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The impact of fluctuations on the dynamical behaviour of complex biological

systems is a longstanding issue, whose understanding would elucidate how

evolutionary pressure tends to modulate intrinsic noise. Using the Itō

stochastic differential equation formalism, we performed analytic and numeri-

cal analyses of model systems containing different molecular species in contact

with the environment and interacting with each other through mass-action

kinetics. For networks of zero deficiency, which admit a detailed- or

complex-balanced steady state, all molecular species are uncorrelated and

their Fano factors are Poissonian. Systems of higher deficiency have non-

equilibrium steady states and non-zero reaction fluxes flowing between the

complexes. When they model homo-oligomerization, the noise on each species

is reduced when the flux flows from the oligomers of lowest to highest degree,

and amplified otherwise. In the case of hetero-oligomerization systems, only

the noise on the highest-degree species shows this behaviour.
1. Introduction
The identification and understanding of the principles that guide the modulation

of intrinsic noise in biological processes is a major goal of systems biology.

Indeed, basically all biological phenomena are of a random nature, and fluctu-

ations frequently play a pivotal role in their dynamics. This is, for example,

the case in biochemical reactions and in the transcription and translation machi-

neries [1–4]. Biological systems appear to have naturally evolved over time to

tune noise levels, in some cases to reduce and tolerate the fluctuations, and in

other cases to use the heterogeneity to their advantage [5,6].

We emphasize that understanding how the modulation of noise is achieved is

very important, firstly because it allows fundamental open questions to be

answered about why natural evolution has designed specific networks and func-

tional mechanisms, and what is the role of fluctuations [7,8]. Secondly, this

knowledge can be applied to synthetic biology for the purpose of engineering

and assembling biological components into synthetic devices with controlled

intrinsic noise level [9,10].

Typical examples in which cell systems use fluctuations to obtain a selective

advantage are cellular decision-making processes. Indeed, intrinsic noise allows

the diversification of the phenotype of identical cells that live in the same environ-

mental conditions, and thereby facilitates the transitions between various cellular

states. Multiple examples of the important role of the fluctuations in the cellular

decision mechanisms in organisms of different levels of complexity—from

viruses and bacteria to mammalian cells—have been thoroughly analysed in

the literature (see [3] and references therein).

For other biological phenomena, on the contrary, stability and robustness cri-

teria instead require suppression of the fluctuations. A wide series of different

mechanisms are used by biological systems to ensure noise attenuation. A

simple and common example is the negative feedback loop in gene regulatory net-

works, in which the protein that is expressed from a given gene inhibits its own
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transcription [11–14]. This mechanism has indeed been shown

to lower noise while reducing the metabolic cost of protein pro-

duction, and speeds up the rise-times of transcription units [15].

However, not all systems with negative feedback loops decrease

in the intrinsic noise levels [16–18]. Similarly, although it is gen-

erally accepted that positive feedback loops tend to increase

noise levels [19], some appear to decrease them [20]. Hence,

the problem is far from being totally elucidated.

Despite the many valuable advances in the field, the mechan-

isms used to amplify or to suppress the fluctuation levels need to

be further understood and clarified. Indeed, the huge complex-

ity of biological systems, their dependence on a large number

of variables and the system-to-system variability make the

unravelling of these issues, whether using experimental or

computational approaches, a highly non-trivial task.

More specifically, while noise control is relatively well

understood for small and simple networks, it is still far

from clear how the fluctuations propagate through more gen-

eral and complicated networks and what is the link between

network topology and complexity with noise buffering or

amplification. Different investigations addressed these

issues from various perspectives, for example by characteriz-

ing the stochastic properties of the chemical reaction

networks (CRNs) and studying the propagation of the fluctu-

ations [21–24]. From a physics-oriented perspective, other

studies have analysed the connection between the non-

equilibrium thermodynamic properties of the network and

the noise level [25–27]. It has furthermore been shown that

the increase in network complexity tends to decrease intrinsic

noise as well as to reduce the effect of extrinsic noise for some

multistable model systems [28], whereas the dependence of

noise reduction or amplification on the system parameters

has been found in [29].

This paper focuses on a class of biological networks link-

ing several molecular species, which are produced, degraded

and undergo homo- or hetero-oligomerization-type reactions.

It builds on our earlier works, in which we used the stochas-

tic differential equation formalism to study the intrinsic noise

in a series of closed [30] and open systems [31]. Here, we

computed noise reduction or amplification on every individ-

ual molecular species at the steady state, and related the

fluctuation levels to some structural characteristics of the

reaction network and to the reaction fluxes flowing between

the species. We observed important differences between the

homo- and hetero-oligomerization systems.
2. Methods
2.1. Chemical reaction networks
We start by reviewing some of the basic notions of CRN theory;

for more details, see for example [32–34]. CRNs are systems of

reactions between (bio)chemical species, characterized by triplets

[S, C, R]. S represents the ensemble of all chemical species

involved in the network, C is the set of complexes and R the

ensemble of biochemical reactions. In the case of open systems,

the environment (denoted by �) is considered as a complex

but not as a species. Let us consider, for example, the network

described by

2U1 $ U2 $ �$ U1 (2:1)

