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Abstract

Directional data are constrained to lie on the unit sphere of Rq for
some q ≥ 2. To address the lack of a natural ordering for such data, depth
functions have been defined on spheres. However, the depths available ei-
ther lack flexibility or are so computationally expensive that they can only
be used for very small dimensions q. In this work, we improve on this by
introducing a class of distance-based depths for directional data. Irrespec-
tive of the distance adopted, these depths can easily be computed in high
dimensions too. We derive the main structural properties of the proposed
depths and study how they depend on the distance used. We discuss the
asymptotic and robustness properties of the corresponding deepest points.
We show the practical relevance of the proposed depths in two applications,
related to (i) spherical location estimation and (ii) supervised classification.
For both problems, we show through simulation studies that distance-based
depths have strong advantages over their competitors.

1 Introduction
Directional data analysis is relevant when the sample space is the unit hyper-
sphere S q−1

:=
{

x ∈ Rq : xT x = 1
}

in Rq, which occurs when observations are directions, axes,
rotations, or cyclic events. Applications arise in numerous fields, including as-
tronomy, earth sciences, biology, meteorology and political science; see Gill and
Hangartner (2010) for an exemple in the latter field. Directional data analysis can
also be exploited to study patterns of unit vectors in Rq, such as those encountered
in text mining (Hornik et al., 2012).

Statistically, analyzing and describing directional data requires tackling some
interesting problems associated with the lack of a reference direction and with
a sense of rotation not uniquely defined. Another important issue when dealing
with such data is the lack of a natural ordering, which generates a special interest
in depth functions on the sphere. Parallel to their role in the usual Euclidean
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case, directional depths are to measure the degree of centrality of a given spherical
location with respect to a distribution on the sphere and to provide a center-
outward ordering of spherical locations; see Agostinelli and Romanazzi (2013b).

Depth concepts for directional data were first considered by Small (1987) and
Liu and Singh (1992). Following the pioneering work of Small (1987), Liu and
Singh (1992) popularized the concept of angular Tukey depth (ATD), which is
the directional analog of the celebrated halfspace depth (Tukey, 1975). The same
paper introduced two further depths for directional data, namely the angular sim-
plicial depth (ASD), which is the directional version of the simplicial depth from
Liu (1990), and the arc distance depth (ADD), which is based on the concept of
arc length distance.

Unlike the ADD, the ATD and ASD have been studied and used in the lit-
erature. For instance, Rousseeuw and Struyf (2004) investigated some of the
properties of the ATD, while Agostinelli and Romanazzi (2013b) considered some
of the possible applications of the ASD and ATD. R packages are also available
for these depths: the package depth (Genest et al., 2012) allows to compute ATD
values for q = 2 or 3, whereas the package localdepth (Agostinelli and Romanazzi,
2013a) implements specific functions for the evaluation of the ATD for q = 2, and
of the ASD for an arbitrary q ≥ 2.

The main drawback of both the ASD and ATD is the computational effort they
require, especially for higher dimensions q. The angular Mahalanobis depth of Ley
et al. (2014), that is based on a concept of directional quantiles, is computation-
ally much more affordable, but suffers from other disadvantages: it requires the
preliminary choice of a spherical location functional and it is less flexible than the
ASD/ATD in the sense that it produces rotationally symmetric depth contours,
even if the underlying distribution is not rotationally symmetric.

On the one hand, depth functions for directional data are useful, yet on the
other hand, they lack flexibility (and depend on some user’s choice) or are com-
putationally too demanding. In order to improve on this, this work introduces a
new class of directional depth functions that is based on spherical distances and
contains the ADD as a particular case. These depth functions are computationally
feasible even in high dimensions and are generally more flexible. Distance-based
directional depths show several other advantages over their ASD/ATD competi-
tors: they take positive values everywhere on S q−1 (but in the uninteresting case
of a point mass distribution), whereas the ASD/ATD can take zero values (which
is undesirable when performing supervised classification). Further advantages of
the proposed distance-based depths is that they typically do not provide ties in
the sample case (whereas ties are unavoidable for the ASD/ATD, due to their step
function nature) and that they do not require any assumption on the underly-
ing distribution (unlike the angular Mahalanobis depth that, when based on the
spherical mean, is not defined for zero-mean distributions).

2



The paper is organized as follows. In Section 2, we introduce the proposed
class of distance-based depth functions for directional data, and we consider three
particular cases, namely the arc distance depth (ADD), the cosine distance depth
(CDD) and the chord distance depth (ChDD). In Section 3, we derive the main
structural properties of the proposed depths and study how they depend on the
distance used. In Section 4, we compare the various depths considered for several
empirical distributions on the circle (q = 2), which also allows us to illustrate the
theoretical results of Section 3. In Section 5, we discuss the asymptotic and ro-
bustness properties of the proposed concepts. In Section 6, we show the practical
relevance of the distance-based depths in two applications, related to (i) spherical
location estimation (Section 6.1) and (ii) supervised classification (Section 6.2).
For both problems, we perform simulations that show the advantages of the pro-
posed depths over their competitors. Final comments are provided in Section 7.
Finally, an appendix collects technical proofs.

