Pype, Rosalie, Flahaut, Sigrid, & Debaste, Frédéric

On the importance of mechanisms analysis in the degradation of micropollutants by laccases: The case of Remazol Brilliant Blue R

Citation APA:

DOI: 10.1016/j.eti.2019.100324

Also available at: http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/284881

Cet article publié par ELSEVIER provient du Dépôt institutionnel de l’Université Libre de Bruxelles, DI-fusion http://difusion.ulb.ac.be. Il n’est accessible qu’aux membres de la communauté universitaire de l’ULB sur le réseau sécurisé de l’ULB.

Tout utilisateur autorisé peut lire, télécharger ou reproduire cet article à des fins d'usage privé ou à des fins non commerciales d'enseignement ou de recherche scientifique. Il ne peut être atteint à l'intégrité de l'article, et les noms des auteurs et de l'éditeur doivent être conservés. Tout téléchargement systématique des articles publiés par ELSEVIER mis à disposition dans DI-fusion est interdit.

This article published by ELSEVIER comes from the Institutional repository of Université Libre de Bruxelles, DI-fusion http://difusion.ulb.ac.be. It is accessible only to the members of the university community of ULB on the ULB secure network.

Any authorized user may read, download or reproduce this article for private usage, or for non commercial research or educational purposes. The integrity of the article and identification of the author and copyright owner must be preserved. Systematic downloading of articles published by ELSEVIER that are available in DI-fusion is not permitted.
On the importance of mechanisms analysis in the degradation of micropollutants by laccases: The case of Remazol Brilliant Blue R

Rosalie Pype a,⁎, Sigrid Flahaut b, Frédéric Debaste a

a Department of Transfers, Interfaces and Processes, Université libre de Bruxelles, Av. F.D. Roosevelt 50, ULB CP165/67, 1050 Brussels, Belgium
b Department of Applied Microbiology, Université libre de Bruxelles c/o Labiris, Av. E. Gryson 1, 1070 Brussels, Belgium

HIGHLIGHTS

• Decolorization is not a sufficient indicator of degradation of a model dye by laccases.
• HPLC gives complementary information about dye degradation mechanisms.
• A simple mechanistic kinetic model is developed to correctly predict the fate of the dye.

ABSTRACT

The efficiency of methods to reduce the pollution induced by dyes is often evaluated using a color change measurement. This approach might hide complex mechanisms, that, if neglected, can lead to inadequate design of treatment units. This paper highlights this complexity on the case of Remazol Brilliant Blue R (RBBR), an industrial anthraquinone dye, degraded using Trametes versicolor laccases. A kinetic model describing the degradation of RBBR and the formation of degradation byproducts, one of which was found to have an orange color, is proposed. The complex links between RBBR degradation and the decolorization of the medium are highlighted, allowing to identify limits to the degradation achievable by the laccases in this case.
1. Introduction

In recent years, pollution of surface and drinking waters by organic micropollutants has become a growing environmental issue. Micropollutants are substances which have a negative impact on organisms, even at very low concentrations (ng/L to µg/L). Their presence in the environment is often associated with negative impacts such as short and long term toxic effects, endocrine perturbation effects, antibiotics resistance development in microorganisms or, in the case of dyes, decrease of oxygen concentration in aquatic ecosystems due to the decrease of the amount of sunlight to photosynthetic organisms (Fent et al., 2006; Pruden et al., 2006; Champagne and Ramsay, 2010). Thus, the release of organic micropollutants in the environment should be avoided.

However, current wastewater treatment plants (WWTPs) are not specifically designed to remove micropollutants (Bolong et al., 2009; Petrović et al., 2003; Luo et al., 2014), especially because of the cost, the energy consumption and the non-specificity of presumably adequate treatments (ozonation, etc.). Therefore, numerous micropollutants are not sufficiently removed by WWTPs and end up in the natural environment at potentially problematic concentrations (Petrović et al., 2003; Luo et al., 2014). For instance, concentrations of dyes in effluents of industries dealing with reactive dyes range from 0.06 g/L to 0.8 g/L with most cited concentrations being below 0.5 g/L and an exception at 7 g/L (O’Neill et al., 1999).

