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a b s t r a c t 
A network of cyclin-dependent kinases (Cdks) regulated by multiple negative and positive feedback loops 
controls progression in the mammalian cell cycle. We previously proposed a detailed computational 
model for this network, which consists of four coupled Cdk modules. Both this detailed model and a re- 
duced, skeleton version show that the Cdk network is capable of temporal self-organization in the form 
of sustained Cdk oscillations, which correspond to the orderly progression along the different cell cycle 
phases G1, S (DNA replication), G2 and M (mitosis). We use the skeleton model to revisit the role of pos- 
itive feedback (PF) loops on the dynamics of the mammalian cell cycle by showing that the multiplicity 
of PF loops extends the range of bistability in the isolated Cdk modules controlling the G1/S and G2/M 
transitions. Resorting to stochastic simulations we show that, through their effect on the range of bista- 
bility, multiple PF loops enhance the robustness of Cdk oscillations with respect to molecular noise. The 
model predicts that a rise in the total level of Cdk1 also enlarges the domain of bistability in the isolated 
Cdk modules as well as the range of oscillations in the full Cdk network. Surprisingly, stochastic simu- 
lations indicate that Cdk1 overexpression reduces the robustness of Cdk oscillations towards molecular 
noise; this result is due to the increased distance between the two branches of the bistable switch at 
higher levels of Cdk1. At intermediate levels of growth factor stochastic simulations show that cells may 
randomly switch between cell cycle arrest and cell proliferation, as a consequence of fluctuations. In the 
presence of Cdk1 overexpression, these transitions occur even at low levels of growth factor. Extending 
stochastic simulations from single cells to cell populations suggests that stochastic switches between cell 
cycle arrest and proliferation may provide a source of heterogeneity in a cell population, as observed in 
cancer cells characterized by Cdk1 overexpression. 

© 2018 Elsevier Ltd. All rights reserved. 
1. Introduction 

In mammalian cells the series of biochemical processes lead- 
ing from one cell division to the next, constituting the cell cycle, 
is controlled by a set of enzymatic reactions. A network of en- 
zymes known as cyclin-dependent kinases (Cdks) drives the or- 
derly progression along the four successive phases of the mam- 
malian cell cycle, namely G1, S (DNA replication), G2, and M (mi- 
tosis) ( Morgan, 1995 ). If cells do not proliferate, they remain in 
a quiescent state, or enter into a program of cell differentiation. 
The Cdk network is regulated by a variety of intertwined negative 
and positive feedback loops. Negative feedback loops play a key 
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role in generating self-sustained oscillations in the Cdk network, 
as shown initially for the early cell cycles in amphibian embryos 
( Felix et al., 1990; Goldbeter, 1991, 1996; Tyson, 1991 ). A number 
of experimental and theoretical studies, mostly devoted to the cell 
cycle in amphibian embryos ( Novak and Tyson, 1993; Sha et al., 
2003; Vinod et al., 2013 ) and to the yeast cell cycle ( Barik et al., 
2010; Chen et al., 2004; Novak and Tyson, 1997 ), showed that 
positive feedbacks contribute, through eliciting bistability, to the 
robustness of oscillatory behavior. In particular, multiple positive 
feedback loops are at the core of the regulatory mechanisms driv- 
ing the G1/S and G2/M transitions ( Dirick and Nasmyth, 1991; Fer- 
rell et al., 2009; He et al., 2011; Holt et al., 2008; Kapuy et al., 
2009; Novak et al., 2007; Pomerening et al., 2005; Sha et al., 2003; 
Skotheim et al., 2008; Swat et al., 2004; Tyson and Novak, 2001 ). 
These positive feedbacks trigger all-or-none cyclin/Cdk activation, 
which allows for irreversible transitions between two successive 
cell cycle phases. 

We previously proposed a detailed computational model for the 
dynamics of the Cdk network driving the mammalian cell cycle 
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( Gérard and Goldbeter, 2009; Gérard and Goldbeter, 2011; Gérard 
and Goldbeter, 2014; Gérard et al., 2012 ), as well as a simpler, 
skeleton model containing a reduced number of variables, which 
reproduces the dynamic behavior of the full model for the Cdk 
network. In both models, which consist of four coupled cyclin/Cdk 
modules, the increase in growth factor above a critical value elicits 
the transition from a stable steady state, corresponding to cell cy- 
cle arrest, to sustained Cdk oscillations associated with cell prolif- 
eration ( Gérard and Goldbeter, 2009; Gérard and Goldbeter, 2011; 
Gérard and Goldbeter, 2014 ) . Using the skeleton model we previ- 
ously showed that multiple positive feedback (PF) loops enhance 
the robustness of Cdk oscillations with respect to molecular noise 
( Gérard et al., 2012 ). Here we examine in further detail how pos- 
itive feedback loops shape the dynamics of the Cdk network and 
enhance the robustness of oscillatory behavior. 