2 Distance-based depths for directional data
In Definition 1 below, we introduce a class of depths on the unit sphere S q−1. A
particular member of this class will be obtained by fixing a particular (bounded)
distance d(·, ·) on S q−1. For such a distance, dsup := sup{d(θ ,ψ) : θ ,ψ ∈ S q−1}
will throughout denote the upper bound of the distance between any two points
on S q−1.
Definition 1 (Directional distance-based depths) Let d(·, ·) be a bounded distance
on S q−1 and H be a distribution on S q−1. Then the directional d-depth of θ(∈
S q−1) with respect to H is

Dd (θ ,H) := dsup −EH [d(θ ,W )], (1)

where EH is the expectation under the assumption that W has distribution H.
While, in principle, any distance d can be used in this definition, it is natural to
consider distances that are rotation-invariant in the sense that d(Oθ ,Oψ)= d(θ ,ψ)

for any θ ,ψ ∈S q−1 and any q×q orthogonal matrix O. As we show for the sake of
completeness in the appendix (see Proposition 1), any rotation-invariant distance d

is of the form
d(θ ,ψ) = dδ (θ ,ψ) = δ (θ ′ψ)

for some function δ : [−1,1]→R+. The standard distance axioms impose that δ (1)=
0 but do not impose that δ is monotone non-increasing (unexpectedly, the tri-
angle inequality may hold without this monotonicity condition). All classical
choices, however, are monotone non-increasing; these include the arc length dis-
tance darc and the cosine distance dcos, that are associated with δ (t) = δarc(t) =

arccos t and δ (t) = δcos(t) = 1− t, respectively. Another rotation-invariant distance
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for which this monotonicity condition holds is the chord distance dchord defined
through dchord(θ ,ψ) = ∥θ − ψ∥ =

√
2(1−θ ′ψ)

=: δchord(θ ′ψ). Throughout, we will denote the corresponding arc distance depth
(ADD), cosine distance depth (CDD) and chord distance depth (ChDD) as Darc, Dcos

and Dchord, respectively.
The ADD is the arc distance depth introduced by Liu and Singh (1992). For

the CDD, a direct computation yields

Dcos(θ ,H) = 2−EH [1−θ ′W ] = 1+θ ′EH [W ]. (2)

Under the assumption that EH [W ] is non-zero, this rewrites Dcos(θ ,H)= 1+∥EH [W ]∥
(θ ′µH), where µH := EH [W ]/∥EH [W ]∥ is the spherical mean of H. This shows that
the CDD is then in a one-to-one relationship with the angular Mahalanobis depth
of Ley et al. (2014), provided that the location functional needed in the latter is
chosen as the spherical mean. We stress, however, that, unlike the angular Ma-
halanobis depth, the CDD does not require choosing a location functional on the
sphere and is defined also in cases where µH = 0. To the best of our knowledge,
the ChDD has not been considered in the literature.

3 Structural properties
In this section, we derive the main properties of a generic directional d-depth. We
start with the following invariance result.

Theorem 1 (Rotational invariance) Let d = dδ be a rotation-invariant distance
and H be a distribution on S q−1. Then Ddδ (θ ,H) is a rotation-invariant depth,
in the sense that Ddδ (Oθ ,HO) = Ddδ (θ ,H) for any q × q orthogonal matrix O,
where HO denotes the image of H by the transformation x 7→ Ox, that is, HO is the
distribution of OW when W has distribution H.

A corollary is that if H is rotationally symmetric about θ0 in the sense that HO =

H for any q×q orthogonal matrix O fixing θ0, then dδ (Oθ ,H) = dδ (θ ,H) for any
such O. In particular, for any α, the α-depth region — that, as usual, is defined
as the collection of θ values with a depth larger than or equal to α — is invari-
ant under rotations fixing θ0, hence reflects the symmetry of the distribution H

about θ0.
In contrast, parallel to the angular Mahalanobis depth of Ley et al. (2014), the

CDD provides symmetric depth regions of this form for any H, i.e, irrespectively of
the fact that H is rotationally symmetric or not. This follows from the comments
at the end of Section 2.

Theorem 2 (Continuity) Assume that the distance d is continuous; if d = dδ , then
this is equivalent to assuming that δ : [−1,1] → R+ is continuous. Let H be a
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distribution on S q−1. Then, (i) the mapping θ 7→Dd(θ ,H) is continuous on S q−1;
(ii) there exists θd(H) ∈ S q−1 such that Dd(θd(H),H) = supθ∈S q−1 Dd(θ ,H).

Note that the continuity result in Theorem 2(i) holds without any assumption
on H, hence will also hold in the empirical case. Theorem 2(ii) guarantees the
existence of a Dd-deepest point θd(H). The deepest point (or collection of deepest
points) typically depends on the distance d adopted. For the CDD, the deepest
point is the spherical mean, provided that EH [W ] ̸= 0, whereas the deepest point
for the ADD is the spherical median of Fisher (1985), which reduces to the circular
median (Mardia and Jupp, 2000, p. 30) in dimension q = 2. This is in line with the
Euclidean case where deepest points typically depend on the depth considered and
may be multivariate medians (e.g., Tukey’s halfspace or Liu’s simplicial deepest
points) or mean vectors (e.g., the zonoid of Koshevoy and Mosler (1997) or the
moment-based Mahalanobis deepest points).

