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“It is interesting to note that most of the early contributors to estimation theory were primarily
astronomers rather than mathematicians. They used mathematics as a means to an end. Then,
as now, the most outstanding and lasting contributions to theory were driven by practical
engineering interests. “There is nothing so practical as a good theory”. ”

Dan Simon
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Abstract
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Electrochemical Modeling, Supervision and Control of Lithium-Ion Batteries

by Luis D. COUTO

This thesis develops an advanced battery monitoring and control system based on
the electrochemical principles that govern lithium-ion battery dynamics. This work is
motivated by the need of having safer and better energy storage systems for all kind
of applications, from small scale portable electronics to large scale renewable energy
storage. In this context, lithium-ion batteries have become the enabling technology
for energy autonomy in appliances (e.g. mobile phone, electric vehicle) and energy
self-consumption in households. However, batteries are oversized and pricey, might
be unsafe, are slow to charge and may not equalize the lifetime of the application
they are intended to power. This work tackles these different issues.

This document first introduces the general context of the battery management
problem, as well as the particular issues that arise when modeling, supervising
and controlling the battery short-term and long-term operation. Different solutions
coming from the literature are reviewed, and several standard tools borrowed from
control theory are exposed. Then, starting by well-known contributions in electro-
chemical modeling, we proceed to develop reduced-order models for the battery
operation including degradation mechanisms, that are highly descriptive of the real
phenomena taking place. This modeling framework is the cornerstone of all the
monitoring and control development that follows.

Next, we derive a battery diagnosis system with a twofold objective. First, indi-
cators for internal faults affecting the battery state-of-health are obtained. Secondly,
detection and isolation of sensor faults is achieved. Both tasks rely on state observers
designed from electrochemical models to perform state estimation and residual gen-
eration. Whereas the former solution resorts to system identification techniques for
health monitoring, the latter solution exploits fault diagnosis for instrumentation
assessment.

We then develop a feedback battery charge strategy able to push in performance
while accounting for constraints associated to battery degradation. The fast and
safe charging capabilities of the proposed approach are ultimately validated through
long-term cycling experiments. This approach outperforms widely used commercial
charging strategies in terms of both charging speed and degradation.

The main contribution of this thesis is the exploitation of first principles models to
develop battery management strategies towards improving safety, charging time and
lifetime of battery systems without jeopardizing performance. The obtained results
show that system and control theory offer opportunities to improve battery operation,
aside from the material sciences contributions to this field.
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Chapter 1

Introduction

This document shows the improved performance and increased lifetime that
can be extracted from lithium-ion batteries through their advanced management.
More precisely, electrochemical models and degradation constraints are exploited
to develop a battery monitoring and control system that is health-conscious and
does not cut down on performance. These two aspects are highly relevant specially
for large scale applications, such as electric vehicles and renewable energy storage
systems. An improved operation of the battery has the potential to greatly reduce
both the price of the system and the time of recharge, and increase both the battery
lifespan and safety. Having a product with all these assets is very appealing from the
point of view of the investor or consumer.

The proposed battery management system relies on physical models and control
theoretic tools. On the one hand, various electrochemical models differing in com-
plexity are studied in detail, together with model constraints that trigger degradation
processes if violated. On the other hand, electrochemistry-based state observers, fault
diagnostic systems and constrained controllers are developed and tested notably
for the fast and safe charging of the battery. These solutions are not limited to any
particular lithium-ion battery chemistry, and pieces of them can be used for problems
in other energy storage related research topics like fuel cells.

This work pinpoints the main sources of battery degradation from the electro-
chemical perspective, and proposes ways to handle them during battery regular
operation. It turns out that some degradation mechanisms cannot be avoided for a
reasonable battery use, and they reduce battery capacity but do not imply a safety
hazard. Other mechanisms however are more detrimental to both battery life and
safety, but they can be mitigated through health-conscious strategies. Novel methods
for battery monitoring and control are presented in this dissertation, which are for the
first time (to the best of the author’s knowledge) validated with a battery-in-the-loop
experimental setup. Indeed, the proposed approach is able to charge faster and safer
lithium-ion batteries when compared to commercially available charging strategies
as CCCV protocols.

This first chapter is structured as follows. Section 1.1 provides the motivation
behind developing advanced battery management systems able to reduce battery
design conservatism, improve its performance and extend its lifetime while ensuring
safe operation. Section 1.2 pinpoints the main challenges related to the monitoring
and control of battery systems based on electrochemical models. Finally, the different
contributions that arise from this thesis are gathered in Section 1.3, followed by the
outline of the document in Section 1.4.
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1.1 Motivation

Among the main concerns regarding battery systems are their price, safety,
reliability and performance, not necessarily in this order of priorities. In this context,
the work proposed here aims at providing solutions to these issues through the
development of advanced battery management systems (BMSs). A lithium-ion battery
controlled by an advanced BMS might be designed with less conservatism for the
same performance as one operated by a traditional BMS. This aspect has the potential
to reduce both the battery size and price, which would have a huge impact in large
scale applications like electric vehicles. In fact, automotive applications have become
the driving force to impulse the outbreak of lithium-ion batteries in other sectors,
such as the grid and renewable energy storage. With battery cell prices ranging from
200 $·kWh−1 to 500 $·kWh−1 [1], the price of the battery can amount from 15% to
50% of the cost of an electric car1. A few dollar difference per kWh can have big
repercussions for the car cost. In a market that is expected to boom from 3 to 125
million electric vehicles on the road worldwide by 2030 (according to the International
Energy Agency), battery price may enable a thriving technology or doom it to fail.