Examining the role of multiple positive feedback loops on the 
dynamics of the mammalian cell cycle seems appropriate in an 
issue of the Journal of Theoretical Biology dedicated to the mem- 
ory of René Thomas. Indeed, René Thomas contributed for long 
to clarify the conditions in which positive regulatory circuits give 
rise to multiple steady states, the best known example of which is 
bistability, i.e. the coexistence of two stable steady states ( Thomas, 
1978 ; Thomas and d’Ari, 1990 ; Thomas et al., 1995 ; Thomas and 
Kaufman, 2001 ). As indicated above, positive feedback is encoun- 
tered repeatedly in the Cdk network that governs the cell cycle, so 
that the conditions for bistability are met in multiple ways within 
this regulatory network ( Dirick and Nasmyth, 1991; Ferrell et al., 
2009; Gonze and Hafner, 2010; He et al., 2011; Holt et al., 2008; 
Kapuy et al., 2009; Novak et al., 2007; Pomerening et al., 2005; 
Sha et al., 2003; Skotheim et al., 2008; Swat et al., 2004; Tyson 
and Novak, 2001 ). 

Our previous results, based on stochastic simulations, indicated 
that multiple PF loops enhance the robustness of Cdk oscillations 
by extending the range of bistability in the isolated Cdk modules 
controlling the G1/S and G2/M transitions. While an increase in the 
level of the cyclin-dependent kinase Cdk1, involved in the G2/M 
transition, also extends the range of bistability, we report the coun- 
terintuitive result that such an extended range can in fact be ac- 
companied by a decrease in the robustness of Cdk oscillations with 
respect to molecular noise. We assess the effect of fluctuations on 
the random switching between quiescence and proliferation in sin- 
gle cells. Extending stochastic simulations from single cells to cell 
populations suggests that such switches between cell cycle arrest 
and proliferation, triggered by fluctuations, may provide a source 
of heterogeneity in a cell population, as observed in cancer cells 
characterized by high levels of Cdk1. 
2. Detailed and skeleton models for the Cdk network 

The detailed model describing the dynamics of the Cdk net- 
work driving the mammalian cell cycle consists of four Cdk mod- 
ules, each centered around one cyclin/Cdk complex ( Gérard and 
Goldbeter, 2009 ). Cyclin D/Cdk4-6 and cyclin E/Cdk2 promote pro- 
gression in G1 and elicit the G1/S transition, respectively; cyclin 
A/Cdk2 ensures progression in S and the transition S/G2, while 
the activity of cyclin B/Cdk1 brings about the G2/M transition. 
This detailed model for the Cdk network contains 39 variables, 
and includes both negative and positive feedback loops. We used 
this model to show that in the presence of sufficient amounts 
of growth factor the Cdk network is capable of temporal self- 
organization in the form of sustained oscillations ( Gérard and 
Goldbeter, 2009 ) . The latter correspond to the repetitive, or- 
dered, sequential activation of the various cyclin/Cdk complexes 
that govern the transitions between successive phases of the cell 
cycle. 

In the detailed model for the Cdk network, the activ- 
ity of cyclin/Cdk complexes is regulated in multiple ways 
( Gérard and Goldbeter, 2009 ) . In particular, several positive feed- 
back loops characterize the activation of the cyclin-dependent ki- 
nases, because the phosphatases Cdc25 that activate various Cdks 
are themselves activated through phosphorylation by the Cdks 
( Hoffmann et al., 1993; Goldbeter, 1993 ), while the latter inactivate 
their inhibitory kinase Wee1 ( Harvey et al., 2005; Harvey et al., 
2011 ). 

Relinquishing many of these biochemical details but retaining 
the essence of the regulatory wiring diagram, we subsequently 
built a skeleton, 5-variable model for the mammalian cell cycle, 
which possesses the same dynamical properties as the more de- 
tailed model for the Cdk network ( Gérard and Goldbeter, 2011 ). 
Thus, sustained oscillations in the various cyclin/Cdk complexes oc- 
cur in the skeleton model in the presence of sufficient amounts of 
growth factor. The skeleton model also accounts for the existence 
of a restriction point in G1 beyond which the presence of growth 
factor is not needed to complete a cycle. 

In a first version of the skeleton model we did not incorpo- 
rate the regulation of Cdk1 and Cdk2 through phosphorylation- 
dephosphorylation ( Gérard and Goldbeter, 2011 ) . In a second step, 
we extended the skeleton model by incorporating the regulation 
of Cdk2 and Cdk1 by the phosphatase Cdc25 and the kinase Wee1 
( Gérard et al., 2012 ). This allows us to assess the role of positive 
feedback on the dynamics of the Cdk network by comparing four 
situations: (i) no positive feedback (PF) occurs in the network, (ii) 
a single positive feedback occurs in the second Cdk module of the 
network, as a result of the self-activation of cyclin E/Cdk2 via its 
activation of Cdc25, (iii) in addition to this positive regulation of 
cyclin E/Cdk2, self-activation of cyclin B/Cdk1 occurs through its 
activation of Cdc25, and (iv) a second positive feedback on Cdk1 
occurs through inhibition of Wee1 by cyclin B/Cdk1. This compar- 
ative study allowed us to determine the effect of multiple positive 
feedback loops on the dynamics of the cell cycle ( Gérard et al., 
2012 ) . In particular, we assessed the role of the apparent redun- 
dancy in self-amplification of the Cdk1 module through simulta- 
neous activation of the phosphatase Cdc25 and inhibition of the 
kinase Wee1. 

