
ties [46, 18, 54].

Nowadays, multiscale analysis is used for identifying the microstructural pro-
cesses responsible for a macroscopic effect, or for linking average macroscopic prop-
erties to the material properties of constituents [25, 34, 35, 44, 60]. Computational
homogenization defines a general framework to model the physics of a microstruc-
tural representative volume element (RVE) and to derive the macroscopic behavior
of an heterogeneous material using scale transition rules [53, 25, 58, 61]. Many com-
putational contributions based on homogenization with periodic boundary condi-
tions use simplified geometric microstructural representations, which can induce
strong approximations for the considered materials averaged properties [24, 26].

To consider complex geometries in finite elements simulations, two main ingre-
dients are required. First, for complex disordered heterogeneous materials, realistic
RVEs incorporating the specific features of their microstructures need to be ob-
tained or produced. This can be achieved by exploiting experimental data from
modern experimental techniques, such as tomography, to characterize the spa-
tial organization of the various phases and pore space in porous/heterogeneous
materials ; or by using generation techniques reproducing available experimental
features such as the size distributions of inclusions/voids, their volume fraction or
the tortuosity or the connectivity in the pore space.

Secondly, these complex microstructural geometries have to be discretized by
advanced techniques, able to conform to the internal material boundaries in an
efficient manner. Mesh generation is a critical step in a modelling process, link-
ing the definition of the geometry to the solution of discretized partial differential
equations. Unlike for models representing the geometry of industrial parts via
CAD tools, a model that aims at representing the physics of heterogeneous ma-
terials at the microscale requires incorporating complex geometries that are often
defined implicitely. Such real geometries are represented by means of simple grids
of points sampling the material density. Over time, idealized (virtually generated)
microstructures have become more and more complex as well, with the enhance-
ment of generation techniques and can be represented similarly to data obtained
with Computed Tomography scans [42, 55]. Finally, a seamless transition between
the generation and discretization steps is desirable to obtain a fully automated
computational approach that does require any intervention of the analyst.

The present contribution focuses on the problematic of mesh generation in
the context of multi-scale analysis of heterogeneous materials with complex mi-
crostructures.
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1.2 Related work

The literature on mesh generation is way too extensive to offer an exhaustive review
here. Once a description of material interfaces is obtained, two main discretiza-
tion approaches can be used. Non conforming approaches, like XFEM [28, 36, 59]
present the advantage to uncouple the geometrical information from the mesh gen-
eration process which can be difficult for complex geometries. This allows an easier
generation of periodic structured meshes. However, this is often associated with the
need to re-implement complex constitutive models in inhouse non-conforming dis-
cretization packages. Conversely, in conforming meshes, the geometry information
is used in the discretization process. This makes it more complex and costly, but
carries the advantage of using standard FE packages with available constitutive
laws.

Most efficient conforming mesh generator softwares like GMSH [14], TetGen [51],
GHS3D [15], Triangle or Netgen [45]; as well as meshing tools in finite elements
packages generally are available for explicit geometries but not for implicit descrip-
tions. Therefore an interface must be developed to provide suitable triangulated
surfaces and allow the generation of usable conforming FE meshes for implicit
geometries. In most of softwares, triangulation is achieved by Delaunay triangu-
lation or by front advancing methods. The former refers to a criterion leading
to a specific connectivity associated with a given set of points that can also be
used in the advancing front method. The latter consists in constructing the mesh
by progressively adding elements starting from the interfaces, and leading to well
controlled elements sizes. For both methods, the initial node placement strategy
is critical to obtain a consistent mesh [32, 5, 49, 11].

Realistic geometries are difficult to discretize in computational models. As
a result, a large proportion of contributions using experimental microstructural
information uses voxel-based discretization methods [4, 21, 41]. This leads to a
poor representation of the material interfaces geometry by stair-case surfaces that
requires the use of smoothing methods [4, 19, 41], or to inacuracies of fields derived
from post-processing of the computations. This is especially true for materially non
linear computations in which spurious stress concentrations significantly alter the
local behavior within the RVE.

Efficient meshing methods dealing with multiple materials were developed us-
ing octree-based isocontouring in the past few years by [63, 64] with applications
in medical imaging to represent the different tissues [21, 63, 64]. However, only few
of them addressed finite elements simulations with periodicity, a non trivial issue
for complex geometries. Some methods presented in [7, 12, 17, 41] are available but
the presented results are generally either based on simplified geometries already
described explicitly, or based on voxel meshing [21]. This triggered researchers to
use non conforming mesh [27, 36].

In view of this, it is of interest to develop methods able to easily and robustly
mesh arbitrary implicit geometries for various applications in the physics of ma-
terials.
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1.3 Outline

Currently, rather few articles deal with the generation of conforming meshes on
complex multi-body geometries. The present contribution proposes an integrated
approach for the conformal discretization of complex heterogeneous RVEs suited
for classical finite elements computations. It mainly focuses on the discretization
step for geometries provided by RVE geometry generators already developed in
[42, 55, 56, 57] for particulate granular media, porous media, foams or woven com-
posites. The meshing methodology extends the truss analogy of Persson-Strang [40]
in order to deal with complex (periodic) heterogeneous microstructures. The main
advantage of this generator is the use of distance functions describing the mi-
crostructural geometry to be discretized for producing a conformal and periodic
mesh of these complex geometries. The information obtained through the distance
functions (complex geometrical description, distance to neighbours, curvatures,...)
allows the process benefiting from sufficient details to handle particularly complex
cases. The surfaces of the inclusions are meshed and optimized independently, sim-
plifying the problem before producing a volume triangulation via 3D constrained
Delaunay triangulation after boundary faces meshing. To this end, the mesh opti-
mization using the extended Persson method makes it possible to generate a final
result that allows to preserve the conformity and ensure periodicity while produc-
ing high-quality elements that open the way for FEM simulation on complex ge-
ometries. The approach, based on signed distance fields, carries also the advantage
that the level set information used during the generation of the microstructural
geometry [55] can seamlessly be used in the discretization procedure, providing a
natural link between RVEs generation and the mesh generation.