Even though battery price or size are important factors when considering this
energy storage technology, other concerns are by far more important such as safety
and lifetime expectancy. In terms of safety, battery failures like short circuits can have
serious consequences, as exemplified by the lithium-ion battery failures in certain
Samsung mobile phones [2] or the blaze due to a battery in a Boeing 787 Dreamliner
in 2013 at Heathrow Airport [3], just to name a few. One of the main agencies that
have kept track of different battery incidents is the Federal Aviation Administration
of the United States. A total of 225 air/airport incidents involving batteries carried
as cargo or baggage have been recorded from 1991 to 2018 [4]. Fig. 1.1(a) depicts
the number of incidents registered every five years starting from 1991, whereas Fig.
1.1(b) shows a pie chart with the incidents organized according to the battery state of
use, namely new, in use by consumers or in equipment batteries. As the figure shows,
there has been an increase in the amount of incidents related to batteries since 1991.
Most of these incidents are associated to new batteries.

In terms of battery life span, batteries are expected to last as long as the application
in which they are used, for instance 10-15 years (i.e. 20,000-30,000 cycles) of service life
in automotive applications [6], and 20 years as autonomous power supply systems
for solar panels [7]. Safer batteries with prolonged lifetime but without trading
performance is what we look for with this work. This can be achieved via advanced
monitoring and control tools.

1.2 Open Challenges

Although a rich body of literature has been already built on the topic of lithium-
ion batteries development, monitoring and control, there are still some challenges
that need to be faced, namely:

• The term "lithium-ion" does not denote a battery but a family of batteries that
share the lithium chemistry. This issue complicates the modeling, monitoring
and control problem, which nowadays counts with a myriad of solutions in the

1This price share has been obtained by considering battery prices ranging from 200 $·kWh−1 to
500 $·kWh−1, and several electric vehicle types of different prices and with different battery capacities,
namely BMW i3, Renault ZOE40, Jaguar I-pace, Tesla Model S and Audi e-tron
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a)

b)

FIGURE 1.1: Air/airport incidents involving batteries carried as cargo
or baggage organized according to a) the number of incidents every

five years and b) the battery state of use (adapted from [5]).

literature. An unified framework to develop battery management systems built
upon the most performant methods is still a pending task.

• Models that are highly descriptive of the processes taking place inside a bat-
tery are based on electrochemistry. These models are infinite-dimensional and
nonlinear, and such sophistication prevents their exploitation for online battery
monitoring and control. Reduced-order electrochemical models able to keep rel-
evant battery dynamics exist, but they are typically limited to specific operating
ranges.

• Online monitoring of internal states and degradation is difficult during battery
regular operation given the limited number of measured quantities and the
effect of measurement noise. Moreover, estimation schemes completely rely on
the accuracy of the taken measurements and overlook possible instrumentation
malfunctions. Diagnostic systems able to provide fault detection and robust
and unbiased estimation are missing.

• Batteries are a very special application when it comes to its management. Since
it is an energy storage system, the computational overload that is incurred
should be ideally low and merit its use through improving battery performance.
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This aspect still needs to be recognized, and solutions along these lines should
be provided.

1.3 Contributions

In this thesis, we aim at designing and validating an advanced monitoring and
control system for lithium-ion battery management that improves battery perfor-
mance and lifetime. The derived control schemes are tested with different battery
chemistries in order to highlight the generality of the proposed framework. To
achieve this goal, three main categories of contributions can be distinguished, which
are shown in the following and also gave rise to the list of publications reported in
Appendix A.

• Electrochemical modeling of lithium-ion batteries: A full-order electrochemi-
cal model based on nonlinear partial differential algebraic equations is modified
to account for degradation processes. This high-order model is then reduced
by resorting to physically motivated approximations to come up with simpler
models that are useful for monitoring tasks. Different aging mechanisms are
considered and categorized according to their appearance during battery regu-
lar operation. Each mechanism is treated in a particular way. Electrochemically
meaningful constraints associated to battery degradation are derived, so that
their compliance improves the performance and extends the life of the battery.
Even though different reduced-order electrochemical models have been pro-
posed in the literature, the original one used here and later extended has never
been associated to degradation mechanisms. Moreover, the clear distinction
between battery aging tracking and degradation avoidance has been drawn
and exploited here for the first time.

• Battery diagnosis system: State observers based on electrochemical models are
designed, which account for parametric uncertainty, operating point changes,
algebraic constraints arising from battery degradation and physical constraints.
Although the state observers used are standard, their novelty with respect
to the ones in the literature lies in i) the electrochemical models at their core,
ii) the way of combining different design strategies to address the battery
estimation problem at hand, like equality and inequality state constraints, and
iii) the developed physics-based tuning procedure. Battery state-of-health
indicators are deduced from the physics, and their estimation is tackled. Tools
coming from the parameter identification community are exploited in order
to properly handle the initialization and noise susceptibility (Refs. A.1-A.3) of
more traditional parameter estimation approaches proposed by other authors.
Sensor fault detection and isolation is also carried out in parallel to state-of-
health estimation, which has been mostly overlooked by the battery research
community so far (Ref. A.4).

• Validation of feedback charge strategy: A state feedback controller that is
computationally cheaper than other more traditional control strategies (like
model predictive control) is designed. This controller exploits the state infor-
mation provided by the state observer to generate a control input signal for
battery charging. This control scheme results from solving an unconstrained
optimization problem for the control law design, while ensuring satisfaction of
degradation-related constraints through an add-on control scheme (Ref. A.5,
A.6). The proposed approach was intended to charge lithium-ion batteries in
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a faster and safer way than commercial charging protocols based on CCCV
protocols. This latter claim was verified via long-term battery cycling tests.
This is the first time that reduced-order electrochemical models, state observers
and constrained control schemes as the ones proposed in this dissertation have
been proven successful experimentally for the advanced management of the
charging process of lithium-ion batteries.