A way to improve the organic micropollutants removal is the use of biodegradation processes such as enzymatic methods (Husain and Qayyum, 2013). Laccases are lignin-modifying enzymes found in white rot fungi (among other organisms) that show an interesting potential for the oxidation of highly recalcitrant organic micropollutants. Laccases can oxidize a broad range of molecules into radicals using molecular oxygen as an electron acceptor (Fig. 1). Their substrates include phenols, dyes, pesticides, endocrine disruptors and polycyclic aromatic hydrocarbons (Majeau et al., 2010; Hautphenne et al., 2016).

Remazol Brilliant Blue R (RBBR), an anthraquinone dye also known as Reactive Blue 19, is often used as a model-micropollutant to characterize laccases efficiency (see Table 1).

Occasionally, LC-MS is used as a way to identify degradation products but, often, RBBR degradation is only assessed by following the global decolorization of the medium at the wavelength of maximal absorbance of RBBR. This approach allows to assess the reduction of a precise problem in a less expensive way than more precise analytical methods. Yet, it does not give any information on the fate of the byproducts of the oxidation. Some of these byproducts could keep undesired side effects for the environment. Moreover, the global decolorization gives little insight into the kinetics of degradation, limiting the optimization and scale-up potential of this treatment method.

Thus, understanding the oxidation mechanism behind this decolorization is of interest. Some existing studies have tried to elucidate the decolorization mechanism qualitatively. Studying the decolorization of RBBR by free laccases of Polyporus sp. 133, Hadibarata et al. (2012) identified two degradation products as sodium 1-amino-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate and sodium 2-((3-aminophenyl)sulfonyl)ethyl sulfate (see Fig. 2). The two same compounds were identified as reaction intermediates by Osma et al. (2010) using immobilized laccases of Trametes pubescens. They also identified two final byproducts (see Fig. 2) and proposed a degradation pathway on this basis.

Several studies determined the kinetic parameters of the laccase-catalyzed degradation of RBBR (see Table 2). These kinetic parameters were determined on the basis of spectrophotometric measurements. However, some degradation products could keep a residual absorbance and, then, using only a spectrophotometric approach could lead to a bad understanding of the kinetics. A better understanding of these kinetics would be helpful for the specific case of RBBR.
Table 1
Enzymatic degradation studies of RBBR: reasons of using RBBR and method of detection.

<table>
<thead>
<tr>
<th>Use of RBBR</th>
<th>Method of detection</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>(One of several dyes used) to evaluate the decolorization of synthetic dyes</td>
<td>Spectrophotometer</td>
<td>Champagne and Ramsay (2010), Claus et al. (2002), Kunamneni et al. (2008)</td>
</tr>
<tr>
<td>Representative of an important class of recalcitrant anthraquinone-type dyes</td>
<td>Spectrophotometer, LC-MS</td>
<td>Mechichi et al. (2006), Hadibarata et al. (2012)</td>
</tr>
<tr>
<td>Representative of an important class of often toxic and recalcitrant organopollutants</td>
<td>Spectrophotometer, LC-MS</td>
<td>Deveci et al. (2004), Soares et al. (2001), Sarbishkumar et al. (2013), Osma et al. (2010)</td>
</tr>
<tr>
<td>Indicator for detecting polychlorinated biphenyl degradative activity</td>
<td>Spectrophotometer</td>
<td>Nakagawa et al. (2010)</td>
</tr>
</tbody>
</table>

a Used by Hadibarata et al. (2012) to identify metabolites.
b Used by Osma et al. (2010) to identify metabolites.

Fig. 1. Action mechanism of laccases.

degradation but also in a more general framework to grasp the main type of mechanisms possibly involved in the degradation of organic micropollutants.

In this work, the relations between RBBR degradation, byproducts formation and global decolorization are studied in batch reactor using a spectrophotometer and, in some cases, a High Pressure Liquid Chromatography (HPLC) coupled to an UV detector. The experimental results are used to build and validate a kinetic model of the degradation, offering a deeper insight in the reaction mechanism.

2. Material and methods

2.1. Material

RBBR, laccase from *Trametes versicolor* presented as a powder with an activity of 12.9 U/mg, sodium azide, citric acid, Na₂HPO₄·7H₂O and acetonitrile (ACN) of HPLC grade were purchased from Sigma Aldrich (Belgium). 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) was purchased from VWR.

