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Liran Lerman and Olivier Markowitch

Abstract—Side-channel adversaries represent real-world
threats against (certified and uncertified) cryptographic devices.
Masking schemes represent prevailing countermeasures to
reduce the success probabilities of side-channel attacks.
However, masking schemes increase the implementation cost
in term of power consumption, clock cycles, and random
number generation. Investigation of tools evaluating the
degree of resilience of cryptographic devices using masking
(against side-channel attacks) represents an important aspect
in certification procedures (e.g., Common Criteria, FIPS 140-2
and EMVco). Several side-channel evaluation techniques exist
such as template attacks and machine learning based attacks.
In this paper, we formalise results obtained in side-channel
attacks community when targeting masked implementations.
We report theoretical as well as practical results of parametric
and non-parametric side-channel attacks on masking schemes.
The theoretical part reports results based on a simulation of the
execution of software devices while the practical part focuses
on actual leakages measured during the execution of a software
implementation in three different contexts (that contain different
levels of noise).

Index Terms—Side-channel analysis, Masking, Template at-
tacks, Kernel density, Random forests.

I. INTRODUCTION

Side-channel attacks exploit unintentional leakages mea-
sured on cryptographic devices in order to recover sensi-
tive information such as the secret key. In order to protect
the implementations against physical attacks (and to prevent
information leakage), the designers employ (among others)
masking techniques that split each sensitive information (that
depends on the secret key) in d uniformly distributed variables
(called shares). The masking schemes leak no information on
the sensitive variables whenever the adversaries exploit points
in the leakages associated to strictly less than d different
shares in order to recover the sensitive information. As a
result, the masking schemes force the adversaries to target
all the shares at the same time, which leads theoretically to
an increase of the number of required leakages (during the
attack step) exponentially in the number of shares [14] when
the amount of noise in the leakages is sufficiently high [29].
In a practical point of view, the security level provided by
sound masked implementations can lead to unsecure execu-
tions due to several practical phenomena such as low physical
noise levels [29], transition-based leakages [9] and couplings
between the shares [2]. Several approaches exist in order to
evaluate the degree of resilience of implementations against
side-channel adversaries such as formal security proofs (e.g.,
the probing model of Ishai et al. [14]), leakage detection tests
(e.g., Cryptography Research’s non-specific fixed vs. random
T-test [8], [12]) and (actual) physical attacks (e.g., the profiled
attacks [7]). We opt for the last security evaluation approach
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in order to take into account all the defaults that impact the
degree of resilience of cryptographic devices. It is worth to
note that evaluators can also analyse abstract implementations
with actual physical attacks.

The Bayes classifier represents the optimal attack that ex-
ploits all the information available on the key in the leakages.
In practice, evaluators of cryptographic devices never exploit
such approach due to the lack of time and leakages in order
to build the method as well as the lack of knowledge on the
phenomenon generating the leakages. In this paper, we pro-
mote efficient approaches exploiting (i) a smaller running time
and (ii) less knowledge on the target device compared to the
Bayes classifier. Following recent papers in the side-channel
community discussing machine learning models, we focus
on (learning) models called random forests, template attacks
and profiled attacks based on the kernel density estimation
method [5], [19], [20], [22]. The main issue of profiled attacks
lies in the exploitation of leakages containing a large number
of dimensions. Although the high dimensionality of leak-
ages is common when evaluating masking implementations,
the curse of dimensionality stipulates (and we demonstrate
this phenomenon in this paper) that the difficulty to face
such settings becomes more difficult as the dimensionality
of leakages increases. Note also that this high dimensionality
context also provides benefits to the side-channel adversaries:
the more the number of dimensions, the larger the quantity
of information available in the leakages on the target value.
Similarly, Battistello et al. report that the more the number of
shares, the more the quantity of information available to the
adversary [3].

This paper complements our previous works on unprotected
implementations [20]. More precisely, in this paper, first we
aim to formalise results obtained in side-channel attacks when
targeting masked implementations. We explain the results
obtained by parametric (called template attacks) and non-
parametric profiled attacks (called profiled attacks based on
kernel density estimation method). Second, compared to the
state-of-the art tools to evaluate masking schemes, we report
a new more efficient approach (based on a machine learning
algorithm called random forests) that leads to a higher success
probability to extract the secret key from software masking
implementations.

Similarly to our work in [20], we focus on analytical and
practical results obtained on simulated measurements on a
software implementation. We base our theoretical results on
the bias-variance theory (presented by Lerman et al. [18] in
side-channel attacks) and on the estimation/assumption errors
(introduced by Durvaux et al. [10]) in order to discover what
impacts the success probability to retrieve the secret key.
Furthermore, we report the performances of profiled attacks
against an 8-bit Atmel XMEGA target device using using
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three kinds of actual measurements: (i) actual leakages with a
low noise level, (ii) actual leakages with added noise and (iii)
misaligned actual leakages. The reported results confirm the
results obtained with the simulated leakages.

II. BACKGROUND ON SIDE-CHANNEL ATTACKS

A. Side-channel and masking

We consider side-channel adversaries targeting sensitive
value y representing the output of a function fk (p) where k
is a part of the target key (e.g., one byte of the key) and p
is a part of a known information by the adversary (e.g., one
byte of the plaintext). The function f represents for instance
the output of a Sbox function (e.g., fk (p) = Sbox(p⊕ k)).