The present contribution is structured as follows. Section 2 provides an overview
on implicit geometries and on the specific ingredients required to implicitly define
RVEs. The resulting implicit RVE geometry constitutes the input for the new
developed mesh generator. Section 3 recalls the truss analogy process presented
by P.O. Persson [40] to optimally mesh single body implicit geometries and its
adaptation for heterogeneous geometries. It presents how boundary conformity
at material interfaces can be ensured by forcing nodes to move only tangentially
to these surfaces, and how an optimization algorithm can be built on the truss
analogy based on a repulsive force field, to obtain high quality element shapes.
Section 4 presents the extended meshing algorithm by first enlighting the difficul-
ties related to the conforming meshing of complex periodic heterogeneous RVEs.
Secondly, the meshing and optimization procedures are adressed, focusing on the
issues related to the conformal meshing of materials internal boundaries. Section
5 illustrates some meshing results of complex RVEs. Finally, Section 6 discusses
the results and potential further improvements of the procedure. The discretiza-
tion procedure is available for both 2D and 3D discretizations. Since 3D meshing
requires more specific treatments, the present contribution will focus more partic-
ularly on the 3D implementation, even though some parts are illustrated for the
2D for the sake of clarity.
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2 Input Geometries

2.1 Implicit Geometries

In a microstructural heterogeneous geometry, interfaces separating phases can be
described either explicitly by means of triangular facets in 3D or implicitly. A
curve or a surface φ can be represented implicitly by means of the level sets of
functions LS(x, ...) :

φ ≡ LS(x, ...) = k (1)

where x represents the spatial coordinates and k the iso-value of the function.
In a computational context, level set functions LS(x, ...) are evaluated on finite

regular grids defining the domain of the geometry. The complete definition of con-
tinuous functions from those requires the association of an interpolating scheme.
Due to the discrete nature of LS evaluations, the actual positions of material in-
terfaces depend on the grid resolution and on the interpolation scheme used to
define the LS function, making them not uniquely defined. Typically, the use of
a linear interpolation requires the grid resolution to be fine enough with respect
to the represented geometry. The same consequences hold for the computation
of the spatial derivatives, the approximation of which can be obtained by finite
differences.

The level-set function used to define geometries can be of different nature and
may depend on various parameters. A well-kown example of level set functions
is the gray-scale density map obtained by X-ray (Computed) Tomography (CT)
scans in (many) research fields such as medecine, biology, mechanics or environ-
mental applications; highlighting their ability to model and handle geometries
with arbitrarily complex features. LS(x) also gives access to some of their intrin-
sic properties such as the direction or curvature of the curve (resp. surface). The
gradient of LS(x) is indeed related to the normal to the level sets of LS(x) as
level sets of a function are perpendicular to its gradient. Moreover, their second
derivatives give access to the local curvatures of the interface, as the divergence of
the normalized gradient of LS furnishes the local mean curvature [16, 47].

A particular choice for this function is the signed distance function to φ [37, 47].

φ ≡ DS (x) = 0 with |grad(DS(x))| = 1 (2)

Given an interface φ dividing the RVE domain Ω in two sub-domains Ω+ and
Ω−, the signed distance function of φ is a function DSφ(x) with the value of
the signed euclidian distance from x to φ, with by convention a negative value
attributed to points included in the domain Ω−. These functions can be easily
computed from any level set function using the Fast Marching Method [37].

2.2 Implicitly defined RVEs

In the context of microstructural RVE geometry generation, a combination of level
set functions can be used to represent complex and/or multi-body geometries. In
addition to DS functions defining inclusions, in multi-body situation, such as in
RVE illustrated in Figure 1, global distance functions DNk(x) can be used as
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global descriptors of the microstructural geometry. The notation DNk denotes
the distance to the kth nearest neighbour. To evaluate properly these functions, a
distance function DSφi

is required to each inclusion i. As a consequence, the CTX
scan of a heterogeneous geometry, grouping the representation of all inclusions in
a single LS function, cannot directly be used to evaluate DNk functions without
specific processes. Conversely, it is possible to reconstruct any DSφi

based on DNk
functions. DN1(x) represents the first nearest neighbor distance function and can
be used strictly as a distance function defining implicitly every inclusion boundary
inside the RVE with a single function.

DN1(x) = min
i

[DSφi
(x)] (3)

Fig. 1: Left : Global signed distance function DN1(x) for a given RVE - Right :
DN2(x) function, the second nearest neighbor, for the same RVE

Further morphological information about the RVE can be obtained fromDN2(x),
the second nearest neighbor. More generally, DNk functions partly describe the
morphology of a set of inclusions. These functions will be used in the present
contribution to detect some local configurations requiring a finer mesh.

3 Mesh generation for implicit geometry of homogeneous structures

A meshing tool called distmesh was developed in MATLAB by P.O. Persson [39,
40]. It starts from a non-conformal initial discretization transformed into a con-
formal mesh by using an auxiliary structural computation on a truss network in
which the bars correspond to the edges of the mesh elements. This auxiliary com-
putation makes use of a repulsive force field moving the nodes located inside the
geometry domain towards the interfaces, while being constrained to remain in the
domain based on the level set function that describes the implicit geometry. The
code developed by P.O. Persson [39, 40] for homogeneous geometries has the aim
to remain simple and public. Its central concept is explained now to allow its
extension towards periodic heterogeneous complex structures in Section 4.
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3.1 Global discretization process

Fig. 2: Global meshing process of [40] divided in four main stages taking as input
an implicit geometry. (reproduced from [40])

The meshing procedure for homogeneous structures is essentially divided in
four stages as shown in Figure 2. The first stage consists in defining a size func-
tion h(x) to be used as a space-dependent target for elements sizes, depending on
geometrical or physical features. More details on this stage can be found in [39]
and further in this paper. The second stage generates an initial node distribution
on which a triangulation is subsequently produced. Persson proposed in [40] an
efficient generation procedure for the initial node distribution, based on a prob-
abilistic distribution called rejection method. The last stage optimizes the nodes
positions according to a force equilibrium process using an auxiliary truss analogy
explained in the next section to achieve optimal element shapes.

In finite element simulations, the error upper bounds depend only on the small-
est angle of the mesh elements [30, 40]. Accurate numerical results are therefore
obtained if 2D triangles tend to be equilateral [9, 30]. A commonly used measure
to evaluate the quality of tetrahedra is therefore the ratio based on their largest
inscribed and smallest circumscribed spheres. This ratio tends to a value 1/3 for
a regular tetrahedron. An element quality factor q is then defined by :

q = 3
rinsc
rcirc

(4)

Other quantification methods also exist and are addressed in more details in [9,
10, 13, 22].