The skeleton model for the Cdk network is schematized in 
Fig. 1 . At the beginning of the cell cycle, the growth factor GF acti- 
vates directly the synthesis of the cyclin D/Cdk4-6 complex, which 
promotes progression in G1. This complex ensures the activation 
of the transcription factor E2F, which in turn activates the syn- 
thesis of the cyclin E/Cdk2 and cyclin A/Cdk2 complexes. During 
the G1 phase, cyclin E/Cdk2 reinforces the activation of the tran- 
scription factor E2F. During S phase, cyclin A/Cdk2 activates the 
degradation of cyclin E/Cdk2, which ensures that the latter com- 
plex will not be active at the end of the cell cycle. Cyclin A/Cdk2 
also permits exit of the S phase by allowing the inactivation of 
the transcription factor E2F and by promoting the synthesis of cy- 
clin B/Cdk1, whose peak of activity brings about the G2/M tran- 
sition. During mitosis, cyclin B/Cdk1 activates, by phosphorylation, 
the protein Cdc20. This protein is at the core of two negative feed- 
back loops as it promotes the inactivation of both cyclin A/Cdk2 
and cyclin B/Cdk1, thereby permitting completion of the cell cycle. 
A new cell cycle starts if growth factor is still present in sufficient 
amount. 

The detailed and skeleton models provide us with complemen- 
tary tools to investigate the emergent dynamical properties of the 
Cdk network controlling the mammalian cell cycle. While the more 
detailed version allows us to test the effect of inhibiting or over- 
expressing a large number of antagonistic factors that control the 
network, the skeleton version is more amenable to stochastic sim- 
ulations which are used to assess the robustness of Cdk oscillations 
with respect to molecular noise. 
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Fig. 1. Scheme of the skeleton model for the Cdk network driving the mammalian 
cell cycle. This model ( Gérard et al., 2012 ) provides a simplified picture of a more 
detailed model for the Cdk network based on a similar regulatory structure (see 
text, and Gérard and Goldbeter, 2009 ). Growth factors (GF) induce synthesis of cy- 
clin D/Cdk4-6, which promotes entry into G1. Cyclin D/Cdk4-6 and cyclin E/Cdk2 
activate the transcription factor E2F, which, in its turn, activates cyclin E/Cdk2 and 
cyclin A/Cdk2, thereby ensuring progression in S and G2. In G2, cyclin A/Cdk2 in- 
hibits E2F and cyclin E/Cdk2, thus ensuring a transient, cell-phase specific activation 
of these factors; cyclin A/Cdk2 also activates cyclin B/Cdk1, which elicits the G2/M 
transition. During mitosis, cyclin B/Cdk1 activates the protein Cdc20 which targets 
cyclin A/Cdk2 and cyclin B/Cdk1 for degradation. For simplicity these degradation 
processes are modeled here by an inhibition of cyclin A/Cdk2 and cyclin B/Cdk1. 
The model includes regulation of Cdk activity by the phosphatases Cdc25 and the 
kinase Wee1: Cdc25 phosphatases activate by dephosphorylation the various cy- 
clin/Cdk complexes which, in turn, activate the phosphatases by phosphorylation; 
moreover, the kinases Wee1 and Cdk1 mutually inhibit each other by phosphoryla- 
tion. For more details, see ( Gérard et al., 2012 ) and Supporting Information where 
the kinetic equations and parameter values are listed in Tables S1 and S2, respec- 
tively. 
3. Dynamics of the mammalian cell cycle at a single cell level 

The qualitative dynamical behavior of the Cdk network in the 
detailed and the skeleton model is highly similar. Indeed, below a 
critical level of growth factor (GF), the Cdk network in both mod- 
els tends to a stable steady state defined by low levels of the 
various cyclin/Cdk complexes; this steady state can be associated 
with cell cycle arrest ( Fig. 2 A, B). In contrast, in the presence 
of supra-threshold amounts of GF, the Cdk network displays sus- 
tained oscillations of the limit cycle type in the levels of various 
cyclin/Cdk complexes; such sustained Cdk oscillations can be as- 
sociated with cell proliferation ( Fig. 2 C, D). In both detailed and 
skeleton models, the ordered activation of the various cyclin/Cdk 
complexes ensures a correct progression along the different phases 
of the mammalian cell cycle. 

The regulatory structure of the Cdk network in the two mod- 
els is similar, and can give rise in both cases to endoreplication 
( Edgar et al., 2014; Gérard and Goldbeter, 2009; Gérard and Gold- 
beter, 2010 ). Endoreplication is defined by the decoupling between 
DNA replication and mitosis: cells undergo multiple rounds of DNA 
replication, characterized by sustained oscillations of Cdk2, without 
entering into mitosis, owing to the reduced level of cyclin B/Cdk1 
( Fig. 2 E, F). Endoreplication leads to polyploidization, which is very 
frequent in plants and insects ( Zielke et al., 2011 ), and less com- 

mon in animals, although it is observed in physiological conditions 
in some tissues in mammals, such as liver, heart, bone marrow and 
placenta ( Gentric and Desdouets, 2014 ). 

