
A Online Supplement to ”The Myopic Stable

Set for Social Environments”

A.1 Examples

Example A.1. In this example, we describe a social environment which has no

MSS when iterated external stability is used in the definition instead of asymptotic

external stability.

Consider the social environment Γ = ({1}, (X, d), E,�1), where the state space

is given by X = {1/k|k ∈ N}∪{0} and d(x, y) = |x−y|. Note that X is compact.

Preferences �1 are defined by x �1 y if and only if x = y or x < y. The effectivity

correspondence E is such that {1} ∈ E(1/k, 1/(k + 1)) for every k ∈ N and

E(x, y) = ∅ otherwise. It follows that

f( 1
k
) =

{
1
k
, 1
k+1

}
.

Observe that 0 ∈ f∞(x) for every x ∈ X and that f(0) = {0}. It now follows

easily that {0} is an MSS.

We show that there is no closed set satisfying iterated external stability to-

gether with deterrence of external deviations and minimality. Towards a contra-

diction, suppose that the closed set M ⊆ X satisfies these properties. Since, for

every k ∈ N, 0 /∈ fN (1/k), the set {0} does not satisfy iterated external stability.

Given that M 6= {0} and M is non-empty, there is k ∈ N such that 1/k ∈M . Let

k be the smallest such number. From deterrence of external deviations, we have

that also 1/(k + 1) ∈ M . Based on the corresponding properties of M , it is easy

to verify that the closed, non-empty set M ′ = M \ {1/k} satisfies deterrence of

external deviations and iterated external stability. Since M ′ is a proper subset of

M , M violates the minimality property.

Example A.2. In the next example, we consider an infinite social environment

for which there is more than one MSS.

Consider the social environment Γ = ({1}, (X, d), E,�1), where

X = {0, 1
2
, 1} ∪

{
1
k
| k ∈ N \ {1, 2}

}
∪
{

1− 1
k
| k ∈ N \ {1, 2}

}
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and the metric is given by d(x, y) = |x− y|.

The effectivity correspondence is such that the individual can move from both

states 0 and 1 to state 1/2 and, for every k ∈ N \ {1, 2}, from state 1 − 1/k to

state 1/k and from state 1/k to state 1− 1/(k + 1). The individual cannot make

any other moves. The preferences of the individual are such that

2
3
≺1

1
3
≺1

3
4
≺1

1
4
≺1

4
5
≺1

1
5
≺1 · · · ≺1 1 ≺1 0 ≺1

1
2
.

We claim that both {0, 1/2} and {1/2, 1} are myopic stable sets. Since the effec-

tivity correspondence admits no move outside the respective sets, both {0, 1/2}

and {1/2, 1} satisfy deterrence of external deviations. For asymptotic external

stability, observe that for every k ∈ N \ {1, 2} it holds that {0, 1} ⊂ f∞(1/k)

and {0, 1} ⊂ f∞(1 − 1/k). Moreover, we have 1/2 ∈ f(0) = f∞(0) and 1/2 ∈

f(1) = f∞(1). For minimality, the sets {0} and {1} violate deterrence of external

deviations since 1/2 ∈ f(0) and 1/2 ∈ f(1). The set {1/2} violates asymptotic

external stability as 1/2 /∈ f∞(x) for any x ∈ X different from 0, 1/2 and 1.

Example A.3. This example provides a social environment in which the effectiv-

ity correspondence is lower hemi-continuous and the preferences are continuous,

but where the weak dominance MSS is not unique.

Consider the social environment Γ = ({1, 2}, (X, d), E, (�1,�2)), where

X = {(0, 0), (1, 0), (2, 0)} ∪ {(0, 2
k
), (1, 1

k
), (2, 1

k
)|k ∈ N}

and d is the Euclidean metric on X, so d(x, y) = ‖x− y‖2. It clearly holds that X

is compact.

Individual 1 only cares about the first component of the state while individual

2 only cares about the second component. Both individuals prefer states where

the component they care about is lower over states where it is higher. Note that

these preferences are continuous.

The effectivity correspondence is as follows. For every k ∈ N, the singleton

{1} can move from state (2, 1/k) to state (1, 1/k) and the singleton {2} can move

from state (1, 1/k) to state (2, 1/(k+ 1)). Moreover, for every k ∈ N, the singleton
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{2} can move from state (0, 2/k) to state (1, 1/k). Coalition {1, 2} can move from

states (1, 0) and (2, 0) to state (0, 0) and, for every k ∈ N, from states (1, 1/k) and

(2, 1/k) to state (0, 2/k). No other moves are possible.

To see that the effectivity correspondence is lower hemi-continuous, let the se-

quence (xk)k∈N in X be such that xk → x. There are only three relevant sequences

of states in X: the sequence ((0, 2/k))k∈N, the sequence ((1, 1/k))k∈N , and the

sequence ((2, 1/k))k∈N. The first converges to (0, 0), the second to (1, 0), and the

third to (2, 0).

Let some x ∈ {(0, 0), (1, 0), (2, 0)} be given. SinceG{1}(x) = {x} andG{2}(x) =

{x}, it is immediate that G{1} and G{2} are lower hemi-continuous.

For G{1,2}, the only non-trivial cases are x = (1, 0) and x = (2, 0). We give the

argument for state x = (1, 0) explicitly. The argument for state (2, 0) follows by

symmetry. For every y ∈ G{1,2}(1, 0) we have to find a sequence (yk)k∈N such that

yk ∈ G{1,2}(1, 1/k) and yk → y. If y = (0, 0), we take the sequence ((0, 2/k))k∈N.

If y = (1, 0), we take the sequence ((1, 1/k))k∈N.

Since f∞(0, 0) = {(0, 0)}, f∞(1, 0) = {(1, 0)}, and f∞(2, 0) = {(2, 0)}, it

follows from asymptotic external stability that {(0, 0), (1, 0), (2, 0)} is a subset of

any MSS. Since this set satisfies deterrence of external deviations and asymptotic

external stability, it follows from minimality that the unique MSS is equal to

{(0, 0), (1, 0), (2, 0)}.

On the other hand, both sets {(0, 0), (1, 0)} and {(0, 0), (2, 0)} are a weak dom-

inance MSS. Indeed, from both (1, 0) and (2, 0), the coalition {1, 2} can deviate to

(0, 0) if only weak dominance is imposed. To satisfy asymptotic external stability,

it is sufficient that on top of the state (0, 0), either the state (1, 0) or the state

(2, 0) should be present. By minimality, it follows that only one of these states is

included.

Example A.4. This example demonstrates that the stochastic approach to infi-

nite environments based on irreducibility of the Markov chain can deliver predic-

tions that differ drastically from those of the MSS.

