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We reanalyze the experiment of Schmitt et al. on the 10Be(d,p)11Be transfer reaction [Phys. Rev. Lett. 108,
192701 (2012)] by exploring the beam-energy and angular ranges at which the reaction is strictly peripheral.
We consider the adiabatic distorted wave approximation (ADWA) to model the reaction and use a Halo-EFT
description of 11Be to systematically explore the sensitivity of our calculations to the short-range physics of
the 10Be-n wave function. We find that by selecting the data at low beam energy and forward scattering angle
the calculated cross sections scale nearly perfectly with the asymptotic normalization coefficient (ANC) of the
11Be bound states. Following these results, a comparison of our calculations with the experimental data gives
a value of C1s1/2 = 0.785 ± 0.03 fm−1/2 for the 1

2

+
ground-state ANC and C0p1/2 = 0.135 ± 0.005 fm−1/2 for

the 1
2

−
excited state, which are in perfect agreement with the ab initio calculations of Calci et al., who obtain

Cab initio
1/2+ = 0.786 fm−1/2 and Cab initio

1/2− = 0.129 fm−1/2 [Phys. Rev. Lett. 117, 242501 (2016)].
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I. INTRODUCTION

Halo nuclei [1] constitute a unique class of exotic systems,
which are mainly found in the neutron-rich region of the
nuclear chart. The halo is a threshold effect observed close to
the neutron dripline, in which one or two neutrons are loosely
bound to the core of the nucleus. Because of this loose
binding, these valence neutrons can tunnel far away into the
classically forbidden region and exhibit a high probability of
presence at a large distance from the other nucleons. They
hence form a sort of diffuse halo around a compact core [2],
which significantly increases the matter radius of these nuclei.

Since their discovery in the mid-1980s, halo nuclei have
been the subject of many studies in both the nuclear-structure
and nuclear-reaction communities. In the former because of
the challenge these diffuse nuclei pose to usual nuclear-
structure models, like the shell model. In the latter because,
due to their short lifetime, they are mostly studied through
reactions.

Experimentally, the upgrade of rare isotope beam facilities
worldwide provides us with many ways to explore these halo
systems. Transfer reaction [3–8] has been an important tool
to infer information about these systems for decades. In this
reaction, one or several nucleons are transferred between the
projectile and target. Because those nucleons populate the va-
lence states of the nucleus, transfer is useful in the analysis of
the single-particle structure of nuclei [3,4,8–11]. It is therefore
particularly well suited to study halo nuclei [6,10–13].

*jiecyang@ulb.ac.be
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To extract valuable nuclear-structure information from ex-
perimental data, a precise model of the reaction is required.
Deuteron-induced reactions, like the one on which this work
is focused, are usually described within a three-body model: a
proton p, a neutron n, and the nucleus upon which the transfer
takes place. Many such models have been developed [3–7].
The Distorted Wave Born Approximation (DWBA) [14] is one
of the most used methods to analyze experimental data and
extract spectroscopic information about nuclei. However, this
method does not properly account for dynamical effects, such
as the breakup of the deuteron, therefore alternative formula-
tions have been suggested. Johnson and Soper have introduced
the adiabatic distorted wave approximation (ADWA), which,
without losing the relative simplicity of the DWBA method,
includes a zero-range adiabatic treatment of the deuteron-
breakup channel (ZR-ADWA) [15]. Johnson and Tandy have
then extended this seminal work to a finite-range version of
the ADWA method (FR-ADWA) [16]. For a more accurate
inclusion of the deuteron dynamics in the reaction model,
the solution of the continuum-discretized coupled-channel
approach (CDCC) [17] can be used. In that approach, the
projectile-target wave function is expanded upon all the states
of the deuteron, including its continuum, which leads to
the resolution of a set of coupled equations. More recently,
numerical techniques have become available to solve the
Faddeev-Alt, Grassberger, and Sandhas (FAGS) equations
[18,19], which corresponds to the most accurate framework
to describe transfer reactions induced by deuteron within a
three-body model [20].

