1612.02384v1 [cs.DS] 7 Dec 2016

arxXiv

Subquadratic Algorithms for Algebraic
Generalizations of 3SUM

Luis Barba!, Jean Cardinal*?, John Iacono'3, Stefan Langerman??,
Aurélien Ooms??, and Noam Solomonf4

1 Department of Computer Science, ETH Ziirich, Switzerland.
luis.barba@inf.ethz.ch

2 Département d’Informatique, Université libre de Bruxelles (ULB), Belgium.
{jcardin,slanger,aureooms}@ulb.ac.be

3 Department of Computer Science and Engineering, New York University
(NYU), USA.
socg2017@johniacono.com

4 School of Computer Science, Tel Aviv University (TAU), Israel.
noam.solom@gmail.com

—— Abstract

The 3SUM problem asks if an input n-set of real numbers contains a triple whose sum is zero.
We consider the 3POL problem, a natural generalization of 3SUM where we replace the sum
function by a constant-degree polynomial in three variables. The motivations are threefold. Raz,
Sharir, and de Zeeuw gave an O(n''/®) upper bound on the number of solutions of trivariate

polynomial equations when the solutions are taken from the cartesian product of three n-sets
of real numbers. We give algorithms for the corresponding problem of counting such solutions.
Grgnlund and Pettie recently designed subquadratic algorithms for 3SUM. We generalize their
results to 3POL. Finally, we shed light on the General Position Testing (GPT) problem: “Given
n points in the plane, do three of them lie on a line?”, a key problem in computational geometry.

We prove that there exist bounded-degree algebraic decision trees of depth O(n¥+6) that
solve 3POL, and that 3POL can be solved in O(n?(loglog n)%/(log n)%) time in the real-RAM
model. Among the possible applications of those results, we shtl)w how to solve GPT in sub-
quadratic time when the input points lie on o((logn)® /(loglogn)?) constant-degree polynomial
curves. This constitutes the first step towards closing the major open question of whether GPT
can be solved in subquadratic time. To obtain these results, we generalize important tools —
such as batch range searching and dominance reporting — to a polynomial setting. We expect
these new tools to be useful in other applications.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases 3SUM, subquadratic algorithms, general position testing, range search-
ing, dominance reporting, polynomial curves

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

* Supported by the “Action de Recherche Concertée” (ARC) COPHYMA, convention number
4.110.H.000023.

T Research partially completed while on sabbatical at the Algorithms Research Group of the Département
d’Informatique at the Université Libre de Bruxelles with support from a Fulbright Research Fellowship,
the Fonds de la Recherche Scientifique — FNRS, and NSF grants CNS-1229185, CCF-1319648, and
CCF-1533564.

 Directeur de recherches du F.R.S.-FNRS

8 Supported by the Fund for Research Training in Industry and Agriculture (FRIA).

9 Supported by Grant 892/13 from the Israel Science Foundation

© Luis Barba, Jean Cardinal, John Iacono, Stefan Langerman, Aurélien Ooms and Noam Solomon;
37 licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).

Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1-23:29

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2

Subquadratic Algorithms for Algebraic Generalizations of 3SUM

1 Introduction

The 3SUM problem is defined as follows: given n distinct real numbers, decide whether
any three of them sum to zero. A popular conjecture is that no O(n?~°)-time algorithm
for 3SUM exists. This conjecture has been used to show conditional lower bounds for
problems in P, notably in computational geometry with problems such as GeomBase, general
position [26] and Polygonal Containment [7], and more recently for string problems such
as Local Alignment [2] and Jumbled Indexing [5], as well as dynamic versions of graph
problems [1, 40], triangle enumeration and Set Disjointness [32]. For this reason, 3SUM
is considered one of the key subjects of an emerging theory of complexity-within-P, along
with other problems such as all-pairs shortest paths, orthogonal vectors, boolean matrix
multiplication, and conjectures such as the Strong Exponential Time Hypothesis [3, 12, 31].

Because fixing two of the numbers a and b in a triple only allows for one solution to the
equation a +b+2 = 0, an instance of 3SUM has at most n? solution triples. An instance with
a matching lower bound is for example the set { 152,..., 2+ } (for odd n) with 3n? + 1
solution triples. One might be tempted to think that the number of solutions to the problem
would lower bound the complexity of algorithms for the decision version of the problem, as
it is the case for restricted models of computation [23]. This is a common misconception.
Indeed, Grgnlund and Pettie [28] recently proved that there exist O(n®/?)-depth linear
decision trees and o(n?)-time real-RAM algorithms for 3SUM.

A natural generalization of the 3SUM problem is to replace the sum function by a
constant-degree polynomial in three variables F' € R[z,y, z] and ask to determine whether
there exists any triple (a,b, ¢) of input numbers such that F(a,b,c) = 0. We call this new
problem the 83POL problem.

For the particular case F(x,y,z) = f(x,y) — z where f € Rz, y] is a constant-degree
bivariate polynomial, Elekes and Rényai [21] show that the number of solutions to the
3POL problem is o(n?) unless f is special. Special for f means that f has one of the
two special forms f(u,v) = h(¢(u) + ¥ (v)) or f(u,v) = h(p(u) - ¥(v)), where h, ¢, 1) are
univariate polynomials of constant degree. Elekes and Szabd [22] later generalized this result
to a broader range of functions F' using a wider definition of specialness. Raz, Sharir and
Solymosi [47] and Raz, Sharir and de Zeeuw [44] recently improved both bounds on the
number of solutions to O(n''/ 6). They translated the problem into an incidence problem
between points and constant-degree algebraic curves. Then, they showed that unless f (or
F) is special, these curves have low multiplicities. Finally, they applied a theorem due to
Pach and Sharir [38] bounding the number of incidences between the points and the curves.
Some of these ideas appear in our approach.

In computational geometry, it is customary to assume the real-RAM model can be
extended to allow the computation of roots of constant degree polynomials. We distance
ourselves from this practice and take particular care of using the real-RAM model and the
bounded-degree algebraic decision tree model with only the four arithmetic operators.

1.1 Our results

We focus on the computational complexity of 3POL. Since 3POL contains 3SUM, an
interesting question is whether a generalization of Grgnlund and Pettie’s 3SUM algorithm
exists for 3POL. If this is true, then we might wonder whether we can beat the O(n!'/%) =
O(n!-833-+) combinatorial bound of Raz, Sharir and de Zeeuw [44] with nonuniform algorithms.
We give a positive answer to both questions: we show there exist O(n2(loglogn)? /logn)?)-
time real-RAM algorithms and O(n'?/7t¢) = O(n>743)-depth bounded-degree algebraic

L. Barba, J. Cardinal, J. lacono, S. Langerman, A. Ooms and N. Solomon

decision trees for 3POL.! To prove our main result, we present a fast algorithm for the
Polynomial Dominance Reporting (PDR) problem, a far reaching generalization of the
Dominance Reporting problem. As the algorithm for Dominance Reporting and its analysis
by Chan [14] is used in fast algorithms for all-pairs shortest paths, (min,+)-convolutions,
and 3SUM, we expect this new algorithm will have more applications.

Our results can be applied to many degeneracy testing problems, such as the General
Position Testing (GPT) problem: “Given n points in the plane, do three of them lie on a line?”
It is well known that GPT is 3SUM-hard, and it is open whether GPT admits a subquadratic
algorithm. Raz, Sharir and de Zeeuw [44] give a combinatorial bound of O(n''/) on the
number of collinear triples when the input points are known to be lying on a constant
number of polynomial curves, provided those curves are neither lines nor cubic curves. A
corollary of our first result is that GPT where the input points are constrained to lie on
o((logn)s /(loglogn)?) constant-degree polynomial curves (including lines and cubic curves)
admits a subquadratic real-RAM algorithm and a strongly subquadratic bounded-degree
algebraic decision tree. Interestingly, both reductions from 3SUM to GPT on 3 lines (map a
to (a,0), b to (b,2), and c to (5,1)) and from 3SUM to GPT on a cubic curve (map a to
(a3,a), bto (b3,b), and c to (3, ¢)) construct such special instances of GPT. This constitutes
the first step towards closing the major open question of whether GPT can be solved in
subquadratic time. This result is described in Appendix E where we also explain how to
apply our algorithms to the problems of counting triples of points spanning unit circles or
triangles.

1.2 Definitions

3POL We look at two different generalizations of 3SUM. In the first one, which we call
3POL, we replace the sum function by a trivariate polynomial of constant degree.

» Problem (3POL). Let F' € R[x,y, z] be a trivariate polynomial of constant degree, given
three sets A, B, and C, each containing n real numbers, decide whether there exist a € A,
be B, and ¢ € C such that F(a,b,c) = 0.

The second one is a special case of 3POL where we restrict the trivariate polynomial F' to
have the form F(a,b,c) = f(a,b) — c.

» Problem (explicit 3POL). Let f € Rx,y] be a bivariate polynomial of constant degree,
given three sets A, B, and C, each containing n real numbers, decide whether there exist
a€ A, be B, and c € C such that ¢ = f(a,b).

We look at both uniform and nonuniform algorithms for explicit 3POL and 3POL. We begin
with an O(n¥+€)—depth bounded-degree algebraic decision tree for explicit 3POL in §2. In
§3, we continue by giving a similar real-RAM algorithm for explicit 3POL that achieves
subquadratic running time. In Appendix C, we go back to the bounded-degree algebraic
decision tree for explicit SPOL and generalize it to work for 3POL. Finally, in Appendix D,
we give a similar real-RAM algorithm for 3POL that runs in subquadratic time.

Models of Computation Similarly to Grgnlund and Pettie [28], we consider both nonuni-

form and uniform models of computation. For the nonuniform model, Grgnlund and Pettie
consider linear decision trees, where one is only allowed to manipulate the input numbers

1 Throughout this document, € denotes a positive real number that can be made as small as desired.

23:3

CVIT 2016

23:4

Subquadratic Algorithms for Algebraic Generalizations of 3SUM

through linear queries to an oracle. Each linear query has constant cost and all other
operations are free but cannot inspect the input. In this paper, we consider bounded-degree
algebraic decision trees (ADT) [42, 50, 52], a natural generalization of linear decision trees,
as the nonuniform model. In a bounded-degree algebraic decision tree, one performs constant
cost branching operations that amount to test the sign of a constant-degree polynomial for a
constant number of input numbers. Again, operations not involving the input are free. For
the uniform model we consider the real-RAM model with only the four arithmetic operators.

The problems we consider require our algorithms to manipulate polynomial expressions
and, potentially, their real roots. For that purpose, we will rely on Collins cylindrical algebraic
decomposition (CAD) [17]. To understand the power of this method, and why it is useful for
us, we give some background on the related concept of first-order theory of the reals.

» Definition 1. A Tarski formula ¢ € T is a grammatically correct formula consisting of real
variables (z € X), universal and existential quantifiers on those real variables (V,3: X x T —
T), the boolean operators of conjunction and disjunction (A, V: T? — T), the six comparison
operators (<, <,=,>,> #: R? — T), the four arithmetic operators (+, —, *, /: R? = R),
the usual parentheses that modify the priority of operators, and constant real numbers. A
Tarski sentence is a fully quantified Tarski formula. The first-order theory of the reals (VAR)
is the set of true Tarski sentences.

