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Abstract

Nowadays, in sub-Saharan Africa (SSA), about 40% of the population is urban and

this region is expected to face the highest growth rates during the next decades.

By 2100, the three most populated cities in the world will be located in SSA. As

a consequence of the extremely fast transformations experienced during the last

decades, SSA cities are facing social and environmental issues combined with a lack

of financial means and capacity in urban planning and management. The poorest

often constitute a large part of the urban population that is extremely vulnerable

to health and disaster risks.

In SSA cities, up-to-date and spatially detailed geographic information is often

missing. This lack of information is an important issue for many scientific studies

focusing on different urban issues and there is a real need to improve the availability

of geoinformation for these cities in order to support urban planning, urban man-

agement, environment monitoring, epidemiology or risk assessment, etc. . . The work

presented in this thesis aims to develop different frameworks for the production of

geoinformation. For this purpose, advantage is taken of Very-High Resolution Re-

mote Sensing imagery (0.5 meters) and open-source software. These frameworks

implement cutting-edge methods and can handle a large amount of data in a semi-

automated fashion to produce maps covering very large areas of interest. In the

spirit of open science, the processing chains are entirely based on open-source soft-

ware and are released publicly in open-access for any interested researchers, in order

to make the methods developed completely transparent and in order to contribute

to the creation of a pool of common tools and scientific knowledge. These frame-

works are used to produce very detailed land-cover and land-use maps that provide

essential information such as the built-up density, or the fact that a neighborhood

is residential or not. This detailed geoinformation is then used as indicators of pres-

ence of populated places to improve existing population models at the intra-urban

level.
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Résumé

Aujourd’hui, près de 40% de la population en Afrique subsaharienne vit en ville,

et on prévoit que ces pays connaitront la plus forte croissance urbaine au cours

des prochaines décennies. D’ici 2100, les trois villes les plus peuplées au monde

seront probablement des villes d’ Afrique subsaharienne. La conséquence des trans-

formations extrêmement rapides que ces villes ont subies au cours des dernières

décennies est qu’elles doivent faire face aujourd’hui à de nombreux problèmes liés à

l’environnement, la planification urbaine ou encore le développement des inégalités.

Une partie très importante des populations urbaines des grandes métropoles d’

Afrique subsaharienne vit dans une extrême pauvreté et est très vulnérable aux

risques naturels et sanitaires.

Dans ces villes, des données géographiques spatialement détaillées sont souvent

indisponibles et leur mise à jour pose problème. Ce manque d’information est

un problème important pour de nombreuses études scientifiques s’intéressant aux

différents problèmes urbains. Il y a donc un réel besoin d’améliorer la production

et la disponibilité des données géographiques pour ces villes, pour aider la planifi-

cation et la gestion des services urbains, pour la surveillance de l’environnement,

les études épidémiologiques et d’évaluation du risque, etc. . . Le travail présenté dans

cette thèse a pour objectif de développer différents “frameworks” pour la produc-

tion d’information géographique. À cette fin, nous avons tiré avantage des données

satellitaires à très haute résolution spatiale (0.5m). Ces frameworks mettent en oeu-

vre des méthodes à la pointe de la recherche, notamment pour la cartographie de

l’occupation du sol, et sont capables de traiter de façon semi-automatisée de grandes

quantités de données afin de couvrir des zones d’intérêt très étendues. Ces châınes de

traitement reposent entièrement sur des logiciels libres (open source) et sont mises

librement à disposition des chercheurs intéressés, dans un souci de transparence et

pour contribuer à la mutualisation des outils et des connaissances scientifiques, dans

l’esprit de l’open science. Ces frameworks sont utilisés, ici, afin de produire des

cartes d’occupation et d’utilisation du sol avec des niveaux de détails très élevés,

fournissant ainsi des informations essentielles comme la densité du bâti, ou le fait

qu’un quartier soit résidentiel ou non. Ces informations sont ensuite utilisées comme

indicateurs de la présence de population, ce qui permet d’améliorer les modèles de
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Chapter 1

Introduction

Contrary to what one might think, African urban history dates back to a long time

before the European colonization. Indeed, the first cities in western Africa probably

appeared in Ghana between the 6th and 7th centuries but remained very small [1].

During the precolonial period, Gao, Tombouctou and Djenné – all of them located in

the Mali empire – were the most populated cities of this region and counted between

70,000 and 80,000 inhabitants only1 [2]. At that time, cities were primarily trading

places, and this is why most of them were located along major trade routes or at

their end, as in the Sudano-Sahelian zone which was crossed by trans-Saharan trade

routes.

Sub-Saharan Africa (SSA) has experienced significant and widespread urbaniza-

tion only very late in comparison to what happened in Latin America or Asia. It

was the European colonization in the 18th and 19th centuries that laid the foun-

dations for an important urban development. However, cities remained few and

limited in size at this stage. They started to reach higher growth rates after World

War II, especially after the 1960s when SSA countries gained their independence,

and recorded globally unprecedented urban growth rates with about 6 to 10% per

year [2]. From the 1970s, the phenomenon experienced a certain slowdown, but the

rates remain quite high until now. Reader interested in an exhaustive background

about urbanization in SSA may refer to Coquery-Vidrovitch (1991).

Nowadays, about 40% of the population is urban in SSA and the region is ex-

pected to face the highest growth rates during the next decades, and reach urban-

ization rates of 47% by 2030 and 58% by 2050 [4]. A recent study claimed2 that

three African cities - Lagos (Nigeria), Kinshasa (Democratic republic of Congo) and

Dar es Salaam (The united republic of Tanzania) - could be the most populated

1The information available for the precolonial period are very insufficient and it is therefore
difficult to have reliable population figures.

2Since they had to deal with several uncertain data and the task to make such predictions for
such a distant future could be hazardous, the authors concede that their finding should be used
with caution.
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Chapter 1. Introduction

cities in the world by 2100, and that 30 to 40 out of the 100 biggest cities in the

world could be located in SSA [5].

As a consequence of the extremely fast transformations experienced during the

last decades, SSA cities are facing social and environmental issues that are sometime

lumped together and called the “urban crisis”. These issues are mostly due to

the important population increase combined with a lack of financial means and of

capacity in urban planning and management [6]. SSA cities have to face growing

environmental issues such as water and air pollution, inadequate waste collection

and disposal, noise pollution etc. . . [7]. In the same time, the spatial segregation

that had been developed on a racial basis during the colonial period has evolved

into a spatial segregation based on socio-economic characteristics [7, 8]. It results in

dual cities with important intra-urban inequalities. Slum-like areas - where people

live with insufficient living space, without tenure security and adequate sanitation

or access to water - coexist with rich neighborhoods having higher living standards.

The poorest often constitute a large part of the urban population that is extremely

vulnerable to health and disaster risks [9]. According to the United Nations, SSA

has the highest proportion of urban population living in slum conditions [7].

In SSA cities, up-to-date and spatially detailed geographic information (hereafter

called “geoinformation”) is often missing. This shortage is an important issue for

many scientific studies focusing on different urban issues and there is a real need to

improve the availability of geoinformation for these cities in order to support urban

planning, urban management, environmental monitoring, etc. . .

For a long time, geoinformation has been produced thanks to air-borne (from

airplanes) or space-borne (from satellites) imagery. These are important sources

of information for geographers as they have the ability to capture and record the

exact configuration of a territory in one single picture. Hand-made visual photo-

interpretation combined with field surveying have long been used as the common

procedure to transform these images into valuable geoinformation. However, these

methods remain cost- and labor-intensive and are not well adapted for fast and

regular map updates. With the increasing amount of Very-High Resolution Remote

Sensing (VHRRS) data and the improving computing capabilities, it is now possible

to implement cost-effective solutions for the production of geoinformation in order

to map the urban environment with a fine level of spatial and thematic details in

highly automated procedures. These solutions are relevant for the SSA cities that

are characterized by limited financial capabilities and where the pace of change and

urban growth imply frequent map updates. In this thesis, a specific emphasis is

laid on using only Free and Open Source Software for Geospatial (FOSS4G) in the

proposed solutions for limiting the costs and allowing anyone to review and adapt
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them to their needs3.

Land cover and land use are the most common geoinformation that can be de-

rived from Remote Sensing (RS) images. The first refers to the composition and

physical characteristics of earth surface elements such as vegetation, soils, water or

artificial surfaces, while the second informs about the type of functions and activities

that people decided to carry out in some places.

In this thesis, the first two objectives are to implement two automated frame-

works for the production of land-cover and land-use maps, allowing for the processing

of large images covering complex heterogeneous urban environments, in a context of

lack of geoinformation as usually the case in SSA cities. What we mean by “frame-

work” is a compilation of tools and methods which provide a generic functionality

that could serve multiple different domains of application, that could be applied on

different case studies and data sets with limited adaptation and that can be im-

proved by adding user-written code. The form of the frameworks developed in this

thesis is described in more details in chapter 2. These two objectives are included

under the encompassing research question4 established as follows: “How to produce

geoinformation for SSA cities, using VHRRS data and open-source solutions ?”.

The main research questions and the resulting scientific objectives of this thesis are

highlighted in figure 1.1.

Figure 1.1: Main research questions of this thesis and resulting scientific objectives.

While there is a prolific scientific literature on land cover and land use mapping,

the work undertaken in this thesis to fulfill these objectives proved more difficult than

3These points are discussed in more detailed in section 1.5.
4In fact this question does not wait for a clear and unequivocal answer. Rather, it suggests to

implement and test different approach and to use those which are the most relevant in the context of
mapping SSA cities to create and share different frameworks for the production of geoinformation.
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Chapter 1. Introduction

initially expected, for several reasons: i) Most studies do not operate on data-poor

contexts such as SSA and the proposed methods were sometimes found difficult or

impossible to apply. ii) The authors do not systematically release publicly the code

they used to conduct their analyses, leading to a lack of reproducibility. iii) The

validity of the methods proposed in the literature is often evaluated on small areas

and may be inefficient for the large-scale applications considered in this thesis.

The land cover and land use are meaningful and valuable geoinformation by

themselves. However, in this thesis, we decided to go further and to use them

for improving the results of population density estimates. This leads to another

research question phrased as follows: “How can VHR geoinformation improve intra-

urban population density estimates for SSA cities ?”. Accessibility to and quality

of population data are important issues for many applications in different fields of

research, such as epidemiology and risk assessment. However, in SSA, population

data are marred by several challenges, notably the fact that data released by official

institutions are only available in coarse administrative units that do not match the

level of spatial detail required for studies at the intra-urban level. Existing spatial

modeling methods provide a workaround to this limitation. Using ancillary data

such as the location of the settlement or the built-up density, it is possible to model

and to estimate population densities at a finer spatial resolution than in official

data and to map them as a continuous variable in gridded layers (raster) instead of

homogeneously distributed in areal administrative units. Unfortunately, currently

available gridded population models for SSA suffer from limitations and fail to pro-

vide population estimates with the spatial details required by research operating at

the intra-urban level. As explained below, this is mainly due to the relatively coarse

spatial resolution of the input data used in these models. Spatial and thematic

detailed geoinformation derived from VHRRS data is likely to be a valuable source

of information for population modeling purpose, but it remains largely unexplored

according to literature review on the state of the art. For this reason, we decided

to fill this gap and made the hypothesis that leveraging geographic information de-

rived from VHRRS data can improve the accuracy and the spatial detail of existing

population models.

In summary, the overall goal of this thesis is to develop and to implement open-

source methodological frameworks for the detailed mapping of the land cover and

land use of SSA urban areas using VHRRS data and to assess how these pieces of

geoinformation can improve the quality of intra-urban population models.

The following sections of this general introduction lay the theoretical founda-

tion of this thesis and provide some background to assist the reader in the general

understanding of the research conducted and of the methodological and technical

development presented in the subsequent chapters. Section 1.1 presents a brief de-
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Section 1.1. Case studies

scription of the case studies. Section 1.2 introduces the general background on land

cover mapping using VHRRS data and summarizes the different methodological is-

sues we faced and the solutions we propose. The method implemented to map the

land use in a data-scarce context is briefly presented in section 1.3. Section 1.4

presents the potential of land cover and land use information for improving existing

population models. Finally, the issue of reproducibility and the importance of open

science is addressed in section 1.5, while the specific objectives and the thesis outline

are presented in section 1.6.

1.1 Case studies

The methods developed in this thesis were applied for testing on two west-African

cities, namely Ouagadougou and Dakar, the capitals of Burkina Faso and Senegal,

respectively. The selection of the Area Of Interest (AOI) - i.e., the geographical

extension that is considered as relevant for the study - is an exercise that remains

quite subjective since there is no consensus for establishing criteria for the delineation

of the limit between rural and urban areas [10]. Here, the AOIs were selected

through visual interpretation of VHR imagery and are not strictly restricted to

the administrative units. Indeed, they cover both the core city and the peri-urban

areas, allowing us to capture the different economic activities and the extension

of the urban sprawl [11]. The AOI covered 615 km2, and 418 km2 in 20155, for

Ouagadougou and Dakar, respectively. In terms of the geographic extent covered by

the land cover mapping using VHRRS, these AOIs are most probably top-ranked in

the scientific literature [12].

These cities have been undergoing an extensive and partly unregulated urban

growth during the last decades [13, 14]. According to the last official count of

the population, Ouagadougou has 1.9 million inhabitants (2012 [15]), while Dakar

has about 3 million (2013 [16]). According to the United Nations, the population

of Dakar grew by roughly 30% between 2005 and 2015, while the population of

Ouagadougou grew by 65% during the same period [4]. They are characterized by

a mix of very different urban patterns, e.g. administrative and industrial areas with

large-sized buildings as well as planned and unplanned residential areas with smaller-

sized buildings. In both case studies, an important part of the city is characterized by

a landscape with a checkerboard design inherited from the French colonization. The

urban fabric is more diverse and complex in Dakar than in Ouagadougou, especially

in the city center.

From a remote sensing perspective, these cities present important challenges,

especially because the built-up is usually very hard to discriminate from the bare

5At the time of satellite imagery acquisition
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Chapter 1. Introduction

soil and the artificial ground surfaces with the available spectral information. This

can be explained, among others, by the presence of dust on roof tops and by the use

of similar construction materials - i.e., concrete - for flat roofs and artificial ground

surfaces. Both cities have a typical Sahelian climate and are located in the same

ecological region (Hot semi-arid - Bhs - according to the Köppen classification).

Because of this arid climate, the period of the year selected for image acquisition

is very important. The end of the rainy season is the most recommended since the

bare soils are more covered with vegetation and thus easier to distinguish from the

built-up areas.

These case studies were selected for several reason, namely because the proba-

bility of acquiring cloud-free images was higher than for cities located in equatorial

zones, because of existing networks with local scientific teams and because of the

opportunity to access recent and spatially detailed population data.

1.2 Land cover mapping and OBIA

As mentioned above, the first scientific objective of this thesis is to develop a frame-

work for land cover mapping. Therefore, we use VHRRS data as input, for its

ability to maps the urban environment with great spatial details. In this section,

a light theoretical background of the most used approach for processing VHR im-

ages, called Object-Based Image Analysis (OBIA), is provided. An overview of the

different issues we faced when applying state-of-the-art methods for mapping large

and heterogeneous areas and the solutions that we propose are briefly presented in

subsection 1.2.1. Also, since it is important with regard to population modeling,

we briefly illustrate in subsection 1.2.2 how the height of off-ground objects is used

to increase the thematic accuracy of the land cover maps produced. The complete

methodological developments related to the implementation of the semi-automated

framework for land cover classification are further presented in chapter 2.

In the early stages of remote sensing, spaceborne remote sensing images were

typically available with a spatial resolution ranging from 10 to 30 meters [17] and

were classified on a pixel-by-pixel basis (pixel-based paradigm). With time, the reso-

lution increased and the launch of new sensors providing VHR images, around 2000,

propelled the development of new strategies for processing these new data sets. As

pixels became smaller, the geographical objects to be mapped - e.g., a house or a tree

- spread over multiple pixels, as illustrated in Figure 1.2. Application of standard

pixel-based approaches on VHR images led to speckled classification results [18],

the so-called “salt-and-pepper” effect, where pixels belonging to a same geographi-

cal object (e.g., a building) were not assigned to the same label. As a mitigation, a

new approach emerged, aiming at grouping images pixels to create images segments
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Section 1.2. Land cover mapping and OBIA

corresponding to actual geographical objects (houses, trees, . . . ) which would then

be classified. The process of segment creation is known as “segmentation” and has

a significant impact on the quality of the final classification accuracy. The entire

method is known as Geographic Object-Based Image Analysis (GEOBIA) (or simply

OBIA) and has now been acknowledged as a standard for processing VHRRS data.

An OBIA framework for land cover mapping usually consists of the main follow-

ing steps: i) the segmentation (creation of objects), ii) the computation of segment

statistics (spectral, morphological and contextual information), iii) optionally, the

selection of the more discriminant statistics (feature selection), and finally iv) the

classification.

Figure 1.2: Relation between the spatial resolution of the images and the size of
geographical objects to be mapped. Source: Blaschke [19].

Designing a methodological framework allowing for the operational production

of land cover maps is a complex task, where many methodological problems arise.

This is especially true when the objective is to produce a processing chain that is as

automated as possible and able to handle very large areas (major cities in SSA easily

sprawl over 300 km2). It is important to note that, at the beginning of this thesis,

there was a lack of methods that had proven their efficiency for large scale land

cover mapping using VHR. While >95% of the scientific publications on land cover

mapping have an AOI covering less than 3 km2[12], the applicability/efficiency of

common OBIA methods on large data set remained largely uncertain. For processing

our data sets - covering more than 1.000 km2 in total - and achieving sufficient

accuracy, we had to push existing methods up to their limits and find new strategies

for scaling them.

1.2.1 The need for scalable and automated segmentation

As already mentioned, segmentation is an important step that can impact signifi-

cantly the quality of the final map. Segmentation can be performed using several

7



Chapter 1. Introduction

algorithms, and each needs tuning to provide a “good” segmentation result. As

illustrated in Figure 1.3, the choice of the segmentation parameter values greatly in-

fluences the size, the shape and the spectral heterogeneity of the objects created (the

image segments). When there are too many image segments (over-segmentation,

see Figure 1.3 A)), one single geographical object - e.g., a building - can be made

of many image objects, which leads to ineffective size and shape measures in the

classification stage. On the contrary, when there are not enough image segments

(under-segmentation, see Figure 1.3 C)), different geographical objects can be in-

cluded in the same image segment which will reduce the quality of the final maps.

An acceptable segmentation result should in fact be somewhere between these two

extreme situations (see Figure 1.3 B)). But what exactly is a “good” segmentation ?

Haralick and Shapiro (1985) first stated that a segmentation process should main-

tain uniformity of single objects while making them as different as possible from

their neighbors [20].

Figure 1.3: Impact of the choice of the parameter on the segmentation result. A)
The result is over-segmented. B) The result is quite valid for further analyses (clas-
sification). C) The result is under-segmented.

In many studies, segmentation parameter values are often selected on a manual

basis by trial-and-error refinement relying on visual assessment. This tedious, time-

consuming and subjective approach proved to be marred by transferability issues

and did not allow for any automation, since the validity of the selected parameters is

usually restricted to the specific scene under study, or even to specific areas within

this scene, and they have to be adapted for each dataset [21]. When looking for

automation in an OBIA framework, the determination of the optimal segmentation

parameters is the biggest challenge. In this work, we made use of state-of-the-art

methods for determining the parameters in an unsupervised fashion, called Unsu-

pervised Segmentation Parameter Optimization (USPO). In this thesis, we used an

USPO method enabling the determination of segmentation parameters that satisfy

an optimization function maximizing both intra-segment homogeneity and inter-
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Section 1.2. Land cover mapping and OBIA

segment heterogeneity. More details are provided in chapter 2.

We created a semi-automated processing chain for OBIA land cover mapping that

uses USPO methods for the segmentation. This processing chain, or framework, is

implemented in Python and takes advantage of the existing open-source software

GRASS GIS. A new add-on, called i.segment.uspo [22], has been developed in order

to allow for the use of USPO methods in this software.

Ouagadougou was used as a case study for the development of the semi-

automated framework. In the initial development stage, published in Grippa et

al. (2017) (paper 1 [21], in chapter 2), it was tested on a limited portion of the city

covering 25 km2, and it achieved a good classification accuracy. However, when ap-

plied to the entire scene of Ouagadougou (615 km2), the results were not as good as

expected. This was because the segmentation parameter optimization strategy was

designed as a global approach, i.e., the whole image was segmented using the same

parameter, without considering the existing spatial variations in terms of built-up

patterns as illustrated in Figure 1.4.

Figure 1.4: Heterogeneity in built-up patterns in Ouagadougou

As the state-of-the-art methods used for mapping urban area using VHRRS data

proved to under-perform when applied to large AOI with important heterogeneity

of built-up patterns across the scene, existing methods have been adapted. A re-

cent study, in which segmentation parameters where optimized at the agricultural

plot level in Spain, showed that the optimal segmentation parameters could vary

significantly depending on the type of crops cultivated in the field [23]. We made

the assumption that the same should also be true for different types of built-up pat-

terns in an urban context. Thus, we decided to divide the whole scene into smaller

and more homogeneous (local) zones, through an expert-based visual interpretation

process based on two criteria, namely built-up density and building size. Then, we

used the USPO method to automatically select optimal segmentation parameters

for each local zones. We called this approach the “local USPO”. This strategy

proved its ability to improve the quality of the segmentation and outperformed the
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”classical” global approach in terms of classification accuracy, as illustrated in Fig-

ure 1.5. This comparison between both approaches is discussed in more detail in

Grippa et al. (2017) (paper 2 [24], in chapter 2).

Figure 1.5: Impact of the global (left image) and local (right image) optimization of
the segmentation parameters on the classified map. Applying local USPO reduces
misclassifications, especially at the edges of buildings.

Although it succeeded in increasing the quality of the land-cover map produced,

the method was still marred by the need to draw local zones manually, which cre-

ates a bottleneck for automation and reduces the ease for transferability on new case

studies. For this reason, we pursued the improvement of the methods. We made

the assumption that applying a local USPO approach on a dummy - i.e., non-expert

guided - partition of the scene, could reach the same level of improvement as that

obtained when applied on a partition created through a labor-intensive expert-based

visual interpretation. To achieved this, we considered alternative solutions for the

semi-automated partitioning of a large scene (see Figure 1.6). We compared the

performance of our land cover mapping framework with expert-based local zone

creation and grid-based and “cutline”-based scene partitioning. The last two led

to similar improvements as using expert-based local zones, but the “cutline” par-

titioning was preferred since it delineates the landscape in a more meaningful way.

Indeed, as illustrated in Figure 1.6, delineations between adjacent zones are more

prone to follow linear patterns, such as roof edges and streets, and could mitigate

“edge effect” problems. The results of the different approaches are further discussed

in Georganos et al. (2018) [13] (paper 3 in chapter 2).
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Figure 1.6: Automated partition of the scene tested for local optimization of seg-
mentation parameters. A) Using regular grid. B) Using a “cutline” algorithm.

1.2.2 Using object height for increasing the thematic accu-

racy of building class

We just saw how existing segmentation methods were adapted for processing VHRRS

images and mapping the land cover with fine spatial details in an urban environment.

This spatial detail is often considered as the main added value of VHR. However,

VHR data provide another very important added value compared to HRRS data.

Indeed, when they are acquired in stereo pairs, object height information can be de-

rived from VHR images (normalized Digital Surface Model (nDSM), Figure 1.7(B)).

As illustrated in Figure 1.7, this can be used to classify different categories of build-

ings according to their mean height. This information is extremely important for

many applications, such as urban planning. It is also of great value for population

modeling and constitute a key predictor of improved population estimations because

different building heights may impact the population densities. Interested readers

can refer to Vanhuysse et al. (2017) [25] for more details about the procedure to

create height information.
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Figure 1.7: Use of nDSM for distinguishing high- from low-elevated buildings in a
land cover classification. (A) Initial land cover classification with a single building
class. (B) nDSM layer providing height information about above-ground objects.
(C) Refined classification with building objects reclassified according to their mean
height.

1.3 Mapping the urban land use at street block

level

Aside from the development of a framework for land cover mapping, the second

scientific objective of this thesis is to develop a framework for land use mapping,

which is another essential piece of geoinformation that can be extracted from RS

images. Up-to-date and reliable land-use information is essential for a variety of

applications such as planning or monitoring of the urban environment as well as in

support to scientific studies [11].

Many studies aiming at mapping the urban land use based on VHR data work

at the street block [26–29] or even at the cadastral plot level [30–32]. The street

blocks have been depicted as the most fundamental and appropriate unit in which
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to map the urban structure, and they provide a spatial detail which is well adapted

for urban planning [33–35]. However, street block geometries are most of the time

unavailable to researchers working on SSA cities, either because they are difficult

to access or because they do not exist. To overcome this lack of existing infor-

mation, we developed a semi-automated procedure for the creation of street block

geometries using OpenStreetMap (OSM) data [36]. This free and open-source Vol-

unteered Geographic Information (VGI) source is improving rapidly, both in terms

of completeness and of thematic accuracy, and it is going to become a key player in

the coming decade for the production and access to high-quality geoinformation in

developing countries [11].

In the literature, many studies aiming at mapping the land use operate in a

context of good availability of ancillary data, and take advantage of official databases

providing detailed and exhaustive spatial information on urban facilities (schools,

hospitals, . . . ) to classify the urban functions [30–32, 37]. Unfortunately, these data

were not available for our case studies, as is the case for many SSA cities. For this

reason, we had to design strategies allowing us to map the land use in urban areas

with a very limited set of ancillary data. For this purpose, we leveraged the valuable

information previously produced. By analysing the land-cover maps, it was possible

to determine the type of urban function, according to the composition (e.g., presence

of absence of builings, vegetation, etc. . . ) and the organization (e.g., the size and

density of building or vegetation patches) of the land cover classes in each street

block. Variables originally used in ecological studies, called “landscape metrics” were

used to characterize street blocks in such a way. The whole methodology consisting

of a semi-automated framework for the creation of street block geometries, their

characterization using spatial metrics and their classification is presented in Grippa

et al. (2018) (paper 4 [11] in chapter 3).

From a population modeling point of view, access to information about on the

location of urban functions throughout the city is extremely important. Indeed,

urban areas are characterized by the concentration of various human activities and

residential functions represent only a limited proportion of the built-up areas. The

built-up density (computed from the land cover information) is usually among the

top predictors in population models [38]. However, when the buildings are not ded-

icated to residential functions (e.g., industrial buildings as in Figure 1.8, top right),

its use may result in an overestimation of the population. Land use information,

providing a distinction between the different urban functions (residential, industrial,

commercial, . . . ) could mitigate this issue. Thus, in this thesis, we make the hy-

pothesis that land cover and land use provide complementary information and can

be used together when designing population models.
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Figure 1.8: Land cover (A) and land use (B) are complementary geoinformation
that can be combined to improve population estimations.

1.4 Improving the knowledge on intra-urban pop-

ulation distribution

As mentioned at the start of this introduction, the land cover and land use are valu-

able pieces of geoinformation by themselves for a multitude of application. Much

time and effort was spent for the development of transferable semi-automated frame-

work for their production. However, we decided to go further and to use them for

improving the results of population density estimates, in view of answering the

following research question: “How can VHR geoinformation improve intra-urban

population density estimates for SSA cities ?”. Indeed, population data currently

available for SSA are often marred by a lack of sufficient detail, which limits the

possibility of analysis for studies in epidemiology or risk assessment.

In this section, we briefly introduce why population data are essential information

for many different fields of research and what are the problems related to the use

of official census data. Next, we give an overview of how population modeling can

be used to estimate fine-scale population densities. Finally, we highlight the main

limitations of the currently available gridded population layers and the potential of

VHRRS data to mitigate them.

1.4.1 Why population data is essential

There is a wide variety of applications depending, directly or indirectly, on informa-

tion about human population and especially on its spatial distribution. Access to

accurate and detailed population data is needed by public authorities, local organi-

zations or academia for evidence-based decision-making and research. The present

14



Section 1.4. Improving the knowledge on intra-urban population distribution

research is conducted to meet needs explicitly expressed by researchers in the field of

epidemiology and health assessment, but it is likely that the methods and maps pro-

duced may be worthwhile in many other fields of research. However, their potential

use by public authorities in decision-making processes is more uncertain.

Without aiming to make an exhaustive inventory of all the possible applications,

a selection of concrete examples - not limited to SSA - illustrating the importance

of having accurate and detailed population data is presented hereafter.

a) Location decision for new public facilities

The spatial allocation of resources is a strategic issue in the implementation of public

policies and public investments should, ideally, reach the greatest number of people

who need them. When planning the establishment of new health facilities, such as

medical centers or hospitals, an unavoidable question arising is “where should it

be located”. It has been shown that better access to health facilities can positively

impact different health outcomes, such as maternal and infant mortality, vaccination

coverage and treatment of infectious diseases [39].

Such a location decision-making process is subject to multiple conflicting criteria

[40] and the final decision on the location for a new facility could be far from optimal

[41] if not supported by an objective analysis of needs and constraints (evidence-

based decision). Location-allocation models regroup different methods that have

long been used to solve this kind of problems, e.g., multi-criteria decision analysis

[40]. In this kind of decision-support models, the choice of the “best” candidate

among a set of different possible locations is made according to an “objective”

function. In the case of developing countries, the use of health services strongly varies

with distance [42] and walking remains the main transport mode for an important

part of the population [39] making the location decision even more essential. The

objective function can remain quite simple, such as minimizing the mean travel

time needed by the population to reach a health facility, e.g., by computing on

a pixel-by-pixel basis the ratio of population density and travel time [40]. It is

therefore essential to know where the population is located, with enough detail in

terms of spatial resolution, so that public authorities can make objective decisions

and allocate financial resources in the most optimal way6.

b) Planning vaccination campaigns and managing outbreaks.

Vaccination is another health-related issue that requires access to population data.

Vaccination campaigns can be organized on a regular basis or in response to an

epidemic. Planning a vaccination campaign is a difficult task – mostly logistic -

6Resource allocation is always a question of political will, but such information can be valuable
for decision support.
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that requires accurate information about settled places as well as population den-

sities. The micro-planning of vaccination campaigns usually operates by dividing a

large area of interest into smaller geographic target areas that will be assigned to

different vaccination teams [43]. Unfortunately, population data is often available

for coarse administrative levels that do not correspond to the operational scale. As

a consequence, it is difficult to correctly allocate human resources and to inform

the vaccination team about the exact location they are expected to go, leading in

some situation to “. . . highly inefficient and unbalanced work plan for the vaccina-

tion teams.”[43, p. 104]. In addition to the location of inhabited areas, it is also

necessary to estimate the number of inhabitants of a target area, so that field teams

can carry enough vaccine doses to reach a minimum percentage of the population,

in order to ensure the effectiveness of the campaign 7.

Recently, the Ebola outbreak in West Africa has been an opportunity to realize

the poor quality of the population data, leading to difficulties because “. . . emergency

responders struggled to identify the location and size of rural settlements, and could

not accurately calculate infection rates since the denominator (i.e., the population

at risk) was not known, an issue that is regularly encountered in emergencies and

outbreaks situations. . . ”[45, p. 2].

c) Vulnerability and risk assessment

Many populations are subject to potential hazard events that can have anthro-

pogenic (e.g., nuclear power plant, for example), or natural (floods, earthquakes,

landslides, tsunami, rising sea levels) origin. Quantifying the vulnerability of the

population can be interesting in order to better prepare emergency plans and respond

to hazard events. Risk assessment is usually performed to prepare emergency re-

sponses and/or try to modify the current configuration of a place in order to mitigate

the potential damages. A risk can be defined as the combination of the probability

of hazardous events to occur and the vulnerability - i.e., “. . . the susceptibility of

elements at stake to suffer from damages in case of hazard occurrence.”[46, p. 29].

Depending on the type of elements considered, vulnerability and risk assessment

may focus on social or environmental aspects, the economy, etc. . .

Concerning risk assessment involving human populations, the spatial distribution

of population density is the most basic and mandatory information required in the

analysis. However, this may not be enough, since different population subcategories

could be impacted differently by the same event. In this regard, it may be useful to

have access to more disaggregated data in terms of age, gender, income, etc . . . [47]

for the evaluation of the vulnerability of the population at risk. The scale of the

7A vaccination campaign is effective if a least a certain proportion of the target population is
reached, e.g. 95% of the population for measles outbreak [44].
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analysis may differ depending on the type of risk. For some risks such as floods,

landslides and volcanic eruptions, the relevant analytical scale is quite fine, and it

will therefore be necessary to access detailed spatial population data or, at least,

plausible estimates.

