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Abstract We apply a microscopic version of the Continuum Discretized Cou-
pled Channel (CDCC) method, referred to as MCDCC, to 8Li and 8B scatter-
ing on different targets. The 8Li and 8B nuclei are described in a microscopic
three-cluster model (α+ t+ n and α + 3He + p), using the hyperspherical co-
ordinates. We first present spectroscopic properties of these nuclei. Then, we
determine 8Li+nucleus and 8B+nucleus potentials by using proton+target
and neutron+target interactions. We compute various elastic-scattering cross
sections and confirm that breakup effects are important, in particular at low
energies. In general, we find a fair agreement with experiment, except for
8B+58Ni where we suggest that the data might be overestimated.

Keywords 8Li and 8B scattering · CDCC method · Cluster models

1 Introduction

Exotic nuclei represent a major interest in current nuclear physics [1]. These
nuclei, close to the driplines, are characterized by a low binding energy of
the last nucleon(s). This property leads to a halo structure, well known since
30 years [2]. A halo nucleus is considered as a core surrounded by one or two
nucleons. Owing to the low binding energy, the spatial extension of the valence
nucleons is large, and the associated radii are much larger than in stable nuclei.

Precise reaction theories must include this specific two-body or three-body
structure. At energies around the Coulomb barrier, a full quantal treatment of
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the reaction process must be considered. In this energy regime, the Continuum
Discretized Coupled Channel (CDCC) method has proved to be an accurate
tool [3,4]. The CDCC theory was first developed by Rawitscher [5] to describe
deuteron-induced reactions. The low binding energy of the deuteron (2.2 MeV)
makes it necessary to include breakup channels, even to determine elastic
scattering cross sections.

This traditional CDCC approach, where the projectile is described by a
two- or by a three-body structure, faces two major problems: (1) for complex
projectiles, such as 11Li, the three-body model is a rather strong approxima-
tion, since it neglects the structure of the core; (2) more important, optical
potentials between the target and each constituent of the projectile are often
unknown, and crude approximations are sometimes necessary. These problems
have been recently addressed by using a microscopic description of the projec-
tile (MCDCC, see Refs. [6–8]). In the MCDCC approach, the projectile wave
functions are obtained from a nucleon-nucleon interaction. To describe the
scattering process, only nucleon-target optical potentials are necessary. These
potentials are well known over a broad range of masses and energies. A first
application was performed on the 7Li system, where it was shown that the
MCDCC provides an excellent description of elastic and inelastic scattering,
without any adjustable parameter.

Our aim in the present work is to apply the MCDCC to the 8Li and 8B
three-cluster projectiles. In the spirit of Ref. [6], we use microscopic cluster
wave functions, with an exact antisymmetrization between the eight nucleons.
We will consider various systems which have been investigated experimentally.
The present model offers the possibility of a common study with identical
conditions of calculations except, of course, in the nucleon-target interaction.

2 Spectroscopy of 8Li and 8B

2.1 Microscopic three-cluster model

The main specificity of the MCDCC [6] is to use a microscopic description
of the projectile. In other words, the 8Li and 8B nuclei are described by a
eight-nucleon Hamiltonian, which reads

H0 =

Ap
∑

i=1

ti +

Ap
∑

i<j=1

(vNij + vCij), (1)

where Ap = 8 is the nucleon number, ti is the kinetic energy of nucleon i,
vNij is an effective nucleon-nucleon interaction, and vCij is the Coulomb inter-
action. Recent few-body calculations [9] use realistic nucleon-nucleon interac-
tions, such as AV18 [10] or CD-Bonn [11]. However we solve the Schrödinger
equation associated with (1) within the cluster approximation [12–14]. This
approximation permits a precise description of halo states or, more generally,
of cluster states where the deformation is large. However, as a consequence,
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effective interactions vNij must be used, which are adapted to the cluster model.
As central force, we adopt the Minnesota interaction [15] which provides a good
description of light systems. We also include a zero-range spin-orbit force [16].