Tarski [51] and Seidenberg [49] proved that V3R is decidable. However, the algorithm
resulting from their proof has nonelementary complexity. This proof, as well as other known
algorithms, are based on quantifier elimination, that is, the translation of the input formula
to a much longer quantifier-free formula, whose validity can be checked. There exists a family
of formulas for which any method of quantifier elimination produces a doubly exponential
size quantifier-free formula [19]. Collins CAD matches this doubly exponential complexity.

» Theorem 2 (Collins [17]). V3R can be solved in 22" time.

See Basu, Pollack, and Roy [9] for additional details, Basu, Pollack, and Roy [8] for a
singly exponential algorithm when all quantifiers are existential (existential theory of the
reals, dR), Caviness and Johnson [13] for an anthology of key papers on the subject, and
Mishra [36] for a review of techniques to compute with roots of polynomials.

Collins CAD solves any geometric decision problem that does not involve quantification
over the integers in time doubly exponential in the problem size. This does not harm our
results as we exclusively use this algorithm to solve constant size subproblems. Geometric
is to be understood in the sense of Descartes and Fermat, that is, the geometry of objects
that can be expressed with polynomial equations. In particular, it allows us to make the
following computations in the real-RAM and bounded-degree ADT models:

1. Given a constant-degree univariate polynomial, count its real roots in O(1) operations,

2. Given a constant number of univariate polynomials of constant degree, compute the
interleaving of their real roots in O(1) operations,

3. Given a point in the plane and an arrangement of a constant number of constant-degree
polynomial planar curves, locate the point in the arrangement in O(1) operations.

Instead of bounded-degree algebraic decision trees as the nonuniform model we could
consider decision trees in which each decision involves a constant-size instance of the decision
problem in the first-order theory of the reals. The depth of a bounded-degree algebraic
decision tree simulating such a tree would only be blown up by a constant factor.

L. Barba, J. Cardinal, J. lacono, S. Langerman, A. Ooms and N. Solomon

1.3 Previous Results

3SUM For the sake of simplicity, we consider the following definition of 3SUM

» Problem (3SUM). Given 3 sets A, B, and C, each containing n real numbers, decide
whether there exist a € A, b € B, and c € C such that ¢ = a + b.

A quadratic lower bound for solving 3SUM holds in a restricted model of computation:
the 3-linear decision tree model. Erickson [23] and Ailon and Chazelle [4] showed that in
this model, where one is only allowed to test the sign of a linear expression of up to three
elements of the input, there are a quadratic number of critical tuples to test.

» Theorem 3 (Erickson [23]). The depth of a 3-linear decision tree for 3SUM is Q(n?).

While no evidence suggested that this lower bound could be extended to other models of
computation, it was eventually conjectured that 3SUM requires 2(n?) time.

Baran et al. [6] were the first to give concrete evidence for doubting the conjecture. They
gave subquadratic Las Vegas algorithms for 3SUM, where input numbers are restricted to be
integer or rational, in the circuit RAM, word RAM, external memory, and cache-oblivious
models of computation. Their idea is to exploit the parallelism of the models, using linear
and universal hashing.

Grgnlund and Pettie [28], using a trick due to Fredman [24], recently showed that there
exist subquadratic decision trees for 3SUM when the queries are allowed to be 4-linear.

» Theorem 4 (Grgnlund and Pettie [28]). There is a 4-linear decision tree of depth O(n?v/logn)
for 3SUM.

They also gave deterministic and randomized subquadratic real-RAM algorithms for 3SUM,
refuting the conjecture. Similarly to the subquadratic 4-linear decision trees, these new
results use the power of 4-linear queries. These algorithms were later improved by Freund [25]
and Gold and Sharir [27].

» Theorem 5 (Grgnlund and Pettie [28]). There is a deterministic O(n?(log log n)2/3/(10g n)2/3>_
time and a randomized O(n?(loglogn)?/logn)-time real-RAM algorithm, for 3SUM.

Since then, the conjecture was eventually updated. This new conjecture is considered an
essential part of the theory of complexity-within-P.

» Conjecture 1 (3SUM Conjecture). There is no O(n?~%)-time algorithm for 3SUM.

Elekes-Rényai, Elekes-Szabé In a series of results spanning fifteen years, Elekes and
Rényai [21], Elekes and Szabé [22], Raz, Sharir and Solymosi [47], and Raz, Sharir and de
Zeeuw [44] give upper bounds on the number of solution triples to the 3POL problem. The
last and strongest result is the following

» Theorem 6 (Raz, Sharir and de Zeeuw [44]). Let A, B, C be n-sets of real numbers and F €
R[x,y, z] be a polynomial of constant degree, then the number of triples (a,b,c) € A x B x C
such that F(a,b,c) =0 is O(n'*/%) unless F has some group related form.?

2 Because our results do not depend on the meaning of group related form, we do not bother defining it
here. We refer the reader to Raz, Sharir and de Zeeuw [44] for the exact definition.

23:5

CVIT 2016

23:6

Subquadratic Algorithms for Algebraic Generalizations of 3SUM

Raz, Sharir and de Zeeuw [44] also look at the number of solution triples for the General
Position Testing problem when the input is restricted to points lying on a constant number
of constant-degree algebraic curves.

» Theorem 7 (Raz, Sharir and de Zeeuw [44]). Let C1, Ca, C3 be three (not necessarily distinct)
irreducible algebraic curves of degree at most d in C2, and let S; C C1, S C Ca, 83 C C3 be
finite subsets. Then the number of proper collinear triples in S1 X So X S5 is

Oa(|S1[M2]S2 >S5 * + [S1 V2 (|S1[/% + [Sa| + |S3])),
unless C1 U Cq U C3 is a line or a cubic curve.

Recently, Nassajian Mojarrad, Pham, Valculescu and de Zeeuw [37] and Raz, Sharir and
de Zeeuw [45] proved bounds for versions of the problem where F' is a 4-variate polynomial.

2 Nonuniform algorithm for explicit 3POL

We begin with the description of a nonuniform algorithm for explicit 3POL which we use
later as a basis for other algorithms. We prove the following:

» Theorem 8. There is a bounded-degree ADT of depth O(n¥+€) for 8POL.

Idea The idea is to partition the sets A and B into small groups of consecutive elements.
That way, we can divide the A x B grid into cells with the guarantee that each curve
¢ = f(x,y) in this grid intersects a small number of cells. For each such curve and each cell
it intersects, we search ¢ among the values f(a,b) for all (a,b) in a given intersected cell. We
generalize Fredman’s trick [24] — and how it is used in Grgnlund and Pettie’s paper [28] —
to quickly obtain a sorted order on those values, which provides us a logarithmic search time
for each cell. Below is a sketch of the algorithm.

Algorithm 1 (Nonuniform algorithm for explicit 3POL).

input A={a1<---<a,},B={bh1 < - <b, },C={e1<--<e,} CR

output accept if 3 (a,b,c) € A x B x C such that ¢ = f(a,b), reject otherwise.

1. Partition the intervals [a1, ay] and [b1, by,] into blocks Af and B} such that A; = AN A}
and Bj = BN B have size g.

2. Sort the sets f(A; x B;) ={ f(a,b): (a,b) € A; x B; } for all A;, B;. This is the only
step that is nonuniform.

3. For each c € C,

3.1. For each cell A} x B intersected by the curve ¢ = f(z,y),

3.1.1. Binary search for c in the sorted set f(A4; x B;). If ¢ is found, accept and halt.

4. reject and halt.

Note that it is easy to modify the algorithm to count or report the solutions. In the latter
case, the algorithm becomes output sensitive. Like in Grgnlund and Pettie’s O(n%) decision
tree for 3SUM [28], the tricky part is to give an efficient implementation of step 2.

A x B grid partitioning Let A ={a; <az <---<ap}and B={b <by<---<by}
For some positive integer g to be determined later, partition the interval [a1,a,] into n/g
blocks A7, A3, ..., A /g such that each block contains g numbers in A. Do the same for the
interval [by, b,] with the numbers in B and name the blocks of this partition BY, B3, ..., B* g
For the sake of simplicity, and without loss of generality, we assume here that g divides n.

L. Barba, J. Cardinal, J. lacono, S. Langerman, A. Ooms and N. Solomon

B By
by . by,
A Ar x B: | |9
Lo | I
E N g
vl . B |
by f — | f >A b1

Q. w3

(a) Partitioning A and B. (b) An zy-monotone arc of ¢ = f(z,y) intersects

a staircase of at most 2% — 1 cells in the grid.

Figure 1 Properties of the A x B grid.

We continue to make this assumption in the following sections. To each of the (n/g)? pairs
of blocks Aj and B} corresponds a cell A x Bj. By definition, each cell contains g* pairs in
A x B. For the sake of notation, we define A, = ANAY ={a;1 <a;2<---<ay} and
Bj=BNB; ={bj1 <bj2 <---<bj,}. Figure la depicts this construction.

The following two lemmas result from this construction:

> Lemma 9. For a fized value c € C, the curve ¢ = f(x,y) intersects O(%) cells. Moreover,
those cells can be found in O(%) time.

Proof. Since f has constant degree, the curve ¢ = f(z,y) can be decomposed into a constant
number of xy-monotone arcs. Split the curve into z-monotone pieces, then each z-monotone
piece into y-monotone arcs. The endpoints of the xy-monotone arcs are the intersections of
f(z,y) = c with its derivatives f;(z,y) = 0 and f; (z,y) = 0. By Bézout’s theorem, there are
O(deg(f)?) such intersections and so O(deg(f)?) zy-monotone arcs. Figure 1b shows that
each such arc intersects at most 22 — 1 cells since the cells intersected by a xy-monotone arc
form a staircase in the grid. This proves the first part of the lemma. To prove the second
part, notice that for each connected component of ¢ = f(z,y) intersecting at least one cell of
the grid either: (1) it intersects a boundary cell of the grid, or (2) it is a (singular) point or
contains vertical and horizontal tangency points. The cells intersected by ¢ = f(z,y) are
computed by exploring the grid from O(g) starting cells. Start with an empty set. Find
and add all boundary cells containing a point of the curve. Finding those cells is achieved
by solving the Tarski sentence 3(z,y)c = f(z,y) Ax € Af Ay € B}, for each cell A7 x B
on the boundary. This takes O(%) time. Find and add the cells containing endpoints of
ay-monotone arcs of ¢ = f(x,y). Finding those cells is achieved by first finding the constant
number of vertical and horizontal slabs A7 x R and R x B} containing such points:

LU
®
NS

o

I
k&
—
&
s

>

(felz,y) =0V fy(z,y) =0) Ax € A7,
(folz,y) =0V f,(x,y) =0) Ay € Bj.

LU
—~
&
Y

I
=
&
=

>

23:7

CVIT 2016

23:8

Subquadratic Algorithms for Algebraic Generalizations of 3SUM

B
AA

bn o

b 4 n ; Lo

TR . e

n f

g e 3
2 S T A S

by ' 1 >, @ % — >
a; < n > an A ay < Tan A

9 a d 9 a
(a) The pairs (a,b), (a’,b"). (b) (a,a’) € v;b, implies f(a,b) > f(a’,V").