Let jT y be the j-th leakage (also known as trace) measured
when the device manipulates the target value y. Let also T be
a leakage associated to an unknown target value y. In the
following, we represent each leakage with a vector of real
values measured at different instants on the analysed device.
We denote j

tT y the j-th leakage (associated to the target value
y) measured at time t such that:

j
tT y = tL (y) +

j
tεy, (1)

= tL (fk (p)) +
j
tεy, (2)

where j
tεy ∈ R is the physical noise of the trace j

tT y (i.e.,
an additive physical noise assumption defined by Mangard et
al. [23]) following a Gaussian distribution with zero mean,
and tL is the deterministic leakage function at time t.

In order to protect the implementations against physical
attacks, the designers employ (among others) masking tech-
niques that split each sensitive information y (that depends
on the secret key) in d uniformly distributed variables (called
shares), denoted x = [x1, ..., xd] ∈ X , such that y =

∑d
i=1 xi

(where
∑

represents the method combining shares) [6], [13].
Typically, the shares [x2, ..., xd] represent d − 1 uniformly
distributed random values (called the masks) while x1 equals
to y+

∑d
i=2 xi. In the following, Xy denotes the space of the

vectors of shares in which x1 = y +
∑d
i=2 xi.

We analyse serial implementations manipulating one share
per cycle and each cycle is associated to ns points in the
leakage (i.e., jT y contains ns×d points in total). This follows
the usual leakages measured on software implementations (see
for example the paper of Barthe et al. [2]). The masking
schemes leak no information on the sensitive variable y
whenever the adversaries combine points associated to strictly
less than d different shares.

B. Profiled attacks

This section describes one optimal/ideal theoretical profiled
attack (called Bayes classifier) and three practical profiled at-
tacks (called template attacks, profiled attacks based on kernel
density estimation method and random forests). The optimality
of a profiled attack depends on the choice of the criterion
evaluating the attack. We characterise the effectiveness of a
key-recovery side channel adversary by its error rate. The
error rate represents the probability that the profiled attack
outputs the wrong key value as the most likely key values.

Practical profiled attacks represent efficient attacks thanks
to a learning step (also known as a profiling step) on a device
similar to the target device. More precisely, these approaches
build a classifier A(TPS, TAS) that: during the profiling step, it
estimates a parameter θ with a set of leakages (called profiling
set and denoted TPS) containing Np (profiling) traces per target
value, and during the attack step, it returns the extracted secret
key k from a set of attack leakages TAS (called attacking set)
measured on the target device using a constant secret key.
In the following, and as already assumed by Lemke-Rust et
al. [15], all exploited practical profiled attacks (i.e., template
attacks, profiled attacks based on kernel density estimation
method and random forests) do not use the mask values during
the profiling step in order to reduce the time complexity of the
profiling step and of the attack step (which leads to efficient
profiled attacks on masking schemes). This is also useful in
contexts where the adversary does not know the mask values
during the profiling step.

In a general case, when fixing the number of measurements
in the attack sets, the error rate of a profiled attack depends on
the collected profiling set. In our experiments, we remove the
mentioned dependency by averaging over profiling sets and
attack sets.

1) Bayes classifier: The Bayes classifier denotes the best
possible theoretical attack which practical attacks can reach.
More formally, let Ab(·) be the Bayes classifier that takes as
input a set of attack traces TAS =

{
1T , 2T , ...,NaT

}
(where

jT represents the j-th leakage in the attack set TAS and Na is
the number of attack leakages). The function Ab(·) represents
a classifier that minimises the probability of misclassification
(also known as the error rate), i.e.:

Ab(TAS) ∈ argmax
k∈K

Pr [k | TAS] (3)

= argmax
k∈K

Pr [TAS | k]× Pr [k] , (4)

= argmax
k∈K

Na∏
j=1

Pr
[
jT | y = fk (pj)

]
(5)

× Pr [y = fk (pj)] ,

where pj is the j-th known plaintext used by the device
when the adversary measured the j-th attack leakage jT , and
Pr
[
jT | y

]
=
∑
x∈Xy

Pr
[
jT | x

]
×Pr [x]. In the following,

we assume that Pr
[
jT | x

]
follows a multivariate Gaussian

distribution and, as a result, Pr
[
jT y | y

]
follows a finite

linear combination (also known as a mixture) of multivariate
Gaussian distribution (as already assumed in several papers
published in the literature [6], [25], [28]).

Two approaches exist in order to estimate Equation 5:
parametric and non-parametric approaches. The parametric
approaches assume that the evaluators know the structure
of the probability density functions (p.d.f.) and require the
estimation of the parameters associated to the p.d.f. The non-
parametric approaches exploit no prior knowledge on the
structure of the probability density functions.