3.2 Mesh quality optimization

The mesh quality optimization is based on an iterative technique that uses a
simple mechanical analogy between the edges of a simplex mesh and the bars
of a truss, or equivalently a structure made of springs [40]. In this analogy, the
edges of tetrahedral elements and the mesh nodes correspond respectively to the
bars and joints of a truss system. By assuming an appropriate force-displacement
relationships for the bars, the final nodes position (p) for a set of forces (F ) can
be found iteratively by solving for static equilibrium according to
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F(p) =
∑
i Fint,i(p) + Fext,i(p) = 0 (5)

where Fint and Fext are respectively the internal forces present in the bars and
the external forces stemming from boundary constraints (supports). These latter
are introduced by means of the signed distance function to ensure the conformity
of the mesh at an imposed boundary.

The force vector F(p) depends on the topology of the truss system. In the
present case, F(p) is not continuous accross arbitrary p variantions because De-
launay retriangulations are performed when large node movements occur, thereby
inducing some difficulties to solve the system.

A simple approach was therefore proposed by Persson to solve the system,
using an artificial time-dependence. The following system of ODEs is considered
(in non physical units), with initial condition p(0) = p0 being the initial node
distribution :

dp

dt
= F(p), t ≥ 0 (6)

Indeed, F(p) = 0 is satisfied if a stationary solution is reached. The latter is
found by integrating (6) in time using the forward Euler method.

p(tn+1) = p(tn) +∆t F(p(tn)) (7)

Internal forces Fint(p) allow steering the equilibrium state toward a configu-
ration matching the size function h(x). To this end, as illustrated in Figure 3, a
repulsive force field f(l, l0) is defined on each bar (i.e. each tetrahedral element
edge) depending on its current length l and its prescribed length l0 interpolated
from the size function h(x) according to :

f(l, l0) =

{
k (l0 − l) if l < l0

0 if l > l0
(8)

where k =
l + l0
2 l0

≈ 1 (9)

This repulsive force field tends to move internal nodes towards the boundaries
of the domain. The nodal force vector F (p) of the equivalent truss system thus
contains both the internal forces from the bars (Fint) ensuing from the f(l, l0) field
and the reactions at the boundary nodes (Fext). Boundary nodes are themselves
prevented to exit the domain based on the level set function that describes the
implicit geometry of the interface. The reactions are oriented along the normal
to the boundary defined by the gradient of the distance field function to this
boundary :

Fext(p(tn)) = −DS(p(tn))∇DS(p(tn)) (10)

p(tn) = p(tn) +∆t (Fext(p(tn)) + Fint(p(tn))) (11)

The solution is considered to be obtained when the value of the maximum node
movement is below a certain tolerance.
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Fig. 3: Left : Repulsive force field in bar smaller than the targeted length l0 - Right
: Boundary constraints of nodes moving outside the implicitly defined boundary
reproduced from [40]

In case node movements between two iterations are too large, a retriangulation
is performed to modify the topology of the mesh and the optimization process is
restarted until a stationnary solution is found (see Figure 2) producing very high
quality meshes. There are essentially four stopping criteria in the optimization
process:

– A maximum number of iterations
– A maximum number of retriangulations
– A retriangulation criterion implemented in case of significant node movements

(see quantification below), and iterations number is reset to 0 after retriangu-
lation

– A criterion also defined for stopping the optimization process when the config-
uration of the mesh is sufficiently stable

The criteria are left to the user discretion since they are modifiable parameters in
the dashboard of the mesh generator. The quantitative input parameters values
for these criteria used in the mesh generations illustrated in the manuscript are as
follows: The maximum numbers of iterations and of retriangulations are set at 50
and 10 respectively. These numbers are selected in order to limit the computation
time in case of non-convergence of the process. If the system does not converge, the
process starts again with a five times smaller time step to make the movement of
the nodes slower. If the system still does not converge, it means that the process has
not found the optimal position of the nodes based on the size map set upstream,
leading to areas where the elements are expected to be of poor quality. In this
case, the process restarts from the beginning by modifying the initial parameters to
reproduce a new more refined size map to better reflect the geometrical complexity.
A retriangulation is applied when the most stressed bar undergoes a contraction or
extension larger than 10% of its length. The optimization process itself is stopped
when the most stressed bar of the equivalent truss undergoes a contraction or
extension of less than 0.1% of its length. Note that these are parameter values
that the user may want to modify. They will essentially affect the computation
time and the time for the process to converge to get high quality elements according
to the defined stopping criterion.
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4 Extension to complex heterogeneous RVEs mesh generation

The Persson-Strang truss analogy for mesh optimization presented in the previous
section is robust and effective for small and medium sized meshes based on single
body geometries. However, many challenges appear in 3D when meshes have to be
produced for complex heterogeneous RVEs. Among them, the presence of inter-
nal boundaries separating the inclusions from the matrix to produce conforming
meshes makes the problem more intricate. Furthermore, multi-scale analysis often
requires the capability to produce periodic meshes, which in 3D configurations
requires specific implementations.

In the following sections, an adapted approach extending the Persson-Strang
truss analogy is outlined in order to deal with complex periodic heterogeneous
microstructures based on signed distance fields.

Fig. 4: Reference RVE generated by the RVE generation procedure defined in [55]
to illustrate the meshing process of complex heterogeneous microstructures

4.1 Global meshing strategy

The mesh generation process for the RVE is subdivided in five steps as follows :

1. Definition of a size function h(x) based on specific/particular geometrical fea-
tures

2. Generation of an initial periodic node distribution based on an octree decom-
position

3. Optimized surface meshing of the internal material interfaces, based on an
initial triangulation obtained by contouring algorithms to enforce conformity

4. Optimized external boundaries meshing for periodicity
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5. Optimized volume meshing of inclusions and matrix based on a Constrained
Delaunay Tetrahedralization (CDT) starting from the surface meshes (pro-
duced in 3 and 4)

Fig. 5: Global meshing strategy based on reference RVE

The procedure starts similarly to the original Person-Strang methodology, i.e.
defining a size function h(x) to control the elements sizes. The amount of nodes
is increased where complex shapes of inclusions require taking into account local
features such as high curvatures, small gaps or wide size distributions of inclusions.
The size function is therefore used in the optimization process and the initial distri-
bution of nodes detailed in sections 4.2 and 4.3, in order to refine the discretization
only at the positions of interest.