Figure 2 Generalization of Fredman’s trick (Lemma 11).

This takes O(2) time. Then for each pair of vertical and horizontal slab containing such a
point, check that the cell at the intersection of the slab also contains such a point:

Iz, y)e = flz,y) A (fr(z,y) =0V fi(z,y) =0) Az € A] Ny € B;.

This takes O(1) time. Note that we can always assume the constant-degree polynomials we
manipulate are square-free, as making them square-free is trivial [53]: since R[z] and R[y] are
unique factorization domains, let QQ = P/gcd(P, Py;x) and sf(P) = Q/ged(P, P,;y), where
ged(P, Q; 2) is the greatest common divisor of P and () when viewed as polynomials in R|z]
where R is a unique factorization domain and sf(P) is the square-free part of P. The set
now contains, for each component of each type, at least one cell intersected by it. Initialize
a list with the elements of the set. While the list is not empty, remove any cell from the
list, add each of the eight neighbouring cells to the set and the list, if it contains a point of
¢ = f(x,y) — this can be checked with the same sentences as in the boundary case — and if
it is not already in the set. This costs O(1) per cell intersected. The set now contains all
cells of the grid intersected by ¢ = f(z,vy). <

» Lemma 10. If the sets A, B,C can be preprocessed in Sy(n) time so that, for any given cell
A} x B} and any given c € C, testing whether c € f(A; x Bj) = { f(a,b): (a,b) € A; x B; }
can be done in O(log g) time, then, explicit 3POL can be solved in Sq(n) + O(§ log g) time.

Proof. We need S,(n) preprocessing time plus the time required to search each of the n
numbers ¢ € C' in each of the O(%) cells intersected by ¢ = f(z,y). Each search costs O(log g)
time. We can compute the cells intersected by ¢ = f(z,y) in O(%) time by Lemma 9. <«
» Remark. We do not give a S, (n)-time real-RAM algorithm for preprocessing the input,
but only a S;(n)-depth bounded-degree ADT. In fact, this preprocessing step is the only
nonuniform part of Algorithm 1. A real-RAM implementation of this step is given in §3.

L. Barba, J. Cardinal, J. lacono, S. Langerman, A. Ooms and N. Solomon 23:9

Preprocessing All that is left to prove is that S,(n) is subquadratic for some choice of
g. To achieve this we sort the points inside each cell using Fredman’s trick [24]. Grgnlund
and Pettie [28] use this trick to sort the sets A; + B; = {a+b: (a,b) € A; x B; } with few
comparisons: sort the set D = (U;[A; —A4;])U(U;[B; —B;]), where A, —A; = {a—d’: (a,d) €
A;xA;}and Bj—Bj = {b—0': (b,V/) € B; x B; }, using O(nlogn+|D|) comparisons, then
testing whether a + b < a’ 4+’ can be done using the free (already computed) comparison
a—a’ < —b. We use a generalization of this trick to sort the sets f(A; x B;). For each B,
for each pair (b,b') € B; x By, define the curve v, = { (z,9): f(z,b) = f(y,') }. Define
the sets 10, = Yy = £ (8:9)5 £(5,0) < F(5,)}ty = { (@ 9)5 f(5,0) > F(y,b) .
The following lemma — illustrated by Figure 2 — follows by definition:

» Lemma 11. Given a cell A} x B} and two pairs (a,b), (a',V') € A; x By, deciding whether
fla,b) < f(a',b") (respectively f(a,b) = f(a’,b') and f(a,b) > f(a’',b')) amounts to deciding
whether the point (a,a’) is contained in v, ,, (respectively Yop and 'y;b,).

There are N = % - g% = ng pairs (a,a’) € U;[A; x A;] and there are N pairs (b, V') €
U, [Bj x B;]. Sorting the f(A; x B;) for all (A;, B;) amounts to solving the following problem:

» Problem (Polynomial Batch Range Searching). Given N points and N polynomial curves in
R2, locate each point with respect to each curve.

We can now refine the description of step 2 in Algorithm 1

Algorithm 2 (Sorting the f(A; x B;) with a nonuniform algorithm).

input A={a;1<axs<---<ap},B={by<ba<---<b,}CR

output The sets f(A; x B;), sorted.

2.1. Locate each point (a,a’) € U;[A; x A;] w.r.t. each curve v, (b, V') € U;[B; x Bj].

2.2. Sort the sets f(A; x B;) using the information retrieved in step 2.1.
Note that this algorithm is nonuniform: step 2.2 costs at least quadratic time in the real-RAM
model, however, this step does not need to query the input at all, as all the information
needed to sort is retrieved during step 2.1. Step 2.2 incurs no cost in our nonuniform model.

To implement step 2.1, we use a modified version of the N 320(log™ N) algorithm of

Matousek [33] for Hopcroft’s problem. In Appendix A, we prove the following upper bound:

» Lemma 12. Polynomial Batch Range Searching can be solved in O(N%+E) time in the
real-RAM model when the input curves are the vy .

Analysis Combining Lemma 10 and Lemma 12 yields a O((ng)4/3+5 +n%g~!log g)-depth

bounded-degree ADT for 3POL. By optimizing over g, we get g = O(n?77¢), and the
previous expression simplifies to O(n'?/7+¢), proving Theorem 8.

3 Uniform algorithm for explicit 3POL
We now build on the first algorithm and prove the following:
» Theorem 13. Explicit 3POL can be solved in O(n?(loglog n)%/(log n)%) time.

We generalize again Grgnlund and Pettie [28]. The algorithm we present is derived from the
first subquadratic algorithm in their paper.

CVIT 2016

23:10

Subquadratic Algorithms for Algebraic Generalizations of 3SUM

Idea We want the implementation of step 2 in Algorithm 1 to be uniform, because then,
the whole algorithm is. We use the same partitioning scheme as before except we choose g to
be much smaller. This allows to store all permutations on g2 items in a lookup table, where
g is chosen small enough to make the size of the lookup table ©(n®). The preprocessing
part of the previous algorithm is replaced by ¢?! calls to an algorithm that determines for
which cells a given permutation gives the correct sorted order. This preprocessing step
stores a constant-size® pointer from each cell to the corresponding permutation in the lookup
table. Search can now be done efficiently: when searching a value ¢ in f(A; x B;), retrieve
the corresponding permutation on g2 items from the lookup table, then perform binary
search on the sorted order defined by that permutation. The sketch of the algorithm is
exactly Algorithm 1. The only differences with respect to §2 are the choice of g and the
implementation of step 2.

A x B grid partitioning We use the same partitioning scheme as before, hence Lemma 9
and Lemma 10 hold. We just need to find a replacement for Lemma 12.

Preprocessing For their simple subquadratic 3SUM algorithm, Grgnlund and Pettie [2§]
explain that for a permutation to give the correct sorted order for a cell, that permutation
must define a certificate — a set of inequalities — that the cell must verify. They cleverly
note — using Fredman’s Trick [24] as in Chan [14] and Bremner et al. [10] — that the
verification of a single certificate by all cells amounts to solving a red/blue point dominance
reporting problem. We generalize their method. For each permutation 7: [g2] — [g]%, where
7 = (7, 7.) is decomposed into row and column functions 7., 7.: [¢%] — [g], we enumerate
all cells A7 x By for which the following certificate holds:

(@, 1)5 b)) < F(@i . 2) Djira2) <000 < f(@my (925 bjoma(92))-

» Remark. Since some entries may be equal, to make sure each cell corresponds to exactly one
certificate, we replace < symbols by choices of g2 — 1 symbols in { =, < }. Each permutation
m gets a certificate for each of those choices. This adds a 29°=1 factor to the number of
certificates to test, which will eventually be negligible. Note that some of those 29°—1
certificates are equivalent. We need to skip some of them, as otherwise we might output some
cells more than once, and then there will be no guarantee with respect to the output size.
For example, the certificate f(ai9,b;5) = f(aie,bj7) < -+ < f(aia,bja) is equivalent to
the certificate f(as6,057) = f(ai0,b;5) <--- < f(a;4,b;4). Among equivalent certificates,
we only consider the certificate whose permutation 7 precedes the others lexicographically.
In the previous example, ((6,7),(9,5),...,(4,4)) < ((9,5),(6,7),...,(4,4)) hence we would
only process the second certificate. For the sake of simplicity, we will write inequality when
we mean strict inequality or equation, and “<” when we mean “<” or “=".

Fredman’s Trick This is where Fredman’s Trick comes into play. By Lemma 11, each
inequality f(a;x,) bjr.t)) < f(@im, (t41)s0jmo(t+1)) Of a certificate can be checked by

computing the relative position of (a; r, (¢), @ x, (t+1)) With respect to 7,

jome(t by me(ie1y LOT &

given certificate, for each A; and each B;, define

bi = ((ai,ﬂ'r(l)ﬂ ai,ﬂ'T(Q))? (ai,ﬂ'r(Q)? ai,ﬂ'r(?)))a sy (ai,TrT(gQ—l)a a’i,TrT(gz)))v
q; = (f(l‘, bj,ﬂ'c(l)) < f(yv bj,wC(Z))a ceey f(iIf, bj,ﬂc(9271)) < f(ya bj,'n'c(gz)))'

3 In the real-RAM and word-RAM models.

L. Barba, J. Cardinal, J. lacono, S. Langerman, A. Ooms and N. Solomon

A certificate is verified by a cell A; x B; if and only if, for all ¢ € [¢? — 1], the point p; ; verifies
the inequality g; ;. Enumerating all cells A; x B; for which the certificate holds therefore
amounts to solving the following problem:

» Problem (Polynomial Dominance Reporting (PDR)). Given N k-tuples p; of points in R?
and N k-tuples q; of bivariate polynomial inequalities of degree at most deg(f), enumerate
all pairs (pi,q;) where, for all t € [k], the point p; ; verifies the inequality ¢ ..

In the next section, we explain how to solve PDR efficiently and prove the following lemma:
4
» Lemma 14. We can enumerate all £ such pairs in time 20(k) N?~ TesnZrsaeana T° 4 O(?).

We can now give a uniform implementation of step 2 in Algorithm 1:

Algorithm 3 (Sorting the f(A; x B;) with a uniform algorithm).

input A={a;1<ax<--<a,},B={bi<ba<---<b,}CR
output The sets f(A; x B;), sorted.

2.1. Initialize a lookup table that will contain all O(29°~1(g2!)) certificates on g2 elements.

2.2. For each permutation 7: [g%] — [g]°,

2.2.1. For each choice of g? — 1 symbols in {=, <},

2.2.1.1. If there is any “=" symbol that corresponds to a lexicographically decreasing pair
of tuples of indices in 7, skip this choice of symbols.