• Besides the work reported in this thesis, I also contributed to other research
projects, see for instance Refs. A7-A11.

1.4 Thesis Structure

This thesis is organized as follows. The state of the art of the different topics
covered by this dissertation is reviewed in Chapter 2. The main tools coming from
control theory that are used in this work are presented in Chapter 3. In Chapter 4,
simplified electrochemistry-based mathematical models are derived to describe the
battery dynamic behaviour, along with equations that reflect the battery aging evolu-
tion with time and operating conditions. These models are exploited for monitoring
and control purposes in the consecutive chapters. Two approaches for system fault
diagnosis are introduced in Chapter 5, namely one focusing on battery state-of-health
monitoring and the other one centered around sensor fault detection and isolation.
In Chapter 6, the models and estimators of previous chapters are used to design a
feedback strategy able to avoid degradation regimes while fast charging batteries.
Finally, in Chapter 7, an experimental validation of the control scheme of the previous
chapter is performed through prolonged cycling tests.
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Chapter 2

State of the Art

The research concerning lithium-ion batteries is multidisciplinary, from battery
development, passing by the ancillary electronics surrounding its operation (actua-
tors, instrumentation), up to the software with suitable algorithms to monitor and
control the working battery. At least three main bodies of literature can be distin-
guished in the field of batteries, each one of them associated to a major field in science.
The first body comes from electrochemistry, and it focuses on the material science
aspect of developing batteries. The resulting batteries are further tested to provide
insight into the processes occurring inside them, i.e. how a given battery works and
what limits its performance. The second body comes from electrical and electronic
engineering, and it is related with the battery integration into a given power network,
either a battery cell within a battery pack or a pack within an electrical network. The
last body comes from automation and control engineering, and it is framed in the
context of battery-management systems (BMSs). There is no consensus of the final
definition and functions of a BMS, but a wide view adopted in [8] is also considered
here, i.e. a BMS is any system that manages the battery. Among its tasks, a BMS has
to protect the battery cells from being damaged, to guarantee their safety and prolong
their service life as long as possible and to ensure that they fulfill the application
requirements. The BMS involves then the development of software in charge of
monitoring and controlling the battery during regular operation. This dissertation is
centered around the first and third battery main topics, namely it exploits the knowl-
edge from the electrochemical community to develop highly performant supervisory
control systems.

In the following, the state of the art in the fundamental research of batteries and
their supervisory control is covered. The former topic involves a description of the
battery operation and of the source responsible of limiting its performance in the long
run, i.e. battery aging. The latter topic includes battery modeling, state/parameter
estimation, fault detection and isolation and optimal control, subtopics that are
discussed subsequently.

2.1 Battery Operation

Lithium-ion batteries are electrochemical energy storage systems that stand
out with respect to other accumulators of energy given their high efficiency and
energy/power density. A battery cell is, roughly speaking, a sandwich made of
different layers of porous materials, namely a negative electrode, a separator and a
positive electrode, whereas a solution called electrolyte floods all the empty spaces
(pores) of these materials. There is no single lithium-ion battery but a variety of
chemistries. Negative electrodes can be made of graphite or lithium-titanium-oxide
(LTO), although the former is the most widely used. Positive electrodes can be lithium-
cobalt-oxide (LCO), lithium-iron-phosphate (LFP), lithium-manganese-oxide (LMO),
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nickel-cobalt-aluminum (NCA) or nickel-manganese-cobalt (NMC), and blends of
those. Besides these active materials, electrodes also incorporate a binder and a
conductive filler to improve electrode particles cohesion and electric conductivity,
respectively. The separator can be made of polyolefin materials such as polyethy-
lene and polypropylene. It is placed in-between the two electrodes to isolate them
electronically, although it is an ionic conductor. The electrolyte can be liquid or gel,
and it is a solution of lithium salts (e.g. lithium hexafluorophosphate, LiPF6) and
organic solvents (e.g. carbonates such as ethylene and diethyl carbonate). Current
collectors are placed at the negative and positive terminals of the battery cell. Copper
and aluminum are the most commonly used materials for negative and positive
electrodes, respectively. They both are electronic conductors.

During charging, a positive overpotential is applied to the battery cell, which
promotes the deintercalation (oxidation) of lithium from the positive electrode. This
process corresponds to the forward reaction in Eq. (2.1) for a generic graphite|LMeO
battery, where Me stands for the metal of a given chemistry [9].

C6 + xLi+ + xe− 
 LixC6
LiMeOz 
 Li1−y MeOz + yLi+ + ye−.

(2.1)

The resulting lithium-ions (Li+) constitute an ionic current that travels throughout
the electrolyte. It leaves the positive electrode, crosses the separator and reaches the
negative electrode, where the intercalation (reduction) of lithium takes place. Simul-
taneously, an electric current leaves the system from the positive electrode, performs
electrical work and comes back to the system through the negative electrode. This
process is depicted Fig. 2.1. The opposite mechanism is the discharge process, which
corresponds to the backward reaction in Eq. (2.1). The stored energy is a function of
the potential difference between both electrodes. Both oxidation/reduction reactions
constitute the desired intercalation reaction in a lithium-ion battery cell.