2.2. Methods

2.2.1. Laccase activity assays

Laccase activity was assessed by spectrophotometry using an ABTS assay as described in Hautphenne and Debaste (2015). A unit of activity is defined as the quantity of enzyme that degrade 1 μmol of ABTS per minute.

2.2.2. RBBR degradation

Degradations of RBBR were performed at pH 5 and 20 °C (controlled temperature) in a magnetically stirred jacketed beaker using different enzymatic activities and different initial concentration of RBBR (see Table 3). The concentrations of RBBR used ranged from 0.03 mM to 1.00 mM (0.02 g/L to 0.6 g/L) allowing us to cover a wide range of concentrations coherent with the range of concentrations reported to be found in effluents (O’Neill et al., 1999). The citrate-phosphate buffer was prepared as described in Gomori (1955). Laccases were dissolved into the buffer prior their adding to the reaction medium. Reaction time ranged from 1h to 4h depending on the assay. Samples were drawn at different reaction times, put in spectrophotometric cuvettes in which reaction was stopped by adding sodium azide to the medium (15 mM final concentration). Degradation assays were all monitored by spectrophotometry. Two assays (EXP8 and EXP9) were also monitored using HPLC-UV.

2.2.3. Spectrophotometer analyses

The evolution of the absorbance of the reaction medium was measured with a spectrophotometer Hewlett Packard 8453 at wavelengths of 592 nm (wavelength of maximal absorbance for RBBR) and 475 nm (wavelength allowing to monitor the byproducts) at room temperature in 3mL-spectrophotometric cuvettes. The calibration curve for the RBBR concentration and
its absorbance at 592 nm showed three distinct zones, each characterized by a specific linear relation between absorbance and concentration (see Fig. S.1 in Supporting Information).

The degree of decolorization (Y) is classically assessed by following the evolution of the absorbance associated with RBBR (Mechichi et al., 2006; Kunamneni et al., 2008; Hadibarata et al., 2012). This is calculated using:

$$\text{% Decolorization} = Y = \frac{\text{Abs}_0 - \text{Abs}(t)}{\text{Abs}_0}$$

where Abs_0 is the initial absorbance of the medium at 592 nm and $\text{Abs}(t)$ is the absorbance of the medium after a time t of reaction with laccase.

2.2.4. HPLC-UV analyses

In two experiments (EXP8 and EXP9 in Table 3), evolutions of RBBR and its byproducts were monitored using a HPLC Waters e2695 with a detector Photodiode Waters 2998. The column used was an Ascentis RP-C18 column (250×4.6 mm, particle size 5 µm) (Sigma Aldrich). The column temperature was 30 °C and the samples were maintained at 10 °C. The injection volume was 20 µL and the flow-rate was 1 mL/min. The mobile phase was composed by solvent A: ACN and solvent B: milliQ water. The gradient elution program was: 0–10 min, 0%–5% A; 10–25 min, 5%–50% A; 25–40 min, 50%–70% A and 40–50 min, 95% A. Samples were filtered (0.45 µm) before their injection in the HPLC. The results were analyzed using the Empower Pro (version 6.1.2154.917) software.

RBBR degradation (X) is assessed by following the evolution of the area under the peak associated with RBBR and is calculated as follows:

$$\text{% Degradation} = X = \frac{\text{Area}_0 - \text{Area}(t)}{\text{Area}_0}$$

where Area_0 is the initial area under the RBBR peak and $\text{Area}(t)$ is the area under the RBBR peak after a time t of reaction with the laccase.

Table 2

Kinetic parameters of the laccase-catalyzed degradation of RBBR (measurements by spectrophotometry).