The deepest point may not be unique; for the uniform distribution on S q−1,
for instance, any rotation-invariant distance-based depth will be constant over the
sphere (this readily follows from Theorem 1). This lack of unicity also holds in
the Euclidean case, where the barycentre of the collection C of deepest points
is often taken as its unique representative; for most depths, it then follows from
the convexity of the depth regions (which guarantees convexity of C ) that this
barycentre indeed has maximal depth. It is interesting to note that directional
depths are fundamentally different in this respect, as no such convexity arguments
can be used. The particular nature of the sample space may induce depth regions
that are even disconnected. This may occur for some multimodal distributions H;
an example is given in Section 4. In contrast, note that, for Dcos, the collection of
deepest points is either {µH}, when EH [W ] ̸= 0 , or S q−1, when EH [W ] = 0, and
hence it is always spherically convex.

It is desirable that if the distribution H on S q−1 has an “indisputable” location
centre θ0, then the deepest point θd(H) is unique and coincides with θ0. The
following theorem provides such a Fisher consistency result.

Theorem 3 (Fisher consistency under monotone rotational symmetry) Assume
that the rotation-invariant distance d = dδ is based on a monotone strictly decreas-
ing function δ : [−1,1]→ R+. Assume that the distribution H on S q−1 admits a
density of the form x 7→ cq,hh(x′θ0) for some θ0 ∈S q−1 and some monotone strictly
increasing function h : [−1,1]
→ R+. Then, θ 7→ Ddδ (θ ,H) is a monotone strictly increasing function of θ ′θ0, so
that θ 7→ Ddδ (θ ,H) is uniquely maximized at θ0.

Theorem 3 ensures that the ADD-, CDD-, and ChDD-deepest points are equal
and coincide with the modal location θ0 of H in case the latter admits a density of
the form given in the theorem. The monotonicity result entails that, irrespective
of the distance dδ used, the depth regions are of the form {θ ∈ S q−1 : θ ′θ0 ≥ c}.
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In this setup, the maximal depth, maxθ∈S q−1 Ddδ (θ ,H), measures the concen-
tration of H, as showed in the following theorem.

Theorem 4 (Maximal depth as a concentration measure) Assume that the rotation-
invariant distance d = dδ is based on a monotone strictly decreasing function δ :
[−1,1]→ R+. Assume that the distribution Hκ on S q−1 admits the density x 7→
cq,κ,hh(κx′θ0) for some θ0 ∈ S q−1 and some monotone strictly increasing and dif-
ferentiable function h : R→ R+ such that t 7→ t d

dt logh(t) is monotone strictly in-
creasing. Then the maximal depth Ddδ (θ0,Hκ) is a strictly increasing function
of κ.

In Theorem 4, κ plays the role of a concentration parameter; typically, the larger κ,
the more concentrated the probability mass is about the modal location θ0. Since
the maximal depth is a strictly increasing function of κ, it is itself a concentration
(or spread) measure. Note that the assumption that t 7→ t d

dt logh(t) is monotone
strictly increasing holds in particular if h is log-convex, so that the result applies for
von Mises–Fisher (vMF) distributions that are obtained for h(u) = exp(u). While
Theorem 4 restricts to rotationally symmetric distributions, the maximal cosine
distance depth maxθ∈S q−1 Dcos(θ ,H) = 1+ ∥EH [W ]∥ is, irrespective of H, related
to the “spherical variance” (Mardia and Jupp, 2000, p. 164), that is, to the mean
resultant length ∥EH [W ]∥ of W .

We conclude this section by stating a property showing that the proposed
depths may inherit anti-symmetry properties of the distances on which they are
based. More precisely, we have the following result which is restricted to rotationally-
invariant distances, although a similar result can be stated for an arbitrary dis-
tance d.

Theorem 5 (Anti-symmetry) Assume that the rotation-invariant distance d = dδ

is based on a function δ : [−1,1]→R+ that is anti-symmetric about 0, i.e., δ (−t)+

δ (t) = δ (−1). Let H be a distribution on S q−1. Then,
(i) θ 7→ Ddδ (θ ,H) is anti-symmetric on S q−1 in the sense that

Ddδ (−θ ,H) = dsup
δ −Ddδ (θ ,H);

(ii) If θ0 has maximal depth, then −θ0 has minimal depth.

The arc length and cosine distances are based on anti-symmetric functions δ , but
the chord distance is not. If δ is anti-symmetric, then an antipodally symmet-
ric distribution H ∈ S q−1, under which H(−B) = H(B) for any measurable set B

on S q−1 , leads to a depth function θ 7→Ddδ (θ ,H) that is constant. This is another
property contrasting sharply with the Euclidean case, where no distribution will
provide a constant depth function. To show why the claim on the constancy holds
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true, consider an arbitrary measurable set B ⊂ S q−1 such that S q−1 = (−B)∪B

and (−B)∩B= /0. Then, using the antipodal symmetry of H and the antisymmetry
of δ , we obtain

Ddδ (θ ,H) = δ (−1)−
∫
−B

δ (θ ′w)dH(w)−
∫

B
δ (θ ′w)dH(w)

= δ (−1)−
∫

B
δ (−θ ′w)dH(w)−

∫
B

δ (θ ′w)dH(w)

= δ (−1)−
∫

B
δ (−1)dH(w) =

δ (−1)
2

·

An interesting question is whether or not antipodal symmetry of H is also a nec-
essary condition for the constancy of θ 7→ Ddδ (θ ,H) with an anti-symmetric func-
tion δ . While Liu and Singh (1992) proved that this is indeed the case for the
ADD in dimension q = 2 under the assumption that H admits a density, it is
not the case for any δ function. For instance, for the CDD, it directly follows
from (2) that θ 7→ Dcos(θ ,H) is constant if and only if EH [W ] = 0, which shows
that antipodal symmetry is not a necessary condition for the constancy of Dcos.

