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1. Introduction

In reference [1], Liu and Vinokur proposed an strategy to derive a Roe-like linearization for flows in thermo-chemical 
non-equilibrium (TCNEQ). In the context of approximated Riemann solvers, being able to determine a Roe-like averaged state 
�Zavg respecting property U (see [2]) guarantees that a discrete linearized description of the Riemann problem provides a 
solution consistent with that of the original non-linear problem, i.e., the numerical algorithm can – in the words of Roe – 
“recognize a shock wave”.

Liu and Vinokur’s accomplishment was to offer Roe-like averaged states �Zavg under conditions for which the existence of 
such averages was not guaranteed, namely for complex, highly non-linear thermodynamic models. References [3,4] illustrate 
the usage of Liu and Vinokur’s generalized Roe average for combustion applications.

Note that most applications resorting to the generalized Roe average apply it on a dimension-by-dimension basis. Seeking 
to take advantage of the multi-dimensional upwind residual distribution algorithms in [5], Degrez and van der Weide 
devised an strategy to extend the Roe–Liu–Vinokur (RLV) linearization to the multi-dimensional case. In [6] we revisited the 
linearization procedure, describing it in detail. In this note we investigate the conditions under which the linearization is 
well defined.
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In attention to the limited space in Short Notes, the governing equations and their discretized version are presented 
very briefly in section 2. The reader interested will find the complete details on the application of the Residual Distribution 
(RD) method to the ns species, two-temperature TCNEQ model in reference [7]. Next, the multi-dimensional linearization 
procedure is described in section 3; an application case of the multi-dimensional linearization is also presented, and several 
of its shortcomings are identified. In section 4 we provide an explanation for this behavior. We finish the Short Note with 
the Conclusions, including a series of recommendations for the simulation of shocked hypersonic flow fields with Residual 
Distribution schemes.

2. The governing equations and its RD-discretized counterpart

2.1. Governing equations

In this work inviscid NEQ flows including vibrational excitation and chemical reaction processes, described with a nS

species (with nS ≥ 2), two-temperature model are considered. The system of conservation equations for such situation read 
in compact vector form as:

∂ �U
∂t

+ ∇ · ¯̄F cv = �S. (1)

Here �U are the conserved variables, tensor ¯̄F c collects the convective fluxes and vector �S contains the chemical and 
internal energy modes source terms. For a TCNEQ flow the vector of conserved variables is:

�U = [ρs, ρu j, ρE, ρev]t , and therefore nEqs = nS + nD + 2. (2)

In system above, ρs stands for the density of the s-th species, while ρ�u, ρE and ρev are respectively the momentum, the 
total energy and the electronic-vibrational energy per unit volume. Additionally, p is the pressure exerted by the mixture 
and H is the specific total enthalpy. The convective tensor is defined as ¯̄F cv = �F cv

j · �e t
j for j ∈ {x1, . . . , xnD

}
(Einstein conven-

tion applies); the source term is �S =
[
ω̇1, . . . , ω̇ns ,

�01×nD ,0,�v
]t

. Introduction of the advective Jacobian matrices Acv
j leads 

to the quasi-linear form of the system of equations:

∂ �U
∂t

+ ∂ �F cv
j

∂ �U︸ ︷︷ ︸
Acv

j

· ∂ �U
∂x j

= �S. (3)

Note that the vectors/matrices employed fulfill �U , �F cv
j , �S ∈ R

nEqs and �Acv
j ∈ R

nEqs×nEqs ; 
{�e j
}

is the canonical basis for RnD . 
This work is concerned with the possibility of identifying a favorable state-averaging operator for which the evaluation of 
�Acv

j guarantees conservation at the discrete level.
The specific form of the mass production ω̇s and the energy relaxation �v terms is not relevant for the linearization 

procedure; the interested reader can consult [8]. Details on initial/boundary conditions can be found in [9,10]; whereas the 
calculation of all chemistry, thermodynamics and energy transfer properties is described in [11,12].