At the Oak Ridge National Laboratory a transfer experi-
ment was performed by Schmitt et al. to study the structure
of 11Be [10,11]. This nucleus is the archetypical one-neutron
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halo nucleus and, as such, exhibits a strong 10Be-n structure.
In this Oak Ridge experiment a neutron is transferred from a
deuteron to 10Be to form 11Be: 10Be(d,p)11Be. The two bound
states of 11Be have been populated: its 1

2
+

ground state and
1
2

−
excited state. Transfer to the 5

2
+

resonance above the one-
neutron threshold has also been measured. The experiment
was performed in inverse kinematics with an ultrapure 10Be
beam impinging on a CD2 target at beam energies 107, 90,
75, and 60 MeV, which correspond, in direct kinematics, to,
respectively, Ed = 21.4, 18, 15, and 12 MeV in the laboratory
restframe [11].

The main goal of the present work is to reanalyze this
Oak Ridge experiment with a special focus on the sensitivity
of the calculations to the 10Be-n wave function in the 11Be
bound states. In particular, we look for the best experimental
conditions in which the reaction is strictly peripheral, i.e., for
which only the tail of the 10Be-n radial wave function affects
the theoretical cross sections. Because this tail has a universal
behavior [21], but for its normalization, the comparison with
the data in these peripheral conditions should enable us to
extract this asymptotic normalization constant (ANC) in a
model-independent way [12,13,22–26].

To reach this goal, we couple a Halo-EFT description
of 11Be [27,28] to the ADWA model of reaction. Thanks
to the natural separation of scales in EFT, this provides us
with a very systematic way of studying the sensitivity of the
cross section to the short-range physics of the overlap wave
function. Albeit similar in spirit with Refs. [12,13,24,25],
this analysis will enable us to determine the exact conditions
of peripherality of the reaction, and hence extract a reliable
estimate of the ANC of the bound states of 11Be.

Recently an ab initio calculation of 11Be has been per-
formed by Calci et al. within the framework of the no-core
shell model with continuum (NCSMC) [29]. These calcula-
tions provide a fully microscopic prediction of its ANC, to
which we will be able to confront our values inferred from the
data of Schmitt et al. [10,11].

This paper is structured as follows: In Sec. II, we briefly
present the three-body model of the reaction and the ADWA,
which we use to compute the transfer cross sections. In
Sec. III, we introduce the numerical inputs and the descrip-
tions of 11Be we consider in this study. Finally we present the
results of our calculations and discuss them in Sec. IV. Our
conclusions are drawn in Sec. V.

II. THEORETICAL FRAMEWORK

We consider the stripping reaction A(d,p)B in which a
neutron is transferred to a nucleus A (10Be) to form nucleus
B (11Be). In a simple physical picture, this transfer reaction
can be viewed as a process in which the neutron n from the
incident deuteron d populates an unoccupied state in the target
nucleus A, producing the composite nucleus described as a
two-cluster structure B = A + n. To model this reaction, we
adopt the three-body model (A + n + p) illustrated in Fig. 1.

In its post form, the transition matrix elements for the
reaction reads [4–6]

Tpost (pB, dA) = 〈χ (−)
pB ϕAn|Vpn + UpA − UpB |ψ (+)

dA 〉, (1)

FIG. 1. Illustration of the three-body system with associated
coordinates.

where Vpn is the potential that simulates the interaction that
binds the proton and the neutron into the deuteron and UpA

and UpB are optical potentials that simulate the interaction
between the proton and the clusters A and B, respectively.
The wave function ψ

(+)
dA describes the three-body system with

the condition that the proton and neutron are initially bound
into a deuteron that is impinging on A. At the ADWA, it is
approximated by

ψ
(+)
dA (r, R) � χ

(+)
dA (R)ϕpn(r ), (2)

where ϕpn is the deuteron bound state computed from Vpn and
χ

(+)
dA is the distorted wave describing the scattering of d by A.