2.2.1.2. Append the certificate associated to II and the choice of symbols to the table.

2.2.1.3. Solve the PDR instance associated to A, B,II and the choice of symbols.

2.2.1.4. For each output pair (i,), store a pointer from (i, j) to the last entry in the table.

Analysis Pluggingin k=¢?>—-1, N = %, iterating over all permutations () ¢ = (n/g)2)7
and adding the binary search step we get that explicit 3POL can be solved in time

(92!)29220(92) (n/g)Q* Tes (NP Ts des(n T2 e + O((n/g)2) +0(n?*logg/g).

The first two terms correspond to the complexity of step 2 in Algorithm 1, and the last
term corresponds to the complexity of step 3 in Algorithm 1. To get subquadratic time
we can set g = cCgeg(r)y/l0gn/loglogn, because then for some appropriate choice of the
constant factor caeg(), (92)129°2005") = % where § < 4/(deg(f)* + 3 deg(f) +2) — &, making
the first term negligible. The complexity of the algorithm is dominated by O(n?logg/g) =

3
2

O(n?(loglogn)? /(log n)%) This proves Theorem 13.

4 Polynomial Dominance Reporting

In this section, we combine a standard dominance reporting algorithm [41] with Matousek’s
algorithm [33] to prove Lemma 14. We say a pair of blue and red points in R¥ is dominating
if for all indices ¢ € [k] the ith coordinate of the blue point is greater or equal to the ith
coordinate of the red point. The standard algorithm [41] solves the following problem:

» Problem. Given N blue and M red points in R¥, report all bichromatic dominating pairs.

Our problem is significantly more complicated and general. Instead of blue points we have blue
k-tuples p; of 2-dimensional points, instead of red points we have red k-tuples g; of bivariate
polynomial inequalities, and we want to report all bichromatic pairs (p;, ¢;) such that, for all
t € [k], the point p;, verifies the inequality ¢; . The standard algorithm essentially works by

23:11

CVIT 2016

23:12

Subquadratic Algorithms for Algebraic Generalizations of 3SUM

a combination of divide and conquer and prune and search, using a one-dimensional cutting
(median selection) to split a problem into subproblems. We generalize the standard algorithm
by using higher dimensional cuttings, in a way similar to Matousek’s algorithm [33]. For the
analysis, we generalize Chan’s analysis of the standard algorithm when % is not constant [14].

Proof of Lemma 14. We use the Veronese embedding [29, 30]. Since the polynomials
have constant degree, we can trade polynomial inequalities for linear inequalities by lifting
everything to a space of higher — but constant — dimension. The degree of each polynomial
is at most deg(f). There are exactly d = (1°8/)"2) — 1 different bivariate monomials of
degree at most deg(f)*. To each monomial we associate a variable in R?. By this association,
points in the plane are mapped to points in R? and bivariate polynomial inequalities are
mapped to d-variate linear inequalities.

By abuse of notation, let p; denote the tuple p; where each 2-dimensional point has been
replaced by its d-dimensional counterpart, and let ¢; denote the tuple g; where each bivariate
polynomial inequality has been replaced by its d-variate linear counterpart. We have N
k-tuples p; and M k-tuples g;. The algorithm checks each of the k components of the tuples
in turn and can be described recursively as follows for some positive integer r > 1:

Algorithm 4 (Polynomial Dominance Reporting).

input N k-tuples p; of d-dimensional points, M k-tuples ¢; of d-variate linear inequalities.

output All (p;, ;) pairs such that, for all ¢t € [k], the point p; ; verifies the inequality g; .

1. If £ = 0, then output all pairs (p;,q;) and halt.

2. If N <74 or M < r, solve the problem by brute force in O((N + M)k) time.

3. We now only consider the kth component of each input k-tuple and call these active
components. To each active d-variate linear inequality corresponds a defining hyperplane
in R?. Construct, as in [33], a hierarchical cutting of R? using O(r?) simplicial cells
such that each simplicial cell is intersected by at most % of the defining hyperplanes.
This construction also gives us for each simplical cell of the cutting the list of defining
hyperplanes intersecting it. This takes O(Mr?~!) time. Locate each active point inside
the hierarchical cutting in time O(N logr). Let S be a simplicial cell of the hierarchical

cutting. Denote by IIg the set of active points in S. Partition each IIg into U’Hﬁ”

disjoint subsets of size at most rﬂd For each simplicial cell, find the active inequalities
whose corresponding geometric object (hyperplane, closed or open half-space) contains
the cell. This takes O(Mr?) time. The whole step takes O(N logr 4+ Mr?) time.

4. For each of the O(r?) simplicial cells, recurse on the at most Tﬂd k-tuples p; whose active
point is inside the simplicial cell and the at most % k-tuples g; whose active inequality’s
defining hyperplane intersects the simplicial cell.

5. For each of the O(r?) simplicial cells, recurse on the at most & (k — 1)-prefixes of
k-tuples p; whose active point is inside the simplicial cell and the (k — 1)-prefixes
of k-tuples ¢; whose active inequality’s corresponding geometric object contains the

simplicial cell.

Correctness In each recursive call, either k is decremented or M and N are divided by
some constant, hence, one of the conditions in steps 1 and 2 is met in each of the paths of
the recursion tree and the algorithm always terminates. Step 5 is correct because it only
recurses on (p;, ¢;) pairs whose suffix pairs are dominating. The base case in step 1 is correct

4 Not including the independent monomial, namely, 1.

L. Barba, J. Cardinal, J. lacono, S. Langerman, A. Ooms and N. Solomon

because the only way for a pair (p;, g;) to reach this point is to have had all k& components
checked in step 5. The base case in step 2 is correct by definition. Each dominating pair
is output exactly once because the recursive calls of step 4 and 5 partition the set of pairs
(ps, qj) that can still claim to be candidate dominating pairs.

Analysis For k, N, M > 0, the total complexity Ty (N, M) of computing the inclusions for
the first k components, excluding the output cost (steps 1 and 2), is bounded by

Tw(N, M) < O(r?) T 1 (N, M) + O(r?) Ty, (i\; Af) +O(N + M),

Step 5 Step 3
Step 4

To(N,M) =0, Tu(N,M)=O(Nk)if M <r, To(N,M)=O(ME)if N < r’.

By point-hyperplane duality, Ty (N, M) = T (M, N), hence, we can execute step 4 on dual
linear inequalities and dual points to balance the recurrence. For some constant ¢; > 1,

N

2d 2d
Tk(N,M)SClT Tk_l(N,M)+Clr Tk(rd-‘rl’/rd-‘rl

) +er (N + M).

For simplicity, we ignore some problem-size reductions occuring in this balancing step.
Let Ty(N) = Ti(N,N) denote the complexity of solving the problem when M = N,
excluding the output cost. Hence,

N
Ti(N) < e1r®*Ti—1(N) + 10T, (rd“) +aN, (1)

To(N) =0, Tp(N)=O(k)if N < rdtt,
Solving the recurrence® gives Tj,(N) = 20(’“)N%+8*, and since d = (dcg(g)“) — 1, we have
Ty (N) = 200 N~ Tt roaeatne o

To that complexity we add a constant time unit for each output pair in steps 1 and 2. <«

5 3POL

Extending the previous techniques to work for the (implicit) 3POL problem is nontrivial:

1. Instead of sorting the sets f(A; x B;) we need to sort the real roots of the F'(4; x Bj, z),

2. The 4 curves must be redefined. The redefined curve 734 is still the zero-set of some
constant-degree bivariate polynomial P(z,y). However, retrieving the information we
need for sorting becomes more challenging than just computing the sign of the P(A; x 4;),

3. The implementation of the certificates for the uniform algorithm gets much more convo-
luted: each certificate checks the validity of a conjunction of Tarski sentences.

Those extensions are explained in detail in Appendix C and D where we show
» Theorem 15. There is a bounded-degree ADT of depth O(nl72+5) for 3POL.

3
2

» Theorem 16. SPOL can be solved in O(n?(loglogn)? /(log n)%) time.

5 See Appendix B.

23:13

CVIT 2016

23:14

REFERENCES

References

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower bounds
for dynamic problems. In FOCS, pages 434-443. IEEE Computer Society, 2014.

Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster
alignment of sequences. In ICALP (1), volume 8572 of LNCS, pages 39-51, 2014.

Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and basing
hardness on an extremely popular conjecture. In STOC, pages 41-50. ACM, 2015.

Nir Ailon and Bernard Chazelle. Lower bounds for linear degeneracy testing. J. ACM, 52(2):157—
171, 2005.

Amihood Amir, Timothy M. Chan, Moshe Lewenstein, and Noa Lewenstein. On hardness of
jumbled indexing. In ICALP (1), volume 8572 of LNCS, pages 114-125, 2014.

Ilya Baran, Erik D. Demaine, and Mihai Patrascu. Subquadratic algorithms for 3SUM. Algo-
rithmica, 50(4):584-596, 2008.

Gill Barequet and Sariel Har-Peled. Polygon containment and translational min Hausdorff
distance between segment sets are 3SUM-hard. Int. J. Comput. Geometry Appl., 11(4):465-474,
2001.

Saugata Basu, Richard Pollack, and Marie-Francoise Roy. Computing roadmaps of semi-algebraic
sets (extended abstract). In STOC, pages 168-173. ACM, 1996.

Saugata Basu, Richard Pollack, and Marie-Francoise Roy. Algorithms in real algebraic geometry,
volume 10 of Algorithms and Computation in Mathematics. Springer, 2006.

David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John
Tacono, Stefan Langerman, Mihai Patrascu, and Perouz Taslakian. Necklaces, convolutions, and
X+Y. Algorithmica, 69(2):294-314, 2014.

Hervé Bronnimann, Bernard Chazelle, and Jiri Matousek. Product range spaces, sensitive
sampling, and derandomization. STAM J. Comput., 28(5):1552-1575, 1999.

Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and
Stefan Schneider. Nondeterministic extensions of the strong exponential time hypothesis and
consequences for non-reducibility. In ITCS, pages 261-270. ACM, 2016.

Bob F Caviness and Jeremy R Johnson. Quantifier elimination and cylindrical algebraic decom-
position. Springer, 2012.

Timothy M. Chan. All-pairs shortest paths with real weights in O(n®/logn) time. Algorithmica,
50(2):236-243, 2008.

Bernard Chazelle, Herbert Edelsbrunner, Leonidas J. Guibas, and Micha Sharir. A singly
exponential stratification scheme for real semi-algebraic varieties and its applications. Theor.
Comput. Sci., 84(1):77-105, 1991.

Bernard Chazelle and Jiri Matousek. On linear-time deterministic algorithms for optimization
problems in fixed dimension. J. Algorithms, 21(3):579-597, 1996.

George E. Collins. Hauptvortrag: Quantifier elimination for real closed fields by cylindrical
algebraic decomposition. In Automata Theory and Formal Languages, volume 33 of LNCS, pages
134-183. Springer, 1975.

David Cox, John Little, and Donal O’shea. Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in
Mathematics. Springer, 2007.

James H. Davenport and Joos Heintz. Real quantifier elimination is doubly exponential. J.
Symb. Comput., 5(1/2):29-35, 1988.

Herbert Edelsbrunner, Leonidas J. Guibas, Janos Pach, Richard Pollack, Raimund Seidel, and
Micha Sharir. Arrangements of curves in the plane - topology, combinatorics and algorithms.
Theor. Comput. Sci., 92(2):319-336, 1992.

