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Abstract. The properties of the crust of a neutron star can be significantly altered by the presence of a high magnetic field. The
effects of Rabi quantization of electron motion on the equation of state and on the composition of the crust are studied. Both the
outer and inner regions are described in a unified and consistent way by extending the neutron-star crust models developed by the
Brussels-Montreal collaboration. The first numerical results obtained for different magnetic field strengths are presented.

INTRODUCTION

Formed from the catastrophic gravitational-core collapse of massive stars during supernova explosions, neutron stars
can be endowed with extremely high magnetic fields [1]. In particular, surface magnetic fields up to a few times 1015 G
have been measured in soft-gamma ray repeaters (SGRs) and anomalous x-ray pulsars (AXPs) [2, 3, 4]. Astrophysical
observations provide evidence for the existence of even higher magnetic fields in the interior of these stars [5, 6, 7, 8].
Numerical simulations have confirmed that the internal magnetic field could reach ∼ 1018 G [9, 10].

We have previously shown that the composition and the equation of state of the outer crust of a neutron star can
be drastically modified by such high magnetic fields due to Rabi quantization of electron motion [11, 12, 13, 14]. In
this paper, we present new results using updated experimental atomic mass data. We also extend our investigations of
highly-magnetised matter to the inner crust, where neutron-proton clusters coexist with free neutrons.

EFFECTS OF THE MAGNETIC FIELD ON MAGNETAR CRUST PROPERTIES

Outer crust
We determine the properties of the outer crust of a magnetar using a model that we have previously presented in detail
in Ref. [11]. This model assumes that atoms, arranged in a perfect body-centered cubic lattice, are fully ionized by the
pressure, and are embedded in an homogeneous electron gas at zero temperature. It is well-known that the electron
motion perpendicular to the magnetic field is quantized into Landau orbitals. If the magnetic field strength exceeds
the characteristic value

Brel =
m2

ec3

e~
' 4.41 × 1013 G , (1)

as encountered in SGRs and AXPs, the electron motion becomes relativistic. The energy levels of a relativistic electron
gas in a magnetic field were first calculated by Rabi [15]. Expressions for the electron pressure and energy density



can be found in Ref. [11]. The equilibrium properties of any crustal layer at pressure P and magnetic field strength
B? ≡ B/Brel are determined by minimizing the Gibbs free energy per nucleon g (see, e.g., Appendix of Ref. [16]).
We consider only pure layers, i.e. layers containing only one single species of nuclei (A, Z) with mass number A and
charge number Z.

TABLE 1. Sequence of equi-
librium nuclides with increasing
depth in the outer crust of a
magnetar with a magnetic field
strength B? = 2000 using two dif-
ferents version of the the Atomic
Mass Evaluation (AME) supple-
mented with the HFB-24 theo-
retical mass table. Nuclides with
experimentally measured masses
are indicated in boldface.

2012 AME 2016 AME
56Fe 56Fe
62Ni 62Ni
88Sr 88Sr
86Kr 86Kr
84Se 84Se
82Ge 82Ge
132Sn 132Sn
80Zn 80Zn
130Cd −
128Pd 128Pd
126Ru 126Ru
124Mo 124Mo
122Zr 122Zr
121Y −

− 124Zr
120Sr 120Sr
122Sr 122Sr
124Sr 124Sr

We have determined the properties of the outer crust of strongly magnetized neutron stars with B? = 2000 making
use of the experimental atomic mass data from the 2016 Atomic Mass Evaluation (AME) [17, 18] supplemented by
recent mass measurements of copper isotopes [19]. For the masses that have not been measured, we have implemented
the theoretical nuclear mass table HFB-24 from the BRUSLIB database1. These masses were obtained from self-
consistent deformed Hartree-Fock-Bogoliubov calculations using the generalized Skyrme functional BSk24 [20]. This
microscopic model was fitted to the 2353 measured masses of nuclei with N and Z ≥ 8 from the 2012 AME [21], with
a root-mean-square deviation of 0.549 MeV. This model provides an equally good fit to the 2408 measured masses of
nuclei with N and Z ≥ 8 from the 2016 AME. In Table 1, we compare these new results against those we obtained
with the 2012 AME data [21] and which were published in Ref. [12]. We now find that 130Cd is no longer present in
the crust, and 121Y is replaced by 124Zr.

Inner crust
At high enough pressure, neutrons drip out of the nuclei 124Sr marking the transition to the inner crust. Because free
neutrons are in equilibrium with those bound in nuclei, the inner crust matter should be treated consistently. We have
implemented the effects of Rabi quantization in the computer code developed by the Brussels-Montreal collabora-
tion [22, 23]. This code is based on the fourth-order extended Thomas-Fermi method with proton shell corrections