Consider the social environment Γ = (N, (X, d), E, (�i)i∈N), where N = {1, 2},
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X = [0, 1]× [0, 1], and the metric is d(x, y) = ‖x− y‖1 = |x1− y1|+ |x2− y2|. The

effectivity correspondence is such that individual 1 can change the first component

of the state and individual 2 the second component, so {1} ∈ E(x, y) if and only

if x2 = y2 and {2} ∈ E(x, y) if and only if x1 = y1. The coalition {1, 2} is never

effective. The preferences of the individuals are such that

x �1 y if and only if 2x1x2 − x1 − x2 ≥ 2y1y2 − y1 − y2,

x �2 y if and only if 2x1x2 − x1 − x2 ≤ 2y1y2 − y1 − y2.

It is not hard to see that this social environment corresponds to the normal-form

game of matching pennies, where x1 is the probability of the row player choosing

“up” and x2 is the probability of the column player choosing “left”. The unique

Nash equilibrium of this game is equal to x∗ = (1/2, 1/2).

For every x ∈ X, we define

f1(x) =


{y ∈ X | y1 ≤ x1 and y2 = x2} if x2 <

1
2
,

{x} if x2 = 1
2
,

{y ∈ X | y1 ≥ x1 and y2 = x2} if x2 >
1
2
,

f2(x) =


{y ∈ X | y1 = x1 and y2 ≥ x2} if x1 <

1
2
,

{x} if x1 = 1
2
,

{y ∈ X | y1 = x1 and y2 ≤ x2} if x1 >
1
2
,

so we can express the dominance correspondence as

f(x) = f1(x) ∪ f2(x).

We consider the better-response dynamics where each element of f(x) is se-

lected with equal probability. To do so, we define ρ1 : X → [0, 1] and ρ2 : X →

[0, 1] as the functions that project x on its first and second coordinate, respectively.

We use λ to denote the Lebesgue measure. Let B(X) denote the Borel σ-algebra

on X. The transition probability kernel resulting from better-response dynamics
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is obtained by defining, for every x ∈ X, and for every A ∈ B(X),

Q(x,A) =



0 if x = (1
2
, 1

2
) /∈ A,

1 if x = (1
2
, 1

2
) ∈ A,

2λ(ρ1(A ∩ f1(x))), if x1 = 1
2
, x2 6= 1

2
,

2λ(ρ2(A ∩ f2(x))), if x1 6= 1
2
, x2 = 1

2
,

λ(ρ1(A∩f1(x)))+λ(ρ2(A∩f2(x)))
λ(ρ1(f1(x)))+λ(ρ2(f2(x)))

, if x1 6= 1
2
, x2 6= 1

2
.

The first and second equality above show that the better-response dynamics never

leaves the Nash equilibrium once reached. The third equality concerns the case

where only player 1 likes to move. Observe that if x1 = 1/2 and x2 6= 1/2, then

λ(ρ1(f1(x))) = 1/2, which explains the multiplication by 2. A similar remark

applies to the fourth equality above. For the last equality, notice that x1 6= 1/2

and x2 6= 1/2 implies that λ(ρ1(f1(x))) > 0 or λ(ρ2(f2(x))) > 0, so there is no

division by zero.
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Figure 1: Better-response dynamics for the game of matching pennies.

The Markov process is illustrated in Figure 1. The arrows indicate the direction

in which a state changes. A typical state can change in two directions, either west
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or east and either north or south, thereby generating two line segments on which

the next state lies.

For every A ∈ B(X), Q(·, A) is a measurable function on X, but it is in

general not continuous. For instance, if A = {x∗}, then Q(x,A) = 1 if x = x∗

and Q(x,A) = 0, otherwise. Indeed, the state x∗ does not belong to f(x) unless

x = x∗ and in that case f(x∗) = {x∗}.

In this setting and other settings with an infinite state space, the Markov

chain returns to a given state with probability zero, so the concept of a recurrent

state is of less use and importance. Instead, for infinite settings, the property of

irreducibility is often studied, which expresses that all parts of the state space can

be reached by the Markov chain, no matter what the starting point is. Given a

state x ∈ X and a set A in the Borel σ-algebra B(X) on X, let L(x,A) denote

the probability that the Markov chain has a realization belonging to A at some

point in the future when starting from x. Let ϕ be the measure on X that assigns

to each set in B(X) its Lebesgue measure. A Markov process (X,Q) is called

ϕ-irreducible if for every A ∈ B(X) such that ϕ(A) > 0 it holds that L(x,A) > 0

for every x ∈ X.

The Markov process (X,Q) in Example A.4 is such that X can be decomposed

in two parts, namely {x∗} and X \ {x∗}. There is no transition between these two

sets of states and the restriction of the Markov process to each set is irreducible.

This is obvious for {x∗}. The next result shows this for X \ {x∗}.

Theorem A.5. The restriction of the Markov process (X,Q) in Example A.4 to

X \ {x∗} is ϕ-irreducible.

Proof. According to Proposition 4.2.1 of Meyn and Tweedie (1993), we have to

show that for every x ∈ X \ {x∗}, for every A ∈ B(X \ {x∗}) such that ϕ(A) > 0,

there exists k ∈ N such that Qk(x,A) > 0, where Qk(x,A) denotes the probability

of reaching A from x in k transitions.
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It is convenient to partition the set X \ {x∗} in four subsets,

X1 = {x ∈ X | x1 ≤ 1
2
, x2 >

1
2
},

X2 = {x ∈ X | x1 >
1
2
, x2 ≥ 1

2
},

X3 = {x ∈ X | x1 ≥ 1
2
, x2 <

1
2
},

X4 = {x ∈ X | x1 <
1
2
, x2 ≤ 1

2
}.

Let some x ∈ X4 and some A ∈ B(X \ {x∗}) such that ϕ(A) > 0 be given. We

partition A in the four subsets A1 ⊆ X1, A2 ⊆ X2, A3 ⊆ X3, and A4 ⊆ X4. At

least one of these four sets has positive Lebesgue measure. From x, the probability

to reach a point in the set Y 1 = {y1 ∈ X1 | y1
1 = x1} is at least 1/3 and the

probability distribution over Y 1 is uniform. From y1 ∈ Y 1, the probability to reach

a point in the set Y 2(y1) = {y2 ∈ X2 | y2
2 = y1

2} is at least 1/3 and the probability

distribution over Y 2(y1) is uniform. Thus, the probability to reach a point in X2

after 2 transitions is at least 1/9 and, conditional on reaching X2, the distribution

of this point is uniform on X2. It now follows that Q2(x,A) ≥ ϕ(A2)/9. Repeating

this argument, we find that Q3(x,A) ≥ ϕ(A3)/27, Q4(x,A) ≥ ϕ(A4)/81, and

Q5(x,A) ≥ ϕ(A1)/243. Since at least one of A1, A2, A3, and A4 has strictly

positive Lebesgue measure, we have shown that the restriction of the Markov

process to X \ {x∗} is ϕ-irreducible. An analogous argument holds for x ∈ X i,

where i 6= 4.