A key difficulty with Delaunay-based mesh generators remains the enforcement
of mesh conformity at material interfaces. This issue is even more complex in 3D,
and still a challenging problem both in theory and practice [52]. When applying the
original Persson-Strang methodology to homogeneous domains, no specific treat-
ment for internal boundaries is required. Therefore, the triangulation of an initial
distribution of nodes and its optimization is only performed once. For heteroge-
neous structures, the conformity is more difficult to ensure due to the presence of
nodes on both sides of the material interfaces before triangulation. Furthermore, it
is not trivial to ensure periodicity of a 3D triangulation, even when starting from a
periodic nodes configuration. A solution to ensure conformity and periodicity is to
first mesh the inclusion interfaces and the RVE boundaries to avoid the presence of
crossing tetrahedra. Once those surfaces are meshed, Boundary-conforming tetra-
hedral meshes are generated with a constrained Delaunay triangulation to preserve
the inclusions surfaces. To do that, the Delaunay criterion is not strictly applied
anymore in the neighbourhood of the constrained facets [48, 50]. This motivates
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the decomposition of the procedure into several steps. Each meshing stage (sur-
face meshing, external boundary faces meshing and 3D bulk meshing) involves two
steps, namely the triangulation and the optimization process using an extended
version of the principle of the Persson-Strang truss analogy.

The inclusion surfaces are first meshed set by set after extracting their zero-
isosurface from the LS(x) defining them by contouring algorithms. Then, to ensure
periodicity, the RVE external boundary faces are considered as 2D meshes in which
the traces of inclusions cutting the RVE boundary are discretized first, making
the RVE boundary meshing process easier. The periodic enclosing surface mesh is
formed by extracting, meshing, copying, translating and merging the three non-
opposite faces.

Then, the entire volume is meshed by providing the optimized boundary faces
and internal surface meshes as input for the Constrained Delaunay Tetrahedral-
ization (CDT) module of the well-known meshing software TetGen [51], thereby
ensuring periodicity and internal conformity of the final mesh.

Finally, a post-processing step provides mesh corrections if self-intersections
of triangles in the interfaces still appear in the obtained mesh. It also attributes
the elements to the inclusion and the matrix phase, and records information about
external boundary nodes in order to ease the definition of finite elements boundary
conditions.

The following subsections provide detailed information on how to implement
each step of the procedure.

4.2 Size Function h(x)

Dealing with 3D complex geometries as sketched in Figure 4 with a uniform mesh
size may induce a large numbers of elements, as stress gradient at sharp features
and small gaps between inclusions then prescribe the overall mesh size. A size
function defining spatially variable element sizes therefore becomes critical.

To take into account local geometrical or physical features in the meshing
procedure, the narrowness between inclusions (nar), the curvature of interfaces
(curv) and the initial interface size (iis) will be used in order to prescribe mesh
refinements where needed, see Figure 6 and Figure 7. To this end, the size func-
tion h(x) is constructed from the neighboring distance functions DNk defined in
Section 2 and readily available if the heterogeneous microstructure was computa-
tionally generated.

The initial interface size (iis) is taken as the maximum element size allowed on
the interfaces to have a sufficiently accurate representation of the geometry of the
RVE. This value is taken constant on all the interfaces.

hiis(x) = iis (12)

The narrowness representing the proximity between two interfaces, is computed
by taking into account the distance to the closest second neighboring inclusion
DN2(x) from interfaces. In an inclusion-based RVE, DN2(x) is always positive
since each inclusion is completely separated from the others in the RVE. To bet-
ter control the element size refinement accross the gap between two inclusions, a
parameter nbEL is defined as the number of elements from the considered source



Conformal discretization of complex inclusion-based microstructures 13

Fig. 6: Left: Size function h(x) - Right: Corresponding optimized 2D mesh taking
into account local features (initial interface size, narrownes, curvature) from h(x)

point to its respective second closest neighboring inclusion. A corresponding ele-
ment size can be derived according to

hnar(x) =
DN2 (x)

nbEL
(13)

In 3D, the maximum principal curvature is used in order to evaluate the small-
est radius of curvature of an interface [39]. Methods based on triangulated surfaces
are available to evaluate curvatures as presented in [43]. However, for implicit ge-
ometries, the curvature can be directly obtained by finite differences from the
implicit function. Computing the curvature from the first neighboring distance of
the whole RVE (global signed distance function) DN1 is subject to the same limi-
tations as extracting properly the inclusion surfaces at once. For accurary reasons,
the curvature computation is performed for each inclusion separately. In practice,
the maximum principal curvature κ1 is computed from the mean and gaussian
curvatures KM and KG. KM is computed according to relationship

KM = −∇ · ∇DN1 (14)

while the gaussian curvature is obtained by

KG = ∇DN1 ∗H∗ (DN1) ∗ ∇DNT
1 (15)

where H∗ is the adjoint of the hessian matrix. This allows computing principal
curvatures

κ1,2 = KM ±
√
K2
M −KG (16)

A curvature controlled element size hcurv(x) is then obtained by equation (17)
where κ is the maximum principal curvatures in absolute value while α is parameter
allowing to adjust the sensitivity to the curvature in the size function.

hcurv(x) =
α

|κ(x)| (17)
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To avoid significant element size variations over short distances in the definition
of the size function that would lead to poor quality elements, the size function h(x)
is required to evolve smoothly by using a gradient limiting size variation [39]:

‖∇h(x)‖ = g (18)

To meet this constraint, minimum initial imposed size values h0 depending on
the three geometrical parameters iis, nar and curv are first computed on source
points xsp by interpolation from DN1(x) and DN2(x).

h0(xsp) = min({hiis(xsp), hnar(xsp), hcurv(xsp)}) (19)

For accuracy, the source points xsp are selected as nodes located on the inter-
faces that are extracted using a contouring algorithm at the precision of the initial
regular grid x.

The values are then propagated smoothly over the spatial coordinates x. In
the case of a bounded convex domain [39], the following equation can be used :

h(x) = min
sp

(h0(xsp) + g |x− xsp|) (20)

where h(x) is the size function evaluated on the regular grid and g is the gradient
limiting factor introduced in equation (18).

Fig. 7: Zoom on frames of Figure 6 : Initial interface size (A), Narrowness (B),
Curvature (C )

Figure 8 illustrates the resulting size function for the inclusion based mi-
crostructure depicted in Figure 4 interpolated on the inclusions surfaces from the
regular grid.

Following the same methodology, extending h(x) to account for other geomet-
rical or physical features can be achieved straightforwardly if required.