Several examples of scientific studies on vulnerability and risk assessment exist

and are presented here. A study published in 2007 by McGranahan et al. put the

emphasis on the population living in low elevation coastal zones that are faced by

the threat of rising sea levels induced by climate change [48]. In this research, a

risk analysis was performed using the spatial distribution of the population living

in urban areas facing risk regarding sea-level rising. This was the first attempt to

use a global gridded-population product to conduct such analysis. More recent re-

search [49] highlighted the uncertainties that are inherent to these global products

and their impact on final estimates. Another type of risk to which people living in

coastal areas are subjected is a tsunami event. A study published by Wegscheider

et al. (2011) aimed at mapping the tsunami-prone areas in Bali (Indonesia) in order

to identify communities which faced higher risk, with the aim of developing their re-

sponse capability [47]. The authors reported that they had to perform their analysis

with population estimations since the available official population data at the lower

administrative level did not meet the needs for a tsunami vulnerability assessment,

in terms of spatial resolution. Michellier et al. published in 2016 the results of a re-

search aiming at assessing the risk toward geo-hazard such as earthquakes, landslide

or volcanic activity including lava flows in an area sprawling over several countries

in central Africa [46]. The authors were faced with the fact that some population

data were completely outdated and only available for administrative levels too coarse

for their analysis. Also, even when data existed, their accessibility and availability

for research purpose was difficult. To support their analysis, the authors had to

estimate the population of the cities of Goma and Bukavu (Democratic republic of

Congo), by combining remote sensing analysis and labor-intensive field surveying.

d) Measuring the progress toward the Sustainable Development Goals (SDG)

The SDG are widely referred to in the literature related to development and

poverty reduction. Initially, the Millennium Development Goals (MDG) were estab-

lished with the aim to centralize and reinforce the development agenda of several

programs of the United Nations (UN) (UNDP, UNEP, WHO, UNICEF, UNESCO,

etc. . . ) [50]. They were replaced by the SDGs in 2015. In order to measure the

progress toward the achievement of these goals, several sets of indicators were estab-

lished. An important part of them rely on population figures as denominator, e.g.

17



Chapter 1. Introduction

the proportion of the population below the international poverty line. While the

general objective of the MDGs was mainly oriented toward the reduction of inequal-

ities between countries, nowadays, the SDGs increase the ambitions for reducing

the inequalities at the intra-country level [45]. In this context, the SDGs indicators

should also be computed on disaggregated levels, requiring population data with a

more detailed geographical resolution [51, p. 7].

It should be noted that the ability to measure progress toward SDGs completely

depends “(. . . ) on the availability of data and capacity to measure them (. . . )”[50].

It is very unlikely that the least developed countries, such as those of SSA, might

have the capacity to deliver accurate data that can be used to compute the SDGs

indicators, since the reliability of the whole statistical data collection system is

sometimes more than questionable. For this reason, the rationale and efficiency of

use of SDGs for policy making and development aid are sometimes criticized [52].

1.4.2 The issues related to official population data

As highlighted in the previous section, there are many different applications that

require population data to perform their analysis. One may wonder why we should

model the population at fine scale instead of simply use existing census data. This

section introduces the main issues related to official population data.

Worldwide, there is a general concern about privacy issues when official popu-

lation data are released. While they are usually collected at the individual or the

household level, data are spatially aggregated and released only at administrative

units levels [53, 54]. On the one hand, it has the advantage of satisfying the privacy

concerns and also improving the manipulation of the data thanks to a dramatic

reduction of their volume. On the other hand, several issues arise from the ag-

gregation of population data into administrative units. One of them is related to

administrative units boundaries that result from subjective choices and are estab-

lished according to “(. . . ) operational requirements of the census, local political

considerations, and government administration”[55, p. 4]. As a consequence, most

of the time, their extent does not have any geographical or natural meaning and

thus does not match the extent of the phenomenon under investigation. Another

challenge encountered in research is the fact that administrative boundaries may

be modified from one census to another, which complicates the comparisons over

time [56]. Moreover, related to the previous points, the findings of analyses made

using aggregated data may be dramatically different according to the size and shape

of the aggregation unit. This problem, firstly described by Openshaw [55], is well

known in the field of spatial analysis and called the “Modifiable Areal Unit Prob-

lem” (MAUP). Finally, and the most important point with regard to this thesis, is
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the fact that aggregated data give information for whole administrative units and

thus hide important spatial discrepancies that may exist within them [57].

Besides the aforementioned general issues, some others are more specific to the

situation in SSA. In developed countries, we can generally rely on accessible, ex-

haustive and accurate population data which are detailed regarding to their spatial

resolution and distinction between socio-economic subcategories (gender, age, in-

comes, etc..). We have to remember that carrying out a national census is a huge

task that is hard to achieve, even for developed countries8 [45], which explains -

among other things - that they are usually performed only once in a decade. Con-

ducting a national census in SSA countries is much more complicated since they

lag behind developed countries, in terms of material and financial resources [58]. In

addition, having an up-to-date knowledge of the current population could be con-

sidered as a risk of instigating political instability and could thus suffer from a lack

of political will [45]. Regarding the situation of population data in SSA, three major

issues can be highlighted: i) their outdatedness, ii) their unreliability and iii) their

lack of spatial detail.

i) Many SSA countries do not manage to maintain the ten-year period between

two censuses and population data are often outdated [59]. As illustrated in

Figure 1.9, this can lead to extreme situations. For example, the last national

census dates back to 1984 for the Democratic Republic of Congo, 1987 for

Somalia and 1993 for Madagascar [60].

In case of outdated data, population projections are sometimes used to ob-

tain a more realistic estimation of population count for a specific year. These

projections are usually made with demographic growth rate provided by inter-

national institutions, e.g., the UN, which could be used to estimate population

count for the different administrative units within a country. However, since

growth rates are provided only at the national level, this approach can hide

important intra-national disparities and assume that the growth rates are the

same countrywide9.

Aside from national censuses, more recent population counts are sometimes

available for some specific areas. However, these pieces of information are

poorly centralized and referenced, leading to a difficulty in accessing them

8In this regard, it is interesting to mention that the methods evolved in developed countries and
that some are now able to produce census-like data by combining existing information (databases)
collected via different sources, such as population registers, family allowance, unemployment reg-
ister, individuals annual tax declarations, employers’ social security contributions, etc.

9Usually growth rates are provided with a distinction between urban and rural populations.
However, this implies that the distribution of urban and rural settlement should be known to
adapt projections.
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Figure 1.9: Using 2017 as the reference year, the figure shows the number of years
since the latest national census for African countries. Figure adapted from Wardrop
(2018) [45].

without having a reliable network of contacts among local public authorities

and NGOs.

ii) Population data are often criticized concerning their reliability and several au-

thors agree on the fact that caution is needed when dealing with population

statistics on SSA [8, 61, 62]. Actually, all the official statistics are strongly crit-

icized [58, 63]. The financial advantages that developing countries can obtain

from diverse international agencies are conditioned to their socio-economic

development measured by statistical indicators [45]. Since these indicators

mainly depend on the official national statistics (population, gross domestic

product, etc..), the political authorities may have an interest in increasing

or reducing official population counts, depending on the situation, and using

them as “(. . . ) political weapon (. . . )”[62].

iii) Another issue is associated with the spatial resolution at which population

data are accessible. In SSA the finest administrative level at which data are

available is most of the time much coarser than one could access in developed

countries. As aforementioned, available data may not correspond to the level

of detail needed for different applications. It is obvious for urban areas where

the variation of a phenomenon has to be measured at the intra-urban level.
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The first three administrative levels in the national scheme, e.g., national,

provincial, regional, are usually available. However, it is much more difficult

to access population data linked to the spatial boundaries of the finest ad-

ministrative level. In some cases, it is possible to access population data at

this level in the form of non-spatial databases, i.e., spreadsheets not joined to

administrative units limits as vector format for their use in Geographic Infor-

mation Systems (GIS). Sometimes, spatial information is provided as points

instead of the actual linear limits of the entities, which renders the use of

population data difficult.

In this thesis, we aim at providing solutions to mitigate this last issue.

1.4.3 Population modeling to deal with imperfect official

data

As highlighted, official population data can suffer from several shortcomings, which

can be more or less troublesome depending on the situation and the type of analyses

that need to be performed. To overcome these issues, several spatial modeling strate-

gies have been proposed in the literature. These are referred to here as “population

modeling” methods10.

Before going further, it is important to stop for a moment and to “Remember

that all models are wrong; the practical question is how wrong do they have to be

to not be useful.”[64, p. 74]. This statement, which may seem a bit sarcastic, must

be understood as the fact that a model is only a simplification of a complex reality.

If the aim of a model is to predict the “truth”, as the “whole and absolute truth”,

then all the models are wrong. As a result, “The most that can be expected from

any model is that it can supply a useful approximation to reality. . . ” [65, p. 440].

Depending on the type of issue encountered in the population data, two types

of approaches can be used: the bottom-up and top-down approaches.

Bottom-up approach

The first two aforementioned issues - i.e., population data being outdated and/or

considered as unreliable - can be bypassed by implementing a bottom-up population

modeling approach. As its name suggests and as shown in Figure 1.10, this approach

consists in collecting population data during micro-survey on the field and combining

them with ancillary data to estimate the total population of the territory.

Micro-surveying consists of field surveys carried out on limited areas with the

objective of enumerating the population or collecting other census-like data. These

10It is important to mention that this term has a wider meaning in the literature and encompasses
population growth models.
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Figure 1.10: The bottom-up approach aims to estimate the whole population of a
large area using existing information of micro-survey conducted on a limited portion
of the area of interest. Figure adapted from Wardrop et al. [45].

micro-surveys should be performed in different areas scattered throughout the terri-

tory and representative of the diversity of situations that can be encountered (strat-

ified sampling). Using statistical analyses, it is possible to highlight correlations

between population density collected in the field and ancillary data11, and then use

them to estimate (predict) population densities in all the areas not covered by the

micro-surveys. Micro-surveying is at the same time the main advantage and draw-

back of this approach. It enables the acquisition of up-to-date and reliable field

data but with the limitation of cost-, labor- and time-intensiveness and the need

for a workforce trained on standard techniques of census surveys. This approach

is not the one we investigate in this thesis, but interested readers can refer to the

publication of Wardrop et al. [45] for a more detailed explanation about bottom-up

approaches.

Top-down approach (Dasymetric mapping)

If the available official population data are affected only by insufficient spatial de-

tail, a top-down approach is generally preferred to a bottom-up one because of ease

of implementation. In this approach, also called “dasymetric mapping”, official

population data available in administrative units (source zones) are redistributed –

disaggregated - into smaller zones (target zones). The method relies on “spatial real-

location weights”, also called “weighting layers”, which are used as approximations

of the actual spatial distribution of population densities within the source zone. The

main challenge in dasymetric mapping consists in using all the information provided

by the ancillary data to improve the weighting layer so that it minimizes the errors of

population estimates in target zones. For a long time, these weights have been sub-

jectively determined by experts, according to existing information such as land-use

11There are plenty different variables that may be potential proxies for population densities, such
as the land cover, land use, climate, slope, accessibility (to transportation networks, to schools,
hospitals,. . . ), night-lights, or other socio-economic or sociocultural indicators.
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information or household characteristics. State-of-the-art research has now shifted

towards the use of the power and the efficiency of machine learning algorithms to

model the distribution of population densities without any expert-based knowledge.

Dasymetric mapping methods have been used for decades and extensive scien-

tific literature is available on this subject [53, 54, 66–70]. Additional reviews on

dasymetric methods can be found in [71, 72]. The main drawback of this approach

is related to its dependence on existing population data and it is important to note

that the population estimates derived using top-down dasymetric approach could

be only as accurate as the “. . . the census data on which they are based.”[45]. For

this reason, this approach should be used only when existing population data are

sufficiently recent and reliable.

In dasymetric mapping methods, target zones are usually completely included

in source zones, which presents the advantage of being more convenient from a

computational point of view. Moreover, it enables the “pycnophilactic” property

to be satisfied, i.e., that the initial volume of population provided as input in the

sources zones is maintained during the dasymetric procedure. It means that the

total volume of the population predicted on target zones within the source zones

has to be equal to the initial volume in those same source zones.

In the early stages of dasymetric mapping, the standard procedure was to use

polygons as target zones - i.e., polygons corresponding to the actual limits of urban

versus rural areas - with the assumption that the estimated population was homoge-

neously distributed in these target zones. Also, even if target polygons are generally

more geographically meaningful, they might not be comparable with other informa-

tion “. . . collected on several incompatible partitions of the zone of interest. . . .”[72,

p. 29], leading to a lack of interoperability in spatial analyses.

With the increasing spatial details provided by ancillary data, researchers suc-

ceeded in refining the size of target zones. Nowadays, most of the dasymetric map-

ping strategies aim at producing gridded population products, i.e., a raster layer

whose pixel values refer to the (estimated) number of inhabitants, as illustrated in

Figure 1.11. This format presents several advantages [59], such as enabling easier

interoperability when combined with other grid-based datasets in the analyses or

avoiding potential MAUP-related issues when polygons are used as target zones.

Moreover, it allows for higher flexibility in practical applications since population

estimates may be obtained for nearly any desired Area Of Interest (AOI), by sum-

ming all the pixel values within the AOI, as long as the size of the AOI is much

larger than the spatial resolution of the grid layer (pixel size).

Using a simple example, initially proposed by Su et al. [54], the logic behind

the main dasymetric mapping methods is described in Figure 1.12. In this exam-

ple, we consider that we only have access to the information aggregated at the
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Figure 1.11: Top-down approaches (dasymetric mapping) start from existing popu-
lation data available in administrative areas and aim to reallocate population counts
at a finer level with a realistic distribution of population densities. Figure adapted
from Wardrop et al. [45].

main unit level (the upper one), which contains 100 inhabitants (Figure 1.12(a)).

Figure 1.12(b) depicts the actual spatial distribution of the inhabitants in this ad-

ministrative unit, represented as points. The final objective here is to estimate the

population counts in four subunits.

When no ancillary dataset is available, the best option is to conduct a “simple

areal weighting”, which is not considered properly as a dasymetric method in lit-

erature. This method (Figure 1.12(d)) assumes that population is homogeneously

distributed within source zones and uses a redistribution weighting layer simply

based on the percentage of the area of the original unit shared by the different sub-

units. In this example, the upper-left subunit represents 14% of the area of the main

unit, and thus is reallocated with 14 inhabitants (14% of the population of the main

unit). Comparison with the official data reveals that the actual aggregated count

for this subunits is 10 (Figure 1.12(c)), which means that the error of prediction

is of 4 inhabitants. Generally, the accuracy of the prediction is considered for the

whole model and can be measured by the relative total absolute error RTAE12 of

prediction, which is here of 28%. It is this approach that is developed in the Gridded

Population of the World (GPW) product [74].

The dasymetric mapping procedure can take advantage of available basic geo-

graphic information to improve the quality of population estimates. For this, the

information should be considered as a good proxy of the actual population distri-

bution, having thus a potential to improve the quality of the predictions. Such

knowledge is usually provided by binary products giving the location of populated

vs non-populated places (also called settlement layers). To improve the disaggrega-

tion, we could consider that the total amount of population of the initial unit is in

fact entirely concentrated in populated places. Then, and since no other information

12RTAE is computed as the ratio between the sum of absolute errors and the total reference
population or the whole territory under investigation [73].
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Section 1.4. Improving the knowledge on intra-urban population distribution

Figure 1.12: Simple examples depicting how dasymetric mapping models work.
Source: Su et al. [54].

is available, a simple areal weighting can be performed on the populated place only

(as illustrated in Figure 1.12(e)). While the distribution seems more realistic at first

look, it is surprising to notice that the RTAE is more important than in the previous

example and reaches 40%. The Global Rural Urban Mapping Project (GRUMP)

[75] or the Global Human Settlement population Layer (GHSL-POP) [76] are two

example of gridded population product that used this approach.

Population density obviously varies within populated places. For that reason,

additional data providing a more useful thematic information can greatly improve

the quality of the population model. In this example, adding ancillary information

on the level of urbanization (urban, suburban, rural areas) enables to significantly

reduce the RTAE which drops to 16% (Figure 1.12(f)).

Broadly speaking, while the detail of built-up masks remains limited, the quality

of the prediction is likely to increase as more and more ancillary data are used in

the dasymetric mapping strategy, which explains the development of new methods

based on machine learning to incorporate a large number of covariates [77]. These

novel methods are used in projects such as Landscan [78] or WorldPop [79].

Remote sensing (RS) data are an important source of useful geographic infor-
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mation, derived by machine learning and image analysis methods. In the literature,

many studies used RS-derived product such as built-up masks or land cover maps

as the main ancillary information to be used for the creation of weighting layers.

Other types of RS-derived information have also been used or have demonstrated

their predictive power for population modeling, such as specific bands (thermal),

bands ratios, image textures (either from active or passive sensor), vegetation in-

dices, terrain slopes, elevation or height information (nDSM). For a more complete

pictures of input data used in the literature for population modeling, interested

readers can refer to [80].

An important advantage, especially for sub-Saharan countries where some re-

gions could be faced with problems of accessibility or security, is that RS data

allows for mapping very large areas. Moreover, in comparison with traditional map-

ping methods, RS-derived products are fast to produce and are considered relatively

inexpensive with regards to their wide coverage [59].

1.4.4 Limitation of available global databases for SSA urban

areas

As mentioned above, grid-based population data have several advantages, compared

to more traditional polygon-based shapes, which makes them “. . . widely used [. . . ]

within the humanitarian aid and development community.”[59].

As already mentioned, there are several projects that produce global gridded

population products, including the Gridded Population of the World (GPW), with

a 5km spatial resolution, the Global Rural Urban Mapping Project (GRUMP) and

Landscan with, respectively, night-time and daytime estimates at 1km spatial reso-

lution, the Global Human Settlement population Layer (GHSL-POP) with a spatial

resolution of 250m and the WorldPop project with a spatial resolution of 100m.

Because of their coarser resolution, the first three products serve mostly for

studies on the national or regional scales. For their part, GHSL and WorldPop

population layers have a spatial resolution that better corresponds to what may

be needed for urban applications. However, a detailed spatial resolution does not

necessarily imply a model of good quality. When looking in Figure 1.13, we quickly

realize that these products can only have very limited utility for intra-urban analyses:

they are not enough spatially detailed to give a useful approximation of the actual

population distribution. Figure 1.14 gives a closer look at the WorldPop layer,

with the administrative units (in red) used as source zones during the dasymetric

mapping. Since the population appears to be nearly homogeneously distributed

within the administrative units, the advantage of using this dasymetric product

instead of the original administrative unit is not obvious. This limitation can be
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explained by the use of built-up masks that lack sufficient spatial details, as explained

in subsection 1.4.5. As a direct consequence of the excessive homogeneity, these

layers are marred by a significant “border effect”, i.e., drops in population densities

at the boundaries of the original administrative units. This is a common artifact

in dasymetric mapping and different solutions have been proposed to mitigate it

[81–83].

This lack of capacity to accurately model the spatial discontinuity of popula-

tion densities inside administrative units is precisely the issues that this thesis aims

to tackle, by making the hypothesis that satellite images with a higher resolution

(VHR) could be leveraged for producing very detailed geoinformation to feed pop-

ulation models with more valuable ancillary data.

Figure 1.13: Population count estimates provided by several gridded population
products on the city of Dakar. A)GHSL-POP (250m). B) WorldPop (100m).
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Figure 1.14: Population count estimates provided by the WorldPop project, super-
imposed with administrative units used as source zones in the dasymetric mapping
procedure.

1.4.5 The potential of geoinformation derived from VHR

As we just demonstrated in the previous section, the best gridded population layers

currently available for SSA are of limited quality. This is mainly because these

dasymetric mapping models rely on layers of built-up areas with a relatively coarse

resolution that appear among the most important predictors for the creation of

weighting layers [38]. In this section we will highlight the potential of ancillary

layers with a higher resolution (VHR) for supporting population modeling.

One should understand that the detail and the quality of the geoinformation

that can be extracted from RS data highly depends on the spatial resolution of the

input images. The difference between HR and VHR satellite images is illustrated in

Figure 1.15. It is quite obvious that the increase in resolution can result in a huge

difference for mapping intra-urban areas: While buildings are blurred on the HR

image, all individual buildings may be distinguished on VHR.

To visualize the impact of the spatial resolution of ancillary data on dasymetric

models, three different built-up layers are compared in Figure 1.16. The binary

built-up masks have a spatial resolution of 0.5m(B), 10m(C) and 38m (D). The

superimposed red lines correspond to a grid layer of 100*100m spatial resolution

used to model population densities13. If we consider that these binary masks are

the only available datasets, the most obvious strategy for the creation of weighting

layers is to compute the proportion of built-up in each cell of the 100*100m grid.

As can be seen in Figure 1.16, the percentage of the total area referred to as built-

up greatly differs based on data source considered - close to 100% for the lower-

resolution image, and probably below 60% for the highest-resolution image. The

problem encountered by the coarser resolution product is related to the so-called

“mixed-pixel” effect that happens when the size of the pixels is bigger than the

13Here, the resolution of 100*100m is chosen because it corresponds to the most spatially detailed
currently available (WorldPop product).
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Figure 1.15: Difference between high resolution (Landsat - 15m in panchromatic)
and very-high resolution (WorldView3 - 0.5m resampled product).

individual buildings and can include several land cover classes, as illustrated in

Figure 1.2(a). As a consequence, coarse resolution products tend to classify pixels

as “built” as soon as a small proportion of the underlying land surface is made of

artificial elements. From a population modeling perspective, this results in a loss of

the ability to appropriately capture the whole range of actual built-up densities.

It has been highlighted in the literature that both the quality [59] and the spatial

resolution [54] of the ancillary products have a strong influence on the accuracy of

the predictions of population models. In this regard, it is quite surprising to notice

that the potential of VHRRS data for modeling intra-urban population in SSA

still remains largely unexplored in the literature. This may be due to their higher

costs and their processing power requirements, which are important factors limiting

their use. However, with continuously decreasing prices and increasing computing

capacity, there is a clear opportunity for the use of VHRRS data for improving the

quality of the population models for urban areas.

In this thesis we leverage the potential of VHRRS-derived built-up masks as well

as land cover and land use maps in order to quantify the gain in accuracy that VHR

geoinformation could bring in comparison to HR. The results of this analysis are

presented in Grippa et al. (2019) (paper 5 [85], in chapter 4).
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Figure 1.16: Built-up layers (binary masks) with different spatial resolutions. A)
True color composite (VHR satellite imagery, 0.5m spatial resolution). B) Built-up
mask at 0.5m spatial resolution, derived from A). C) Built-up mask at 10m spatial
resolution [84]. D) Built-up mask at 38m spatial resolution (GHSL).
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1.5 Toward open science in RS and GIS

In the research conducted in this thesis, we were several times faced with issues when

attempting to reproduce results or methods published by other researchers. This

reproducibility issue is not restricted to GIS or RS but concerns all the fields of scien-

tific research. A recent survey revealed that more than 50% of researchers considered

that there is currently a significant crisis in sciences regarding the reproducibility of

research, and only 10% considered there was no crisis at all [86]. Although there is

proof that the community is aware of the problem, the “. . . widespread adoption of

[. . . ][open science] practices has not yet been achieved.”[87].

With regards to GIS and remote sensing, we argue that the academic commu-

nity should dramatically intensify the efforts to push research forward on the path

of open science. In this thesis, a special attention was given to applying the different

principles of open sciences (see Figure 1.17), with the aim to allow other researchers

to review, share, reuse or modify the proposed methods and results, but also in a

spirit of equity toward those that have to work under financial constraints. Certain

aspects of open access related specifically to remote sensing, as well as the impor-

tance of open source software, are further discussed in chapter 2 (paper 1 [21]).

Figure 1.17: The six principles of open science. Source: Neuhold [88]

1.6 Specific objectives and outline of this thesis

For a variety of scientific studies and for urban planning and monitoring, VHR

satellite images are not usable as input by themselves. To be useful, these raw

data first need to be analyzed and processed using advanced methods to extract

valuable geoinformation, such as land cover and land use maps. In SSA cities,

these key pieces of information are often nonexistent of unavailable. Moreover, since

SSA cities face fast urban growth and transformation and have to deal with limited

financial means, there is a need to develop and share operational, transferable and

cost-effective solutions for the production of geoinformation.

31



Chapter 1. Introduction

The main - global - research question of this thesis is “How to produce geoin-

formation for SSA cities, using VHRRS data and open-source solutions ?”. In fact

there is no clear and unequivocal answer to this question. Rather, it suggests the

implementation and testing of different approaches and the selection of those which

are the most relevant in the context of mapping SSA cities to create and share

different framework for the production of geoinformation.

The first two objectives of this thesis are to develop different free and open-source

frameworks for mapping the land cover and land use from VHRRS data. Land cover

and land use mapping using VHR data is largely addressed in the remote sensing

literature. Despite the fact that many articles are already published and that the

different approaches and methods seem well established, their implementation is not

as easy as expected, for several reasons:

i) First, while many authors publish and describe interesting methods, most of

them fail to disclose all the information (scripts, formulas, computer code,

parameters values used at each stages of the analyses, etc.) that would en-

able other researchers to replicate them easily. This constitutes an important

obstacle to the transfer of cutting-edge methods into applied research projects.

ii) Second, a vast majority of scientific publications in GIS and RS focus on

developed countries, especially for applications on urban areas. However, the

characteristics of the European or North American cities are different, in many

aspects, from SSA cities. As a result, some methods published in the literature

are in fact not applicable at all when dealing with an SSA urban environment.

In addition, working on case studies from developed countries also means work-

ing in a context of a better availability of existing geographic data. At the

extreme opposite researchers working on SSA face an important lack of ex-

isting data and thus have to develop alternative methods less demanding in

ancillary data.

iii) Third, many published remote sensing methods are tested and validated only

on (very) small image snippets14. As a consequence, these methods often prove

not as effective as initially announced, or may even completely fail to meet the

requirements for applied studies that need to implement operational mapping

strategies to cover very large study areas.

Considering the aforementioned problems identified in the literature, the follow-

ing derivative objectives were considered, as often as possible, during this research:

14As already mentioned, >95% of publications on land cover mapping used concerned areas of
less than 3 km2[12].
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i) Publishing all the methods in open access, either through open-access scientific

peer-reviewed journals or by publishing author preprints on the University

institutional repository.

ii) Implementing methods that rely only on open-source software, thus allowing

anyone to replicate the proposed methods without having to spend money on

proprietary software licenses.

iii) Giving open access to all the computer code used to perform the analyses,

without any restriction (open-source license). This is a key condition toward

a real open methodology as it allows other researchers to review the code and

maybe propose to improve it. Also, it facilitates the reuse of the methods by

other researchers and avoids spending time rewriting/re-coding what already

exists.

iv) Releasing the results (produced maps) as open data that can be reused with-

out any restrictions in other fields of research, such as epidemiology or risk

assessment.

v) Designing mapping frameworks that remain parsimonious with the use of an-

cillary data, in order to be used on other data-poor case studies.

vi) Ensuring that proposed solutions are scalable and can be used to process very

large areas of interests.

vii) Paying attention to the transferability of the frameworks to other locations

and data sets.

viii) Creating computationally efficient frameworks, by implementing parallel pro-

cessing for saving time and human resources.

In addition to the development of frameworks for land cover and land use map-

ping, we decided to use the geoinformation produced in the first stages to fill a gap

in the field of population modeling and support urban-related research and applica-

tions such as epidemiology and risk assessment which suffer from the limitations of

gridded population products currently available for SSA. In section 1.4 of this intro-

duction we showed that these limitations are mainly due to the use of RS data with

insufficient spatial resolution. Although VHRRS data allows for mapping urban ar-

eas with impressive spatial and thematic details and may be used to overcome these

limitations, its potential for population redistribution is still largely unexplored.

This observation leads to the second and main research question tackled in this the-

sis: “How can VHRRS data improve intra-urban population density estimates for

SSA cities ?”.
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For the convenience of the reader, the main stages of the research workflow are

presented in Figure 1.18, which briefly depicts the main processing steps of the

research with their related input data and outcomes. The mains (sub-)objectives

related to each chapter of this thesis are recapitulated in Figure 1.19.

This thesis is presented here as a compilation of several scientific articles, pub-

lished in peer-reviewed journals or in conference proceedings. They constitute my

main contributions, during the last four years, to a broader research project - “Mod-

eling and forecasting African Urban Population Patterns for vulnerability and health

assessments” (MAUPP) - funded by the program supporting research in Earth ob-

servation (STEREO III) of the Belgian Federal Science Policy Office (BELSPO).

The main objective of MAUPP is to improve the knowledge of sub-Saharan African

urban population patterns for a wider usage in vulnerability and health assessment

studies. This project is conducted in partnership with the WorldPop project which

aims at modeling the population at a spatial resolution of 100*100 meters, and the

results of this thesis will be integrated in WorldPop population layers.

The arrangement of the next chapters corresponds to the actual workflow of

this research, as presented in Figures 1.18 and 1.19, with the implementation of

mapping frameworks for the production of geoinformation performed prior to the

population modeling stage and tackling the main research question. Chapter 2

presents consecutively the initial implementation of a semi-automated processing

chain for mapping land cover from VHRRS (paper 1) as well as the methodological

developments that were required to adapt state-of-the-art OBIA methods in order to

process large and heterogeneous scene (papers 2,3). Chapter 3 (papers 4) presents

a semi-automated framework for the classification of urban land use at the street

block level in data-poor context. It describes the creation of street blocks from

OpenStreetMap (OSM) data and their classification in land-use classes based on

their land cover composition. Chapter 4 (paper 5) presents the final stage of

the research workflow where a dasymetric mapping framework is created with the

aim to answer the main research question by assessing the added value of VHR

data against HR data in a dasymetric reallocation procedure. Finally, chapter 5

provides a conclusion which summarizes the main achievements of this thesis as well

as the remaining limitations and future perspectives.
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Figure 1.19: Frameworks development and related objectives and publications.
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Chapter 2

Mapping the land cover from
VHR remote sensing data with
open-source solutions

2.1 Implementation of an open-source semi-

automated processing chain for urban object-

based land-cover classification

Grippa, Täıs, Moritz Lennert, Benjamin Beaumont, Sabine Vanhuysse, Nathalie

Stephenne, and Eléonore Wolff. 2017. “An Open-Source Semi-Automated

Processing Chain for Urban Object-Based Classification.” Remote Sensing

9 (4): 358. http://doi.org/10.3390/rs9040358.
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Abstract: This study presents the development of a semi-automated processing chain for urban
object-based land-cover and land-use classification. The processing chain is implemented in Python
and relies on existing open-source software GRASS GIS and R. The complete tool chain is available in
open access and is adaptable to specific user needs. For automation purposes, we developed two
GRASS GIS add-ons enabling users (1) to optimize segmentation parameters in an unsupervised
manner and (2) to classify remote sensing data using several individual machine learning classifiers or
their prediction combinations through voting-schemes. We tested the performance of the processing
chain using sub-metric multispectral and height data on two very different urban environments:
Ouagadougou, Burkina Faso in sub-Saharan Africa and Liège, Belgium in Western Europe. Using a
hierarchical classification scheme, the overall accuracy reached 93% at the first level (5 classes) and
about 80% at the second level (11 and 9 classes, respectively).

Keywords: OBIA; land cover; supervised classification; segmentation; optimization; GRASS GIS

1. Introduction

Land-use/land-cover (LULC) information extraction is one of the main use cases of remote
sensing imagery. The advent of sub-meter resolution data brought about the revolution of methods
from pixel-based to object-based image analysis (OBIA) involving image segmentation. The latter
provides many new opportunities and highly increases the quality of the output, but there remains a
number of challenges to address.

First of all, segmentation parameters are often selected after a tedious and time-consuming
trial-and-error refinement [1,2]. This method consists of a manual step-by-step segmentation
parameters adjustment, relying on subjective visual human interpretation. Despite such efforts,
the validity of the selected parameters is usually restricted to the specific scene under study, or even
to specific areas within this scene, and they have to be adapted for each dataset. Unsupervised
optimization methods meet the requirements for automation in the OBIA process, as they can be used
to automatically adjust the segmentation parameters [1].

Second, during the classification step, many authors use rule-based approaches, which can
be efficient on a specific dataset (e.g., [3,4]). However, their transferability remains an issue [5,6]
as they also generally rely on manual intervention by the authors, with many choices guided by scene
specificities. As an alternative, machine-learning classifiers, e.g., random forest or support vector
machines (see [7,8] for a review of applications in remote sensing), have proven their efficiency for
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remote sensing data classification. While identification of the best performing classifier cannot rely
on a priori knowledge, the combination of the results of multiple classifiers through an ensemble or
voting schemes is a solution towards the development of more automated classification processes, as it
“[...] makes the performance of the system more robust against the difficulties that each individual
classifier may have on each particular data set”. [9] (p. 705).

Third, much of the work presented on OBIA tool chains is black box. First, the specific decisions
of authors concerning parameter settings in the manual processes described above are based on their
subjective evaluation, which is not always easy to reproduce. Moreover, even if their procedures are
well documented, algorithms implemented in proprietary software cannot be properly reviewed as their
code is distributed as closed source. This concerns the core software and also, in some cases, extensions
of that software (e.g., the ‘Estimation of Scale Parameter’ (ESP) tool published in [10]). Furthermore,
only those who have access to the software can attempt the replication of the results. In times when
the reproducibility of research is high on the discussion agenda [11], the use of free and open-source
solutions, including access to the code developed by researchers in their work, becomes paramount.

Linked to the previous point, the question of access to the necessary tools is of great importance,
especially for many researchers in poorer countries where the lack of resources reduces their options [12],
and especially for research using remote sensing [13]. Again, free and open-source solutions provide an
answer to this issue by creating common-pool resources that all researchers can use, but also contribute
to. Licensing costs can also be an obstacle to the upscaling of processes, especially in times of big data
with ever-increasing spatial, spectral, and temporal resolutions [13]. Free and open-source software can
help researchers surmount this challenge by letting them run their programs on as many different cores
or machines as necessary without having to worry about software costs.