<table>
<thead>
<tr>
<th>Laccase-producing strain</th>
<th>Laccase name</th>
<th>K_m (mM)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pleurotus ostreatus</td>
<td>POXA3</td>
<td>0.054</td>
<td>Palmieri et al. (2005)</td>
</tr>
<tr>
<td></td>
<td>POXC</td>
<td>0.051</td>
<td></td>
</tr>
<tr>
<td>Pleurotus florida</td>
<td></td>
<td>0.233</td>
<td>Sathishkumar et al. (2013)</td>
</tr>
<tr>
<td>Aspergillus sp.</td>
<td></td>
<td>0.064</td>
<td>Soares et al. (2001)</td>
</tr>
<tr>
<td>Trametes pubescens</td>
<td></td>
<td>1.065</td>
<td>Rodriguez-Couto (2011)</td>
</tr>
<tr>
<td>Trametes hispida</td>
<td>Laccase I</td>
<td>3.5</td>
<td>Rodriguez et al. (1999)</td>
</tr>
<tr>
<td></td>
<td>Laccase II</td>
<td>3.9</td>
<td></td>
</tr>
</tbody>
</table>

* Laccase-mediator system with 0.85 mM of N-hydroxybenzotriazole (HBT).
* Laccase produced by a genetically modified Aspergillus sp. strain.
* Laccase purified from a commercial formulation provided by Novo Nordisk.

Table 3

Experimental conditions used in the different assays. Temperature was controlled to be 20 °C (maximum variability of 0.2 °C); pH 5.0 (maximum variability of 0.2).

<table>
<thead>
<tr>
<th>Assay</th>
<th>RBBR$_0$ (mM)</th>
<th>E (U/L)</th>
<th>Reaction time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tha</td>
<td>expb</td>
<td>tha</td>
</tr>
<tr>
<td>EXP1</td>
<td>0.03</td>
<td>0.0320</td>
<td>3500</td>
</tr>
<tr>
<td>EXP2</td>
<td>0.30</td>
<td>0.305</td>
<td>3500</td>
</tr>
<tr>
<td>EXP3</td>
<td>0.30</td>
<td>0.307</td>
<td>3500</td>
</tr>
<tr>
<td>EXP4</td>
<td>0.30</td>
<td>0.305</td>
<td>3500</td>
</tr>
<tr>
<td>EXP5</td>
<td>0.30</td>
<td>0.310</td>
<td>2200</td>
</tr>
<tr>
<td>EXP6</td>
<td>0.30</td>
<td>0.315</td>
<td>3500</td>
</tr>
<tr>
<td>EXP7</td>
<td>1.00</td>
<td>1.17</td>
<td>3500</td>
</tr>
<tr>
<td>EXP8</td>
<td>1.00</td>
<td>1.20</td>
<td>3500</td>
</tr>
</tbody>
</table>

a Theoretical value.
b Measured value.
c Value giving the best fit between experimental data and model.
d Enzymatic activity not measured.
e Used for the adjustment of the parameters of the model.
3. Calculation

According to the literature (Hadibarata et al., 2012; Osma et al., 2010), the laccase-catalyzed degradation pathway of RBBR seems to consist of a enzymatic cleavage of RBBR into two unstable byproducts that are further evolving by non-enzymatic reactions (Fig. 2). The 22 carbon atoms of the RBBR are split in two molecules containing respectively 14 and 8 carbons as the byproducts (C\textsubscript{14} and C\textsubscript{8}). During the further reactions, the number of carbons in the byproducts is considered stable.

This pathway can be modeled to evaluate the concentrations of RBBR (S\textsubscript{22} (mol/L)) and its initial two byproducts (S\textsubscript{14} and S\textsubscript{8} (mol/L)). The enzymatic reaction step could be modeled by Michaelis–Menten kinetics. However, a first order kinetic was found to allow a good description of our data. So, for the sake of simplicity, a non-reversible first order kinetic law is used for this first step as well as for the further non-enzymatic transformations. Mass balances on the different components in batch write:

\[
\frac{dS_{22}}{dt} = -k_1 E S_{22}
\]

\[
\frac{dS_{14}}{dt} = k_1 E S_{22} - k_2 S_{14}
\]

\[
\frac{dS_{8}}{dt} = k_1 E S_{22} - k_3 S_{8}
\]

where \(t \) is the reaction time (s), \(E \) is the enzymatic activity (U/L), \(k_1 \) is the kinetic constant of the enzymatic degradation of RBBR (L/(Us)), \(k_2 \) and \(k_3 \) are the kinetic constants of the non-enzymatic degradation of C\textsubscript{14} and C\textsubscript{8} (s-1) respectively.