2) Template attacks: (Unimodal parametric Gaussian) Tem-
plate Attacks (TA) [7] estimate Equation 5 by assuming that
Pr
[
jT y | y

]
follows a Gaussian distribution N (µ̂y, Σ̂y) for
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each value y where µ̂y and Σ̂y are the sample mean (also
known as the first order moment) and the sample covariance
matrix (also known as the second order moment) of the
leakages associated to y. In what follows, we assume that
the adversaries have no information on the shares during the
profiling step leading to a dependency between the second-
order moment Σy and the sensitive information y when
exploiting masking schemes based on two shares per target
value. Note that the adversary can know the mask values
during the profiling step and still not use them in order to
speed up the attack phase by exploiting less templates (i.e., by
estimating the parameters of the p.d.f. providing Pr

[
jT y | y

]
with one unimodal Gaussian distribution instead of estimating
all the parameters associated to the 2d−1 p.d.f.).

3) Profiled attacks based on non-parametric kernel density
estimation method: Profiled attacks based on non-parametric
Kernel Density Estimation method (KDE) estimate the p.d.f.
(associated to Pr

[
jT y | y

]
) by placing a (Kernel) function

(denoted KΣ(·, ·)) at each leakage (associated to y). More
precisely, the estimated p.d.f. associated to Pr [T | y] equals
to:

f̂Σ (T | y) = 1

Np

Np∑
j=1

KΣ(T ,
jT y), (6)

where Σ is the Kernel bandwidth and represents the
smoothing parameter. In our experiments, we exploit
the Gaussian Kernel function in which KΣ(T ,µ) =

1√
(2π)ns×d|Σ|

e−
1
2 (T−µ)

TΣ−1(T−µ). Note that other Kernel

functions exist (such as the uniform, the triangular and the
Epanechnikov Kernel functions) but this choice impacts only
in a minor way the quality of the estimated p.d.f. (compared
to the choice of the Kernel bandwidth value) [27]. We use
the Scott’s rule (that is widely recommended by introductory
statistics text and proposed by the used statistical packages as
default 1) in order to estimate Σ, which is equal to:{√

Σij = N
−1

ns×d+4
p σi i = j√

Σij = 0 i 6= j
, (7)

where Σij represents the entry in the i-th row and j-th column
of the matrix Σ, and σi represents the standard deviation of
the leakages at instant i.

4) Random forests: The Random Forests (RF) introduced
by Breiman can be seen as a collection of classifiers using
many decision trees as models [4]. It relies on model averag-
ing. After the profiling phase, RF return the most consensual
prediction for a target value through a majority vote among
the set of trees. RF are based on three main principles. First,
each tree is constructed with a different profiling set by re-
sampling (with replacement) the original dataset. Secondly, the
nodes of the trees are split using the best time sample among
a subset of randomly chosen ones (by contrast to conventional
trees where all the time samples are used). The size of this
subset was set to the square of the number of time samples
(i.e.,

√
ns × d) as suggested by Breiman. These features allow

obtaining decorrelated trees, which improves the accuracy

1We used the function gaussian_kde from the scipy python package.

of the resulting RF model. Finally, and unlike conventional
decision trees as well, the trees of a RF are fully grown and are
not pruned, which possibly leads to overfitting that is reduced
by averaging the trees. The main (meta-) parameters of RF are
the number of trees. Intuitively, increasing the number of trees
reduces the instability of the models. We set this number to 500
in our simulated experiments (reported in Section IV-B and in
Section IV-C) and 100 in our actual experiments (reported
in Section IV-D), which was sufficient in our experiments in
order to show the strength of this model compared to the other
classifiers presented previously.

III. BIAS-VARIANCE DECOMPOSITION

This section discusses the assumption and the estimation
errors of profiled attacks. We base all our practical experiments
on the block-cipher PRESENT for efficiency reasons.

A. Assumption error

The assumption error represents the difference between the
structure of the target probability density function associated
to Pr [T | y] and the structure of the assumed (by the adver-
sary) probability density function associated to P̂r [T | y]. The
probability Pr [T | y] follows a multimodal distribution (more
precisely a mixture of unimodal Gaussian distributions) since:

Pr [T | y] =
∑
x∈Xy

Pr[T | x], (8)

where Pr[T | x] follows a Gaussian distribution. However,
if each (unimodal) Gaussian distribution associated to Pr[T |
x] contains the same mean, then the probability Pr [T | y]
follows a unimodal distribution. More formally, let fmy (T )
and fxy (T ) be the probability density functions specifying the
probability Pr [T | y] and Pr [T | x] respectively. Then, the
function fmy (T ) equals to:

fmy (T ) =
1

‖Xy‖
∑
x∈Xy

fxy (T ), (9)

where ‖Xy‖ represents the cardinality of Xy , and the function
fxy (T ) equals to:

fxy (T ) =
1√

(2π)ndet (Σm,y)
e−

1
2 (T−µx)

TΣ−1
m,y(T−µx), (10)

where µx and Σm,y are the two parameters of the probability
density function fxy (T ), and n = ns × d. Note that we follow
the homoscedasticity assumption in which the parameter Σm,y

is independent of the set of shares x but depends on the sen-
sitive value y. The definition of fxy (T ) leads to the following:

fmy (T )

=
1

‖Xy‖
∑
x∈Xy

1√
(2π)ndet (Σm,y)

e−
1
2 (T−µx)

TΣ−1
m,y(T−µx),

(11)

=
1

‖Xy‖
1√

(2π)ndet (Σm,y)

∑
x∈Xy

e−
1
2 (T−µx)

TΣ−1
m,y(T−µx),

(12)
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Fig. 1: Bivariate leakage distributions of a single-bit (equals to
0) split into two shares [x0, x1]. The variance of the physical
noise equals to σ2 = 0.1 on the left and σ2 = 2 on the right.

when all the covariance matrices Σm,y are the same and n =
ns × d.