Let us write the Schrödinger equation as

H0 Φ
jmπ

(k) = Ejπ

(k) Φ
jmπ

(k) , (2)

where j and π are the angular momentum and parity of the projectile, and
where k stands for the excitation level. In the CDCC framework [4,17], the
wave functions Φjmπ

(k) are expanded over a basis, and the Schrödinger equation

(2) is replaced by an eigenvalue problem. Negative energies Ejπ

(k) correspond

to physical states, whereas positive eigenvalues, referred to as pseudostates
(PS), simulate the continuum. Notice that, in some case, a positive eigenvalue
may be associated with a physical narrow resonance. If the resonance width is
small enough, a bound-state approximation can be used.

In the present work, Φjmπ are defined in a α+ t+ n (or α + 3He + p)
three-cluster model, involving 0s orbitals for the α and t wave functions φα

and φt. In the Resonating Group Method (RGM, see Refs. [12,13]), the wave
functions are written as

Φjmπ

(k) = A
∑

γ

∞
∑

K=0

ϕjmπ
γK (ξξξα, ξξξt, Ωρ)χ

jπ

γK(k)(ρ), (3)

where we use the hyperspherical coordinates [18] (ρ is the hyperradius, and α
is the hyperangle). In Eq. (3), we define the channel functions as

ϕjmπ
γK (ξξξα, ξξξt, Ωρ) = φα(ξξξα)

[

[

φt(ξξξt)⊗ φn

]S
⊗ Y L

ℓxℓyK
(Ωρ)

]jm

, (4)

where ξξξα and ξξξt are sets of coordinates associated with the α particle, and with
the triton, respectively. The total spin S = 0, 1 results from the coupling of the
triton and neutron spins, and the total angular momentum L stems from the
coupling of ℓx, associated with the t+n coordinate xxx, and ℓy, associated with
the α+ (t+ n) coordinate yyy (two other choices are possible and are related to
each other by unitary transforms). Index γ stands for γ = (ℓx, ℓy, L, S) and the
hypermomentum K goes from 0 to infinity (it is limited by K ≤ ℓx + ℓy and
by (−1)K = (−1)ℓx+ℓy). In practice it is truncated at a finite value Kmax. The
hypersperical functions Y LM

ℓxℓyK
(Ωρ) depend on five angles (Ωx, Ωy, α). We refer

the reader to Refs. [16,18] for more detail about the hyperspherical formalism
and its application to microscopic three-cluster models.

The unknown quantities in wave functions (3) are the hyperradial functions
χjπ

γK(k)(ρ). In pratice we use the Generator Coordinate Method (GCM, see Ref.

[14]), where these functions are expanded over a set of Gaussian functions
centred at different values, called the generator coordinates. In the GCM, the
wave function (3) is rewritten as

Φjmπ

(k) =
∑

γK

∫

dRf jπ

γK(k)(R)Ψ jmπ
γK (R), (5)
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where R is the generator coordinate, and Ψ jmπ
γK (R) is a projected Slater de-

terminant. The RGM and the GCM are strictly equivalent, but the GCM
definition (5) involves Slater determinants which are well adapted to numer-
ical calculations. The integral in (5) is replaced by a sum over a finite set of
generator coordinates (typically ∼ 10). The Schrödinger equation (2) is there-
fore converted to an eigenvalue problem, known as the Hill-Wheeler equation,

∑

γKn

[

Hjπ
γK,γ′K′(Rn, Rn′)− Ejπ

(k)N
jπ
γK,γ′K′(Rn, Rn′)

]

f jπ

γK(k)(Rn) = 0, (6)

where Hjπ
γK,γ′K′(Rn, Rn′) and N jπ

γK,γ′K′(Rn, Rn′) are the Hamiltonian and
overlap kernels, respectively. They are obtained from 7-dimension integrals,
evaluated numerically [16].

Let us briefly discuss the number of γK values in expansion (3). In Table 1,
we present the γK values for j = 2+, which corresponds to the 8Li/8B ground
state. We choose Kmax = 4 which is too small for realistic applications, but
large enough for an illustrative example. Even for a small Kmax, the number
of components is rather large (24 here).

Table 1 Quantum numbers for j = 2+ and for Kmax = 4 in expansion (3).