In this case, S ¼ {U1, U2}, C ¼ {U1, 2U1, U2, �} and R is com-

posed of the six reactions indicated by arrows.
Each complex is associated with a vector vi [ Rcard(S) whose

entries are the stoichiometric coefficients of the species i in the

complex. In the complex representing the environment, all

species have a vanishing stoichiometric coefficient. Each reaction

j in the network is associated with a vector k(j)
i [ Rcard(S) obtained

by subtracting the vectors of the reactant complex v(j,r)
i from the

product complex v(j,p)
i : k(j)

i ¼ v(j,p)
i � v(j,r)

i . In the above example,

the six reaction vectors are (2, 21), (22, 1), (1, 0), (21, 0),

(0, 1), (0, 21). The number of linearly independent reaction

vectors is by definition the CRN’s rank X .

An important parameter that characterizes a CRN is the

deficiency, defined as follows:

d ¼ card(C)� L� X , (2:2)

where L is the number of linkage classes or equivalently, the

number of connected components of the network. In the example

of equation (2.1), card(C) ¼ 4, L ¼ 1, X ¼ 2, and the system has

deficiency d ¼ 1.

Another important characteristic is the reversibility. A net-

work is said to be reversible if for each reaction connecting

complex X to Y, there is an inverse reaction from Y to X. The

CRN is only weakly reversible if the existence of a reaction path

from complex X to Y implies the existence of a, possibly indirect,

path from Y to X.

A last important notion is detailed and complex balance.

A CRN is said to be complex-balanced, if, for each complex Y,

the sum of the mean reaction rates of reactions r , R for which

Y is a reactant complex is equal to the sum of the mean reaction

rates of r0 , R for which Y is a product complex at the steady

state. Detailed balanced CRNs are a subclass of complex-balanced

CRNs for which this relation holds separately for each pair

of forward and inverse reactions linking two complexes. Detailed

balanced steady states correspond to thermodynamic equilibrium

states, whereas the others (whether complex-balanced or not)

are non-equilibrium steady states (NESS). Systems are said to be

detailed or complex-balanced if their steady states are so for all

parameter values. Thus, a steady state can be detailed or

complex-balanced even if the system is not.

In this paper, we considered mass-action CRNs, for which

the rate of a chemical reactions is always proportional to the pro-

duct of the number of reactant molecules raised to powers that

are equal to their stoichiometric coefficients. It has been shown

that such CRNs are complex-balanced if and only if they are of

deficiency zero and weakly reversible. This is known as the

zero deficiency theorem [35]. Higher deficiency CRNs corre-

spond to systems for which d independent conditions on the

rate constants have to be satisfied in order for the system to be

complex-balanced. In a certain sense, d measures the ‘distance’

of the network from complex balancing.

2.2. Modelling using the Itō stochastic differential
equation formalism

To describe the time evolution of stochastic bioprocesses, we

used the Itō stochastic differential equation formalism (SDE) or

chemical Langevin equation [36–38], in which the stochasticity

is represented by Wiener processes:

dUi(t)
dt

¼
Xcard(R)

j¼1

kj
iaj(U(t))þ

Xcard(R)

j¼1

kj
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aj(U(t))

q
dWj(t) (2:3)

with Ui(t) the number of molecules of species i at time t, aj(U(t))
the mass-action rate of the reaction j, and Wj(t)’s Wiener

processes assumed to be independent.

Itō SDEs are equivalent to Fokker–Planck equations, as the

conditioned probability density functions of Ui(t) satisfy the

associated Fokker–Planck equations. They are also an excellent

approximation to the master equation formalism under some
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Figure 1. Schematic picture of the reaction networks studied. (a) Homo-
oligomerization: nX$ Z$ �$ X, (b) Hetero-oligomerization: nX þ
mY$ Z$ �; X$ �$ Y. (Online version in colour.)
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mild conditions, namely a sufficient number of molecules of

each species [38]. They are well suited for studying biochemical

reaction networks [37], and have the advantages of allowing

somewhat easier analytical developments and of being

computationally cheaper than master equations [39].

Here, we focused on systems containing several molecular

species, which can be produced from or degraded to the environ-

ment and interact with each other to form biomolecular

complexes. These species can be proteins, DNA or ligands that

assemble into protein oligomers or protein–ligand and protein–

DNA complexes, and also more complex objects such as different

cell types that coexist in the same tissue.

We started by considering the CRN depicted in figure 1a, which

models, for example, the process by which n protein monomers X

assemble into a homo-oligomer Z, which in turn disassembles

into n monomers X. Both the monomers and oligomers can be

produced from the environment and/or be degraded.

The system of Itō SDEs that describes the dynamics of this

reaction network as a function of a continuous time parameter

t [ [0, T ] reads as

dX(t)¼ dPx(X, t)�dRx(X, t)þ n[dG(X, Z, t)�dF(X, Z, t)]
and dZ(t)¼ dPz(Z, t)� dRz(Z, t)þ [dF(X, Z, t)� dG(X, Z, t)]

)

(2:4)

where X(t) and Z(t) are the numbers of molecules of types X and

Z, dPx and dPz their production rates, dRx and dRz their degra-

dation rates and dF and dG the interconversion terms.