Following the Johnson and Tandy prescription [16], this wave
function is obtained from the optical potential UdA built by
averaging A-p and A-n optical potentials over the finite-range
deuteron bound state,

UdA(R) = 〈ϕpn|Vpn(UpA + UnA)|ϕpn〉
〈ϕpn|Vpn|ϕpn〉 . (3)

The distorted wave χ
(−)
pB appearing in Eq. (1) describes the

scattering of p by the cluster B in the outgoing channel of
the reaction; it is obtained using the optical potential UpB .
The wave function ϕAn describes the state of the nucleus B
formed in the transfer. In this three-body model, it is obtained
at the single-particle approximation, in which B is seen as
a two-cluster structure, in which a neutron is bound to the
core A assumed to be structureless. The A-n interaction is
described by a phenomenological potential VAn. Following
Refs. [30,31], we use a Halo-EFT description of 11Be (see
Sec. III A) [27,28]. Within this description, the B bound state
is characterized by the quantum numbers nr ′ lj , where nr ′ is
the number of nodes in the radial wave function, l is the orbital
angular momentum, and j is obtained from the coupling of l
with the spin of the neutron.

The reduced radial wave function has the following asymp-
totic behavior:

unr′ lj (r ′) −→
r ′→∞

bnr′ lj i κnr′ lj r ′ hl

(
iκnr′ lj r

′), (4)

where hl is a spherical Hankel function and κnr′ lj =√
2μAn|Enr′ lj |/h̄, with |Enr′ lj | the binding energy of the neu-

tron to the core A and μAn their reduced mass. The param-
eter bnr′ lj is the single-particle ANC (SPANC) defining the
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strength of the exponential tail of the A-n bound-state wave
function. This SPANC will vary with the geometry of the
potential used to simulate the A-n interaction [12,13,21,32].
We will use this property in Sec. IV to assess the sensitivity of
the transfer cross section to the ANC.

Being universal, the asymptotic behavior (4) exists also in
the actual structure of the nuclei [21] and hence should be
reproduced in ab initio models, like the NCSMC calculation
of Calci et al. [29]. However, the true ANC will differ from
the SPANC obtained in the phenomenological two-body de-
scription of B because of the coupling with the other possible
configurations [21]. In the present piece of work, we study
how to relate the two and if there are experimental conditions
which enable a safe extraction of the ANC for the 11Be bound
states from the Oak Ridge experiment [10,11].

The theoretical differential cross section expressed as a
function of the relative direction � = (θ, φ) between p and B
in the outgoing channel dσth/d� is obtained from the square
modulus of the transition matrix elements (1). All transfer
calculations are performed with the code FRESCO [33]. In the
next section, we provide all the details about our choices of
the potentials used in this work.

III. TWO-BODY POTENTIALS

A. Description of 11Be

As mentioned in the previous sections, 11Be is the
archetype of a one-neutron halo nucleus. It can thus be
modeled as a neutron loosely bound to a 10Be core. With
the assumption that the 10Be core is in its ground state (0+),
the 1

2
+

ground state (g.s.) of 11Be can be described by a
10Be(0+) ⊗ 1s1/2 configuration, and the 1

2
−

excited state (e.s.)
by a 10Be(0+) ⊗ 0p1/2 configuration. In this study, we use a
Halo-EFT description of this nucleus at the leading order of
the expansion in each of these partial waves [27,28].

Halo EFT provides a systematic treatment of halo nuclei,
which exhibit a clear separation of scales: The core of the
nucleus (10Be in the present case) is tightly bound and hence
compact, whereas the halo neutron is loosely bound and con-
sequently has a very extended wave function. The parameter
Rcore/Rhalo, where Rcore (Rhalo) is the size of the core (halo)
of the nucleus, is thus small (about 0.4 for 11Be). Halo EFT
exploits this separation of scales and considers the core and
halo neutron as its degrees of freedom. Within Halo EFT,
the quantum-mechanical amplitudes are expanded into powers
of that parameter (see Ref. [28] for a recent review). This
effective theory will break down if the process it describes
probes distances smaller than Rcore, or if they lead to the
excitation of the core.