S L K ℓx ℓy
0,1 2 2 0 2

1 1
2 0

4 0 2
1 1
1 3
2 0
2 2
3 1

1 1 2 1 1
4 1 1

2 2
1 3 4 1 3

2 2
3 1

Table 2 gives the number of γK values, for different jπ, when Kmax in-
creases. Clearly these numbers increase very fast with Kmax. As we will see in
the next subsection, typical values are Kmax ∼ 16− 20. Compared to 6He, the
numbers of components are nearly twice as large, since the symmetry of the
two neutrons in 6He does not exist in 8Li and in 8B.

When coefficients f jπ

γK(k)(Rn) are determined from (6), various spectro-

scopic properties can be computed, such as matter, proton and neutron radii,
or electromagnetic transition probabilities. To use the GCM wave functions
in nucleus-nucleus scattering, the neutron and proton densities of the pro-
jectile are required. The calculations must be performed not only for bound
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Table 2 Numbers of γK values for various jπ and Kmax.

Kmax j = 0+ j = 1+ j = 2+ j = 3+

0 1 1 0 0
4 9 21 24 20
8 25 65 88 96
12 49 133 192 228
16 81 225 336 416
20 121 341 520 660

states, but also for the pseudostates. The corresponding matrix elements are
computed as explained in Ref. [19].

2.2 Properties of 8Li and of 8B

We adopt here an α+ t+ n microscopic three-cluster model, using the hyper-
spherical coordinates. This description improves the calculation of Ref. [20],
where Jacobi coordinates were used, since the main goal was the investigation
of 7Li+n and 7Be+p scattering and capture. The model spaces were smaller
than here since only ℓx = 1, 3 were taken into account (i.e. j = 1/2− to 7/2−,
corresponding to the low-lying states of 7Li and 7Be).

We select eight generator coordinates for the hyperradius (R from 1.5 to 12
fm with a step of 1.5 fm), and K values up to Kmax = 16. We adopt the Min-
nesota interaction [15], with a zero-range spin-orbit force. Both terms contain
one parameter (admixture parameter u ≈ 1 in the Minnesota central force,
and amplitude S0 ≈ 30 MeV.fm5 in the spin-orbit term). Both parameters
can be slightly modified to reproduce important properties of the system. We
choose S0 = 37 MeV.fm5, which approximately reproduces the energies of the
7Li(1/2−) and 7Be(1/2−) first excited states. For u, we take u = 0.9616 for 8Li
and u = 0.9598 for 8B, which reproduce the binding energies with respect to
the α+ t+ n and α + 3He + p three-body threshold (−4.49 MeV and −1.72
MeV, respectively). Notice that, with this choice, the binding energies of 7Li
and 7Be are slightly underestimated (−1.80 MeV for 7Li and −0.98 MeV for
7Be, to be compared to the experimental values −2.47 MeV and −1.59 MeV,
respectively). We have repeated the calculations by adopting an u value which
does reproduce these values, without noticeable change in the cross sections.
When the nucleon-nucleon interaction is determined, there is no more free
parameter in the model.

In Fig. 1, we present the convergence of 8B states with respect to Kmax. A
similar figure is obtained for 8Li, and is not shown here. A reasonable conver-
gence is obtained with Kmax ≈ 10, but we use Kmax = 16 to guaranty a full
convergence.

Figure 2 displays energy curves, i.e. energies obtained for a single value
of the generator coordinate R in Eq. (6). These energy curves are not used
in further calculations, but they provide a useful insight on the properties of
the system. Before a full diagonalization of the Hamiltoninan (i.e. by using
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Fig. 1 Convergence of 8B states with respect to Kmax.

the full set of generator coordinates), we observe a minimum in the 2+, 1+

and 3+ partial waves, were a bound state or a narrow resonance are expected.
In agreement with experiment, the lowest minimum is obtained for j = 2+

which corresponds to the ground state of 8B. In contrast, negative-parity en-
ergy curves are repulsive, which means that no bound states neither narrow
resonances can be expected.
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Fig. 2 8B energy curves, obtained for a single value of the generator coordinate R in Eq.
(6).