Example A.4 shows that for the social environment corresponding to the normal-

form game of matching pennies, none of the strategy profiles is singled out by the

stochastic better-response dynamics. In contrast, we show in Section A.6 that the

MSS is unique and consists of the Nash equilibrium x∗.

Example A.6. In this example, we show that the coalition structure core does

not satisfy iterated external stability.

Let (N, v) be a coalition function form game such thatN = {1, 2, 3}, v({1, 2}) =

1, and v({2, 3}) = 1. All other coalitions have a coalitional value of 0. Thus,

player 2 can choose to form a coalition with either player 1 or player 3 to form

a two-person coalition generating a surplus equal to one. The coalition struc-

ture core therefore consists of only two states, y and y′, with equal payoffs,
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u(y) = u(y′) = (0, 1, 0), and coalitional structures π(y) = {{1, 2}, {3}} and

π(y′) = {{1}, {2, 3}}.

Consider an initial state x0 ∈ X such that π(x0) = {{1}, {2}, {3}} and u(x0) =

(0, 0, 0). Under our notion of a myopic improvement, where all players involved

in a move have to gain strictly, a state x1 6= x0 belongs to f(x0) if and only

if either π(x1) = {{1, 2}, {3}} and u(x1) = (ε, 1 − ε, 0) for some ε ∈ (0, 1) or

π(x1) = {{1}, {2, 3}} and u(x1) = (0, 1− ε, ε) for some ε ∈ (0, 1). It follows that

x1 is a state where either player 1 or player 3 receives a payoff of zero and the

other two players receive a strictly positive payoff summing up to 1.

Now consider any state xk such that either player 1 or player 3 receives 0

and the other two players receive a strictly positive payoff summing up to 1. We

claim that any state xk+1 ∈ f(xk) has the same properties. Without loss of

generality, assume that u3(xk) = 0. Let xk+1 be an element of f(xk) different from

xk. Since u1(xk) + u2(xk) = 1, the moving coalition is {2, 3} and it holds that

π(xk+1) = {{1}, {2, 3}}. Moreover, it must also hold that u2(xk+1) > u2(xk) > 0

and u3(xk+1) > u3(xk) = 0, which proves the claim. Thus, for every k ∈ N, if

xk ∈ fk(x0) \ {x0}, then xk is such that there are two players with a strictly

positive payoff. It follows that there is no k ∈ N such that xk belongs to the

coalition structure core.

A.2 Three-player Simple Games and the vNM Stable Set

Let (N, v) be a coalition function form game with N = {1, 2, 3} corresponding to

a proper simple game. Let Γ be the social environment induced by the γ-model.

We compare the prediction of the MSS with the vNM stable set of Γ. The coalition

function form game keeps track of the partition of the set of players and imposes

that a coalition fully distributes its surplus between its members. The model of

coalition function form games is therefore different from the one of transferable

utility games. Hence, we cannot rely on the description of the vNM stable sets for

three-player simple games as given in Lucas (1992), but have to derive them from

scratch instead.
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We restrict ourselves to the three most interesting cases: there is one win-

ning two-player coalition, without loss of generality {1, 3}; there are two winning

two-player coalitions, without loss of generality {1, 2} and {2, 3}; all two-player

coalitions are winning. The second case is known as the three-person veto-power

game and the third case as the three-person simple majority game.

The first example shows that if {1, 3} is the only winning two-player coalition,

then the MSS and the vNM stable set are unique and equal to the coalition

structure core. The prediction is therefore that either coalition {1, 3} or coalition

{1, 2, 3} forms and payoffs are such that the entire surplus is shared between

players 1 and 3.

Example A.7. Assume coalition {1, 3} is the only winning two-player coalition

and singletons are not winning. By direct computation or by Step 2 of the proof

of Theorem 4.4, it holds that the core of Γ is equal to the coalition structure core

of (N, v), so

Y = {y ∈ X | {1, 3} ∈ π(y) or [{1, 2, 3} ∈ π(y) and u2(y) = 0]}.

By Theorem 4.4, the MSS of Γ is unique and equal to Y. So either coalition {1, 3}

forms or the grand coalition forms and payoffs are such that the entire surplus is

shared between players 1 and 3.

We argue that the vNM stable set is unique and equal to Y as well. Let V

be a vNM stable set. For every y ∈ Y it holds that f(y) = {y}, so by external

stability Y ⊆ V. We show that Y satisfies external stability. Let x /∈ Y be given.

If {1, 2, 3} /∈ π(x), then x does not contain a winning coalition, so u(x) = (0, 0, 0),

and y ∈ Y defined by π(y) = {{1, 3}, {2}} and u(y) = (1/2, 0, 1/2) satisfies

y ∈ f(x). If {1, 2, 3} ∈ π(x), then x /∈ Y implies u2(x) > 0. Now y ∈ Y defined

by π(y) = {{1, 3}, {2}} and u(y) = (u1(x) + u2(x)/2, 0, u3(x) + u2(x)/2) satisfies

y ∈ f(x). We have shown that the core of Γ satisfies external stability. It must

therefore be the unique vNM stable set.

We now turn to the three-person veto-power game, with player 2 being the

veto player. The MSS is unique and equal to the coalition structure core, so one
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of the winning coalitions forms and player 2 gets the entire surplus. The MSS

therefore has three elements, depending on the winning coalition that forms. We

argue that there are two vNM stable sets, both having a continuum of elements

and containing the MSS as a proper subset. In an element of the vNM stable

set it holds that a winning coalition forms and the entire surplus is either shared

between players 1 and 2 or between players 2 and 3. It is not excluded that the

veto player gets a payoff of 0.

Example A.8. Assume singletons are not winning and {1, 2} and {2, 3} are the

winning two-player coalitions. By direct computation or by Step 2 of the proof of

Theorem 4.4, it holds that the core of Γ is equal to the coalition structure core of

(N, v), so to the set

Y = {y ∈ X | π(y) ∩W 6= ∅ and u2(y) = 1}.

There are three states in Y. One of the winning coalitions {1, 2}, {2, 3}, and

{1, 2, 3} forms and players 1 and 3 receive a payoff of 0. By Theorem 4.4, the MSS

of Γ is unique and equal to Y.

We argue that there are two vNM stable sets, both having a continuum of

elements and containing the MSS as a proper subset. Let V be a vNM stable set.

To satisfy external stability, it must hold that Y ⊆ V. Since states in Y do not

dominate any other state, it follows by external stability that V contains Y as a

proper subset. States x ∈ X such that π(x)∩W = ∅ or π(x) = {{1, 2, 3}} do not

dominate any state where a two-player winning coalition forms. It therefore follows

from external stability that V contains a state x1 ∈ X \Y such that {1, 2} ∈ π(x1)

or {2, 3} ∈ π(x1). Without loss of generality, assume that {1, 2} ∈ π(x1). Notice

that u1(x1) > 0 since x1 ∈ X \ Y. We distinguish between two cases: Case 1.

There is x2 ∈ V \Y such that {2, 3} ∈ π(x2). Case 2. For every x ∈ V \Y it holds

that {2, 3} /∈ π(x).