Proposition III.1. The assumption error 2 of a unimodal
Gaussian TA decreases as a function of the physical noise
and as a function of the distance between the values µx
(representing the mean value of leakages associated to x). In
other words, the assumption errors of TA and non-parametric
attacks are similar for high noise contexts and when the
distance between the values µx is small.

The annex reports the proof. In a side-channel point of view,
an adversary can use TA instead of non-parametric profiled
attacks (such as profiled attacks based on KDE) if the level of
physical noise is high or the mean leakages are close enough.
In other words, the higher the level of noise in the leakages,
the smaller the assumption error of TA.

1) Experiments: We check Proposition III.1 with simula-
tions. Let y ∈ {0, 1} be the target value split into two shares
x0 ∈ {0, 1} and x1 ∈ {0, 1}. Let j

tT y be the j-th leakage
associated to y, which is equal to:

j
tT y = tL (y) +

j
tεy, (13)

= HW (xt) +
j
tεy, (14)

where HW(·) represents the Hamming weight function. Fig-
ure 1 plots the p.d.f. associated to P̂r [T | y = 0] with low and
high noise. In a low level of noise, the Mardia’s Multivariate
Normality Test rejects (with 20 000 leakages) the hypothesis
that the leakages follow a Gaussian distribution. However, in
a high level of noise, the same test (with 20 000 leakages)
does not reject this hypothesis, which confirms the previous
theoretical results on the assumption error of TA.

B. Estimation error

The previous section shows that the TA lead to a small
assumption error if the leakages contain a high level of
physical noise. However, this provides no information on the
error rate of TA compared to non-parametric profiled attacks.

2We define the assumption error of a profiled attack as the L2 norm of the
difference between the true and the estimated (by the profiled attack) prob-
ability density functions. However, the proposition can easily be generalised
to other norms without impacting the conclusion.
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Fig. 2: Error rate of TA, RF and KDE as a function of the
number of profiling leakages per target value (denoted Np) for
several standard deviations of the noise σ ∈ [0.1; 1].

More precisely, Lerman et al. show that three terms impact the
error rate of profiled attacks: the noise, the bias (also known
as the assumption error for TA) and the variance (also known
as the estimation error for TA) [18]. The previous section
analyses the bias term while this section compares the variance
term of profiled attacks with simulations.

1) Experiments: Let y = fk (p) ∈ {0, 1}4 be the target
value split into two shares x0 ∈ {0, 1}4 and x1 ∈ {0, 1}4.
The function fk (p) equals to Sbox (k ⊕ p) where Sbox (·)
represents the Sbox of PRESENT, p is the known plaintext,
and k is the key. Let jtT y be the j-th leakage associated to
the t-th share of y, i.e. jtT y = HW (xt) +

j
tεy. We generated

10 different TA and KDE (using different profiling sets). We
estimated the error rate (to extract the secret k) of profiled
attacks with 1 000 attack sets. Each attack set contains Na = 5
attack traces. Figure 2 shows the error rates as a function of
the number of profiling leakages for several physical noise
levels. This figure highlights that, compared to the error rate
of TA, the error rate of non-parametric approaches varies
heavier as a function of the number of profiling traces. In
other words, TA contain a lower variance term than non-
parametric approaches. Therefore, compared to non-parametric
approaches, TA require less leakages in the profiling set in
order to estimate accurately the set of parameters.

In summary, the error rate of TA is lower than the error
rate of non-parametric profiled attacks if (i) the level of noise
is high (leading to a small assumption error for TA), (ii) the
number of leakages in the profiling set is small (leading to
a high estimation error for non-parametric profiled attacks),
and (iii) the first and/or the second order moments contain
information on y (since TA only estimate these moments) as
reported in the next section.
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IV. EXPERIMENTAL VALIDATION

The previous section highlights that TA can outperform non-
parametric approaches if we met the following three conditions
in practice: (i) the first and/or the second order moments
contain information on y (since unimodal Gaussian TA do
not estimate higher order moment), (ii) the leakages contain a
high physical noise level (leading TA having small assumption
errors), and (iii) the profiling set contains a small number
of leakages (leading non-parametric approaches to have high
estimation errors). In this section, we verify these (previously
presented) results with experiments.

In each experiment, and for each profiled attack, we gen-
erated 10 profiling sets (in order to estimate 10 times the
parameters of each profiled attack) and 100 attack sets (in
order to estimate the error rate of each profiled attack).
We collected different profiling and attack sets on the same
device by choosing randomly different sets from the measured
leakages. Therefore, each randomly selected leakages was
randomly assigned to a set.