The solution of Eqs. (1),(2),(3) with initial conditions \(t = 0, S_{22} = \text{RBBR}_0 \) and \(S_{14} = S_{8} = 0 \) writes:

\[
S_{22} = \text{RBBR}_0 \exp (-k_1 E t)
\]

\[
S_{14} = \frac{k_1 E}{k_2 - k_1 E} \left[\frac{S_{22}}{\text{RBBR}_0} - \exp (-k_2 t) \right]
\]

\[
S_{8} = \frac{k_1 E}{k_3 - k_1 E} \left[\frac{S_{22}}{\text{RBBR}_0} - \exp (-k_3 t) \right]
\]

where \(\text{RBBR}_0 \) is the initial concentration of RBBR (mol/L).

Based on the comparison between the structure of the C\textsubscript{14} byproduct and some anthraquinone dyes (see Fig. 3), C\textsubscript{14} is supposed to absorb light in the range of the visible spectrum, leading to the observed shift of the color of the medium to a
4.2. Model validation

The determined values of the parameters are presented on Table 4. They were adjusted by fitting the model on the EXP3 data set (see Fig. 4). The obtained value of the molar attenuation coefficient of C\textsubscript{14} at 475 nm is higher than that obtained at 592 nm, which is coherent with the orange color that is supposed to be caused by C\textsubscript{14}.

The model gives a good reproduction of the evolution of the measured data at both 592 nm and 475 nm (see Fig. 4).

The modeled data using an infinite enzymatic activity (plain gray line in Fig. 4) shows that past 2500 s the experimental remaining absorbance is at a level similar to what would be achieved with infinite enzymatic activity. For this period, the experimental absorbance is dominated by the byproduct absorbance. Accelerating the enzymatic reaction, by rising the amount of enzyme in the system, will not allow to accelerate the absorbance reduction for these long times: in the proposed
Table 4
Values of the parameters used in the model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_1</td>
<td>3.44×10^{-7} LU$^{-1}$ s$^{-1}$</td>
</tr>
<tr>
<td>k_2</td>
<td>1.33×10^{-5} s$^{-1}$</td>
</tr>
<tr>
<td>$\epsilon_{C_{14},592}$</td>
<td>567 L mol$^{-1}$ cm$^{-1}$</td>
</tr>
<tr>
<td>$\epsilon_{C_{14},475}$</td>
<td>1150 L mol$^{-1}$ cm$^{-1}$</td>
</tr>
<tr>
<td>$\epsilon_{RBBR,592}$</td>
<td>4678.8 L mol$^{-1}$ cm$^{-1}$</td>
</tr>
<tr>
<td>$\epsilon_{RBBR,475}$</td>
<td>727.1 L mol$^{-1}$ cm$^{-1}$</td>
</tr>
</tbody>
</table>

Fig. 4. Evolution of the absorbance of the medium during EXP3 (0.307 mM RBBR, $E = 3400$ U/L, 20 °C, pH 5), ‘x’ = measured data, dotted line = EXP3 modeled data, gray plain line = modeled data for the limit case $E \to +\infty$. The parameters values are presented in Table 4.

model, the enzyme has no impact on the degradation of C_{14}. The lack of ability of the enzyme to accelerate this step is a direct consequence of the proposed mechanism. Neglecting that mechanism and assuming that the color degradation is controlled only by the enzymatic reaction would not allow to get that conclusion.

4.2.2. Cross validation
The aim of this section is to test the ability of the model to predict absorbance values obtained for other data sets using the parameters values determined on EXP3 (see Table 4).

On a global point of view, the model gives the right trend of experimental data, for both wavelength (see Fig. 5). However, the values of the absorbance at 592 nm are (slightly) underestimated in the case of EXP1, EXP8 and EXP9 and overestimated in the case of EXP5. In a similar way, the values of the absorbance at 475 nm are overestimated in the case of EXP8 and EXP9 and underestimated in the case of EXP5. The values of modeled absorbance obtained for all the other experiments are really close to the measured values.

A better correspondence between measured and modeled data can be obtained by considering E to be slightly different of the measured E (see Table 3, graphs not shown). That highlight a possible imprecision on the measured E that reverberates on the modeled data.