FIGURE 2.1: Schematic representation of a cross section of a lithium-
ion battery cell subject to a charging process, highlighting the dif-
ferent battery components (adapted from [9]). Ions of lithium and
hexafluorophosphate, and electrons are denoted by Li+, PF−6 and e−,
respectively, while negative electrode, separator, positive electrode
and battery cell thicknesses are denoted by L−, Ls, L+ and L, respec-
tively. L−s represents the negative electrode and separator thickness

combined.
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2.2 Battery Aging

Besides the main intercalation reaction, lithium-ion batteries are prone to side
reactions occurring simultaneously. The latter reactions consume available lithium,
which leads to capacity/power fade and can even compromise the battery safe
operation [9, 10]. Battery degradation might have different origins, which could be
correlated and are dependent on the specific chemistry [9]. The most relevant sources
of degradation that have been identified for a variety of electrode chemistries include
solid-electrolyte interphase (SEI) formation and growth [11], and lithium plating [12].

The SEI is a passive film that is formed on the surface of the negative electrode
during the first charging processes. Such a film is the product of reduction side
reactions involving lithiated carbon, the electrolyte and the solvent. At the beginning,
the SEI protects the electrode from further reacting with the electrolyte and slows
down the battery degradation rate. However, in the long run the SEI limits battery
performance through capacity and power fade. The reduction of solvent ethylene
carbonate S occurring at the graphite electrode can be modeled as [11]

S + 2Li+ + 2e− → P (2.2)

where P is the obtained product.
Another side reaction that consumes available lithium is the so-called lithium

plating, and this one is by far more dangerous than SEI growth. Lithium plating
occurs when the potential of the graphite negative electrode becomes negative, and it
consists of lithium deposition onto the electrode surface instead of its intercalation.
This deposition of metal lithium can lead to dendrites formation, which can pierce
the separator and cause a short circuit. It turns out that lithium plating occurs at later
stages of battery life, and it is responsible for the nonlinear aging behavior evidenced
at such stages [12]. This reaction can be written as [13]

Li+ + e− → Li(s). (2.3)

where Li(s) is metal lithium.
Apart from side reactions resulting in SEI growth and lithium plating, some other

relevant degradation mechanisms include electrolyte decomposition, SEI breakdown,
gas generation, overcharge, overdischarge, self-discharge, loss of active material, mi-
gration of soluble species, particle fracture, mechanical stress and structural changes
[9, 14, 15, 16, 17].

Battery degradation can occur either when batteries are in use or even when
they are stored. The former operation condition is known as cycling aging while the
latter is calendar aging. Empirical models for calendar aging assume that dominant
degradations like impedance (denoted R f ) increase due to SEI growth and lithium
capacity loss Qloss have a power of time relationship such as

R f ∝ a1tz, Qloss ∝ b1tz (2.4)

where a1 and b1 are constants, z = 1/2 for diffusion-controlled and z = 1 for a
kinetic controlled aging processes, and it takes values of z = [0.3, 1] for mixed
mechanisms [18]. Empirical models for cycling aging assume that degradation rates
are proportional to cycle number N such as

R f ∝ a2N1/(1+p), Qloss ∝ b2N1/(1+p) (2.5)
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where a2 and b2 are constants, in general p = 0 for R f whereas it takes values within
the interval [0, 3] for Qloss according to the acceleration rate of the degradation process
[18].
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2.3 Battery Modeling

In order to perform battery monitoring and control, accurate models are required.
The objectives of battery modeling are twofold. In one hand, battery simulators based
on sophisticated models allow the numerical validation of control strategies, which on
the other hand are built upon simpler models. Several lithium-ion battery cell models
have been proposed in the literature, from data-driven [19] to equivalent-circuits [20]
and electrochemical models. The first type of model has the drawback of requiring
a large amount of data for training. Equivalent-circuit models (ECM) rely on the
analogy between battery systems and electrical systems. However, the former systems
involve lithium diffusion, migration, intercalation and reaction processes, besides the
electrical ones, which cannot be modeled by the latter type of systems. Therefore,
ECM variables suffer from lack of interpretability, preventing their link to e.g. the
physics of battery degradation. Physically meaningless models cannot be exploited
for developing high-fidelity battery simulators rooted in electrochemical principles.
These inconveniences are not exhibited by the physics-based electrochemical models
(EChMs). Furthermore, in contrast to other models, EChMs can be leveraged to
perform battery fault diagnosis and constrained control that is less restrictive.

In the following, we only focus on electrochemical type of models in order to limit
the scope of this work. Therefore, we deliberately leave aside a rich body of literature
dealing with other modeling efforts such as ECMs. Interested readers are referred to
[20] for a comprehensive review in ECMs. Regarding electrochemical models, they
have been less exploited historically, although recent years have witnessed a boom in
their development and use.

The Doyle-Fuller-Newman Model

Among the different EChMs, the Doyle-Fuller-Newman (DFN) model [21, 22, 23]
is the most widely used one. The DFN model mathematically describes the electro-
chemical processes occurring inside a lithium-ion battery cell, which are detailed in
Section 2.1. It considers the negative electrode (−), the separator (s) and the positive
electrode (+) as three domains, with two phases, namely the porous solid phase (s)
and the electrolyte solution phase (e) 1. The solid phase of the system is assumed to
be made of spherical particles. While the solid phase is only present in the electrode
domains, the solution phase covers all three domains. Fig. 2.2 depicts a schematic
representation of the charge process taking place within a lithium-ion battery cell.
The whole cell with the three domains and two phases is shown at the top, the elec-
trolyte phase is in the middle, and a spherical particle taken out from each electrode
solid-phase is depicted at the bottom of the figure. The main partial differential and
algebraic equations describing the electrochemical system dynamics are shown in
Table 2.12. Each of these five equations has an associated dependent variable, which
is also represented in Fig. 2.2 using the same notation as the table. These variables are:
the solid and electrolyte phase concentration (cs and ce, respectively), the solid and
electrolyte phase electric potential (φs and φe, respectively) and the pore-wall molar
flux (jn). All these variables depend on the space (r- and x-axis along the radius of the
electrodes spherical particles and the thickness of the battery cell, respectively) and
the time (t). This model is a multi-particle model, in which a solid-phase spherical

1The symbols in parentheses are used as super-script and sub-script to denote the domain and
phase of a model state variable, respectively.