A. Implementation setting

We simulate the leakages of a masked software implemen-
tation. Recall that we decompose the output y of the Sbox
in d shares (denoted [x1, ..., xd]) such that y = Sbox(x) =

⊕d
i=1xi. We exploit the Sbox of PRESENT (that works in the

finite field GF(24)) for efficiency reasons. For each execution
of the simulator, we generate d−1 (uniformly) random values
[x2, ..., xd] while x1 =⊕d

i=2xi⊕y.
Each execution of our simulator manipulates one share per

cycle and each cycle is associated to ns points in the leakage.
Each cycle generates ns samples in the leakages that depends
on the HW of the manipulated share (i.e., each sample equals
to HW(xi) +N where xi is the manipulated share and N ∼
N (0, σ2) represents a Gaussian physical noise).

In our experiments, we consider adversaries that do not
know/use the mask value during the profiling step. This
implies that the adversaries have to select a large set of points
in the leakages in order to have all the samples related to all
the shares. This leads also to include samples that do not relate
to shares. In our experiment, this phenomenon is reflected by
the generation of nns non-informative samples that are equal
to N where N ∼ N (0, σ2) represents a Gaussian physical
noise. In summary, the parameters of our simulator are d (the
number of shares), Np (the number of profiling leakages for
each value of y), Na (the number of attack leakages), ns (the
number of instants related to one share in the leakages), nns
(the number of non-informative points per leakage) and σ2

(the variance of the Gaussian physical noise).
Although we assume that the adversaries do not know/use

the mask value during the profiling step, we assume that the
adversaries know the following information: (1) during the
profiling step, the adversaries know the executed cryptographic
algorithm, the set of plaintexts and the key during the profiling
step, while (2) during the attack step the adversaries only
know the cryptographic algorithm and the set of plaintexts.
The purpose of the adversaries is to extract the key by targeting
the output of the Sbox.

B. Results on two shares masking scheme

The first experiment evaluates the three practical profiled
attacks against a masking scheme using two shares. Figure 3
reports the error rate of the four profiled attacks (i.e., TA,
KDE, RF and Bayes classifier) in low physical noise level
contexts as a function of the number of informative points
(ns), of the number of non-informative points (nns) and of
number of leakages per target value in the profiling set (Np).
We observe four different settings:

• only the KDE lead to the same error rate as the Bayes
classifier if the profiling set contains enough leakages (as
seen in Figure 3c).

• if the leakages contain few informative points as well
as few non-informative points, the exploitation of KDE
leads to a lower error rate compared to the error rate of
TA (as seen in Figure 3a and in Figure 3c). The reason
is that, although TA has a lower variance than KDE,
KDE exploit enough leakages during the profiling step
in order to estimate accurately all its parameters (leading
to a small estimation error) while containing a small
assumption error. As a result, the small assumption and
estimation errors of KDE provide better profiled attacks
than TA (that contain a small estimation error but a high
assumption error).

• if the leakages contain a large number of informative or
non-informative points, the advantage of KDE to have a
low assumption error vanishes compared to its estimation
error (as seen in all the sub-figures of Figure 3 but mainly
visible in Figure 3c and in Figure 3d). In other words,
although the assumption error of TA is high, TA leads to
a lower error rate thanks to a smaller estimation error.

• RF succeeds to exploit a large number of informative
points (the more, the better). As a result, compared to TA
and KDE, in a high number of non-informative points,
RF succeeds to reduce the noise (due to the large number
of non-informative points) by increasing the number of
informative points (as seen in Figure 3a, in Figure 3b, in
Figure 3c and in Figure 3d). Interestingly, several papers
reports similar results on unprotected scenarios: RF are
useful in order to deal with high-dimensional leakages
(see for example [16], [20]). Note however that KDE
outperform RF in contexts exploiting a low number of
non-informative points thanks to a low level of physical
noise (leading to a small estimation error for KDE).

Figure 4 extends the previous results in high noise contexts.
In this setting,

• TA systematically outperform KDE due to a high noise
(leading to a small assumption error for TA) and to a
small estimation error for TA (compared to the estimation
error of KDE). Furthermore, TA lead to the same error
rate as the Bayes classifier if the profiling set contains
enough leakages.

• RF outperform TA (and KDE) in high dimensionality
contexts (i.e., when the number of points is large com-
pared to the number of leakages in the profiling set). In
other words, RF succeed to reduce the level of physical
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Fig. 3: Error rate of TA, RF, KDE and Bayes classifier as a
function of the number of instants (denoted ns) per share in
the leakage. We decompose the target value in 2 shares. We
use Np profiling leakages per target value in the profiling set
and Na = 5 attack leakages in the attack set. Each leakage
contains nns ∈ [0, 20] non-informative points. The standard
deviation of the physical noise equals to σ = 0.1.

noise in the leakages by exploiting a large number of
points per leakage (as seen in Figure 4a and in Figure 4b).

In summary, with two shares, RF outperform the other ap-
proaches when the number of informative or non-informative
points is high compared to the size of the profiling set (as
reported by Lerman et al. in unprotected scenarios [20]). The
number of non-informative points could be high due to the
fact that, in practice, the adversaries do not know where are
the informative points (if he does not know the mask values).
More precisely, the adversaries require to use a large number
of points to cover all the manipulated shares in the leakages
(which could lead to a high number of non-informative points).