1http://www.astro.ulb.ac.be/bruslib/



added perturbatively using the Strutinsky integral theorem. This ETFSI method is a computationally very fast ap-
proximation to the fully self-consistent Hartree-Fock plus Bardeen-Cooper-Schrieffer equations. Nuclear clusters are
supposed to be unaffected by the presence of the magnetic field, and are further assumed to be spherical. The Coulomb
lattice is described following the approach of Wigner and Seitz. Nucleon density distributions in the Wigner-Seitz cell
are parameterised as

nq(r) = nB,q + nΛ,q

1 + exp

(Cq − Rc

r − Rc

)2

− 1

 exp
(

r −Cq

aq

)
−1

(2)

where q = n, p for neutrons or protons respectively, while nB,q, nΛ,q, Cq, aq, and Rc are geometrical parameters of
the Wigner-Seitz cell. The equation of state of nuclear clusters and free neutrons is calculated from the same nuclear
energy density functional BSk24 [20], as that underlying the nuclear mass model HFB-24 used in the outer crust. This
functional was not only fitted to nuclear masses but was also constrained to reproduce the microscopic neutron-matter
equation of state labelled ‘V18’ in [24], as obtained from the Brueckner Hartree-Fock approach using realistic two-
and three-body forces. We thus believe that this functional is well suited for describing the neutron-rich matter of the
inner crust of a neutron star. The analytical approximations implemented in the routines developed by Potekhin and
Chabrier [25] were adopted to calculate the equation of state of the cold magnetized electron gas.

TABLE 2. Comparison between the outer- and inner-crust codes at the neutron-
drip point; results for the latter code are indicated in parentheses. B? is the mag-
netic field strength, n̄drip and Pdrip are mean baryon number density and the pres-
sure at the neutron drip-point respectively, Z and N are the proton and neutron
numbers of the equilibrium nucleus.

B? n̄drip [fm−3] Z N Pdrip [MeV fm−3]
1 2.56×10−4 38 (40) 86 (94) 5.14×10−4 (4.96×10−4)

10 2.56×10−4 38 (40) 86 (94) 5.13×10−4 (4.96×10−4)
100 2.57×10−4 38 (40) 86 (94) 5.14×10−4 (4.96×10−4)

1000 2.91×10−4 38 (41) 86 (96) 6.87×10−4 (6.64×10−4)

TABLE 3. Inner crust properties at different mean baryon number densities n̄, as obtained with the
two versions of our inner crust code: the one for ordinary neutron stars and the other for magnetars
(in parenthesis). For comparison, the magnetar code was run with the small magnetic field value
B? = 1. Z is the charge number of clusters, P is the pressure, and e is the energy per nucleon.

n̄ [fm−3] Z P [MeV fm−3] e [MeV]
3.038×10−4 40 (40) 5.467×10−4 (5.472×10−4) -1.5240×100 (-1.5239×100)
5.474×10−4 40 (40) 7.477×10−4 (7.495×10−4) -6.5492×10−1 (-6.5489×10−1)
1.777×10−3 40 (40) 2.154×10−3 (2.152×10−3) 7.2042×10−1 (7.2038×10−1)
5.772×10−3 40 (40) 9.605×10−3 (9.603×10−3) 2.3285×100 (2.3285×100)
1.874×10−2 40 (40) 4.340×10−2 (4.340×10−2) 4.6393×100 (4.6394×100)
6.087×10−2 40 (40) 1.778×10−1 (1.777×10−1) 7.6005×100 (7.6005×100)

Minimizing the Gibbs free energy per nucleon at fixed pressure is numerically more delicate in the inner crust
than in the outer crust because the pressure also depends on the density of free neutrons. Instead, it is more convenient
to minimize the energy per nucleon at fixed average baryon number density [22]. We have checked that the neutron-
drip composition and the equation of state obtained for various magnetic-field strengths are compatible with those
obtained using our outer crust code [13]. Some results are summarized in Table 2. As discussed in Ref. [22], we do
not expect a perfect matching between the two codes since the outer and inner regions of the crust are described using
different approximations. To further test our code, we have computed the properties of different crustal layers in the
limit of a low magnetic field by setting B? = 1. As shown in Table 3, the results for weakly magnetized neutron stars
are in very good agreement with those obtained with the code for strictly unmagnetized neutron stars (some results
were previously published in Ref. [26]). The small deviations could be attributed to the interpolations implemented in
the routines of Ref. [25]. Determining the equilibrium state in the weakly quantizing regime can be numerically tricky
due to the occurrence of quantum oscillations (see, e.g., Ref. [14]).



The equation of state of the outer and inner regions of the crust is plotted in Figure 1 for different magnetic field
strengths. As previously found in Ref. [11], the effects of the magnetic field are most prominent in the outermost
region of the crust, and become less and less important with increasing density as more and more Rabi Levels are
filled by electrons. In particular, the equation of state of the inner crust is barely changed for B? . 1000 and almost
exactly matches that obtained in the absence of magnetic fields.
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FIGURE 1. The pressure P as a function of the mean baryon number density n̄ at different magnetic field strengths B∗ for the outer
(in gray) and inner (in black) crust.

CONCLUSIONS

We have studied the role of Rabi quantization of electron motion on the equilibrium properties of magnetar crusts,
treating consistently both the outer and inner regions in the framework of the nuclear-energy density functional theory.
For the outer crust, we have made use of experimental data from the 2016 AME and recent measurements of copper
isotopes, supplemented with the HFB-24 atomic mass table. Compared to our previous calculations, the layers made
of 130Cd and 121Y have disappeared whereas a new layer made of 124Zr is now predicted to be present. For the inner
crust, we have extended the ETFSI code developed by the Brussels-Montreal collaboration so as to account for the
quantization of the relativistic electron gas. The presence of a high magnetic field leads to a very stiff equation of state
at low densities, however the equation of state of the inner crust is only weakly altered if the magnetic field lies below
a few times 1016 G.