Qualitatively, the temporal dynamics of the cyclin/Cdk com- 
plexes in both models is very similar. This shows that the core 
regulatory structure of the Cdk network suffices to account for the 
evolution of the network toward sustained oscillations or a stable 
steady state. 
4. Positive feedback loops, bistability, and oscillations in the 
Cdk network 

In view of its relative simplicity, the skeleton model for the 
mammalian cell cycle is well suited to analyze the effect of pos- 
itive feedback loops on the dynamics of the network ( Gérard et al., 
2012 ). Here we extend this study and focus on the G2/M transition 
of the network, controlled by the cyclin B/Cdk1 complex. Steady- 
state levels of cyclin B/Cdk1 as a function of its input, the level of 
cyclin A/Cdk2 considered as a parameter, are shown in the pres- 
ence of 1 PF loop through Cdc25 ( Fig. 3 A), 1 PF through Wee1 
( Fig. 3 C) and 2 PF loops through Cdc25 and Wee1 ( Fig. 3 E). The 
results indicate that the presence of PF loops gives rise to bistabil- 
ity in the level of cyclin B/Cdk1. Such bistability is associated to a 
robust G2/M transition: while a low level of cyclin B/Cdk1 charac- 
terizes the G2 phase, a high level of cyclin B/Cdk1 characterizes 
mitosis. In addition, increasing the number of PF loops enlarges 
the domain of bistability (compare Figs. 3 A and 3 C with Fig. 3 E). 
In a two-parameter bifurcation diagram defined by the total lev- 
els of cyclin B/Cdk1, M BTOT , and the active form of cyclin A/Cdk2, 
Ma , the model exhibits a domain of monostability and a domain of 
bistability in the level of cyclin B/Cdk1 (see Figs. 3 B, 3 D, 3 F). These 
stability diagrams further illustrate the enlargement of the domain 
of bistability in presence of multiple PF loops. Horizontal dashed 
lines in Fig. 3 B, D, F correspond to the conditions in Fig. 3 A, C, E, 
respectively. 

The two-parameter bifurcation diagrams indicate that the size 
of the domain of bistability depends on the total level of cyclin 
B/Cdk1, M BTOT . Indeed, by plotting the steady-state levels of cy- 
clin B/Cdk1 as a function of cyclin A/Cdk2 for M BTOT = 1 ( Fig. 4 A), 
2 ( Fig. 4 C) and 10 ( Fig. 4 E) in the presence of 1 PF loop through 
Wee1, 1 PF loop through Cdc25, or 2 PF loops through both Cdc25 
and Wee1, the model shows that an increase in the level of M BTOT 
considerably enlarges the domain of bistability defining the dy- 
namics of the fourth Cdk module, at the core of the G2/M tran- 
sition (compare Fig. 4 A and 4 C with 4E). 

In Fig. 4 , bistability corresponds to an S-shaped curve when 
plotting cyclin B/Cdk1 at steady state as a function of cyclin A/Cdk2 
( Fig. 4 A, C, E). The domain of bistability is bounded by two limit 
points corresponding to saddle-node bifurcations. On the lower 
branch, associated to a low level of cyclin B/Cdk1, above a critical 
value of cyclin A/Cdk2 (see limit point LP1 in Fig. 4 E) we observe 
a sharp transition to the upper branch corresponding to a higher 
level of cyclin B/Cdk1. Then, upon decreasing the level of cyclin 
A/Cdk2 below a lower critical value (see limit point LP2 in Fig. 4 E) 
we observe a sharp transition back to the lower branch of steady 
state. It is interesting to note that the position of LP1 does not 
change much when the total amount of cyclin B/Cdk1 (M BTOT ) in- 
creases. By contrast, LP2 moves to lower and lower values of cyclin 
A/Cdk2 when M BTOT increases. This observation can be explained 
intuitively as follows: on the lower branch, at low values of cy- 
clin B/Cdk1, the level of cyclin A/Cdk2 must increase up to a crit- 
ical value (LP1) above which cyclin B/Cdk1 reaches a critical level 
above which the positive feedback triggers a transition to a high 
steady state of cyclin B/Cdk1. This critical level of cyclin A/Cdk2 is 
largely independent of M BTOT . On the upper branch, LP2 represents 
the value below which cyclin A/Cdk2 must decrease before cyclin 
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B/Cdk1 jumps back to a low value once the positive feedback loop 
involving cyclin B/Cdk1 becomes ineffective. That LP2 diminishes 
when M BTOT increases is due to the fact that less cyclin A/Cdk2 is 
needed to fuel the positive feedback. 

As illustrated by plotting the steady-state levels of cyclin B/Cdk1 
as a function of the level of growth factor, GF ( Fig. 4 B, 4 D, 4 F), 
numerical simulations predict that an increase in the total level of 
cyclin B/Cdk1, M BTOT , enlarges the domain of oscillatory behavior 
of the Cdk network. For M BTOT = 1 ( Fig. 4 B), the Cdk network is 
characterized, for low levels of GF, by a stable steady state corre- 
sponding to cell cycle arrest. Sustained oscillations of the Cdk net- 
work only occur at suprathreshold levels of GF. Interestingly, for 
intermediate levels of GF, due to a subcritical Hopf bifurcation, we 
observe a region of coexistence between a stable steady state and 
a sustained oscillatory behavior of the Cdk network. This means 
that for the same GF levels, a cell could be either in a resting 
(stable steady state) or a proliferative state (sustained oscillatory 
regime). For larger levels of M BTOT , the model predicts such coex- 
istence between a stable steady state and a sustained oscillatory 
regime (referred to as hard excitation ) even at low levels of GF 
( Fig. 4 D and 4 F). Thus the model indicates that the cell does not 
depend on GF to proliferate in the presence of an overexpression 
of M BTOT . This result holds with experimental observations which 
show that cancer cells often overexpress the various cyclins and 
Cdks, as compared to healthy tissues, and do not require the pres- 
ence of growth factor to grow ( Goustin et al., 1986; Hanahan and 
Weinberg, 2011 ). Thus the total level of cyclin B/Cdk1 controls the 
size of the bistable domain at the core of the G2/M transition as 
well as the oscillatory properties of the Cdk network, e.g. the oc- 
currence of hard excitation and the dependence of oscillations on 
the presence of growth factor. 
5. Stochastic version of the skeleton model for the Cdk 
network 