Assuming mass-action kinetics, the rates of molecular pro-

duction from the environment are constant, the rates of

degradation towards the environment are proportional to the

number of molecules, and the interconversion rates are pro-

portional to the product of the number of molecules of the

reacting species i to the power of the stoichiometric coefficient

vi of that species in the complex. This yields the following
relations, each expressed as the sum of a deterministic and a

stochastic term:

dPx(X, t) ¼ px dtþ s px

ffiffiffiffiffiffi
px
p

dW px (t)

dRx(X, t) ¼ rxX(t) dtþ srx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rxX(t)

p
dWrx (t)

dPz(Z, t) ¼ pz dtþ s pz

ffiffiffiffiffi
pz
p

dW pz (t)

dRz(Z, t) ¼ rzZ(t) dtþ srz

ffiffiffiffiffiffiffiffiffiffiffiffi
rzZ(t)

p
dWrz (t)

dF(X, Z, t) ¼ fX(t)(n) dtþ s f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f X(t)(n)

q
dW f (t)

and dG(X, Z, t) ¼ gZ(t) dtþ sg
ffiffiffiffiffiffiffiffiffiffiffi
gZ(t)

p
dWg(t),

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(2:5)

where X(t)(n) ; X(t)(X(t) 2 1) . . . (X(t) 2 n þ 1), and the six

processes W(t) stand for independent Wiener processes with

W(t) 2 W(t0) following a N (0, t� t0) normal distribution for all

(t, t0) and W(0) ¼ 0. Note that these processes have continuous-

valued realizations and are thus appropriate when the number

of molecules is large enough to be approximated as a continuous

variable.

The six parameters s that appear in front of the stochastic terms

measure the degree of stochasticity of the associated processes. The

elementary processes are purely deterministic when s ¼ 0, and the

fluctuations follow a Poisson distribution when s ¼ 1. The stochas-

ticity of the process is increased when s . 1, and decreased when

0 � s , 1. These stochasticity parameters can be used to encode

non-Poissonian stochasticity that results from the fact that some

species are the product of non-elementary processes whose details

are not considered explicitly. For example, the species X could be

produced by a non-elementary reaction and the associated

production process dPx(X, t) could have sub-Poissonian or super-

Poissonian fluctuations. This could then be represented by a

stochasticity parameter s px , 1 or s px . 1, respectively. The link

between stochasticity parameters and non-Poissonity is shown in

a specific example in electronic supplementary material, §S5.

2.3. Analytically solving Itō stochastic differential
equations using the moment closure
approximation

There are different approaches to solve systems of Itō SDEs. Here,

we chose to approximate the continuous-time SDEs of equations

(2.4)–(2.5) by discrete-time SDEs and to use approximations to

express higher-order moments in terms of lower-order ones and

hence close the system of equations. At the steady state, this pro-

cedure leads to a series of algebraic equations, which can be

solved using standard analytical and/or numerical techniques.

To discretize the system of SDEs, the time interval [0, T ] was

divided into J equal-length intervals 0 ¼ t0 , � � � , tJ ¼ T, with

tt ¼ tDt and Dt ¼ T=J. Using the Euler–Maruyama discretiza-

tion scheme [40] (see electronic supplementary material, §S2 ,

for details), the discrete-time SDEs read as

Xtþ1¼XtþDPx(Xt)�DRx(Xt)þn[DG(Xt, Zt)�DF(Xt, Zt)]

and Ztþ1¼ZtþDPz(Zt)�DRz(Zt)þ [DF(Xt, Zt)�DG(Xt, Zt)

)

(2:6)

for all positive integers t[ [0,J], with the discretized reaction

rates given by

DPx(Xt)¼ pxDtþ spx

ffiffiffiffiffi
px
p

DW px
t

DRx(Xt)¼ rxXtDtþ srx

ffiffiffiffiffiffiffiffiffiffi
rxXt

p
DWrx

t

DPz(Zt)¼ pzDtþ spz

ffiffiffiffiffi
pz
p

DW pz
t

DRz(Zt)¼ rzZtDtþ srr

ffiffiffiffiffiffiffiffiffi
rzZt

p
DWrz

t

DF(Xt, Zt)¼ fX(n)
t Dtþ sf

ffiffiffiffiffiffiffiffiffiffi
fX(n)

t

q
DW f

t

and DG(Xt, Zt)¼ gZtDtþ sg
ffiffiffiffiffiffiffiffi
gZt

p
DWg

t

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(2:7)
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The independent Wiener processes satisfy Wt¼W(tt), W0 ¼ 0

and DWt¼Wtþ1�Wt, and thus E(DWt)¼ 0 and Var(DWt)¼Dt.
This system converges towards a steady state in the long-time

limit, obtained by first taking the limit T ¼ JDt! 1 followed

by Dt! 0. In this limit, we have: E(Utþ1) 2 E(Ut)! 0,

E(U2
tþ1)� E(U2

t )! 0 and E(Utþ1Vtþ1) 2 E(UtVt)! 0, for U and

V equal to X or Z. In what follows, the values of the variables at

the steady state will be represented without subscript, e.g. Xt! X.