2Continuous-time with time variable t and the time derivative as dχ
dt (·, t) is adopted in this section

for the DFN model, according to its traditional presentation in the literature.
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particle can be located at each x position in the electrode domains. Within these
spherical particles, diffusion takes place only in the r direction. This fact explains the
other name with which the DFN model is known, i.e. pseudo-2D model.

Remark 2.3.1. Even though the DFN model is the most widely used battery model based
on electrochemistry, it has some limitations. Firstly, it is a pseudo-2D model where lithium-
ions diffuse in 1D along the battery cell thickness, and it assumes homogeneous diffusion
throughout the spherical particle radius. In large format batteries, a 1D description of the cell
might not be sufficient to accurately capture its thermo-electrochemical behaviour. Thus, the
DFN model has been extended to pseudo-3D [24] and 3D [25] models. Secondly, the original
DFN model neglects some battery dynamics, such as thermal and aging dynamics, but it
has been proven flexible to include them as additional phenomena, see for instance [26] for
temperature evolution, [11] for solid-electrolyte interphase growth or [17] for intercalation-
induced stress in active particles. More recently, the DFN model accuracy has been put in
question for high currents and temperatures [27]. In spite of these restrictions, the DFN
model still constitutes the virtual battery benchmark for excellence and therefore it is exploited
in this dissertation for battery cell simulation. The considered DFN model is extended with
thermal dynamics and some degradation mechanisms as explained below.

The charge process in Fig. 2.2 shows, at the bottom plot, lithium diffusion from
the bulk to the surface of the positive electrode spherical particle, where the main
deintercalation reaction occurs and produces a pore-wall molar flux. The lithium
then passes to the electrolyte phase (see middle plot), where it is in ionic form and
travels from the positive electrode, through the separator up to the negative electrode.
Once in the negative electrode, a pore-wall molar flux is produced while the main
intercalation reaction takes place, followed by lithium diffusion from the surface to
the bulk of the negative electrode spherical particle, as it can be seen again at the
bottom plot. Meanwhile, the top plot portrays the electrons journey from the positive
electrode to the negative electrode, generating electrical work outside the system.

While the original DFN model framework [21, 22] is the basis for battery cell
modeling, other equations have been incorporated into this framework to capture
more dynamics. For instance, thermal models derived from energy balance [28, 29,
30] have been coupled to the DFN model by replacing the constant temperature Tamb
by a given dynamic battery temperature state Tb. Although these thermal balances
consider a bulk temperature state with lumped thermal parameters, other works
discriminate between the battery core (bc) and surface (bs) temperature 3 [31]. The
main differential and algebraic equations describing the thermal system dynamics
are shown in Table 2.2.

Other dynamics introduced in the DFN framework correspond to those of aging
mechanisms, such as the ones described in Section 2.2. The equations behind side
reactions (sr) have been formally derived from electrochemical principles. The main
equations describing the aging induced by side reactions such as SEI growth (SEI)
and lithium plating (lp)3 are shown in Table 2.3. The cathodic Tafel approximation for
the side reaction rate Eq. (2.22) is deduced by considering the Butler-Volmer kinetics
(Eq. (2.14) considering α0 = 0.5) under the assumption of an irreversible solvent
reduction reaction [23]. Moreover, although some models only consider side reactions
during battery charge claiming that they are more relevant during this operation
mode, here we opted for allowing battery degradation during discharge as well [32].
This approach avoids the degradation discontinuity depending on the operation
mode and lets the side reaction to take place as a function of its given overpotential.

3The symbols in parentheses are used as sub-script of a model state variable.
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FIGURE 2.2: Schematic representation of the charging process of a
lithium-ion battery cell. At the top: the battery cell domains (negative
electrode (−), separator (s) and positive electrode (+)), in the middle:
the electrolyte phase (e), at the bottom: a particle solid phase (s). The
indicated variables are: solid and electrolyte phase concentration (cs
and ce, respectively), solid and electrolyte phase electric potential (φs
and φe, respectively), pore-wall molar flux (jn), electrolyte and solid-
phase diffusion coefficients (De and Ds, respectively) and spherical

particle radius (Rs).

TABLE 2.2: Two-states thermal model equations. The nomenclature
for this table is provided in the List of Symbols.