Molecular noise can arise in cells as a consequence of the low 
number of mRNA and protein molecules. Stochastic simulations al- 
low to account for this source of variability ( Gonze et al., 2018 ) 
and to study its effect on the dynamics of the cell cycle. In a pre- 
vious study ( Gérard et al., 2012 ), we showed by means of stochas- 
tic simulations of the skeleton model that the robustness of Cdk 
oscillations towards molecular noise increases with the number of 
PF loops in the Cdk network. This conclusion was based on the ob- 
servation that the range in which bistability occurs increases with 
the number of PF loops. Stochastic simulations are performed by 
means of the Gillespie algorithm ( Gillespie, 1977 ). The number of 
molecules present can be controlled through parameter ! measur- 
ing the number of molecules. As ! progressively increases, the tra- 
jectories tend to the solution predicted by the deterministic system 
(see further details about stochastic simulations in Supplementary 
Information). 

To illustrate the impact of PF loops on the robustness of Cdk 
oscillations, we plot the deterministic (solid thick black line) and 
stochastic (grey line) limit cycle trajectories projected onto the 
phase plane (cyclin B/Cdk1 versus cyclin A/Cdk2) in the presence 
of 1 PF loop on G1/S and 1 PF loop on G2/M ( Fig. 5 A), 2 PF loops 
on G2/M ( Fig. 5 C) and 3 PF loops (1 on G1/S and 2 on G2/M) 
( Fig. 5 E). The corresponding stochastic temporal evolutions of cy- 
clin B/Cdk1 are illustrated in Fig. 5 B, D, F, respectively. The model 
indicates that beyond providing redundancy, PF loop on the G2/M 
transition is important to increase the robustness of the Cdk oscil- 
lations (compare Fig. 5 C and D with Fig. 5 A and B). Adding PF loops 
on G1/S transition further increases the robustness of the cell cy- 
cle dynamics against molecular noise (compare Fig. 5 E and F with 
Fig. 5 C and D). 

Such results have been already emphasized in previous theo- 
retical studies ( Gérard et al., 2012; Gérard et al., 2015 ; Gonze and 
Hafner, 2010 ; He et al., 2011 ) and corroborate experimental ob- 
servations about the role of PF loops for the robustness of the 
Cdk network dynamics driving progression in the cell cycle ( Ferrell 
et al., 2009; Holt et al., 2008; Kapuy et al., 2009; Pomerening et al., 
2005; Skotheim et al., 2008; Tsai et al., 2008 ). 

Since an increase in the total level of cyclin B/Cdk1, M BTOT , en- 
larges the domain of bistability in the activity of cyclin B/Cdk1 (see 
Figs. 4 A, C, E), as well as the domain of sustained oscillatory be- 
havior of the Cdk network ( Fig. 4 B, D, F), the question arises as 
to whether the robustness of Cdk oscillations could be improved 
by modulating the total level of cyclin B/Cdk1. To address this 
question, we performed deterministic and stochastic simulations 
in the presence of low ( M BTOT = 1 in Figs. 6 A, D, G), intermediate 
( M BTOT = 2 in Figs. 6 B, E, H) and high levels of M BTOT ( M BTOT = 10 
in Figs. 6 C, F, I). The model predicts that an increase in M BTOT will 
not be accompanied by a strong increase in the level of activity 
of cyclin B/Cdk1, as illustrated by the deterministic time evolution 
of cyclin E/Cdk2, cyclin A/Cdk2 and cyclin B/Cdk1 in Fig. 6 A, B, C). 
As a consequence, even if the domain of bistability is larger when 
M BTOT increases, the level of activity of cyclin B/Cdk1 will never 
reach the upper branch of stable steady state of cyclin B/Cdk1 
when M BTOT = 2 or M BTOT = 10 (compare the deterministic limit cy- 
cle trajectories illustrated by the red curves in Fig. 6 E and 6 F with 
Fig. 6 D). By superimposing the stochastic limit cycle trajectories 
on these bifurcation diagrams, we notice that Cdk oscillations are 
more robust in the presence of low M BTOT levels (compare Fig. 6 G 
where M BTOT = 1 with Fig. 6 H and 6 I where M BTOT = 2 and 10, re- 
spectively). This is due to the fact that only at the lower value of 
M BTOT does the system reaches the upper branch of stable steady 
state, which provides a buffer with respect to fluctuations since the 
system has a reduced propensity to jump back to the lower branch 
of stable steady state in the presence of fluctuations. 

Note that at higher values of M BTOT , cyclin B/Cdk1 does not 
reach full activity as a consequence of a large activation rate 
of Cdc20, V 1CDC20 , which controls the rate of degradation of cy- 
clin B/Cdk1 and cyclin A/Cdk2. In these conditions, cyclin B/Cdk1 
strongly activates Cdc20, which in turn, rapidly promotes cyclin 
A/Cdk2 and cyclin B/Cdk1 degradation before cyclin B/Cdk1 reaches 
the upper stable steady state of the bistable switch. A decrease in 
V 1CDC20 permits to increase the amplitude of cyclin B/Cdk1 (Fig. S1 
in Supplementary Information). 