Case 1. Since x2 ∈ V \ Y, it holds that u3(x2) > 0. In order to satisfy internal

stability, it must hold that u2(x1) = u2(x2) and therefore u1(x1) = u3(x2). Internal

stability implies that there cannot be any other x ∈ V \Y such that π(x) contains

{1, 2} or {2, 3}. Now x3 ∈ X \ V such that π(x3) = {{1, 2}, {3}} and u2(x1) <
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u2(x3) is not dominated by an element of V, so V does not satisfy external stability,

and we have obtained a contradiction.

Case 2. None of the states x ∈ X such that π(x) = {{1, 2}, {3}} is dominated

by a state in V, so every such state must belong to V to satisfy external stability.

The same applies to a state x ∈ X such that π(x) = {{1, 2, 3}} and u3(x) = 0.

We have that the set

V ′ = {x ∈ X | π(x) ∩ {{1, 2}, {2, 3}, {1, 2, 3}} 6= ∅ and u3(x) = 0}

is a subset of V. Notice that V ′ contains a single element with {2, 3} as the winning

coalition, a continuum of elements with {1, 2} as the winning coalition, and a

continuum of elements with {1, 2, 3} as the winning coalition. It is easily verified

that all states in X \ V ′ are dominated by an element that belongs to V ′. None of

the elements in V ′ dominate each other. We have therefore shown that

V = {x ∈ X | π(x) ∩ {{1, 2}, {2, 3}, {1, 2, 3}} 6= ∅ and u3(x) = 0}.

By symmetry it follows that

{x ∈ X | π(x) ∩ {{1, 2}, {2, 3}, {1, 2, 3}} 6= ∅ and u1(x) = 0}

is a vNM stable set as well. This exhausts all possibilities.

We finally turn to the three-player simple majority game. The MSS is unique

and equal to the set of states such that a two-player winning coalition forms. We

argue that there are four vNM stable sets, none of them being a subset of the

MSS or containing the MSS as a subset. Every vNM stable set contains elements

where the grand coalition forms. The union of the four vNM stable sets contains

the MSS as a proper subset.

Example A.9. Assume all two-player coalitions are winning, whereas all single-

tons are not winning. It follows from Theorem 4.5 that the MSS is unique and

equal to the set

F (X) = {x ∈ X | π(x) ∩ {{1, 2}, {1, 3}, {2, 3}} 6= ∅}.
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In particular, it is excluded that the grand coalition forms.

Let V be a vNM stable set. Let x ∈ X be a state such that π(x) ∩ W = ∅,

or π(x) contains a two-player winning coalition with one of the players in that

coalition having a payoff of 1, or π(x) = {{1, 2, 3}}. Since x does not dominate

any state in F (X), it follows by external stability that V contains an element

x1 ∈ F (X) with payoffs being strictly positive for both players in the winning

coalition. Without loss of generality, assume that {1, 2} ∈ π(x1). We distinguish

between two cases: Case 1. There is x2 ∈ V such that {1, 3} or {2, 3} belongs to

π(x2) and u3(x2) > 0. Case 2. For every x ∈ V it holds that if {1, 3} or {2, 3}

belongs to π(x), then u3(x) = 0.

Case 1. Without loss of generality, assume {1, 3} ∈ π(x2). To satisfy internal

stability, it must hold that u1(x1) = u1(x2) and therefore u2(x1) = u3(x2). There

cannot be a state x ∈ V \ {x1, x2} such that {1, 2} ∈ π(x) or {1, 3} ∈ π(x) and

u1(x) < 1 since otherwise internal stability would be violated.

Suppose, in order to derive a contradiction, that there is no state x ∈ V with

{2, 3} ∈ π(x). If u1(x1) ≥ 1/2, then the state x ∈ X such that π(x) = {{2, 3}, {1}}

and u(x) = (0, 1/2, 1/2) is not dominated by an element of V. If u1(x1) < 1/2,

then the state x ∈ X such that π(x) = {{1, 2}, {3}} and u(x) = (1/2, 1/2, 0) is not

dominated by an element of V. Since V satisfies external stability, we have obtained

a contradiction. Consequently, there is a state x3 ∈ V such that {2, 3} ∈ π(x).

In order not to violate internal stability, it must hold that u2(x3) = u2(x1)

and u3(x3) = u3(x2). Since u2(x1) = u3(x2), this is only possible if u(x3) =

(0, 1/2, 1/2). It follows that u(x1) = (1/2, 1/2, 0) and u(x2) = (1/2, 0, 1/2). We

define x4, x5, x6 ∈ X by π(x4) = π(x5) = π(x6) = {{1, 2, 3}} and u(x4) = u(x1),

u(x5) = u(x2), and u(x6) = u(x3). It is easily verified that all states in X \

{x1, . . . , x6} are dominated by x1, x2, or x3. The states x1, . . . , x6 do not dominate

each other. This yields V = {x1, . . . , x6} as the unique vNM stable set satisfying

the assumptions of Case 1.

Case 2. None of the states x ∈ X such that π(x) = {{1, 2}, {3}} is domi-

nated by a state in V, so every such state must belong to V to satisfy external
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stability. The same applies to states x ∈ X such that π(x) = {{1, 3}, {2}},

π(x) = {{2, 3}, {1}}, or π(x) = {{1, 2, 3}} and u3(x) = 0. We have that the set

V ′ = {x ∈ X | π(x) ∩ {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} 6= ∅ and u3(x) = 0}

is a subset of V. It is easily verified that all states in X \ V ′ are dominated by an

element that belongs to V ′. It follows that

V = {x ∈ X | π(x) ∩ {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} 6= ∅ and u3(x) = 0}.

We can easily check that V satisfies internal stability as well.

By symmetry it follows that

{x ∈ X | π(x) ∩ {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} 6= ∅ and u1(x) = 0},

{x ∈ X | π(x) ∩ {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} 6= ∅ and u2(x) = 0},

are vNM stable sets as well. This exhausts all possibilities.

A.3 Proper Simple Games and the δ-Model

Let (N, v) be a coalition function form game. The effectivity correspondence E

is said to be induced by the δ-model if it satisfies coalitional sovereignty and for

every x, y ∈ X, for every S ∈ E(x, y), for every T ∈ π(x) such that T \ S 6= ∅,

it holds that T \ S ∈ π(y). The latter condition simply expresses that residual

players in some coalition stay together after coalition S leaves. Typically, it is

assumed that the change in payoffs of the residual players in a given coalition has

the same sign. When we restrict the analysis to proper simple games, we can

obtain a characterization of the MSS without any such additional assumptions.

Let (N, v) be a coalition function form game such that v is a proper simple

game with an empty core. We define the subset F ′(X) of X as the set of states such

that its partition contains a winning coalition different from the grand coalition:

F ′(X) = {x ∈ X | π(x) ∩ (W \ {N}) 6= ∅}.