Gyorgy Elekes and Lajos Rényai. A combinatorial problem on polynomials and rational functions.
J. Comb. Theory, Ser. A, 89(1):1-20, 2000.

Gyorgy Elekes and Endre Szab6. How to find groups? (and how to use them in Erdés geometry?).
Combinatorica, 32(5):537-571, 2012.

Jeff Erickson. Lower bounds for linear satisfiability problems. Chicago J. Theor. Comput. Sci.,
1999.

REFERENCES

24

25
26

27

28

29

30

31

32

33

34

35
36

37

38

39

40

41

42

43

44

45

46

47

48

49
50

51
52
53

Michael L. Fredman. How good is the information theory bound in sorting? Theor. Comput.
Sci., 1(4):355-361, 1976.

Ari Freund. Improved subquadratic 3SUM. Algorithmica, pages 1-19, 2015.

Anka Gajentaan and Mark H. Overmars. On a class of O(n?) problems in computational
geometry. Comput. Geom., 5:165-185, 1995.

Omer Gold and Micha Sharir. Improved bounds for 3SUM, k-SUM, and linear degeneracy. ArXiv
e-prints, 2015. arXiv:1512.05279 [cs.DS].

Allan Grgnlund and Seth Pettie. Threesomes, degenerates, and love triangles. In FOCS, pages
621-630. IEEE Computer Society, 2014.

Joe Harris. Algebraic geometry: a first course, volume 133. Springer, 2013.

Robin Hartshorne. Algebraic geometry, volume 52. Springer, 1977.

Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector multipli-
cation conjecture. In STOC, pages 21-30. ACM, 2015.

Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3SUM conjecture.
In SODA, pages 1272-1287. SIAM, 2016.

Jirl Matousek. Range searching with efficient hierarchical cutting. Discrete € Computational
Geometry, 10:157-182, 1993.

Jiri Matousek. Approximations and optimal geometric divide-an-conquer. J. Comput. Syst. Sci.,
50(2):203-208, 1995.

Jirf Matousek. Derandomization in computational geometry. J. Algorithms, 20(3):545-580, 1996.
Bhubaneswar Mishra. Computational real algebraic geometry. In Handbook of Discrete and
Computational Geometry, 2nd Ed., pages 743-764. Chapman and Hall/CRC, 2004.

H. Nassajian Mojarrad, T. Pham, C. Valculescu, and F. de Zeeuw. Schwartz-Zippel bounds for
two-dimensional products. ArXiw e-prints, 2016. arXiv:1507.08181 [math.CO].

Janos Pach and Micha Sharir. On the number of incidences between points and curves. Combi-
natorics, Probability & Computing, 7(1):121-127, 1998.

Janos Pach and Micha Sharir. Combinatorial geometry with algorithmic applications — the
Alcalé lectures. AMS, Providence, 2009.

Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In STOC, pages
603-610. ACM, 2010.

Franco P. Preparata and Michael Tan Shamos. Computational Geometry - An Introduction. Texts
and Monographs in Computer Science. Springer, 1985.

Michael O. Rabin. Proving simultaneous positivity of linear forms. J. Comput. Syst. Sci.,
6(6):639-650, 1972.

Orit E. Raz and Micha Sharir. The number of unit-area triangles in the plane: Theme and
variations. In SoCG, volume 34 of LIPIcs, pages 569-583, 2015.

Orit E. Raz, Micha Sharir, and Frank de Zeeuw. Polynomials vanishing on cartesian products:
The Elekes-Szabd theorem revisited. In SoCG, volume 34 of LIPIcs, pages 522-536, 2015.

Orit E. Raz, Micha Sharir, and Frank de Zeeuw. The elekes-szabé theorem in four dimensions.
ArXiv e-prints, 2016. arXiv:1607.03600 [math.CO].

Orit E. Raz, Micha Sharir, and Ilya D. Shkredov. On the number of unit-area triangles spanned
by convex grids in the plane. ArXiv e-prints, 2015. arXiv:1504.06989 [math.CO].

Orit E. Raz, Micha Sharir, and Jézsef Solymosi. Polynomials vanishing on grids: The Elekes-
Roényai problem revisited. In SoCG, page 251. ACM, 2014.

Orit E. Raz, Micha Sharir, and Jézsef Solymosi. On triple intersections of three families of unit
circles. Discrete & Computational Geometry, 54(4):930-953, 2015.

Abraham Seidenberg. Constructions in algebra. Transactions of the AMS, 197:273-313, 1974.
J. Michael Steele and Andrew Yao. Lower bounds for algebraic decision trees. J. Algorithms,
3(1):1-8, 1982.

Alfred Tarski. A decision method for elementary algebra and geometry. 1951.

Andrew Yao. A lower bound to finding convex hulls. J. ACM, 28(4):780-787, 1981.

David Yun. On square-free decomposition algorithms. In SYMSACC, pages 26-35, 1976.

23:15

CVIT 2016

https://arxiv.org/abs/1512.05279
https://arxiv.org/abs/1507.08181
https://arxiv.org/abs/1607.03600
https://arxiv.org/abs/1504.06989

23:16

REFERENCES

A Polynomial Batch Range Searching

In this section we present a uniform algorithm that computes the relative position of M
points with respect to N 73 curves. We call such a problem an (M, N)-problem. When
M = N the complexity of the algorithm is O(N e). The algorithm gives the output in
“concise form”: it outputs a set of (Il,,I'g, o) triples where 11, is a subset of input points, I'g
is a subset of input curves, and o € { —, 0, + } indicates the relative position of all points in
II, with respect to all curves in I'3. Note that if one is only interested in incident point-curve
pairs, the algorithm can explicitely report all of them in O(N %+€) time, because there are at
most O(N %) such pairs and because they can easily be filtered from the output.

Tools The proof of Lemma 12 involves stantard computational geometry tools: vertical
decomposition of an arrangement of polynomial curves, e-nets, cuttings and derandomization.
For the construction of the vertical decomposition of an arrangment of polynomial curves,
we refer the reader to Pach and Sharir [39], Chazelle et al. [15], and Edelsbrunner et al. [20].
For cuttings, e-nets and derandomization, we refer the reader to Matousek [34, 35], Chazelle
and Matousek [16] and Bronnimann et al. [11].

Proof of Lemma 12. Fix some constant » > 1. If M < r2 or N < r, solve by brute-force
in O(M + N) time. Otherwise, consider the range space defined by 7, curves and y-axis
aligned trapezoidal patches whose top and bottom sides are pieces of 74, curves. This range
space has constant VC-dimension. Compute an %—net of size O(rlogr) for the input curves
with respect to this range space. Compute the vertical decomposition = of the arrangement
of this I-net. This decomposition is a 1-cutting: it partitions R? into O(r? log?r) cells of
constant complexity each of which intersects at most g input curves. Denote by Ilo the

set of points contained in the cell C' € =. Partition each Il¢ into [A‘fr C,';‘ disjoint subsets

of size at most 2. All of this can be done in O(M + N) time. The last step consists of
solving O(r? log®) (%, %)—problems, that is, solving the problem recursively for the points
and curves intersecting each cell. The recursive call will be done by swapping the role of the

points and curves using a form of duality to be described below.

Correctness We want to locate each point with respect to each curve. When considering
a curve-cell pair, there are two cases: (1) either the curve intersects the cell, or (2) it does
not. For the first case we locate each point in the cell with respect to the curve in one of
the recursive steps. For the second step, the relative position of all points in the cell with
respect to the curve is the same, it suffices thus to locate one of those point with respect to
the curve to get the location of all the points in O(1) time. Each recursive call divides M
and N by some constant, hence, the base case is reached in each of the paths of the recursion
tree and the algorithm always terminates.

Analysis For ¢; some constant and bounding ¢;72 log? r above by ¢or?t for some large
enough constant ¢y, the complexity T'(M, N) of an (M, N)-problem is thus

M N
T(M, N) < e2(2+) T() +O(M +N).
The complexity T'(N, M) of a (N, M)-problem is the same as the complexity T (M, N) of an

(M, N)-problem by the following point-curve duality result whose proof is straightforward

REFERENCES

» Lemma 17. Define

Yoo = { (2, 9): fla,2) = fla',y) },
then, locating (a,a’) with respect to vy amounts to locating (b,b") with respect t0 4q,q -

By doing alternately one step in the primal with the points (a,a’) and the curves v, 4,
then a second step with the dual points (b,d’) and the dual curves 4, o, we get the following
recurrence

M N M N
2, .4+e 24e
T(M,N) < &(r)T(T‘,,),?dg) +eo(r)o(r2 + T) +O(M + N)

M N
S Cg(r4+E)T<T3,T3> +O(M+N)

Hence, for some large enough constant ¢z (using the Master Theorem),

N
r3
+e

T(N,N)=T(N) < c3(r*") T() + O(N)

< O(NIOgT?’ cart)

< O(N5+9),

Let us recapitulate the whole algorithm,

Algorithm 5 (Polynomial Batch Range Searching).

input A set IT of M points (a,a’), A set I of N curves 7y 5.

output A set of triples (Il,,I'g, o) covering IT x I" such that for any triple (II,,I'g, o), for
all point (a,a’) in II, and all curve v in I'g, (a,a’) € 77.

. If M <72 or N < r, solve the problem by brute force in O(M + N) time.

. Compute an %—net of size O(rlogr) for the input curves.

. Compute the vertical decomposition E of the arrangement of this %—net.

. Denote by Il the set of points contained in the cell C' € =. Partition each Il¢ into
o]
Mr—2

4. For each cell C of the vertical decomposition,

4.1. For each subset II¢; of points contained in that cell,

4.1.1. Solve an (g, %)—problem on the curves intersecting that cell and the points in Il¢ ;,
swapping the roles of lines and curves via duality.

4.2. For each curve 7 not intersecting C,

4.2.1. Compute the location o¢ , of any point in C' with respect to +.

4.3. Output ({v: oy =—}1¢,—).8

4.4. Output ({v: ocy =+ }, e, +).

4.5. Output ({v: o¢c, =0},11¢,0).7

WiN = O

1 disjoint subsets Il¢; of size at most JTW—Q

Note that Il is implemented as a pointer to the input points in C.

Some cells of the vertical decomposition could be degenerate trapezoidal patches. The decomposition
could contain vertices, line segments, and curve segments as cells, each of which could contain input
points and be contained by an input curve.

23:17

CVIT 2016

23:18

REFERENCES

B Analysis of Polynomial Dominance Reporting

To get rid of the parameter k and progress into the analysis of the recurrence, Chan makes
an ingenious change of variable [14]. With hindsight, choose b = r¢*! and let

T(N') = max Ti(N), @

where the maximum is taken over all integers k > 0, N > 1. By combining (1) and (2) we
obtain

N
T(N')= max Ty(N)< max clr2di,1(N) + 72T, + e N,
bk N< N’ bk N<N’ pd+1

The maximum of a sum is always bounded by the sum of the maxima of its terms, hence,

N
! 2d 2d
T(N") < bkrjnvag%/ [clr Tk_l(N)] + kaII\}aS}RV [clr Ty (TdJrl)] + bk%ag%v'[clN}'

By definition of T'(N'), we have

max Tp_1(N)= max Typ_1(N)=
bk N<N’ bk—lNSNT’

T
N N N’
bkrzr\}agux' T <rd+1> o]glagx N’ Tk<rd+1> - T(rd“)’

which, when combined, produce the following recurrence

!