4.3 Initial nodes distribution

Several methods are available to distribute nodes inside a domain based on reg-
ularly spaced grids or on probabilistic distributions [30]. Rejection methods [39]
based on probabilistic node distributions as initially proposed by Persson [40]
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Fig. 8: Interpolated size function h(x) on interfaces

may be interesting in view of their efficiency. However, for periodic inclusion-
based RVEs enclosed in a cube (or a parallellepiped), more adapted node distri-
butions can be obtained based on octrees linked to the size function. A periodic
octree [27, 33, 38] distribution is therefore used here. The distribution starts from
the 8 RVE corners and is refined recursively based on the size function h(x) pre-
viously computed. At each recursion, the size function is interpolated at the cube
mid-edges and at its geometrical center. If one of the interpolated values is smaller
than the cube edges, the cube is divided into eight identical cubes. The new ver-
tices are added to the node distribution and the process is repeated on the eight
new smaller cubes. The process continues until all cubes have a satisfactory size
with respect to h(x).

This defines in a simple way a nodes distribution corresponding at best to the
mesh size function h(x), i.e. providing a higher nodes density near the interfaces
and larger elements further from it, as illustrated for a 2D configuration in Figure 9.
In fact, Persson's method is effective when the auxiliary truss bars are close to
their equilibrium positions, i.e. the length of the initial bars from the Delaunay
triangulation undergoing extension or contraction are close to the length defined
by the size function. Otherwise, the resolution of the truss by the forward Euler
method may introduce strong oscillations if the initial length of the bars is far
from the desired length, and therefore it may not converge.

Generally, a consequence is then the poor quality of elements generated near
the interfaces by a constrained Delaunay triangulation. However, thanks to the
distance function, it is possible first to remove nodes too close to the interfaces.
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Fig. 9: Left: 2D size function h(x) - Right: Corresponding 2D quadtree node
distribution

After nodes are moved by the optimization procedure driven by the truss analogy
(see Section 4.7), well shaped elements are obtained.

Using Periodic Octree distributions has some additional practical advantages
making it possible to meet three objectives in the proposed generator:

– Obtaining an initial distribution of nodes between which the interdistance is
close to that requested in the size function,

– Obtaining an initial triangulation with good elements quality due to the strate-
gic positioning of nodes to feed the optimization procedure with a proper initial
guess,

– Enforcing the same spatial node distribution on opposite external boundaries
to allow periodic meshes generation

These objectives allow minimizing the number of operations required in the opti-
mization process since the nodes are not very far from their equilibrium positions.

4.4 Inclusion boundaries meshing

The main meshing steps for the interfaces are illustrated in Figure 10 for the mi-
crostructure presented in Figure 4. In order to satisfy the size parameters given in
input, the level-set grid LS(x) that geometrically describes the RVE is reinterpo-
lated on an initial 3D regular grid of points according to the iis parameter (initial
interface size). This reinterpolation allows an adapted (to iis) individual or set
extraction of the zero isosurfaces defining the inclusions boundaries by the March-
ing Cubes algorithm [31]. Then, these surfaces are selectively refined according to
narrowness and curvatures. This allows conforming the surfaces mesh size to the
size map generated upstream.

In spite of the simplicity, robustness and efficiency of this procedure, the result-
ing surface triangulation is of poor quality leading to poor 3D elements (almost-flat
tetrahedra) [49], as illustrated in Figure 10.2. This initial surface triangulation is
therefore optimized in surface using the truss analogy and used subsequently as
input for the 3D constrained Delaunay triangulation.
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Fig. 10: Inclusions surface meshing main steps : (1) Isosurface extraction via
Marching Cubes algorithm; (2) Boundary constraints; (3) Optimization via truss
analogy, edge flipping, local mesh refinement; (4) Adding to the set of meshed
inclusions

Another issue linked to the use of the marching cube algorithm for the con-
struction of interfaces is the existence of ambiguous cases when the background
regular grid is not refined enough. For inclusion-based RVEs with small gaps be-
tween inclusions, critical issues arise quickly, as very close inclusions tend to merge
spuriously. The refinement of the background regular grid is possible but is a costly
solution as it induces a cubically growing memory consumption for 3D configura-
tions, and does not strongly solve the problem.

A solution is therefore to perform an individual extraction of each of the inclu-
sion surfaces. This is possible if independent signed distance functions are available
or can be built for each inclusion. This allows decreasing memory needs and com-
putation time by using coarser grids for extraction and increase cache efficiency
as memory chunks that are accessed are smaller.

The surface mesh optimization is analogous to a 2D problem constrained to the
interfaces of inclusions. During the optimization process, the extracted triangula-
tion is subjected to normal constraints making the movement possible only along
the surfaces (see Figure 3). This is achieved using the distance function from which
the interface is extracted. Based on the distance to the surface and computing its
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normal at each iteration, nodes moving away from the surface are pushed back to
the surface, thereby allowing only tangential movements by means of Equation 10.

The low quality initial triangulation obtained from the marching cube extrac-
tion involves a significant variation in size of the elements edges. The triangulated
surface mesh of inclusions boundaries (material interfaces) is therefore further
simultaneously improved by three different processes consisting of local mesh re-
finement, local connectivity update and node relocation by truss analogy.

Local mesh refinement is applied according to the size function h(x). Wherever
necessary with respect to h(x), triangles are divided into four triangles keeping
the same aspect ratio as shown in Figure 11 to avoid increasing the distortion of
newly created triangles. Particular attention is paid to the edges intersecting the
RVE boundaries to keep a periodic mesh upon refinement.

Fig. 11: Local mesh refinement : Regular division of a triangular element as a
function of h(x)

Starting with bars of very different lengths from the ones desired according
to the size function h(x) in the auxiliary truss computation leads to large dis-
placements. Therefore, it is possible to improve the topology by modifying the
local connectivity via edge flipping. Considering two adjacent triangles, the edge
connectivity is flipped in order to increase their quality and leave the rest of the
triangulation unaffected (see Figure 12). It speeds up the optimization process sig-
nificantly as it acts locally. External RVE boundary edges are however not affected
to preserve periodicity.