The differences between the modeled and measured values appears principally in the case of experiments conducted using values of RBBR$_0$ or E quite distant of those of EXP3 (used for the parameters adjustment). The real mechanisms underlying the transformation can be more complex than those considered here. In particular in the case of the non-enzymatic transformation of C_{14} leading to differences between the modeled data and the measured data might be more complex than a single first order process. Also, only one byproduct (C_{14}) has been assumed to keep an absorbance. However, other compounds on the C_{14} reaction chain could have a residual absorbance as well. Despite those differences, it is clear that even with that simple model combining an enzymatic step and a non-enzymatic step, a good validation is obtained, showing the right trends.

4.3. HPLC analysis
HPLC analyses show one peak, Peak 1, at 592 nm before the start of the reaction. That peak corresponds to RBBR (see Table 5). Once the reaction started, a second peak, Peak 2, is detected at both 592 nm and 475 nm and three peaks, Peaks A, B and C, are detected at 475 nm (Fig. S.3 in Supplementary Information shows examples of the obtained HPLC spectra). In further work, an optimization of the HPLC method should be needed to better separate the Peaks A, B and C.

The comparison between the evolution of the medium absorbance monitored by spectrophotometry at 592 nm and the evolution of Peak 1 area shows that the observed decrease in the absorbance of the medium is caused by the degradation of RBBR (Fig. 6a and c). The higher absorbance retained with the spectrophotometry monitoring is caused by the residual absorbance of byproducts at 592 nm. Similarly, the comparison between the evolution of the medium absorbance monitored by spectrophotometry at 475 nm and the evolution of Peak A area shows that the observed increase in the absorbance of the
Fig. 5. Comparison of the model with other experimental data sets. The model appears as a dotted line of the same color than the data set it describes. The modeled data were calculated using the measured values of E and $RBBR_0$ (see Table 3). The parameters values are presented in Table 4. All the experiments were realized at 20°C and pH5. (a) EXP2 = △, EXP4 = ■ and EXP7 = ●, (b) EXP5 = ◢ and EXP6 = ★, (c) EXP1 = ▽, (d) EXP8 = + and EXP9 = ◐.
Table 5
Characteristics of the peaks detected through HPLC analysis.

<table>
<thead>
<tr>
<th>Peak name</th>
<th>λ of detection</th>
<th>Retention timea</th>
<th>Compoundb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak 1</td>
<td>592 nm</td>
<td>20.3 – 22.9 min</td>
<td>RBBRf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21.1 – 22.2 min</td>
<td></td>
</tr>
<tr>
<td>Peak 2</td>
<td>592 nm</td>
<td>29.4 – 29.9 min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>475 nm</td>
<td>28.6 – 28.9 min</td>
<td></td>
</tr>
<tr>
<td>Peak A</td>
<td>475 nm</td>
<td>20.8 – 21.6 min</td>
<td>C14f</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.4 – 20.9 min</td>
<td></td>
</tr>
<tr>
<td>Peak B</td>
<td>475 nm</td>
<td>22.4 – 23.4 min</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>22.4 – 22.7 min</td>
<td></td>
</tr>
<tr>
<td>Peak C</td>
<td>475 nm</td>
<td>24.4 – 25.0 min</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>23.7 – 24.1 min</td>
<td></td>
</tr>
</tbody>
</table>

a Retention times changed over time in relation with the concentrations.
b Compound causing the peak when identified.
c EXP8.
d EXP9.
e The decision to assign Peak 1 to RBBR is based on the fact that Peak 1 is detected at the wavelength of maximum absorbance of RBBR (592 nm) and the detection of Peak 1 when we ran tests using RBBR alone in solution (as a standard).
f The decision to assign Peak A to C14 is motivated by the facts that Peak A is detected only when RBBR is degraded by laccase so it is a byproduct of the degradation and it is detected at 475 nm which is coherent with the orange coloration that appears in the medium. From the byproducts of the laccase-catalyzed degradation of RBBR whose structure is described in literature (structures shown in Fig. 2), the molecular structure of C14 is the only one that shows similarities to those of red anthraquinone dyes (as shown in Fig. 3) so the only one that can be linked to an orange coloration. No standard was run for C14 as there was no standard available.