Halo EFT is expressed through a Lagrangian that includes
all operators up to a given order in this expansion. The
interactions that appear in this Lagrangian are thus considered
at the limit Rcore/Rhalo → 0 and are described by zero-range
potentials and their derivatives. The coefficients of these
potentials—the low-energy constants of the theory—are free
parameters, which are adjusted to reproduce experimental
data or outputs of ab initio calculations [30]. In the present
work, we consider the development at the lowest order using

just one contact term, and hence one low-energy constant, per
partial wave to simply reproduce the one-neutron separation
energy of each bound state of 11Be populated through the
transfer reactions measured by Schmitt et al. [10,11]. We
neglect the possible derivatives of the interaction as well as
the higher-order terms [27,28].

To render the interactions numerically tractable, we follow
what is done to describe the nucleon-nucleon interaction in
EFT [34] and regulate them with a Gaussian, whose range can
be varied [30,31],

VAn(r ′) = −V0 e
− r′2

2r2
0 . (5)

This form of the neutron-core potential enables us to easily
evaluate the sensitivity of the reaction to the short-range
physics, which is believed to take place at distances shorter
than the radial range

√
2 r0 of these Gaussians. Our goal

being to find the experimental conditions under which the
reaction is purely peripheral, Halo EFT provides us with a
simple and elegant tool to generate, using different values of
the Gaussian width r0, wave functions for the bound states
of 11Be that exhibit significantly different radial behaviors.
For the reaction to be peripheral, it needs to be sensitive
only to the tail of the radial wave function (4). One simple
way to find that out is to check that its cross section is
proportional to the square of the bound state SPANC |bnr′ lj |2,
using different A-n potentials that generate single-particle
wave functions with different SPANCs, as was already done
in Refs. [12,13,24,25,32]. However, we must also be sure that
the reaction is not sensitive to the internal part of the wave
function. For this, the different wave functions must not only
have different SPANCs, but should also exhibit very different
radial behavior inside the nucleus.

The Gaussian potential (5) enables us to realize that in a
simple way. We consider nine such Gaussian potentials with
different widths r0 ranging from 0.4 to 2.0 fm. The lower
end of that range is unphysically small, but it enables us to
generate both very small SPANCs and significant changes in
the internal part of the wave function. The upper end is chosen
so as to avoid distortion in the long-range physics of 11Be [30].

For each width the depth V0 in the s1/2 partial wave is
adjusted to reproduce the neutron binding energy: |E1s1/2| =
0.502 MeV for the g.s. [35]. We do the same in the p1/2

partial wave to describe the 1
2

−
bound excited state of 11Be,

fitting the depth of the central term V0 to obtain E0p1/2 =
−0.182 MeV [35]. These parameters are listed in Table I with
the corresponding SPANCs b1s1/2 and b0p1/2. This way of
doing enables us to generate a very broad range of SPANCs
for both the ground and excited bound states of 11Be.

The corresponding reduced radial wave functions are dis-
played in Figs. 2 and 3 for the g.s. and the e.s., respectively.
As desired for this study, we observe that the nine Gaussian
potentials provide radial wave functions significantly different
from one another. The very narrow potentials lead to wave
functions that reach their asymptotic behavior (4) at quite a
small radius, viz. r ′ � 1 fm, while the broader ones have their
internal behavior developing at much larger distances. The
wave function corresponding to r0 = 2.0 fm being similar to
what a usual Woods-Saxon potential produces, i.e., with an
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TABLE I. Parameters of the Gaussian 10Be-n potentials [see
Eq. (5)] adjusted to reproduce the g.s. and e.s. of 11Be. The SPANC
bnr′ lj obtained for each case is provided as well.

r0 V0 (g.s.) b1s1/2 V0 (e.s.) b0p1/2

(fm) (MeV) (fm−1/2) (MeV) (fm−1/2)