In this paper, we present a complete semi-automated processing chain for urban LULC mapping
from earth observation data, which responds at least partly to the above issues. This chain was initially
presented at the GEOBIA 2016 conference [14]. Freely available to any potential user, it should be seen
as a framework that can be reused, modified, or enhanced for further studies. The chain was developed
in a completely free and open-source environment, using GRASS GIS (Geographical Resources
Analysis Support System) [15] and R [16], and was immediately reinjected into the wider open-source
community. It contains tools for unsupervised segmentation parameter optimization, statistical
characterization of objects, and machine-learning techniques combined through a majority-voting
scheme. Care was taken to make the use of this processing chain accessible even to novice programmers.
The proposed framework was tested with similar datasets on two very different urban environments
to assess its transportability, i.e., the ability to achieve accurate classification when applying the same
generic framework to different scenes with similar datasets [17].

2. Methods and Tools

The processing chain mainly relies on the open-source software GRASS GIS, that has been in
continuous development since the 1980s and is now one of the core components of the Open Source
Geospatial software stack [18]. This multipurpose Geographical Information System is made of hundreds
of small programs [19], called ‘modules’ or ‘add-ons’, enabling users to carry out a large variety of
geospatial processes [18]. Thanks to its continuous review mechanism and to its active community that
has strong links with academia, GRASS GIS is increasingly being used by researchers [20–25]. Since 2012,
GRASS GIS has had major advances in object-based image analysis (OBIA).

The proposed chain is made of the core Python code linking GRASS GIS functions thanks
to the GRASS Python scripting library. It is implemented in a ‘Jupyter notebook’ that enables
researchers to easily share the computer code that they developed for their studies and that often
remains unpublished [26]. This programming environment allows users to mix both explanatory text
sections with the related computer code that can be executed in the same document (see Figure 1).
Care was taken to clearly document the code and to refer to the official help and/or scientific references.
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The Jupyter notebook is subdivided into several parts corresponding to the different processing steps
(see Figure 1) which are summarized in the flowchart presented in Figure 2.

The GRASS GIS add-ons used in the processing chain are briefly presented below. For a more
detailed description of those add-ons, interested readers may refer to the presentation made during
the FOSS4G 2016 conference [27].

2.1. Segmentation and Unsupervised Segmentation Parameter Optimization (USPO) Tools

The segmentation was performed using the i.segment module of GRASS GIS [28]. This module
implements image segmentation with a region-growing algorithm or an experimental mean-shift
algorithm which was added recently. The region-growing algorithm, which is used in this study, requires
a standardized ‘threshold’ parameter below which regions are merged, and a ‘minsize’ parameter
defining the minimum size of regions. As with most GRASS GIS modules, the i.segment module is
designed to handle very large datasets while keeping a low memory footprint. As an example of
the orders of magnitudes, we encountered an issue when exceeding 2 billion objects, and this issue
was solved quite quickly by the responsive GRASS Development Team. Most of the elements in the
processing chain offer the option of using parallel computing to accelerate the analyses. Scaling is thus
possible across all available cores, within the limits of available memory and input-output restrictions.
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The choice of segmentation parameters is an important step in OBIA. Indeed, the ultimate goal
of segmentation is to cluster individual pixels into meaningful objects, i.e., objects that correspond
as much as possible to the geographical objects of interest in the scene. Moreover, the impact of
segmentation quality on the accuracy of the classification seems obvious, even though a recent
study [29] argues that this link is not so straightforward.

Usually, the selection of segmentation parameters is carried out using a ‘trial-and-error’ approach
that relies on the visual assessment of several naïve segmentation results, and gradual adjustment
of the segmentation parameters. This method presents the disadvantages of being subjective and
requiring a tedious and time-consuming effort.

When objectivity is required in the evaluation of the segmentation results, several empirical
methods can be used. Among them, a distinction can be made between the supervised (empirical
discrepancy methods) and the unsupervised approaches (empirical goodness methods), depending on
the requirement of a reference object delineation [1,30]. Both supervised and unsupervised methods
allow the comparison of different segmentation algorithms or of different parameters used in a single
algorithm (segmentation parameter optimization).

Supervised evaluation methods assess the divergence between a segmented image and a reference
segmentation layer using ‘discrepancy measures’. Usually, the reference layer is created by delineating
objects manually, thus requiring a time-consuming and highly subjective task.
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In contrast, unsupervised evaluation methods assess the quality of a segmented image without
the need of a reference or prior knowledge. This is the major advantage of these methods that can
be used for automated segmentation parameter optimization [31]. Moreover, a recent study shows
that they can achieve similar classification accuracy [32]. The evaluation relies on ‘goodness measures’
computed directly on the segmented image that represent the characteristics of a good segmentation.
The uniformity of single objects (intra-segment homogeneity) and a significant difference between
adjacent objects (inter-segment heterogeneity), firstly presented in [33] as desired characteristics of
created objects, are now widely used in unsupervised evaluation methods. Several unsupervised
approaches have been proposed in the literature, with different goodness measures and methods for
combining them into a synthetic metric (see [1] for a review).

As we looked for automation, we elaborated a new GRASS GIS add-on for unsupervised
segmentation parameter optimization (USPO) named i.segment.uspo [34]. Its working principle
is illustrated on Figure 3. This tool is an implementation of the methods proposed by [31,35]. It relies
on optimization functions combining measures of intra-object variance weighted by object size [32]
(WV) as an intra-segment homogeneity quality measure, and spatial autocorrelation (SA) as an
inter-segment heterogeneity quality measure [35]. For the latter, the user can choose between Moran’s
I [36] or Geary’s C [37]. As the measure should be comparable for different segmentation results,
both intra-segment homogeneity and inter-segment heterogeneity measures are normalized using the
following function [35]:

F(x) =
Xmax − X

Xmax − Xmin
(1)

where F(x) is the normalized value of either WV or SA, X is the WV (or SA) value of the current
segmentation result, and Xmax and Xmin are the maximum and minimum values of WV (or SA) for
the whole stack of segmentation results to be evaluated. A high value for normalized WV (WVnorm)
indicates higher undersegmentation, while a high value for normalized SA (SAnorm) highlights a
higher oversegmentation.

The GRASS GIS add-on i.segment.uspo enables the combination of these WV and SA measures
using two different optimization functions: a simple sum of the normalized criteria values as proposed
by [35] or the F-function proposed by [31] that permits us to weight the two optimization criteria.
The F-function is calculated as follows:

F =
(

1 + α2
) ASnorm × WVnorm

α2 × ASnorm + WVnorm
(2)

where F is the ‘overall goodness’, ranging from 0 (poor quality) to 1 (high quality) [31], to be used as a
synthetic measure of the quality of the segmentation and α is a parameter that can be modified to give
more weight to WV or to SA.

This overall goodness metric was designed in order to perform unsupervised segmentation
parameter optimization for multi-scale OBIA (MS-OBIA) [31] (i.e., a process where different levels of
segmentation are used together in the classification). In the semi-automated processing chain that was
developed, the classification is performed using a single segmentation level. However, the chain could
very easily be modified to enable MS-OBIA.

As highlighted in [38], the ability of USPO approaches to produce a good segmentation for specific
features of interest in the scene is not straightforward, especially if those features are small-sized.
Regarding this issue, we clearly recommend a visual check of the segmentation results to ensure
that they are consistent with the objects of interest in the scene, as illustrated in the flowchart in
Figure 2. If this is not the case, the α parameter in the Johnsons’ optimization function can be
adapted to give more importance either to intra-segment homogeneity (set the α parameter higher
than 1 to avoid residual undersegmentation) or to inter-segment heterogeneity (set the α parameter
lower than 1 to avoid residual oversegmentation) [31]. More generally, it is clear that the ‘perfect’
segmentation does not exist [1,39,40], even if optimization methods are used. In their conclusion,
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Räsänen et al. argue that “[...] different segmentation evaluation methods should be used with care
[...]. When segmentation evaluation is rigorously used, however, it can assist in finding a more optimal
segmentation”. [29] (p. 8623).

Based on a range of parameter values provided by the user, the i.segment.uspo tool creates
a set of segmentation results that are then assessed using the optimization function (see Figure 3).
We suggest setting the range of segmentation parameter values to be tested by identifying values
resulting in clearly under-segmented and over-segmented results, and using them as extremes.
In order to reduce computation time during the optimization process, the tool provides the possibility
to optimize the segmentation parameters on several spatial subsets of the scene (i.e., several zones
limited in terms of area).

Care is recommended during the selection of those spatial subsets to ensure that they represent
the diversity of the landscape that can be found in the whole scene. Detailed results are available
(WV and AS measures and optimization scores for each segmentation parameter combination and
each spatial subset), enabling the user to make an informed choice. Provided that there are no
extreme outliers among the distribution of segmentation parameters from the different spatial subsets,
the choice amongst the results can be completely automated by, for example, selecting the lowest
value of the threshold parameter (as illustrated in Figure 2). Even though this approach could result
in oversegmentation in some parts of the scene, some studies [39,41] argue that oversegmentation is
preferable to undersegmentation, as the former can be corrected during classification, contrary to the
latter. Furthermore, some recent studies [32,42] highlight that oversegmentation, as long as it remains
at an admissible level, could be a minor issue in regard to the final classification result. Insofar that the
different spatial subsets were well chosen to ensure that they represent the diversity of landscapes in
the whole scene, the presence of extreme outliers among the optimized segmentation parameter is an
indication that segmentation using a single parameter for the whole scene is not recommended. In this
case, the whole scene could be subdivided into several more homogeneous areas according to some
specific criteria. These areas could then be used as tiles in the segmentation workflow to perform local
optimizations of the segmentation parameters [43].
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The chain was designed to perform the segmentation process by dividing the scene using a vector
layer provided by the user. This layer can consist of, e.g., arbitrary tiles or existing administrative
boundaries. This implementation also allows users to manage very large datasets.

2.2. Object Statistics Computation

Object statistics were computed using the i.segment.stats GRASS GIS add-on [44] and were used
as features in the classification process. This tool computes both the spectral statistics (e.g., min, max,
median, stddev) and morphological statistics of objects (e.g., area, perimeter, compactness, fractal
dimension). In order to speed up the calculation of the latter, another add-on, r.object.geometry [45],
was developed. This add-on eliminates the need for vectorizing segments when computing
morphological statistics, resulting in a significant gain in time.

2.3. Classification by the Combination of Multiple Machine Learning Classifiers

The classification stage of the processing chain uses the v.class.mlR GRASS GIS add-on [46].
It relies on the utilization of the “Caret” library of the R software [47], and enables the classification
of data using Support Vector Machine (currently only with a radial kernel) (SVMradial), Random
Forest (RF), Recursive partitioning (Rpart), and k-Nearest Neighbors (kNN) classifiers. This add-on
automatically tunes classifiers’ parameters using repeated cross-validation with, by default,
10 iterations of 5-fold cross-validation on the training data set. Predictions of individual classifiers are
then combined using several types of majority vote.

Four voting systems are provided: “Simple Majority Vote” (SMV), “Simple Weighted Vote”
(SWV), “Best Worst Weighted Vote” (BWWV), and “Quadratic Best Worst Weighted Vote” (QBWWV).
SMV simply consists of retaining the most frequent prediction. In the other votes, the predictions
of individual classifiers are weighted. In SWV, the weight used is strictly the accuracy of individual
classifiers estimated through cross-validation. In BWWV, the worst classifier is assigned a zero weight
and is thereby not taken into account, and the best classifier is assigned a unit weight. The remaining
classifiers are weighted linearly between 0 and 1. The last vote, QBWWV, is designed similarly to the
former but the remaining classifiers are weighted using a squared function, amplifying the importance
of more accurate classifiers. Interested readers can refer to [9] for the votes presented here and to [48]
for more advanced methods used in remote sensing field.

A noticeable advantage of GRASS GIS is that it can be connected directly to R [16,49], allowing
the exploitation of several advanced statistics methods (e.g., deep learning methods) implemented in
this open-source software.

3. Case Studies

3.1. Study Areas and Data

In order to evaluate the transportability of the proposed processing chain, we applied it to two
very different urban environments: Ouagadougou (Burkina Faso, in Sub-Saharan Africa) and Liège
(Belgium, in Western Europe). More broadly, this work is linked with two research projects dealing
with the production (Modelling and forecasting African Urban Population Patterns for vulnerability
and health assessments project (MAUPP, http://maupp.ulb.ac.be/), focusing on African Sub-Saharan
cities) and the update (SmartPop project, focusing on the Walloon region in Belgium, http://www.
issep.be/smartpop/) of LULC maps. These maps will be used later as inputs in census population
data disaggregation models.

The processing chain was first developed on Ouagadougou, the capital of Burkina Faso in Western
Africa. Covering more than 615 km2, this city has been facing intensive urban sprawl during the last
few decades similar to most sub-Saharan African cities and is characterized by very different urban
patterns, such as planned versus unplanned residential areas, among others. Then, the processing
chain was applied to the Liège area (261 km2), a Western European city located in Belgium which
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shows strong land artificialization (more than 55% of the territory). Urban morphologies are more
diversified (from isolated houses to 10+ storey buildings), but urban sprawl is limited and controlled
in comparison with Africa.

The datasets consist of multi-spectral and height data. For Ouagadougou, a pan sharpened
stereo WorldView-3 imagery (Visible and Near-InfraRed bands (VNIR), spatial resolution of 0.5 m)
acquired during the wet season (October 2015) and a normalized digital surface model (nDSM)
(spatial resolution of 0.5 m) produced by stereophotogrammetry from WorldView-3 stereo-pairs were
used. For Liège, the data consisted of leaf-on VNIR aerial orthophotos with a spatial resolution of
0.25 m acquired in May 2012 and a leaf-off nDSM extracted from Light Detection And Ranging data
(LiDAR) (with a point density between 1 and 3 points per square meter) that was acquired in the
winter of 2013–14.

As our processing chain is under development, we focused the classification effort on a 25 km2

subset for both cities (see Figure 4), representative of the diversity of landscapes and urban forms.
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while the test samples are in red.

3.2. Legend/Classification Scheme

The classification scheme is organized in two hierarchical levels (see Table 1). The first level
contains only land-cover (LC) classes, while the second level is a LULC mix of classes. At both
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levels, an extra class is dedicated to shadows; their post-processing is out of the scope of this article.
The classification was made based on the second-level classes, which were aggregated to match the
first-level classes.

Table 1. Classification scheme and size of the training and test sets for Ouagadougou and Liège.

Level 1 Classes
Land Cover (LC)

Level 2 Classes
Land Use/Land Cover (LULC) Abbreviation Training Set Size Test Set Size

Ouagadougou–Burkina Faso

Artificial surfaces
Buildings BU 216 43

Swimming pools SW 90 31
Asphalt surfaces AS 119 30

Natural material
surfaces

Brown/red bare soil RBS 130 42
White/grey bare soil GBS 91 30

Vegetation

Trees TR 91 32
Mixed bare soil/vegetation MBV 99 32

Dry vegetation DV 93 32
Other vegetation OV 218 36

Water Water bodies WB 115 31

Shadow Shadow SH 90 30

Liège–Belgium

Artificial surfaces
Buildings BU 62 37

Asphalt surfaces AS 86 60

Natural material
surfaces Bare soil BS 51 42

Vegetation

Low vegetation (<1 m) LV 55 46
Medium vegetation (1–7 m) MV 49 48

High vegetation deciduous (>7 m) HVD 63 36
High vegetation coniferous (>7 m) HVC 49 43

Water Water bodies WB 72 37

Shadow Shadow SH 62 39

3.3. Sampling Scheme

Sampling was conducted outside the processing chain, by generating random points and labelling
them by hand, through visual image photo-interpretation. Although existing geodatabases were
used for stratification, visual interpretation was needed to bypass thematic or spatial accuracy issues.
In order to ensure a clear spatial independence, the training set was generated for the whole area
excluding the 25 km2 subset where the classification was produced. An independent test set was
generated inside this subset for performance evaluation purposes (see Figure 4). This procedure avoids
potential spatial autocorrelation between the training and test sets.

For Ouagadougou, the OpenStreetMap (OSM) dataset was used as far as possible according to the
availability. These data were used only for stratification purposes and only for some specific classes,
i.e., for second-level classes of ‘buildings’, ‘asphalt surfaces’, and ‘water bodies’. When OSM datasets
consisted of lines, as it is the case for asphalt roads and watercourses, buffers were created. Manual
sampling was required for ‘swimming pools’ and ‘shadow’ classes. Intensive visual interpretation was
needed for labelling each sampled point individually and to bypass mislabelled (cases where OSM
attributes were false) and spatial inaccurate issues coming from the OSM data.

For Liège, existing official geodatabases from the national administration, i.e., ‘TOP10V’ (Institut
Géographique National (IGN), 2010), and from the regional administration, i.e., ‘Projet Informatique de
Cartographie Continue’ (PICC) (Service Public de Wallonie (SPW), 2007), were used for the stratification
of the majority of second-level classes. Manual sampling was needed for the class ‘shadow’. Given the
production date of the geodatabases used, a visual validation of the samples was needed to match
the 2012/2013 land-cover status. In total, 1352 training points and 369 test points were created for
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Ouagadougou and 549 training points and 388 test points for Liège. The smaller size of the training
set for Liège is explained by the reduced number of classes, their higher spectral consistency, and the
intensive use of reference geodatabases. The class-distribution details are presented in Table 1.

Training and test points were used to automatically select intersecting segments and create the
training and test sets. Although there is risk that some imperfect segments are used, the advantage of
this strategy is that the same labelled set of points can be used with different segmentation results.

3.4. Segmentation

The segmentation and unsupervised segmentation parameter optimization (USPO) steps were
carried out using multispectral information. For Ouagadougou, NDVI was also used as an additional
layer. The nDSM layer was not used for the segmentation because of its insufficient geometric precision.
The “minsize” parameter was set in order to match a chosen minimum mapping unit. The latter
was defined according to the geographical context based on the smallest house/shelter: 2 m2 for
Ouagadougou and 15 m2 for Liège. The intervention of the operator in the USPO process was limited to
identification of the range of “threshold” parameters to be tested (minimum, maximum, and intervals),
by manually looking for the thresholds resulting in clearly over-segmented or under-segmented
objects. The optimized threshold was then automatically determined via the i.segment.uspo add-on.
When giving the same weight to both intra-object homogeneity and inter-object heterogeneity
measures (with the Johnson’s α parameter set to 1), objects of interest like small houses or trees were
undersegmented. To avoid this issue, Johnson’s α parameter was then set to 1.25 for both Ouagadougou
and Liège, in order to give more importance to intra-object homogeneity in the optimization function.

3.5. Classification Feature

For both case studies, the minimum, maximum, range, standard deviation, sum, and median statistics
were computed for segments on the multispectral bands, NDVI and nDSM. These spectral statistics were
completed with the morphological attributes of the objects (area, perimeter, and compactness).

4. Results

The classifications were performed at the second level of the legend scheme (see Table 1) using
four individual machine learning classifiers that were combined using four voting systems. For each
classification, the second-level classes were then aggregated to obtain the classes of the first level.
The overall accuracy as well as Cohen’s Kappa metric of individual classifiers and vote combinations
are presented in Table 2.

Table 2. Performance evaluation of individual classifiers and the four different voting systems. For each
line, the highest value is in bold. OA: Overall accuracy. L1 and L2: Levels of the classification scheme.
kNN: k-Nearest Neighbors. Rpart: Recursive partitioning. SVMradial: Support Vector Machine with
radial kernel. RF: Random Forest. SMV: Simple Majority Vote. SWV: Simple Weighted Vote. BWWV:
Best Worst Weighted Vote. QBWWV: Quadratic Best Worst Weighted Vote.

Individual Classifiers Votes

kNN Rpart SVMradial RF SMV BWWV QBWWV SWV

Ouagadougou
L1

Kappa 0.69 0.80 0.84 0.90 0.87 0.90 0.90 0.90
OA 77% 85% 88% 93% 91% 92% 92% 93%

L2
Kappa 0.45 0.69 0.72 0.79 0.76 0.79 0.79 0.79

OA 50% 72% 75% 81% 78% 81% 81% 81%

Liège
L1

Kappa 0.75 0.83 0.87 0.89 0.88 0.89 0.89 0.89
OA 82% 88% 90% 92% 91% 92% 92% 93%

L2
Kappa 0.44 0.71 0.71 0.77 0.74 0.76 0.76 0.76

OA 50% 74% 74% 79% 77% 79% 79% 79%
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The ranking of individual classifiers’ performance is the same for Ouagadougou and Liège,
with Random Forest (RF) performing best (overall accuracy (OA) of 81% and 79%, respectively),
followed by Support Vector Machine with radial kernel (SVMradial) (75% and 74% OA, respectively),
then Recursive partitioning (Rpart) (72% and 74% OA, respectively), and finally K–Nearest Neighbors
classifier (kNN) (both 50% OA).

In the proposed processing chain, the training set is created by selecting the objects that contain
the manually labelled point (see Figure 2), without any visual check. This design could result in the
presence of mis-segmented objects in the training set which could perturb the classifiers. This explains
why RF outperformed SVM, as studies show that RF is very robust when trained with imperfect
data [50], while SVM is very sensitive to the presence of noise in the training set [51].

The user’s and producer’s accuracy computed on second-level classes are provided for each
classification in Tables A1 and A2. As assessing the performance with these measures can become very
confusing, the F-score (harmonic mean of the user’s and producer’s accuracy) is used as a synthetic
accuracy metric [52,53] in order to compare the classifiers’ performance on a class basis. The ‘buildings’
class is of particular importance in the context of the MAUPP and SmartPop projects since their final
objective is to disaggregate census population data using LULC maps in order to model the spatial
distribution of population densities. Using RF, this class reached a high accuracy for both case studies,
with an F-score of 0.93 for Ouagadougou and 0.91 for Liège (see Table 3). For Ouagadougou, RF
impressively outperformed Rpart and SVM for the class ‘buildings’ (both reaching an F-score of 0.78).
This is also true for asphalt surfaces, with an F-score of 0.83 for RF, 0.61 for Rpart, and 0.55 for SVM.
Again, those observations can be explained by the robustness of RF when dealing with imperfect data.

Table 3. F-score for individual classes for the second level (L2) of the classification. For each line, the
highest value is in bold. kNN: k-Nearest Neighbors. Rpart: Recursive partitioning. SVMradial: Support
Vector Machine with radial kernel. RF: Random Forest. SMV: Simple Majority Vote. SWV: Simple
Weighted Vote. BWWV: Best Worst Weighted Vote. QBWWV: Quadratic Best Worst Weighted Vote.

Individual Classifiers Votes

Level 2 Classes kNN Rpart SVMradial RF SMV SWV BWWV QBWWV

Ouagadougou–Burkina Faso

Buildings 0.62 0.78 0.78 0.93 0.86 0.93 0.92 0.92
Swimming pools 0.91 0.92 0.97 0.98 0.98 0.98 0.98 0.98
Asphalt surfaces 0.50 0.61 0.55 0.83 0.80 0.83 0.83 0.83

Brown/red bare soil 0.52 0.75 0.65 0.78 0.77 0.77 0.77 0.77
White/grey bare soil 0.26 0.69 0.71 0.72 0.65 0.70 0.70 0.70

Trees 0.58 0.83 0.83 0.85 0.82 0.84 0.85 0.85
Mixed bare soil/vegetation 0.29 0.62 0.59 0.56 0.57 0.58 0.58 0.58

Dry vegetation 0.08 0.48 0.65 0.61 0.64 0.63 0.62 0.62
Other vegetation 0.55 0.71 0.73 0.77 0.75 0.78 0.81 0.81

Inland waters 0.19 0.74 0.85 0.87 0.75 0.85 0.85 0.85
Shadow 0.75 0.72 0.93 0.94 0.95 0.95 0.94 0.94

Liège–Belgium

Buildings 0.51 0.92 0.83 0.91 0.93 0.93 0.91 0.91
Asphalt surfaces 0.64 0.71 0.77 0.82 0.78 0.82 0.82 0.82

Low vegetation (<1 m) 0.37 0.77 0.71 0.80 0.80 0.77 0.77 0.77
Medium vegetation (1–7 m) 0.34 0.67 0.62 0.69 0.67 0.67 0.67 0.67

High vegetation deciduous (>7 m) 0.29 0.61 0.59 0.63 0.60 0.62 0.62 0.62
High vegetation coniferous (>7 m) 0.36 0.72 0.67 0.73 0.68 0.73 0.73 0.73

Bare soil 0.49 0.63 0.71 0.74 0.66 0.75 0.74 0.74
Inland waters 0.81 0.89 0.92 0.97 0.97 0.97 0.97 0.97

Shadow 0.70 0.79 0.89 0.90 0.90 0.90 0.90 0.90

While satisfactory F-scores were obtained for specific classes such as ‘buildings’, ‘asphalt surfaces’,
or ‘water bodies’, the accuracy is quite low for the other classes. It is also interesting to note that SVM
and Rpart outperformed RF for specific classes in Ouagadougou (‘dry vegetation’ and ‘mixed bare
soil/vegetation’, respectively).
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The analysis of individual classifiers’ confusion matrices (see Tables 4 and 5) revealed that, for both
case studies, confusions occurred mainly between the different vegetation classes (46% and 61% of
the whole confusions in Ouagadougou and Liège, respectively). In Ouagadougou, confusion also
appeared between the bare soils classes (Brown/red bare soils; White/grey bare soils) and asphalt
surfaces, shown in Table 4. Thanks to the hierarchical design of the legend, those confusions were
greatly reduced when aggregating the second level classes to reach the first level of the legend. For this
level, the overall accuracy is 93% for both case studies when considering the best performing voting
scheme, i.e., the Simple Weighted Vote (SWV), shown in Table 2.

Table 4. Confusion matrix for the Simple Weighted Vote on Ouagadougou, Burkina Faso. Values are
given as a percentage of the reference test set (column-based normalization). Diagonal values
correspond to the producer accuracy. BU: Buildings, SW: Swimming pools, AS: Asphalt surfaces,
RBS: Brown/red bare soil, GBS: White/grey bare soil, TR: Tree, MBV: Mixed bare soil/vegetation,
DV: Dry vegetation, OV: Other vegetation, WB: Water bodies, SH: Shadow.

Reference

L2 Classes BU SW AS RBS GBS TR MBV DV OV WB SH

Simple Weighted
Vote (SWV)

BU 97.7 0 0 0 6.67 0 0 0 0 9.68 0
SW 0 96.8 0 0 0 0 0 0 0 0 0
AS 0 0 90 11.9 0 0 0 9.38 0 0 0

RBS 0 0 3.33 85.7 36.7 0 6.25 0 0 3.23 0
GBS 0 0 0 0 53.3 0 0 0 0 0 0
TR 0 0 0 0 0 90.6 0 3.13 19.4 0 0

MBV 2.33 0 0 2.38 3.33 0 50 12.5 0 0 0
DV 0 0 0 0 0 0 40.6 65.6 2.78 0 0
OV 0 0 0 0 0 9.38 3.13 6.25 77.8 3.23 3.33
WB 0 0 6.67 0 0 0 0 3.13 0 80.6 0
SH 0 3.23 0 0 0 0 0 0 0 3.23 96.7

Despite the combination of individual predictions, majority votes do not perform better than
the best individual classifier for the classes with high confusion, i.e., vegetation and bare soil classes.
Conversely, the accuracy of other classes was improved by the votes. For example, it can be observed in
Table 3 that the classes of ‘buildings’ and ‘bare soil’ benefit from the votes in Liège. The improvement
resulting from the vote is more noticeable for the ‘other vegetation’ class in Ouagadougou, where the
best-performing individual classifier (RF) reached an F-score of 0.77 while weighted votes (BWWV,
QBWWV) reached 0.81. These balanced results, with votes outperforming individual classifiers for
some classes and underperforming for others are consistent with the previous research [9]. The current
method of attributing weight during the vote, using the overall accuracy of individual classifiers,
is quite simple. Other methods might be implemented in order to take into account the performance
of each classifier for specific classes (see [54] for a review of decision level fusion methods used in
remote sensing).

Regarding segmentation, the use of an optimized segmentation parameter provided by
i.segment.uspo achieved satisfactory results in our case studies. Even if the quantitative assessment of
the segmentation’s quality is not in the scope of this paper, a visual check of Figure 5 reveals that the
images are segmented into meaningful objects.

Even though a rigorous comparison of the results using different datasets and training/test
sets could not be performed, the results obtained by applying the proposed semi-automated
processing chain on two very different urban contexts are similar and attest the transportability
of the proposed framework.
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Figure 5. True color composite (top), results of segmentation with Unsupervised Segmentation
Parameter Optimization USPO (middle), classification at the second level with SWV vote (bottom) on a
subset for each case study. BU: Buildings, SW: Swimming pools, AS: Asphalt surfaces, BS: Bare soil,
RBS: Brown/red bare soil, GBS: White/grey bare soil, TR: Tree, MBV: Mixed bare soil/vegetation,
DV: Dry vegetation, LV: Low vegetation, MV: Medium vegetation, HVD: High vegetation deciduous,
HVD: High vegetation coniferous, OV: Other vegetation, WB: Water bodies, SH: Shadow.
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Table 5. Confusion matrix for the Simple Weighted Vote on Liège, Belgium. Values are given as a
percentage of the reference test set (column-based normalization). Diagonal values correspond to the
producer accuracy. BU: Buildings, AS: Asphalt surfaces, LV: Low vegetation, MV: Medium vegetation,
HVD: High vegetation deciduous, HVD: High vegetation coniferous, BS: Bare soil, WB: Water bodies,
SH: Shadow.

Reference

L2 Classes BU AS LV MV HVD HVC BS WB SH

Simple Weighted
Vote (SWV)

BU 89.2 1.67 0 0 0 0 0 0 0
AS 5.41 80 0 0 0 0 16.7 0 0
LV 0 0 71.7 8.33 0 0 7.14 0 0
MV 0 0 28.3 64.6 0 0 2.38 0 0

HVD 0 0 0 25 75 27.9 0 0 0
HVC 0 0 0 2.08 22.2 72.1 0 0 5.13

BS 2.7 15 0 0 0 0 73.8 0 0
WB 0 0 0 0 0 0 0 94.6 0
SH 2.7 3.33 0 0 2.78 0 0 5.41 94.9

5. Discussion and Perspectives

The entire semi-automated processing chain for urban OBIA classification, relying on open-source
solutions, is available on a dedicated Github repository (https://github.com/tgrippa/Opensource_
OBIA_processing_chain). As it is shared under the CC-BY 4.0 Creative Common Licence, anyone
interested can use and/or adapt it to match different project-specific needs, by integrating additional
steps (e.g., automated image pre-processing, computation of spectral or textural indices, automated
sampling based on existing reference geodatasets).

Other frameworks relying on open-source solutions have already been proposed for the extraction
of valuable geographical information from remote sensing data [53,55–58]. Some of them are distributed
as a plug-in or a toolbox for existing geographical information systems, mainly for QGIS [55,56,58],
and present the advantage of providing a comforting environment for users, making their use
quite simple.

For most of them, pixel-based image classification is their core task. However, some include basic
object-based capabilities. For example, in the context of a pixel-based supervised classification, the Semi
Automated Classification Plug-in (SACP) [55] enables the user to save time when creating regions of
interest (ROI), as these are created using a region growing segmentation, starting from pixel seeds
defined by the user. Another example is the ‘Twinned Object and Pixel-based Automated Classification
chain’ (TWOPAC) plug-in that enables performing classification using object-based derived features,
but considers the segmentation as well as the object features computation as pre-processing steps to be
performed outside of the tool [59].

After our investigations, we found only one existing open-source framework that allowed us
to perform a complete object-based image analysis from segmentation to classification [57]. It relies
fully on Python libraries and is a highly modular solution for object-based image analysis, as it can
be linked with a lot of existing functions and software. Unfortunately, it could be very difficult for
researchers without strong programming skills to handle this kind of framework.

In this paper, we propose a contribution toward the development of a fully automated processing
chain for object-based image analysis. The advantage of the framework we propose is that it relies
on the open-source software GRASS GIS, which has had recent enhancements for object-based image
analysis, enabling the development of more automated procedures. As GRASS GIS offers a graphical
user interface (GUI), the different commands can be tested in the GUI during the script development
stage, and can then be included in the processing chain thanks to the GRASS Python scripting library.
Another key advantage of GRASS GIS is its users’ and developers’ community, which is usually helpful
and responsive.
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Even though enhancements are desirable, the semi-automated processing chain currently achieved
interesting results, as shown through the two case studies presented in this paper. Perspectives on
further developments are discussed below in this section.

The generation of training and validation samples still requires strong manual expert intervention.
This remains a challenge to be overcome by future research looking for automation, especially when
highly accurate reference geodatabases are not available. In that case, alternative data such as
OpenStreetMap data could be used, but their quality is often inconsistent and they should therefore be
assessed prior to any automated use. Issues of co-registration with VHR imagery might also arise when
using such data sets. The practical implementation of an active learning strategy [60], which could
help in building efficient training sets more rapidly, is currently under development in GRASS GIS.

In order to improve the segmentation and hence the resulting classification, we intend to
implement a multi-scale segmentation strategy, which has proved its ability to enhance the classification
performance in a previous study [31]. Segmentation strategies using superpixels could also be
investigated for further enhancements, since a new add-on [61] implementing SLIC superpixels method
has been developed recently. This approach has provided interesting results in recent research [42].

Another improvement method concerns the features used as inputs in the classification process.
Currently, only relatively simple object statistics are used. Band ratios and several textural indices will
be added. They will be automatically computed and submitted to a feature selection procedure for
those classifiers that do not include feature selection inherently.

During parameter tuning, spatial autocorrelation between the training and test sets created
in cross-validation can lead to undetected overfitting and an overvaluation of the accuracy [62,63].
To reduce this potential bias and obtain better bootstrap error estimates, we will investigate the
possibility of implementing spatial cross-validation, i.e., a spatially-constrained partitioning of the
training and test sets created in cross-validation [64]. In addition, more classifiers will also be included.