C. Results on three shares masking scheme

The next experiment focuses on three shares masking
scheme. Figure 5 and Figure 6 report the error rate of the three
practical profiled attacks in low and high physical noise level
contexts as a function of the number of informative points
(ns), of the number of non-informative points (nns) and of
number of leakages per target value in the profiling set (Np).
The figures report three results:
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Fig. 4: Error rate of TA, RF, KDE and Bayes classifier as a
function of the number of instants (denoted ns) per share in
the leakage. We decompose the target value in 2 shares. We
use Np ∈ [100, 1000] profiling leakages per target value in the
profiling set and Na = 100 attack leakages in the attack set.
Each leakage contains nns ∈ [0, 20] non-informative points.
The standard deviation of the physical noise equals to σ = 1.

• TA recover no information on the secret key since all the
information occurs in the third order moment (while TA
only estimate the first and the second order moments).

• KDE outperform RF if the number of points per leakage
is low compared to the number of leakages in the profiling
set (as seen in Figure 6a).

• In high noise level contexts, the large number of infor-
mative points allows to reduce the level of noise in the
leakages. As a result, in high noise level contexts and in
high dimensionality contexts, RF outperform KDE thanks
to the ability to exploit a large number of informative
points (as reported by Lerman et al. in unprotected sce-
narios [20]). In other words, in high noise level contexts
and in high dimensionality contexts, RF provide the
closest results to the Bayes Classifier (as seen in Figure 6a
and in Figure 6b).

D. Confirmation on actual measurements

In order to confirm the previous results obtained with
simulated leakages, this section presents the results on actual
measurements by considering the performances of profiled
attacks (i) on actual leakages, (ii) on actual leakages with
added noise and (iii) on misaligned actual leakages.
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Fig. 5: Error rate of TA, RF and KDE as a function of the
number (denoted ns) of instants per share in the leakage. We
decompose the target value in 3 shares. We use Np = 1000
profiling leakages per target value in the profiling set and
Na = 200 attack leakages in the attack set. Each leakage
contains nns ∈ [0, 20] non-informative points. The standard
deviation of the physical noise equals to σ = 0.1. The RF line
is located below the Bayes Classifier line when nns = 0.
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Fig. 6: Error rate of TA, RF and KDE as a function of the
number of instants (denoted ns) per share in the leakage. We
decompose the target value in 3 shares. We use Np = 1000
profiling leakages per target value in the profiling set and
Na = 1000 attack leakages in the attack set. Each leakage
contains nns ∈ [0, 20] non-informative points. The standard
deviation of the physical noise equals to σ = 1.

1) Performances over actual leakages: We measured actual
traces from a device executing a masked implementation of
PRESENT. The cryptographic device encrypts random plain-
texts with a constant 80-bit key. We target the first round of
the cipher (manipulating the SBox) and we focus on the first
nibble of the key. A set of 100 000 power traces was collected
on an 8-bit Atmel XMEGA (XMEGA128D4-U) target device
(for the ChipWhisperer CW308 UFO Board) at a 7.37 MHz
clock frequency. The power consumption of the device was
measured using the ChipWhisperer-Pro (CW1200) oscillo-
scope that was set up to acquire 1600 samples (with a rate of
29.538 MS/s). We analyse leakages measured when the device
executes the implementation of a first-order masked SBox
(with 2 shares) based on table lookups [24], [26]. This strategy
pre-computes a new masked SBox in memory (denoted SBox∗)
for each execution of the cryptographic algorithm such that
SBox∗k (x⊕min) = SBox (x) ⊕ mout ∀x ∈ {0, 1}4 for a
given pair of input and output masks (denoted respectively
min and mout) that are independent and identically distributed
from a uniformly random source. Our implementation avoids
a first order leakage by providing the masked input byte (i.e.,
p⊕k⊕min where p and k represent the plaintext and the key)
to the executed implementation.

In order to estimate the quantity of information available
in the leakages on the target value, we compute the Pearson
correlation between the traces (at each instant) and the target
value. The maximum absolute value of the Pearson correlation
between the traces and the masked Sbox equals to 0.73
while the maximum absolute value of the Pearson correlation
between the traces and the mask equals to 0.76.

We separate the dataset of 100 000 power traces into two
disjoint subsets: the profiling source (containing 50 000 traces)
and the attack source (containing 50 000 traces). The first
source provides leakages used to build the models while the
second source includes leakages to estimate the error rate of
each model. We vary the number of attack traces, the number
of profiling traces and the number of points per leakage. We
select points that correlate (linearly) with (1) the HW of the
masked SBox and (2) with the HW of the output mask.

We compare TA, RF (with 100 trees) and KDE. Figure 7
reports the error rate of these models. This figure shows that
the error rate of RF is (almost) zero, which demonstrates that
the quantity of noise in the multivariate leakages (compared
to the quantity of signal) is very low. This figure also confirms
the results provided in the simulated contexts: RF extract the
key with a high probability in high dimensionality contexts
while TA and KDE face a more and more difficult estimation
problem when the size of the leakages increases. In the
extreme contexts, when the evaluators do not know which
points to select (i.e., when the evaluators consider the whole
leakages since they do not know the mask values during the
profiling step), only RF extract the key with a high success
probability. Note also that, in low dimensionality contexts, the
error rate of TA is (slightly) higher than the error rate of
KDE due to the low level of noise (as reported with simulated
leakages).