Fig. 12: Local triangular element update : Edge Flip

Node relocation allows displacing nodes by imposing internal forces in the bars
based on the truss analogy [40]. This method works very well when the initial
length of bars is close to the length targeted by the size function. If the initial
triangulation starts far from the truss equilibrium state and involves topology
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changes, movement instabilities can occur leading to self-intersections. When the
implicit geometry of an inclusion described by a distance field is extracted into an
explicit one using the Marching Cube algorithm to produce a facetted description
of the surface of an inclusion, the initial mesh contains not only elements of poor
quality (see Figure 13(a)), but also highly variable element sizes that can induce
significant movement during the optimization process. It is clear that the artificial
time parameter used in the resolution of the truss by the forward Euler method
is important and should not be too high to avoid oscillations. On the other hand,
it is possible to find areas where the elements are much too large. This can be
attenuated by selective refinement illustrated in Figure 13(b). They can also be
too small according to the desired size. To avoid these self-intersections, or at least
to reduce them drastically, a coefficient α is introduced to control the weight of
the desired length (l0) in the internal force field.

f(l, l0) = k (α l0 − l) (21)

This force field acts similarly to a Laplacian smoothing function [8] if α l0 is
taken close to zero in the first iterations unlike in [40] where a purely repulsive
force field is used. It induces mainly attractive forces in the bars according to (21).
The forces applied in the bars are proportional to their own current length, in-
ducing tension in small bars and compression in longer bars in such a way that
displacement variations are smoothen out. Combined with the flip edge, this will
induce contraction in the long bars and extension in the small bars, thus reducing
the potential risks of self-intersection while increasing the quality of the elements.
Even if not entirely robust, the progressive increase of the targeted length result in
an increase of the initial element shape quality without inducing self-intersections.

Progressively, as the α parameter is exponentially increased towards 1, the
effective targeted length l0 takes a larger influence in the expression of the force
fields. The choice of the exponential function according to iterations is an arbitrary
choice motivated by the fact that the first movement variations must be the least
influenced by the desired length given by the size map until the bars reach a
length close to the one defined in the size function to avoid strong movements.
The force field thus evolves smoothly from a purely attractive field based only
on the current length of the bars to an attractive/repulsive one based on the size
function h(x) until reaching equilibrium. Figure 13 shows on one side (c) the result
of the optimization without using the α parameter and on the other side (d) with
using the α parameter for the same time step (∆t = 0.1). Of course, decreasing
the time step will also reduce the self-intersections shown in Figure 13(c) at the
expense of computation time.

To enforce periodicity, there is a need to know which nodes are linked to
each other on the opposite faces. Note that the isosurface extraction of periodic
RVEs gives a periodic node distribution on opposite faces. Then, surface contours
and nodes on the RVE external boundary faces are extracted from the initial
surface triangulation as illustrated in Figure 14. These nodes are reordered for
each inclusion in order to easily find them together with their corresponding ones
on opposite faces. This step aims at providing the necessary information for node
movement coordination of periodic nodes to enforce periodicity at each iteration
of the optimization, and for using it as a starting point to mesh the external
boundaries in the next step (cf. Section 4.5).
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(a) (b)

(c) (d)

Fig. 13: (a) Extracted inclusion with Marching Cubes algorithm, (b) Selective re-
finement of inclusion according to size function, (c) Optimization process with α
parameter equals to 1 with yellow circles showing self-intersections, (d) Optimiza-
tion process with a smooth increase of parameter α from 0 to 1. Yellow circles
showing clean meshes compared to (c).

In the truss analogy process, forces are applied to move nodes. To ensure that
RVE boundary nodes remain on the external faces, the displacement normal to the
direction of the face is prevented. Due to the interactions with adjacent nodes, the
forces applied on a node and its periodic equivalent are not necessarily the same.
The movement coordination ensuring periodicity is enforced by applying identical
forces on both nodes of opposite faces as the average of forces determined on them
separately.

Particular attention is paid on nodes located on the corners and edges of the
RVE for which the displacements are constrained respectively in 3 and 2 directions.

At the end of the inclusions surface optimization process, the nodes and trian-
gular facets are fixed on the interfaces and are not modified during the rest of the
meshing procedure.



Conformal discretization of complex inclusion-based microstructures 21

Fig. 14: External boundary edge nodes extraction and movement coordination to
ensure periodicity

4.5 RVE Boundaries meshing

Three non opposite faces from the parallelepipedic RVE faces are extracted, meshed
and optimized by the truss analogy process.

The three master boundary faces A, B and C are defined respectively in planes
x = 0, y = 0, z = 0. External boundary edges and nodes are extracted from the
optimized surface mesh with octree nodes lying at the external boundaries of the
RVE. The problem is simplified by transforming the 3D boundary nodes on the
three planes to deal with 2D problems as illustrated in Figure 15.

Then, the extracted surface contours (intersections of inclusions with the RVE
face) and nodes are constrained together with corner nodes to generate an initial
triangulation using a 2D constrained Delaunay triangulation (see Figure 16). The
optimization of this triangulation includes in this case two steps. Iteratively, the
Persson-Strang truss analogy is applied in the three planes (x = 0, y = 0, z = 0)
separately to optimize the surface meshing of the boundary faces until the mean
quality starts stagnating. Then, a retriangulation of the face is performed to update
the topology in order to reach a targeted element quality (see Figure 16).

Finally, as illustrated in Figure 17, the opposite slave RVE boundary faces
are created by copying the master boundary faces and translating them to their
position. The end of this sub-process merges the 6 RVE boundary faces with the
internal inclusions surfaces meshes. The merged surfaces (internal and external)
constitute the constrained facets to ensure the internal mesh conformity and the
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Fig. 15: 2D simplification - External boundary faces meshing : Extraction of ex-
ternal boundary surface edges and nodes and octree nodes lying to the considered
face

Fig. 16: 2D simplification : Left Initial constrained delaunay triangulation - Right
Optimized external boundary face mesh using Persson-Strang truss analogy [40]
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periodicity of the mesh, by providing a closed surface mesh to the constrained
Delaunay tetrahedralization (CDT) in the next step of volume meshing.

Fig. 17: 3D periodicity : (1) 2D meshing of non-opposite master faces in plan
(x = 0,y = 0,z = 0, (2) Copy and translation of the slave faces, denoted with
* to their corresponding positions, (3) Addition of the internal inclusion surfaces
meshes, (4) Merge of the external boundary faces with the internal inclusions
surfaces meshes and removing duplicated nodes

4.6 Volume Meshing

The final step in the meshing process consists in the generation of the volume mesh.
Optimized boundary faces and internal surface meshes are used as input to the
constrained Delaunay tetrahedralization while the background grid on which the
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CDT is performed originates from the octree nodes distribution. The CDT module
of the well-known and robust mesh generator TetGen [51] is used for this purpose.
Due to the complexity of the geometries and the imposed constraints (conformity
and periodicity), the resulting mesh contains low quality elements, especially close
to the interfaces. The truss analogy process is therefore used in order to increase the
volume elements quality. As mentioned in the previous section, this optimization
includes several steps. In addition to the force equilibrium smoothing function and
the retriangulations already explained, a specific treatment to get rid from very
specific bad shaped elements, also called slivers or flat tetrahedra [30] is performed,
as outlined in the next section.