Moreover, we will explore the possibility of implementing other strategies for the combination
of multiple classifiers (see [48,54,65] for a review). The voting systems currently used to combine
predictions are based on weights derived from the overall accuracy or kappa of individual classifiers,
but in some cases, the non-best classifiers outperformed the best classifier's performance for specific
classes (see Table 3).

Since the performance of different LULC mapping methods is currently being assessed in the
SmartPop project, our open-source semi-automated approach is being compared to a rule-based
approach, developed in a proprietary software. The latter integrates existing ancillary vector layers
(buildings, roads, rails, and water bodies) in the segmentation. Constrained segmentation using
ancillary vector layers in GRASS GIS will be investigated in future studies.

In the near future, the processing chain will be tested on different datasets and/or cities. For the
MAUPP project, Synthetic Aperture Radar (SAR) data will be added as an input in order to improve
the accuracy and the chain will be applied to Ouagadougou (Burkina Faso), Dakar, and Saint-Louis
(Senegal). For the SmartPop project, Pléiades imagery will be used instead of orthophotos in order to
assess the comparative advantage of each dataset. Thereafter, the efficiency of the processing chain
will be tested for the automated processing of a very large area (i.e., the Walloon Region in Belgium),
taking advantage of the parallel computing options in the different modules.

6. Conclusions

In times when the reproducibility of research and the sharing of existing solutions is high on
the discussion agenda, the development of free and open-source solutions becomes paramount.
In this paper, a semi-automated processing chain for urban object-based classification is proposed as a
contribution towards the development of a transparent and open-source fully automated processing
chain for urban land-use/land-cover mapping from earth observation data. This processing chain,
relying on existing open-source geospatial software, is very adaptable and transportable to similar
datasets. It proved its ability of being quickly customizable in order to match the requirements of
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different projects, with very different urban morphologies and different datasets. Freely available for
anyone interested, it should be seen as a framework to be reused and enhanced for further studies.
The results achieved on our case studies are very interesting, taking into account the complexity of the
urban environments and the detail of the legend.
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Appendix

Table A1. Performance evaluation of the level-2 classification of Ouagadougou, Burkina Faso. Producer
accuracy (PA) and User accuracy (UA) for each class of the second level of classification. For each
line, the highest value is in bold. BU: Buildings. SW: Swimming pools. AS: Asphalt surfaces.
RBS: Brown/red bare soil. GBS: White/grey bare soil. TR: Trees. MBV: Mixed bare soil/vegetation.
DV: Dry vegetation. OV: Other vegetation. WB: Water bodies. SH: Shadow.

Individual Classifiers Votes

Level 2 Classes Accuracy kNN Rpart SVMradial RF SMV SWV BWWV QBWWV

BU
PA: 79.1% 79.1% 100.0% 95.3% 97.7% 97.7% 95.3% 95.3%
UA: 51.5% 77.3% 64.2% 91.1% 76.4% 89.4% 89.1% 89.1%

SW
PA: 83.9% 87.1% 93.5% 96.8% 96.8% 96.8% 96.8% 96.8%
UA: 100.0% 96.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

AS
PA: 56.7% 83.3% 56.7% 90.0% 86.7% 90.0% 90.0% 90.0%
UA: 44.7% 48.1% 53.1% 77.1% 74.3% 77.1% 77.1% 77.1%

RBS
PA: 57.1% 83.3% 64.3% 85.7% 85.7% 85.7% 85.7% 85.7%
UA: 47.1% 68.6% 65.9% 72.0% 69.2% 70.6% 70.6% 70.6%

GBS
PA: 26.7% 56.7% 56.7% 56.7% 50.0% 53.3% 53.3% 53.3%
UA: 25.0% 89.5% 94.4% 100.0% 93.8% 100.0% 100.0% 100.0%

TR
PA: 50.0% 96.9% 81.3% 90.6% 90.6% 90.6% 90.6% 90.6%
UA: 69.6% 72.1% 83.9% 80.6% 74.4% 78.4% 80.6% 80.6%

MBV
PA: 28.1% 62.5% 46.9% 46.9% 50.0% 50.0% 50.0% 50.0%
UA: 30.0% 60.6% 78.9% 68.2% 66.7% 69.6% 69.6% 69.6%

DV
PA: 6.3% 46.9% 71.9% 62.5% 65.6% 65.6% 65.6% 65.6%
UA: 12.5% 50.0% 59.0% 58.8% 61.8% 60.0% 58.3% 58.3%

OV
PA: 63.9% 61.1% 72.2% 80.6% 69.4% 77.8% 80.6% 80.6%
UA: 48.9% 84.6% 74.3% 74.4% 80.6% 77.8% 80.6% 80.6%

WB
PA: 12.9% 64.5% 80.6% 83.9% 64.5% 80.6% 80.6% 80.6%
UA: 36.4% 87.0% 89.3% 89.7% 90.9% 89.3% 89.3% 89.3%

SH
PA: 73.3% 60.0% 93.3% 96.7% 96.7% 96.7% 96.7% 96.7%
UA: 75.9% 90.0% 93.3% 90.6% 93.5% 93.5% 90.6% 90.6%

OA 50,1% 71.5% 74.8% 81.0% 78.3% 81.0% 81.0% 81.0%

Kappa 0.45 0.69 0.72 0.79 0.76 0.79 0.79 0.79



Remote Sens. 2017, 9, 358 17 of 20

Table A2. Performance evaluation of the level-2 classification of Liège, Belgium. Producer accuracy (PA)
and User accuracy (UA) for each class of the second level of classification. For each line, the highest
value is in bold. BU: Buildings. AS: Asphalt surfaces. LV: Low vegetation (<1 m). MV: Medium
vegetation (1–7 m). HVD: High vegetation deciduous (>7 m). HVC: High vegetation coniferous (>7 m).
BS: Bare soil. WB: Water bodies. SH: Shadow.

Individual Classifiers Votes

Level 2 Classes Accuracy kNN Rpart SVMradial RF SMV SWV BWWV QBWWV

BU
PA: 48.6% 89.2% 81.1% 86.5% 91.9% 89.2% 86.5% 86.5%
UA: 52.9% 94.3% 85.7% 97.0% 94.4% 97.1% 97.0% 97.0%

AS
PA: 78.3% 70.0% 76.7% 78.3% 81.7% 80.0% 80.0% 80.0%
UA: 54.7% 72.4% 76.7% 85.5% 75.4% 84.2% 84.2% 84.2%

LV
PA: 32.6% 69.6% 65.2% 78.3% 78.3% 71.7% 71.7% 71.7%
UA: 42.9% 86.5% 76.9% 81.8% 81.8% 82.5% 82.5% 82.5%

MV
PA: 33.3% 68.8% 58.3% 64.6% 62.5% 64.6% 64.6% 64.6%
UA: 34.8% 66.0% 66.7% 73.8% 73.2% 68.9% 68.9% 68.9%

HVD
PA: 33.3% 72.2% 75.0% 75.0% 75.0% 75.0% 75.0% 75.0%
UA: 25.0% 53.1% 49.1% 54.0% 50.0% 52.9% 52.9% 52.9%

HVC
PA: 34.9% 74.4% 62.8% 72.1% 65.1% 72.1% 72.1% 72.1%
UA: 37.5% 69.6% 71.1% 73.8% 71.8% 73.8% 73.8% 73.8%

BS
PA: 40.5% 61.9% 69.0% 76.2% 57.1% 73.8% 73.8% 73.8%
UA: 60.7% 65.0% 72.5% 72.7% 77.4% 75.6% 73.8% 73.8%

WB
PA: 73.0% 97.3% 91.9% 94.6% 94.6% 94.6% 94.6% 94.6%
UA: 90.0% 81.8% 91.9% 100.0% 100.0% 100.0% 100.0% 100.0%

SH
PA: 71.8% 69.2% 92.3% 94.9% 94.9% 94.9% 94.9% 94.9%
UA: 68.3% 93.1% 85.7% 86.0% 86.0% 86.0% 86.0% 86.0%

OA 50.3% 74.0% 74.0% 79.4% 77.3% 78.9% 78.6% 78.6%

Kappa 0.44 0.71 0.71 0.77 0.74 0.76 0.76 0.76
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ABSTRACT

Mapping large heterogeneous urban areas using object-based image analysis (OBIA) remains challenging, especially
with respect to the segmentation process. This could be explained both by the complex arrangement of heterogeneous
land-cover classes and by the high diversity of urban patterns which can be encountered throughout the scene. In this
context, using a single segmentation parameter to obtain satisfying segmentation results for the whole scene can be
impossible.  Nonetheless,  it  is  possible  to  subdivide  the  whole  city  into  smaller  local  zones,  rather  homogeneous
according to their urban pattern. These zones can then be used to optimize the segmentation parameter locally, instead of
using the whole image or a single representative spatial subset. This paper assesses the contribution of a local approach
for the optimization of segmentation parameter compared to a global approach. Ouagadougou, located in sub-Saharan
Africa,  is used as case studies.  First, the whole scene is segmented using a single globally optimized segmentation
parameter. Second, the city is subdivided into 283 local zones, homogeneous in terms of building size and building
density.  Each  local  zone  is  then  segmented  using  a  locally  optimized  segmentation  parameter.  Unsupervised
segmentation  parameter  optimization  (USPO),  relying  on  an  optimization  function  which  tends  to  maximize  both
intra-object homogeneity and inter-object heterogeneity, is used to select the segmentation parameter automatically for
both approaches. Finally, a land-use/land-cover classification is performed using the Random Forest (RF) classifier. The
results reveal that the local approach outperforms the global one, especially by limiting confusions between buildings
and their bare-soil neighbors. 

Keywords: Object Based Image Analysis, Unsupervised Segmentation Parameters Optimization, Local Approach, 
Urban Area, Land Cover Mapping

1. INTRODUCTION

Land-use/land-cover (LULC) maps are essential decision-making tools as they can provide a picture of the current urban
configuration, enabling the deployment of appropriate policies for urban planning and management. This is especially
true in the sub-Saharan African urban context where cities undergo high growth rates and decision makers usually face
the scarcity of reference information.

Nowadays, the availability of very-high-resolution (VHR) remote sensing (RS) imagery is higher than ever. This allows
for unprecedented capabilities for the production of spatially and thematically detailed LULC maps. VHR RS data
enable mapping a large diversity of elements of the urban landscape, such as buildings, roads or trees. However, the
production of such detailed maps still remains a challenging task and requires the use of appropriate image analysis
techniques  in  order  to  achieve  accurate  results.  The  processing  of  VHR  RS  imagery  is  usually  performed  using
object-based image analysis (OBIA) techniques. While pixel-based techniques classify each pixel individually, OBIA
groups similar pixels into segments (objects)1 and classifies those new geographical entities. OBIA has been shown to
outperform pixel-based analyses in several studies2, due to the elimination of the so-called ‘salt and paper’ effect and the
utilization of geometrical and contextual features. 
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Several  studies3–6 showed  that  the  quality  of  the  segmentation  has  an  impact,  even  if  not  straightforward 4,  on  the
accuracy  of  the  final  classified  map  and  requires  therefore  a  particular  attention.  Assessing  the  quality  of  the
segmentation  results  can  be  achieved  in  a  supervised  way, either  by  visual  interpretation  of  the  segments,  or  by
comparing these to a reference segmentation layer. Unfortunately, these approaches are time-consuming and subjective 7.
Recently, new techniques have appeared to enable the assessment of segmentation results in an unsupervised way 8–12.
Using these techniques, it is therefore possible to automate the selection of the segmentation parameter. These so-called
‘unsupervised  segmentation  parameter  optimization’  (USPO)  techniques  mainly  seek  to  maximize  intra-segment
homogeneity and inter-segment heterogeneity7. Their main advantage that they operate on a purely unsupervised manner,
as they rely on metrics computed directly on the data, and usually produce results comparable to those of supervised
methods13. 

Most of the time, when the area of interest is very large, both supervised and unsupervised optimization approaches are
performed on a representative spatial subset, i.e., a limited portion of the whole scene, in order to reduce computational
costs which can be a major issue. Although this approach may be acceptable for homogeneous areas, it would be rather
unintuitive to  assume that  a  single parameter, even optimized,  can adequately segment  different  landscape patterns
throughout large heterogeneous areas such as sub-Saharan African cities. In fact, it would be more reasonable to make
the assumption that the optimal segmentation parameter can differ across the scene. As such, by using a single – global -
parameter, the segmentation results may potentially add an unnecessary bias into the segmentation algorithm by forcing a
single value for the whole image, while the most optimal parameter is likely to vary for different urban patterns.

In  recent  years,  a  few  studies  have  tackled  this  issue,  by  employing  more  localized  or  regionalized  optimization
procedures.  Cánovas-García  and  Alonso-Sarría  (2015)  demonstrated  an  improvement  in  segmentation  quality  by
optimizing the segmentation parameter based on spatially differentiated agricultural plots, instead of selecting a single
parameter for the whole scene14. Recently, Kavzoglu et al. (2016) proposed a regionalized multiscale approach in which
an initial coarse segmentation was carried out in order to produce areas for further refinement of the segmentation
parameters15. Classification results were shown to improve when the optimization of the segmentation parameter was
performed regionally rather than globally. To our knowledge, no studies have tackled this issue in heterogeneous urban
environments.

In this paper, we present a framework for investigating the contribution of a local segmentation parameter optimization
approach compared to a global approach. The area of interest, located in the city of Ouagadougou in Burkina Faso,
covers 94 square kilometers (km²) and is highly heterogeneous in terms of urban patterns. Firstly, a global approach was
performed in which the whole scene was segmented based on a single parameter selected by USPO on a spatial subset
representative of the diversity of the whole scene. Secondly, a local approach was carried out using a partition of the city
into 283 local zones, homogeneous in terms of building size and building density. Each local zone was then segmented
using a locally optimized segmentation parameter. The whole framework was based on an open source semi-automated
processing chain16. 

The research presented in this paper is part of the ‘Modeling and forecasting African Urban Population Patterns for
vulnerability and health assessments’ project (MAUPP – http://maupp.ulb.ac.be), focusing on production of LULC maps
and estimations of human population densities in African cities. 

2. MATERIAL AND METHODS

2.1 Processing chain, software and tools

The analysis was performed using the open-source software GRASS GIS17 and R. The segmentation step was performed
using ‘i.segment’ and ‘i.segment.uspo’ from GRASS GIS and the classification step using the 'caret' package of R. The
whole processing was coded in Python and embedded in a 'Jupyter notebook'18. Python was used in order to chain
commands of GRASS GIS and R directly in the same interface, and in a similar fashion as the chain presented in a
previous publication16 and publicly available.
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2.2 Data

The dataset  consists of a pan-sharpened stereo WorldView-3 imagery, with visible and near-infrared (VNIR) bands,
re-sampled by the provider to a spatial resolution of 0.5 m. It was acquired during the wet season (October 2015) in order
to  enhance  the  spectral  separability  between  bare  soils  and  artificial  surfaces.  A normalized  digital  surface  model
(nDSM)  was  produced  by  photogrammetry  from  the  WorldView-3  stereo-pairs  and  was  used  to  provide  height
information. Additional indices were computed from the VNIR bands, i.e., the normalized vegetation index (NDVI), the
normalized water index (NDWI)19 and the Spectral Shape Index (SSI)20; they were used during the classification step.

2.3 Case study

We applied the analysis to a subset of the city of Ouagadougou in Burkina Faso. The city has been undergoing an
extensive urban sprawl during the last decades and the number of inhabitants has doubled between 2004 and 2014
according to the United Nations21. It covered an area of around 615 km² at the time of imagery acquisition in 2015. The
subset dedicated to the analysis is located northeast to the city center (see Figure 1) and covers 94 km². The extent of the
AOI is very large compared to other studies and according to the spatial resolution of the data22.

The city of Ouagadougou is an interesting case study for assessing the contribution of a locally optimized segmentation
parameter approach as it is composed of highly contrasted neighborhoods in terms of urban patterns (see Figure 2).

Figure 1: Extent of the city of Ouagadougou, Burkina Faso, and footprint of the area of interest used in this research.
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Figure 2: Subset of the area of interest with a clear opposition between unplanned and planned residential neighborhoods,
with varying building sizes and densities.

2.4 Segmentation and Unsupervised Segmentation Parameter Optimization (USPO)

Segmentation is a very important step in an OBIA classification workflow. Indeed, the segmentation quality can affect
the accuracy of the classification. In this paper, an unsupervised segmentation parameter optimization (USPO) method is
used in order to automate the selection of the optimum segmentation parameter. The main advantage of such method is
that  it  relies  on ‘goodness measures’7 quantifying the desired characteristics  a good segmentation should have,  i.e.,
homogeneous objects which are different from their neighbors. 

In  this  paper  we  used  the  ‘i.segment’  module  of  GRASS  GIS  software  to  perform  the  segmentation.  The  latter
implements a region-growing segmentation algorithm which is ruled by two parameters.  The main parameter is  the
‘threshold’ which controls the tolerance for merging contiguous objects according to their proximity in the feature space.
The second parameter is the ‘minsize’ which controls the minimum size of segments. It is implemented at the end of the
segmentation process, and merges the objects that are too small with their most similar neighbors.

In GRASS GIS, unsupervised segmentation parameter optimization is possible using the ‘i.segment.uspo’ add-on. The
latter was used in this study to automatically select the optimum threshold parameter. The minsize parameter was fixed
in order to match the desired minimum mapping unit of the final map, i.e., 3.75 m². The add-on allows users to select
different USPO approaches presented in previous studies8,12 and its implementation is described in Grippa et al. (2017)16.
It generates a stack of different segmentation results by varying the threshold parameter and selects the one that obtains
the largest score for an optimization function. The score combines a measure of intra-object weighted variance (WV)23

assessing  the  intra-segment  homogeneity  and  a spatial  autocorrelation  (SA)  measure  assessing  the  inter-segment
heterogeneity. For the SA measure, the user can choose between Geary’s C24 and Moran’s I25. The latter was used in this
paper. Both measures are normalized using the following function8:

(1)

and

(2)

Where WV  is the weighted variance and SA is the spatial autocorrelation measure of the current segmentation
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layer.  WVMax ,  WVMin  and  SAMax , SAMin  refer respectively to the maximum and minimum  WV and
SA value in the stack of segmentation.

The normalized measures are then combined using the F-function proposed by Johnson (2015)12 which is computed as
follows :

(3)

Where F is an ‘overall goodness’ measure, ranging from 0 (poor quality) to 1 (high quality). The segmentation result
that reaches the highest value of F is then selected as the optimum one. The α parameter can be used to modify
the importance of SA norm in the optimization function. In our case this parameter was fixed to 1.

Recent research revealed that the overall goodness measure resulting from this USPO approach is highly dependent on
the range of parameter considered during the optimization procedure26. Therefore, we performed some empirical tests to
find parameters generating clearly over-segmented and under-segmented results. The range was fixed as starting at a
threshold value of 0.004 and stopping at 0.030, using a incremental step of 0.001.

2.5 Segmentation parameter optimization using a global approach

First, we applied a procedure that aims to select a single globally optimized segmentation parameter. We call it  the
‘global approach’. Due to computation time issues,  the segmentation parameter optimization was not applied to the
whole area of interest (AOI), but to a limited subset. This design is frequently used when dealing with very large datasets
and was applied in previous research12. We made sure that the selected spatial subset contains all the types of urban
patterns which can be found in the whole scene (see Figure 3). This spatial subset covers more than 10% of the whole
AOI (10.2 km² / 94 km²). 

Figure 3:  Spatial subset used for the global optimization of segmentation parameter. The subset covers more than 10% of
the whole AOI and is representative of the diversity of urban patterns which can be found in the scene.
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In  this  global  approach,  the  segmentation  parameter  optimization  was  applied  to  the  spatial  subset,  using  the
i.segment.uspo GRASS GIS add-on. The suggested threshold is assumed to be optimal for the whole scene. The latter
was then segmented with the i.segment GRASS GIS module, using this globally-optimized threshold. 

2.6 Segmentation parameter optimization using a local approach 

Next, we applied a procedure in order to optimize the segmentation parameter for different ‘local zones’ (LZs) of the
AOI.  The  reason  for  applying  this  procedure,  named  the  ‘local  approach’,  is  that  the  AOI  presents  a  very  high
heterogeneity in terms of urban patterns (see Figure 2). Therefore, we assumed that segmenting different parts of the city
using locally optimized segmentation parameters should enable the reduction of both over and under-segmentation, and
thereby improve the quality of the final LULC map.

A partition of the area of interest in multiple zones was required in order to optimize the segmentation parameter locally.
In developed countries, such reference geospatial data, e.g., city districts, street blocks or even cadastral plots, are often
available. On the contrary, developing countries and especially African ones are known to suffer from a severe lack of
available reference geospatial data. In the case of Ouagadougou, no preexisting reference data were available. In that
context, the partition of the city into small homogeneous LZs was achieved manually, by visual interpretation based on
criteria relating to building size and density. The full procedure was carried out by the same interpreter. We partitioned
the AOI into multiple LZs according to the following criteria:

i. LZs should be homogenous, both in terms of building size and density, and should be visibly different from
their neighboring LZs.

ii. LZs boundaries should follow, as far as possible, man-made or natural linear elements, e. g., roads, paths,
rivers, streams, railways.

iii. Built-up LZs should be larger than 1.5 hectares (ha).

iv. Non-built-up LZs (vegetation, water, bare soils) should be larger than 15 ha when located in core urban areas,
and larger than 20 ha when located in peri-urban areas. This criterion can be adapted on a case-by-case basis
according to the situation and the judgment of the interpreter.

It should be noticed that the first two criteria are similar to those used in previous studies27,28.

Then, we labeled LZs according to their urban morphology. For this purpose, a classification scheme combining the
building sizes and density was used and named here ‘morphological type’. Figures 4-5 illustrate the partition of the city
into local homogenous zones and the membership of each zone to its morphological type. Snapshots of the urban pattern
for some morphological type are presented on Figure 6.
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Figure 4: Partition of the city into smaller zones used for the locally optimized segmentation parameter approach.

Figure  5:  Examples  of  morphological  types with different  urban patterns.  A)  Small-sized  high  density  built-up  fabric
B) Medium-sized high density built-up fabric C) Large-sized medium density built-up fabric.
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Figure 6: Membership of each local zone to its morphological type, consisting of a combination of categories of building
size and density. 

2.7 Legend, classification scheme and sampling

We considered 11 LULC classes in the classification scheme, as shown in Table 1. The ‘caret’ package of the R software
was used to perform the classifications using a Random Forest (RF) classifier 29 with parameters optimized using cross
validation and grid search. 

The training and validation sets consisted of random samples  generated automatically and labeled manually by the
interpreter. In both the global and the local approach, training points were used to automatically select the segments in
which  they  were  included.  A  visual  check  of  these  segments  was  performed  in  order  to  eliminate  those  that
mis-segmented objects and covered more than a single LULC class. This explains why small differences appear in the
number of training samples for a same class (see Table 1). In total, 956 and 958 training points were used in the global
and local approach, respectively. For each class of the legend, 40 points were dedicated to the validation. They were not
used to train the classifier, in order to get a completely independent validation set. The validation points used to assess
the classification performance of both approaches is strictly identical, allowing comparison of accuracy measures.
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Table 1: Classification scheme and size of the training and validation sets.

Level 1 classes
land cover

Level 2 classes
land use/land cover

Abbreviation
Training set
size global

approach

Training set
size local

approach

Validation
set size

Artificial

surfaces

Buildings BU 203 202 40

Swimming pools SW 72 72 40
Asphalt surfaces AS 63 63 40

Natural material
surfaces

Brown/red bare soil RBS 71 71 40
White/grey bare soil GBS 71 73 40

Vegetation

Trees TR 95 95 40
Mixed bare soil/vegetation MBV 90 91 40

Dry vegetation DV 65 65 40
Other vegetation OV 77 78 40

Water Water bodies WB 75 72 40
Shadow Shadow SH 74 76 40

Total size: 956 958 440

3. RESULTS

The results show that the values of the segmentation parameter obtained using the local optimization approach differ
noticeably from those resulting from the global approach. This is consistent with the results of previous studies on local
optimization of segmentation parameter14. Figure 7 illustrates the variation of optimized ‘threshold’ parameter according
to the membership of the LZ to the morphological type. The first observation that can be made relates to the non-built-up
zones (i.e., morphological type 0) for which the optimum segmentation parameters are mostly lower than in the global
approach. On the contrary, for a large majority of built-up zones the optimized threshold is higher than in the global
approach. A higher ‘threshold’ makes the region-growing algorithm more tolerant for merging groups of pixels, resulting
in a lower number of segments in the final segmentation result. 

A second observation is that the distribution of locally optimized parameters by morphological type tends to be more
dispersed when the building density decreases (see Figure 7). Mapping the locally optimized segmentation parameter, as
in Figure 8, confirms this non-random distribution. Also, we noticed that the smaller-sized zones get the highest values
of optimized ‘threshold’. The visual assessment of those smaller zones revealed that the local optimization approach
achieved most of the time better segmentation and classification results. Further research should be undertaken to better
understand the relationship between the size of the zones to be used for local optimization approach and the resulting
segmentation and classification results. 

The quantitative evaluation of the classification showed that the local optimization approach slightly outperformed the
global one regarding the overall accuracy (AO). For the second level of classification, using 11 classes, the OA reached
84.77% for the global approach and 85.45% for the local one (see Table 2). These results are both satisfying considering
the  high  number  of  classes  and  the  fact  that  some  of  them  are  spectrally  very  similar,  e.g.,  classes  ‘Mixed  bare
soil/vegetation’ and ‘Dry vegetation’. When considering the 5 classes of the second level, the OA reached 94.77% for the
global approach and 95.45% for the local one.
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Figure 7: Boxplots representing the dispersion of locally optimized segmentation parameters by morphological type. The red
lines refer to the median value. The lower and upper limits of the boxes refer to the first and third quartile, respectively. The
range of the whiskers corresponds to the last observation whose value is included into 1,5 times the interquartile range.
Observations with values beyond the whiskers are considered as outliers and represented by dots.  The box widths are
proportional to the square root30 of the number of LZs of each morphological type. The straight dashed blue line refers to the
‘threshold’ derived from the global optimization approach.

Figure 8: Spatial distribution of the locally optimized segmentation parameters. The values represent the deviation from the
globally optimized segmentation parameter.
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Table  2:  Comparison  of  the  performance  evaluation  of  the  classifications  carried  out  using  the  global  and  the  local
segmentation parameter optimization approaches.

Classification

level

Overall

accuracy
Kappa

Global optimization 

approach

L1 (5 classes) 94.77 % 0.9297

L2 (11 classes) 84.77 % 0.8325

Local optimization 

approach

L1 (5 classes) 95.45 % 0.9389

L2 (11 classes) 85.45 % 0.8400

Since the MAUPP project  is  mainly focused on the estimation of human population densities,  the accuracy of  the
produced maps is particularly important with respect to the class ‘Buildings’. For this reason, we mainly assessed the
contribution of the local optimization approach for that specific class. The analysis of the F-score for each class of the
second level of classification (see Table 3) revealed that the class ‘Buildings’ reaches a score of 0.92 and 0.93 using the
global and the local approach, respectively. In general, the local approach achieved slightly better scores than the global
one, except for the classes ‘Brown/red bare soil’ and ‘Inland waters’.

Table 3: F-score for individual classes of the second level (L2) of the classification. For each class, if one approach outperforms 
the other, the F-score value is in bold.

Level 2 Classes
Global optimization

approach
Local optimization

approach

Buildings 0.92 0.93
Swimming pools 0.97 0.97
Asphalt surfaces 0.93 0.95
Brown/red bare soil 0.89 0.85
White/grey bare soil 0.85 0.85
Trees 0.81 0.82
Mixed bare soil/vegetation 0.69 0.72
Dry vegetation 0.67 0.67
Other vegetation 0.75 0.79
Inland waters 0.91 0.90
Shadow 0.95 0.96

Assessing  the  quality  of  the  classification  through  quantitative  performance  evaluation  appeared  not  sufficient  to
completely evaluate the differences appearing in the final map. Even though the classification results showed a slight OA
improvement  when using  a  local  segmentation  parameter  optimization  approach,  we realized  that  some substantial
differences  occurred,  especially  regarding  the  ‘Buildings’  and  ‘Brown/red  bare  soils’ classes.  As  the  qualitative
evaluation did not well  capture some specific  differences between the two approaches,  we conducted a meticulous
qualitative visual assessment of the classification results. Figures 9-11 present selected snapshots highlighting the main
differences between the classifications resulting from both the global and the local approach.

We carefully carried out a  visual  analysis of the results.  We discovered that,  in most cases,  the local  segmentation
optimization approach resulted in a more accurate LULC map. We can report that the most important improvement
resides in the fact that the local approach better segmented bare-soil objects neighboring buildings. Those were often
over-segmented using the global approach which created confusion with the ‘Buildings’ class. As a consequence, the
local  segmentation parameter optimization approach helped in limiting commission errors for the class  ‘Buildings’.
Figures  9-10 illustrate how the delineation of buildings on the final map appears more accurate when using the local
approach.

This document is the authors version of the paper submitted to Proc. SPIE 10431, Remote Sensing Technologies and Applications in Urban
Environments II, ; doi: 10.1117/12.2278422; http://dx.doi.org/10.1117/12.2278422 and available on www.spiedigitallibrary.org



Figure 9: Subset of the AOI located in a LZ characterized by medium-sized low density built-up fabric. Bare-soil objects
neighbors to the building are better classified using the local segmentation parameter optimization approach. BU: Buildings,
SW: Swimming pools, AS: Asphalt surfaces, RBS: Brown/red bare soil, GBS: White/grey bare soil, TR: Tree, MBV: Mixed
bare soil/vegetation, DV: Dry vegetation, OV: Other vegetation, WB: Water bodies, SH: Shadow.
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Figure  10: Subset of the AOI located in a LZ characterized by small-sized high density built-up fabric. Bare-soil objects
neighbors to the building are better classified using the local segmentation parameter optimization approach. BU: Buildings,
SW: Swimming pools, AS: Asphalt surfaces, RBS: Brown/red bare soil, GBS: White/grey bare soil, TR: Tree, MBV: Mixed
bare soil/vegetation, DV: Dry vegetation, OV: Other vegetation, WB: Water bodies, SH: Shadow.
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Figure  11:  Subset of  the AOI located in a  LZ characterized by medium-sized low density  built-up fabric.  Here,  some
counter-examples illustrate the situation where local approach misclassified bare-soil objects neighboring of buildings, since
the  global  approach  accurately  classified  them.  BU: Buildings,  SW: Swimming  pools,  AS: Asphalt  surfaces,
RBS: Brown/red bare soil,  GBS: White/grey bare soil,  TR: Tree, MBV: Mixed bare soil/vegetation, DV: Dry vegetation,
OV: Other vegetation, WB: Water bodies, SH: Shadow.
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This confusion could be explained by the fact that the training samples for the bare-soil classes were very rarely located
so  close  to  the  buildings.  As  such,  bare-soil  objects  used  for  training  were  bigger  and  registered  different  feature
characteristic than those over-segmented bare-soil objects neighboring buildings.

More generally, it appeared that the training set consisting of the objects created in the local approach better separated
the different classes.  Figure 12 illustrates the class separability in both training sets. The figure depicts the probability
density function for the most important features in both RF models, i.e., the first quartile on NDVI values. It is clear that
training objects of the same class are spectrally more homogeneous when using the local approach, leading to a higher
intra-class homogeneity. As a consequence, the inter-class separability is higher with class centres appearing noticeably
different  for  few classes,  e.g.  ‘Buildings’ or  ‘Trees’.  It  could  also be noticed  that  class  centres  of  ‘Buildings’ and
‘Brown/red bare soils’ are very similar in the global approach (around 0.15 and 0.13, respectively), which could create
confusion between these classes. For the local approach, the class centres are better separated (around 0.04 and 0.10
respectively), which probably helps to clear up the confusion. These observations could explain the higher classification
performance using the local approach. 

Important differences appeared when we compared the percentage of the area of interest classified as ‘Buildings’ in both
approaches (see Table 4). When considering the whole area of interest, 16.80% of the area is classified as ‘Buildings’ in
both approach. This area increases to 17.99% (+1.19%) in the local approach, and to 19.93% (+3.13%) in the global one.
The biggest difference between both approaches appears for smaller-sized high and medium density built-up areas.

Table 4: Comparison of the percentage of the area classified as 'Buildings' in both approaches

Percentage (%) of the map classified as buildings

Morphological Type Code

Non-built-up area 0 0.86 1.3 (+0.44) 1.4 (+0.54)

Small-sized high density built-up fabric 11 24.07 26.04 (+1.97) 29.62 (+5.55)

Small-sized medium density built-up fabric 12 17.86 19.51 (+1.65) 22.51 (+4.65)

Small-sized low density built-up fabric 13 5.86 6.26 (+0.4) 7.35 (+1.49)

Small-sized isolated density built-up fabric 14 2.45 3.01 (+0.56) 3.25 (+0.8)

Medium-sized high density built-up fabric 21 34.84 36.78 (+1.94) 40.33 (+5.49)

Medium-sized medium density built-up fabric 22 20.24 21.49 (+1.25) 23.66 (+3.42)

Medium-sized low density built-up fabric 23 15.78 16.69 (+0.91) 18.57 (+2.79)

Medium-sized isolated density built-up fabric 24 2.1 2.32 (+0.22) 2.77 (+0.67)

Large-sized high density built-up fabric 31 47.76 51.23 (+3.47) 53.02 (+5.26)

Large-sized medium density built-up fabric 32 15.44 16.12 (+0.68) 17.5 (+2.06)

Large-sized isolated density built-up fabric 34 5.17 5.86 (+0.69) 6.22 (+1.05)

Total 16.8 17.99 (+1.19) 19.93 (+3.13)

in both 
approaches

in local 
approach

in global 
approach

The main weakness of the local approach lies in the required processing time which was almost 2.5 times longer than in
the global approach. More precisely, the optimization of the segmentation parameter and the segmentation itself required
6.1 hours for the global approach and 15.7 hours for the local one. The processing operations were carried out on a HP®

Workstation Z620 equipped with two Intel® Xeon® E5-2680 processors (base frequency at 2.70GHz), both having 8
cores.  The optimization step was performed in parallel,  using 15 threads.  Furthermore,  in a  context where existing
geospatial data to be used as local zones are missing, partitioning the scene into homogeneous local zones proves a very
time-consuming task. In this context, future research on local optimization of segmentation parameter could assess the
ability to achieve similar results using a regular grid or very large superpixels as local zones for optimization. 