2) Performances over leakages with added noise: This sec-
tion extends the previous results by increasing the (Gaussian)
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Fig. 7: Error rate of TA, RF and KDE as a function of the
number of points in each leakage. We decompose the target
value in 2 shares. Half of the points in each leakage correlates
to the mask and the rest of the points correlates to the masked
Sbox. We use Np ∈ [1 000, 3 000] profiling leakages per target
value in the profiling set and Na ∈ [20, 50] attack leakages in
the attack set.

noise in the measurements. By adding a univariate Gaussian
noise having a standard deviation of 0.01, the maximum abso-
lute value of the Pearson correlation between the traces and the
masked Sbox decreases to 0.52 while the maximum absolute
value of the Pearson correlation between the traces and the
mask decreases to 0.48. Figure 8 plots the error rate of TA,
RF (with 100 trees) and KDE. This figure shows that the error
rates of TA, RF and KDE increase when the measurements
contain more (Gaussian) noise. In low dimensionality contexts,
although TA contain a higher assumption error compared to
KDE, the error rate of TA is lower than the error rate of
KDE due to a smaller estimation error for TA compared to the
estimation error of KDE (as reported with simulated leakages).
In high dimensionality contexts (i.e., when considering the
whole leakages), RF outperform TA and KDE.

3) Performances over misaligned leakages: This section
presents results on (temporal) misaligned leakages via random
shifts of the acquired leakages during the execution of the
masked implementation of PRESENT. These random shifts
simulate a dysfunction in the power supply, an unstable clock,
a lack of a good trigger signal or due to countermeasures such
as random delay interrupts. Each leakage is randomly time-
shifted from x points where x is sampled from a random vari-
able following the discrete uniform distribution unif{−S,S}
where S ∈ [2, 10]. By considering S = 2, the maximum
absolute value of the Pearson correlation between the traces
and the masked Sbox decreases to 0.16 while the maximum
absolute value of the Pearson correlation between the traces
and the mask decreases to 0.14. By considering S = 10, the
maximum absolute value of the Pearson correlation between
the traces and the masked Sbox decreases to 0.07 while the
maximum absolute value of the Pearson correlation between
the traces and the mask decreases to 0.07.
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Fig. 8: Error rate of TA, RF and KDE as a function of the
number of points in each leakage. We add Gaussian noise. We
decompose the target value in 2 shares. Half of the points in
each leakage correlates to the mask and the rest of the points
correlates to the masked Sbox. We use Np ∈ [1 000] profiling
leakages per target value in the profiling set and Na ∈ [20, 50]
attack leakages in the attack set.

Figure 9 confirms the results obtained previously: TA out-
perform KDE in high noise contexts (resulted from misaligned
leakages). Furthermore, as also reported previously, only RF
extract the key with the highest success probability (compared
to the other tested profiled attacks) when considering the whole
leakages.

Compared to the results of RF exploiting leakages with
added noise (reported in Section IV-D2), RF based attacks
provide a higher success probability to extract the secret key
when using misaligned leakages although that misaligned leak-
ages leads to a lower (Pearson) correlation between the traces
and the target values. The rationale could be that machine
learning models can detect misaligned leakages (containing
a high signal-to-noise ratio when realigned) and treat these
leakages differently in order to realign measurements (as
already reported by Cagli et al. [5] and by Lerman et al. [19]).

V. CONCLUSION

In conclusion, four conditions in the leakages increase
concrete security against side-channel cryptanalysis: (i) a
high physical noise to have a high estimation error, (ii) a
large number of shares to force the estimation of high-order
statistical moments (that increases exponentially the task of the
adversary), (iii) a small number of informative points per share
to avoid reduction of the noise by averaging points associated
to the same share, and (iv) a large number of non-informative
points to increase the variance of profiled attacks.

One practical consequence of our results is that we can
improve the side-channel evaluation of masking implementa-
tions by exploiting (i) simple attacks having a smaller variance
term (i.e., TA instead of KDE) when the leakages contain a
high level of noise, and (ii) RF when the leakages contain a
high number of informative points, non-informative points or
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Fig. 9: Error rate of TA, RF and KDE as a function of the
number of points in each leakage. We randomly shift the
leakages from x points where x is sampled from a random
variable following unif{−S,S} and where S ∈ [2, 10]. We
decompose the target value in 2 shares. Half of the points in
each leakage correlates to the mask and the rest of the points
correlates to the masked Sbox. We use Np ∈ [1 000] profiling
leakages per target value in the profiling set and Na ∈ [20, 50]
attack leakages in the attack set.

shares. In practice, the evaluators can face a high number of
points in the leakages due to the fact that they do not know
where are the informative points (if they do not know the mask
values). More precisely, the evaluators require to use a large
number of points to cover all the manipulated shares in the
leakages (if he does not know the mask values). Note that the
evaluators can know the mask values during the profiling step
and still not use them in order to speed up the attack phase
(cf. Section II-B2). The results also highlight that evaluators
can apply profiled attacks based on RF in an automatic way,
i.e. without a priori knowledge on the analysed devices.