The diminished regularity of Cdk oscillations when M BTOT in- 
creases is further illustrated by the stochastic time evolution of cy- 
clin B/Cdk1 (compare Fig. 7 A with Figs. 7 C, 7 E). When M BTOT in- 
creases the amplitude of cyclin B/Cdk1 oscillations and the cell cy- 
cle time are more irregular. Indeed, the coefficient of variation of 
the cell cycle times passes from 5% (for M BTOT = 1 in Fig. 7 A, B) 
to 7.8% (for M BTOT = 2 in Fig. 7 C, D) and 10.1% (for M BTOT = 10 in 
Fig. 7 E, F). 

Thus, besides the importance of multiple, redundant, positive 
feedback loops for the robustness of Cdk oscillations, the model 
emphasizes the need of a proper balance in the expression of the 
various cyclin/Cdk complexes to ensure robust Cdk oscillations. A 
larger domain of bistability does not necessarily imply more robust 
Cdk oscillations if the system does not reach, during each oscilla- 
tory cycle, the two branches of the bistable switch. 
6. Stochastic dynamics of the cell cycle in a cell population 

In the previous section, we showed by means of a model de- 
veloped for a single cell that the presence of PF loops at the core 
of cell cycle transitions and a proper level of cyclin/Cdk expression 
increase the robustness towards molecular noise of the dynamics 
underlying cell cycle transitions. We saw in Fig. 4 B that the pres- 
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black curves) corresponding to the deterministic cases in d -F, respectively, are superimposed on the bifurcation diagrams. Other parameter values are as in Table S2. 
ence of multiple PF loops creates, for intermediate levels of GF, 
a domain a coexistence between a stable steady state, associated 
with cell cycle arrest, and a regime of sustained oscillations cor- 
responding to cell proliferation. The question arises as to whether 
molecular noise can trigger the switch from cell cycle arrest to cell 
proliferation, for a given set of parameter values? To explore this 
possibility, we performed deterministic and stochastic simulations 
of the model in the presence of 3 different levels of GF correspond- 
ing to conditions 1, 2, and 3 in Fig. 4 B. As illustrated by the time 
evolution of cyclin E/Cdk and cyclin B/Cdk1, the model predicts the 
existence of a stable steady state of the Cdk network for low lev- 
els of GF ( Fig. 8 A where GF = 0.001, condition 1 in Fig. 4 B), while 

sustained oscillations of the cyclin/Cdk complexes occur for high 
levels of GF ( Fig. 8 B where GF = 1, condition 3 in Fig. 4 B) —we will 
examine the situation encountered at intermediate levels of GF fur- 
ther below. By plotting the maximum deterministic levels of cyclin 
E/Cdk2 and cyclin B/Cdk1 in the cyclin E/Cdk2 versus cyclin B/Cdk1 
plane, the model illustrates that low expression levels of both cy- 
clin/Cdk complexes correlate with cell cycle arrest ( Fig. 8 C) while 
high maximal levels correlate with cell proliferation ( Fig. 8 D). The 
corresponding stochastic simulations in a set of 500 versions of the 
same cellular stochastic model, corresponding to a population of 
500 cells, indicate that both states, i.e. cell cycle arrest with low 
levels of GF, or active cell proliferation with high levels of GF, are 
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highly robust with respect to random fluctuations ( Figs. 8 E and 8 F 
where each circle represents one cell). 

At intermediate values of GF (condition 2 in Fig. 4 B, where 
GF = 0.02), depending on initial conditions, the Cdk network tends 
either to a stable steady state, corresponding to cell cycle arrest, 
or to a sustained oscillatory regime associated with cell prolifera- 
tion (see the deterministic temporal evolution of cyclin E/Cdk2 and 
cyclin B/Cdk1 with 2 different sets of initial conditions in Figs. 9 A 
and 9 B). Turning to stochastic simulations, we observe that when 
a stable steady state coexists with a stable oscillatory regime, re- 
versible stochastic switches between quiescence and proliferation 
may occur, as evidenced by the stochastic time evolution of cyclin 
B/Cdk1 ( Fig. 9 C). Interestingly, the corresponding stochastic simu- 
lations in a population of 500 cells, where all cells start from the 
same initial conditions, indicate that some cells reach a state of cell 
cycle arrest while others tend to a state of active cell proliferation 

( Fig. 9 D). This result shows that molecular noise can be a source of 
heterogeneity for the proliferative capacity in a cell population. 

As illustrated in the bifurcation diagrams of Fig. 4 D and 4 F, high 
values of the total level of cyclin B/Cdk1, M BTOT , favor a coexistence 
between a stable steady state and a sustained oscillatory regime 
even at low GF levels. Thus, in the presence of larger M BTOT lev- 
els (e.g., M BTOT = 2), this dynamical property also permits to trig- 
ger heterogeneity in a stochastic cell population where some cells 
will tend to a state of cell cycle arrest while some cells will dis- 
play active proliferation (condition 4 in Fig. 4 D, where GF = 0.001). 
Since high levels of cyclin B/Cdk1 are a characteristic of cancer 
cells ( Bednarek et al., 2016; Yang et al., 2016 ), the model suggests 
that the coexistence between distinct dynamical states of the cell 
cycle (arrest or proliferation) could be present in cancer cells and 
provide a source of heterogeneity in these cells. This is in line with 
the experimental observation that cancer cells are often defined by 
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a high level of heterogeneity ( Gay et al., 2016; Gupta et al., 2011; 
McGranahan and Swanton, 2017 ). 
7. Discussion 