The classification  results  obtained  using the  local  approach  are  not  perfect.  Actually, in  some situations,  the  local
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approach  failed  in  classifying  correctly  some  bare-soil  objects  neighboring  buildings  whereas  the  global  approach
succeeded,  as  illustrated  in  Figure  11.  However,  after  meticulous  visual  assessment,  we  can  affirm  that  those
counter-examples  are  very  rare.  Our  analysis  revealed  that,  in  general,  the  LULC  map  produced  with  a  local
segmentation parameter optimization approach was more accurate, especially for the class ‘Buildings’ than that obtained
using a global approach. However, more tests should be carried out to verify if  that  conclusion is consistent  when
applying the presented framework on different case studies.

Figure 12: Probability density function of training object statistics for the different classes of the legend. The object feature
presented here is the most important variable in the Random Forest classifier, i.e. first quartile on NDVI.
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4. CONCLUSIONS

In this research, we assessed the contribution of a local approach for optimization of segmentation parameters for the
production of land-use / land-cover maps in highly heterogeneous urban environments. First, the area of interest was
segmented  using  a  global  segmentation  parameter,  which  was  optimized  on  a  spatial  subset  representative  of  the
diversity of urban patterns present throughout the whole scene. Then, the optimization of segmentation parameter was
carried out for 283 local zones, homogeneous in terms of urban patterns. Both quantitative and qualitative assessments
showed that the local approach outperformed the global one. The classification overall accuracy reached 94.77% and
95.45%  for  the  global  and  the  local  approach,  respectively,  using  5  land-cover  classes.  When  considering  11
land-use / land-cover classes, the overall accuracy reached 84.77% and 85.45% respectively. Analysis of training objects
features  revealed  that  the  local  approach  helped  in  improving  the  separability  of  different  classes.  Furthermore,  a
qualitative assessment of the final maps revealed that the most important improvement of using a local approach resides
in the huge reduction of classification errors for bare soils objects neighboring buildings objects, resulting in a better
delineation of buildings in the final map. However, this improvement was not reflected by the overall accuracy measures.
Therefore, in future work, we will focus on using more targeted methods of assessment. A second possible field of future
research is the automation of the delineation of morphological areas, notably based on texture measures, possibly using
lower resolution imagery.

ACKNOWLEDGEMENTS

This  work  was  funded  by  the  Belgian  Federal  Science  Policy  Office  (BELSPO)  (Research  Program  for  Earth
Observation STEREO III, contract SR/00/304—as part of the MAUPP project—http://maupp.ulb.ac.be). WorldView3
data  is  copyrighted  under  the  mention  “©COPYRIGHT  2015  DigitalGlobe,  Inc.,  Longmont  CO  USA  80503.
DigitalGlobe and the DigitalGlobe logos are trademarks of DigitalGlobe, Inc. The use and/or dissemination of this data
and/or of any product in any way derived there from are restricted. Unauthorized use and/or dissemination is prohibited”.

REFERENCES

[1] Blaschke, T., “Object based image analysis for remote sensing,” ISPRS J. Photogramm. Remote Sens. 65(1), 2–
16 (2010).

[2] Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz Feitosa, R., van der Meer, F., van
der Werff,  H.,  van Coillie,  F. and Tiede,  D.,  “Geographic Object-Based Image Analysis –  Towards a new
paradigm,” ISPRS J. Photogramm. Remote Sens. 87, 180–191 (2014).

[3] Gao, Y., Mas, J. F., Kerle, N. and Navarrete Pacheco, J. A., “Optimal region growing segmentation and its effect
on classification accuracy,” Int. J. Remote Sens. 32(13), 3747–3763 (2011).

[4] Räsänen, A., Rusanen, A., Kuitunen, M. and Lensu, A., “What makes segmentation good? A case study in boreal
forest habitat mapping,” Int. J. Remote Sens. 34(23), 8603–8627 (2013).

[5] Cheng, J., Bo, Y., Zhu, Y. and Ji, X., “A novel method for assessing the segmentation quality of high-spatial
resolution remote-sensing images,” Int. J. Remote Sens. 35(10), 3816–3839 (2014).

[6] Yang, J., Li, P. and He, Y., “A multi-band approach to unsupervised scale parameter selection for multi-scale
image segmentation,” ISPRS J. Photogramm. Remote Sens. 94, 13–24 (2014).

[7]  Zhang,  H.,  Fritts,  J.  E.  and  Goldman,  S.  A.,  “Image  segmentation  evaluation:  A survey  of  unsupervised
methods,” Comput. Vis. Image Underst. 110(2), 260–280 (2008).

[8] Espindola, G. M., Camara, G., Reis, I. A., Bins, L. S. and Monteiro, A. M., “Parameter selection for region‐
growing image segmentation algorithms using spatial autocorrelation,” Int. J. Remote Sens. 27(14), 3035–3040
(2006).

This document is the authors version of the paper submitted to Proc. SPIE 10431, Remote Sensing Technologies and Applications in Urban
Environments II, ; doi: 10.1117/12.2278422; http://dx.doi.org/10.1117/12.2278422 and available on www.spiedigitallibrary.org



[9] Drǎguţ, L., Tiede, D. and Levick, S. R., “ESP: a tool to estimate scale parameter for multiresolution image
segmentation of remotely sensed data,” Int. J. Geogr. Inf. Sci. 24(6), 859–871 (2010).

[10]  Drăguţ,  L.,  Csillik,  O.,  Eisank,  C.  and  Tiede,  D.,  “Automated  parameterisation  for  multi-scale  image
segmentation on multiple layers,” ISPRS J. Photogramm. Remote Sens. 88, 119–127 (2014).

[11] Johnson, B. and Xie, Z.,  “Unsupervised image segmentation evaluation and refinement using a multi-scale
approach,” ISPRS J. Photogramm. Remote Sens. 66(4), 473–483 (2011).

[12]  Johnson,  B.  A.,  Bragais,  M.,  Endo,  I.,  Magcale-Macandog,  D.  B.  and  Macandog,  P.  B.  M.,  “Image
Segmentation Parameter Optimization Considering Within- and Between-Segment Heterogeneity at Multiple
Scale Levels: Test Case for Mapping Residential Areas Using Landsat Imagery,” ISPRS Int. J. Geo-Inf.  4(4),
2292–2305 (2015).

[13] Belgiu, M., Drǎguţ, L. and Strobl, J., “Quantitative evaluation of variations in rule-based classifications of land
cover in urban neighbourhoods using WorldView-2 imagery,” ISPRS J. Photogramm. Remote Sens.  87, 205–
215 (2014).

[14] Cánovas-García, F. and Alonso-Sarría, F., “A local approach to optimize the scale parameter in multiresolution
segmentation for multispectral imagery,” Geocarto Int. 30(8), 937–961 (2015).

[15] Kavzoglu, T., Yildiz Erdemir, M. and Tonbul, H., “A region-based mutli-scale approach for object-based image
analysis,” ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B7, 241–247 (2016).

[16] Grippa, T., Lennert, M., Beaumont, B., Vanhuysse, S., Stephenne, N. and Wolff, E., “An Open-Source Semi-
Automated Processing Chain for Urban Object-Based Classification,” Remote Sens. 9(4), 358 (2017).

[17] Neteler, M., Bowman, M. H., Landa, M. and Metz, M., “GRASS GIS: A multi-purpose open source GIS,”
Environ. Model. Softw. 31, 124–130 (2012).

[18] Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J.,
Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., Willing, C. and Jupyter Development Team., “Jupyter
Notebooks - a publishing format for reproducible computational workflows,” Proc. 20th Int. Conf. Electron.
Publ., 87–90, Göttingen, Germany (2016).

[19] McFeeters, S. K., “The use of the Normalized Difference Water Index (NDWI) in the delineation of open water
features,” Int. J. Remote Sens. 17(7), 1425–1432 (1996).

[20] Chen, Y., Su, W., Li, J. and Sun, Z., “Hierarchical object oriented classification using very high resolution
imagery and LIDAR data over urban areas,” Adv. Space Res. 43(7), 1101–1110 (2009).

[21]  United  Nations.,  “World  Urbanization  Prospects:  The  2014 Revision,  CD-ROM Edition,”  United  nations,
Department of Economic and Social Affairs, Population Division (2014).

[22] Ma, L., Li, M., Ma, X., Cheng, L., Du, P. and Liu, Y., “A review of supervised object-based land-cover image
classification,” ISPRS J. Photogramm. Remote Sens. 130, 277–293 (2017).

[23] Belgiu, M. and Drăgut, L., “Comparing supervised and unsupervised multiresolution segmentation approaches
for extracting buildings from very high resolution imagery,” ISPRS J. Photogramm. Remote Sens.  96, 67–75
(2014).

[24] Geary, R. C., “The Contiguity Ratio and Statistical Mapping,” Inc. Stat. 5(3), 115 (1954).

[25] Moran, P. A. P., “Notes on Continuous Stochastic Phenomena,” Biometrika 37(1/2), 17 (1950).

[26] Böck,  S.,  Immitzer, M. and Atzberger, C.,  “On the Objectivity of the Objective Function—Problems with
Unsupervised Segmentation Evaluation Based on Global Score and a Possible Remedy,” Remote Sens.  9(8),
769 (2017).

[27] Herold,  M.,  Scepan,  J.  and Clarke,  K.  C.,  “The use of  remote sensing and landscape metrics  to describe
structures and changes in urban land uses,” Environ. Plan. A 34(8), 1443–1458 (2002).

[28] Liu, X., Clarke, K. and Herold, M., “Population density and image texture,” Photogramm. Eng. Remote Sens.
72(2), 187–196 (2006).

[29] Breiman, L., “Random Forests,” Mach. Learn. 45(1), 5–32 (2001).

This document is the authors version of the paper submitted to Proc. SPIE 10431, Remote Sensing Technologies and Applications in Urban
Environments II, ; doi: 10.1117/12.2278422; http://dx.doi.org/10.1117/12.2278422 and available on www.spiedigitallibrary.org



[30] McGill, R., Tukey, J. W. and Larsen, W. A., “Variations of Box Plots,” Am. Stat. 32(1), 12 (1978).

This document is the authors version of the paper submitted to Proc. SPIE 10431, Remote Sensing Technologies and Applications in Urban
Environments II, ; doi: 10.1117/12.2278422; http://dx.doi.org/10.1117/12.2278422 and available on www.spiedigitallibrary.org



Chapter 2. Land cover mapping framework

80



remote sensing  

Article

Scale Matters: Spatially Partitioned Unsupervised
Segmentation Parameter Optimization for Large and
Heterogeneous Satellite Images

Stefanos Georganos 1,*, Tais Grippa 1 , Moritz Lennert 1 , Sabine Vanhuysse 1 ,
Brian Alan Johnson 2 and Eléonore Wolff 1

1 Department of Geosciences, Environment & Society, Université libre de Bruxelles (ULB), 1050 Bruxelles,
Belgium; tgrippa@ulb.ac.be (T.G.); mlennert@ulb.ac.be (M.L.); svhuysse@ulb.ac.be (S.V.);
ewolff@ulb.ac.be (E.W.)

2 Natural Resources and Ecosystem Services Area, Institute for Global Environmental Strategies,
2108-11 Kamiyamaguchi, Hayama, Kanagawa 240-0115, Japan; johnson@iges.or.jp

* Correspondence: sgeorgan@ulb.ac.be; Tel.: +32-2-650-6806

Received: 13 August 2018; Accepted: 5 September 2018; Published: 9 September 2018
����������
�������

Abstract: To classify Very-High-Resolution (VHR) imagery, Geographic Object Based Image Analysis
(GEOBIA) is the most popular method used to produce high quality Land-Use/Land-Cover maps.
A crucial step in GEOBIA is the appropriate parametrization of the segmentation algorithm prior
to the classification. However, little effort has been made to automatically optimize GEOBIA
algorithms in an unsupervised and spatially meaningful manner. So far, most Unsupervised
Segmentation Parameter Optimization (USPO) techniques, assume spatial stationarity for the
whole study area extent. This can be questionable, particularly for applications in geographically
large and heterogeneous urban areas. In this study, we employed a novel framework named
Spatially Partitioned Unsupervised Segmentation Parameter Optimization (SPUSPO), which
optimizes segmentation parameters locally rather than globally, for the Sub-Saharan African city of
Ouagadougou, Burkina Faso, using WorldView-3 imagery (607 km2). The results showed that there
exists significant spatial variation in the optimal segmentation parameters suggested by USPO across
the whole scene, which follows landscape patterns—mainly of the various built-up and vegetation
types. The most appropriate automatic spatial partitioning method from the investigated techniques,
was an edge-detection cutline algorithm, which achieved higher classification accuracy than a global
optimization, better predicted built-up regions, and did not suffer from edge effects. The overall
classification accuracy using SPUSPO was 90.5%, whilst the accuracy from undertaking a traditional
USPO approach was 89.5%. The differences between them were statistically significant (p < 0.05)
based on a McNemar’s test of similarity. Our methods were validated further by employing a
segmentation goodness metric, Area Fit Index (AFI)on building objects across Ouagadougou, which
suggested that a global USPO was more over-segmented than our local approach. The mean AFI
values for SPUSPO and USPO were 0.28 and 0.36, respectively. Finally, the processing was carried
out using the open-source software GRASS GIS, due to its efficiency in raster-based applications.

Keywords: unsupervised segmentation parameter optimization; GRASS GIS; image classification;
land cover; urban areas; big data

1. Introduction

Accurate and precise Land-Use/Land-Cover (LULC) maps derived from remotely sensed imagery
are crucial for applications spanning several fields, including spatial planning, population estimation,
environmental monitoring, and socio-economic and epidemiological modelling [1–4]. These map
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products not only provide useful information on their own, but also through their use as an input to
secondary models (e.g., population distribution models [3], hydrological models [5], or LULC change
models [6–8]. As such, maximizing the accuracy of LULC maps is a critical methodological facet in
reducing error propagation and enhancing the effectiveness of science-based policy-making.

For the classification of high- and very-high resolution (VHR) imagery in particular, Geographic
Object-Based Image (GEOBIA) analysis has been established as a superior method over traditional
pixel-based approaches [9], as it produces a semantic representation of data closer to reality than
the arbitrary nature of pixels [10]. Recent studies have attempted to establish a formal ontological
framework to further advance the use of objects as spatial representation units [11]. In GEOBIA,
the most crucial step before classification is the clustering of neighboring image pixels into segments
based on spatial, spectral, and contextual criteria [12]. These segments should ideally represent real
world objects or LC categories (e.g., building rooftops, or agricultural fields) that are larger than
the original image resolution [13]. As several studies have demonstrated, GEOBIA classification
accuracy is not only affected by the classification algorithm itself [14], but also by the quality of the
extracted image segmentation [15–18]. Consequently, the selection of an appropriate segmentation
(i.e., object-creating) algorithm, as well as its parametrization, are crucial with respect to the final
output [19–21].

Region-growing (RG) segmentation techniques are the most popular in GEOBIA literature, mainly
due to their implementation through the multiresolution segmentation algorithm [22], implemented
in the popular software eCognition (Definiens) [16,23–26]. The most important parameter in RG
segmentation is the Threshold Parameter (TP; e.g., the Scale Parameter of the multiresolution
segmentation algorithm in eCognition), which governs the average size of the created segments.
The selection of the parameter is most commonly attempted through a time consuming, user dependent,
trial and error process [27,28], in which the quality of the produced segmentations is assessed
visually [29], or through a quantitative comparison against reference data (i.e., manually digitized
polygons based on visual image interpretation) [30–32]. These approaches have been criticized for
being untenable due to their subjective nature and time inefficiency, whilst at the same time, the
improvement they can offer in classification accuracy might be limited [33]. Therefore, other research
has been directed towards the development of objectively defined Unsupervised Segmentation
Parameter Optimization (USPO) techniques, which evaluate individual segmentations based on
geostatistical metrics and do not require reference data [34–36]. To do so, various USPO metrics have
been proposed, such as the rate of change in local variance implemented through the estimation of
scale parameter tool (ESP) [34,37], the optimization of objective functions such as the Global Score
(GS) [38] and the F-measure [18,39] among others, with varying degrees of success. In the comparative
study of Grybas et al. [23], the F-measure was found superior to the ESP and GS, potentially due to
its sensitivity to over and under segmentation. The GS and F-measure assess spectral values within
(i.e., Weighted Variance (WV)) and between (i.e., Global Moran’s I (MI)) segments. Ideally, an accurate
segmentation should minimize the spectral heterogeneity within segments and maximize the spectral
heterogeneity between segments, so the TP that is found to maximize the aforementioned function is
accredited to be optimal [40].

So far, the optimization of segment-creating algorithms (and in this study, the region growing
one), has been attempted mainly through the use of global methods, either at single or multiple
scales [36,37]. A global approach implies that the optimization of the TP is adequate using the whole
extent of the study area or a subset which is assumed to be representative [15,33,41]. The vast majority
of the developments in the past years operate on that assumption, a situation exaggerated from the
relatively small study areas that are used (<3 km2 in ~95% of the recent literature on object-based
land cover mapping) as pointed out in the review of Ma et al. [42]. These approaches assume
spatial stationarity—that the relationship between input data and the segment generating process
is stable across space which is reflected by having a spatially invariant TP for the whole study area.
However, this begs the question “Why is the extent of the study area in a remote sensing application
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automatically assumed to be the most appropriate scale to optimize the segmentation algorithms?”.
This is of increasing importance as it has been recently demonstrated that partitioning the study area
in smaller regions can provide significantly different results, highlighting the effect of geographic scale
in remote sensing operations [43,44]. Spatial stationarity might hold for small homogenous regions,
but perhaps is unsuitable for large and/or heterogenous scenes. It would be sensible to hypothesize
that the optimal TP would intrinsically and significantly vary across space due to local variations
in data structure, particularly for urban areas, which are known for their landscape variability even
within the same LULC class. If a global approach would be used in such a case, it might only capture
an average and potentially misleading impression of the situation and lead towards adding bias
to the segmentation model, which could be reflected both in segmentation evaluation metrics and
classification accuracy. In recent years, few studies have tackled this issue by employing more localized
or regionalized procedures.

Johnson and Xie [36] refined their global segmentation results in a two-stage procedure by
re-segmenting local outliers using geospatial metrics such as Local Moran’s I. Cánovas-García
and Alonso-Sarría [43] demonstrated improvements in segmentation quality by optimizing the TP
independently in agricultural plots, instead of selecting a single parameter for the whole dataset.
However, the spatial units were selected a priori by using land use parcel vectors, which requires
ancillary data and expert knowledge of the study area. Recently, Kavzoglu et al. [35] proposed
a regionalized multiscale approach for small, semi-urban environments where initial, broad scale
segments derived from the coarse segmentation selection of the ESP tool, defined further areas
for calibrating segmentation parameters. Classification results were shown to improve as the
parametrization of the TP was performed regionally, rather than globally. The improvement local
methods offer for urban LULC mapping has been recently demonstrated by Grippa et al. [44], where the
study area was manually delineated into morphological zones that share similar built-up characteristics,
and a separate USPO optimization was applied to each one of them. Nonetheless, the operational
capabilities of such methods are either restricted computationally or require tedious manual labor
and user expertise that is rarely available. These limitations are important given the advent of big
data, which includes the use of VHR datasets at an increasing pace [45]. As such, our effort focuses on
semi-automatically identifying and quantifying the degree of spatial non-stationarity and geographic
scale dependency between the algorithm parameters for large and heterogeneous satellite images [1].

Our main hypothesis questions the use of global methods a priori, when heterogeneous and/or
large datasets are employed. To do so, a discrimination between the observation and operating scales
between the TP and USPO optimization must be made. The observation scale corresponds to the
whole extent of the study area, whilst the operating scale can be a spatial delineation, which better
reflects the optimization of a segmentation algorithm. In simpler words, we are asking the question:
“Are the segmentation results better if we analyze the data locally rather than globally?”.

In this paper, we present a methodological framework named Spatially Partitioned Unsupervised
Segmentation Parameter Optimization (SPUSPO) in which optimization of the TP is performed in a
localized manner. The proposed methods are automated and do not require reference information.
The underlying rationale of SPUSPO is based on the first law of geography [46] that “all things are
related but near things are more related”, which suggests that objects being near each other (e.g.,
built-up characteristics of a neighborhood) have a higher degree of similarity than a set of objects far
away. The results of the local optimizations are analyzed, mapped and quantified through spatial
statistics, highlighting the variation of segmentation parameters as a function of location and spatial
scale. The presented methods are evaluated both at the segmentation and classification level. As a
proof of concept, we evaluated the procedure for the large, heterogenous city of Ouagadougou, capital
of Burkina Faso. All of the analysis was performed using the GRASS open source GIS software along
with open access processing chains suited for satellite VHR datasets [47].
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2. Materials and Methods

2.1. Study Area and Data

The study area covered the city of Ouagadougou, capital city of Burkina Faso in Sub-Saharan
Africa (SSA). Ouagadougou comprises a complex and heterogenous urban landscape of planned
and unplanned neighborhoods and buildings, of various sizes and materials [48]. The city has been
undergoing extensive and partly unregulated urban growth (i.e., rural to urban migration) over the
last decades [49,50]. To map the LULC of the city, we used a 4-band (R, G, B, NIR) WorldView-3
multispectral image (607 km2, Figure 1) from October 2015, and a normalized Digital Surface Model
(nDSM) derived from stereo image acquisitions on the same image date. The native spatial resolution
of the Worldview-3 imagery is 0.30 cm but was resampled at 0.50 cm by the provider. The value
of the elevation information was critical, as the built-up characteristics were very hard to visually
discriminate from bare soil and artificial ground surfaces, due to the presence of dust on rooftops and
the use of similar construction materials for roofs and artificial ground surfaces. Thus, this challenging
study site provided a good stress test for our methods.
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Figure 1. (a) Study area extent illustrated from a WorldView-3 RGB composite of Ouagadougou,
(b) a typical built-up neighborhood of Ouagadougou and (c) Normalized Digital Surface Model for
the region.

2.2. Segmentation and Unsupervised Segmentation Parameter Optimization

The whole LULC classification framework was realized by employing and extending the
semi-automated processing chain proposed by Grippa et al. [1]. The chain was implemented in a
Jupyter Notebook format and integrated GRASS GIS functions with Python and R programming
languages, framing a complete procedure from the input of initial datasets to final LULC map
production. For segmentation, we utilized the RG algorithm implementation of GRASS GIS [51]
with all four bands (VNIR) used as inputs. In the GRASS implementation, the TP ranges between 0 to
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1, with 0 leading to the situation where each pixel represents a segment, while 1 unifies all image pixels
in one object. As Böck et al. [52] pointed out, the USPO metrics are sensitive to the range of candidate
segmentations used as input, so we empirically found a range that corresponded to cases of evident
over- and under-segmentations to be used as minimum and maximum possible values, as commonly
done in similar studies [18,53]. Thus, we evaluated 27 different segmentations starting with a TP of 4
and finishing at a TP of 31, guided by an incrementing step value of 1, as in previous studies, [54]. For
reader convenience, all TP values were multiplied by 1000 in the illustrative and text materials.

To evaluate the quality of each of the different segmentations, we used the inter- and intra-
segmentation heterogeneity metrics Moran’s I (MI) and Weighted Variance (WV), respectively.
MI calculates the degree of spatial autocorrelation present in the values of nearby geographic features,
and it was used in our case (and in many other USPO studies) to calculate how spectrally heterogeneous
segments are, on average, from their neighbors (i.e., in terms of the mean segment values calculated for
each spectral band). For this reason, it can provide a measure of “oversegmentation goodness”; Low MI
values for a segmentation layer indicate low spatial autocorrelation between segment spectral values,
suggesting that most segments belong to a different ground feature (with different spectral reflectance
properties) than its neighbors. WV, on the other hand, describes the average spectral variability within
segments (weighted by each segment’s area). WV can provide a measure of “undersegmentation
goodness”; Low WV values indicate little internal variation in the spectral properties of segments,
suggesting the segment does not contain a mixture of multiple ground features. MI and WV are
given by:

WV =
∑n

i ai ∗ vi

∑n
i ai

(1)

MI =
n ∑n

i ∑n
j wijzizj

M ∑n
i z2

i
(2)

where for Equation (1), n is the number of segments, vi is the variance and ai the area for each segment,
while in Equation (2), n is the number of segments, zi = xi − x, x is the mean value of segment x,
M = ∑n

i=1 ∑n
j=1 wij and wij is the element of the matrix of spatial proximity M, which indicates the

spatial connectivity for segments i and j [52,53].
To perform USPO, the oversegmentation and undersegmentation goodness values calculated

for each segmentation layer need to be combined into a single value, e.g., through addition [38] or
the F-measure [18]. We used the F-measure to combine MI and WV values in this study, as it was
demonstrated to be less sensitive to excessive over- and undersegmentation than other combination
approaches in Zhang et al. [39] and implemented in GRASS module “i.segment.uspo” [55]. To derive
an F-measure from these two components, we first need to normalize them to a similar range (0–1) [38]:

MIn =
MImax − MI

MImax − MImin
, (3)

WVn =
WVmax − WV

WVmax − WVmin
, (4)

where WVn is the normalized WV (or MI), WVmax is the maximum WV (or MI) value of all candidate
segmentations, WVmin is the minimum WV (or MI) value of all candidate segmentations and WV is the
WV (or MI) value of the current segmentation. The F-measure is a harmonic weighting of these two
features:

Fopt =
(

1 + a2
) WVmax − WV

a2 ∗ WVmax − WVmin
, (5)

where Fopt is the score of a candidate segmentation to be evaluated, ranging from 0 to 1, with higher
values indicating higher quality; and a is the relative weight factor that assigns different significance to
one metric over the other [18]. In our case we used a relative weight of 1, indicating equal weighting of
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the MI and WV components in calculating Fopt. The procedures were fully automated and parallelized
due to the flexibility of GRASS GIS for applications including large raster datasets.

2.2.1. Global USPO

The conventional global USPO approach involves using either the whole image extent as input
to the USPO procedure, or a representative subset [43]. Since our image was very large (20 GB),
we used the latter method, as depicted in Figure 2. The selected subset (10 km2) contained planned,
unplanned, and industrial built-up zones, with different kinds of vegetation, as well as bare soil, and
thus, was deemed an appropriate candidate. The TP resulting from applying USPO to that region was
12, and we consequently used that value to segment all parts of the WorldView-3 image.
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Figure 2. Subset of the WorldView-3 imagery (~10 km2) where the RG’s TP was optimized for use in
the whole image. The selected area contains a distribution of land cover classes representative of the
whole study area.

2.2.2. Spatially Partitioned Unsupervised Segmentation Parameter Optimization (SPUSPO)

As mentioned in the introduction, a global optimization of the USPO might not be appropriate
due to the spatial heterogeneity within the image. As such, an alternative approach would be to
partition the study area into several subsets, and to apply the optimization procedure locally in each
subset. If the segmentation level selected as optimal by a global USPO calculation approach differs
significantly from the segmentation level selected locally (i.e., through local USPO calculation in each
partition of the study area), a spatially non-stationary process is taking place, and thus a global model
might not be the best candidate to use. To investigate this phenomenon, we partitioned the image
in three automated ways. The first two methods for partitioning were done using regularly-shaped
rectangular tiles of predefined sizes, and the third partitioning method involved automated delineation
using a cutline creating algorithm. The predefined partition was based on splitting the WorldView-3
image, into tiles of equal area and for most cases, equal geometry. The area of the rectangular image



Remote Sens. 2018, 10, 1440 7 of 23

subsets for the first two partitioning approaches was 0.25 km2 (P1) and 0.12 km2 (P2), totaling to 2427
and 4887 subsets, respectively (Figure 3). Although the results of predefined partitioning can be fruitful
for exploratory purposes, they suffer from edge effects at their borders. Since they are predefined
and fixed in size, they arbitrarily partition the landscape, which can result in noisy/badly segmented
objects along the boundaries of the rectangular subsets as artifacts (i.e., splitting building roofs or
trees in half). To treat this issue, for the third and main partitioning approach (P3), we deployed a
cutline creating algorithm using Laplacian zero-crossing edge detection [56–58], as implemented in the
‘i.cutlines’ module of GRASS GIS [59]. In that way, the created subsets would delineate the landscape in
a more meaningful way, as they would follow linear patterns, such as roof edges and streets. The size of
the cutline-created subsets can be decided by the user with respect to the application case. In our case,
we created subsets closer to the P2 partition and as such, 4900 subsets were created. Examples of the
different spatial partitioning methods are illustrated in Figure 3. In both global and local approaches,
the minimum size of a created segment was preset at 14 pixels to avoid unnecessary oversegmentation.
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2.2.3. Spatially Partitioned Unsupervised Segmentation Parameter Optimization (SPUSPO)

One of the merits of carrying out a localized approach is that it allows for decomposing a global
process, into a wide set of useful information which is mappable. Since USPO was applied locally,
a unique TP was produced for each spatial subset. The variation of the local TP from the single TP
value of the global USPO can be quantified to assess the degree of spatial non-stationarity. If there
would be no unexpected variation in the TP, that would suggest that a global approach is indeed
adequate, ceteris paribus. Along with mapping the results, we proposed a Segmentation Parameter
Stationarity Index (SPSI), which was loosely based on the Stationarity Index of Osborne et al. [60] to
assess spatial non-stationarity in gaussian models:

SPSI =
IQR(TPL)

(TPG + TPstep) − (TPG − TPstep)
(6)

where TPG is the TP of the global USPO, TPstep is the step parameter of the USPO procedure,
and IQR(TPL) is the interquartile range of the distribution of the TP’s from a local approach.
The interquartile range was used to mask outlier TP values that could emerge from random variation.
Values equal to or smaller than 1 imply stationarity, as the variation of the local TPs is not exceeding
what one would expect from a random process. Values higher than 1 indicate that there is significant
spatial variation.

2.3. Land Use and Land Cover Classification

Ultimately, the segments were constructed with the aim of being labeled through a classification
model. As such, another method to assess the local and global USPO methods is through the accuracy
and performance of a LULC classification. The classification scheme and training data are presented
below (Table 1). The training data were collected through random and stratified random sampling,
and consisted of 2478 objects across the city, which were labeled through visual interpretation by
two experts during the same period. The amount of training data was selected in such way that the
addition of new data points did not significantly improve classification accuracy. Swimming pools
were sampled manually due to their scarcity. To evaluate the results of the classification between the
two methods, we used an expert-based manual delineation of Ouagadougou, based on building size
and density [44] (Figure 4). In each one of these built-up types, we randomly sampled 150 points
adding up to a total of 1650 points, and computed the Overall Accuracy (OA), as well as the F-score
for each LULC class. No overlapping between training and testing data was allowed.
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Table 1. Training objects for each LULC class and method.

LULC Description Training Set Size

Buildings (BU) 400
Swimming Pool (SP) 179

Artificial Ground Surface (AS) Asphalt, concrete, semi-built-up constructions 216
Bare Soil (BS) 399

Tree (TR) 191
Low Vegetation (LV) Grass, bushes, dry vegetation 702

Inland Water (IW) Lakes, ponds, rivers, wetlands 205
Shadow (SH) 186

Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 23 

 

 
Figure 4. Morphological delineation of Ouagadougou based on built-up size and density categories. 

To classify the whole image, we computed several descriptive statistics for segments, based on 
the values of the pixels located within the segment, i.e., the values of each spectral band, NDVI values, 
and nDSM values (min, median, mean, max, range, 1st and 3rd quantiles and sum) as well as 
geometrical covariates (fractal dimension, perimeter, area, compactness). An Extreme Gradient 
Boosting (XGBoost, R 3.5.1) classifier was used as it was recently shown to outperform benchmark 
classifiers such as Support Vector Machine in VHR LULC classifications [14]. XGBoost is an ensemble 
of Classification and Regression Trees that is based in the principle of boosting [61]. The parameters 
of the algorithm were tuned through Bayesian Optimization [14,62], to ensure the quality of the 
results. Finally, we performed feature selection to reduce the computational burden and potentially 
increase the predictive capabilities of the model by deploying the popular Variable Selection with 
Random Forests (VSURF) algorithm, which is suited for tree-based classifiers such as XGBoost 
[63,64]. Out of the initial 59 features, 18 were selected by VSURF to build the most discriminant, 
redundancy-free model. 