4.7 Extended Persson-Strang truss analogy

To ensure better stability on the node displacements during the mesh optimization
and to get rid from slivers which may cause finite element computation to fail [11,
39], the original truss analogy methodology is modified with an adapted ball-
vertex spring method [3, 29]. This is achieved by introducing additional (linear)
springs on bad-shaped elements (with quality lower than a certain threshold) as
illustrated in Figure 18. The role of these additional springs is to resist the motion
of a node towards its opposite faces. In a given tetrahedron, node a is selected
as the node located closest to its opposite triangular face and is computed as the
normal projection e of the node a on the face bcd. The method is then combined
with the size function to apply repulsive forces on a in the normal direction to
get it far enough from bcd. A consequence is a drastic reduction of bad-shaped
elements and avoidance of nodes crossing triangles during the smoothing process.

Fig. 18: Left: Tetrahedron collapse mechanism with the edge spring method gen-
erating slivers - Right: Ball-vertex spring method by connecting the closest point
a with its opposite triangular face bcd to ensure stability and get rid from slivers.
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Also, faster convergence can be obtained by combining attractive and repulsive
force fields [20, 23]. Globally, the principle remains the same as in [40] except the
expression of the force field in the bars fbars used. While the initial algorithm used
exclusively repulsive forces to push nodes accross the interfaces, in this heteroge-
neous case, extracted nodes already lie on the triangulated internal surfaces from
the beginning of the 3D constrained meshing process making the optimization
process more stable.

4.8 Summary

The mesh generation times and the parameters on which the subprocesses depend
are summarized in Table 1. An initial fine mesh is used for the explanation of
the process (Mesh fine : #366536 nodes,#2178896 elements). A coarser one is
also illustrated in Figure 19 (Mesh coarse : #50839 nodes, #305892 elements). In
addition, this Figure shows the effect of iis, respectively 0.05 and 0.03 for coarse
and fine mesh for a cube box of length 1, on the final mesh. The computing times
mentioned here are obtained for mesh generations done on a ThinkPad P50 i7
6700HQ, 32 GB RAM coded in MATLAB.

Fig. 19: Left - Cut view of coarser Mesh 1 (#50839 nodes, #305892 elements),
Right : Cut view of finer Mesh 2 (#366536 nodes,#2178896 elements)

Considering that the generator was coded in an interpreted language, the evo-
lution of the computation times should be analysed as a function of the mesh
refinement and among the process relative to each other, rather than according
to their absolute value. It would be easy to obtain much lower computation time
by recoding the critical routines a compiled language. In addition, the surfaces
are meshed and optimized one by one or set by set, which leaves the door open
for easy parallelization of the process and therefore significant time savings. The
routines have been designed to be vectorized and therefore optimized even if it is
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Mesh coarse Mesh fine
Step Time (s) Time (s) Parameters

Size function 13.71 31.77

Initial interface size
Narrowness
Curvature
Gradient limiting factor

Surface Meshing 17.25 53.07

# Inclusions
Marching Cube extraction at initial interface size
Selective refinement (due to narrowness and curvature)
Self-intersections check
Periodicity constraints
Optimization process

Octree node distribution 1.26 6.19
Size function (iis,curv,nar)
Density parameter

Boundaries meshing 5.89 16.06
#Extracted boundary surface constrained edges
# Boundary nodes
Optimization process

Volume meshing 47.56 266.52
# Constrained facets
# Nodes
Optimization process

Total 85.67 373.61

Table 1: The mesh generation times and the parameters on which the subprocesses
depend. The computing times mentioned here are obtained for mesh generations
done on a ThinkPad P50 i7 6700HQ, 32 GB RAM coded in MATLAB. Considering
that the generator was coded in an interpreted language, the evolution of the
computation times should be analysed as a function of the mesh refinement and
among the process relative to each other, rather than according to their absolute
value.

an interpreted language. However, optimization processes require looping on the
elements leading to higher computation times.

5 Applications

In order to study more realistically the influence of small scale heterogeneities
on the macroscopic behavior of heterogeneous materials, complex microstructural
geometries have to be obtained.

Some of these RVEs are discretized in this section in order to show the capa-
bilities of the new mesh generator. Three types of RVEs are shown for illustration,
(i) inclusion-based media [55], (ii) woven composite [57, 62], and (iii) random ge-
ometry obtained with excursion sets of random fields.

The first example is an RVE generated by DN-RSA developed by [55]. This
tool is based on a distance-controlled random sequential addition algorithm. It has
the capability to generate inclusion-based microstructures with large size distri-
butions and arbitrary shapes with precise control on neighboring distances. This
example illustrates a periodic inclusion-based material composed by 222 inclu-
sions of various shapes and sizes with an inclusion volume fraction of 50,87%. The
size distribution of inclusions varies between 0.05 and 0.35 for a cubic RVE of
size 1. The resulting mesh shows a high quality distribution of elements with less
than 1.5% of elements with quality lower than 30% (cf. Equation (4)). No slivers
affecting FEM simulations are found.

The second example is an RVE of a complex periodic three dimensional tex-
tile reinforced composite RVE with very small gaps between yarns as illustrated
in Figure 22. By using level set functions, the generation tool has the ability to
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Fig. 20: Examples of different types of RVEs generated by [55, 56, 57] : inclusion-
based microstructure (left) and a woven composite (right)

control the gap thickness and to remove automatically any residual interpenetra-
tion, while controlling the volume fraction of each familily of yarns in the RVE,
that traditionnally other methods fail. More details about the generation of the
geometry for this application can be found in [57] and [62].