Numerous studies have emphasized the role of positive feed- 
back loops and bistability in the dynamics of the cell cycle. This 
aspect has been addressed both in experiments and models for 
the early cell cycles in amphibian embryos ( Ferrell and Machleder, 
1998; Novak and Tyson, 1993; Pomerening et al., 2003; Pomeren- 
ing et al., 2005; Sha et al., 2003; Tyson and Novak, 2001 ) and 
for the yeast cell cycle ( Charvin et al., 2009; Chen et al., 2004; 
Dirick and Nasmyth, 1991; Sabouri-Ghomi et al., 2008 ). Thus the 
occurrence of bistability in Cdc2 activation as a function of cy- 
clin B was predicted theoretically and verified experimentally in 
cell extracts of frog embryos ( Pomerening et al., 2003; Sha et al., 
2003 ). The capability of positive feedback loops to generate bista- 
bility, emphasized by René Thomas ( Thomas, 1978 ; Thomas and d’ 
Ari, 1990 ), was also stressed experimentally and theoretically for 
the mammalian cell cycle ( Gérard and Goldbeter, 2009; Novak and 
Tyson, 2004; Skotheim et al., 2008; Yao et al., 2008 ). 

After developing a detailed computational model for the Cdk 
network driving the mammalian cell cycle ( Gérard and Gold- 
beter, 2009 ), containing 39 variables, we constructed reduced ver- 
sions of this model containing only 5 variables ( Gérard and Gold- 
beter, 2011 ). The latter skeleton model was then extended, without 
increase in the number of variables, by the addition of Cdk reg- 
ulation through phosphorylation-dephosphorylation ( Gérard and 
Goldbeter, 2011; Gérard et al., 2012 ). Both the detailed and skele- 
ton models predict the occurrence of sustained Cdk oscillations in 
the presence of sufficient amounts of growth factor. These oscil- 
lations account for the sequential, transient, repetitive activation 
of the various cyclin/Cdk complexes that control the successive 
phases of the cell cycle ( Fig. 2 ). Moreover, in both the detailed and 
the skeleton models, the regulatory structure, based on multiple 
negative feedback loops, allows for the occurrence of endoreplica- 
tion (see Fig. 2 E, F and ( Gérard and Goldbeter, 2009; Gérard and 
Goldbeter, 2010 ). 

While the first version of the skeleton model allowed us to 
show that the regulatory wiring of the Cdk network can ac- 
count for the temporal dynamics of the more comprehensive 
model containing additional biochemical details, the second ver- 
sion of the skeleton model incorporating Cdk regulation through 
phosphorylation-dephosphorylation allowed us to assess how the 
presence of positive feedback loops affects the robustness of os- 
cillatory behavior in the Cdk network. Multiple PF loops are in- 
deed involved in the regulation of cyclin E/Cdk2 and cyclin B/Cdk1 
through phosphorylation-dephosphorylation ( Fig. 1 ). 

Bifurcation analyses of the G2/M module of the Cdk network 
show that the multiplicity of PF loops in this module centered on 
cyclin B/Cdk1 enlarges the domain of bistability when the steady- 
state level of cyclin B/Cdk1 is determined as a function of cyclin 
A/Cdk2 considered as a parameter —this procedure consists in iso- 
lating the Cdk1 module from the other modules of the Cdk net- 
work, and studying its dynamical properties as a function of its 
direct input, cyclin A/Cdk2 ( Fig. 3 and ( Gérard et al., 2012 )). Such 
bistability phenomenon is crucial for the occurrence of an abrupt 
and irreversible G2/M transition. A similar increase of the bistabil- 
ity domain was previously noted in systems coupling two positive 
feedback loops ( Chang et al., 2010; Domingo-Sananes and Novak, 
2010; Ferrell, 2008 ). The model also shows that an increase in the 
total level of cyclin B/Cdk1 enlarges the magnitude of the bistable 
domain and the oscillatory domain of the Cdk network ( Figs. 3 and 
4 ). This result is in agreement with the fact that cancer cells are 
often characterized by overexpression of Cdk1 and by a high pro- 
liferative state. 

By inducing bistability, PF loops not only promote the oc- 
currence of Cdk oscillations of large amplitude but also en- 
hance the robustness of Cdk oscillations towards molecular noise 
( Gérard et al., 2012 ). Here we revisited this property in further de- 
tail by comparing the deterministic and stochastic limit cycles tra- 
jectories in the presence of increasing number of PF loops charac- 
terizing the G1/S and G2/M transitions ( Fig. 5 ) at different values 
of the total amount of cyclin B/Cdk1 ( Fig. 6 ). 

The results of Fig. 5 and our previous analysis 
( Gérard et al. 2012 ) show that the larger the domain of bistability, 
the stronger the resistance of Cdk oscillations with respect to 
molecular noise. This result can be explained as follows: once the 
system jumps to the upper branch of stable steady states, it will 
have a higher propensity to remain on it for a longer period of 
time in spite of fluctuations if the range of bistability is wide. In 
contrast, if this range is narrow, it will be easier for the system to 
fall back on the lower branch of steady states. 