0.4 1314.6 0.601 869.4 0.068
0.6 592.3 0.632 387.3 0.085
0.8 337.8 0.664 218.4 0.100
1.0 219.2 0.697 140.2 0.114
1.2 154.4 0.732 97.7 0.127
1.4 115.1 0.769 72.1 0.140
1.6 89.3 0.807 55.4 0.152
1.8 71.6 0.846 44.0 0.165
2.0 58.8 0.888 35.8 0.177

asymptotic behavior reached at r ′ � 5 fm (see, e.g., Fig. 7
of Ref. [13] or Fig. 6(a) of Ref. [32]). These significant
changes in both the SPANCs and in the radial behavior in the
interior of the nucleus, will help us assessing the sensitivity
of our 10Be(d,p)11Be transfer calculations to the radial wave
function of the 11Be bound states. In particular, let us note
that these wave functions differ very significantly in the
surface part of the nucleus—viz. at r ′ ∼ 2–3 fm—to which
transfer reactions can be sensitive [21,25]. The study of the
transfer calculations performed with these very different wave
functions will enable us to clearly identify the experimental
conditions under which the reaction is purely peripheral.

B. Other optical potentials

The nucleon-nucleus optical potentials used to compute the
distorted waves used in Eq. (1) and to build the FR-ADWA
d-A potential in Eq. (3) are obtained from the global Chapel
Hill parametrization CH89 [36] without including the spin-
orbit terms. This potential is energy dependent and hence
needs to be adapted as a function of the deuteron energy Ed .
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FIG. 2. Reduced radial wave functions u1s1/2 of the 1
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11Be obtained with the nine Gaussian potentials of Table I.

The FR-ADWA potential (3) is obtained by computing Up10Be

and Un10Be at half the deuteron energy. For that potential, the
numerical integration is performed with the front-end code
TWOFNR [37].

To test the sensitivity of our calculations to the choice
of these optical potentials, we also consider the Koning-
Delaroche parametrization [38]. The results of these tests are
presented in Sec. IV C.

The Reid soft-core interaction [39] is used as Vpn.

IV. RESULTS AND DISCUSSION

Following the experimental conditions of Refs. [10,11], we
perform ADWA calculations of the reaction 10Be(d,p)11Be at
energies Ed = 21.4, 18, 15, and 12 MeV. We first consider
the transfer towards the g.s. (Sec. IV A) and then towards the
e.s. (Sec. IV B). In both cases, we study the experimental
conditions for which the reaction is peripheral and accord-
ingly extract an ANC for each of these states, which we then
compare to the prediction of the ab initio calculations of Calci
et al. [29].

A. Transfer to 11Be ground state

1. Conditions of peripherality of the reaction

Figure 4(a) displays the differential cross section dσth/d�

for the transfer to the 11Be g.s. computed for the highest
experimental deuteron energy Ed = 21.4 MeV. The calcula-
tions have been performed for the nine 1s1/2 wave functions
shown in Fig. 2 obtained with the potentials of Table I.
As expected, we observe a large variation in the results. At
forward angle, the cross sections seem to scale with the square
of the SPANC b1s1/2 (see Table I), as one would expect if
the process were purely peripheral [see Eq. (1)]. At larger
angle, i.e., in the region of the second peak, the ordering of
the curves is inverted, showing that in this angular range, the
process is more sensitive to the short-range physics of the
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FIG. 4. Analysis of the differential cross sections of
10Be(d,p)11Be(g.s.) for a deuteron energy Ed = 21.4 MeV.
The results of the ADWA calculations are presented for every
potential of Table I.

wave function. Therefore, selecting data at small scattering
angle might enable us to constrain the g.s. ANC.

To better estimate the sensitivity of our calculations to the
SPANC, we have plotted in Fig. 4(b) the transfer cross section
divided by b2

1s1/2. Accordingly, the spread in the results is
significantly reduced at forward angle, confirming our initial
impression of Fig. 4(a). In the region of the second maximum,
however, it remains similar to what was observed before
scaling.