N
T(N') < 201r2dT(rd+1

)-%ClAﬂ.

Powers of 7t! We claim that if N’ is a power of r¢*1 then T(N') < co[N'“ — N’| for
some constants « > 1 and ¢y > 1. We prove by induction that this guess is indeed correct.
For N’ =1, we have

T(1) = max Te(N) =To(1) =0 < e2[1* — 1]

d+1 d+1

For N’ > r@*! a power of r%*! assuming the claim holds for all smaller powers of r

N \¢ N’
T(N") < 2¢17%% ¢y [() } +c N’

pd+1 | pdtl
2cq724 c1
<N | —/——| — aN'[2¢,79 71 — =
< e [(rdH)O‘ 2 1 o
We want
2d
cr 1 c
S < = and 21741 — e > 1.
(rd+1)e = 2 o
For the first inequality, we can set the left hand side to be equal to car—e = % with some
small ¢’ = Hklf’%. Hence, 2d — a(d+ 1) = —¢’, and for € = d%l, we get @ = dQ—fl +¢e. The

REFERENCES

. . . . d_l 1
second inequality is equivalent to 2r > o+
1701 Z 1702 Z 1.

We now have

which always holds since r > 2,d >

1
ca’

T(N') = O(N'#7%),

where ¢ = (1+l°g a!

@3 1) logr CAN be chosen arbitrarily small by picking r = (261)1/5(d+ Y arbitrarily
large.

» Remark. The choice b = r?*! gives a simpler analysis. Although giving more freedom to
the value of b — as in Chan’s paper — yields a slightly better relation between ¢ and r,
namely 7 > cll/s(‘H Vit does not get rid of the dependency of ¢ in r, unless ¢; = 1.

General case When N’ > 2 is not a power of 7%+, we use the fact that T(N’) < T(N’ +1)
by definition,

2d

23:19

T(N') = T((r) 5 M) <o s M) o((rd+1)<“°grd+l N’J+1><d+1+s>>

-2d_ _2d_
=0 ((Td-i-l) Frte (Td+1) llog,at1 N'| @41 +E> -0 ((Td+1) llog, a1 N'| d+1 +5>
2d
24+
=0 ((rcul)logrd+1 v E) = O(N’%+E>

Finally We can now bound Ty (N) using the upper bound for T'(N’),

To(N) < max Tk (N;) = T(*N) = O((bFN)1te) = 20k s te,
bki N;<bEN

C Nonuniform algorithm for 3POL

In this section, we extend the nonuniform algorithm given for explicit 3POL in §2 to work
for the more general 3POL problem. We prove the following

» Theorem 18. There is a bounded-degree ADT of depth O(n¥+€) for 3POL.

Idea The idea is the same as for explicit 3POL. Partition the plane into A7 x B cells.
Note that for a fixed ¢ € C, the curve F/(z,y, ¢) intersects O(%) cells A7 x Bj. The algorithm
is the following: (1) for each cell A} x B7, sort the real roots of the F'(a,b, z) € R[2] taking
the union over all (a,b) € A; x Bj, (2) for each ¢ € C, for each cell A7 x B} intersected by
F(z,y,c), binary search on the sorted order computed in step (1) to find c¢. Step (2) costs
O(n?g~'logg). It only remains to implement step (1) efficiently.

A x B partition We use the same partitioning scheme as before. Hence, counterparts of
Lemma 9 and Lemma 10 hold

> Lemma 19. For a fized c € C, the curve F(z,y,c) = 0 intersects O(7) cells. Moreover,

those cells can be computed in O(%) time.

» Lemma 20. If the sets A, B,C can be preprocessed in Sq(n) time so that, for any given cell
Aj x By and any given c € C, testing whether ¢ € { z: 3(a,b) € A;x B; such that F(a,b,z) =
0} can be done in O(log g) time, then, SPOL can be solved in Sy(n) + O("?2 log g) time.

CVIT 2016

23:20

REFERENCES

Interleavings Let P = (P, P,...,Py) be a tuple of m univariate polynomials. Let
{pi1 <pi2 <--- <pin, | betheset of real roots of p;. Let I = ((i1,71), (i2,J2),- -, (ia,jr))
be a tuple of pairs of positive integers. We say that P realizes I if and only if I is a permutation
of {(i,5): i € [m],j € [A;]}, and for all t € [A — 1], pi, j, < Pirsrjoss- When used in this
context, we call I an interleaving. Note that (1) the first condition implies A = >~ | A;, (2)
a tuple of polynomials realizes at least one interleaving, (3) a tuple of polynomials realizes
more than one interleaving if some of the polynomials have common real roots. We denote
by Z(P) the set of interleavings realized by P.

A x A (b,V')-partitions For a fixed pair (b,b') € B x B, we partition R? into (b, b’)-cells so
that each cell C is mapped to a unique interleaving I, and if we take any two points (a1, a})
and (ag,a}) inside C, both (F(a1,b,2), F(a},V,2)) and (F(az,b, z), F(ah,V', z)) realize I.
Identifying the interleaving associated with each cell of each (b, d’)-partition, then locating
each (a,a’) inside each (b,b’)-partition provides the answers to all questions of the form
“Is the kth real root of F(a,b,z) greater than the ¢th real root of F(da',¥,2), for some
(a,b),(d’,b") € A; x B;?”. Those answers are all we need to binary search for ¢ in the union
of the real roots of the F(a,b, z) € R[z] in time O(log g). Note again that in the nonuniform
setting, we do not sort the roots explicitly, but we must be able to recover the order from
the previous computation steps.

v and &, curves We consider the set of interleavings Z realized by (F(x,b, z), F(y,V, z))
where z is a variable, and x and y are parameters. We identify four types of event that can
happen when the parameters x and y vary continuously: (1) two distinct real roots become
common, (2) a common real root splits into two distinct ones, (3) a real root appears in one
of the polynomials, and (4) a real root disappears in one of the polynomials. Note that many
of those events can happen concurrently. By definition of an interleaving, those events are
the only ones that can cause Z to change.

To handle events of the types (1) and (2), we redefine the curves 7, introduced in §2°

Yo = { (x,y): Iz such that F(z,b,2) = F(y,b',z) =0},

that is, (a,a’) € v if and only if F(a,b,z) and F(a/,V, z) have at least one common root.
Note that this curve is the curve defined by the equation res(F(x,b, z), F(y, b, z); z) = 0, that
is, the set of pairs (x,y) for which the resultant (in z) of F(x,b, z) and F(y, b, z) vanishes.
This resultant is a polynomial € R[z, y] of degree at most the square (up to a constant factor)
of the degree of F' and can be computed in constant time [18]. The following lemma follows
by continuity of the manipulated curve

» Lemma 21. Let (a1,a}) and (az,al) be two points in the plane such that there does not
exist an interleaving realized by both (F(ay,b,z), F(a},V,z2)) and (F(az2,b, z), F(ah, V', 2)).
Moreover, suppose that those two points belong to a connected surface in the plane such that
for any point (a,a’) in that surface, the number of real roots of F(a,b,z) and F(a',b, z)
is fized. Then the interior of any continuous path from (ai,al) to (a2, dy) lying in this
connected surface must intersect yp pr .

Proof. Let I} be an interleaving realized by (F(a1,b,z), F(a},b’,z)) and let Iy be an in-
terleaving realized by (F(ag,b,z), F(ah, b, 2)). Because the number of real roots of the

8 Note that Raz, Sharir, and de Zeeuw [44] use the same points and curves.

REFERENCES

polynomials F(x,b,z) and F(y,¥,z2) is fixed for any point (z,y) lying in the connected
surface, I1 and I differ by a nonzero number of swaps. Moreover, by contradiction, there
is a swap that is common to every choice of I; and I. Since there is a common swap, for
some 4, j € [deg(F)] and without loss of generality, the ith root of F(ay,b, z) is smaller than
the jth root of F(af,b’, z) whereas the ith root of F(as,b, z) is larger than the jth root of
F(ah, V', z). By continuity, on any continuous path from (a1, a}) and (ag,a)) there is a point
(a,a’) such that the ith root of F(a,b, z) is equal to the jth root of F(a’,¥’, z). This point
cannot be an endpoint of the path, hence, the interior of the path intersects 734 . <

The contrapositive states that, if there exists a continuous path from (aj,a}) to (ag,al)
whose interior does not intersect the curve 7y, 3, then there exists an interleaving realized by
both (F(a1,b,z), F(a},V,2)) and (F(ag,b, 2), F(ab, b, 2)).

To handle events of the types (3) and (4), we define the curve

0 ={(x,2): F(z,b,2) =0},
which lies in the xz-plane.

» Lemma 22. We can partition the x azis of the xz-plane into a constant number of intervals
so that for each interval the number of real roots of F(a,b, z) is fized for all a in this interval.

Proof. We partition the xz-plane into a constant number of vertical slabs and lines. The =
coordinates of vertical tangency points and singular points of d;, are the values a for which
a real root of F(a,b,z) = 0 appears or disappears. The number of singular and vertical
tangency points of d; is quadratic in deg(F'). For each of those points, draw a vertical line
that contains the point. Those vertical lines partition the xz-plane into slabs and lines. The
number of vertical lines we draw is constant because the degree of F' is constant. Figure 3a
depicts this drawing. The projection of the vertical lines on the x axis produce the desired
partition (with roughly half of the intervals being singletons). Let us name those lines d,-lines
for further reference. |

We can do a symmetric construction for F'(y, ', z) in the zy-plane and get horizontal d,-lines.

» Lemma 23. We can partition the y azis of the zy-plane into a constant number of intervals
so that for each interval the number of real roots of F(a',V,z) is fized for all o' in this
interval.

Cells of the (b,b')-partition For a given (b,b') € B2, let ',y be the set containing the
curve 7y, the vertical d,-lines and the horizontal dy/-lines. The arrangement A(T 4) of
those constant-degree polynomial curves partitions R? into a constant-size set C(I'y) of
(b, b')-cells. Let P = Uyer, ,v and C = . Add all vertices of A(I'ypr) to C. Add each
connected component of P\ C to C. Add each connected component of R? \ P to C. Finally
C(Ty) :=C. Those cells can be connected surfaces, pieces of the curve 75, pieces of the &;-
and dy-lines (vertical and horizontal line segments), and intersections and self-intersection of
those curves (vertices). By construction, all (b, b')-cells have the following invariant property

» Definition 24. A (b,b')-cell has the invariant property if, for all points (a,a’) in that cell,
(1) the number of real roots of F(a,b, z) is fixed, (2) the number of real roots of F(a’,V’, 2)
is fixed, and (3) the sorted order of the real roots of F(a,b,z) and F(a’,V,) is fixed, that
is, Z((F(a, b, 2), F(a',V, 2))) is fixed.