Potapova et al., (2011) showed that mitotic progression corre- 
lates with Cdk1 substrate phosphorylation and remains reversible 
until nuclear envelope breakdown; failure to complete mitosis is 
called mitotic collapse. In the presence of chemical inhibition of 
Wee1 and Cdc25, i.e. without PF loops, cells prematurely and re- 
versibly enter into mitosis ( Potapova et al., 2011 ). Here, the model 
shows that, in the absence of PF loops, cyclin B/Cdk1 oscillations 
are very noisy and characterized by smaller amplitude ( Fig. 5 B, D, 
F). If the amplitude of cyclin B/Cdk1 is smaller, we might expect 
a lower level of substrate phosphorylation, and thus an incom- 
plete (or reversible) mitotic progression corresponding to mitotic 
collapse. A theoretical model accounting for mitotic collapse has 
previously been proposed ( Tuck et al., 2013 ). These authors explain 
mitotic collapse by the concomitant inhibition of Wee1 and Cdc25. 

However, a larger range of bistability does not suffice to con- 
fer robustness on oscillatory behavior. The results of Fig. 6 show 
indeed that another key factor is the distance between the two 
branches of stable steady states. If this distance is too large, the 
system may not reach the upper branch when it passes the cy- 
clin A/Cdk2 value corresponding to the limit point beyond which 
the system starts its excursion toward the upper branch. When 
M BTOT = 1 ( Fig. 6 G), the upper branch is reached, in contrast to 
what happens for M BTOT = 2 ( Fig. 6 H) or 10 ( Fig. 6 I). As a conse- 
quence, in the latter two cases the buffering provided by the sys- 
tem’s residence on the upper branch of the bistable switch does 
not occur, so that the resistance to noise is greatly reduced. 

Although a rise in the level of cyclin B/Cdk1 enlarges the do- 
main of bistability in the G2/M module of the Cdk network ( Fig. 3 ), 
the results of Fig. 6 show that increasing the level of cyclin B/Cdk1 
fails to improve the robustness of Cdk oscillations towards molec- 
ular noise (compare the first with the second and third columns 
in Fig. 6 ). Thus, as observed in cancer cells, large levels of Cdk1 
may favor the oscillatory behavior of the Cdk network, which cor- 
responds to active cell proliferation. However, the dynamics of cells 
possessing large amounts of Cdk1 may be less robust with respect 
to stochastic fluctuations, which may favor cell to cell heterogene- 
ity in a population, as often observed in cancer cells. 

Stochastic simulations of the cell cycle network applied to a cell 
population reveal another source of heterogeneity in the case of 
hard excitation, i.e. when the bifurcation diagrams established as a 
function of the level of growth factor, GF ( Fig. 4 B, D, F) indicate, at 
intermediate levels of GF, the coexistence of a stable steady state 
and a stable oscillatory regime for the same value of GF in the 
Cdk network. Then, molecular fluctuations could trigger a single 
cell to switch from active proliferation to cell cycle arrest and vice 
versa ( Fig. 9 C). In the same conditions, stochastic simulations of 
a cell population reveal a strong heterogeneity within the popula- 
tion, with some cells characterized by a state of cell cycle arrest 
and the others defined by a state of cell proliferation ( Fig. 9 D). A 
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similar distribution of cells in two distinct states corresponding to 
cell quiescence or proliferation was found in stochastic simulations 
of a Boolean model for the Cdk network ( Stoll et al., 2012 ). 

To verify experimentally if the quiescence/proliferation switch is 
characterized by hard excitation, a single cell experiment measur- 
ing the mRNA expression levels of the different cyclins and Cdks 
in a culture cell line dependent of GF to proliferate could be per- 
formed for different increasing and decreasing levels of GF. At low 
GF levels, nearly all cells should be in a quiescent phase charac- 
terized by low expression levels of the different cyclins and Cdks. 
At high levels of GF, nearly all cells should proliferate with high 
expression levels of cyclins and Cdks. However, at intermediate 
levels of GF, the heterogeneity in the expression of cyclins and 
Cdks should be larger because some cells would be quiescent while 
the others should proliferate. If hard excitation is present, the tran- 
sition from quiescence to proliferation should occur at a different 
GF threshold than the reverse transition ( Fig. 4 B). 

An additional prediction is the reduction of the robustness of 
the cyclin/Cdk oscillations in the presence of cyclin B/Cdk1 overex- 
pression (see Fig. 7 A, C, E). To quantify this prediction, we plotted 
the histograms of the period of cyclin B/Cdk1 (Mb) oscillations for 
Mb TOT = 1, 2 or 10 ( Fig. 7 B, D, F). The coefficient of variation (CV) 
of the period increases when Mb TOT increases. This trend could be 
assessed by performing single cell experiments and recording the 
cell division times for various expression levels of cyclin B and/or 
Cdk1. 

In the absence of hard excitation, stochastic simulations of a cell 
population show that the Cdk network robustly tends either to cell 
cycle arrest in the presence of low GF levels ( Fig. 8 E), or to oscil- 
lations associated with active cell proliferation in the presence of 
high GF levels ( Fig. 8 F). 

Abrupt transitions between quiescence and proliferation based 
on bistable switches have been reported in numerous experimental 
and theoretical studies ( Spencer et al., 2013; Yao, 2014; Yao et al., 
2008; Yao et al., 2011 ). Similarly to what we observed in our mod- 
els, stochastic switches could affect the dynamics of such transi- 
tions ( Golubev, 2012; Lee et al., 2010 ). The presence of stochastic 
switches between different cell phenotypes confers added flexibil- 
ity to a cell population, thus favoring its survival in a fluctuating 
environment ( Acar et al., 2008 ). Similar phenomena could occur in 
mammalian cell populations, in view of the existence of multiple 
attractors in the complex network that underlies cell cycle regula- 
tion. 
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