To get the analytical solution of equations (2.6)–(2.7) at the

steady state, with the moments expressed as a function of the

parameters, we first computed the mean of the left and right

sides of equation (2.6), i.e. E(Xtþ1) and E(Ztþ1). This yields two

independent algebraic equations:

fE(X(n))� gE(Z) ¼ 1

n
(px � rxE(X)) ¼ �pz þ rzE(Z): (2:8)

In a second step, we computed the mean of the square of the left

and right sides of equation (2.6) (i.e. E(X2
tþ1) and E(Y2

tþ1)), and

the mean of their product (i.e. E(Xtþ1 Ytþ1)). At steady-state

limit, these three relations reduce to the algebraic equations:

2Cov(X, rxXþnfX(n)�ngZ)¼ pxþ rxE(X)þn2fE(X(n))þn2gE(Z)

2Cov(Z, (rzþg)Z� fX(n))¼ pzþ rzE(Z)þ fE(X(n))þgE(Z)

and Cov(X, (rzþg)Z� fX(n))þCov(Z, rxXþnfX(n)�ngZ)

¼�nfE(X(n))�ngE(Z):

9>>>>>>=
>>>>>>;

(2:9)

It is interesting to note that these equations (equations (2.8)–(2.9))

can be derived without any approximations and are thus exact.

Indeed, they follow directly from the master equation formalism

that describes the time-dependent joint probability distribution

of the biochemical species. This derivation is reported in electronic

supplementary material, §S1 with all technical details.

The system of equations (2.8)–(2.9) closes for n ¼ 1 only. For

n . 1, we have higher-order terms that enter in the equations:

E(X(n)), E(X X(n)) and E(Z X(n)). One might think that the pro-

blem is solvable by considering all powers and products of

equation (2.6), e.g. E(X3
tþ1), E(Xtþ1Z2

tþ1), etc., but this procedure

introduces even higher-order terms into the equations.

We thus need to make approximations to express these

higher-order terms as a function of the mean, variances and

covariances. We used for that purpose the standard moment clo-

sure approximation [41–43], which is valid for Var(X )� E(X )2

and similarly for Z. We have for example (see also electronic

supplementary material, eqns (S.5)):

E(ZXn) � E(Xn) E(Z)þ n
Cov(X, Z)

E(X)

� �
: (2:10)

In what follows, we make the additional approximation X(n) � Xn,

which is valid for large X-values, a condition that is implicitly

assumed when using the moment closure approximation.

Additional details are given in electronic supplementary material,

§S2 and §S3.

Note that an equivalent approach to solve these SDEs con-

sists of using the linear-noise approximation (LNA), which

corresponds to considering the lowest-order terms in the van

Kampen system-size expansion [44,45]. It reduces equations

(2.4)–(2.5) to Lyapunov equations describing the time evolution

of the moments.

2.4. Intrinsic noise
In CRNs, a common way of quantifying the fluctuations or,

equivalently, the intrinsic noise on the different molecular

species U is through the use of the Fano factors F(U ), defined as

F(U) ¼ Var(U)

E(U)
: (2:11)
If U follows a Poisson distribution, its Fano factor F is equal to

one. When F is larger than one, the intrinsic noise affects the vari-

able concentration more strongly, and the distribution is called

super-Poissonian. The distribution is called sub-Poissonian

when F , 1. Strictly speaking, the Fano factor is a measure of

how much a distribution differs from a Poisson distribution.

Another common way to describe the intrinsic noise is

through the coefficient of variation (CV), defined as

CV(U) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(U)

p
E(U)

¼

ffiffiffiffiffiffiffiffiffiffi
F(U)

E(U)

s
(2:12)

This coefficient measures the global level of dispersion around

the mean. It is equal to 1=
ffiffiffiffiffiffiffiffiffiffi
E(U)

p
for a Poisson distribution,

and thus depends on the mean number of particles.

Here, we focus on the Fano factors for analysing the noise

levels, as they give a more intuitive and size-independent view

of how the combination of (e.g. Poisson) processes that model

complex biomolecular systems can be driven away from Poisso-

nity. Note, however, that once we have the expression of the Fano

factors and the mean, we also have the CVs.
3. Results and discussion
We considered two types of CRNs, schematically depicted in

figure 1a,b, which model homo- or hetero-oligomerization

processes. These systems admit a unique steady state. We

computed the Fano factors and covariances of all species at

the steady state, using the approach outlined in §2.2, 2.3

and electronic supplementary material, S2–S4. For the sake

of simplicity, we assumed the equality of all stochasticity

parameters s (see equation (2.7)).

3.1. Homo-oligomerization-type systems
The CRN schematically depicted in figure 1a represents the

homo-oligomerization of proteins or other biomolecules. Its

deficiency d is equal to one when n . 1 and both species X

and Z are connected to the environment and to zero otherwise.

It is complex-balanced when n ¼ 1 and detailed balanced

when X and/or Z are unconnected to the environment.