2.4. Segmentation Goodness Metrics 

To evaluate the effect of SPUSPO on the segmentation of buildings, we compared the cutline-
based segmentation and the global approach against reference data. In detail, we manually 
delineated 100 buildings that were randomly selected from the pool of training data used for the 
LULC classification. Finally, we computed the Area Fit Index (AFI) which is a commonly used joint 
index of over- and undersegmentation [31,32,53]: = ( ) − 	 ( )	( )  (7) 

where xi is the reference object and yimax is the largest relevant segment intersecting xi. Values closer 
to 0 suggest a better segmentation, values > 0 imply oversegmentation whereas values < 0 
undersegmentation.  

2.5. Computational Requirements and Data Availability 

The computing infrastructure used for the experiments consisted of two Intel® Xeon® CPU E5-
2690 (2 processors of 2.90 GHz, 16 cores, 32 processing threads) and 96 GB of RAM. Segmenting the 
WorldView-3 image with a single TP parameter (tiled) required roughly 20 h of processing time while 
on average, a SPUSPO method required about 63 hours by exploiting the parallelization of the 

Figure 4. Morphological delineation of Ouagadougou based on built-up size and density categories.

To classify the whole image, we computed several descriptive statistics for segments, based
on the values of the pixels located within the segment, i.e., the values of each spectral band, NDVI
values, and nDSM values (min, median, mean, max, range, 1st and 3rd quantiles and sum) as well
as geometrical covariates (fractal dimension, perimeter, area, compactness). An Extreme Gradient
Boosting (XGBoost, R 3.5.1) classifier was used as it was recently shown to outperform benchmark
classifiers such as Support Vector Machine in VHR LULC classifications [14]. XGBoost is an ensemble
of Classification and Regression Trees that is based in the principle of boosting [61]. The parameters of
the algorithm were tuned through Bayesian Optimization [14,62], to ensure the quality of the results.
Finally, we performed feature selection to reduce the computational burden and potentially increase
the predictive capabilities of the model by deploying the popular Variable Selection with Random
Forests (VSURF) algorithm, which is suited for tree-based classifiers such as XGBoost [63,64]. Out of the
initial 59 features, 18 were selected by VSURF to build the most discriminant, redundancy-free model.
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2.4. Segmentation Goodness Metrics

To evaluate the effect of SPUSPO on the segmentation of buildings, we compared the cutline-based
segmentation and the global approach against reference data. In detail, we manually delineated 100
buildings that were randomly selected from the pool of training data used for the LULC classification.
Finally, we computed the Area Fit Index (AFI) which is a commonly used joint index of over- and
undersegmentation [31,32,53]:

AFI =
area(xi)− area(yimax)

area(xi)
(7)

where xi is the reference object and yimax is the largest relevant segment intersecting xi. Values
closer to 0 suggest a better segmentation, values > 0 imply oversegmentation whereas values < 0
undersegmentation.

2.5. Computational Requirements and Data Availability

The computing infrastructure used for the experiments consisted of two Intel® Xeon® CPU
E5-2690 (2 processors of 2.90 GHz, 16 cores, 32 processing threads) and 96 GB of RAM. Segmenting
the WorldView-3 image with a single TP parameter (tiled) required roughly 20 h of processing time
while on average, a SPUSPO method required about 63 hours by exploiting the parallelization of the
‘i.segment.uspo’ module of GRASS [56]. The code, results and processed material is openly accessible
in the following repository (https://zenodo.org/record/1341116#.W3FSUvZuJ_t) [65].

3. Results

3.1. Threshold Parameter Variation

The spatial variation of the TP was a function of the size and geometry of the subsets used for local
optimization. Figure 5 demonstrates that the variation follows patterns of the landscape. The locations
where high TP values were selected as optimal were mainly clustered around unplanned, low elevated
neighborhoods, whereas the locations where very low TP values were selected as optimal were mostly
found in vegetated areas, potentially due to their unique spectral properties (high local variation in
the NIR band). The local outputs of each metric used for the local USPO calculations can also be
enlightening with respect to illustrating the level of spatial heterogeneity of the imagery. Figures 6
and 7 confirm that MI and WV have an inverse relationship, with MI being decisive in optimization in
the central and eastern regions of unplanned areas, and vice-versa. The SPSI value was 1.5 for P1, and
2 for P2 and P3, indicating a non-stationary variation in optimal TP values.
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Figure 7. Spatial variation of Moran’s I (MI) values across Ouagadougou. (a) WorldView-3 RGB
composite, partitioning by (b) P1 (c) P2 and (d) P3 approaches, respectively. The higher the MI value,
the stronger the effect of spatial autocorrelation between a created segment and its neighbors.

The variability of these parameters was also visualized in a set of boxplots in Figure 8. From this
figure, the TP parameter variation is slightly smaller for the P1 approach than for the other two
partitioning methods, possible because image partitions of P1 are larger than those of P2 and P3,
and thus do not capture as much of the local heterogeneity in urban structure. Notably, when using
smaller spatial partitions, MI tends to decrease (and WV tends to increase), which constitute the
differences in TP among the different methods.
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3.2. Land-Use Land-Cover Classification

The results of the LULC classification were found to be affected by the segmentation quality.
Figures 9 and 10 show case how SPUSPO could enhance classification accuracy by producing segments
better fitting the local environment, in various areas in Ouagadougou. Figure 9 demonstrates that
in both planned and unplanned regions, the improvement in classification results was mainly due
to the cutlines segmentation, delineating the buildings in a less oversegmenting fashion, avoiding
overestimation of built-up near the borders due to the inconsistent and “patchy” nature of the nDSM
as a predictor, that does not closely follow built-up boundaries.
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Figure 9. Example of the LULC map classification in a planned and unplanned built-up area. (a) LULC
classification with a global approach in a planned neighborhood, (b) RGB Pleiades Composite, (c) LULC
classification with a cutline approach in an unplanned neighborhood, and (d) LULC classification with
a global approach in a planned neighborhood, (e) RGB Pleiades Composite, (f) LULC classification
with a cutline approach in an unplanned neighborhood.

LULC classification based on SPUSPO was superior for vegetation and waterbodies of
Ouagadougou. Figure 10 demonstrates cases of confusion between low and high vegetation, when
using a global approach. Additionally, the misclassification of water as built-up is significantly less
with SPUSPO. Notably, a scene might be segmented with intrinsically different thresholds (Figure 10f),
which implies that the reason SPUSPO methods performed better is their incorporation of only the
spatial information of the segmented region, and not information that comes from locations far away,
which might not be useful at the local level.
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Figure 10. Example of the LULC map classification in a vegetated regions and inland water bodies. (a)
LULC classification with a global approach in a forested area, (b) RGB Pleiades Composite, (c) LULC
classification with a cutline approach in a forested area, (d) LULC classification with a global approach
in water bodies, (e) RGB Pleiades Composite, and (f) LULC classification with a cutline approach in
water bodies.

The Overall Accuracy for the SPUSPO and global optimization based on the reference set was
90.5% and 89%, respectively. Moreover, the differences among them were statistically significant,
based on a two-tailed McNemar’s test of similarity (p < 0.05). The local optimization was superior
for most cases, both when concerning the OA and per-class evaluation metrics (Table 2). The largest
improvements were found in the classification of inland water and shadows (+18% and +3% increase
on the F1 score, respectively).

Table 2. Precision, Recall and F-score metrics for each LULC class with SPUSPO and global
USPO, respectively.

Precision Recall F1

Class SPUSPO Global SPUSPO Global SPUSPO Global
Building 0.93 0.93 0.94 0.93 0.94 0.93

Artificial Ground Surface 0.83 0.83 0.88 0.86 0.85 0.84
Bare Soil 0.88 0.84 0.87 0.87 0.88 0.86

Tree 0.81 0.81 0.91 0.93 0.85 0.87
Low veg 0.94 0.94 0.89 0.86 0.91 0.90

Inland Water 0.86 0.73 0.66 0.47 0.75 0.57
Shadow 0.94 0.90 0.95 0.95 0.95 0.92



Remote Sens. 2018, 10, 1440 17 of 23

An additional, indirect way to assess the segmentation quality is to investigate the variable
importance of the geometrical covariates. The geometrical covariates that were used in the classification
model after VSURF feature selection took place were perimeter, area, and fractal dimension. Figure 11
illustrates the improved effect a local approach has on the importance of most of these variables,
further supporting the merit of using SPUSPO. The interpretation of the results, refers to the gain in
model accuracy when a feature is used in the splits of the XGBoost tree development. The importance
of these covariates is varying, but in all cases, the local approach further enhances their predictive
power for classification, since the segments fit better the variability of the local environment.
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Figure 11. Feature importance of geometrical covariates, as derived from an XGBoost classifier, for the
global and cutline segmentation-based approaches, respectively. The method used to derive importance
is the gain in accuracy.

3.3. Segmentation Goodness Metrics

The results of the AFI for buildings are depicted in Table 3 through several descriptive statistics.
As expected, the building objects were less over segmented with SPUSPO, because the parameter was
spatially adapting to characteristics of each built-up neighborhood in Ouagadougou (Figure 12). The
AFI values of the local method were consistently closer to zero compared to their counterpart, further
promoting the use of this approach.

Table 3. Area Fit Index for building objects in Ouagadougou. Values closer to 0 suggest a better
segmentation, values > 0 imply over segmentation while values < 0 under segmentation.

Descriptive Statistics
Area Fit Index (AFI)

SPUSPO Global

1st 0.04 0.11
Median 0.22 0.38
Mean 0.28 0.36

3rd 0.53 0.62
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Figure 12. Example segmentations of buildings in Ouagadougou. Red color indicates segments created
by a global approach, while green color indicates segments coming from SPUSPO. The decrease of over
segmentation is evident in most cases, as the parameters are derived from neighboring locations, better
fitting the data structure.

4. Discussion

The results suggested that the benefits of performing SPUSPO, are multiple. To start with, it allows
for the local variations in spectral and spatial heterogeneity within an image to be incorporated into
the segmentation parameter optimization approach, which is more intuitive because the optimization
procedure is derived using the actual locations they are being applied to and not from locations
situated afar. This supports the hypothesis that in large and heterogeneous areas, a single TP may
be inadequate, as it is simply an average expression of several non-stationary processes. The results
confirm prior analysis in another Sub-Saharan city of Dakar, where a semi-automated local approach
outperformed classical optimization methods [54]. Moreover, several other studies have described how
regionalized approaches can be of merit for urban, semi-rural, and agricultural environments [35,43,44].
Nonetheless, an important facet that has been neglected so far is how to partition the landscape in
geographically large areas in conjunction with VHR imagery, and in the absence of reference data
such as parcels or blocks. For a continuous LULC map, an appropriate delineation of the image
is important, as it must be as adjustable to landscape patterns, such as streets or roofs, as much as
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possible to avoid/reduce edge effects. Although all local approaches showed they can be of merit, the
cutline-based partition helped to specifically address these issues. Undertaking SPUSPO, produced
higher classification accuracy than using a traditional global optimization method (+1.5% increase in
OA). The results are confirmed further using AFI as a segmentation goodness metric, which showed
that building segments from applying SPUSPO are less oversegmented than their global counterparts,
with mean values of 0.28 and 0.36 for SPUSPO and global USPO, respectively. The analysis validated
our initial hypothesis that the way we look at the data can produce significantly different results, and is
related to the importance of appropriate spatial scale selection in geography, which was largely signified
through the work of Woodcock and Strahler [66] and Fotheringham et al. [67]. Additionally, a local
segmentation optimization approach is not only linked to traditional GEOBIA analysis, but might
be needed in large scale applications where deep learning classification is coupled with segments to
achieve better object delineation/extraction as demonstrated recently in References [68–70]. Another
important piece of information that we can extract from these methods is the ability to map intermediate
and final results, which can be enlightening both as a general understanding of how spatial processes
operate in the local scale, but also how to calibrate segmentation parameters in further processing if
an unsupervised multi-scale framework is selected [18]. The LULC products in SSA cities are often
used as inputs for fine scale population modelling, land use, and spatial planning, and consequently,
effective policy making, given the extreme scarcity of reference information [2,71,72]. This is significant
for the outcome of our analyses because there was better prediction of most classes by the SPUSPO
approach; it presents an additional motivation to partake of a local method to reduce error propagation
in secondary models.

The main limitation of SPUSPO is the increased computational time and experimentation to
detect a satisfactory spatial level to analyze image information, which can vary depending on
the image resolution and study area, leading to a trade-off between computational requirements
and performance. Therefore, more sophisticated methods are needed to help establish an efficient
framework to fully exploit the benefits of local optimization. Ideally, in large and heterogeneous areas,
a spatial partition should not suffer from edge effects and should meaningfully delineate the landscape
with a certain degree of intra-homogeneity. Cutline partitioning satisfies both criteria to some extent,
but its effectiveness can only be determined post-hoc, which increases the computational and time
demands as several cutline partitions may need to be evaluated. More adequate methods that can
focus in a priori determination of a suitable scale using image statistics, such as spatial dependency
among regions [73], could be of benefit to achieve this, particularly in a multi-scale context. Other
research should explore the potential of multi-resolution imagery to define operational partitions using
top down approaches. For instance, a low-medium resolution LULC product can define homogeneous
regions to apply SPUSPO using finer resolution imagery. Moreover, noise additive models could
help in better establishing a comparative framework among different segmentation approaches,
particularly for SAR or hyperspectral data [74]. A lot of the limitations that come with involving
local methods, can be significantly reduced (i) by utilizing GRASS GIS, which is highly parallelized
in the USPO optimization module and more notably, performs all the operations in a raster format
and does not require vector conversion at any moment, dramatically boosting its effectiveness for
large-scale computing; and (ii) invoking state-of-the-art segmentation algorithms, with respect to their
computational efficiency, as recently shown by Gu et al. [75].

5. Conclusions

In this study, the optimization of a region-growing segmentation algorithm was attempted
using a spatially varying parameter model, named SPUSPO. The whole framework was developed
with a focus on automation and large-scale analysis of VHR imagery. The results validated our
hypothesis that in large and heterogeneous areas, using only a single set of parameters to optimize
the region-growing algorithm was inadequate. Employing as a case study, the city of Ouagadougou,
it was demonstrated that undertaking local optimization methods was of merit and led to significantly
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better LULC classification results (+1.5% increase in OA), validated by a McNemar’s test of similarity.
Moreover, at the segmentation level, building delineation was improved with a mean Area Fit Index
of 0.28 and 0.36 for SPUSPO and global USPO, respectively. Moreover, the feature importance of
geometrical covariates is recommended as an indirect measure to assess the quality of a segmentation.
We demonstrated that geometrical features were more important and predictive when using local
approaches. Finally, GRASS GIS was heavily utilized and is promoted as an open source tool to handle
large volumes of data with advanced analysis techniques.
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Abstract: Up-to-date and reliable land-use information is essential for a variety of applications such
as planning or monitoring of the urban environment. This research presents a workflow for mapping
urban land use at the street block level, with a focus on residential use, using very-high resolution
satellite imagery and derived land-cover maps as input. We develop a processing chain for the
automated creation of street block polygons from OpenStreetMap and ancillary data. Spatial metrics
and other street block features are computed, followed by feature selection that reduces the initial
datasets by more than 80%, providing a parsimonious, discriminative, and redundancy-free set
of features. A random forest (RF) classifier is used for the classification of street blocks, which
results in accuracies of 84% and 79% for five and six land-use classes, respectively. We exploit
the probabilistic output of RF to identify and relabel blocks that have a high degree of uncertainty.
Finally, the thematic precision of the residential blocks is refined according to the proportion of
the built-up area. The output data and processing chains are made freely available. The proposed
framework is able to process large datasets, given that the cities in the case studies, Dakar and
Ouagadougou, cover more than 1000 km2 in total, with a spatial resolution of 0.5 m.

Keywords: land use; street block; spatial metrics; landscape metrics; OpenStreetMap; machine learning;
PostGIS; GRASS GIS; random forest

1. Introduction

As reported by the United Nations, urban areas currently contain more than 50% of the
world’s population. According to the latest estimates, this proportion will reach 60% by 2030 [1].
In developing countries, high urbanization rates and uncontrolled urban sprawl often lead to
challenges such as inefficiency of transport systems, degradation of the environment, growth of
informal settlements, and a proportion of the population living in deprived conditions. Availability of
accurate and up-to-date information about the current situation of a city could help in defining and
setting up adapted urban policies.

Among the set of potential geospatial information related to urban areas, population density and
land use are probably the most important to an urban planner [2]. Unfortunately, they are limited
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or not available at all in developing countries, as these lag behind the most developed countries in
the adoption and use of geographic information systems (GIS) [3,4]. This is especially the case for
Africa, which faces a critical need of geographic information [5–7]. For instance, a study showed that
several important geographic datasets were still either unavailable or difficult to access in Africa [7].
Notwithstanding recent initiatives to alleviate this issue [8] and a stronger interest towards alternative
data, such as volunteered geographic information (VGI) [9], more progress needs to be made.

In urban areas, land-use information can be mapped at different scales that range from cadastral
plots to large neighborhoods. In this study, we chose to work at the street block level, as was the case
in previous studies [2,10–12]. The street block, sometimes referred to as a “city block” or “land parcel”,
provides sufficient spatial detail to urban planners and have been depicted as the most fundamental
and appropriate unit in which to map the urban structure [13–15]. Unfortunately, reference street block
datasets were not accessible for our case studies, from either the local authorities and national mapping
agencies or any other reliable source. We overcame this challenge by developing a semiautomated
processing chain for the creation of street block geometries using OpenStreetMap (OSM) data [16].
OSM is open-data, meaning it can be accessed and used at no cost by anyone and for any purpose,
which makes it an alternative source of data when the availability and access to geoinformation
is limited. Disparaged during its early stages of development, the quality of OSM data has been
improving rapidly, both in terms of completeness and of thematic accuracy. For that reason, it could
become a key player in the coming decade for production and access to high-quality geoinformation
in developing countries. As an example, a recent study proved the potential of OSM data to be used
for increasing the thematic level of land-use/land-cover maps where there is a lack of official data [17].

To the best of our knowledge, few works [18,19] have proposed a methodology for the creation
of street block geometries using OSM data. Long and Liu [18] proposed a method to automatically
identify “land parcels” from OSM roads. They operated in the Chinese geographic context and
developed a framework to address outdated, inexistent, or unavailable reference data. Their approach
consists of using geometric operations to clear up the road network. Subsequently, land parcels
are automatically created and defined as the remaining space when buffered roads are removed.
Their approach proved to be a good approximation of the results obtain from conventional methods
but suffered from incompleteness of the OSM road network, leading to the creation of large parcels in
smaller cities. Their framework was used recently in other studies [20,21]. However, Long et al. [18]
and Fan et al. [19] provided a theoretical framework without a ready-to-use computer code that limited
the easy reproduction of their methods.

Studies aiming at mapping urban land use often make use of land-cover and/or ancillary reference
geographic datasets, e.g., detailed cadastral datasets, socioeconomic datasets, or datasets that contain
the location of urban facilities (schools, hospitals, shops, etc.) [11,20–22]. Despite their great potential for
mapping land use at a fine scale, such exhaustive and detailed datasets are rarely available, especially
in developing countries. Furthermore, the initial production and the process of keeping them updated
are both costly and labor-intensive. Remote sensing solutions can be used as an alternative for creating
and updating reliable land-use information on urban areas. The land use can be mapped directly from
satellite imagery and/or from land-cover maps.

The latter approach usually relies on the computation of spatial metrics, also named “landscape
metrics” [23]. These metrics have been widely used for the classification and characterization of urban
or rural areas. They were first mainly used in the field of landscape ecology [24,25] for their ability
to characterize landscapes as ecosystems according to the composition and spatial organization of
the land cover classes they contain. Their use in urban areas dates back to the 2000s [26] for studying
urban sprawl [27], urbanization gradient [28], or land-use changes [29].

More broadly, this study is part of two research projects, namely, MAUPP (maupp.ulb.ac.be)
and REACT (react.ulb.be), aiming at improving urban population distribution models and urban
malaria risk models, respectively. In these projects, the land-use and land-cover information will
be used for disaggregating population counts available for administrative units, using dasymetric
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modeling [30,31]. Consequently, emphasis is placed on having sufficient thematic details for residential
use to allow for adequate reallocation of population counts and modeling of population density at the
intraurban level. These projects focus on sub-Saharan African cities, which implies the development of
solutions that consider the scarcity of ancillary reference data.

The present research proposes a complete, mostly automated, framework for mapping
land use at the street block level, using only very-high resolution (VHR) land-cover maps and
remote-sensing-derived data. It includes the extraction of the street blocks from OSM and their
subsequent characterization using spatial, spectral, and morphological metrics, a feature selection
step for discarding highly correlated and redundant information and supervised classification using
fandom forest.

This research deploys great efforts for research reproducibility and open access to data
and products. Consequently, implemented computer codes and resulting datasets are made available
at no cost to any interested users (see Appendix B).

2. Materials and Methods

2.1. Study Areas

The methodology presented here was applied to two cities in Western Africa, namely
Ouagadougou and Dakar, the capitals of Burkina Faso and Senegal, respectively. The areas of interests
(AOI) were selected to cover both the core of the city and the peri-urban areas, as there is a lack
of a well-established consensus for the definition and delineation of urban areas [32]. AOIs were
selected through visual interpretation of VHR imagery and were not restricted to administrative units.
This allowed for a wide capture of economic activities and urban sprawl. Figures 1 and 2 illustrate the
extents of the AOIs, covering 615 km2 for Ouagadougou and 418 km2 for Dakar, superimposed with
the administrative units.

Figure 1. Land-cover map of Dakar superimposed with administrative units. HB: High buildings;
MB: Medium buildings; LB: Low buildings; SW: Swimming pools; AS: Asphalt surfaces; BS: Bare soils;
TR: Trees; LV: Low vegetation; WB: Water bodies; SH: Shadows.
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Figure 2. Land-cover map of Ouagadougou superimposed with administrative units.
HB: High buildings; LB: Low buildings; SW: Swimming pools; AS: Asphalt surfaces; BS: Bare soils;
TR: Trees; LV: Low vegetation; WB: Water bodies; SH: Shadows.

2.2. Input Data

The primary input data consisted of land-cover (LC) maps (Figures 1 and 2) derived from
very-high resolution (VHR) satellite imagery, i.e., WorldView-3 and Pléiades for Ouagadougou and
Dakar, respectively, with a spatial resolution of 0.5 m. These were produced using a semiautomated
object-based image analysis (OBIA) [33] framework based on open-source solutions [34–37].
The overall accuracy (OA) of the LC products was 93.4% and 89.5% for Ouagadougou and Dakar,
respectively. Their legends are presented in Table 1.

Table 1. Legend of the land-cover maps used as input to compute spatial metrics.

Ouagadougou—Burkina Faso Dakar—Senegal

Class Abbreviation Class Abbreviation

High buildings (>3 m) HB High buildings (>10 m) HB
Low buildings (<3 m) LB Medium buildings (5–10 m) MB

- - Low buildings (<5 m) LB
Swimming pools SW Swimming pools SW
Asphalt surfaces AS Artificial ground surfaces AS

Bare soils BS Bare soils BS
Trees TR Trees TR

Low vegetation LV Low vegetation LV
Water bodies WB Inland waters WB

Shadows SH Shadows SH
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Additionally, normalized digital surface models (nDSM), i.e., datasets that contain the height of
above-ground objects, were used. The nDSMs were derived from photogrammetric digital surface
models (DSM) generated from a stereo triplet for Dakar and a stereo couple for Ouagadougou.
Vegetation and water indices, i.e., normalized difference vegetation index (NDVI) and normalized
difference water index (NDWI), respectively, were also used.

2.3. Extraction of Street Block Geometries Using OpenStreetMap

In OSM data, roads are the map features mostly associated with the highest completeness. A recent
study [38] estimates that the OSM roads have reached more than 80% of completeness at a global scale.
Although this high score hides important variations at regional or national scales, it encourages the
use of this global dataset to develop solutions that can be applied worldwide.

In this research, we propose an approach similar to [19]. Our method is a semiautomated
workflow exploiting the OpenStreetMap data for the creation of urban street blocks geometries, to be
used as a fundamental urban landscape unit to map land use [16]. Different from proprietary solutions
(ESRI ArcGIS) proposed in [19], it takes advantage of the open-source software PostGIS for storage,
management, and processing of large vector datasets. The programming language is Python and the
code is implemented in a “Jupyter notebook” [39] accessible under an open license on a dedicated
online repository (Appendix B). It can be easily adapted to suit further research needs. The main steps
are illustrated in Figure 3.

To map the land use at the street block level implies that blocks should have a high
intrahomogeneity of the urban function. Indeed, it is important to get meaningful spatial units,
according to the process investigated (here, the land use). Otherwise, the spatial metrics will be
meaningless [40] and the classification task would be more complex, with more confusions between
classes and lower confidence in the land-use maps produced.

The OSM road network alone could not adequately meet our needs. Indeed, in some situations,
the edges of the blocks could be defined better using line segments of a river, hill, or other manmade
structures [19]. Actual land use is often a mix of uses, and thus it is difficult to reach a situation
where all street blocks extracted would be homogenous in terms of land use. However, incorporating
other extra map features (e.g., rivers, water bodies, railways, military camps, cemeteries, residential
areas, farmlands, etc.) allowed for these problems to be reduced. Consequently, the blocks that were
produced were not street blocks stricto sensu, but they met the needs of our analysis. Moreover, vector
data such as administrative city sectors or functional zones could be used as ancillary datasets in
addition to OSM data.

The script starts by taking as input a polygon shapefile corresponding to the AOI and optionally
some ancillary vector layers. Then, the bounding box of the AOI is created and subdivided into tiles
and OSM data are automatically downloaded using the OSM extended overpass API [41]. Next, map
features of interest are filtered according to their “key = value” pairs in the OSM tagging scheme [42,43].
The map features (i.e., lines and polygons) are then intersected with the extent of the AOI and the
polygons are converted into linear features. At this point, some lines that cross each other without
being connected, e.g., because they do not share a common node at their intersection, are processed to
obtain a stack of fully connected lines. Owing to coregistration inaccuracies and/or nearly redundant
road geometries in OSM [44] or between OSM and ancillary data, many sliver polygons are created.
This is overcome by using the PostGIS topological functions to merge neighboring nodes according to
a user-provided snapping tolerance. The snapping tolerance should not be too large because it is likely
to distort the accurately digitized road sections and make further steps more difficult [44]. After this
procedure, the street blocks polygons are extracted from the stack of lines. Similar to [19], two kinds
of polygons are generated: (i) urban blocks and (ii) undesirable polygons (sliver polygons) resulting
from multilane roads, functional roads near crossroads, or highway ramps. These sliver polygons are
usually easily identifiable based on criteria of shape and size since they are thin and small. The user is
here in charge of adapting the preset criteria to be used for identification of probable sliver polygons.
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The sliver polygons are then eliminated by merging them with their neighboring nonsliver polygon
with which they shared the larger border. This latest step iterates until no sliver polygons remain,
resulting in final block geometries.

Figure 3. Flowchart of the semiautomated processing chain for the extraction of street blocks from
OpenStreetMap and ancillary vector data.

2.4. Computing Street Block Features

In this research, street block features used to classify land use can be separated in two groups.
The first relates to spatial metrics computed based on the land-cover maps available. The other
group include additional information, such as block morphology or features derived directly from the
spectral values. In total, 116 and 97 features were computed for Ouagadougou and Dakar, respectively.
All metrics were computed in GRASS GIS, using an automated script coded in Python [45] which is
available on a dedicated repository (see Appendix B).

2.4.1. Street Blocks’ Spatial Metrics (Patch-Based Metrics)

In this paper, the spatial metrics used are all related to the “patch mosaic” paradigm [40,46],
whereby the landscape is viewed as a mosaic of land-cover patches. A patch could be defined as
a group of neighboring pixels that belong to the same class. In that way, it acts as an abstraction
level that masks some information of the actual landscape. For instance, in urban areas, a coalescence
of hundreds of small individual buildings can form one single patch and could have the same size
as a patch corresponding to a single large building, such as a commercial center. Amongst other
things, this paradigm makes the use and interpretation of patch-based metrics difficult for nonexperts.
According to [40], the behavior of spatial metrics are theoretically not well understood and their
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interpretation could be very challenging. There is a profusion of different patch-based metrics but all
aiming at describing a landscape either on its composition/diversity or the spatial configuration of the
patches it contains.

Different software can be used for computing spatial metrics and the best known is probably
FRAGSTAT [23]. Unfortunately, its use is limited by the size of the dataset that can be handled [40] and
offers limited automation. As an alternative, we used the “r.li” suite of modules, available in GRASS
GIS [47]. These modules provide a set of landscape indices that can be found in FRAGSTATS and are
designed not to overload the computer memory (i.e., the RAM), thus having the capacity to process
large datasets [48]. Besides, GRASS GIS is built as a collection of hundreds small programs, enabling all
common GIS operations to be handled in the same environment in a computationally efficient manner.
Importantly, the process could be automated thanks to the Python application programming interface
(API) [49]. The list of metrics computed is presented in Table A1 (see Appendix A).

2.4.2. Additional Street Block’s Features

In addition to the spatial metrics described above, features related to the shape of the street
blocks were computed, as well as key features aggregated from spectral data, e.g., the median and
standard deviation of NDVI and NDWI, for their ability in the characterization of nonbuilt landscapes.
Those additional features were computed using “i.segment.stats” add-on of GRASS GIS [50].
Moreover, as information on the height of above-ground objects was available from the nDSMs,
we computed the mean height of the building pixels. Table A2 (see Appendix A) summarizes the
additional block features that are used in complement to spatial metrics.

2.5. Land Use Scheme and Sampling

The choice of the land-use classes constituting the legend scheme was made after a visual
interpretation of the different types of urban structures and uses. Both cities are characterized by
several types of land use such as industrial, commercial and services, administrative, or residential.
In the land-use legend scheme (see Table 2), a clear focus is made on having a better thematic precision
for residential areas than for other classes. It includes two residential classes enabling the distinction
between planned (usually richer and with lower density) and unplanned/deprived (usually poorer
and with higher density). The nonresidential built-up land uses, such as commercial, administrative,
or services, were all grouped together in one single class. This was done because we intend to utilize
the land-use information for further research regarding fine-scale modeling of population density.

Moreover, as we aimed at mapping the whole extent of the AOI, which encompasses peri-urban
areas, we also included classes related to natural elements, e.g., vegetated or bare areas. Urban land use
is often mixed because of the presence of multiple urban activities on the same block. However, our aim
here was to map the dominant activity in the block. This explains the absence of “mixed” classes in
the legends.

While urban patterns in Ouagadougou present a clear distinction between planned and
unplanned neighborhoods (as visible in Figure 4a), in Dakar, the difference is less straightforward.
There, some neighborhoods look more deprived than most of the residential areas, even if they present
a semblance of regular street pattern (see Figure 4b). Previous research, integrating remote sensing
and socioeconomic census data, proved that they are inhabited by a poorer population [51].

First, a set of 1648 and 1500 street blocks were randomly sampled for Dakar and Ouagadougou,
respectively, for training a supervised classification algorithm and for validation. Each sampled
block was then assigned a label by visual interpretation according to its supposed dominant
land-use class. In the case of Dakar, the resulting training/test set was highly imbalanced, between
“Planned residential” and “Deprived residential”. The same was true for “Agricultural vegetation”
and “Natural vegetation”. For that reason, we manually sampled an extra 344 blocks to obtain a more
balanced training/validation set. Next, for both case studies, a split in a 75%/25% ratio was made to
get a training set and an independent validation set. During the process, the interpreter was asked
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about his confidence in giving an adequate label without any doubt. Finally, samples for which the
interpretation decision was not certain, i.e., the experts were undecided about the land-use class
to be attributed, were removed from the validation set (41 and 76 blocks removed for Dakar and
Ouagadougou, respectively). This explains why the number of validation samples do not reach the
25% previously mentioned for some classes (see Table 1).

Table 2. Legend scheme of land use for Ouagadougou and Dakar and size of training and test sets
(number of street block polygons).

Class Abbreviation Training Set Size Test Set Size

Ouagadougou—Burkina Faso

Vegetation VEG 122 41

Bare soils BARE 173 57

Non-residential built-up
(administrative, commercial, services, etc.) ACS 220 68

Planned residential built-up PLAN 268 83

Unplanned residential built-up UNPLAN 302 90

Dakar—Senegal

Agricultural vegetation AGRI 93 42

Natural vegetation VEG 86 30

Bare soils BARE 57 18

Non-residential built-up
(administrative, commercial, services, etc.) ACS 153 46

Planned residential built-up PLAN 872 277

Deprived residential built-up DEPR 209 68

Figure 4. (a) Opposition between planned residential neighborhoods and unplanned ones in Ouagadougou.
(b) Opposition between planned residential areas and deprived (poorer) neighborhoods in Dakar.

2.6. Feature Selection and Classification Using Machine Learning

A supervised random forest classifier (RF) was used for the classification step. RF is an ensemble
of Classification and Regression Decision Trees (CARTs) [52], where each tree is trained on a random
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bootstrapped sample of the training data (about two-thirds of the data). In the end, a label is assigned,
as derived from the combined predictions (majority voting) of each tree. Since RF is an aggregation
of several individual and independent trees, it has been very commonly used in RS studies due to
its high prediction accuracy and relative immunity to overfitting [53]. To maximize performance,
two parameters are usually fine-tuned in RF, the number of trees to grow and the number of randomly
selected features at each decision point (split) within a tree. The former is commonly suggested to
be set as high as computationally efficient [52], while the value of the latter is identified through
cross-validation of the out-of-sample training data, known as Out of Bag (OOB) error.