23:21

CVIT 2016

23:22

REFERENCES
A A
C : : : : A _ ==~ - (b, b)-cells
. . . : - \
; ; ; ; an ...
of real roots of F(x,b,2) =0 "
| : : :
001 2 1 2 1 0000 : 1
~C i n
DL V%‘P S#P V'{FP DL
1 1 1 1 > a1 1 1 1 >
a T, T an A ap T T an A
g

(a) The vertical tangency points (VTP), self- (b) Cells obtained after partitioning the plane
intersection points (SIP) and degenerates lines using the curve 7, ; and the §, and &;-lines.
(DL) of 4, partition the A axis into intervals. The arrows highlight examples of (b, b")-cells
For all x of the same interval, the polynomial

F(z,b,z) € R[z] has a fixed number of real

roots.

Figure 3 Constructions using the +, ;, and d, curves.

» Lemma 25. All (b,b')-cells have the invariant property.

Proof. First, observe that a (b,’)-cell that is not a piece of ;5 has the invariant property.
If that (b,0')-cell is a vertex, it contains a single point and has thus the invariant property.
Note that, by construction of C(I'y), a (b,b')-cell cannot be intersected by a curve of 'y j
that does not contain it. If that (b, b')-cell is a piece of a vertical dj-line, (1) holds because the
dp-line fixes a to some constant, and (2) holds because this line segment cannot intersect any
of the d; lines by construction. Assuming this cell is not contained in 7,4/, (3) holds, and
so this cell has the invariant property. A symmetric argument settles the case for pieces of
horizontal d;/-lines not contained in ~, 5. Similarly, if that (b, d’)-cell is a connected surface,
then it has the invariant property because it does not intersect any of the curves in I' ;.
Finally, if a (b, 1’)-cell is a piece of v, p, we make two observations. First, this cell cannot
intersect any curve of I'y ;s that it does not lie in. Hence, similarly to the pieces of a vertical
dp-line, the pieces of a horizontal dj-line, and the connected surfaces, (1) and (2) hold.
Second, this cell has two distinct neighbouring connected surfaces lying on each of it sides.
We just showed that those two neighbouring cells have the invariant property. Hence the
union of our piece of v, with those two neighbouring cells is a connected surface as in
Lemma 21. Hence, the ordering of any two real roots cannot swap along the piece of 7 4.
Suppose it would, then this would contradict Lemma 21. Hence, (3) holds for pieces of .
Hence, those cells have the invariant property. |

This means that once we have computed in which (b, ')-cell each (a,a’) point lies, we only
need to probe a single point per (b, b')-cell to solve the problem. This partitioning scheme is
depicted in figure 3b.

REFERENCES

Preprocessing Locate all points (a,a’) € A; x A; for all A; with respect to all -y, curves,
all vertical lines derived from d, and all horizontal lines derived from §; for all (b,b’) € B; x B;
for all B; in a single batch using the algorithm described in Appendix A and the following
generalization of Lemma 17:

» Lemma 26. Define

2 J—
')/a,a/ -

Fa,a/ =
then, locating (a,a’) with respect to T'y amounts to locating (b,b') with respect to f‘a,a/.

This takes time O((ng)4/3+s). For each (b, V), we now know in which (b, b’)-cell each (a,a’)
point lies and hence the sorted permutation associated with each cell of the A x B partition.
We now have the information needed for the binary search in step (2). The complexity is
asymptotically the same as in the explicit case. This proves Theorem 18.

D Uniform algorithm for 3POL

In this section, we combine the uniform algorithm for explicit 3POL given in §3 with the
nonuniform algorithm for 3POL given in Appendix C to obtain a uniform subquadratic
algorithm for 3POL. We prove the following

» Theorem 27. 3POL can be solved in O(n?(loglog n)%/(log n)%) time.

Idea In the uniform algorithm for explicit 3POL of §3, we partition the set A x B into very
small sets A; x By, sort the sets f(A; x B;) using the dominance reporting algorithm of §4
then binary search on those sorted sets in order to find a matching c. Here we reuse a similar
scheme with the only difference that the sets to sort are the unions of the real roots of the
univariate polynomials F'(a,b, z) € R[z] over all (a,b) € A; x B;. The main difficulty resides
in implementing the equivalent of the certificates of §3 to reuse the dominance reporting
algorithm of §4. We show how to implement those certificates using the v, and d, curves
defined in Appendix C.

A x B partition We use the same partitioning scheme as all previous algorithms, hence
Lemma 19 and Lemma 20 hold. We apply the same certificate verification scheme as in §3,
hence, the dominance reporting algorithm of §4 and the analysis in §3 still apply.

Preprocessing The preprocessing algorithm is essentially the same as Algorithm 3 with
more complex certificates. We explain how to construct those new certificates. The first
part of the explanation consists in generalizing the definition of a certificate. The rest of
the explanation focuses on the implementation of the verification of those certificates via
Polynomial Dominance Reporting.

23:23

CVIT 2016

23:24

REFERENCES

The certificates For a fixed pair (a,b), F(a,b, z) € R[z] is a polynomial in z of degree at
most deg(F"). Hence, F'(a,b, z) has at most deg(F') real roots. For each cell Af x B, let

A x By = {(as,1,051), (@i,1,052), -+, (@i2,051), (ai2,b52), ..., (aig,bjq) }-

Let p: [g]> — {0,1,...,deg(F)} be a function that maps a pair (k,1) to the number of

real roots of F(aix,bji, 2). Let Xy = 32 o2 p(i,7) < deg(F)g*. Given a function p,

let 7: [2,] = [g]°x{0,1,...,deg(F) } be a permutation of the union of the real roots of all g2

polynomials F(ai’l, bj71, Z), F(ai)l, bj’g, Z), ceey F‘(CLZ‘Q7 bj,l, Z), F(ai,g, bj72, Z), ey F(ai,g, bj7g, Z)7
where the number of real roots of each polynomial is prescribed by p. Decompose m =

(7, Te,) into row, column and real root number functions 7, 7.: [X,] — [¢], and

et [2p] = {0,1,...,deg(F)}. Let o(a,b,s) denote the sth real root of F(a,b,z). To

fix the permutation of the union of the real roots of all g? polynomials, we define the

following interleaving certificate with ¥, — 1 inequalities, for each possible function p and

permutation m

D@y = (i, (1)) bjro (1) Ts (1) < -0 S (yr,(5,)) Ujime(2,), Ts(Ep))-

To fix the number of real roots each of the g% polynomials can have, we define the following
cardinality certificate for each function p

U, := /\ F(a; g, bj1,2) has p(k, 1) real roots.
(k.1)€Elg)?

For each possible function p and permutation 7 we define the certificate YT, » := ¥, A @, »

that fixes both the number of real roots each polynomial has and the permutation of those

real roots. The total number of certificates Y r is 3° . (2101

the order of (92)0(92).

Finally, we need to handle the edge cases where a polynomial F(a,b,z) is the zero
polynomial. In that case, F'(a,b, z) cancels for all z € R. Hence, all planar curves F(z,y,c) =
0 go through (a,b) and we can immediately accept the 3POL instance. To capture those
edge cases, we will check the following certificate before running the main algorithm

deg(F) } Ep! which is Of

.....

Q= \/ F(ai g, bj1,2) is the zero polynomial.
(k,1)€lg)?

We can check if €2 holds for any cell A; x B; in O(nlogn) time. For each b € B binary
search for a a € A that lies on a vertical line component of dy.

If this certificate is verified we accept and halt. Otherwise we can safely run the main
algorithm.

AxA (b,b)-partitions For each B; and for each (b, V') € BJQ- compute a partition of the Ax A
grid according to the (b, b’)-cells defined by I'y;y — see Appendix C. For each (b, b’)-cell of
that partition, pick a sample point (a, a’), compute the interleaving Z((F(a,b, z), F(a', V', 2))).
Store that information for future lookup. All this takes O(ng) time.

PDR instance for ¥, For a fixed pair (a,b), suppose F(a,b, z) has r real roots. Then a
must lie in one of the open intervals or be one of the breaking points defined by the VTP,
SIP and DL of 0, that fixes the number of real roots of F(a,b, z) to r. Hence ¥, can be
rewritten as follows

v, = /\ \/ u<a;p<v \/ \/ Qi) =W

(k,l)E[g]2 ['“‘-,U]Gl-p(k,l) weBP(k‘,l)

REFERENCES 23:25

where 7, ;) denotes the set of intervals fixing the number of real roots of F'(a;,bj, 2)
to p(k,1), and B, ;) denotes the set of breaking points fixing the number of real roots of
F(a;k,b51,2) to p(k,1).

The PDR algorithm can only check conjunctions of polynomial inequalities. However, we
can transform ¥, into disjunctive normal form (DNF) by splitting the certificate into distinct
branches, each consisting of a conjunction of polynomial inequalities. Since the number of
intervals and breaking points considered above is constant for each pair (k,1), the number of
branches to test is 20097,

For each A; we have thus a single vector of reals

bi = (ai,laai,17ai,27ai,27 cee >ai,gaai,g)u

and for each B; we have 20(9”) vectors of linear inequalities

@5 = (X0, (UL, Oy, V1,1, B0y, ,UL2, TOy, V12, - - - L0, 4 Ug,g> T, Vg g,),
where each (o, ,, Uk,1, v, ;, Vk,1) is an element of

{(>u, <) (u,0) € Ly } UL (= w0, =,w): w € By }-

For a fixed function p, the sets of vectors p; and ¢; is a valid PDR instance of size
N = ng~1291) and with parameter k = 2¢? that will output all cells A} x B} such that
F(a;k,b;1,2) € R[z] has exactly p(k,l) real roots for all (a;x,a;;) € A; X Bj.

PDR instance for ®, . For fixed pairs (a,b) and (a’,V’), suppose the s-th real root of
F(a,b,2) is smaller or equal to the g-th real root of F(a,b,z). Then, (a,a’) must lie in a
(b, b')-cell that orders the s-th root of F'(x,b, z) before the g-th root of F(y, V', z) for all points
(z,y) in that cell.

Hence ®, . can be rewritten as follows

<I)p,Tr = /\ \/ (ai,ﬂr(t)7 ai,wr(t+1)> eC

tG[Epfl] CGprﬂ—,t

where C, ¢ denotes the set of (b, b")-cells fixing the number of real roots of F'(a; , (1), bjx.(t), 2)
to p(m.(t), m(t)), fixing the number of real roots of F(a; . (t41),bjx.(t+1),2) t0 p(mr(t +
1),7.(t + 1)), and ordering the 7,(t)-th root of F'(a; (¢),bj . (), 2) before the 7 (t + 1)-th
root of F(a; x, (t+41)s bj r. (t+1)5 2)-

The PDR algorithm can only check conjunctions of polynomial inequalities. However, we
can transform @, » in DNF as we did for ¥,. Again the number of cells considered above is
constant for each ¢, the description of each cell is constant, hence, the number of branches to
test is 20(9°),

For each A; we have thus a single vector of 2-dimensional points

pi = ((ai,ﬂ'r(l)a ai,TrT(2))7 ey (ai,ﬂ'r(l)) ai,ﬂw(Z))a ceey (ai,‘n’r(zp—l)a ai,ﬂ',\(EP))a ey (ai,wr(zp—l)a a’i,ﬂ'y-(E;;)))?

w w

where w is the size of the largest description of a (b,b)-cell C, and for each B; we have
20(9*) vectors of polynomial inequalities,

qj = (hl,l(z7 y)01,107 sy hl,w (l’, y)al,woa ey hE,,—l,l(xa y)UEP—1,107 ey hEp—l,w (17, y)UEp—l,wO)a

where each (he1(z,y)04,10, ..., he w(2,9)0:,0) is an element of {desc(C): C € Cp 1y},
where desc(C) is the description of the cell C given as a certificate of belonging to C' in

CVIT 2016

23:26

REFERENCES

the form of a Tarski sentence. The description of each (b,b')-cell is padded with its last
component so that it has length w.