It holds that F (X) ⊆ F ′(X), where F (X) is defined in the main text. The

only difference between these two sets is that F ′(X) does not require the non-

winning coalitions in π(x) to be singletons. In terms of payoff vectors that can be

supported, there is no difference between F (X) and F ′(X).
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Theorem A.10. Let (N, v) be a coalition function form game such that v is a

proper simple game with an empty core and let Γ = (N, (X, d), E, (�i)i∈N) be the

social environment induced by the δ-model. It holds that the MSS of Γ is unique

and equal to F ′(X).

Proof. The proof that F ′(X) satisfies deterrence of external deviations follows

exactly the same steps as the corresponding part of the proof of Theorem 4.5.

The same is true for the proof of asymptotic external stability of F ′(X). The only

difference is that there is no need to verify that the non-winning coalitions are

singletons.

We complete the proof by showing that for every x ∈ F ′(X) it holds that

f∞(x) = F ′(X). Let some x, y ∈ F ′(X) be given and denote the winning coalition

in π(y) by W. We have to show that for every ε > 0 there exists k′ ∈ N and

z ∈ fk′(x) such that z ∈ Bε(y).

Let some ε ∈ (0, 1/n) and S ∈ π(y) \ {W} be given. By following exactly the

same steps as in the proof of Theorem 4.5 it can be shown that there is k ∈ N

and xk ∈ fk(x) such that for every i ∈ N \ S, ui(xk) < ε/n and π(xk) contains a

winning coalition. Since
∑

i∈N\S ui(x
k) < 1, it follows that

∑
i∈S ui(x

k) > 0 and

that S has a non-empty intersection with the winning coalition in π(xk).

Write π(y) as {S1, . . . , S`
′} with S1 = S and S`

′
= W. For ` = 1, . . . , `′− 2, let

xk+` ∈ X be such that π(xk+`) = {S1, . . . , S`, S`+1∪· · ·∪S`′}, uS`+1∪···∪S`′ (xk+`)�

uS`+1∪···∪S`′ (xk+`−1) and for every i ∈ W, ui(x
k+`) < ε/n. In step `, coalition

S`+1∪· · ·∪S`′ forms and increases the payoffs of its members, whereas the payoffs

of the players in W are kept strictly below ε/n. Coalition S` becomes part of

π(xk+`) as a residual set of players. Since
∑

i∈S` ui(x
k+`−1) > 0, such a state xk+`

exists.

We define the possibly empty set W 0 = {i ∈ W | ui(y) ≤ ε/n}. Let w ∈ W be a

player such that uw(y) ≥ 1/n. Let z ∈ X be such that π(z) = π(y) = {S1, . . . , S`
′}
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and

uj(z) =


ε
n
, j ∈ W 0,

uj(y), j ∈ W \ (W 0 ∪ {w}),

uw(y)−
∑

i∈W 0( εn − ui(y)), j = w.

For every j ∈ W 0 it holds that uj(z) = ε/n > uj(x
k+`′−2), for every j ∈ W \(W 0∪

{w}) it holds that uj(z) = uj(y) > ε/n > uj(x
k+`′−2), and

uw(z) = uw(y)−
∑

i∈W 0( εn − ui(y)) ≥ 1
n
− n−2

n
ε
n
> ε

n
> uw(xk+`′−2),

so uW (z)� uW (xk+`′−2). It follows that z ∈ f(xk+`′−2) and therefore z ∈ fk+`′−1(x).

We have that π(y) = π(z), for every j ∈ W 0 it holds that |uj(y)−uj(z)| ≤ ε/n, for

every j ∈ W \ (W 0 ∪{w}) it holds that |uj(y)−uj(z)| = 0, and |uw(y)−uw(z)| ≤

(n− 2)ε/n, therefore z ∈ Bε(y), so z has all the desired properties.

It follows by Theorem 3.9 that F ′(X) is a subset of the MSS and since F ′(X)

satisfies deterrence of external deviations and asymptotic external stability, it must

be equal to the MSS.

We now turn to the case where (N, v) is a proper simple game with a non-empty

core and show that the analogue of Theorem 4.4 for the δ-model holds.

Theorem A.11. Let (N, v) be a coalition function form game such that v is a

proper simple game with a non-empty core and let Γ = (N, (X, d), E, (�i)i∈N) be

the social environment induced by the δ-model. It holds that the MSS of Γ is

unique and equal to the coalition structure core Y of (N, v).

Proof. The coalition structure core Y is the set of states such that a winning

coalition forms, the other players are partitioned in arbitrary coalitions, and the

veto players are the only ones with a positive payoff. Step 2 in the proof of

Theorem 4.4 can be used to show that also for the δ-model the core CO of Γ is

equal to Y. Since CO is closed, the remark below Theorem 3.13 implies that we

only have to show that Γ satisfies the weak improvement property.

We need to show that for every x ∈ X, f∞(x)∩ Y 6= ∅. This is trivial if x ∈ Y.

Assume x ∈ X \ Y. We have to show that for every ε > 0 there exists k ∈ N,
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z ∈ fk(x), and y ∈ Y such that z ∈ Bε(y). Let some ε ∈ (0, 1/n) be given. It

holds that either π(x) ∩W = ∅ or there is i′ ∈ N \ S∗ such that ui′(x) > 0.

If π(x) ∩ W = ∅, then choose a winning coalition W ∈ W and a veto player

w ∈ W ∩ S∗. Let z ∈ X be such that W ∈ E(x, z) and

zj = 0, j ∈ N \W,

zj = ε
n
, j ∈ W \ {w},

zj = 1−
∑

i∈W\{w}
ε
n
, j = w.

It holds that z ∈ f(x). Let y ∈ Y be such that π(y) = π(z) and uw(y) = 1. It

holds that z ∈ Bε(y). This shows that z has the desired properties.

If there is i′ ∈ N \S∗ such that ui′(x) > 0, then let W be the unique element in

π(x)∩W . We show first that there exists k ∈ N and z ∈ fk(x) such that, for every

i ∈ N \ S∗, ui(z) < ε. If for every j ∈ W \ S∗ it holds that uj(x) < ε, then take

z = x. Otherwise, there is j ∈ W \ S∗ such that uj(x) ≥ ε. Since j is not a veto

player, it holds that N \{j} ∈ W . Let x1 ∈ X be such that π(x1) = {N \{j}, {j}},

uN\{j}(x
1) � uN\{j}(x), and, for every i ∈ N \ {j} such that ui(x) < ε, it holds

that ui(x
1) < ε. Since uj(x) ≥ ε, such an element x1 exists. It holds that x1 ∈ f(x)

and uj(x
1) = 0. If there is j1 ∈ W \ S∗ such that uj1(x

1) ≥ ε, then we repeat

this argument using j1. Since the set W \ S∗ is finite, we reach a state z with

the desired properties in a finite number of steps. Clearly, there is y ∈ Y with

π(y) = π(z) and z ∈ Bε(y).