There is a wide range of biological processes that can be

modelled through this type of CRNs. Some of them are as

follows: a monomeric protein that is produced from the

environment undergoes a homo-oligomerization process, and

then is degraded; the chemical hydrolysis of cellulose into

monomeric sugars; the formation of toxic b-amyloid deposits,

which are one of the hallmarks of Alzheimer’s disease.

The Itō SDEsthat describe the time evolution of this CRN are

given in equations (2.6)–(2.7). Using the methodology

described in §2.3, we obtained the Fano factors of X and Z

and their covariance at the steady state expressed as a function

of J, the mean flux that flows between the two molecular species:

J ¼ fE(Xn)� gE(Z): (3:1)

When this flux is zero, i.e. fE(Xn) ¼ gE(Z), the steady state is

detailed balanced. Otherwise, it is a NESS. By convention, the

flux is positive when it flows from the monomer to the oligomer

(or equivalently, to the species of highest complexity), and

negative otherwise.

In terms of this flux, the Fano factors and the covariance

can be expressed as follows:

F(X) ¼ s[1� n(n� 1)axJ]
F(Z) ¼ s[1� n(n� 1)azJ]

and Cov(X, Z) ¼ �sn(n� 1)axzJ

9>=
>; (3:2)
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with

ax¼
1

DE(X)
rz(n2f

E(Xn)

E(X)
þgþrxþrz)þg(gþrxþrz)

� �
�0

az¼
1

DE(Z)
n2f2 E(Xn)2

E(X)2
�0

and axz¼
1

D
nf

E(Xn)

E(X)
(gþrz)�0

9>>>>>>>>>=
>>>>>>>>>;

(3:3)

and

D ¼ 2 n2rzf
E(Xn)

E(X)
þ rxgþ rxrz

� �
n2f

E(Xn)

E(X)
þ gþ rx þ rz

� �

We observe that the Fano factors and the covariance are pro-

portional to the stochastic parameter s, and thus that they

vanish for deterministic systems (s ¼ 0), as expected.

The remaining equations

(gþ rz)E(Y) ¼ pz þ f E(Xn)

and nfE(Xn)þ rxE(X) ¼ px þ ngE(Y),

)
(3:4)

yield the mean number of molecules in terms of the model’s

parameters. To obtain them, we need to express E(Xn) as a

function of E(X )n, using the moment closure approximation

of electronic supplementary material, eqn (S.5), and then

solve E(X ) and E(Z) from the algebraic equation (3.4). The

explicit results for n ¼ 1 to 4 are given in electronic

supplementary material, eqns (S.6)–(S.13).

The n ¼ 1 case represents molecules that, for example,

undergo a conformational change or move between different

cell compartments, without interaction with other biomole-

cules. The SDE equations can, in this case, be solved

analytically without using the moment closure approximation.

The molecular species X and Z are uncorrelated, i.e. Cov(X,

Z) ¼ 0, and their fluctuations show the same behaviour as

the elementary reactions: F(X ) ¼ s ¼ F(Z). They are thus

Poissonian for s ¼ 1, sub-Poissonian when s , 1 and super-

Poissonian for s . 1. Note that for s ¼ 1, this result is related

to the earlier finding stating that, for deficiency-zero systems,

the steady-state probability distribution of the number of mol-

ecules is equal to a product of Poisson distributions, or to a

multinomial distribution if some conservation laws hold and

thus the state space is reduced, as for example in closed systems

where the number of molecules is conserved [21,46].

In the case of vanishing flux, J ¼ 0 with n . 1, we obtained

the same results: zero covariance and Fano factors equal to the

stochasticity parameter s. This can be viewed a consequence of

the fact that the steady state is detailed balanced—and thus a
fortiori complex-balanced—for the specific set of parameters,

even though the system itself is not.

When n . 1 and J = 0, the covariance is equal to the flux

multiplied by the positive stoichiometry coefficient n(n 2 1)

and the negative function (2axz). This means that when the

flux flows towards the complex of highest complexity

(defined as the oligomer of highest degree), the covariance

is negative, and when it flows towards the complex of

lowest complexity, it is positive. Furthermore, both Fano fac-

tors F(X ) and F(Z) are equal to the stochasticity parameter s
with an additional term that vanishes when J ¼ 0, n ¼ 0 or

n ¼ 1. As this term is equal to the flux J multiplied by the

positive stoichiometry coefficient n(n 2 1) and the negative

coefficients (2ax and 2az), the noise level on both species
X and Z is reduced when the flux is positive, whereas it is

amplified when the flux is negative. When s ¼ 1, the

reduction or amplification is with respect to Poissonian noise.

Combining equations (3.2) yields the following relation

for the global noise in the system:

F(X)þ F(Z) ¼ s[2� n(n� 1)aJ] (3:5)

with the positive coefficient a ¼ ax þ az. We thus recovered

the general relation obtained in [31] for a system of rank 2

with deficiency d ¼ 1 and stochasticity level s ¼ 1.

We demonstrated here the additional result that, for the system
considered, not only the global intrinsic noise represented by the
sum of the Fano factors, but also the noise on the separate species,
is amplified or reduced according to the sign of the flux.