To precisely determine within which angular range the
data should be limited to select a strictly peripheral process,
we remove the major angular dependence by considering the

following ratio:

Rr0/1.4fm(θ ) =
(

b
(1.4fm)
nr′ lj

b
(r0 )
nr′ lj

)2 dσ
(r0 )
th

d�

dσ
(1.4fm)
th
d�

− 1, (6)

where the transfer cross section computed using the 10Be-n
Gaussian potential of width r0 scaled by the square of the
SPANC is divided by the result obtained with r0 = 1.4 fm,
which is at the center of the range in r0. The results are dis-
played in Fig. 4(c). If one excepts the very narrow potentials
(r0 = 0.4 fm and r0 = 0.6 fm), we see that all ratios Rr0/1.4fm

fall very close to one another, confirming the peripherality
of the reaction when the data are selected at forward angles.
To define an angular range in which the reaction can be
considered as peripheral, we consider a maximum of 5%
difference [horizontal dotted lines in Fig. 4(c)]. In this case,
this happens only at very forward angles, viz. when θ < 7◦.

We repeat our calculations and analysis at the other ener-
gies at which data were taken [10,11]. The results obtained
at Ed = 18 MeV are presented in Fig. 5. As at 21.4 MeV,
the reaction is peripheral at forward angles. However, the
region of peripherality is enlarged up to θ < 10◦ and even
though the short-range potentials still lead to significant ratios
Rr0/1.4fm, they move closer to the 5% acceptance band. It
seems therefore that transfer reactions measured at lower
beam energy are more peripheral.

Moving down in energy confirms this trend. At Ed =
15 MeV (Fig. 6), the peripherality angular range goes up
to 20◦ and the results obtained with the narrow potentials
are now within a mere 10% of the more regular widths. At
even lower energy (Ed = 12 MeV, Fig. 7), the peripherality
at forward angle is even clearer. This can already be seen in
Fig. 7(b), and the Fig. 7(c) confirms that all potentials, even
the most narrow ones, fall into the peripherality acceptance
band for θ < 20◦. We therefore conclude that, first, the periph-
eral area of this transfer reaction is always found at forward
angles, and, second, that when the incident energy decreases,
the reaction exhibits a more pronounced peripheral character.

2. Extraction of the ANC of the 11Be g.s.

Now that we know in which conditions the reaction is
peripheral (low Ed and forward angles), we extract an ANC by
scaling our calculations to the data of Schmitt et al. in these
exact conditions. For each beam energy, and each potential
width r0, we thus infer an ANC C

(r0 )
nr′ lj

from a χ2 analysis,

χ2
(r0 ) =

∑
i ′

[(C
(r0 )
nr′ lj

b
(r0 )
nr′ lj

)2 dσ
(r0 )
th

d�

∣∣
i ′ −

dσexp

d�

∣∣
i ′
]2

(δexp|i ′ )2
, (7)

where δexp|i ′ is the experimental uncertainty at angle θi ′ and
the sum is limited to the sole data points i ′ which lie within the
peripheral regions defined in the previous section, viz. within
the 5% acceptance band.

The ANCs C
(r0 )
1s1/2 obtained by minimizing the sum in

Eq. (7) are shown in Fig. 8 as a function of the potential
width r0 (from r0 = 0.4 fm on the left to r0 = 2.0 fm on the
right) and are grouped according to the beam energy: Ed =
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FIG. 5. Same as Fig. 4 for Ed = 18 MeV.

21.4 MeV (squares), 18 MeV (triangles), 15 MeV (diamonds),
and 12 MeV (circles). The error bars correspond to the uncer-
tainty in the χ2 minimization.