As already mentioned, many features were computed for both case studies. A large proportion
were spatial metrics which are inherently highly correlated and redundant since they are all
dependent on a small amount of basic patch metrics for their computation, e.g., area, perimeter,
patch, and neighboring patch type [54]. This kind of dataset could result in an underperforming
and unnecessarily complex classification model. Consequently, we performed a feature selection
(FS) procedure prior to the classification step with the aim of constructing smaller, more predictive
and parsimonious models [55]. The “Variable Selection Using Random Forest” (VSURF) algorithm,
a popular automated method for FS selection developed by [56], was used. The salient features
of VSURF are categorized in defining three types of feature subsets: (i) removing useless features,
(ii) finding the most predictive set of features which may contain a great amount of redundancy,
and (iii) retaining the accuracy while removing redundant features through a stepwise search.

Feature selection and classification were performed using the R software, version 3.5.0 [57].
The R code has been made available in R markdown format [58] on a dedicated repository
(see Appendix B).

3. Results

3.1. Extraction of Street Block Geometries

Our processing chain was used to create the street block geometries using a large amount of
input data thanks to the capabilities of PostGIS. To give an order of magnitude, in Ouagadougou,
more than 47,000 blocks were extracted from a set of more than 180,000 segments. The number of sliver
polygons present after this initial extraction was quite impressive: 32.6% and 31.5% for Ouagadougou
and Dakar, respectively. Sliver polygons were removed to produce a final layer containing nearly
32,000 street blocks geometries for Ouagadougou and 23,000 for Dakar. In Ouagadougou, an existing
ancillary layer produced in a previous study [35], whereby the city had been delineated into local
morphological zones, was used.

Figure 5 illustrates the results from different main steps of the processing chain. The initial stack
of linear elements coming from OSM and ancillary data is quite chaotic (see Figure 5a). Snapping all
nodes (here, with a snapping threshold of 7 m), enables efficient cleaning of the initial errors but some
sliver polygons remain (see Figure 5b). The final geometries after the removal of sliver polygons are
presented on Figure 5c.
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Figure 5. Extraction of street blocks from OSM data and ancillary vector data. (a) Lines and polygons
coming from OSM and ancillary vector layer; (b) Street blocks that contain several undesired polygons
(sliver polygons); (c) Final street blocks extracted.

3.2. Automated Feature Selection

Feature selection was performed on the initial set of features computed and resulted in
an impressive reduction of 81.9% (from an initial set of 116 features to 21 remaining features) and
86.6% (from 97 initial features to 13 remaining) for Ouagadougou and Dakar, respectively. The list
of selected features is presented in Table 3. Globally, spatial metrics relative to almost all land-cover
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classes are present in the set of selected features. However, it appears that classes related to different
building heights are more represented, which is unsurprising. Moreover, features related to landscape
composition, street block morphology, and remote sensing indices are also present, which proves their
added-value in the classification model.

Table 3. Blocks features selected by feature selection using “VSURF”. These are the remaining features
at the “prediction” step.

Case Studies

Street Block Features Ouagadougou Dakar

Landscape composition
Shannon X X

Dominance X

Features relative to building class
High buildings mean patch size X
SD of high buildings patch area X

Proportion of high buildings pixels in the block X
Proportion of medium buildings NA X

Proportion of low building pixels in the block X X
SD of low building patch area X
Low building patch density X X
Low building patch number X

Count of built pixels X
Mean height of built pixels X X

Features relative to shadow class
Proportion of shadows pixels in the block X

Shadows patch density X X
Shadows patch number X

Features relative to other land-cover classes
Artificial surface shape index X

Range of artificial surfaces patch area X
SD of asphalt surface patch area X

Bare soils patch density X

Features relative to vegetation classes
Low vegetation patch density X

Range of low vegetation patch area X
Range of trees patch area X

Trees mean patch size X

Remote sensing indices
NDVI median X X

NDWI SD X

Features relative to block morphology
Block perimeter X

Compactness relative to a circle X
Compactness relative to a square X

Total 21 13

3.3. Land-Use Classification Using Random Forest

The reduced set of features was then used as an input dataset of a supervised classification
using RF. The predictions of the model were evaluated using an independent validation set and
overall accuracies of 84% and 79% were achieved for Ouagadougou and Dakar, respectively.
However, these values hide disparities between classes. The F-score, e.g., a synthetic accuracy metric,
is used here to compare the classification performance at the class level [59].

The class “Planned residential” performed similarly in both case studies with F-scores
of 0.88 and 0.84 for Dakar and Ouagadougou, respectively. However, the class “Deprived
residential”/“Unplanned residential” showed a strongly lower accuracy in Dakar, with an F-score of
0.68, while in Ouagadougou it was the best-performing class, reaching an impressive score of 0.92.
The inspection of confusion matrices (Tables 4 and 5) revealed that while some confusions were present
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between the residential classes in Ouagadougou, they were of a larger magnitude in Dakar. In both
cases, most of the confusion occurred between the “Plan residential” and “Nonresidential built-up”
classes. Moreover, misclassifications appeared between “Bare soils” and “Low vegetation”, as was
expected, since many nonbuilt street blocks present a mix of vegetated and bare soil elements.

The analysis of the RF feature importance reveals that, for both cases studies, the most important
features are those related to the built environment (see Tables 6 and 7). They are in the top-five features
in Ouagadougou and in the top four in Dakar (assuming shadows are a proxy of the built-up patterns).

Table 4. Confusion matrix of land-use classification for Ouagadougou. VEG: Vegetation; BARE: Bare soils;
ACS: Nonresidential built-up (administrative, commercial, services, etc.); PLAN: Planned residential;
UNPLAN: Unplanned residential.

Reference

Classes VEG BARE ACS PLAN UNPLAN

Prediction

VEG 36 7 0 0 2
BARE 5 47 4 0 2
ACS 0 0 47 7 0

PLAN 0 2 14 79 2
UNPLAN 0 1 3 4 77

F-score 0.84 0.82 0.77 0.84 0.92

Table 5. Confusion matrix of land-use classification for Dakar. AGRI: Agricultural vegetation;
VEG: Natural vegetation; BARE: Bare soils; ACS: Nonresidential built-up (administrative, commercial,
services, etc.); PLAN: Planned residential; DEPR: Deprived residential.

Reference

Classes AGRI VEG BARE ACS PLAN DEPR

Prediction

AGRI 34 3 0 1 1 0
VEG 6 17 2 4 3 0

BARE 1 3 12 0 0 0
ACS 1 4 1 24 8 1

PLAN 0 3 2 15 253 25
DEPR 0 0 1 1 12 42

F-score 0.84 0.55 0.71 0.57 0.88 0.68

Table 6. Ouagadougou—Per class feature importance from the random forest classifier (mean
decrease in accuracy). Only the 10 most important are presented. “SD” refers to standard deviation.
The color-ramp indicates the feature importance for each land-use classes, with darker green corresponding
to the top feature for each class (number in bold). ACS: Nonresidential built-up (administrative,
commercial, services, etc.); BARE: Bare soils; PLAN: Planned residential; UNPLAN: Unplanned residential;
VEG: Vegetation.

Land Use Classes

Street Blocks Features PLAN UNPLAN ACS BARE VEG Overall

Mean height of built pixels 0.078 0.137 0.106 0.061 0.034 0.091
Proportion of high buildings patch 0.124 0.089 0.065 0.082 0.071 0.090

Low building patch density 0.085 0.120 0.024 0.045 0.165 0.084
Proportion of Low building patch 0.071 0.077 0.010 0.089 0.150 0.072
High buildings mean patch size 0.061 0.030 0.065 0.048 0.051 0.051
Low vegetation patch density 0.048 0.047 0.048 −0.004 0.032 0.038

NDVI median 0.006 0.030 0.007 0.015 0.257 0.042
Shadows patch density 0.024 0.087 0.018 0.076 −0.011 0.043

SD of high buildings patch area 0.039 0.047 0.055 0.042 0.043 0.045
Trees mean patch size 0.023 0.010 0.063 0.008 0.003 0.023
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Table 7. Dakar—Per class feature importance from the random forest classifier (mean decrease
in accuracy). Only the 10 most important are presented. The color-ramp indicates the feature
importance for each land-use classes, with darker green corresponding to the top feature
for each class (number in bold). ACS: Nonresidential built-up (administrative, commercial,
services, etc.); AGRI: Agricultural vegetation; BARE: Bare soils; DEPR: Deprived residential;
PLAN: Planned residential; VEG: Natural vegetation.

Land Use Classes

Street Blocks Features PLAN DEPR ACS BARE AGRI VEG Overall

Proportion of low buildings patch 0.070 0.164 0.017 0.100 0.259 0.122 0.098
Shadows patch density 0.080 0.055 0.032 0.039 0.047 0.097 0.069

Low buildings patch density 0.044 0.075 0.029 0.008 0.248 0.018 0.061
Mean height of built pixels 0.067 0.056 0.037 0.064 0.020 0.092 0.060

NDVI median 0.065 0.030 0.016 0.020 0.181 0.193 0.072
Proportion of shadows patch 0.050 0.095 0.004 0.051 0.080 0.066 0.055

Range of low vegetation patch area 0.024 0.016 −0.001 0.010 0.389 0.010 0.049
Count of built pixels 0.036 0.022 0.025 0.115 0.037 0.097 0.040

Range of artificial surfaces patch area 0.025 0.018 0.132 0.006 0.012 0.021 0.033
Proportion of medium buildings patch 0.065 0.002 0.002 0.025 0.088 0.013 0.047

For the built-up classes, height is an important element, as witnessed by the selection of
proportions of high and low buildings. It is interesting to notice the importance of shadows patch
density as a top feature in Dakar for “Planned residential” which is not the case in Ouagadougou.
This could be explained by the fact that residential buildings are more often multi-stories in Dakar
than in Ouagadougou. Thereby, this shadow-related feature could be considered as a proxy of the
presence of highly elevated built-up structures. Unsurprisingly, the vegetation index (NDVI) is the
best feature for the vegetated land-use classes. Bare soils also present a feature related to the built
land-cover classes. We assume it should be an inverse relation, i.e., characterizing the blocks as having
no presence of built-up.

3.4. Introduction of Uncertainty and Thematic Improvement of Final Products

Errors and uncertainty are inherent in any classification problem. Even if the classifier provides
a class label for each item, predictions could be affected by a high level of uncertainty. RF natively
provides the class probability for each street block [60]. We take the decision to use this essential
information to reclassify street blocks for which the prediction was highly uncertain. We compute
the difference between the probabilities of the most probable and the second most probable
class. Street blocks having a difference of less than 5 percentage points were then relabeled as
“Uncertain” (see Figure 6c). It concerns 3.7% and 4.1% of the available street blocks for Ouagadougou
and Dakar, respectively. For the convenience of the users, all class probabilities are included in the
product releases.

Residential built-up density is usually a good indicator of population densities. For that reason,
we use the information about blocks’ percentage of built-up patches to discriminate between different
densities of built-up. (Figure 6d). In both case studies, street blocks classified as “Planned residential”
were relabeled as “Planned residential (low density)” if their built-up percentage was lower than 30%
and 40% for Ouagadougou and Dakar, respectively. In Ouagadougou, the same approach was used
to distinguish two classes of built-up density for the “Unplanned residential” class, with a threshold
fixed at 15% of built-up, and to enable a split between peri-urban settlements and slum-like patterns.
The choice of these thresholds was made through trial-and-error, relying on visual assessment of the
land-cover map. The final land-use maps are visible in Figures 7 and 8. For the convenience of the
reader, they can be visualized online along with the land-cover information (https://tgrippa.github.
io/Landuse_from_landcover_webmap/).
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Figure 6. Addition of uncertainty and built-up density to refine the thematic precision of the maps for
Ouagadougou. (a) Land cover map for comparison purpose; (b) Most probable class from the random
forest classifier; (c) Introducing “Uncertain” class; (d) Thematic refinement of residential classes according
to the computed proportion of buildings. Land-cover classes (a) HB: High buildings; LB: Low buildings;
SW: Swimming pools; AS: Asphalt surfaces; BS: Bare soils; TR: Trees; LV: Low vegetation; WB: Water bodies;
SH: Shadows. Land-use classes (b–d) VEG: Vegetation; BARE: Bare soils; ACS: Nonresidential built-up
(administrative, commercial, services, etc.); PLAN: Planned residential; PLAN LD: Planned residential
(low density); UNPLAN: Unplanned residential; UNPLAN LD: Unplanned residential (lox density);
UNCERT: Uncertain prediction.

Figure 7. Land-use map of Dakar. AGRI: Agricultural vegetation; VEG: Natural vegetation; BARE:
Bare soils; ACS: Nonresidential built-up (administrative, commercial, services, etc.); PLAN: Planned
residential; PLAN LD: Planned residential (low density); DEPR: Deprived residential; UNCERT:
Uncertain prediction.



ISPRS Int. J. Geo-Inf. 2018, 7, 246 15 of 21

Figure 8. Land-use map of Ouagadougou. VEG: Vegetation; BARE: Bare soils; ACS: Nonresidential
built-up (administrative, commercial, services, etc.); PLAN: Planned residential; PLAN LD: Planned
residential (low density); UNPLAN: Unplanned residential; UNPLAN LD: Unplanned residential
(lox density); UNCERT: Uncertain prediction.

4. Discussion

The solution proposed in this paper proved to be operational for processing very large areas,
as our case studies datasets cover more than 1000 km2 in total, with a spatial resolution of 0.5 m.
However, some limitations can be highlighted.

The first limitation relates to the completeness of OSM data. A quantitative evaluation of the
geometric and semantic quality of the street blocks is out of the scope of this article, but some aspects
can be discussed. A qualitative visual assessment shows that the consistency is more evident in
the core urban areas, where the street network is denser and OSM data generally more complete.
From several tests that were carried out, we concluded that the resulting street blocks may not be as
detailed as expected, e.g., presence of polygons that are too large and encompass multiple distinct
land uses. This is mostly related to the fact that the OSM database is not complete enough for certain
locations, especially in peri-urban areas. To solve this issue, time was dedicated to the digitization
of additional map features in OSM (e.g., roads, tracks, natural elements, etc.) at the periphery of our
AOIs (peri-urban areas) to meet our requirements. This also contributed to the completion of the OSM
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database, which is a positive outcome. Since the OSM data completeness is increasing, it is likely
that such issues will become less prevalent in the future. However, the performance of the proposed
framework is likely to decrease as the landscape becomes more rural. Further research could look for
other strategies for the automated extraction of meaningful landscape units for mapping the land use
in rural and peri-urban areas.

The second limitation is linked to the spatial metrics. The selection of relevant spatial metrics for
the phenomenon under investigation and the interpretation of their behaviors can be a challenging
task in itself [40]. Moreover, it is likely that some metrics that perform well in one case study are
less discriminant for another. It was the case in our results and this could be interpreted because
of differences in terms of urban landscapes. As a solution, computing many metrics and feeding
them into a feature selection procedure allows for the unsupervised selection of a parsimonious set
of features.

Thirdly, the labelling procedure for creating the training and validation sets may clearly be
a bottleneck if automation is mandatory. Further research could explore the possibility of taking
advantage of the OSM database for the automatic selection and labeling of these samples, as OSM
contains some information on land use and Point of Interest (POI).

Next, future studies aiming at implementing the same kind of workflow that we present here
should consider the possibility of improving efficiency by computing the metrics for the street blocks
belonging to the training samples only. Since they are sufficient for performing the feature selection
step, this would save processing time and storage space [61]. Only the most discriminant features
could then be computed for the whole AOI. This approach would allow for computing a very large
number of features without creating computational and storage issues.

Finally, as previously mentioned (see Section 2.4.1), the “patch mosaic” paradigm hides some
aspects of the urban structures, which is likely to limit the ability of spatial metrics to adequately
characterize urban land use. Possible future work should investigate a broader workflow that would
include explicit information derived from the OBIA segmentation process. For example, information
on individual segments could be computed, e.g., area, compactness, and fractal dimension, and then
summarized either at the class or at the landscape level.

Prediction errors and the corollary uncertainty of the produced maps are important points that
any classification framework should consider. In this study, we used the class-probability output from
the RF model to identify street blocks for which the prediction was affected by an important level
of uncertainty. In addition to the land-use maps where labels correspond to the most probable class,
we also provide the class-probability values for each street block. This information is useful especially
when classification products are used as input data to other classification or modeling tasks since
it is well known that errors propagate to the derived products. In the future, we plan to carry out
sensitivity analysis to assess how errors and uncertainty of land-cover maps affect the derived land
use and the models of spatial distribution of population densities.

5. Conclusions

While availability of up-to-date and reliable geographical information on urban areas is
sorely missing in developing countries, new sources of information such as VGI can overcome
existing challenges. This research presented a workflow, mostly automated, for mapping urban
land use at the street block level, with a focus on residential use. The proposed framework proved
its ability to efficiently handle large datasets, since the two case studies, Ouagadougou and Dakar,
covering more than 1000 km2 in total, achieved 84% and 79%, respectively. All of the computer codes
developed and the resulting datasets have been released in open-access to any interested users.
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Appendix A

Hereafter are presented the tables containing the list of street block features computed.

Table A1. Spatial metrics computed.

Level of Computation Metric

Landscape level
All land-cover classes together

Dominance
Pielou
Renyi

Richness
Shannon
Simpson

Class level
On binary maps (for each land-cover class separately)

Patch number
Patch density

Mean patch size
SD of patch size

Patch size coef. of variation
Range of patch size

Shape index
Proportion

Table A2. Additional block features computed.

Source of Information Blocks Feature

Spectral

NDVI median
NDVI mean

NDWI median
NDWI mean

nDSM models Built-up mask (from land-cover map) Mean height of built pixels
Number of built pixels

Block morphology (shape features)

Area
Perimeter

Compactness relative a to square
Compactness relative a to circle

Fractal dimension

Appendix B

Hereafter are referenced the dataset, pieces of computer code, and processing chains used in
this research. These are all made available under Creative Common License (CC-BY).

The land-cover maps used as input data for the computation of landscape metrics:
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• Ouagadougou land-cover map [62] is referenced and available on https://doi.org/10.5281/
zenodo.1290653. The version used in this research is referred as v1.0 (10.5281/zenodo.1290654).

• Dakar land-cover map [63] is referenced and available on https://doi.org/10.5281/zenodo.
1290799. The version used in this research is referred as v1.0 (10.5281/zenodo.1290800).

The results of the land use classification and the street blocks extracted:

• Ouagadougou land-use map [64] is referenced and available on https://doi.org/10.5281/zenodo.
1291384. The version produced in this research is referred as v1.0 (10.5281/zenodo.1291385).

• Dakar land-use map [65] is referenced and available on https://doi.org/10.5281/zenodo.1291388.
The version produced in this research is referred as v1.0 (10.5281/zenodo.1291389).

The R code used for the feature selection and RF classification steps, belonging to the dataset of
features used and training/test sets, is available in the following Github repository: https://github.
com/ANAGEO/R_stuff/tree/master/VSURF_FeatureSelection_RF_Optimization.

The semiautomated processing chain for extraction of street block from OSM using PostGIS is
available in the following Github repository: https://github.com/ANAGEO/OSM_Streetblocks_
extraction.

The semiautomated processing chain for computation of spatial metrics using GRASS GIS is
available in the following Github repository: https://github.com/tgrippa/Street_blocks_features_
computation.

The piece of Python code used for computing uncertainty form the probabilistic output of RF:
https://github.com/ANAGEO/RFprob_to_uncertainty.
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Abstract: Built-up layers derived from medium resolution (MR) satellite information have proven
their contribution to dasymetric mapping, but suffer from important limitations when working at the
intra-urban level, mainly due to their difficulty in capturing the whole range of variation in terms of
built-up densities. In this regard, very-high resolution (VHR) remote sensing is known for its ability
to better capture small variations in built-up densities and to derive detailed urban land use, which
plead in favor of its use when mapping urban populations. In this paper, we compare the added
value of various combinations of VHR data sets, compared to a MR one. A top-down dasymetric
mapping strategy is applied to reallocate population counts from administrative units into a regular
100 × 100 m grid, according to different weighting layers. These weighting layers are created from
MR and/or VHR input data, using simple built-up proportion or reallocation “weights”, obtained
from a set of multiple ancillary data used to train a Random Forest regression model. The results
reveal that (1) a built-up mask derived from VHR can improve the accuracy of the reallocation by
roughly 13%, compared to MR; (2) using VHR land-use information alone results in lower accuracy
than using a MR built-up mask; and (3) there is a clear complementarity between VHR land cover
and land use.

Keywords: population modelling; dasymetric mapping; top-down approach; very-high resolution
data; remote sensing; random forest; African city

1. Introduction

The less developed regions of the world have reached a symbolic milestone: Half of the population
is now living in urban areas [1]. Even though this ratio is much lower in the least developed countries,
most of which are located in sub-Saharan Africa (SSA), urbanization rates are increasing rapidly
(where about 33% of the population is urban and are expected to face the highest growth rates
during the next decades). It is expected that 40% of the population will live in urban areas by 2030
and 50% by 2050 [1]. As a consequence of these rapid transformations, SSA cities are exposed to
increasing urban poverty and intra-urban inequalities [2], while a large part of the urban population is
extremely vulnerable to health and disaster risks. In this context, detailed population data is essential
in improving evidence-based decision-making by relevant authorities and organizations [3–5], as
well as for any application relying on a human population denominator, such as estimating the
population at risk, assessing vulnerability, and deriving health or development goals indicators [6–8].
However, this knowledge is often very limited in SSA and population data are regularly outdated
and criticized regarding their reliability [6,7]. While collected at a household or individual level,
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census data are generally aggregated and released in administrative units for privacy reasons [5,9],
and do not match the requirements for different fields of research [4]. With regards to population
data aggregated in administrative units, we can further mention some issues related to the fact that
(1) the real spatial patterns of the population distribution are blurred by an impression of homogeneity
within entities [10], (2) the aggregated values and subsequent analysis are very dependent on the choice
of the administrative limits, which is also known as the modifiable areal unit problem (MAUP) [11],
and (3) administrative units create subjective spatial discontinuities that sometimes change from one
census to another [9,10].

When the spatial extension of a phenomenon does not correspond to any existing administrative
limits, official population data are often unexploitable. In such a situation, a gridded population
product—a raster layer where the pixel value refers to the (estimated) number of inhabitants—can
provide a more useful estimate of population counts [12], by summing up all the pixels falling into
the area under investigation. Creation of these population grid products is usually achieved using
dasymetric mapping [9,13]. This modeling technique relies on the assumption that the knowledge of
the territory—places more densely populated than others—can be used to spatially disaggregate the
official census data provided at the administrative level to a finer scale [5]. Ancillary geoinformation
data, such as land cover (LC) and land use (LU) maps, can provide valuable information for
estimating the potential of different locations within the administrative units to be inhabited. Even
though they are different by nature—LC is related to the physical characteristics of earth surface
elements (e.g., vegetation, water, built-up, . . . ), while LU refers to the functions and activities that
humans decided to carry out in certain locations (e.g., agricultural land, residential area, industrial
area, . . . )—they can provide complementary information valuable for population modelling purposes;
for example, by combining building density (from LC) with the distinction between residential and
commercial areas (from LU). For example, the built-up density and the land use information of a
location can be combined and used as proxies for population density.

The major challenge in dasymetric mapping resides in the determination, from a set of ancillary
data, of the relative distribution of the population within the administrative units. This information
can be seen as spatial reallocation “weights”, which are used in dasymetric mapping to disaggregate
(redistribute) the population count known for the administrative units into a finer subunit level. When
a simple built-settlement layer is available, a common strategy is to homogeneously allocate the
population counts of the administrative unit within areas identified as built-up (binary dasymetric
method). When the ancillary data are thematically more detailed than just a binary built-up layer—e.g.,
with a distinction between urban core, periurban, and rural areas—the weights can be adjusted to better
correspond with the expected relative distribution of the population. For a long time, these weights
were subjectively determined based on expert knowledge, or according to existing information [12],
such as land-use information or household characteristics, combined with the use of quantitative
methods, such as correlation analysis and multivariate regression [13]. Recent research has shifted
this paradigm by taking advantage of the power and the efficiency of machine learning algorithms
to model the distribution of population densities, without any prior knowledge. In the case of the
WorldPop project, the popular Random Forest (RF) algorithm [14] is used to predict the weights for
reallocation of population in 100 × 100 m grid layers [15]. In this work, the RF algorithm is used in a
similar fashion.

Irrespective of the approach (expert-based or using machine-learning), built-settlement layers are
consistently among the most important predictors for population models [16]. These layers are typically
extracted from satellite imagery, and have been commonly used to estimate population densities at
large spatial scales. However, both the quality [5] and the spatial resolution [4] of ancillary information
have a strong influence on the accuracy of the predictions. In an urban context, the potential of finer
resolution products for population redistribution is largely unexplored. We hypothesize that, by
utilizing high and very-high resolution information (i.e., land cover and land use), the accuracy of the
dasymetric reallocation might be significantly improved.
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In this paper, we compare the contribution of three data sets with different spatial and thematic
resolutions (built-up mask, land cover, and land use) for disaggregating population counts into
1 hectare grid cells. The availability of extremely detailed census data for the city of Dakar (Senegal)
enables the assessment of the added value of very-high resolution (0.5 m) data, compared to medium
resolution (10 m) data, in the context of a top-down dasymetric approach. Different levels of
information are extracted from these data sets to create different weighting layers and perform
dasymetric mapping. While very-high resolution data are expected to increase the accuracy of the
dasymetric mapping procedure, their acquisition and processing costs might hinder their applicability
for large-scale population mapping in Africa. It is, therefore, important to evaluate the loss in accuracy
when using freely-available medium resolution data.

2. Materials and Methods

2.1. General Workflow

A visual representation of the different administrative levels and geographical scales used in this
study as well, as the major steps of the workflow, is provided in Figure 1. Level 1 represents the finest
level available with the reference population count (census data). It is reserved for validation purposes,
and is kept completely independent from the dasymetric mapping procedure itself. It is important to
understand that the total volume of the population of each administrative level is maintained during
the disaggregation, meaning that, if the predictions at grid level are re-aggregated back to the original
units, the initial population count is preserved (pycnophylactic property, [17]). As a consequence, the
population counts and administrative units in level 1 cannot be used directly for dasymetric mapping,
since they are the finest official level at which a validation is possible. In order to keep level 1 units
available for validation purposes, the first step aims at creating coarser administrative units, hereafter
referred to as ‘level 0’, by aggregating level 1 units (more details about this aggregation procedure are
provided in Section 2.4). The second step consists of the dasymetric reallocation of population counts
from level 0 units to a regular grid layer of 100 × 100 m. The different tests performed as well as the
procedure for the creation of weighting layers used for dasymetric reallocation are further described in
Section 2.5. The purpose of the third step is validation. The grid level predictions are summed for each
of the level 1 units, in order to compare them against the reference count kept available at this level.
More details about the validation procedure is provided in Section 2.6.

Figure 1. Representation of the major steps of the workflow presented and the different scales used
in the analysis. A population count at level 0 is reallocated at grid level using weighting layers.
For accuracy assessment, the predictions at grid level are aggregated to reach level 1 boundaries, and
are compared with the official reference data available at this level.
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2.2. Remote Sensing Derived Data

We used three ancillary data sets, to design different approaches for creating weighting layers to
be used for the reallocation of population counts at a finer-scale using dasymetric mapping. All were
derived from earth observation (EO) data, but are different regarding their spatial and thematic
resolution. These data sets were previously produced in the context of the MAUPP (http://maupp.
ulb.ac.be) and REACT (http://react.ulb.be/) projects, and are publicly available (see Appendix A).

The first data set consists of a binary built-up mask (see Figure 2A), recently published in [18].
It was derived from Landsat 8 and Sentinel-1 imagery from 2015, processed using a recently developed
automated pixel-based fusion framework [19,20]. The main advantage of this product is that it is
accessible and reproducible at no cost, since the EO data it relies on are free of cost. This built-up mask
has a spatial resolution of 10 m and, with regards to its accuracy, an F1-score of 0.92. As its resolution
could be described as medium, this product is referred to hereafter as “MR-BU”.

Figure 2. Built-up masks used: (A) Medium resolution (10 m), derived from freely available satellite
images (MR-BU). (B) Very-high resolution (0.5 m), derived from commercial satellite images (VHR-BU).

The second data set consists of a very-high resolution land-cover map, derived from the Pleiades
pan-sharpened tri-stereo images of 2015, with a spatial resolution of 0.5 m (see Figure 3). This map
was previously produced thanks to a semi-automated open-source framework for object-based image
analysis and supervised classification [21–23]. The overall accuracy (OA) of this product achieved
89.5%, and the building class reached 94% and 97% for user and producer accuracy, respectively (more
details about the validation of this product are provided in [24]). A post-processing step was used,
to further reclassify the built-up class into three classes of buildings by applying a threshold on the
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height information provided by a photogrammetricaly-derived normalized digital surface model
(nDSM). From the land-cover product, we extracted different combinations of land-cover classes in
order to produce three very-high resolution layers for the analysis: (1) The land-cover map itself,
including all the classes, as illustrated in Figure 3 (referred to as “VHR-LC”), (2) a built-up mask
(referred to as “VHR-BU”) (see Figure 2B), and (3) a layer containing three building classes, categorized
by height (referred to as “VHR-3BU”).

The last data set used in this study consists of a map providing the dominant land use at the
street block level (see Figure 4). This map, reaching an OA of 79%, was produced in a recent study [25],
in which street blocks were automatically created using OpenStreetMap data, and were further
classified based on spatial metrics (also called ‘landscape metrics’) allowing characterization according
to their composition and organization, in terms of land cover. This data set is an important complement
to the land-cover or built-up masks, as it provides a distinction between residential and non-residential
areas (e.g., commercial areas). Moreover, the map used here contains several residential classes that
should help better estimate intra-urban population distribution. This product is referred to hereafter
as “VHR-LU”.

Figure 3. The very-high resolution land-cover map derived from commercial satellite images. Legend
classes: HB: High buildings (>10 m); MB: Medium buildings (5–10 m); LB: Low buildings (<5 m); SW:
Swimming pools; AS: Artificial ground surfaces; BS: Bare soils; TR: Trees; LV: Low vegetation; WB:
Inland waters.

2.3. Population Data

Population data used in this research comes from the most recent national census, performed in
2013 [26], and provided by the National Agency for Statistics and Demography of Senegal (ANSD).
A limited temporal shift of 2 years exists between census data and the imagery used. Here, we are
working under the assumption that the urban expansion and/or densification that occurred during this
two-year period is marginal and should not impact the main findings. Population counts are available
at the ‘neighborhood’ level (admin-5 in the Senegalese scheme), consisting of 1347 administrative
units for the whole extent of the Dakar agglomeration. The spatial extent of the population data was
reduced, in order to only keep administrative units fully covered by the different map products to be
used for the dasymetric mapping. This resulted in dropping 154 units (1193 remaining).

2.4. Creation of Validation and Training Levels

For this research, we had the opportunity to access population data at a very detailed scale.
Figure 5A illustrates how fine this administrative level is, in terms of spatial resolution. It is
important to point out that accessing such a fine-scaled population data, linked with the delineation
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of the corresponding administrative units (i.e., polygon geometries provided as Shapefile), is rather
exceptional for SSA cities, as the connection between population data and the finest administrative
units is usually limited [6]. In this research, we take advantage of a citywide coverage with spatially
detailed data, to implement a top-down dasymetric approach and perform fine-scale validation in an
intra-urban environment.

Figure 4. The very-high resolution land-use map derived from the VHR land-cover map. Legend
classes: AGRI: Agricultural vegetation; VEG: Natural vegetation; BARE: Bare soils; ACS: Non-residential
built-up (administrative, commercial, services, etc.); PLAN: Planned residential built-up; DEPR: Deprived
residential built-up.
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Figure 5. The administrative units (neighborhoods of level admin-5) are very small. Administrative unit
limits (in red) are superimposed on (A) Google Map imagery, and (B) a 100 × 100 m grid.

In the core urban area, some administrative units are so small that they include only portions of a
few 100 × 100 m grid cells, as illustrated in Figure 5B. This could create some issues when summing
(aggregating) the predicted values from grid level to unit level. To mitigate these potential issues and
ensure that units at level 1 cover a sufficient number of grid cells, a simple procedure was performed
in order to automatically merge administrative units smaller than 8 hectares with the neighbor with
which they share the longest border. This minimum size was chosen as a compromise between keeping
enough administrative units at the finest level and having sufficiently big units to avoid potential
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issues during the validation procedure. The resulting layer, referred to as “level 1”, consisted of
677 units and was used in our analysis as the validation level. Figure 6A gives an overview of the
population density at this level.
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Population data source: RGPHAE 2013, Senegal
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Figure 6. Reference population densities. (A) Level 1: Finest level reference population data, used here
for validation purposes. (B) Level 0: A coarser level, created by aggregating contiguous level 1 units
together. This level is used as a basis for dasymetric mapping and for training the RF model.
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The official admin-4 level in the Senegalese administrative scheme could have been used to create
a coarser base level for the dasymetric mapping procedure . However, only 40 admin-4 units were
completely included in our area of interest, which would have dramatically affected the ability to train
the RF model properly. Instead, we aggregated the level 1 administrative units to create a coarser
level, to be used as basis for the disaggregation procedure (represented as step 1 in Figure 1). It was
performed using K-means unsupervised clustering on the X/Y coordinates of the polygons’ centroid.
The desired number of clusters is specified by the user. Further refinement was performed to guarantee
that the level 0 units consisted of at least 4 contiguous units from level 1. This procedure allowed for
reduction of the 677 units available for validation (level 1) to 92 units, composing the level 0 on which
to perform dasymetric mapping procedures. The reason of this drastic reduction is double: Firstly,
the access to such spatially detailed data is quite rare for SSA cities. Therefore, having a limited number
of units at level 0 gives a more realistic point of view regarding the data that are usually available.
Secondly, the aim of the validation procedure is to assess the accuracy of the population reallocation
from level 0 to level 1. With respect to the relevance of the validation scheme, it is important to have
a sufficient ratio between the number of administrative units at the training and validation level.
The average size of level 0 units and level 1 units are 167.42 hectares and 16.49 hectares, respectively
(see Table 1).