The Fano factors F(X ), F(Z ) and F(X ) þ F(Z) of the homo-

dimerization system n ¼ 2 are depicted in figure 2a–c as a

function of the flux J for some parameter values. We first

stress that the numerical and analytical results are very

close, which supports the validity of the moment closure

approximation. Furthermore, we clearly observe that noise

reduction occurs when the flux is positive and that noise

increases when it is negative, for both species X and Z and

all parameter values considered.

It is noteworthy that, while F(X ) is a monotonic decreas-

ing function of J, F(Z) presents a maximum for negative J and

then tends to zero as J decreases. This can also be seen from

equations (3.2)–(3.3): J! 21 is obtained for f! 0 and fixed

g, in which case az! 0 whereas ax remains strictly positive.

Thus, for very negative flux, the noise amplification on Z
tends to be suppressed.

We also compared the noise modulation as a function of the

oligomerization degree. As shown in figure 3a,b, for fixed values

of the flux J and parameters, the amplification and reduction of

the intrinsic noise increases with the oligomerization degree.

This trend is also observed by fixing the number of molecules

rather than the production parameters, as shown in figure

3c,d. These results also follow from the analytical equations

(3.2)–(3.3), by taking the small f limit for representing the

J� 0 region, and small g values for the J� 0 region.

Note again the different behaviours of the Fano factors of

the monomers and oligomers. When the flux is negative, the

noise amplification on the oligomers is limited, in contrast to

the noise on the monomers which continues to grow for

decreasing flux values. Instead, when the flux is positive,

the fluctuations of the oligomers seem to be suppressed

more strongly than those of the monomers.
4. Hetero-oligomerization
We now turn to the analysis of the hetero-oligomerization reac-

tions schematically depicted in figure 1b, in which n molecules

of species X bind with m molecules of species Y to form the

hetero-oligomer Z. This CRN is of deficiency d ¼ 1 when all,

or all but one, species are connected to the environment. Such

CRNs describe biological processes in which two different

molecular species bind to form a higher-order species.

These hetero-oligomerization CRNs model a large series of

biochemical reactions. Examples are the binding of different

protein types to form hetero-oligomers that accomplish bio-

logical functions, the interaction of RNA- or DNA-binding

proteins to RNA or DNA, the assembly of transcription-

initiation complexes, as well as protein–ligand systems such
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Table 1. Noise amplification or reduction as a function of the
oligomerization degree. ‘0’ means neither reduction nor amplification, ‘þ ’
means amplification if J . 0 and reduction if J , 0, ‘2’ means reduction
is J . 0 and amplification if J , 0, and ‘?’ means that the amplification
or reduction depends on the parameter values.

d X Y Z

n ¼ 0, m ¼ 1 0 0 0 0

n ¼ 1, m ¼ 0 0 0 0 0

n .1, m ¼ 0 1 2 0 2

n ¼ 0, m . 1 1 0 2 2

n ¼ 1, m ¼ 1 1 þ þ 2

n . 1, m ¼ 1 1 ? þ 2

n ¼ 1, m . 1 1 þ ? 2

n . 1, m . 1 1 ? ? 2
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as the reversible oxygen binding to monomeric myoglobin or

to tetrameric haemoglobin.

The system of nonlinear coupled Itō SDEs that models

the dynamical behaviour of these CRNs is obtained as an

extension of equations (2.4)–(2.5):

Xtþ1¼XtþDPx(Xt)�DRx(Xt)þn[DG(Zt)�DF(Xt, Yt)]

Ytþ1¼YtþDPy(Yt)�DRy(Yt)þm[DG(Zt)�DF(Xt, Yt)]

and Ztþ1¼ZtþDPz(Zt)�DRz(Zt)þDF(Xt, Yt)�DG(Zt)

9>=
>;

(4:1)

for all positive integers t[ [0,J]. The discretized reaction

rates are given by

DPx(Xt)¼ pxDtþ spx

ffiffiffiffiffi
px
p

DWPx
t

DRx(Xt)¼ rxXtDtþsrx

ffiffiffiffiffiffiffiffiffiffi
rxXt

p
DWRx

t

DPy(Zt)¼pyDtþspy

ffiffiffiffiffi
py

p
DWPy

t

DRy(Zt)¼ ryYtDtþsry

ffiffiffiffiffiffiffiffiffi
ryYt

q
DWRy

t

DPz(Zt)¼pzDtþspz

ffiffiffiffiffi
pz
p

DWPz
t

DRz(Zt)¼ rzZtDtþsrz

ffiffiffiffiffiffiffiffiffi
rzZt

p
DWRz

t

DF(Xt, Yt)¼ fX(n)
t Y(m)

t Dtþsf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fX(n)

t Y(m)
t

q
DWF

t

and DGzxy(Zt)¼gZtDtþsg
ffiffiffiffiffiffiffiffi
gZt

p
DWG

t ,

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

(4:2)

where all DWi are independent Wiener processes. As in the

homo-oligomerization case, we considered for simplicity all

stochasticity parameters s to be equal.