In this paper, we demonstrate that RF can outperform
conventional approaches (i.e., TA and KDE) against masked
implementations in high dimensionality contexts. As a future
work, we envisage to generalise our experiments by analysing
others machine learning models. As already shown in several
papers [5], [22] as well as during the presentation of Elie
Bursztein at CHES2018 3, neural networks (and more precisely
deep learning which represents neural networks with a large

3https://ches.iacr.org/2018/

quantity of layers, neurones and parameters) have a high
capacity to increase the success of attacks. As reported by
Elie Bursztein at CHES2018 as well as by Liu et al. [21],
this advantage goes along with two challenges to overcome
before being competitive with other machine learning models
(such as RF). First, the large quantity of different models (e.g.,
convolutional deep neural networks, recurrent neural networks,
long short-term memory and multi-layer perceptrons) as well
as the vast number of structures in each model (e.g., depending
on the number of layers and the number of neurones) lead to a
high computational time complexity during the profiling step
and require a high expertise on deep learning. Second, in high
dimensionality contexts (in which RF represent the best model
against the targeted masked implementations), deep learning
requires a large quantity of measurements (also known as big
data settings) in order to estimate accurately its large set of
parameters (as discussed in [11], [30]).

As a result, although we do not claim that RF is the
universally best machine learning model for such contexts
(as formalised by the no-free-lunch theorem), several works
already report the high success probability of RF to extract the
secret key from leakages while not requiring a large quantity of
measurements neither a high time complexity for the selection
of its structure [1], [16], [17], [20]. In this paper, we confirm
these advantages on devices protected with a masking scheme.

APPENDIX

Proof. To prove Proposition III.1, let assume that each
leakage contains n points (i.e., n = ns × d). Let also fuy(T )
be a unimodal Gaussian distribution associated to the target y
(and estimated by a unimodal Gaussian TA), i.e.:

fuy(T ) =
1√

(2π)ndet (Σu,y)
e−

1
2 (T−µu,y)

TΣ−1
u,y(T−µu,y). (15)

The assumption error (denoted AE) of a unimodal Gaussian
TA (estimating fuy(T )) equals to the L2 norm of the dif-
ference between the functions fuy(T ) and fmy (T ), i.e. AE =∫ ∣∣fuy(T )− fmy (T )

∣∣
2
dT , where |x|2 represents the L2 norm.

The assumption error is nonnegative and equals to zero if and
only if the parametric estimator fuy(T ) and the true density
fmy (T ) are the same. By incorporating the definition of fmy
(given in Equation 12), the assumption error equals to:

AE =

∫ ∣∣fuy(T )− (16)

1

‖Xy‖
1√

(2π)ndet (Σm,y)

∑
x∈Xy

e−
1
2 (T−µx)

TΣ−1
m,y(T−µx)|2 dT

Let ε, ε′ be small real values and c be a big
real value4. In Equation 16, we can replace all
the terms e−

1
2 (T−µx)

TΣ−1
m,y(T−µx) with the constant

value e−
1
2 (T−µy)

TΣ−1
y (T−µy) if all the terms

e−
1
2 (T−µx)

TΣ−1
m,y(T−µx) are similar to the value

e−
1
2 (T−µy)

TΣ−1
y (T−µy), i.e. if:

∀x,x′ ∈ Xy |(T − µx)TΣ
−1
m,y(T − µx) (17)

− (T − µx′)TΣ
−1
m,y(T − µx′)|2 < ε.

4We discuss the impact of ε, ε′ and c on the assumption error at the end
of the proof.



1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2018.2879295, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. ??, NO. ??, ?? ?? 10

The following two conditions satisfy Equation 17:

∀x,x′ ∈ Xy |µx − µx′ | < ε′, (18)

∀i λi > c, (19)

where λi is the i-th eigen value of Σ. The substitution of
all the terms e−

1
2 (T−µx)

TΣ−1
m,y(T−µx) with the constant value

e−
1
2 (T−µy)

TΣ−1
y (T−µy) leads to the following:

AE =

∫
|fuy(T ) (20)

− 1

‖Xy‖
1√

(2π)ndet (Σy)

∑
x∈Xy

e−
1
2 (T−µy)

TΣ−1
y (T−µy)|2

dT

=

∫
|fuy(T ) (21)

− 1√
(2π)ndet (Σy)

e−
1
2 (T−µy)

TΣ−1
y (T−µy)|2 dT .

Thus, we minimise the assumption error AE when Σu,y = Σy

and µu,y = µy . This result demonstrates that the multimodal
Gaussian function fmy (T ) can be modelised with a unimodal
Gaussian function fuy(T ) (estimated by a unimodal Gaussian
TA) if the level of noise is high (cf., Equation 19) or if the
distance between the values µx is small (cf., Equation 18).
In other words, the smaller the value of ε′ or the bigger the
value of c, the smaller the value of ε, and the smaller the
assumption error of a unimodal Gaussian TA. 2
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