Table 1. Descriptive statistics of both administrative levels used in the analysis.

Level Area (ha.) Population Density (inhab./ha.)

Mean Minimum Median Maximum

Level 1 (677 units) 16.49 0.81 184.59 1047.23
Level 0 (92 units) 167.42 5.89 164.04 541.99

2.5. Analysis Design and Weighting Layer Creation

The aim of this study is to assess the contribution of very-high resolution land-cover and land-use
products, in comparison to a medium resolution (10 m) built-up mask. Table 2 gives a snapshot of the
different test layouts. When single binary built-up/non-built-up information is used as ancillary data,
the built-up proportion is computed and directly used as weights for dasymetric mapping (tests A
and B). On the other hand, when a larger amount of ancillary information is used, weights are derived
through the use of a RF model, such as in tests C to J. Because they are derived from the same single
source and consequently represent redundant information, a combination of VHR-BU, VHR-3BU,
and/or VHR-LC layers are not used together in the same test.

Table 2. Layout of the different tests performed. The “X" marks inform about which layer(s) is used in
each test.

Test Weights Creation MR-BU VHR-BU VHR-3BU VHR-LC VHR-LU

A Simple proportion X
B Simple proportion X
C RF-derived weights X
D RF-derived weights X
E RF-derived weights X
F RF-derived weights X X
G RF-derived weights X X
H RF-derived weights X X
I RF-derived weights X X
J RF-derived weights X X X

Expert knowledge could be sufficient for identifying evident trends in a data set, or for pointing
out specific proxies for a well-known phenomenon. However, when numerous non-linear input data
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are used to derive a weighting layer, as in dasymetric mapping strategies, it can become very difficult
to rely on expert knowledge. In this context, advantage can be taken from machine learning methods
which have proved their efficiency in finding relevant relationships between data for predicting a
response variable (e.g., the population density), as is in the WorldPop project that utilises the Random
Forest (RF) regression algorithm [15].

RF is a non-parametric supervised machine learning algorithm, which is efficient in handling
noisy and highly correlated input data, in addition to its relative resistance to overfitting. It belongs to
the category of “ensemble learning” strategies, and consists of an aggregation of several individual
and independent trees (CART), each of them trained on a random bootstrapped sample of the training
data. RF has a low number of (hyper-)parameters to be set when looking for model optimization.
Usually, the number of trees to grow and the number of randomly selected features at each node
within a tree are the most common. In the procedure we developed, these parameters are automatically
fine-tuned, using a grid search procedure that considers all possible combinations from a range of
potential parameter values, to train different models and assess their performance through a k-fold
cross-validation. It should be noted that the RF algorithm can be used either for classification or, as in
the case in this paper, for regression tasks. Interested readers can refer to the original publication of the
RF algorithm [14] for a deeper understanding of its principles.

From the different ancillary data sets, we compute the proportion of each available class available
in the different layers. This refers to the built-up proportion for the two binary mask products (MR-BU
and VHR-BU), the proportions of three built-up classes categorized by elevation for the VHR-3BU
layer, the proportion of each of the land cover classes for the VHR-LC layer, and the proportion of each
land-use class provided by the VHR-LU layer. These results constitute the set of covariates used to
train the RF model, according to the layout of the different tests designed (see Table 2). The proportions
are computed at two levels: For each polygon at the administrative unit level, and for each pixel of the
100 × 100 m grid layer. After training on administrative unit level, the fitted model is used to predict
the population density for each pixel of the grid layer. This means that this modeling strategy relies on
the assumption that the relations that exist between the covariates and the response variable at the
administrative unit level (training level) are the same that exist at the grid level (prediction level), which
is unlikely to be completely true and is very dependent on the importance of the scale factor between
these levels (MAUP effect). The natural log of the population density is used as response variable of
the RF model, as previous research suggested it improved the quality of the weight prediction [15], and
a back-transformation is applied on the predicted values to retrieve population densities. The values
predicted by RF can only be in the range of the response variable it was trained on. It is, thus, incapable
of predicting zero values (there are no zero densities in our population data, but even if there were, the
log transformation requires the removal of all units with zero population count). Prior to using the
predicted weights for dasymetric mapping, we make the choice to force all the grid pixels with a 0%
built proportion (in case of a test using LC information) or with 0% potentially inhabited areas (in case
of a test using only LU), to have a zero weight value for the grid. This strategy was already used in
previous studies [15,27].

2.6. Validation Scheme

The prime rationale for performing dasymetric mapping is to estimate population distribution
at a finer scale than the one at which official reference data are released. Usually, when the finest
reference data is not sufficiently detailed, validation procedures to assess the accuracy of the spatial
reallocation are not performed. Here, we take advantage of the sufficient details of the population data
(see description in Section 2.3) to systematically assess the contribution of input data with different
spatial and thematic resolution in a dasymetric reallocation procedure.

As already mentioned in Section 2.1, the validation design consists in aggregating the grid-level
predictions to get the total estimates (sum) for each of the level 1 units, and comparing them against the
reference population count available at this level. It is important to note that this validation procedure
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only assesses the efficiency of the different weighting layers for reallocating the population count from
level 0 to level 1. The validation of the grid level predictions cannot be achieved here, since official
population counts do not exists at this level.

Two different metrics are used to evaluate the performance of the dasymetric models by
confronting the population count estimates at level 1 against the reference counts: (1) The normalized
version of the commonly used metric root-mean-square error (%RMSE), which uses the mean reference
population of administrative units for normalization [15]; and (2) the relative total absolute error
(RTAE), which is the ratio between the sum of all absolute errors and the total reference population [28].
These metrics are computed as follows:

%RMSE =

√
1
n Σn

i=1

(
predi − re fi)2

1
n Σn

i=1re fi
∗ 100, and (1)

RTAE =
Σn

i=1 | predi − re fi |
Σn

i=1re fi
∗ 100, (2)

where re fi is the reference population count of the administrative unit i, and predi is the sum
(aggregation) of all the predictions at grid level that fall within the administrative unit i.

2.7. Software Environment and Computer Code Availability

All the analyses were performed in Python, using common libraries for the manipulation of
geospatial data (GeoPandas, Fiona, Shapely) and machine learning (Scikit-learn [29]). In addition, the
“GRASS Python scripting library” enabled us to take advantage of the efficiency of the open-source
software GRASS GIS [30] for raster processing and manipulation. All computer codes produced for
the analysis are distributed in a “Jupyter notebook” format [31] and are available from a dedicated
repository (see Appendix A). Where possible, the code was designed to support parallel processing on
multiple cores, to save computing time.

3. Results

The analysis of the results, hereafter, is based on the validation performed by comparing the
reference data against the aggregated estimates at administrative level 1. Several conclusions can be
drawn, when analyzing the results (see Table 3). First, when relying only on built-up/non-built-up
masks, the impact of the very-high resolution data is notable, since it allows the RTAE to decrease
by 13% (from 36.7 to 31.7). As highlighted in Figure 7, VHR-BU also leads to an important reduction
of extreme relative errors of prediction. It is consistent with recent research which shows that VHR
settlement layers systematically have better feature importance than lower resolution layers, in a
RF-based dasymetric approach [27].

Second, when taking advantage of the detailed spatial and thematic information provided by
the VHR-LC layer, the accuracy of the dasymetric reallocation is significantly improved, with the
RTAE reduced to 0.308; corresponding to a drop by 16%, relative to the results obtained using only
the built-up mask at medium resolution (MR-BU). Third, when considered as a single source of
ancillary data, the VHR-LU layer performs poorly, compared to VHR-LC alone, and is even worse
than when only using the binary information provided by the VHR-BU layer. Regarding the data
used, it is probable that the lower spatial resolution (characterization of land use at the street block
level) and lower classification accuracy of the VHR-LU, compared to VHR-LC and VHR-BU, have a
strong influence on this result. Fourth, combined use of VHR-LC and VHR-LU provides better result
than when using either of them alone, which confirms that these data are complementary. Figure 8
depicts the feature importance provided by the RF model for the best-performing test (J). It supports
the conclusion that VHR-LC and VHR-LU are complementary, since there is a clear alternation of
land-cover and land-use variables in the sixth most important features. In addition, it is interesting to
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see that both the building classes from the LC layer (“Low buildings (> 5 m)” and “Medium buildings
(5 to 10 m)”) appear in the most important variable, as well as the distinction between planned
residential areas and deprived residential areas from the LU layer.

Table 3. Accuracy assessment for the different tests performed. RF internal OOB score refers to the
Out-Of-Bag score, computed during the internal cross-validation of the Random Forest. External
validation refers to the validation scheme described in the methods section. As tests A and B did not
use RF for the creation of the weighting layer, an OOB score is not available (“NA”).

Test Input Data RF Internal OOB Score External Validation

Level 0 Level 1 %RMSE RTAE

A MR-BU NA NA 61.00 36.7
B VHR-BU NA NA 54.54 31.7
C VHR-3BU 0.767 0.715 52.22 33.9
D VHR-LC 0.759 0.759 49.31 30.8
E VHR-LU 0.789 0.757 54.37 33.5
F MR-BU, VHR-LU 0.808 0.766 47.59 29.7
G VHR-BU, VHR-LU 0.842 0.768 46.21 28.2
H VHR-3BU, VHR-LU 0.850 0.802 45.22 28.8
I VHR-LC, VHR-LU 0.833 0.815 45.24 28.4
J MR-BU, VHR-LC, VHR-LU 0.836 0.813 44.40 27.9

Figure 7. Boxplots representing the distribution of the absolute errors of prediction for level 1 units.
The values refer to the percentage of absolute prediction error. The vertical line in the box corresponds to
the median value. The left and right limits of the boxes refer to the first and third quartile, respectively.
The right limit of the whiskers corresponds to the last observation whose value is below the 95th
percentile. Observations with higher values are considered as outliers and are not represented here.
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Figure 8. Feature importances from the Random Forest model for test J.

Finally, in our analysis, the best-performing dasymetric reallocation was obtained when using all
available data; that is, test J, whose predictions at the grid level are illustrated in Figure 9. Surprisingly,
the accuracy is improved when using MR-BU in addition to VHR-LC and VHR-LU. As shwon in
Figure 10, the majority of the large relative errors (in terms of percentage of the reference population)
are located, not surprisingly, in less populated administrative units.

Figure 9. Test J—Prediction of population count at grid level (100 × 100 m), superimposed with the
limits of units of level 0.
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Figure 10. Errors of prediction, aggregated to level 1 in absolute percentage of the reference population.

Another interesting point, that can be highlighted from our analysis, is related to the validity of
the Out-Of-Bag (OOB) score as a validation metric in dasymetric mapping. The OOB-score (or error)
is an accuracy assessment metric, computed during the fitting of the Random Forest model. It is
computed from the internal cross-validation procedure, and can be interpreted as an average goodness
measure of the ability of the model to predict on unseen data in the training set. Since the training set
is composed of administrative units of level 0, this metric could be seen as a measure of the ability
of the model to predict on unseen units at the same specific level. Inversely, the external validation
used here, as described in the “methods” section, is designed to assess the ability of the dasymetric
mapping procedure to accurately redistribute population counts from one geographic scale to a finer
one. When studies suffer from the lack of spatially detailed population data, external validations can
not be systematically performed. In such contexts, it may be tempting to consider the OOB-score as a
measure of the performance of the dasymetric reallocation. Nevertheless, our results show that there is
no straightforward relationship between the external validation metrics and the internal OOB-score.
Indeed, as visible in Table 3, the best-performing combination of input data (covariates) appears to
be in the case of test H (OOB of 0.85 for a RF model built at level 0). However, when considering the
RTAE or %RMSE, test J is identified to be the best-performing one. Furthermore, fitting RF models on
both administrative levels revealed that the best-performing set of covariates identified at one scale is
not obviously the one that performs best at another scale, which could be interpreted as a result of the
MAUP effect.

The gridded population layer resulting of the dasymetric mapping procedure presented in this
paper is available for anyone interested and for any purposes. The reference is provided in Appendix A.
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4. Discussion

Medium resolution built-up settlement layers have been commonly used in population
modeling [15,32]. They present the advantage of being free and providing global coverage, even
though their spatial resolution is limited. However, high or very-high spatial resolution data are
usually preferred for applications covering a relatively small geographic extent, as they allow the
counting of dwelling units or the interpretation of residential land-use types, despite their expensive
costs. To date, little research has explored the potential of built-settlement layers at different spatial
resolutions for urban population mapping.

Even if the price of VHR remote sensing data tends to drop slowly, it is still an important
limiting factor and reduces the merits of large-scale applications. Usually, the acquisition of VHR
imagery is firstly dedicated to the production of detailed LC and LU maps, which are useful pieces of
information by themselves. The gains that these VHR-LC and VHR-LU information could provide
to the performance of a dasymetric mapping approach is important information regarding the cost
effectiveness of these data. In this regard, our results show that there is a clear positive impact of
using VHR products for population modeling, as well as a complementarity between VHR-LC and
VHR-LU products. Future research could involve integrating low-cost imagery, such as SPOT-6/7
(1.5 m of spatial resolution for pan-sharpened images), which could provide an interesting cost-efficient
compromise between MR and VHR.

Regarding the performance of the dasymetric mapping procedure presented here, it is important
to mention that the accuracy of the predictions at the grid layer are probably lower than the one
presented here (with a validation at level 1, after reaggregation of grid level estimates). Since grid
population products tend to be commonly used in different fields of research, it is essential to inform
end-users about the confidence and limitations of such products, as much as about their advantages.
When using such population models, the end-user should always keep in mind that “The most that can
be expected from any model is that it can supply a useful approximation to reality: All models are wrong; some
models are useful” [33] (p. 440).

With regard to top-down dasymetric approaches, such as the one presented here, we should
mention that they are completely dependent on official censuses which are frequently criticized
regarding their reliability [6]. Furthermore, in the best case, official censuses are usually organized
once in a decade, but in developing countries this rate is not systematically respected. This often forces
studies to deal with population data that are asynchronous with ancillary geoinformation, used as
covariates. When the official population data are not available or are outdated, remotely-sensed data
can be used to support bottom-up approach [6,7]. The latter uses population counts coming from
micro-census surveys—i.e., the collection of census information through field surveys on a limited
portion of the territory—to extrapolate the population count on the rest of the territory, thus allowing
implementation with limited human and financial capacity, compared to a regular census [6].

Additionally, we highlighted that, in a RF-based dasymetric mapping procedure, the OOB-score
is not guaranteed to effectively help in the identification of the best-performing combination of input
layers, in terms of reallocation accuracy. Therefore, a recommendation is made for future studies
to exercise caution when using the OOB-score as an indicator of the performance of dasymetric
mapping. More generally, the sensitivity of RF-based top-down population models to the scale factor
and the MAUP effect is poorly explored in the literature. It would be beneficial for the field to further
investigate the impact of the quantity and the spatial resolution of the administrative units used to train
the RF model, and the impact of the difference of spatial resolutions between training and prediction
(grid) levels.

5. Conclusions

Dasymetric mapping has been used to provide estimation of population densities at a finer scale
than the available official data released in administrative units. To this end, this method relies on
the use of ancillary data—such as settlement layers, land cover, or land use maps—that are used
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as proxies of the real spatial distribution of the population within the administrative units. On one
hand, MR satellite imagery can be used to derive such ancillary data at no cost. Unfortunately, when
working at the intra-urban level, these data often fail to provide sufficient details in the population
model. On the other hand, VHR satellite imagery can provide very detailed information and thus
improve the quality of the population models, but their acquisition is much more expensive. In this
research, we assessed the added value of VHR remote-sensing derived products, compared to MR
products, when used as ancillary data in a dasymetric mapping procedure. When using a simple
binary built-up/non-built-up mask, we showed that the use of VHR resulted in a drop of 13% in the
error (RTAE). Moreover, our results showed that the use of the spatially and thematically detailed
information, which can be derived from VHR land cover and land use maps, which are useful pieces of
information by themselves, enabled significant improvement in the dasymetric reallocation accuracy,
compared to what can be achieved using a MR built-up mask alone.
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Appendix A

All the computed code that supported this research is available from the following repository:
https://github.com/tgrippa/Dasymetric_mapping_using_GRASSGIS.

The gridded population layer produced in this study is accessible in a dedicated repository
(CC-BY license): https://doi.org/10.5281/zenodo.2525671

The data sets used as input for the analysis presented in this paper are as follows. These are all
available under CC-BY license.

• The MR built-up layer is available from https://doi.org/10.5281/zenodo.1450931.
• The VHR land-cover map is available from https://doi.org/10.5281/zenodo.1290799.
• The VHR land-use map is available from https://doi.org/10.5281/zenodo.1291388.
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Conclusion

The first objective of this thesis was to develop open-source solutions for mapping

SSA cities. However, advantage have been taking from the geoinformation produced

with these frameworks to evaluate the contribution of VHRRS data to improve the

quality of intra-urban population models. To achieve these objectives and answer

research questions, new efficient strategies were developed and leveraged into semi-

automated processing chains providing a framework allowing to generate a complete

and complementary set of geoinformation - i.e., land cover, land use and population

estimation.

This chapter aims to summarize the outcomes, discuss the limitations of the

proposed solutions and open perspectives for future research.

5.1 Summary of the outcomes

The major outcome of this thesis consists of the semi-automated OBIA land cover

mapping framework that went through several stages of development and improve-

ment. It led to three scientific publications (papers 1,2,3) presented in detail in

chapter 2. In order to process VHRRS data covering large-scale areas, we had

to push existing state-of-the-art methods up to their limits. Our methodological

developments allow for the processing of VHR imagery covering very large and het-

erogeneous urban scenes, through local unsupervised segmentation parameter opti-

mization for different automatically subdivided partitions of a satellite image. On

top of that, this framework is implemented in a semi-automated processing chain

published under an open license. It relies on open-source software and is compu-

tationally efficient since it was designed to allow for parallel processing. This new

approach, overcoming the limitations that marred existing methods by providing

efficient solutions, opens a door toward big data processing.

The framework for mapping the urban land use constitutes another important

outcome of this thesis. As highlighted in chapter 3 (paper 4), the proposed solution
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is designed to respond to the lack of ancillary data on which fine-scale land-use

classification usually rely on. It takes advantage of OSM data for the creation of

street block geometries and of existing land cover maps for the characterization and

classification of these blocks, all in a highly automated fashion. For these reasons, we

consider the proposed framework as an important contribution to land use mapping

in data-poor contexts which could be reused for many applications in SSA or in

other developing countries.

Finally, the last achievement that should be mentioned refers to the assessment of

the contribution of VHR to the improvement of existing population density estimates

in SSA. The research presented in chapter 4 (paper 5) confirmed that VHR-derived

geoinformation was highly valuable for population modeling. Using our dasymetric

mapping framework, we were able to model the distribution of population densities

for the city of Dakar, Senegal, and we produced a gridded population layer with

unprecedented spatial details. A systematic validation was performed to measure the

gain in accuracy for the population reallocation procedure. The results showed that,

when relying only on a binary built-up mask alone, VHR (0.5m) allowed to decrease

the error rate by 13% compared to HR (10m). Furthermore, the complementarity

of VHR-derived land-cover and land-use maps for the population modeling was

confirmed by model features importance. Used together, it allowed us to increase

even more the quality of population models and to decrease the error rates by 22%

compared to a model based on an HR built-up mask.

Moreover, in addition to these cutting-edge methodological developments, this

thesis contributed to the geographical knowledge of SSA cites. Indeed, the frame-

works implemented were used to produce key geographic information - i.e., land

cover, land use and fine-scaled population maps - for Dakar and Ouagadougou, cov-

ering respectively 418 km2 and 615 km2. To our knowledge, there are no other maps

currently available that provide such recent and spatially detailed LC and LU infor-

mation for these cities. These could serve for future research and LC information

has already been used in research aiming to map local climate zones in Dakar [89].

In addition, all the methods were developed with a particular focus on automa-

tion and transferability. Thanks to these efforts, the frameworks developed in this

thesis to map the land cover and land use at the intra-urban level are already be-

ing used in another research project called REACT which aims at mapping other

SSA cities and model urban climate in support to malaria risk assessment [89]. The

OBIA land-cover framework proved its ability to be transferred to other case stud-

ies and sources of VHR images with minimal adaptation efforts [90]. Moreover, the

WALOUS project is currently taking advantage of the lessons learned in this thesis

to go further in the automation and scaling of methods and processing of big data

sets with the aim of mapping the whole Walloon region in Belgium (>16.000 km2),
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based on VHR airborne images with a spatial resolution of 0.25m.

Also, open-source and open-access were important governing principles in this

thesis. For this reason, the mapping frameworks and other computer code developed

as well as the final maps (land cover, land use and gridded population estimates)

are made available through different public repositories, at no cost, for anybody and

for any purpose:

• Data sets repositories: zenodo.org

• Frameworks and computer code: github.com/tgrippa and github.com/anageo

5.2 Limitations of the proposed solutions

Even though the methods proposed in this thesis provide highly valuable contri-

butions in the field of remote sensing, they remain affected by some limitations.

We present below a summary of the main limitations that have been previously

addressed in chapter 2, 3 and 4.

For both land-cover and land-use mapping, a important limitation of the pro-

posed solutions is that the implemented supervised classification requires the cre-

ation of training and validation samples. For the moment, we do not propose any

automated solution for the labeling of these samples. This remains a challenge to

be overcome by future research, especially in the context of SSA where reference

databases are often not available. OpenStreetMap data could be used for that pur-

pose but their quality is often inconsistent. Issues of co-registration with VHR

imagery might also arise when using such data sets.

Regarding the computational efficiency of the framework, some limitation has

been highlighted regarding processing time and storage space required for the fea-

tures used for the classification. More complex strategies could be implemented to

compute many classification features (NDVI, band ratios, GLCM textures, spatial

metrics on land cover maps for land use mapping, etc. . . ) only for the segments

included in the training/validation samples. Then, by using feature selection al-

gorithm, it would be possible to identify which are the most important predictive

features for the specific data set under investigation. Only the most discriminant

features could then be computed for the whole AOI. This approach would allow

for computing a very large number of features without creating computational and

storage issues.

Another limitation is related to the use of SPUSPO. Even if this approach

achieves better segmentation and classification results, it also increases the com-

putational time. In order to reduce the required processing time, several solutions

could be explored. For example, superpixels that run faster could be used in the

early stages of the segmentation and used as seeds to the main region-growing algo-
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rithm. An add-on has recently been implemented in GRASS GIS for this function-

ality. Another possibility could be to experiment massive parallel computing for the

segmentation step, but an adequate infrastructure needs to be accessible such as a

High-performance computing (HPC) system.

Regarding to the land use mapping framework, the main limitation relates to

the completeness of OSM data. Indeed, the OSM database is not complete enough

in certain locations, especially in peri-urban areas. However, the completeness of

OSM is increasing and it is likely that such issues will become less prevalent in the

future. Still, the performance of the proposed framework is likely to decrease as

the landscape becomes more rural, because the density of roads in OSM will be

lower. For this reason, other strategies should be investigated in order to try to

automatically extract meaningful landscape units in rural environments.

Another limitation of the land use framework is the use of landscape metrics.

These belong to the “patch mosaic” paradigm [91] and may hide some aspects of the

urban structures. Future research could investigate to use of information derived

from the OBIA segments. For example, information on individual segments could

be computed, e.g., area, compactness, and fractal dimension, and then summarized

either at the class or at the landscape level.

Finally, a limitation also exists for the population framework and with regard

to top-down dasymetric approaches, such as the one presented here. The main and

most obvious limitation is that this approach is completely dependent on official

censuses which are frequently criticized regarding their reliability. Furthermore, in

the best of cases, official censuses are usually organized once in a decade, but in

developing countries this frequence is not systematically respected.

More general limitations and criticisms of the proposed solutions, not yet ad-

dressed in the published papers, are discussed below.

First of all, we implemented a top-down dasymetric mapping as population mod-

eling strategy. The major limitation of this approach is that it relies completely on

the official population data provided in administrative units. If the latter are highly

outdated or if they suffer from a lack of reliability, population estimates will be

directly affected. As shown in the introduction (chapter 1), a bottom-up approach

should be preferred in this kind of situation. Also, since dasymetric models de-

pend on official census data which count the population by usual place of residence

(night-time population), they fail to provide useful information for abrupt hazard

event that could happen during daytime. Again, a bottom-up approach could be

used to get daytime estimates (“ambient” population).

Second, all the proposed frameworks have been developed to be used with

VHRRS data. While access to these data is usually not a problem in rich coun-
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tries1, their acquisition is more difficult for countries faced with a lack of financial

resources. This could inhibit the use of VHR data in remote sensing applications

in poor countries. However, in order to limit acquisition costs, fine-scaled maps

could be created using VHR acquired only over urban areas, while the rest of the

national territory could be mapped using coarser but free HR data2. Moreover, it

should be noted that the acquisition costs only represent a small proportion of the

total financial resources needed which also include personnel cost, hardware acquisi-

tion and often the expensive licensing cost of proprietary GIS and image processing

software. By providing entirely free and open-source solutions, this thesis tries to

slightly reduce the gap that exists between research conducted in rich and poor

countries. In future research, it would be very interesting to analyse and compare

the total financial means - i.e., image acquisition, personnel cost, hardware, training,

etc. . . - required to perform a national mapping campaign using our approach and

the approach currently used by national authorities.

Next, one limitation of the frameworks proposed here is related to the level of

expertise required to reuse them. Indeed, even if they are semi-automatized and

if important efforts have been made for making them easily understandable and

reusable, their implementations remain quite complex and users should be skilled in

geomatics and in basic computer programming for employing them in their own re-

search. In this regard, there is still a technical lag in SSA compared to the developed

world. Several algorithms developed in this thesis were translated into ready-to-use

GRASS GIS modules, which is a first step toward making the proposed solutions

reusable by a larger audience.

Finally, another potential criticism is related to the effective use of the proposed

solutions. Aside from scientific aspects, a pending question is if the new geoinforma-

tion produced in this thesis - i.e., land-cover and land-use maps as well as gridded

population estimates - will reach their target and serve as evidence-based support for

decision-making processes for public policy, e.g., for poverty reduction programs or

access to healthcare infrastructure or sanitation equipment. This is, of course, very

difficult to answer, especially because it depends on the political will and financial

capacities. It is unlikely that the geoinformation produced here will serve directly

as a decision tool. However, this key information is likely to be used in the analyses

of other research aiming at providing valuable specific indicators in direct support

to political decision-making.

Besides, it should be kept in mind that modeled population layers could be mis-

used. For example, the end users could consider the population estimation as real

1Acquisition cost remains relatively limited compared to personal costs, for example. Also,
more and more countries provide national coverage with VHR images accessible at no cost for
research purpose.

2Obviously, the high level of accuracy achieved through the use of VHR would be affected.
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counts if they are not sufficiently informed that they only provide an approxima-

tion of the reality. Also, it may be tempting to compute specific indicators (e.g.,

population at risk of flooding), at the same resolution as the gridded population

product. However, the accuracy of estimated population count is likely to be low at

the grid-cell level3. The appropriate use would be to derive indicators at a coarser

resolution instead (e.g., proportion of the population who are at risk of flooding in

a larger area), because it would enable the mitigation of extreme errors and then

increase the confidence that one can have in the indicator. For this reason, it is

important to inform end users about product limitations and good practices for its

use.

5.3 Perspectives for future research

As research never stops, there are obviously many perspectives for future research

linked with topics tackled in this thesis. Some of them are presented below.

As aforementioned, a bottom-up approach should be preferred to top-down dasy-

metric mapping when population data are outdated or considered unreliable. Future

research using a bottom-up approach could investigate how VHR may be used to

improve population estimates obtained by using HR data. One idea is to use VHR-

derived geoinformation to improve the selection of the locations where to carry out

the micro-surveys to make them more representative of the diversity of the AOI,

which might result in an improvement of the quality of the population estimates.

Another perspective of research is to tackle the issues related to the acquisition

cost of VHRRS images, which could reduce their potential for regional and national

scale application applications. Future research could assess the potential of remote

sensing data with slightly coarser spatial resolution as cost-effective alternatives to

VHR in dasymetric mapping. For example, SPOT satellites providing images with

a spatial resolution of 1.5m but at a lower cost than VHR, could be used to map

the land cover and land use at the intra-urban level. While we expect that it could

not provide such detailed and accurate geographic information as sub-metric data

used in this thesis, it would be very interesting to carry out a comparative study

to quantify the loss of accuracy in population estimates induced by the use of LC

and LU maps produced from coarser resolution data. In this context, it would be

interesting to see how the frameworks proposed in this thesis could be adapted to

coarser resolution.

An important point that was not covered in this thesis and that is worth inves-

tigating in future studies is related to uncertainty. Indeed, land-cover and land-use

3Actually, the main reason to provide gridded population layer with grid cells of 100*100m is
to mitigate the loss of spatial precision when performing spatial analysis.
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maps are never produced with an accuracy of 100% and are thus affected to a certain

level by classification uncertainties. The main issue, from a modeling point of view,

is that errors in ancillary data are likely to impact the output of the model. Future

research could aim at analyzing and quantifying the influence of the uncertainty in

input data on the quality of population estimations with dasymetric mapping.

Last but not least, we could not conclude this thesis without raising the perspec-

tive provided by the recent development of Deep Learning (DL). As it reaches many

aspects of our society, these methods affect more and more fields of research leading

to scientific breakthroughs and paradigm changes. Potentially, many remote sensing

and modeling applications could be treated with DL approaches. It opens doors to

a considerable amount of future research. With regards to the topics addressed in

this thesis, it would be interesting to see how far DL approaches can go in replacing

“classical” methods as the one proposed here that proved their efficiency.
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[11] Täıs Grippa et al. “Mapping Urban Land Use at Street Block Level Using
OpenStreetMap, Remote Sensing Data, and Spatial Metrics”. In: ISPRS In-
ternational Journal of Geo-Information 7.7 (June 22, 2018), p. 246. issn: 2220-
9964. doi: 10.3390/ijgi7070246.

156

http://www.fao.org/docrep/003/x6988f/x6988f07.htm
http://www.fao.org/docrep/003/x6988f/x6988f07.htm
http://popups.ulg.ac.be/0770-7576/index.php?id=3702&file=1
http://popups.ulg.ac.be/0770-7576/index.php?id=3702&file=1
https://doi.org/10.2307/524256
https://doi.org/10.1177/0956247816663557
https://doi.org/10.1177/0956247816663557
http://www.isocarp.net/Data/case_studies/2172.pdf
https://doi.org/10.1080/13574809.2017.1305882
https://doi.org/10.3390/ijgi7070246


BIBLIOGRAPHY

[12] Lei Ma et al. “A review of supervised object-based land-cover image classifi-
cation”. en. In: ISPRS Journal of Photogrammetry and Remote Sensing 130
(Aug. 2017), pp. 277–293. issn: 09242716. doi: 10.1016/j.isprsjprs.2017.
06.001.

[13] Stefanos Georganos et al. “Scale Matters: Spatially Partitioned Unsupervised
Segmentation Parameter Optimization for Large and Heterogeneous Satellite
Images”. In: Remote Sensing 10.9 (Sept. 9, 2018), p. 1440. issn: 2072-4292.
doi: 10.3390/rs10091440.

[14] Franz Schug et al. “Mapping patterns of urban development in Ouagadougou,
Burkina Faso, using machine learning regression modeling with bi-seasonal
Landsat time series”. en. In: Remote Sensing of Environment 210 (June 2018),
pp. 217–228. issn: 00344257. doi: 10.1016/j.rse.2018.03.022. (Visited on
04/12/2018).
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trict, Bolivia”. In: Journal of Geophysics and Engineering 9.4 (Aug. 2012),
S40–S52. issn: 1742-2132, 1742-2140. doi: 10.1088/1742-2132/9/4/S40.

[18] Maggi Kelly et al. “Terrestrial Remotely Sensed Imagery in Support of Public
Health: New Avenues of Research Using Object-Based Image Analysis”. en.
In: Remote Sensing 3.11 (Oct. 2011), pp. 2321–2345. issn: 2072-4292. doi:
10.3390/rs3112321.

[19] T. Blaschke. “Object based image analysis for remote sensing”. In: ISPRS
Journal of Photogrammetry and Remote Sensing 65.1 (Jan. 2010), pp. 2–16.
issn: 0924-2716. doi: 10.1016/j.isprsjprs.2009.06.004.

[20] Robert M. Haralick and Linda G. Shapiro. “Image segmentation techniques”.
In: Computer Vision, Graphics, and Image Processing 29.1 (Jan. 1985), pp. 100–
132. issn: 0734-189X. doi: 10.1016/S0734-189X(85)90153-7.

[21] Täıs Grippa et al. “An Open-Source Semi-Automated Processing Chain for
Urban Object-Based Classification”. In: Remote Sensing 9.4 (Apr. 11, 2017),
p. 358. doi: 10.3390/rs9040358.

[22] Lennert M. and GRASS Development Team. Addon i.segment.uspo. 2016. url:
https://grass.osgeo.org/grass70/manuals/addons/i.segment.uspo.

html (visited on 11/25/2016).
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