The procedure to solve this system at the steady state is

similar to the one presented in the previous section: it reduces

to a set of nine algebraic equations relating moments of

different orders to the model’s parameters; these are explicitly

given in electronic supplementary material, eqns (S.15). These

algebraic equations can also be obtained from the master

equation (electronic supplementary material, eqn (S.4)) that

describes this CRN, and are thus exact, as shown in the

electronic supplementary material, §S1.b.

To obtain the mean, variances and covariances of the

number of molecules in terms of the parameters, one has to

use the moment closure approximation (equation (2.10) and

electronic supplementary material, eqn (S.5)), as in the

homo-oligomer CRNs. Moreover, we assume that the num-

bers of molecules are sufficiently large and that thus X(n) �
Xn and Y(m) � Ym.

The hetero-oligomer CRN contains a single internal flux,

which is usually non-vanishing:

J ¼ fE(XnYm)� gE(Z): (4:3)

The three fluxes that flow between the three species and the

environment are proportional to this flux. The Fano factors

of all chemical species can be expressed as a function of the

internal flux at the steady state:

F(X)¼ s[1� (n(n� 1)ax,n�mnax,nm)J]
F(Y)¼ s[1� (m(m� 1)ay,m �mnay,nm)J]

and F(Z)¼ s[1� (n(n� 1)az,nþm(m� 1)az,mþmnaz,nm)J]

9>=
>;

(4:4)

with all a’s positive functions of the parameters, explicitly

given in electronic supplementary material, appendix.

There is a major difference with the homo-oligomerization
system analysed in the previous section: the noise is not always
reduced when the flux J is positive and not always amplified
when it is negative. It is only the case for the oligomer Z. For the
monomers X and Y, the reduction or amplification depends on
the parameters of the system.

However, for some values of the oligomeric degrees n and

m, the noise on the monomers also shows a determined trend

for all parameter values, as shown in table 1. Interestingly,

the hetero-dimers (n ¼ 1, m ¼ 1) strongly differ from the

homodimers (n ¼ 2, m ¼ 0). Indeed, for positive flux, directed

towards the highest-degree oligomer, the noise on X and Y is

always amplified for heterodimers and always reduced for

homodimers, while the noise on Z is reduced in all cases.

A corollary of equation (4.4) is that the sum of the Fano

factors over all species is equal to the rank of the system

minus a term that is proportional to the flux:

F(X)þ F(Y)þ F(Z) ¼ s[3� (n(n� 1)an þm(m� 1)am

þ nmanm)J] (4:5)

with the positive coefficients an ¼ ax,n þ az,n and am ¼ ay,m þ
az,m, and the coefficient anm ¼ 2ax,nm 2 ay,nm þ az,nm which

can be positive or negative according to the parameter

values. This relation generalizes equation (4.5) of homo-

oligomers to hetero-oligomers. We can thus observe a general

noise reduction or amplification of the system for positive

and negative flux, depending on the parameter values.

To better understand the difference and similarities

between homo- and hetero-oligomers, we compared their

respective fluctuations for fixed parameter values, as shown

in figure 4a,b. We see that the fluctuations on the monomers

X are amplified for positive flux in heterodimers, and for

negative flux in homodimers. For heterotrimers, they have a

more complex behaviour: F(X ) is amplified for J , 0, reduced

when J becomes .0 and again amplified for larger J. By con-

trast, the fluctuations on the oligomers Z are reduced for

positive flux, and amplified for negative flux, independently

of whether they are composed of identical or different

molecular species.

The global noise of the system, represented by the sum

of the Fano factors (F(X ) þ F(Y ) þ F(Z )), is illustrated in

figure 5a–c. For homo-oligomers, the surface crosses the

plane F(X ) þ F(Y ) þ F(Y ) ¼ 3 only along the curve of zero

flux (J ¼ 0). For the hetero-oligomers, this is no longer true.
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The global noise can be Poissonian for non-zero values of the

flux also.
5. Discussion
Even though the picture is not yet complete, we gained valu-

able insights into the relation between the biological

complexity of a system described by mass-action kinetics

and its intrinsic noise. Two features are shown to be crucial

for the noise modulation in the systems analysed: the

deficiency d and the type of oligomers. On the basis of the

results obtained in this paper and in [30,31], we propose

the following conclusions and tentative generalizations:

— Systems with d ¼ 0
In the case of open CRNs connected to the environment,

we have:

F(Ui) ¼ s, (5:1)

where Ui is the number of molecules of species i. Thus,

when s ¼ 1, the number of molecules of each species fol-

lows a Poisson distribution [21,46]. For closed systems,

we showed in [30] the weaker resultX
i

F(Ui) ¼ sx, (5:2)

where x is the rank of the CRN, as in this case, the number

of molecules does not follow a Poissonian but a multi-

nomial distribution constrained by the conservation of

the total number of molecules [21].