4 Illustrations
This short section illustrates the theoretical results of the previous section for three
empirical distributions on the circle S 1; we restrict to the circle to allow for a visual
comparison of the various depths. Denoting as HvMF

α,κ the vMF distribution on S 1

with modal location θ = (cosα,sinα)′ and concentration κ, the three empirical
distributions considered are associated with a random sample of size n = 500 from
each of the following distributions: H1 = HvMF

π,2 (unimodal case), H2 = 1
2 HvMF

3π
4 ,5

+

1
2 HvMF

5π
4 ,5

(bimodal symmetric case), H3 = 1
2 HvMF

5π
9 ,7

+ 1
2 HvMF

13π
9 ,17

(bimodal asymmetric
case).

For each of the resulting empirical distributions Hℓn, ℓ = 1,2,3, Figure 1 pro-
vides plots of the distance-based depths ADD, CDD and ChDD, as well as the
competing angular simplicial depth (ASD) and angular Tukey depth (ATD). The
ASD and ATD were computed through the packages localdepth and depth, re-
spectively. The distance-based depths were computed by means of R functions
written by the authors. Simulated data and their graphical representations were
obtained through the R package circular (Lund and Agostinelli, 2013), which is a
standard reference to work with data on the unit circle.

For H1n, all distance-based depth functions are monotonically strictly decreas-
ing from their deepest point (≈ π) and do so in a symmetric way, which is in
accordance with Theorems 1 and 3. These depths functions are also continuous;
see Theorem 2. In contrast, the ATD is constant outside the interval of length π
centered at its deepest point, which holds for any distribution on the circle (Liu and
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Figure 1 Plots of the depth mapping α 7→ D(
(cosα

sinα
)
,Hℓn), for the distance-based depths ADD, CDD and

ChDD, as well as the angular simplicial depth (ASD) and angular Tukey depth (ATD), and the empirical
distributions Hℓn, ℓ = 1,2,3 described in Section 4 (for easier visualization, depth values were actually
multiplied by 1.5 for distance-based depths, by 1 for the ASD, and by 0.5 for the ATD). Deepest points
are maked by a black dot. The parent density is also plotted in each case.

Singh, 1992, Proposition 4.6.), and both the ASD and ATD are piecewise constant
functions. The center-outward rankings provided by the ASD and ATD therefore
yield many ties and are more rough than those given by distance-based depths.
For the symmetric bimodal distribution H2n, all depth functions are unimodal,
hence fail to capture the bimodality of the distribution, which is not a problem
since depths are not density measures but rather centrality measures. In contrast
with the Euclidean case, some directional depths may exhibit multimodality, as
it is the case for the ChDD for the distribution H3n, where modes are more sepa-
rated than in H2n; (2) entails that the CDD will never exhibit such a multimodal
pattern. In this last example, the depth functions reflect the asymmetry of the
distribution and do not identify the same deepest point; in particular, the CDD is
maximized at the spherical mean, whereas the ADD is maximized at the circular
median (Mardia and Jupp, 2000, p. 20), and so are the ASD and ATD.

5 Asymptotic and robustness properties
In this section, we present asymptotic results for the distance-based depths in-
troduced in Definition 1 and for the corresponding deepest points, as well as
a robustness result regarding the breakdown point of these. We start with a
Glivenko-Cantelli-type result.

Theorem 6 (Uniform almost sure consistency) Let d be a bounded and continuous
distance on S q−1 and H be a distribution on S q−1. Denote as Hn the empirical
distribution associated with a random sample of size n from H. Then

sup
θ∈S q−1

∣∣Dd(θ ,Hn)−Dd(θ ,H)
∣∣→ 0
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almost surely as n → ∞.

This result implies that we may explore empirically the properties of Dd(θ ,H)

by considering the corresponding sample depth function Dd(θ ,Hn) for a large n.
This justifies a posteriori the illustration of Theorem 3 in the previous section.
The following asymptotic normality is a direct result of the central limit theorem.

Theorem 7 (Asymptotic normality of sample depth) Let d be a bounded distance
on S q−1 and H be a distribution on S q−1. Denote as Hn the empirical dis-
tribution associated with a random sample of size n from H. Then as n → ∞,
√

n(Dd(θ ,Hn)−Dd(θ ,H)) converges weakly to the normal distribution with mean
zero and variance VarH [d(θ ,W )].

We turn to asymptotic and robustness results for deepest points. The following
strong consistency result requires that the deepest point is uniquely defined, as it
is in Theorem 3.