The meshing methodology developed here can be naturally extended to dis-
cretize geometries obtained from RVEs generated by other techniques or from
image-based CT scans [6]. Recently, RVE generation methods based on excur-
sion sets of correlated Random Fields (RFs) with morphological control were de-
veloped in [42], producing complex randomly shaped heterogeneous material at
different scales. These excursion sets, or thresholding of an RF, can be statisti-
cally controlled both geometrically (volume and surface area) and topologically
(Euler characteristic) by linking analytically these to the statistical parameters of
an RF, see [1] for more details. This tool leads to the generation of geometries
such as matrix/inclusion morphologies or porous materials, involving opened or
closed porosity as well as representing grain or pore size distributions. Figure 23
illustrates a conforming mesh of a RVE generated by excursion sets of Random
Fields.

6 Discussion

The examples shown in the Applications section show the generator’s ability of
the generator to mesh complex geometries of very different shapes. The use of
distance fields provides the necessary information to refine the areas of interest to
take into account the geometrical complexity associated to rather high curvatures
or narrow matrix zones between neighbouring inclusions. However, inaccuracies
may appear in the evaluation of the orientation of the normal to interfaces and
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Fig. 21: Final periodic and conform mesh of the RVE (#Nodes=1 236 685/#El-
ements=7 501 711) : (1) Global view of the optimized mesh for both phases (in-
clusions/matrix), (2) Cut view of the inclusion-based RVE, (3) Inclusions meshes
only, (4) Quality distribution - Mean quality : 81.36%

therefore on the nodal reaction forces on the inclusions surfaces. This may lead
to self-intersections in the resulting mesh. It is a known issue addressed already
by several contributions, see [2, 30]. For this case, these irregularities comes from
the grid resolution of the input geometry compared with its curvature. In fact,
refining locally the mesh would not solve the problem as the gradient quality can
not be better than the initial grid resolution. A solution is to smoothen locally
the level set function if the problem appears loosing in return locally some of the
details. Another solution is to implement a predictor-corrector process to stabilize
the forward euler resolution scheme.

In relative terms, with the procedure implemented here, the presence of self-
intersections in particularly complex shapes is lower than 0.01 % of the total
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Fig. 22: Final periodic and conform mesh of the RVE (#Nodes=119 096/#El-
ements=729 350) - Left : Global view of the optimized mesh for both phases
(inclusions/matrix) - Right Cut view of the woven composite RVE

number of surface elements. A simple solution proposed here is to remove them
from the surface triangulation, which results in the opening of surfaces initially
closed. When the volumic CDT is applied, some parts of the surface are therefore
not constrained anymore. During, the optimization process moving the nodes to
reach the targeted length size defined by h(x), it is possible to satisfy the empty
circumsphere criterion of a Delaunay triangulation and to preserve the conformity
of the very small missing part by avoiding crossing elements even if CDT is not
applied there.

As presented in Section 4.4, the constraint of using global level-sets functions
is that they do not preserve the sharp features when an explicit facetted geometry
is extracted by a Marching cubes algorithm [31]. In the context of this article, the
case of sharp edges has therefore not been addressed because it requires a dedicated
development. An implicit geometrical description that preserves sharp edges, as
present for instance in open cell metallic foams, was proposed in [56]. It is based
on the slicing of distance fields or level sets by ad hoc functions to describe sharp
edges. The mesh generator proposed here could perfectly be extended to account
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Fig. 23: Final conform mesh of the RVE based on excursion sets with a cube of
size a = 1, σ2 = 1, lc = 0.04 (#Nodes=2 398 675/#Elements=14 601 647). The
threshold is taken at 0.45 leading to a porosity of 33%. : Left : Matrix - Right
Matrix/Inclusions

for such features. It would consist in resorting to the methodology proposed in [56]
to extract the sharp edges.

Also, the use of an improved marching cubes for the extraction of isosurfaces
from scattered datas or an octree-based dual contouring method [63, 64] could be
used in future developments to produce a better initial adapted surface triangu-
lation allowing a faster convergence of the optimization and potentially allowing
preventing non-manifold triangulations.

The subsequent attribution of elements to proper material phases is done
thanks to TetGen in most general cases. For inclusions with removed self-intersections,
the detection of closed surfaces is no longer possible. For these particular inclu-
sions, the attribution of elements to the material phases is done by interpolating
the level set function value at the centroid of the tetrahedra.

As seen in Section 5, due to the complexity of the shapes, a few bad-shaped
tetrahedra may still be present after the optimization process. Those elements are
mainly located in areas with strong curvatures (requiring greater refinement) as
well as at the neighborhood of the intersection between the external boundary
faces of the RVE and surfaces of the inclusions. For the latter, the boundaries may
exhibit sharp edges that give rise to very flat elements. Taking into account the
proximity to the boundary faces through selective refinement without breaking
the periodicity of the mesh would drastically reduce the number of poor quality
elements. The example of inclusion based medium shows that less than 1.5% of
elements have a quality lower than 30%. Even if the ratio of bad-shaped elements
remains very low, this issue could become critical in simulations involving finite
deformations or strong anisotropy. A solution of tetrahedral mesh improvement
method presented by [22] that uses a broader set of operations such as topological
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transformation could be a good option for further improvements to get rid from
these few low quality elements.

7 Conclusion

The present contribution presents a new conforming mesh generation methodology
for 2D and 3D periodic (or not) complex heterogeneous RVEs. The implementation
is adapted and optimized for the RVEs generatorion tools developed by [55] in
order to propose an integrated approach. However, a natural extension can be
built for general implicit geometries obtained from other geometry generation or
from experimental techniques such as CT scans.

The newly developed approach is an iterative Delaunay mesh generator based
on an extended Persson-Strang truss analogy optimization process. Such an ap-
proach, based on signed distance fields, carries the advantage that the level set
information used during the generation of the geometry of the microstructure
by [55] can seamlessly be used in the subsequent discretization procedure.

The meshing process is hierarchical and aims at generating a triangulation,
optimizing and constraining progressively interfaces, boundary faces and the vol-
ume. It offers a specific control on the inherent specificities of each part and leads
to the generation of high quality FEM meshes.

On the internal surfaces, nodes are preventing from moving outside by system-
atically constraining their normal movement acting like boundary reactions while
tension/compression forces act in the bars to reach the desired lengths defined by
the size function. The latter allows optimizing the node distribution as a function
of geometrical features such as curvature, nearness and narrowness. The distor-
sion of the elements is reduced by using a gradient limiting factor to better control
the growing elements size. Periodicity is ensured by meshing independently non
opposite master RVE faces before copying, translating and merging them to form
the periodic enclosing box while conformity is ensured by using the Constrained
Delaunay Tetrahedralization.
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