At the equation of state level, the ideal gas law for a thermally perfect gas (PG) applies to each of the components of the 
gas mixture, which exert a partial pressure given by ps = R/Msρs T . Here, R is the universal gas constant R = 8314.4 J/K kmol

and Ms the s-th species molecular weight (in kg/kmol). The total pressure of the mixture is simply given by p =∑nS
s=1 ps .

Specific enthalpy H relates to pressure as H = E + p/ρ. Total energy ρE and pressure p of the mixture can be further 
related if one realizes that ρE includes contributions from the translational-rotational modes, from the vibrational-electronic 
modes and from the kinetic energy, as in ρE = ρetr + ρev + 1

2 ρ�ut · �u. Each of these gathers in turn contributions from the 
different species in the mixture:

ρetr =
nS∑

s=1

ρsetr
s , ρev =

nS∑
s=1

ρsev
s ,

1

2
ρ�ut · �u =

nS∑
s=1

ρs
‖�u‖2

2
.

The s-th species translational-rotational energy is etr
s = ∫ T

T 0 Ctr
v,s dτ + h0

s ; h0
s is the formation enthalpy of the species at 

the reference temperature T 0 and Ctr
v,s is the translational-rotational specific heat at constant volume. Since the components 

of the mixture behave as calorically perfect gases, Ctr
v,s = 3

2 Rs for monoatomic species and 5
2 Rs for diatomic molecules.

The expression for the s-th species vibrational energy ev
s assumes that the internal quantum states are populated ac-

cording to a Boltzmann distribution. Therefore ev
s = 0 for atomic species and ev

s = R
Ms

θ v
s

eθ v
s /T v −1

for diatomic molecules; θ v
s is 

a characteristic vibrational temperature for the s-th species.
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Differentiation of the total pressure equation and algebraic manipulation, see Ref. [1], leads to:

d p =
nS∑

s=1

γs dρs + β dρetr . (4)

Terms γs and β in Eq. (4) stand respectively for the partial derivatives of pressure with respect to the translational-rotational 
energy and the species densities; they are given by:

β = ∂ p

∂ρetr
=
∑nS

s=1 ys R/Ms∑nS
s=1 ysCtr

v,s
, and γs = ∂ p

∂ρs
= R/Ms T − βetr

s , where ys ≡ ρs/ρ is the s-th species mass fraction. (5)

2.2. Generalities on RD schemes1

Solving System (1) by means of RD schemes requires expanding the solution on the P 1 finite element basis associated 
to a simplicial tessellation �h (nElem elements and nDoF nodes), i.e., �U h

(�x, t
) =∑ND O F

j=1
�U j (t) N j

(�x). The discrete equation 
governing the evolution of the l-th DoF is:

V
l

d �Ul

dt
+ ��l = �0, (6)

where ��l is the steady state nodal residual, that gathers convective and source contributions, i.e., ��l = ��cv
l − ��S

l . 
This nodal residual is assembled from contributions from the set 
l of all the elements including node l, as in 
��l = ∑

�e∈
l

( ��cv,�e
l − ��S,�e

l

)
. A specific RD scheme is defined then by how elemental residuals ���e are transferred 

to l-th node. An elemental residual is:

���e =
∫
�e

∂ �F cv
j

∂x j
dv −

∫
�e

�S dv = ��cv,� − ��S,�. (7)

Focusing now on the convective residual, it is given by:

��cv
l =

∑
�e∈
l

��cv,�e
l

(
K �e

1 , . . . , K �e
nD+1

)
, (8)

where we explicitly state that the element-to-node residual distribution is formulated in terms of the upwind parameters 
K �e

j = 1
nD

Acv,�e
xd

( �Uavg

)
n�e

xd
; �Uavg is a cell-averaged state and nxd are the components of inward scaled normals and Einstein 

convention applies again.
RD schemes can be classified according to how the discrete convective residual is computed: we distinguish among 

linearization-based (LRD) and contour-integration-based (CRD) schemes. The distinction lies on whether one can find a 
variable set �Z such that both the unknown �U and the flux vector �F cv

j are quadratic functions of the components of �Z . In 

that case, by linearizing �F cv
j we obtain ��cv,�e = ∫

�e

∂ �F cv
j

∂x j
dv = ∫

�e

∂ �F cv
j

∂ �Z · ∂ �Z
∂x j

dv . Since the solution is expressed in P 1 (linear) 

elements, ∂h �Z
∂x j

∣∣∣
�e

is constant. At the same time, the Jacobian 
∂ �F cv

j

∂ �Z is a linear function and henceforth the following relation:

��cv,�e =
∫
�e

∂ �F cv
j

∂ �Z dv = V�e

∂ �F cv
j

∂ �Z
( �U
(�Zavg

))
,

holds exactly. The exact value of ��cv,�e is therefore given by the simple relation ��cv,�e = V�e

∂ �F cv
j

∂ �Z
( �U
(�Zavg

))
∂h �Z
∂x j

∣∣∣
�e

.

Whenever a �Z variable is not readily available, one can resort to CRD schemes, by evaluating numerically the element 
residual ��c,�e via Gauss quadrature:

��c,�e =
∫
�e

∇ · �F cv
j dv =

∮
δ�e

�F cv
j · �eext

j ds =
nD+1∑

f =1

∫
S f

�F cv
j · �eext

j ds =
nD+1∑

f =1

∑
q∈Q P

ωq

(�F cv
j · �eext

j

)
q

lq. (9)

The only restriction is that the quadrature error is lower than that of the distribution error.

1 The interested reader will find extensive details on the RD discretization for the system of equations (1) in references [5,13,14].
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In this work we only consider the LRD N scheme [5,13] and its CRD counterpart, the Nc scheme [15]. The N scheme 
contribution to the nodal residual is given by:

��c,�e,N
l = K +

l ·
( �Ul − �U�e

inlet

)
with �U�e

inlet =
⎛
⎝∑

j∈�e

K −
j

⎞
⎠−1

·
∑
j∈�e

K −
j · �U j. (10)

Concerning the CRD variant, the Nc scheme is given by ��c,�e ,Nc
l = ��c,�e ,N

l,∗ − B�e,LD A
l δ ��c , where ��c,�e,N

l,∗ is the result of the 
inconsistent evaluation of Eq. (10) and δ ��c is a conservation correction given by:

δ ��c = ��c
�,∗
∣∣∣

Inconsistent
− ��c

�

∣∣∣
Gauss

=
∑
j∈�e

K j �U j − ��c
�

∣∣∣
Gauss

. (11)

A relevant difference between the N scheme and its CRD variant which is specially relevant for this work is that the Nc
scheme is non-positive, meaning that the capture of certain shock waves may present oscillations. This is not a concern 
for perfect gas simulations, as long as one uses the Roe–Struijs–Deconinck linearization variable �Z [16] (in that case Nc
and N schemes coincide). The lack of monotonicity is, however, specially problematic for NEQ flows whenever strong, bow 
shock waves are present in the domain; this is precisely the case when the �Z variable is less likely to be well-defined, see 
section 4). The underlying reason is the mass production terms – ω̇s – highly non-linear dependence on temperature: the 
extreme variations in temperature across the numerically captured shock wave result in unphysical production/destruction 
of species, and this leads eventually to simulation blow up [7].

3. Description of the multi-dimensional Roe–Liu–Vinokur linearization procedure

Consider the variable �Z ≡
[√

ρ �Y t
nS ×1,

√
ρ�ut,

√
ρH,

√
ρev

]t
. The convective flux vector can then be splitted as:

�F cv
j = �F cv

j − [�0nS x1, p�1 j,0,0]t︸ ︷︷ ︸
�Q

+[�0nS x1, p�1 j,0,0]t︸ ︷︷ ︸
�

. (12)

All terms in �Q are quadratic functions of the components of �Z , and thus entries in 
∂ �F cv

j

∂ �Z are simply linear functions; pressure 
is isolated in �. Its differential is given by Eq. (4); in a multi-dimensional upwind framework, we rather consider relation 
Eq. (4) at the gradient level:

∇p =
nS∑

s=1

γs ∇ρs + β ∇ρetr, (13)

which can be immediately recast in terms of the components of parameter vector �Z by using the relation ρetr =
ρH − ρ�ut ·�u

2 − ρev − p, and considering ρs =
(

nS∑
r=1

√
ρ yr

)√
ρ ys , ρ�ut · �u = √

ρ�ut · √
ρ�u, ρH =

(
nS∑

r=1

√
ρ yr

)√
ρH , and 

ρev =
(

nS∑
r=1

√
ρ yr

)√
ρev .