Physical Process Equation

Core Temperature

ρcCpc
dTbc

dt
(t) = kc (Tbs(t)− Tbc(t))− I(t)V(t)

−
L∫

0

a±s Fj±n (x, t)∆T(c̄±s , Tbc)dx
(2.18)

where ∆T(c̄±s , Tbc) = ∆U±b (c̄±s (x, t))−Tbc(t)∆
∂U±b
∂Tc

(c̄±s (x, t))

Surface Temperature ρsCps
dTbs

dt
(t) = kc (Tbc(t)− Tbs(t))

+hc (Tamb − Tbs(t))
(2.19)

Arrhenius Equationa Φ(Tbc) = Φref exp
(

EΦ

Rg

(
1

Tref
− 1

Tbc(t)

))
(2.20)

aΦ could be Ds, De, kn, κe or i0,sr

Both capacity loss and impedance rise are proportional to the side reaction current
density. Both the main intercalation reaction and the competing side reactions are
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schematically represented in Fig. 2.3(a) and (b), (c), respectively. Two distinct side
reactions are portrayed in the figure, namely solvent reduction reaction of Eq. (2.2)
in Fig. 2.3(b) and lithium plating of Eq. (2.3) in Fig. 2.3(c). The former side reaction
involves lithium-ions Li+ and the electrolyte solvent S, and it creates an insoluble
product P (in dark gray in Fig. 2.3(b)) whose accumulation gives rise to the SEI film.
The latter side reaction generates solid lithium Li(s) (in light gray in Fig. 2.3(c)).
Both P and Li(s) are deposited at the spherical particle surfaces (dark orange arc in
Fig. 2.3). It is worth noticing that the conductive nature of the SEI film conditions
the degradation response of the battery, as it is depicted in the close-up inset of Fig.
2.3(b). If the film conducts well electricity (e− represents electrons) but poorly ions,
lithium-ions and electrons likely undergo the main reaction at the surface of the film
(upper reaction in Fig. 2.3(b) inset). Then, the film is said to be diffusion-controlled,

and the lithium diffusion time is effectively increased from τs =
R2

s
Ds

to τs =
(Rs+δ f )

2

Ds
,

where Ds, Rs and δ f are respectively the solid-phase diffusion coefficient, spherical
particle radius and film thickness. The arrow associated to δ f pointing outwards
indicates how the film gets thicker with the passage of time. Conversely, if ions
get across easily and electrons have a harder time to go through the film, the main
reaction occurs at the surface of the particle (lower reaction in Fig. 2.3(b) inset). The
film is then said to be kinetic-controlled, and the battery voltage suffers an ohmic
potential drop caused by the film resistance R f . A mixed degradation mechanism
happens in-between these two extremes. Empirical models representing the battery
response to these limiting degradation conditions in terms of time and cycle number
were shown above in Eqs. (2.4) and (2.5).

FIGURE 2.3: Schematic representation of main and side reactions,
namely solvent reduction reaction and lithium plating. Li+, Li(s) and
e− denote lithium-ions, solid lithium and electrons, respectively, S and
P are electrolyte solvent and side reaction product, respectively, and
Rs and δ f are spherical particle radius and film thickness, respectively.

Besides the side reaction equations derived from electrochemistry, aging mecha-
nisms have also been associated to changes in model parameters. This parametric
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TABLE 2.3: Aging model equations for a generic side reaction sr, where
sr = {SEI, lp} for SEI growth and lithium plating, respectively [11,
33, 34, 12] . The nomenclature for this table is provided in the List of

Symbols.

Physical Process Equation

Current Balance jt(x, t) = jn(x, t) + ∑
i∈sr

ji(x, t) (2.21)

Side Reaction
Rate jsr(x, t) = −asLi0,sr exp

(
− α0F

RgTbc(t)
ηsr(φs, φe, jt)

)
(2.22)

Side Reaction
Overpotential ηsr(φs, φe, jt) = φs(x, t)− φe(x, t)−Usr − R f (x, t)Fjt(x, t)

(2.23)
Conservation

of Solvent ∂cst

∂t
(x, r, t) = Dst

∂2cst

∂r2 (x, r, t)− dδ f

dt
(x, t)

∂cst

∂r
(x, r, t) (2.24)

with boundary conditions

−Dst
∂cst

∂r
(x, r, t)

∣∣∣∣
r=Rs

+
dδ f

dt
(x, t)cst(x, r, t) = jsr(x, t)

cst(x, r, t)|r=Rs+δ f
= ε f cb

st(x, r, t)

Capacity Loss
dQloss

dt
(t) = −

L∫
0

Fas A
3600

jsr(x, t)dx (2.25)

Film Growth
dδ f

dt
(x, t) = −Mp

ρp
jsr(x, t) (2.26)

Impedance Rise R f (x, t) = R f (0) +
1
κp

δ f (x, t) (2.27)

variations can be state dependent or take the form of empirical functions. Examples
of the former variations are the side reaction-dependent electrolyte volume fraction
[34] and solid-phase diffusion coefficient [35] given respectively by

dεe

dt
(t) =

1
2

Mp

ρp

3εs

Rs
jsr(t), (2.28)

dDs

dt
(t) = −n1Ds(0)

εs(0)

(
εs(0)− εs(t)

εs(0)

)n1−1 Mp

ρp
as jsr(t) (2.29)

where Mp and ρp are the side reaction product molar mass and density, respectively,
εs and εe are active material volume fraction for the solid and electrolyte phases,
respectively, Ds and Rs are the solid-phase diffusion coefficient and particle radius,
respectively, as is the specific interfacial area and n1 is an empirical factor representing
the effect of the film formation on the lithium ion diffusion. Examples of empirical
functions that represent loss of active material through a time-varying material vol-
ume fraction [36] and rate-capability fade through a time-varying diffusion coefficient
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[37] are given respectively by

dεs

dt
(t) = C1(Tb)|Fjn(t)|+ C2(Tb)

√
|Fjn(t)|, (2.30)

Ds(t) = k1 exp
(

k2

N

)
(2.31)

where C1(Tb) and C2(Tb) are fitting parameters that depend on temperature, k1 and
k2 are constants and N is the cycle number. These equations are just examples of
parametric variations linked to aging mechanisms.