Theorem 8 (Almost sure consistency of the deepest point) Let d be a bounded and
continuous distance on S q−1 and H be a distribution on S q−1. Assume that the
deepest point θd(H) is unique. Denote as Hn the empirical distribution associated
with a random sample of size n from H, and let θd(Hn) be an arbitrary deepest
point with respect to Hn. Then

θd(Hn)→ θd(H)

almost surely as n → ∞.

Constructing confidence zones for θd(H) requires the availability of the asymp-
totic distribution of θd(Hn). Since θd(Hn) is an M-estimator for a location param-
eter on S q−1, its asymptotic distribution can easily be obtained from the results
of Ko and Chang (1993), at least under rotationally symmetric distributions. We
do not pursue in this direction here.

Since deepest points are commonly used as robust location estimators, it is
natural to investigate their robustness, and we therefore end this section by deriv-
ing a result on their breakdown point (BDP). In the directional setup considered,
the classical BDP concept (Hampel et al. (1986), pp. 97-98) is not suitable, and
we adopt the directional concept of Liu and Singh (1992) defining the BDP of the
(more generally, of a) deepest point θd(H) as the infimum of ε such that, for some
contaminating distribution G on S q−1, −θd(H) is a deepest point of Dd(θ ,Hε)

with Hε := (1− ε)H + εG. The following result extends to an arbitrary distance d

the lower bound result obtained in Liu and Singh (1992) for the arc length distance.
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Theorem 9 (Breakdown point of deepest points) Let d be a bounded distance
on S q−1 and H be a distribution on S q−1. Let θd(H) be a deepest point of Dd(θ ,H).
Then the breakdown point of θd(H) is larger than or equal to (Dd(θd(H),H)−
Dd(−θd(H),H))

/(2dsup).

To investigate how the distance d affects the lower bound, we consider the
important case of vMF distributions. If HvMF

q,θ0,κ denotes the vMF(θ0,κ) distribution
on S q−1, then, for a rotation-invariant distance dδ that is decreasing in the sense
of Theorem 3, we have θdδ (H

vMF
q,θ0,κ) = θ0 and

Ddδ (±θ0,HvMF
q,θ0,κ) = dsup

δ −
∫ 1
−1 δ (±v)(1− v2)(q−3)/2 exp(κv)dv∫ 1

−1(1− v2)(q−3)/2 exp(κv)dv
,

which allows us to evaluate the lower bound from Theorem 9.
Figure 2 plots this lower bound as a function of κ for various dimensions q

and for the ADD, CDD and ChDD. Clearly, irrespective of the dimension and
the distance, the lower bound is arbitrarily small for arbitrarily small values of κ
and goes to 50% as κ goes to infinity. The lower bound decreases as the di-
mension q increases. More importantly, for vMF distributions, the CDD-deepest
point, namely the spherical mean, provides a larger lower bound than the ADD-
and CHDD-deepest ones do.

Figure 2 Plots of the lower bound in Theorem 9, for various dimensions q and for the ADD ( ), CDD
( ), and ChDD (· · ·), as a function of the concentration κ of the underlying vMF distribution on S q−1.

6 Applications
We present two applications, which are related to spherical location estimation
and supervised classification.

6.1 Spherical location estimation

Depth functions find applications in robust statistics, with the deepest point con-
sidered as a robust location estimator.
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For this reason, we conducted a simulation study to investigate the efficiency
and robustness properties of the deepest points associated with the proposed
distance-based depths, and to compare them with those of the competing ASD- and
ATD-deepest points We start with efficiency properties. For any combination of a
dimension q∈ {3,5}, a sample size n∈ {25,50,100} and a concentration κ ∈ {5,10},
we generated M = 500 independent random samples of size n from the distribu-
tion HvMF

q,θ ,κ , where θ = eq is the last vector of the canonical basis of Rq. For each
estimator θ̂ of θ considered, this leads to estimates θ̂1, . . . , θ̂M. Figure 3 provides
boxplots of the resulting squared errors

SEm = ∥θ̂m −θ∥2 = 2(1− θ̂ ′
mθ), m = 1, . . . ,M, (3)

and indicates the resulting mean square errors MSE = (1/M)∑M
m=1 SEm. The com-

putational burden for the ASD- and ATD-deepest points is so prohibitive that
these were considered for dimension q = 3 only.

Results indicate that, in dimension q= 3, the estimators associated with distance-
based depths slightly dominate their ATD competitor and outperform their ASD
one. As expected, the CDD-deepest point, that is the maximum likelihood esti-
mator in the distributional setup considered, is in most cases the most efficient
estimator. In dimension q = 5, where the ASD/ATD estimators could not be com-
puted, the distance-based depths perform similarly. On the other hand, while
the CDD estimator slightly dominates at all sample sizes in dimension q = 3, it
dominates only at the largest considered sample size in dimension q = 5.

We now turn to the investigation of robustness properties for which we re-
stricted to dimension q = 3. For any combination of a contamination level ε ∈
{0,0.05,0.10} and a concentration κ ∈ {5,10}, we generated M = 500 independent
random samples of size n= 100 from the contaminated distributions (1−ε)HvMF

q,θ ,κ +

ε∆θr , r = 1,2, where θ is set as eq, θ1 = eq−1, θ2 =−θ , ∆ψ denotes the point mass
distribution at ψ. Hence, r = 1,2 refers to contamination at an orthogonal point
to θ and at the antipodal point to θ , respectively. In each sample, the deepest
points of the same five depths as in Figure 3 were computed. The resulting box-
plots of squared errors SEm for m = 1, . . . ,M and the mean squared errors (MSE)
are provided in Figure 4.