ACKNOWLEDGMENTS

This work was financially supported by Fonds de la Recherche Scientifique - FNRS (Belgium), NSERC (Canada), and
the Bulgarian Academy of Sciences through the program for support of young scientists under contract No. DFNP-
17-167/03.08.2017. The work of Z.S. was also supported by a Short Term Scientific Mission (STSM) grant from the
European Cooperation in Science and Technology (COST) Action CA 16214 PHAROS. The authors would also like
to thank PlePer.com initiative for aspiring scientists.



REFERENCES

[1] P. Haensel, A. Y. Potekhin, and D. G. Yakovlev, Neutron Stars 1: Equation of state and structure (Springer-
Verlag, New York, 2007).

[2] S. A. Olausen and V. M. Kaspi, Astrophys. J. Suppl. Ser. 212, p. 6 (2014).
[3] A. Tiengo, P. Esposito, S. Mereghetti, et al., Nature 500, 312–314 (2013).
[4] H. An, V. M. Kaspi1, A. M. Beloborodov, et al., Astrophys. J. 790, p. 60 (2014).
[5] L. Stella, S. DallOsso, and G. L. Israel, Astrophys. J. 634, p. L165 (2005).
[6] A. D. Kaminker, D. G. Yakovlev, A. Y. Potekhin, N. Shibazaki, P. S. Shternin, and O. Y. Gnedin, Astrophys.

Sp. Sci. 308, p. 423 (2007).
[7] N. Rea, P. Esposito, R. Turolla, et al., Science 330, p. 944 (2010).
[8] K. Makishima, T. Enoto, J. S. Hiraga, T. Nakano, K. Nakazawa, S. Sakurai, M. Sasano, and H. Murakami,

Physical Review Letters 112, p. 171102 (2014).
[9] A. G. Pili, N. Bucciantini, and L. D. Zanna, Mon. Not. R. Astron. Soc. 439, p. 3541 (2014).

[10] D. Chatterjee, T. Elghozi, J. Novak, and M. Oertel, Mon. Rot. R. Astron. Soc. 447, p. 3785 (2015).
[11] N. Chamel, R. L. Pavlov, L. M. Mihailov, C. J. Velchev, Z. K. Stoyanov, Y. D. Mutafchieva, M. D. Ivanovich,

J. M. Pearson, and S. Goriely, Phys. Rev. C 86, p. 055804 (2012).
[12] N. Chamel, R. L. Pavlov, L. M. Mihailov, C. J. Velchev, Z. K. Stoyanov, Y. D. Mutafchieva, and M. D.

Ivanovich, Bulg. J. Phys. 40, 275–280 (2013).
[13] N. Chamel, Z. K. Stoyanov, L. M. Mihailov, Y. D. Mutafchieva, R. L. Pavlov, and C. J. Velchev, Phys. Rev.

C 91, p. 065801 (2015).
[14] N. Chamel, Y. D. Mutafchieva, Z. K. Stoyanov, L. M. Mihailov, and R. L. Pavlov, “Landau quantisation of

electron motion in the crust of highly magnetised neutron stars,” in Quantum Systems in Physics and Chem-
istry and and Biology, Progress in Theoretical Chemistry and Physics 30, edited by A. Tadjer, R. Pavlov,
J. Maruani, E. Brndas, and G. Delgado-Barrio (Springer, 2017), pp. 181–191.

[15] I. I. Rabi, Zeitschrift fur Physik 49, 507–511 (1928).
[16] N. Chamel and A. F. Fantina, Phys. Rev. D 92, p. 023008 (2015).
[17] W. J. Huang, G. Audi, M. Wang, F. G. Kondev, S. Naimi, and X. Xu, Chin. Phys. C 41, p. 030002 (2017).
[18] M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, Chin. Phys. C 41, p. 030003 (2017).
[19] A. Welker, A. Althubiti, D. Atanasov, K. Blaum, et al., Phys. Rev. Lett. 119, p. 192502 (2017).
[20] S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 88, p. 024308 (2013).
[21] G. Audi, M. Wang, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer, Chin. Phys. C 36,

p. 002 (2012).
[22] J. M. Pearson, N. Chamel, S. Goriely, and C. Ducoin, Phys. Rev. C 85, p. 065803 (2012).
[23] J. M. Pearson, N. Chamel, A. Pastore, and S. Goriely, Phys. Rev. C 91, p. 018801 (2015).
[24] Z. H. Li and H.-J. Schulze, Phys. Rev. C 78, p. 028801 (2008).
[25] A. Y. Potekhin and G. Chabrier, Astron. Astrophys. 550, p. A43 (2013).
[26] J. M. Pearson, N. Chamel, A. F. Fantina, and S. Goriely, Eur. Phys. J. A 50, p. 43 (2014).