Operating Constraints

Whether battery degradation comes from side reactions or parameter changes,
the capacity/power fade to which the battery is subject to can compromise its safe
operation [10, 9]. Interestingly enough, battery failure can be mitigated by avoiding
certain operating regions where degradation is boosted. Such delimitation of the safe
operating regions translates in constraints, which can be exploited by a controller
to steer the battery state inwards the safe region. For the charging process, the
constraints take the form

c̄−s (x, t)/c−s,max ≤ rcs , c−ss(x, t)/c−s,max ≤ rcs (2.32a)
c̄+s (x, t)/c+s,max ≥ rcs

, c+ss(x, t)/c+s,max ≥ rcs
(2.32b)

η−sr(x, t) = φ−s (x, t)− φe(x, t)−U−sr > 0 (2.32c)
η+

sr(x, t) = φ+
s (x, t)− φe(x, t)−U+

sr < 0 (2.32d)
ce(x, t) ≥ rce

(2.32e)

where c̄s and css are the average and surface lithium concentration, respectively,
whose normalization with respect to the maximum allowed lithium concentration
cs,max are lower and upper bounded by two constants rcs

and rcs , respectively, that
depend on the electrode chemistry. The overpotential and the equilibrium potential
of the side reactions are denoted by ηsr and Usr, respectively. Eqs. (2.32a) and (2.32b)
hinder the situation where Li is extracted/deposited beyond the maximum concentra-
tion allowed by the electrode, which can cause phase transformations, active material
dissolution and oxygen loss in positive electrodes, and lithium dendrite formation
in negative electrodes. Eqs. (2.32c) and (2.32d) prevent side reactions from taking
place, which consume cyclable lithium and reduce the cell capacity (i.e. capacity
fade) [38]. Such conditions occur first at the negative electrode/separator and the
positive electrode/separator interfaces, respectively. Eq. (2.32e) precludes electrolyte
depletion, which takes place first at the current collector/negative electrode.

Reduced-Order Models

Given the complexity of the nonlinear partial algebraic differential equations
involved in the DFN model, authors have come up with reduced-order models for
estimation and control purposes. The most widespread model simplification is to
assume that the solid-phase diffusion processes within an electrode occur in a single
spherical particle. The surface area of this particle is equivalent to the active material
surface area of the porous electrode. Aside from the solid phase, the electrolyte phase
is also simplified by considering a constant electrolyte concentration throughout the
battery cell thickness [10]. This framework is known as the single-particle model
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(SPM), which was first proposed in [39] for the metal hydride battery and later
extended to lithium-ion batteries [40, 41, 42]. The SPM exhibits a reasonable accuracy
at low C-rates (up to 1C), but at higher C-rates the electrolyte phase limitations are
no longer negligible [43, 10].

Even though the SPM framework simplifies the modeling problem to one PDE
per electrode, it is still infinite dimensional. The diffusion PDEs can be discretized in
several ways, such as using finite-difference [44, 45] or finite-element methods [46].
However, these discretization schemes come with computational burden. To bypass
this issue, some authors have proposed to approximate the solid-phase diffusion
PDE with polynomials [47] and truncated transfer functions resulting from Padé’s
expansion [48] or residue grouping [49]. Besides the PDEs, the nonlinear model
equations have also been approximated. For instance, the Butler-Volmer equation
has been linearized about the origin, which is also known as low-field approximation
or linear current-potential equation [50], while the open-circuit voltage function has
been linearized about 50% SOC [46]. A quasi-linearization of the former equation,
that amounts to linearize it at every integration step about the operating point, has
been also proposed [48].

These reduced-order modeling efforts have yielded different generic EChMs. The
electrode-average model [44] is a variation of the SPM that discretizes the single
particle in Mr shells. The diffusion dynamics are then described by (Mr − 1)-order
ordinary-differential equations (ODE). The state-variable model [46] is the state space
representation of approximated impedance transfer functions. The solid-phase diffu-
sion process is described by symbolic transfer functions, whereas the electrolyte-phase
diffusion process is characterized by numerical transfer matrices. These diffusion
transfer functions are truncated via residue grouping, whereas the Butler-Volmer
kinetics and the open-circuit voltage (OCV) contributions to the voltage are linearized.
The OCV linearization is also considered in Nernst-type models [51], in addition
to the Nernst equation replacing the OCV function. This substitution characterizes
electrochemical processes at equilibrium [23]. The equivalent-hydraulic model (EHM)
[52], equivalent to the kinetic battery model [53], comprises a pure current integrator,
a high-pass filter from the state-of-charge to the surface concentration, and the latter
concentration is fed to a static nonlinearity consisting of the Butler-Volmer equation
and the OCV. In spite of such model variety, some battery chemistries exhibit specific
electrochemical features that can only be captured with chemistry-oriented models.
That is the case of e.g. lithium iron phosphate (LiFePO4 or LFP) batteries.