The extraction of these ANCs is more reliable at low
energy: The dependence on r0 vanishes for the lowest beam
energies. At Ed = 21.4 MeV, even if one excepts the results
obtained with the shortest widths r0 (first two points), we
observe a significant dependence on the potential geometry.
This confirms that, at this energy, even when selecting the data
at forward angles, the reaction is not completely independent
of the internal part of the radial wave function (see Fig. 4).
There is a problem with the results at Ed = 18 MeV, which
are always smaller than at the other beam energies. This has
already been seen in Schmitt et al.’s analysis [10,11]. The
reason for that remains unclear. However, here, too, the de-
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FIG. 6. Same as Fig. 4 for Ed = 15 MeV.

pendence of the extracted ANC on r0 cannot be neglected, and
hence that reaction cannot be considered as purely peripheral.

As already seen above, the best results are obtained at
Ed = 15 and 12 MeV. Especially in the latter case, the ANC
is nearly independent on the geometry of the potential, which
gives us confidence that the value hence inferred is close to
the real one.

To infer the actual ANC from the Oak Ridge data, we
thus focus on the two lowest beam energies and select only
the calculations that fall within the confidence band of 5%
defined in the previous section, which means that we con-
sider all potentials at Ed = 12 MeV and the potentials with
r0 � 0.8 fm at Ed = 15 MeV. We hence obtain an average
of C1s1/2 = 0.785 ± 0.03 fm−1/2. This value is close to that
found by Belyaeva et al. [13] with a coupled-reaction channel
model of the reaction. More interestingly, it is in excellent
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agreement with the result obtained by Calci et al. within
their NCSMC calculation of 11Be structure [29]: Cab initio

1/2+ =
0.786 fm−1/2 (dashed line in Fig. 8).

To estimate the accuracy of the inferred ANC, we plot in
Fig. 9 the results of our calculations scaled to this value, viz.

( C1s1/2

b
(r0 )
1s1/2

)
2 dσ

(r0 )
th

d�
. The agreement with the data improves at lower

energy, which confirms the method introduced here. Because
this analysis relies a lot on the accuracy of the experimental
data, it would be helpful to conduct such experiments focusing
on the low energies and forward angles to obtain a more
precise ANC.

B. Transfer to the 11Be e.s.

We next apply the same method to the data of Schmitt
et al. on the 11Be 1

2
−

e.s. Our results are summarized in

FIG. 8. ANCs extracted for the ground state of 11Be by minimiz-
ing the χ 2 (7) for each beam energy and each potential of Table I. The
ab initio result (Cab initio

1/2+ = 0.786 fm−1/2) is displayed for comparison
by the dashed line.

Fig. 10. In this case, we observe a much stronger dependence
of the results on the potential geometry, and even if it flattens
at lowest beam energy, it never becomes negligible at Ed =
12 MeV. In our analysis, we have observed a much larger
spread of the theoretical cross sections than for the ground
state. This is most likely due to the p-wave dominant structure
of this state, which, with a nonvanishing centrifugal barrier,
forces a large fraction of the wave function to be in the interior
of the nucleus, hence leading to transfer reactions that are no
longer purely peripheral at these energies.

To infer an ANC from the existing data, we hence focus
solely on the set of data at the lowest energy (Ed = 12 MeV).
As for the g.s. we consider only the calculations which fall
within the 5% acceptance band, which excludes the potentials
with a width r0 � 0.8 fm. From this analysis of the data,
we obtain an averaged C0p1/2 = 0.135 ± 0.005 fm−1/2. This
value is also comparable to that obtained in Ref. [13] and
is close to the ab initio value of Calci et al. Cab initio

1/2− =
0.129 fm−1/2 [29]. To improve the accuracy of the method,
one would need transfer data measured at even lower beam en-
ergy. Extrapolating the tendency observed in Fig. 10, it seems
that at an energy Ed < 10 MeV, the reaction will become
purely peripheral, leading to a dependence on r0 sufficiently
negligible to extract a more reliable ANC.