A.4 The vNM Stable Set for the Tamura Example of the

Knuth Model

Let us reconsider the graph on page 316 of Tamura (1993). There is a total of 24

matchings, denoted by M1, . . . ,M24. The core of the social environment induced

by the Knuth (1976) model is equal to CO = {M1,M8,M10,M19,M24}.

The MSS contains 13 matchings. In addition to the matchings in the core, we

obtain 8 matchings in a closed cycle and find that the MSS is equal to

CO ∪ {M2,M16,M22,M12,M7,M9,M3,M4}.
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There are two different vNM stable sets in this example. The first vNM stable set

V1 is given by

V1 = CO ∪ {M4,M5,M9,M12,M13,M16,M17,M20,M21}.

Another vNM stable set is equal to

V2 = CO ∪ {M2,M3,M7,M11,M14,M17,M18,M22,M23}.

The prediction of the vNM stable sets seems rather unappealing. First, the domi-

nated state M17 is part of each vNM stable set. Second, for the largest connected

subgraph of the divorce digraph, half of the states is in V1, while the other half is

in V2.

A.5 Shapley-Scarf Housing Markets

Another prominent matching model is the housing matching model of Shapley and

Scarf (1974). This model can be represented by a tuple (N,H, (Pi)i∈N), where N

is a finite set of individuals, H is a finite set of houses with the same cardinality as

the set of individuals, and each individual i ∈ N has a strict preference relation Pi

over H. The original paper by Shapley and Scarf (1974) does not require a strict

preference relation. However, as shown in Roth and Postlewaite (1977), when

preferences are strict, then the strong core, i.e., the core based on weak dominance,

contains a unique element. The version with strict preferences therefore became

popular in the literature. Without loss of generality, we assume that N = H and

that the initial endowment of individual i is house i. An allocation is represented

by a permutation matrix A with rows indexed by elements of N and columns

indexed by elements of H. All entries of A are 0 or 1 and both rows and columns

of A sum up to 1. If for some h ∈ H, for some i ∈ N , entry Aih = 1, then house

h has been assigned to individual i. Row i ∈ N of the matrix A is denoted by Ai.

In this setting, it is convenient to define the state space X as the set of all

permutation matrices A. Since X is finite, we can endow it with the discrete

metric d(A,A′) = 1{A 6=A′}.
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agents 1 2 3

first choice 2 3 1

second choice 3 1 2

third choice 1 2 3

Table 1: A Shapley-Scarf housing matching market with cycling.

The preferences of the individuals (�i)i∈N over the set X are induced by their

preferences over houses in the following way. Let some individual i ∈ N be given

as well as A,A′ ∈ X. Let h, h′ ∈ H be such that Aih = A′ih′ = 1. Notice that h

and h′ are uniquely determined. It holds that A �i A′ if and only if hPih
′.

A coalition S ∈ N can arbitrarily redistribute the initial endowments of houses

of its members within the coalition. More formally, the effectivity correspondence

satisfies the following two conditions:

1. For every S ∈ N , for every A,A′ ∈ X, if S ∈ E(A,A′) then for all i ∈ S,

there is h ∈ S such that A′ih = 1.

2. For every S ∈ N , for every A ∈ X, and for every bijection φ : S → S, there

exists A′ ∈ X such that for all i ∈ S, A′iφ(i) = 1 and S ∈ E(A,A′).

The first condition requires that if S is effective in moving from state A to state

A′, then at A′ the initial endowments of members of S are reallocated within S.

The second condition states that every reallocation of initial endowments of houses

within a coalition is feasible. Observe that the conditions impose no restrictions

on how the houses of members outside the deviating coalition are reallocated, so

we allow for various reallocation processes here. This completes the description of

the social environment.

We show first that the MSS may contain closed cycles that do not correspond

to a core element. We consider the example illustrated in Table 1. Since the initial

endowments correspond to every individual’s worst choice, every allocation in X
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is individually rational. We argue that the set {A1, A2, A3} is a closed cycle, where

A1 =


0 1 0

1 0 0

0 0 1

 , A2 =


1 0 0

0 0 1

0 1 0

 , A3 =


0 0 1

0 1 0

1 0 0

 .
At A1, individual 1 obtains his first best house. Since A1 is individually rational,

coalition {2, 3} is the only coalition that can achieve a strict improvement. The

only state that dominates A1 is therefore A2. By the same argument, the only state

that dominates A2 is A3, and the only state that dominates A3 is A1. We have

obtained a closed cycle that does not contain a core element. By Theorem 3.9,

the core of the housing market model is a proper subset of the MSS.

We now turn to the weak dominance MSS and show that it is equal to the

strong core by using the top trading cycle algorithm of Shapley and Scarf (1974).

Theorem A.12. Let (N,H, (Pi)i∈N) be a housing matching problem and let Γ

be the induced social environment. The weak dominance MSS of Γ is equal to the

strong core.

Proof. Since the strong core of the housing matching problem is unique and satis-

fies deterrence of external deviations, we only have to show that it satisfies iterated

external stability. Let S1, . . . , Sk
′

be the coalitions that are successively formed

by an application of the top trading cycle algorithm of Shapley and Scarf (1974).

Consider any allocation A ∈ X that is not equal to the strong core allocation A∗

of the housing matching model. Let f̃ denote the weak dominance correspondence.

We generate a sequence of allocations A1, A2, . . . Ak
′

such that for all k ≤ k′,

Ak ∈ f̃k(A) and Ak
′

= A∗. Let A0 = A and k = 1. We construct the sequence in

the following way.

1. If k = k′ + 1 stop.

2. If for every i ∈ Sk it holds that Ak−1
i = A∗i , then we set Ak = Ak−1. Increase

k by one and go back to step 1.
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If there is i ∈ Sk such that Ak−1
i 6= A∗i , then define T k = ∪j≤kSj, and let

Ak be an allocation such that T k ∈ E(Ak−1, Ak) and, for every i ∈ T k,

Aki = A∗i . Increase k by one and go back to step 1.

We argue that for every k = 1, . . . , k′, Ak ∈ f̃(Ak−1). This is trivial if for every

i ∈ Sk it holds that Ak−1
i = A∗i , since then Ak = Ak−1.

Let k ∈ {1, . . . , k′} and i ∈ Sk be such that Ak−1
i 6= A∗i . By the rules of the

top trading cycle algorithm, the house corresponding to A∗i is the best house for

i in the set of houses N \ T k−1, so in particular it holds that A∗i �i Ak−1
i . It now

follows that Ak ∈ f̃(Ak−1).

The proof is completed by observing that Ak
′
= A∗.

In the proof of Theorem A.12, we have the union T k of the coalitions S1, . . . , Sk

generated in the first k steps of the top trading cycle algorithm deviating in iter-

ation k of our construction. The reason is that the assumptions on the effectivity

correspondence are so weak that a deviation by Sk might upset the assignment of

individuals in T k−1. Under stronger assumptions on the effectivity correspondence,

like those corresponding to the γ or the δ-model, it would be sufficient to have

deviations by Sk in iteration k.