The results show that the estimators associated with distance-based depths
enjoy good robustness properties. In particular, irrespective of the contamination
level ε and the type of contamination, the ADD, CDD and ChDD estimators
outperform the ASD one in terms of robustness. The domination over the ATD
estimator is less significant.
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Figure 3 Boxplots, for q ∈ {3,5}, n ∈ {25,50,100} and κ ∈ {5,10}, of the squared errors SEm, m = 1, . . . ,M
(see (3)) of various depth-based estimators of θ obtained from M = 500 independent random samples
of size n from the vMF distribution HvMF

q,θ ,κ with location θ = eq (the last vector of the canonical basis
of Rq). The estimators considered are the ADD-, CDD- and ChDD-deepest points, as well as (due to
computational issues, for dimension q = 3 only) the deepest points associated with the ASD and ATD.
In each case, the corresponding mean square error MSE = (1/M)∑M

m=1 SEm is provided.

6.2 Supervised classification

Classification has been one of the most successful applications of statistical depth
in the last decade, both for multivariate and functional data. While some proposals
were based on the use of local depth concepts (Paindaveine and Van Bever, 2013)
or a depth-based version of kNN classification (Paindaveine and Van Bever, 2015),
the dominant solution finds its source in the max-depth approach of Ghosh and
Chaudhuri (2005) that has later been refined by Li et al. (2012). To the best of our
knowledge, depth-based classification for directional data has not been considered
in the literature. In this section, we show that the max-depth approach also applies
for directional data and that, in conjunction with the proposed distance-based
depths, it provides classifiers on the hypersphere that dominate ASD/ATD-based
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Figure 4 Boxplots, for q = 3, ε ∈ {0,0.05,0.10} and κ ∈ {5,10}, of the squared errors SEm, m = 1, . . . ,M
(see (3)) of various depth-based estimators of θ obtained from M = 500 independent random samples
of size n = 100 from the contaminated distribution (1− ε)HvMF

q,θ ,κ + ε∆θr , where θ is the last vector of the
canonical basis of Rq, ∆ψ denotes the point mass distribution at ψ, and where θ1 (resp., θ2) is an
orthogonal point to θ : r = 1 (resp., the antipodal point to θ : r = 2). The estimators considered are the
ADD-, CDD- and ChDD-deepest points, as well as the deepest points associated with the ASD and
ATD. In each case, the corresponding mean square error MSE = (1/M)∑M

m=1 SEm is provided.

ones and that can be applied in higher dimensions as well.
Consider the spherical classification problem where independent random sam-

ples W1i, i = 1, . . . ,n1 and W2i, i = 1, . . . ,n2, respectively, come from distributions H1

and H2 on S q−1, and one is given the task to classify a point w(∈S q−1) as arising
from H1 (“population 1”) or from H2 (“population 2”). Denoting as Hℓnℓ the empir-
ical distribution associated with Wℓi, i = 1, . . . ,nℓ (ℓ= 1,2), the max-depth classifier
associated with a depth D classifies w into population 1 if D(w,H1n1)> D(w,H2n2),
and population 2 otherwise; if D(w,H1n1) = D(w,H2n2), then the classification deci-
sion is based on the flip of a fair coin.

To investigate the finite-sample performances of such classifiers, we consider
the Monte Carlo algorithm that was performed for dimensions q = 2 and q =

10. Denoting as e j the jth vector in the canonical basis of Rq and using the
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notations HvMF
α,κ and HvMF

q,θ1,κ from Sections 4 and 5, respectively, we considered the
following three distributional setups:

• Setup A involves the vMF distributions H1 = HvMF
π
4 ,5

and H2 = HvMF
3π
4 ,5

for q =

2, and H1 = HvMF
q,e1,5

and H2 = HvMF
q,eq,5 for q = 10; Setup A therefore involves

distributions differing through the modal location only.

• In Setup B, H1 = HvMF
π
3 ,2

and H2 = HvMF
2π
3 ,5

for q = 2, and H1 = HvMF
q,eq,2 and H2 =

HvMF
q,(cos π

6 )eq−1+(sin π
6 )eq,5

for q = 10; in this setup, distributions differ through
location and concentration.

• Setup C involves discrimination between the vMF distribution H1 = HvMF
3π
4 ,4

and the mixture distribution H2 = 1
2 HvMF

0,4 + 1
2 HvMF

π
2 ,4

for q = 2, and H1 =

HvMF
q,(cos 7π

4 )eq−1+(sin 7π
4 )eq,4

and H2 =
1
2 HvMF

q,eq−1,4
+ 1

2 HvMF
q,eq,4 for q = 10.

For each setup and each q, we generated M = 250 independent training sam-
ples of size ntrain = 200 and test samples of size ntest = 100 by sampling randomly
from 1

2 H1 +
1
2 H2. In replication m ∈ {1, . . . ,250}, this associates with any depth D

on S q−1 the misclassification rate pm(D)=Nm(D)/ntest, where Nm(D) is the number
of observations in the mth test sample that were misclassified by the max-depth
classifier associated with D when based on the mth training sample. Figure 5 pro-
vides the boxplots, for several depths D, of the resulting M = 250 misclassification
rates. As in Section 6.1, the depths considered are the ADD, CDD, ChDD, ASD
and ATD; again, computational issues prevented to consider the ASD and ATD
in dimension q = 10.