For a fixed function p, for a fixed function =, the sets of vectors p; and ¢; is a valid PDR
instance of size N = ng~'2°91 and with parameter k = ©(g?) that will output all cells
A} x B such that the number of real roots of F(a;r, (1), bj . (1), 2) 18 p(mr(t), 7c(t)), the
number of real roots of F(a; x, (t41),bj,r, (t+1), 2) is p(m(t + 1), 7c(t 4+ 1)), and the 74(t)-th
root of F(a; r,(t), 0jx.(t), 2) comes before the 74 (t + 1)-th root of F'(a; r, (t41)s 0jxe(t+1)5 2),
for all t € [¥, —1].

PDR instance for T, We can combine the certificates given above for ¥, and ®, . to
obtain the ones for Y, : concatenate the p; and ¢; together (add a dummy y variable for
the p; and ¢; of ¥,). For a fixed function p, for a fixed function , the sets of vectors p;
and ¢; is a valid PDR instance of size N = ng~12009) and with parameter k = ©(g?) that
will output all cells A7 x B} such that F(a;,bji,2) € R[z] has exactly p(k,[) real roots
for all (a;,a;:) € A; x Bj, and the 74(t)-th root of F'(a; x, (), bj . (), 2) comes before the
75(t + 1)-th root of F'(a; x, (t+1)s 0jx.(t+1),2) for all £ € [¥, — 1]. The rest of the analysis in
§3 applies. This proves Theorem 27.

E Applications

To illustrate the expressive power of 3POL, we give a few applications.

E.1 General position testing for points on curves
The following is a corollary of Theorem 7 in Raz, Sharir and de Zeeuw [44]

» Corollary 28 (Raz, Sharir and de Zeeuw [44]). Any n points on an irreducible algebraic curve
of degree d in C? determine Od(n%) proper collinear triples, unless the curve is a line or a
cubic.

An interesting application of our results is the existence of subquadratic nonuniform and
uniform algorithms for the computational version of this corollary.

» Problem (GPT on curves). Let Cy,Cy,Cs be three (not necessarily distinct) parameterized
constant-degree polynomial curves in R?, so that each C; can be written (g;(t), hi(t)) for some
polynomials of constant degree g;, h;. Given three n-sets S; C C1, 52 C Cs,S3 C C3, decide
whether there exist any collinear triple of points in S1 x Sy X S3.

» Theorem 29. GPT on curves reduces linearily to 3POL.

Proof. For each set S;, construct the set T; = {¢: p € S;,p = (g:(¢), hi(t)) }. Testing whether
there exists a collinear triple ((g1(¢1), h1(t1)), (g2(t2), ha(t2)), (g3(t3), hs(t3))) € S1 X S2 X S
amounts to testing whether any determinant

gi1(t1) M 1
ga(t2) ha(tz) 1
g3(ts) hs(ts) 1

equals zero. This determinant is a trivariate constant-degree polynomial in R[ty, o, t3].
Solving the original problem amounts thus to deciding whether this polynomial cancels for
any triple (tl,tg,tg) €Ty x Ty x T;3. |

REFERENCES

Note that a similar polynomial predicate exists for testing collinearity in higher dimension.

» Lemma 30. Let p = (p1,p2,---,04d), 4 = (q1,G2,---,44), and r = (r1,72,...,74) be three
points in R?, then p, q, and r are collinear if and only if

d 2 d d
Z(Pi —ri)(q — pz)‘| - [Z (pi — 7“1‘)2] [Z (¢ — pi)z] =0.

=1 =1 i=1

Proof. Let a = (a1,a2,...,aq4), b = (b1,ba,...,bq), and ¢ = (c1,ca,...,cq) be three points
in RZ. The points a, b, and ¢ are collinear if and only if ¢ = a + A(b — a) for some unique
A € R that is

(a—c)+Ab—a)=0
(a; — ¢;) + A(b; — a;) =0,Vi € [d]

[(ai —¢;) + Ab; — a;)]> =0

-

i=1

-

o
Il
i

[(bz — ai)2>\2 + 2(0,,‘ — Cz)<bz — ai))\ + (CLZ‘ — Ci)ﬂ =0

d

22(@1‘ — Cl)(bl — ai)

i=1

(bz — CLi)2)\2 + A +

d
Z (ai — Ci)2] =0

1 i=1

M-

3

B C

A
_ —Bx+VB?2-4AC
a 24

For) to exist and be unique B? — 4AC must be zero. Hence, a, b, and c are collinear if
and only if

A

2 d d
2 (ai —) (b — ai)] —4 [Z (a;i — q)ﬂ [Z (bi — ai)2‘| =0

i=1 i=1 i=1

<

Moreover, the improvement that we obtain in the time complexity of 3POL can be
exploited to boost the number of curves we pick the points from.

» Theorem 31. Let C1,Cs,...,Cy be k = o((log n)é/(log log n)%) (not necessarily distinct)
constant-degree polynomial curves in R?. Given k n-sets S; C C1,S2 C Ca,..., Sk C Ch,
deciding whether there exists any collinear triple of points in any triple of sets S;, x S, x Si,
can be solved in subquadratic time.

(S5

Proof. Solve a 3POL problem for each choice of S;, x.S;, x.S;,. There are o((log n)%/(log logn)
such choices. <

E.2 Incidences on unit circles

Raz, Sharir and Solymosi [48] mention the following problem as a special case of the framework
they introduce. Let pi,ps, p3 be three distinct points in the plane, and, for i = 1,2, 3, let
C; be a family of n unit circles (a circle of radius 1) that pass through p;. Their goal is to
obtain an upper bound on the number of triple points, which are points that are incident to
a circle of each family. They prove:

23:27

)

CVIT 2016

23:28

REFERENCES

» Theorem 32. Let py,p2, p3 be three distinct points in the plane, and, fori=1,2,3, let C;
be a family of n unit circles that pass through p;. Then the number of points incident to a
circle of each family is O(n*'/%).

They observe that the following dual formulation is equivalent to their original problem:

» Theorem 33. Let C1,Cy, C3 be three unit circles in R2, and, for each i =1,2,3, let S; be a
set of n points lying on C;. Then the number of unit circles, spanned by triples of points in
Sy x So x S3, is O(n'1/).

Our new algorithms indeed allow us to solve the decision version of their problems in
subquadratic time.

» Problem (Unit Circles Spanned by Points on Three Unit Circles (UCSPTUC)). Let Cy,C5,C3
be three unit circles in R? with centers cy,co,c3, and, for each i = 1,2,3, let S; =
{(®i1,¥i1): (Ti2,¥i2)s s (Tin, Vin) } be a set of n points lying on C;. Decide whether
any triple of point (a,b,c) € S1 x Sy x S3 spans a unit circle.

» Theorem 34. UCSPTUC can be solved in O(n?(loglog n)%/(log n)%) time.

Proof. Without loss of generality, assume all input points lie on the right y-monotone arc of
their respective circle. All other seven cases can be handled similarly. We can also assume
that no input point is the top or bottom vertex of its circle, rotating the plane if necessary.

Given three points p, q,r, let

e=p—ql,X=2*y=p—rll,Y =y’ 2= ¢ —r|,Z2 =2
Testing if the three points a, b, ¢ span a unit circle amounts to testing whether
X2+ Y24+ 2% -2XY -2XZ -2YZ+ XYZ =0.

The fact that the input points lie on the right y-monotone arc of unit circles of centers
¢1,Ca,c3 allows us to get down to a single variable per point. Let ¢; = (¢7,¢Y) and ¢; ; =

1—x; ; -‘rCf
EE—— Then

1—t2. 2
(2 ig) = Ci + WS
PP AT\ T g T e,

Combining those two observations with some algebraic manipulations, one can show that
there exists some trivariate polynomial F' of degree at most 24 that cancels on t¢1,ts,t3 when

2 2 2
the points ¢y + (141 2t), co + (142 2ty), and c3 + (143 2t) span a unit circle.

1+t27 1+t3 1+t27 1+t2 1+t27 1+¢2
Hence, the sets {tl}ly t172, N 7t1)n }, {t2)1, t2’27 N ,tgm }, and {t3,1, t372, N 7t3)n } to-
gether with F' gives an instance of 3POL we can solve in subquadratic time with our
new algorithms.
Unfortunately, the computation /z is not allowed in our model, and so, we cannot
compute t; ;. However, we can generalize the 3POL problem to make it fit:

» Problem (Modified 3POL). Let F € R[z,y, 2] be a trivariate polynomial of constant degree,
given three sets A, B, and C, each containing n real numbers, decide whether there exist
a€ A, be B, and c € C such that

3ty to, 3t = a Ath =bAtE =cAF(t,ta,t3) = 0.

REFERENCES

23:29

The sets of numbers (all computable in our models) {3 1,¢35,..., 83, }, {13,635, ...,13,, },

and {13 |,3,,...,13,, } together with F' give an instance of this modified version of 3POL.

We can tweak our algorithms so that they work for this new version of 3POL. For each
decision we make on the FOTR, we prefix it with an existential quantifier and a condition
of the type t? = x, with x the square of ¢;, when we want to reference ¢; in the formula we
want to test.

This new algorithm answers positively if and only if the original problem contains a triple
of points spanning a unit circle. <

E.3 Points spanning unit triangles

A similar problem, namely counting the number of input point triples spanning an area
S triangle (provided they lie on a few curves), can also easily be reduced to 3POL. The
polynomial to look at in this case is

F(z,y,2)=X>4+Y?+ 2% - 2XY —2XZ — 2Y Z + 1652

Note that when the input points lie in the plane, the number of solutions is more than
quadratic [43, 46].

CVIT 2016

	1 Introduction
	1.1 Our results
	1.2 Definitions
	1.3 Previous Results

	2 Nonuniform algorithm for explicit 3POL
	3 Uniform algorithm for explicit 3POL
	4 Polynomial Dominance Reporting
	5 3POL
	A Polynomial Batch Range Searching
	B Analysis of Polynomial Dominance Reporting
	C Nonuniform algorithm for 3POL
	D Uniform algorithm for 3POL
	E Applications
	E.1 General position testing for points on curves
	E.2 Incidences on unit circles
	E.3 Points spanning unit triangles