A.6 Mixed Environments

Let G = (N, ((Σi, di), ui)i∈N) be a finite normal-form game, so for each player

i ∈ N it holds that Σi is finite and di(si, s
′
i) = 1{si 6=s′i}.

Let us now introduce the mixed extension G̃ = (N, ((∆i, δi), vi)i∈N) of G,

where ∆i is the set of probability distributions on Σi. For σi ∈ ∆i, σi,si denotes

the probability that player i uses pure strategy si. The metric δi on ∆i is defined

by

δi(σi, σ
′
i) = max

si∈Σi

|σi,si − σ′i,si |.

We denote ∆ =
∏

i∈N ∆i and endow ∆ with the product metric δ(σ, σ′) =∑
i∈Nδi(σi, σ

′
i). For a given strategy profile σ ∈ ∆, we denote the probability
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that pure strategy profile s ∈ Σ is played by σs =
∏

i∈N σi,si . Let vi : ∆ → R be

the expected utility associated to strategy profiles σ ∈ ∆,

vi(σ) =
∑
s∈Σ

σsui(s).

Preferences (�i)i∈N are such that σ �i σ′ if and only if vi(σ) ≥ vi(σ
′). The social

environment Γ̃ = (N, (∆, δ), E, (�i)i∈N) corresponds to the game G̃ where E only

allows singletons to deviate and {i} ∈ E(σ, σ′) if and only if σ−i = σ′−i.

A strategy profile σ ∈ ∆ is said to be a mixed strategy Nash equilibrium of

G if it is a pure strategy Nash equilibrium of G̃. The core of Γ̃ coincides with the

set of mixed strategy Nash equilibria of G. Additionally, note that the expected

utility functions (vi)i∈N are continuous on ∆ and that E is lower hemi-continuous.

As such, Theorems 3.7 and 3.13 give the following result.

Corollary A.13. Let G̃ be the mixed extension of the finite normal-form game G

and let Γ̃ be the social environment corresponding to G̃. The MSS of Γ̃ coincides

with the set of mixed strategy Nash equilibria of G if and only if Γ̃ satisfies the

weak improvement property.

Clearly, the pure strategy Nash equilibria of G are also mixed strategy Nash

equilibria of G, so belong to the MSS of Γ̃. On the other hand, it is easy to find

examples such that some profiles in the MSS of Γ are not in the MSS of Γ̃.

A finite two-player game G = (N, ((Σi, di), ui)i∈{1,2}) is zero-sum if for all

strategy profiles s ∈ Σ, u1(s)+u2(s) = 0. The following result shows that for such

games the MSS of Γ̃ coincides with the set of mixed strategy Nash equilibria of G.

Theorem A.14. Let G̃ be the mixed extension of a finite two-player zero-sum

game G and let Γ̃ be the social environment corresponding to G̃. Then the MSS

of Γ̃ coincides with the set of mixed strategy Nash equilibria of G.

Proof. Using Corollary A.13, it remains to show that Γ̃ satisfies the weak im-

provement property, i.e., for every strategy profile σ ∈ ∆, f∞(σ) contains a mixed

strategy Nash equilibrium of G. Let v denote the value of the game.
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Let some σ ∈ ∆ be given which is not a mixed strategy Nash equilibrium of

G, i.e., there is a player i such that σi is not a minmax strategy. We distinguish

between two cases.

Case 1: σ1 and σ2 are not minmax strategies.

1.1 If v1(σ) 6= v, then there exists a player i who is below his minmax payoff.

Without loss of generality, let this be player 1, so v1(σ) < v. Let (σ∗1, σ
∗
2)

be a profile of minmax strategies. Note that v1(σ∗1, σ2) ≥ v. Since σ2 is

not a minmax strategy, there exists a pure strategy s1 ∈ ∆1 such that

v1(s1, σ2) > v. Thus, for every ε ∈ (0, 2], it holds that

v1( ε
2
s1 + (1− ε

2
)σ∗1, σ2) > v.

It holds that

v2( ε
2
s1 + (1− ε

2
)σ∗1, σ

∗
2) ≥ −v,

so for every ε > 0, f 2(σ) contains a state which is in an ε-neighborhood

of a mixed strategy Nash equilibrium of G, and therefore f∞(σ) contains a

mixed strategy Nash equilibrium of G.

1.2 Suppose v1(σ) = v. Then, there exists a pure strategy s1 ∈ ∆1 such that

v1(s1, σ2) > v,

since otherwise σ2 would be a minmax strategy. If s1 is a minmax strategy,

then player 2 can deviate to a minmax strategy σ∗2 to obtain v2(s1, σ
∗
2) = −v,

i.e., f 2(σ) contains a mixed strategy Nash equilibrium of G. If s1 is not a

minmax strategy, then (s1, σ2) ∈ f1(σ) is a state as in Case 1.1, so for every

ε > 0, f 3(σ) contains a state which is in a ε-neighborhood of a mixed strategy

Nash equilibrium of G, and therefore f∞(σ) contains a mixed strategy Nash

equilibrium of G.

Case 2: σ1 is a minmax strategy and σ2 is not, or σ1 is not a minmax strategy

and σ2 is. Without loss of generality, assume σ1 is a minmax strategy.
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2.1 If v1(σ) > v, then player 2 can profitably switch to a minmax strategy σ∗2

and we are done.

2.2 If v1(σ) = v, then since σ2 is not a minmax strategy, there exists a deviation

to a pure strategy s1 ∈ ∆1 such that v1(s1, σ2) > v. If s1 is a minmax

strategy, then (s1, σ2) ∈ f1(σ) is a state as in Case 2.1, so f2(σ) contains

a mixed strategy Nash equilibrium of G. If s1 is not a minmax strategy,

then (s1, σ2) ∈ f1(σ) is a state as in Case 1.1, and for every ε > 0 it holds

that f 3(σ) contains a state which is in an ε-neighborhood of a mixed strategy

Nash equilibrium of G, so f∞(σ) contains a mixed strategy Nash equilibrium

of G.

As a final result, we show the equivalence between the set of mixed strategy

Nash equilibria of G and the MSS of the social environment Γ̃ for finite two-player

games where one of the two players has two pure strategies.

Theorem A.15. Let G̃ be the mixed-extension of a finite two-player game G and

let Γ̃ be the social environment corresponding to G̃. Assume that one player has

two pure strategies in G. Then the MSS of Γ̃ coincides with the set of mixed

strategy Nash equilibria of G.

Proof. Assume without loss of generality that player 1 has two pure strategies. Let

the set of pure strategies of player 1 be {U,D} with generic element A ∈ {U,D}

and let the set of pure strategies of player 2 be given by {s1, . . . , s`} with generic

element sj. We also use the notation U and D for the mixed strategy that puts

probability 1 on pure strategy U and D, respectively, and similarly for sj.