C. The sensitivity to the optical potential choice

All the calculations presented in this work have been ob-
tained using the Chapel Hill (CH89) global nucleon-nucleus
optical potential [36]. However, other choices are possible.
To estimate the sensitivity of our calculations to this potential
choice, we repeat our calculations with the Koning-Delaroche
potential (KD) [38]. This analysis is illustrated in Fig. 11 for
the transfer reaction 10Be(d,p)11Be(g.s.) at Ed = 12 MeV. In
both cases, we use the Gaussian 10Be-n potential with a width
r0 = 1.4 fm.

As already observed in Refs. [10–12], we observe that
the KD potential leads to a larger cross section compared
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FIG. 9. The angular distribution for 10Be(d,p)11Be(g.s.) at all
experimental energies after scaling to the ANC obtained by the χ2

minimization C1s1/2 = 0.785 fm−1/2.

FIG. 10. ANCs extracted for the 11Be e.s. by minimizing the χ 2

(7) for each beam energy and each potential of Table I. The ab initio
result (Cab initio

1/2− = 0.129 fm−1/2) is displayed for comparison.

to the CH89 one. Besides this change in magnitude of the
cross section, the choice of optical potential does not affect
the method. Because the cross sections calculated with the
KD potential lead systematically to larger cross sections than
those with CH89, we obtain a smaller ANC CKD

1s1/2 = 0.755 ±
0.03 fm−1/2, still in agreement with the ab initio prediction.

V. CONCLUSION

Transfer reactions provide an efficient tool to study the
single-particle structure of nuclei away from stability [3–8].
They are therefore used to study halo structures, like in 11Be.
In a recent experiment, Schmitt et al. have measured the
10Be(d,p)11Be transfer reaction at Ed = 21.4, 18, 15, and
12 MeV [10,11].
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FIG. 11. Influence of the nucleon-nucleus optical potential on the
transfer cross section for 10Be(d,p)11Be(g.s.) at Ed = 12 MeV. The
Gaussian 10Be-n potential is chosen with a width r0 = 1.4 fm in both
cases.
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We have reanalyzed these data within the ADWA model of
transfer [16], using a Halo-EFT description of 11Be at leading
order [27,28]. This enables us to precisely study the sensitivity
of the cross sections to the short-range physics of the 10Be-n
wave function of both the g.s. and e.s. of 11Be. Accordingly,
we have been able to define the experimental conditions under
which the reaction can be considered as peripheral, and hence
from which a reliable ANC can be extracted [12,13,22–26].

For the 1
2

+
g.s. of 11Be, selecting the data at low energy

(Ed � 15 MeV) and forward angles (θ < 20◦) seems enough.
Transfer reactions towards the 1

2
−

e.s. require a much lower
energy to be strictly peripheral, probably because of the
existence of the centrifugal barrier in this p-wave dominated
bound state. The ideal experimental conditions would actually
require Ed < 10 MeV.

From the comparison between our calculations and the
experimental data selected in these conditions of peripheral-
ity, we obtain C1s1/2 = 0.785 ± 0.03 fm−1/2 in the g.s. and
C0p1/2 = 0.135 ± 0.005 fm−1/2 in the e.s. Both are in excel-
lent agreement with the ab initio predictions of Calci et al.
(Cab initio

1/2+ = 0.786 fm−1/2 and Cab initio
1/2− = 0.129 fm−1/2) [29].

This, adding to the fact that the same value of the g.s. ANC
leads to excellent agreements with breakup measurements
of 11Be [30,31,40], confirm the accuracy of Calci et al.’s
predictions.

In conclusion, this work suggests a new, systematic and
reliable way to extract from transfer measurements the ANC

of loosely bound nuclei, e.g., exhibiting a halo. Our study
indicates that investigating transfer reactions at low beam
energies and forward angles ensures the reaction to be periph-
eral, and is hence the best way to obtain a reliable ANC from
experimental data. This strong constraint on the asymptotics
of these nuclei will help investigate the short-range physics of
these nuclei as suggested in Refs. [24,25]. In the near future,
we plan to apply this method to other systems, like 15C, for
which there exist precise data measured at low energy [12,41].
It would also be interesting to see if this idea can be extended
to resonances, like the 5

2
+

state in 11Be.
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