At this point, if one managed to find values for γs and β for which Eq. (13) holds, the gradient of pressure would be 
then be defined in terms of �Z , making in turn ∂ �

∂ �Z a linear function of the parameter vector as well. In that case, evaluating 

Ac,U
j at an averaged state �Zavg would provide a conservative convective residual. Unfortunately, Eq. (13) provides only as 

many equations as the dimensionality nD of the problem (namely 1, 2 or 3) while nS + 1 parameters have to be defined for 
the case of a non-ionized nS species gas mixture.

In order to determine these nS + 1 parameters, we can interpret Eq. (13) as nD restrictions2:

r j ≡ ∂ p

∂x j
−

nS∑
s=1

∂ρs

∂x j
γs − ∂ρetr

∂x j
β = 0, j = 1 . . .nD , (14)

that the solution sought should respect in order to guarantee conservation. In that case, it would be sensible to look for 
a solution which, while fulfilling the aforementioned restrictions (guaranteeing thus conservation), is the closest one to a 
given a priori approximation, like for example the nodal averages γ̂s =∑nD+1

i=1
γs
∣∣
i

nD+1 and β̂ =∑nD+1
i=1

β|i
nD+1 .

2 Here, the ∂
∂x j

operator applied to pressure is the discrete FE one ∂h p
∂x j

= 1
2V�e

∑nD +1
k=1 pkn j,k . The same operator applied to any other magnitude m should 

be understood as a consistent gradient ∂cm
∂x j

= ∂m
∂ �Z
∣∣∣� · ∂h �Z

∂x j
. When clear from the context, superscripts h and c will be omitted.
Zavg
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Fig. 1. Constrained minimization problem: graphical interpretation. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

Under these hypotheses, we are faced with a constrained minimization problem. According to [1], in order not to obtain 
a solution dependent on the arbitrary reference enthalpy entering in the definition of the parameters γs , it is better to work 
on the space {ξ1, . . . , ξN ;ω}, where ξs = γs/β, s = 1, . . . , nS and ω = 1/β.

The Lagrangian for the restricted minimum distance problem is:

L ≡ (ω − ω̂)2 + 1

σ̂ 2

nS∑
s=1

(
ξs − ξ̂s

)2 − �λt ·
(

∇p ω −
nS∑

s=1

∇ρs ξs − ∇ρetr

)
. (15)

Factor σ̂−2 is included for dimensional consistency, and σ̂ taken as the local speed of sound squared. The corresponding 
stationarity conditions are:

∂L
∂ξr

= 2

σ̂ 2

(
ξr − ξ̂r

)
+ �λt · ∇ρr = 0, r = 1 . . .nS ,

∂L
∂ω

= 2 (ω − ω̂) − �λt · ∇p = 0,

∂L
∂λ j

= ∂ p

∂x j
ω −

nS∑
s=1

∂ρs

∂x j
ξs − ∂ρetr

∂x j
, j = 1 . . .nD . (16)

Fig. 1 shows the graphical interpretation of the minimization problem defined by the Lagrangian in Eq. (15) for a 2D
computation with the N-N2 mixture (ns = 2): starting from an approximation P̂ in the space {ξr;ω}, we look for the closest 
point P̃ which fulfills at the same time the nD = 2 restrictions, that is, the point that lies on the line where both the blue 
and the green planes intersect.