Results indicate that distance-based depth classifiers dominate in most cases
their counterparts based on the ASD/ATD. It is only in Setup C that the ASD/ATD
classifiers seem to slightly improve over the ADD and CDD classifiers. In all cases,
the classifier based on the ChDD is the best classifier. Most importantly, in higher
dimensions, the computational burden for the ASD/ATD is such that only the
distance-based depth classifiers can be used.

7 Discussion
In the Euclidean multivariate setup, statistical depth has allowed to tackle in a
nonparametric and robust way diverse problems, including location/scatter esti-
mation, two-sample hypothesis testing, supervised classification, etc. While depths
in the spherical setup, such as the ASD and ATD, were proposed more than two
decades ago, the concept has not made its way to applications. Arguably, the
reasons are that these depths are, even for moderate dimensions, very computa-
tionally intensive and that it is challenging to derive their asymptotic properties.

14



ADD CDD ChDD ASD ATD

0.
05

0.
10

0.
15

0.
20

Setup A

q=
2

0.0894   0.0894   0.0795   0.099   0.0982
ADD CDD ChDD ASD ATD

0.
05

0.
10

0.
15

0.
20

0.
25

Setup B

0.1396   0.1403   0.1396   0.1596   0.1806
ADD CDD ChDD ASD ATD

0.
10

0.
15

0.
20

0.
25

0.
30

Setup C

0.2082   0.2082   0.1882   0.2077   0.1967

ADD CDD ChDD ASD ATD

0.
05

0.
10

0.
15

0.
20

q=
10

0.1105    0.1105    0.0991                          
ADD CDD ChDD ASD ATD

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.256    0.256    0.2463                          
ADD CDD ChDD ASD ATD

0.
10

0.
15

0.
20

0.
25

0.1818    0.182    0.1818                          

Figure 5 Boxplots, for q ∈ {2,10}, of the misclassification rates pm(D), m = 1, . . . ,M, obtained from M = 250
independent replications in three different distributional setups (see Section 6.2 for details), for the
max-depth classifiers associated with the ADD, CDD, ChDD, ASD and ATD (due to computational
issues, the ASD and ATD were considered for dimension q = 2 only). In each case, the corresponding
mean misclassification rate p(D) = (1/M)∑M

m=1 pm(D) is provided.

The class of distance-based depths for directional data defined in this work
clearly improve on this. These depths were showed to be computable in higher di-
mensions, and asymptotic results can be obtained by using standard M-estimation
techniques. For small dimensions, where distance-based depths as well as the
ASD/ATD can be evaluated, we showed through simulations that inference pro-
cedures based on the former compete equally or even dominate those based on
the latter. In high dimensions, only distance-based depths can be used for di-
rectional data, which makes them of potential interest for applications involving
high-dimensional spherical problems, such as those encountered in magnetic reso-
nance, gene expression, or text mining; see, among others, Dryden (2005), Banerjee
et al. (2003), and Banerjee et al. (2005).

Perspectives for future research are rich and diverse. Obviously, it would be
of interest to investigate how distance-based depths can tackle the problems con-
sidered in the aforementioned high-dimensional applications. More generally, irre-
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spective of the dimension, it would be desirable to develop depth-based inference
procedures in various setups, including two-sample hypothesis testing and super-
vised classification. Finally, the present work also raised some theoretical questions
of interest. For instance, in dimension q = 2, the arc distance depth is constant if
and only if the underlying distribution H is antipodal, whereas the cosine distance
depth is constant if and only if H has zero mean. In view of this, it is natural to
wonder what property of H is characterized by constancy of the chord distance
depth. The question can be raised on the circle with q = 2 or for a general di-
mension q > 2. Such characterization results are of interest since they obviously
provide the basis for universally consistent tests of the corresponding properties.

As announced in Section 3, we prove the following result for the sake of com-
pleteness.

Proposition 1 Let d be a rotation-invariant distance on S q−1. Then there exists
a function δ : [−1,1]→ R+ such that d(θ ,ψ) = δ (θ ′ψ).