Table 3 presents various spectroscopic properties of 8Li and of 8B. The
r.m.s. radii are rather well reproduced, as well as the quadrupole moments.
In contrast, the B(E2, 1+ → 2+) in 8Li, which was measured in 1991 through
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Coulomb excitation using a 8Li radioactive beam [21,22], is strongly under-
estimated, as in previous microscopic calculations [23,20,24]. Obviously a re-
measurement of the B(E2) would be extremely interesting to clarify the situ-
ation. If confirmed, the validity of the model could be questioned.

Table 3 Spectroscopic properties of 8Li and 8B.

8Li 8B
GCM exp Ref. GCM exp Ref.√

< r2 > (fm) 2.35 2.37± 0.02 [25] 2.45 2.38± 0.04 [25]
√

< r2 >p (fm) 2.16 2.26± 0.02 [25] 2.58 2.45± 0.05 [25]√
< r2 >n (fm) 2.46 2.44± 0.02 [25] 2.21 2.28± 0.04 [25]

Q(2+) (e.fm2) 2.3 3.27± 0.06 [26] 5.3 6.83± 0.21 [26]
B(E2) (W.u.) 1.6 47± 23, 87± 23 [21,22] 5.0
E(1+) (MeV) 0.69 0.98 [26] 0.55 0.77 [26]
E(3+) (MeV) 1.88 2.26 [26] 1.98 2.32 [26]

The neutron and proton monopole densities of the ground states are shown
in Fig. 3. We define the normalization as in Ref. [27]. As expected, the neutron
density of 8Li, and the proton density of 8B extend to large distances. These
densities, as well as those of the pseudostates (see next section) will be used to
compute the 8Li/8B+nucleus potentials and the corresponding cross sections.
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Fig. 3 Neutron and proton densities of the 8Li and of 8B ground states.
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3 Microscopic model for 8Li and 8B scattering

3.1 Overview of the MCDCC

The microscopic CDCC (see Refs. [6,7]) is a natural extension of the traditional
CDCC method [4,17], where the breakup of the projectile is simulated by
pseudostates. The Hamiltonian of the projectile + target system is defined as

H = H0 + TR +

Ap
∑

i=1

viT (rrri −RRR), (7)

whereH0 is the Hamiltonian of the projectile,RRR is the projectile-target relative
coordinate, and rrri are the internal coordinates of the projectile. The interaction
between nucleon i and the target T reads

viT (sss) =
(1

2
− tiz

)

[

vpT (sss) +
ZT e

2

s

]

+
(1

2
+ tiz

)

vnT (sss), (8)

where ttti is the isospin of nucleon i, ZT e is the charge of the target, and vpT (sss)
and vnT (sss) are proton and neutron optical potentials, respectively.

The total wave function, associated with Hamiltonian (7) is expanded over
the GCM basis (2) as

ΨJMπ =
1

R

∑

cL

YJMπ
cL (ΩR)u

Jπ
cL (R), (9)

where L is the relative angular momentum, and index c stands for the projectile
states c = (j, k). We assume that the target has a spin 0+ and remains in its
ground state. The channel functions are given by

YJMπ
cL (ΩR) = iL

[

Φj

(k) ⊗ YL(ΩR)
]JM

, (10)

where Φj

(k) are the internal wave functions (3) (the parity is implied). In ex-

pansion (9), the summation over the pseudostates is limited by truncations on
angular momentum jmax, and on excitation energy Emax. The radial functions
uJπ
cL (R) are solutions of the coupled-channel system

−
~
2

2µ

[

d2

dR2
−

L(L+ 1)

R2

]

uJπ
cL (R) +

∑

c′L′

V Jπ
cL,c′L′(R)uJπ

c′L′(R)

= (E − Ec)u
Jπ
cL (R), (11)

where Ec are the projectile energies given by Eq. 2, and where the coupling
potentials V Jπ

cL,c′L′(R) are obtained from the matrix elements

V Jπ
cL,c′L′(R) = 〈YJMπ

cL |

Ap
∑

i=1

viT (rrri −RRR)|YJMπ
c′L′ 〉. (12)
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These matrix elements are calculated from the densities of the projectile (see
Ref. [28] for details). The coupled-channel system (11) is solved with the R-
matrix method, using Lagrange meshes [29,30]. This method provides the
radial functions uJπ

cL (R) and the corresponding scattering matrices. Cross sec-
tions are then computed with standard formulas.