The stationarity conditions Eq. (16) translate into a linear system of equations A · �x = �b. The coefficient matrix A is, after 
application of elemental operations:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

¯̄InS 0 σ̂ 2

2
∂ρ �YnS ×1

∂x
σ̂ 2

2
∂ρ �YnS ×1

∂ y
σ̂ 2

2
∂ρ �YnS ×1

∂z

�01×nS 1 − 1
2

∂ p
∂x − 1

2
∂ p
∂ y − 1

2
∂ p
∂z

�01×nS 0 Cxx Cxy Cxz

�01×nS 0 Cxy C yy C yz

�01×nS 0 Cxz C yz Czz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17)

the vector of unknowns �x = [
ξ1, . . . , ξN ;ω;λx j

]t and of the forcing vector �b =
[
ξ̂1, . . . , ξ̂N ; ω̂;−ω̂ δpx j

]t
. In Eq. (17), Cxi x j

stands for:

Cxi x j = 1

2

(
∂ p

∂xi

∂ p

∂x j

)
+ σ̂ 2

2

nS∑
s=1

(
∂ρs

∂xi

∂ρs

∂x j

)
, (18)

while −ω̂δpx j is:

−ω̂δpx j = (1 + ω̂)
∂ p

∂x j
−

nS∑ ∂ρs

∂x j
ξ̂s − ∂

∂x j

(
ρH − 1

2
ρ�ut · �u − ρev

)
. (19)
s=1
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Table 1
Testcase definition: NEQ two jets.

Ma∞ p∞ (kPa) T∞ = T v∞ (K) ρ∞ (kg/m3) yN,∞ yN2,∞
y < 0.5 2.4 10.3 1750 0.019824 0 1
y > 0.5 4.7 5 3500 0.004809 6 × 10−4 0.9994

Observe how the structure of the linear system is such that a nD × nD subsystem:

B�λ = −ω̂ �δp, (20)

can be decoupled. Provided one can invert B, ξs and ω are immediately obtained by back substitution:

ω̃ = ω̂ + 1

2

(
λx

∂ p

∂x
+ λy

∂ p

∂ y
+ λz

∂ p

∂z

)
, and ξ̃s = ξ̂s − σ̂ 2

2

(
λx

∂ρs

∂x
+ λy

∂ρs

∂ y
+ λz

∂ρs

∂z

)
. (21)

The values actually employed in the computation are obtained in a straightforward manner from β̃ = 1
ω̃

and γ̃s = β̃ ξ̃s .
Clearly, the success of the linearization process revolves around the invertibility of B. A priori one would expect this 

task to be relatively straightforward, B being a real symmetric matrix. However, even for the most simple non-equilibrium 
two jets problems (see below), one obtains solutions β̃, γ̃s that respect conservation at the discrete level (that is, with the 
restrictions r j equal to machine zero) but which correspond to unphysical situations (e.g., β̃ < 0 or c̃2 < 0). Since there is a 
certain degree of freedom to determine the pressure derivatives, this unexpected difficulty can be handled easily by simply 
setting β̃ = β̂ and determining the set of γ̃s by the same minimization procedure described above. One simply needs to 
notice that the matrix coefficients are now cxi x j = σ̂ 2

2

∑nS
s=1

(
∂ρs
∂xi

∂ρs
∂x j

)
.

In this manner, we have been able to solve a NEQ-variant of the two jets problem in [17]. The problem consists in 
two uniform, supersonic N-N2 streams discharging into a square domain. The conditions of each of the jets are given in 
Table 1.

We have computed this testcase both with the LRD N and the CRD Nc schemes on the completely unstructured grid 
(nElem = 5638, nPoints = 2920) obtained by Delaunay triangulation (see also Fig. 2(b)).

The results are summarized in Fig. 2. Despite the complex thermodynamic model in non-equilibrium considered, the 
solution presents the familiar shock-fan-contact structure, see Figs. 2(a)–2(b). Observe how no differences are apparent 
between the LRD and the CRD-based solutions, see Figs. 2(c)–2(d).