The model gives a good prediction of the evolution of RBBR concentration even if values are slightly underestimated after the 5000 first seconds (see Fig. 6c). The modeled values of C14 concentration follow the right trend (see Fig. 6d).

Evolution of Peak B area is similar to that of Peak 1 (Figs. 7a and 6c). Moreover, a direct relation exists between the areas under the two peaks (see Fig. S.5 in Supporting Information). Then Peak B is supposed to be caused by RBBR absorbing at 475 nm (maybe in an oxidized form).

Comparison between decolorization results (obtained from evolution of the medium absorbance) and RBBR degradation results (obtained from the evolution of the peak area with HPLC-UV analysis) shows that using decolorization as an indicator of RBBR degradation leads to an underestimation of the real degradation (Fig. 8) of up to 10%. Indeed, for a fixed value of RBBR degradation (X in Fig. 8), the largest difference between the value of the decolorization of the medium (Y in Fig. 8) obtained for a theoretical case “Y = X” and the Y value obtained both experimentally and with the model is around 10% of the value of X. It also shows that even a good RBBR degradation is not sufficient to make the medium colorless (see Fig. S.4 in Supporting Information). This can be explained by the fact that at least one of RBBR byproducts – identified as C14 on the basis of its structure – has an orange color.

5. Conclusion

During the enzymatic degradation of RBBR, a significant difference (up to 10%) appears between the level of RBBR degradation and the level of obtained decolorization. The estimation of RBBR degradation based only on the degree of decolorization of the medium is underestimated. This can be attributed to the existence of a reaction mechanism in which some byproduct still absorbs in the visible range. Using only the decolorization as factor to evaluate the kinetics and to design treatment solutions could lead to wrong evaluation of the amount of enzymes to use. This stresses the importance of understanding the mechanisms underlying the reaction when dealing with micropollutants degradation.

Yet, the model proposed here to describe the degradation of RBBR and the formation of degradation products stays quite simple but is able to have some measure of predictive ability. Even if the precision of the developed model – and then its predictive ability – decreases when applied to conditions of RBBR concentrations and enzymatic activity distant from those used for the determination of the parameters, that model still predicts the correct trend and allow for an interesting mechanistic analysis. Contrary to a single first order equation, the developed model allows to take into account the existence of a maximum degradation achievable in a given time using laccases, even with a very large amount of enzymes. That observation is important in the objective to develop a laccase-based treatment of RBBR and other dyes that could present similar behavior when reacting with laccases.
Fig. 6. RBBR degradation monitored by both spectrophotometry and HPLC-UV (RBBR₀ 1 mM, 20 °C, pH 5), EXP8 = + and EXP9 = o, the model appears as a black dotted line for EXP8 and as a gray plain line for EXP9. The parameters values are presented in Table 4. (a) Temporal evolution of the absorbance of the reactional medium at 592 nm (normalized by its initial value), (b) Temporal evolution of the absorbance of the reactional medium at 475 nm (normalized by its maximal value), (c) Temporal evolution of the area of Peak 1 detected at 592 nm by HPLC-UV (normalized by its initial value), (d) Temporal evolution of the area of Peak A detected at 475 nm by HPLC-UV (normalized by its maximal value).

Fig. 7. Other results obtained for RBBR degradation monitored by HPLC-UV (RBBR₀ 1 mM, 20 °C, pH 5), EXP8 = + and EXP9 = o, (a) Temporal evolution of the area of Peak B detected at 475 nm by HPLC-UV (normalized by its maximal value), (b) Temporal evolution of the area of Peak C detected at 475 nm by HPLC-UV (normalized by its maximal value), (c) Temporal evolution of the area of Peak 2 detected at 592 nm by HPLC-UV (normalized by its maximal value).

Acknowledgments

Rosalie Pype acknowledges financial support from the Fonds de la Recherche Scientifique - FNRS in the form of a grant of the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA), Brussels, Belgium.

Declaration of interest

Declarations of interest: none
Fig. 8. Comparison between decolorization of the medium (Y) and RBBR degradation (X). \(\text{EXP8} = + \) and \(\text{EXP9} = \circ \). The plain line represents the case \(Y = X \). The model appears as a dotted line of the same color than the data set it describes. The modeled data of the two experiments overlap in this case.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.eti.2019.100324.

References