3.2 Application to 8Li-nucleus scattering

The conditions of the GCM description of 8Li have been given in Sect.2.2.
Figure 4 shows the pseudostates included in the calculation (energies are given
with respect to the α+ t+ n threshold). Only three states can be considered as
physical: the 2+ ground state, the 1+ first excited state, and the low-energy 3+

resonance. As presented in Table 3, the GCM properties are in fair agreement
with experiment.
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Fig. 4 Bound and pseudostates energies E
jπ

k
of 8Li as a function of its total angular

momentum jπ. The 8Li energies are defined from the α+ t+ n breakup threshold. The
dashed line indicates the 7Li+n two-body threshold.

For the nucleon-target interaction viT , we use the global parametrization
of Koning and Delaroche [31]. The R-matrix channel radius is taken as a = 30
fm with N = 120 mesh points. These conditions guaranty that the nuclear
interaction is negligible in the external region (R ≥ a), and that the inter-
nal wave function can be described with accuracy. Various tests have been
performed to check that the cross sections are insensitive to these parameters.

One of the important issues in CDCC calculations is the convergence with
respect to the number of pseudostates. This is controlled by two parameters,
jmax and Emax. The convergence of the MCDCC has been illustrated pre-
viously for other reactions (see, for example, refs. [27,32]). The situation is
similar here, and we only present the single-channel and the full calculations.
This comparison illustrates the role of breakup effects.

In Fig. 5, we present elastic cross sections for 8Li+12C at Elab = 14 MeV
(Ec.m. = 8.4 MeV), and for 8Li+209Bi at Elab = 37 MeV (Ec.m. = 35.6
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MeV). Experimental data are taken from Ref. [33] and Ref. [34], respectively.
For 8Li+12C, the experimental angular distribution contains very few angles,
and does not provide evidence for an oscillatory behaviour. Breakup effects
are stronger at large angles (θ > 50◦, where nuclear effects are important),
and improves the agreement with the available data. Scattering to an heavy
target is illustrated with 8Li+209Bi, with the recent data of Ref. [34]. Without
breakup, the model overestimates the data around θ ≈ 50◦, and predicts too
small cross sections at large angles. Although there is a slight underestimation
at θ > 60◦, breakup effects improve the agreement with experiment. Most
likely, transfer channels such as 209Bi(8Li,7Li)210Bi are not negligible, although
they are not included in CDCC calculations.
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Fig. 5 8Li+12C (upper panel) and 8Li+209Bi (lower panel) elastic cross sections (divided
by the Rutherford cross sections). The data are taken from Ref. [33] and Ref. [34]. The
dotted line represents the single-channel calculation, and the solid line corresponds to the
full calculation.

3.3 Application to 8B-nucleus scattering

The conditions are identical to those of 8Li+nucleus scattering. Figure 6 illus-
trates the model with 8B+12C and 8B+208Pb, and the experimental data are
taken from Refs. [35] and [36], respectively. As for 8Li, the data on 8B+12C are



8Li+nucleus and of 8B+nucleus scattering 11

too few to show a possible oscillatory structure, as predicted by the theory.
Further experiment would be welcome. At high energies, the application to
8B+208Pb shows that breakup effects are weak.
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Fig. 6 8B+12C (upper panel) and 8B+208Pb (lower panel) elastic cross sections (divided
by the Rutherford cross sections). The data are taken from Ref. [35] and Ref. [36]. The
dotted line represents the single-channel calculation, and the solid line corresponds to the
full calculation.