There is an important difference, however, in the effort needed to obtain each of the solutions. In both cases an ini-
tial condition consisting in an uniform flow field has been considered: on the one hand, the CRD solution needed to be 
initialized with an explicit pseudo-time stepping procedure; non-monotonicity of the CRD scheme resulted in temperature 
undershoots that were addressed by clipping temperature to Tmin = 200 K for ≈ 40000 iterations with C F L < 0.1. Once the 
shock was in place, the CRD solution could be restarted in implicit mode, but maintaining the clipping active almost until 
convergence was achieved. On the other hand, the LRD solution converged easily to steady state in less than 250 implicit 
iterations, starting from the uniform flow field; T -clipping was never needed.

Therefore, in view of the non-monotonicity of the CRD Nc scheme, it seems that one should favor the LRD N scheme. 
Unfortunately, when addressing slightly more involved testcases, e.g. an inviscid NEQ ramp flow, we observed how the very 
same LRD N scheme was incapable of providing a converged solution; actually and more often than not the simulation 
blew up. A similar behavior was reported in [18]. Later on Pepe et al. [19] succeeded in applying the multi-dimensional 
Roe–Liu–Vinokur linearization to a quasi-neutral argon plasma flow in thermal equilibrium; it might seem that the fact of 
the plasma is formed exclusively by monoatomic species is important for the multi-dimensional RLV procedure to work. In 
the next section we investigate this behavior by focusing on the well-posedness of the linear system (20).

4. On the well-posedness of the multi-dimensional Roe–Liu–Vinokur linearization for TCNEQ flows

In previous section we pointed out that the success of the linearization procedure hinges on the invertibility of sub-
matrix B in Eq. (20), which is symmetric and with real entries. Such matrices are possibly the most favorable case one 
could expect for . . . assuming that the determinant of the matrix is not zero, of course!

The analysis of the invertibility of B is greatly eased by introducing matrix M , given by:

M ≡

⎡
⎢⎢⎢⎣

∂c

∂xρ1 . . . ∂c

∂xρns
∂h

∂x p

∂c

∂ y ρ1 . . . ∂c

∂ y ρns
∂h

∂ y p

∂c

∂z ρ1 . . . ∂c

∂z ρns
∂h

∂z p

⎤
⎥⎥⎥⎦ ∈ MnD×N with N = nS + 1. (22)

The whole minimization problem in Eq. (20) can be expressed then in terms of matrix M , as:

M · Mt · �λ = �r. (23)
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Fig. 2. Two jets NEQ problem.
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Since the rhs �r = (1 + ω̂
)∇h p −∑nS

s=1 ξ̂s∇cρs − ∇c
(
ρH − ρev − ρu2

2

)
, matrix M also concurs in the definition of r:

�r = M ·

⎡
⎢⎢⎢⎣

−ξ̂1
. . .

−ξ̂nS

1 + ω̂

⎤
⎥⎥⎥⎦− ∇c

(
ρH − 1

2
ρ�ut · �u − ρev

)
≡ M · �r1 +�r2. (24)

Consider now a situation where the gradients of all species are aligned, i.e. across a normal shock wave or a contact 
discontinuity. In such a case:

∇cρ2 = α2∇cρ1, . . . , ∇cρnS = αN−1∇cρ1, ∇h p = αN∇cρ1, and ∇c
(
ρH − ρev − ρu2

2

)
= αN+1∇cρ1;

(25)

the coefficient matrix B reduces then to:

B = M · Mt =
(

1 + α2
2 + . . . + α2

N

)⎡⎣ mx,1
my,1
mz,1

⎤
⎦ · [mx,1 my,1 mz,1

]=
(

1 + a2
)

�m1 · �mt
1. (26)

Notice how the determinant of �m1 · �mt
1 is zero. The rhs becomes in turn:

�r =
(

1 + ω̂ −
nS∑

s=1

ξ̂s − αN

)
�m1 = b �m1. (27)

The linear system is hence �m1

((
1 + a2

) �mt
1 · �λ − b

)
= 0.

Therefore, we have shown that matrix B determinant is zero whenever the gradients of all the quantities (ρs , p, . . . ) are 
aligned: that is, whenever there is a normal shock wave or a contact on the domain, the linearization procedure leads to a 
situation where there might be either an infinite number of solutions, or no solution at all.