Let some σ ∈ ∆ be given. By Corollary A.13, it suffices to show the weak

improvement property of Γ̃, i.e., f∞(σ) contains a mixed strategy Nash equilibrium

of G. We distinguish between two cases.

Case 1: G has a pure strategy Nash equilibrium, without loss of generality, (U, s∗).

If σ is a mixed strategy Nash equilibrium of G, we are done, so assume σ is not

a mixed strategy Nash equilibrium of G. If player 2 has a profitable deviation from
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σ, then there is a pure strategy best response sj ∈ ∆2 such that (σ1, s
j) ∈ f(σ).

If (σ1, s
j) is a mixed strategy Nash equilibrium of G, we are done. If not, then

player 1 must have a pure strategy best response to (σ1, s
j), say A. Thus, f 2(σ)

contains a mixed strategy Nash equilibrium of G or a pure strategy profile (A, sj).

The same conclusion holds if player 1 has a profitable deviation from σ. If the pure

strategy profile (A, sj) is a Nash equilibrium of G, we are done. If not, at least

one player has a profitable deviation from it. We distinguish between two cases.

1.1 A = D.

1.1.a Assume player 1 can profitably deviate from (D, sj). Then it holds that

(U, sj) ∈ f(D, sj). If (U, sj) is a Nash equilibrium of G, we are done. If

not, then player 2 can profitably deviate to the Nash equilibrium (U, s∗)

of G and we are done.

1.1.b Assume player 2 can profitably deviate from (D, sj). Let sh be a best

response for player 2, so (D, sh) ∈ f(D, sj). If this is a Nash equilibrium

of G, we are done. Otherwise, player 1 can profitably deviate to (D, sh),

which brings us back to Case 1.1.a.

1.2 A = U.

1.2.a Assume player 2 can profitably deviate form (U, sj). It holds that the

Nash equilibrium (U, s∗) of G belongs to f(U, sj), so we are done.

1.2.b Assume player 1 can profitably deviate from (U, sj). Then it holds that

(D, sj) ∈ f(U, sj). If (D, sj) is a Nash equilibrium of G, then we are

done. Else, player 2 must have a profitable deviation from (D, sj),

which brings us back to Case 1.1.b.

Case 2: G has no pure strategy Nash equilibrium.

We first show that in every mixed strategy Nash equilibrium of G, player 1

plays both U and D with strictly positive probability. Towards a contradiction,

suppose there is a mixed strategy Nash equilibrium (A, σ∗2) of G such that player 1

plays a pure strategy, without loss of generality, strategy A = U . It holds that any
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pure strategy of player 2 in the support of σ∗2 is a best response against U. Since

G has no pure strategy Nash equilibrium, it must hold that playing D against

any pure strategy in the support of σ∗2 gives player 1 a strictly higher payoff than

playing U. It follows that D is a profitable deviation for player 1 from (U, σ∗2). This

contradicts (U, σ∗2) being a mixed strategy Nash equilibrium of G.

To finish the proof, we show that f∞(σ) contains a mixed strategy Nash equi-

librium of G. As in the first part of Case 1, we can show that f 2(σ) contains a

mixed strategy Nash equilibrium of G and we are done, or a pure strategy profile

which is not a Nash equilibrium of G. Player 1 or player 2 has a profitable de-

viation from this pure strategy profile. In the latter case, player 2 can choose a

pure strategy best response and in the next step, player 1 can profitably deviate

to a pure strategy. In both cases it holds that there is k ∈ N such that fk(σ) con-

tains a pure strategy profile (A, sj) from which player 1 has a profitable deviation.

Without loss of generality, let A = U .

Observe that for player 1 any completely mixed strategy is a profitable de-

viation from (U, sj). Let σ∗ be a mixed strategy Nash equilibrium of G and let

p ∈ (0, 1) denote the probability that σ∗1 puts on U. We distinguish 3 cases.

2.1 v2(D, σ∗2)− v2(U, σ∗2) > v2(D, sj)− v2(U, sj).

For ε ∈ (0, p), let σ′1 be the strategy where player 1 plays U with probability

p − ε/2. Since any completely mixed strategy of player 1 is a profitable

deviation from (U, sj), it holds that (σ′1, s
j) ∈ f(U, sj). We have that

v2(σ′1, s
j) = v2(σ∗1, s

j) + ε
2
(v2(D, sj)− v2(U, sj))

< v2(σ∗) + ε
2
(v2(D, σ∗2)− v2(U, σ∗2))

= v2(σ′1, σ
∗
2),

where the strict inequality uses that σ∗2 is a best response against σ∗1 and the

assumption of Case 2.1. It follows that (σ′1, σ
∗
2) ∈ f(σ′1, s

j). Since ε > 0 can

be chosen arbitrarily small, this shows that σ∗ ∈ f∞(σ).

2.2 v2(D, σ∗2)− v2(U, σ∗2) < v2(D, sj)− v2(U, sj).

For ε ∈ (0, 1− p), let σ′1 be the strategy where player 1 plays U with proba-

bility p+ ε/2. The proof now follows as in Case 2.1.
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2.3 v2(D, σ∗2)− v2(U, σ∗2) = v2(D, sj)− v2(U, sj).

It holds that (D, sj) ∈ f(U, sj).

Let sh be a best response of player 2 against D and, for ε ∈ (0, 1), let σ′2

be the strategy that puts weight (1− ε) on σ∗2 and weight ε on sh. We have

that

v2(D, σ∗2) = v2(σ∗) + pv2(D, σ∗2)− pv2(U, σ∗2)

≥ v2(σ∗1, s
j) + pv2(D, sj)− pv2(U, sj)

= v2(D, sj), (A.1)

where the inequality uses that σ∗ is a mixed strategy Nash equilibrium of G

and the assumption of Case 2.3. Since (D, sj) is not a Nash equilibrium of

G, it holds that v2(D, sh) > v2(D, sj). By (A.1) and the definition of σ′2, it

now follows that v2(D, σ′2) > v2(D, sj), so (D, σ′2) ∈ f(D, sj). Since (D, sh)

is not a Nash equilibrium of G and sh is a best response against D, we have

that v1(σ∗1, s
h) > v1(D, sh). It follows that

v1(σ∗1, σ
′
2) = (1−ε)v1(σ∗)+εv1(σ∗1, s

h) > (1−ε)v1(D, σ∗2)+εv1(D, sh) = v1(D, σ′2),

so (σ∗1, σ
′
2) ∈ f(D, σ′2). Since ε > 0 can be chosen arbitrarily small, we have

that σ∗ ∈ f∞(σ), which concludes the proof.

We analyzed the game of matching pennies in Example A.4 and concluded that

better-response dynamics did not single out any strategy profile. The game of

matching pennies satisfies the assumptions of both Theorems A.14 and A.15. The

MSS of this game therefore consists of the unique mixed strategy Nash equilibrium

where each pure strategy is played with probability 1/2.
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