We want to address more specifically the data on 8B+58Ni [37], which are
presented in Fig. 7. As shown in this figure, the agreement with the data is
poor, even when breakup effects are included. A similar disagreement is ob-
tained at other energies. Although there might be specific effects on 8B+58Ni,
it is surprising to see that other theoretical approaches face some problems in
the analysis of the data. In Ref. [37], the authors provide optical potentials
which do fit the data, but the real part of the potential is unphysically small
compared to the imaginary part. In Ref. [38], the authors use microscopic
densities of the 8B ground state to investigate elastic scattering on different
targets. As usual, the folding potential is renormalized to simulate the missing
breakup effects. This factor is quite different from unity for densities obtained
in a three-body model (between 0.4 and 0.2, depending on energy). Although
the fits presented in Ref. [38] nicely agree with experiment, the associated pa-
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rameters are open to criticism. These results suggest that the data on 8B+58Ni
could be too large, and should be reconsidered.
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Fig. 7 8B+58Ni elastic cross section (divided by the Rutherford cross sections). The data
are taken from Ref. [37]. The dotted line represents the single-channel calculation, and the
solid line corresponds to the full calculation.

4 Conclusion

In this paper, we have applied the MCDCC to elastic scattering involving
8Li and 8B as projectile. These nuclei are described by 8-body wave func-
tions, defined in the framework of the RGM/GCM. This model provides a fair
description of spectroscopic properties, except for the B(E2) in 8Li, whose
experimental value is larger by one order of magnitude. This disagreement
confirms previous theoretical works [23,20,24]. A re-measurement of this tran-
sition probability would be very helpful to clarify the situation.

The elastic cross sections have been determined in a coupled-channel for-
malism, where the potentials are deduced from the projectile wave functions.
As usual in CDCC calculations, pseudostates represent an approximation of
the three-body continuum, and simulate breakup effects. As the nucleon-target
optical potentials are taken from the literature, there is no fitting parameter
in the model. We have investigated elastic scattering on a light target, with
8Li+12C and 8B+12C. For heavy targets, we have considered three systems:
8Li+209Bi, 8B+208Pb and 8B+58Ni. There is a reasonable agreement for the
first two reactions, but the MCDCC cannot reproduce satisfactorily the data
on 8B+58Ni. We have mentioned that the problem is also present, although
not explicitly pointed out, in other theoretical approaches.

The CDCC method is a powerful tool to study reactions involving weakly
bound nuclei. Using pseudostates allows a realistic treatment of breakup ef-
fects, known to be important for the scattering of exotic nuclei. The method
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involves large coupled-channel systems, and is demanding in terms of com-
puter times. The calculation of scattering matrices is performed by using the
R-matrix theory which is fast and accurate.

Of course, the CDCC method only includes elastic and breakup channels.
Rearrangement channels, in particular nucleon transfer to the target, could
be a role, even in the elastic cross section. Including transfer channels in the
CDCC theory represents a challenge for future scattering calculations [39].
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9. B.R. Barrett, P. Navrátil, J.P. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013).

10. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995).
11. R. Machleidt, F. Sammarruca, Y. Song, Phys. Rev. C 53, R1483 (1996)
12. H. Horiuchi, Prog. Theor. Phys. Suppl. 62, 90 (1977)
13. K. Wildermuth, Y.C. Tang, A Unified Theory of the Nucleus (Vieweg, Braunschweig,

1977)
14. P. Descouvemont, M. Dufour, Clusters in Nuclei, vol. 2 (Springer, 2012)
15. D.R. Thompson, M. LeMere, Y.C. Tang, Nucl. Phys. A 286, 53 (1977)
16. S. Korennov, P. Descouvemont, Nucl. Phys. A 740, 249 (2004)
17. M. Yahiro, K. Ogata, T. Matsumoto, K. Minomo, Prog. Theor. Exp. Phys. p. 01A206

(2012)
18. M.V. Zhukov, B.V. Danilin, D.V. Fedorov, J.M. Bang, I.J. Thompson, J.S. Vaagen,

Phys. Rep. 231, 151 (1993)
19. D. Baye, P. Descouvemont, N.K. Timofeyuk, Nucl. Phys. A 577, 624 (1994)
20. P. Descouvemont, D. Baye, Nucl. Phys. A 573, 28 (1994)
21. R.J. Smith, J.J. Kolata, K. Lamkin, A. Morsad, F.D.B. andJ. A. Brown, W.Z. Liu, J.W.
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