The matter is further complicated if we take into account round-off errors: determinant |B| could be not zero but very 
small and the linearization procedure being extremely ill-conditioned.

In an attempt to alleviate the conditioning problem, we considered a truncated SVD technique. Matrix B is expressed as 
the product:

B → L · S · Rt . (28)

Matrices L, R ∈R
nD×nD are orthogonal, and S ∈R

nD×nD is the singular values matrix. Substituting into Eq. (23):

L · S · Rt · �λ = −ω̂ �δp. (29)

Pre-multiplying by Lt leads to:

S · Rt · �λ = −ω̂ �δp. (30)

For the aligned-gradient case we know that at least one of the diagonal entries is zero (or very close to machine zero). We 
can obtain a regularized solution �λ∗ to (30):

�λ∗ = −R · S+ · Lt · ω̂ �δp, (31)

where the diagonal matrix S+ contains either the inverse of the eigenvalues/singular values of S (i.e., 1
si

) or zero (if si < ε), 
with ε a threshold parameter to decide when to neglect a particular singular value.

In our experience, the truncated SVD inversion does not, unfortunately, prevent the ill-posedness problems; when con-
sidering situations more complex than the two jets testcase of section 3, we were incapable of identifying a value of the 
threshold parameter ε that made the linearizer perform properly. One should bear in mind that the choice of ε affects with 
which level of accuracy the conservation restrictions Eq. (14) are fulfilled.

Alternatively, we attempted to solve Tikhonov-regularized normal equations: 
(
Bt ·B + ν ¯̄InD

)
· �λ = −Bt ·ω̂ �δp; we observed 

again how, for those values of ν capable of regularizing the solution obtained was not conservative.
In conclusion, the multi-dimensional Roe–Liu–Vinokur linearization is not robust enough to compute shocked hypersonic 

flow fields. It is not clear whether more numerically reliable (pseudo-)inversion techniques could bring any advantage; 
this, however, remains beyond the scope of this work. Meanwhile, an alternative to address such problems was derived 
in [7], consisting in regularizing standard contour-integration-based RD schemes. Yet another alternative potentially worth 
to explore is considering the multi-dimensional extension of the approach described in [20,21].
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5. Conclusions

In this short note we have described the lack of robustness afflicting the standard formulation of the multi-dimensional 
Roe–Liu–Vinokur linearization of [22] when used with linearization-based residual distribution (RD) schemes. By focusing 
on the linear system associated to the linearization procedure we have identified situations where such system is ill-posed. 
We have seen how standard regularization techniques (e.g., truncated SVD or Tikhonov-regularized normal equations) do 
not suffice to retrieve a linearized state that guarantees conservation at the discrete level.

Since standard contour-integration-based RD schemes are non-monotonic, does that mean that is not possible to compute 
hypersonic non-equilibrium flow fields using RD schemes? Fortunately, that is not the case. As we demonstrated recently 
in [7], by supplementing standard CRD schemes with a locally active shock capturing term it is possible to obtain solutions 
that are free from temperature under/overshoots across the shock-captured shock wave.

By no means we claim that the regularized CRD schemes in [7] are the only possible strategy to address non-equilibrium 
hypersonic flows. Actually, as long as it is possible to fit all the shock structures present in the computational domain, then 
the optimal approach would be to use 2nd-order standard CRD (not regularized) schemes in combination with the shock 
fitting strategies in [23–25].

However, whenever a shock front cannot be properly fitted, the regularized CRD schemes are instrumental to obtain 
converged solutions. Research is undergoing to improve the regularization techniques for RD schemes: e.g. [26] describes 
an enthalpy-preserving shock capturing term which can be extended in a straightforward manner to the complex thermo-
chemical non-equilibrium model considered in this work. Alternative, supplementary dissipative terms are described in [27,
28].

Finally, note that alternatives to the Liu and Vinokur Roe-like linearization exist in the literature. One of those might well 
be the approach described in [20,21]: it is worth considering whether achieving a multi-dimensional extension is possible.
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