— Systems with d ¼ 1 and only one internal flux
In the case in which the internal flux J does not vanish in

general (it can, however, vanish for some specific par-

ameter values), the Fano factor of each molecular

species i can be expressed as a function of this flux as

F(Ui) ¼ s[1� biJ] (5:3)

– homo-oligomerization-type reactions
We found that the bi coefficients are positive functions

of the system’s parameters. The fluctuations on all

species are thus reduced for positive values of the flux

J and amplified for negative ones.
– hetero-oligomerization-type reactions
The trend is different for oligomers and monomers. For

the oligomeric species of highest degree, we have again

that the bi coefficients are positive functions. The fluctu-

ations on the oligomer are thus reduced if and only if

the flux is positive. For the monomers, the sign of the

bi’s and thus whether the noise is reduced or amplified

depends on the values of the parameters.

— Systems with d � 1 and multiple internal fluxes
Using the results of [31], we tentatively generalize

equation (5.3) to generic CRNs with NJ internal fluxes J‘:

F(Ui) ¼ s 1�
XNJ

‘

b‘i J‘

" #
: (5:4)

The coefficients b‘i are positive functions for all the species

involved in homo-oligomerization reactions only (which

is the case for the highest-degree oligomeric species in

hetero-oligomerization reactions). Otherwise, the sign of

the b‘i coefficients is parameter-dependent.

From a biological perspective, these findings yield

important insights into the modulation of noise in biological

systems. Let us consider, for example, a protein that gets

produced from the environment, and undergoes a homo-

tetramerization reaction followed by a degradation step. Note

that the production term can represent different phenomena,

such as protein synthesis or entrance to a specific cell compart-

ment, and the degradation term can model proteolysis or the

physical exit from a cell region. In this system, the flux flowing

between the monomeric and tetrameric species is positive and

thus, according to our findings, we can immediately state

that the noise on both species is reduced at the steady state,

independent of the parameter values chosen.

Our results thus seem to suggest that complexity favours

noise suppression and that, during evolution, the forma-

tion of complex biomolecular systems, such as large

oligomeric proteins, have been favoured because they tend

to suppress noise.

By contrast, if we consider systems in which a complex

biomolecular species is disassembled, such as the chemical

hydrolysis of cellulose into monomeric sugars, an increase

in the noise on both species is observed. In this case, the



(b)

(a) 100
60

E(Z)

E(X)

20
4

3

1000
600

200

4

1000

600

200

6

2

100
60

20

2

E(X)

E(Z)

6

3

1

50
10 E(X)

E(Z)(c)
100

10
50

100

Figure 5. Behaviour of the global noise in homo- and hetero-oligomerization
processes, as a function of the mean number of molecules E(X ) and E(Z ).
F(X ) þ F(Y ) þ F(Z ) is represented as a green surface, and the plane
F(X ) þ F(Y ) þ F(Z ) ¼ 3 in grey. The intersection between these surfaces
is indicated by black lines. The rightmost line corresponds to J ¼ 0. The par-
ameters are s ¼ 1, and rx ¼ ry ¼ rz ¼ g ¼ 0.1. (a) Homodimer with
(n ¼ 2, m ¼ 0); f ¼ 0.001; Y is in this case unconnected to the other species
and has a Poissonian noise F(Y ) ¼ 1. (b) Heterodimer with (n ¼ 1 ¼ m);
f ¼ 0.001 and E(Y )¼ E(X ). (c) Heterotrimer with (n¼ 2, m¼ 1); f ¼ 0.0001
and E(Y )¼ E(X ). (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180805

9

price to pay to have the chemical flow directed towards

simple chemical species is the increase in noise on

all constituents.
These conclusions hold for hetero-oligomerization reactions

if we focus on the species of highest degree. For the other species,

the situation is more complex, and we can have noise reduction

or amplification according to the parameter values.

Note that many biological systems, for example signalling

and metabolic networks, are far more complex than the

CRNs considered in this work, and it is premature to extract

general behaviours from the present analysis. However, we

obtained some basic insights and elegant constraints that

will be useful for investigating noise modulation in systems

of hundreds of biochemical reactions. To tackle this issue,

we will have to extend our approach to generalized kinetic

schemes. Indeed, mass-action kinetics is only valid in the

case of elementary processes occurring in homogeneous

solutions. Biological networks are too complex to be math-

ematically described with full details, as this would require

a huge number of parameters.

To cope with this issue, different reduction techniques

have been introduced [47,48], such as the quasi steady-state

approximation in which the fast variables are separated

from the slow variables and only the latter are considered

as dynamical. Another reduction technique is the variable

lumping method in which the vector of the reactants is

dimensionally reduced to a vector of pseudospecies, in such

a way that the kinetic equations are easier to solve, and

fewer parameters need to be determined.

However, it is not trivial to deal with the fluctuations in

such reduced models. Some interesting attempts have been

made in this direction. One consists of the derivation of

a reduced linear Langevin equation describing variables

following non-mass-action kinetics using the slow-scale

linear noise approximation [49]. Another investigation,

focused on zero-deficiency systems with non-mass-action

kinetics, obtained the stationary distributions in the form

of products [50].

Finally, we emphasize that when we will tackle this pro-

blem with the formalism used in the current work, we will

not assume a priori that all stochasticity parameters s are

equal to one (see equation (2.5)), as the fluctuations in non-

elementary processes should not be considered to follow

Poisson-type distributions. This will be the subject of further

investigations.
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