Proof of Proposition 1. For any θ ,ψ ∈ S p−1, let ψθ = (ψ − (ψ ′θ)θ)/∥ψ −
(ψ ′θ)θ∥ and denote as Γθ ,ψ an arbitrary q × (q − 2) matrix such that Oθ ,ψ =

(θ
...ψθ

...Γθ ,ψ) is orthogonal (if q= 2, then we simply consider Oθ ,ψ =(θ
...ψθ )). Since d

is rotation-invariant, we have d(θ ,ψ) = d(O′
θ ,ψ θ ,O′

θ ,ψ ψ) = d(e1,O′
θ ,ψ ψ), where e1

stands for the first vector of the canonical basis of Rq. The result then follows
from the fact that O′

θ ,ψ ψ = (θ ′ψ,(1− (θ ′ψ)2)1/2,0, . . . ,0)′ depends on θ and ψ
through θ ′ψ only. □

Proof of Theorem 1. Using the notation introduced in the theorem, we have
that Ddδ (Oθ ,HO) = δ (−1)−EHO [δ ((Oθ)′W )] = δ (−1)−EH [δ ((Oθ)′OW )] = δ (−1)
−EH [δ (θ ′W )] = Ddδ (θ ,H). □

Proof of Theorem 2. (i) Since the function w 7→ d(θ ,w) is continuous in w for
any θ ∈S q−1 and is bounded, uniformly in θ , by the integrable function w 7→ dsup,
the continuity of

θ 7→ Dd(θ ,H) = dsup −
∫

S q−1
d(θ ,w)dH(w)

results from Corollary 2.8.7(i) in Bogashev (2007). (ii) The result follows from the
fact that a continuous function on a compact domain attains its maximal value.
□

Proof of Theorem 3. Since the distribution H is rotationally symmetric about θ0,
Theorem 1 implies that Ddδ (θ ,H) depends on θ only through θ ′θ0. Consider then
an arbitrary geodesic path t 7→ θt from θ0 to θ1 =−θ0. The monotonicity assump-
tion on h readily implies that, for any s ∈ [−1,1], the function t 7→ PH [θ ′

t W ≥ s] is
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monotone strictly decreasing. Since

EH [δ (θ ′
t W )] =

∫ δ (−1)

0
z

d
dz

PH [δ (θ ′
t W )≤ z]dz

= δ (−1)−
∫ δ (−1)

0
PH [δ (θ ′

t W )≤ z]dz

= δ (−1)−
∫ δ (−1)

0
PH [θ ′

t W ≥ δ−1(z)]dz,

it follows that

Ddδ (θt ,H) = δ (−1)−EH [δ (θ ′
t W )] =

∫ δ (−1)

0
PH [θ ′

t W ≥ δ−1(z)]dz (4)

is strictly decreasing in t. This establishes the result. □

Proof of Theorem 4. First note that for any s,

PHκ [θ
′
0W ≥ s] =

∫ 1
s (1− v2)(q−3)/2h(κv)dv∫ 1
−1(1− v2)(q−3)/2h(κv)dv

(5)

(see, e.g., Paindaveine and Verdebout, 2017), which provides

PHκ [θ ′
0W ≥ s]

1−PHκ [θ ′
0W ≥ s]

=

∫ 1
s (1− v2)(q−3)/2h(κv)dv∫ s
−1(1− v2)(q−3)/2h(κv)dv

· (6)

Differentiation with respect to κ yields

d
ds

PHκ [θ ′
0W ≥ s]

1−PHκ [θ ′
0W ≥ s]

=

∫ 1
s
∫ s
−1[vḣ(κv)h(κu)−uḣ(κu)h(κv)]((1−u2)(1− v2))(q−3)/2 dudv

(
∫ s
−1(1− v2)(q−3)/2h(κv)dv)2

·

Since t 7→ t d
dt logh(t) = tḣ(t)/h(t) is strictly increasing, this derivative is strictly

positive at any κ, so that the lefthand side of (6), hence also that of (5), is
a monotone strictly increasing function of κ. The result then follows from the
identity Ddδ (θ0,Hκ) =

∫ δ (−1)
0 PHκ [θ ′

0W ≥ δ−1(z)]dz; see (4). □

Proof of Theorem 5. (i) The anti-symmetry of δ (·) readily yields Ddδ (−θ ,H)+

Ddδ (θ ,H)= 2δ (−1)−EH [dδ (−θ ,W )+dδ (θ ,W )] = 2δ (−1)−EH [δ (−θ ′W )+δ (θ ′W )]

= δ (−1), which establishes the result. (ii) Ad absurdum, assume that −θ0 does not
have minimal depth, so that there exists θ1 ∈S q−1 with Ddδ (θ1,H)< Ddδ (−θ0,H).
Then Part (i) of the result implies that Ddδ (−θ1,H)>Ddδ (θ0,H), which contradicts
the fact that θ0 has maximal depth. □

Proof of Theorem 6. The result directly follows from Theorem 16(a) in Fergu-
son (1996). □
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Proof of Theorem 7. The result trivially follows from applying the central
limit theorem to the expression

√
n(Dd(θ ,Hn)−Dd(θ ,H)) =−n−1/2 ∑n

i=1(d(θ ,Wi)−
EH [d(θ ,W )]). □

Proof of Theorem 8. In view of Theorem 6, the result is a corollary of Theo-
rem 2.12 and Lemma 14.3 in Kosorok (2008). □

Proof of Theorem 9. From Lemma 2.3 in Strasser (1985), we obtain that, for
any θ ∈S q−1, |Dd(θ ,Hε)−Dd(θ ,H)|= ε(EG[d(θ ,W )]−EH [d(θ ,W )])≤ εdsupd1(H,G),

where d1(H,G) denotes the variational distance between H and G. Lemmas 2.4
and 2.5(i) in Strasser (1985) then yield that, still for any θ ∈ S q−1, |Dd(θ ,Hε)−
Dd(θ ,H)| ≤ εdsup. The result readily follows. □
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