LFP electrodes exhibit high capacity, low price and environmental impact, and
remarkable stability [54, 55], which makes them stick out among other chemistries.
Despite the great interest aroused by this material since its discovery [56], it is still
difficult to reconcile its outstanding high-power performance with the intercala-
tion/deintercalation two-phase process [56]. The latter process has been properly
described by a core-shell model [57], where the two phases are separated by a moving
interface for each electrode particle. Lithium diffuses through a Li-rich growing shell
surrounding a Li-poor shrinking core [57, 58]. This model has been extended to
consider resistive-reactant effects [59], multiple two-phase boundaries [60, 61] and
multiple scales [62]. However, these phase-change models are thermodynamically
inconsistent since experiments show that each phase is simultaneously present in
different particles forming a mosaic. This evidence has given rise to many-particle
[63] and mesoscopic [64] models. Other results based on more complex phase-field
models show that phase separation is suppressed in small particles subject to dis-
charge currents [65, 66], which is aligned with the LFP carbon coating and particle
size reduction to improve its intrinsic low conductivity and diffusivity.
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Other LFP models neglect phase transformations completely, which are known as
regular solid-solution models. Examples of these ones are a multi-particle resistive-
reactant model with interparticle resistance distribution [55, 67], a variable solid-state
diffusivity model with particle-size distribution [54, 55], and a model that enhances
the last one with electrolyte dynamics [68]. Most of the efforts devoted to develop LFP
models seek to provide insight into the limiting electrochemical processes that govern
LFP electrode dynamics. Given the complexity introduced when modeling specific
LFP features, these models might not be suitable for battery real-time monitoring
in contrast to the other more generic reduced-order EChMs. Once a reduced-order
EChM with good performance is obtained, it can be used with estimation techniques
to look for the internal states and physical parameters of the battery cell.
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2.4 State Estimation

Perhaps the most important battery internal state is the state-of-charge (SOC).
It reflects the amount of energy available at a given time instant with respect to the
total available energy, so this indicator is for the battery what the tank level indicator
is for a car fuel tank. The SOC can be defined as

dSOC±

dt
(t) =

3
c±s,maxL±(R±s )3

∫ L±

0

∫ R±s

0
r2 ∂c±s

∂t
(x, r, t)drdx =

I(t)
Qb

(2.33)

where I(t) is the input current applied to the battery and Qb is the battery capacity
(see the List of Symbols for a description of the other parameters). The first equality
has a direct link with the battery electrochemistry and the solid-phase diffusion
Eq. (2.6). The second equality can be obtained from the first one by integration,
where the total battery capacity Qb is given by the capacity limiting electrode Q±e
such as Qb = min{Q+

e , Q−e }, with Q±e = c±s,maxFε±s L±. In this case, the SOC range is
[θ±, θ

±
], where θ± and θ

±
are the lower and upper reference stoichiometry points.

This SOC range can be used to normalize the SOC variable such as SOC ∈ [0, 1].
Another notion of battery SOC that is more practical and widely used in applications
is to define the battery capacity Qb in the second equality of Eq. (2.33) as the total
energy available when the battery is fully charged. In this case, the SOC range is
automatically restricted to [0, 1]. The integration of current in order to obtain the
battery SOC is known as Coulomb-counting.

The battery SOC estimation using Coulomb-counting as in Eq. (2.33) already
reveals some flaws. For instance, a precise knowledge of the initial SOC as well as
an unbiased input current measurement are both required to have an accurate SOC
estimate. Such requirements are hardly met in practice. One way to tackle these
issues is to resort to state observers based on reduced-order models. Similarly to
the modeling Section 2.3, this section on state estimation focuses on electrochemical
models. The interested reader is referred to [69] for a survey on observers designed
from e.g. equivalent-circuits. Most of the generic reduced-order EChMs introduced
in Section 2.3 have been used for state observer design. Two approaches can be
distinguished in this field depending on the way they cope with the underlying PDEs
of the system, namely early lumping and late lumping. While the former approach
first discretizes the PDE and then develops an observer on the resulting system of
ODEs, the latter approach derives a PDE observer that is then discretized for digital
implementation.

The early lumping is by far the most common approach for state observer syn-
thesis. An extended Kalman filter (EKF) based on the SPM [43] was one of the first
state observers resorting to EChMs to tackle the battery estimation problem. The
SPM was later dropped at the expense of the DFN model to cover a wider model
validity range (higher C-rates). This time, an unscented Kalman filter (UKF) was
implemented to avoid model linearization [70]. A linear KF was designed based on
the state-variable model to estimate the internal battery potentials and concentration
profiles besides the SOC [71]. The proposed filter had a low order of 4 to 7 states. SOC
estimation was also achieved using the electrode-average model to derive an EKF [44].
The electrode-average model was also exploited in the design of a smooth variable
structure filter [72]. This filter is a sliding mode-based observer and it involves the
output equation linearization about the current state. However, computational issues
arise when calculating the filter gain from the pseudoinverse of the linearized output
matrix.
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Nonlinear KFs other than EKF and UKF have also been explored, such as the
iterative EKF (IEKF) based on a Nernst-type battery model [51, 73]. The IEKF exhibits
less linearization errors when compared to e.g. an EKF. The Nernst model used in
the IEKF was exploited in two ways. First, the state vector was augmented with
unknown model parameters for joint state/parameter estimation [73]. In this work,
even though parameter convergence was not reached, the SOC estimate was still
considered reliable based on an observability analysis. Secondly, a multi-model esti-
mation was pursued [51], which is motivated by its good performance when dealing
with structural and parameter changes. In this work, the approach effectiveness was
proven through an accurate SOC estimation and voltage prediction for simulated
and experimental data. Away from KFs, a nonlinear geometric observer based on
a Nernst model with linearized Butler-Volmer equation and voltage hysteresis was
also designed [74]. This high gain observer provided convergent state and parameter
estimates. However, input current discontinuities caused spikes in state and parame-
ter estimates. This peaking phenomenon is notably associated to the derivative of
the input, which is required when the system is transformed for high-gain observer
design. Moreover, this adaptive observer is robust to process uncertainties but it is
very sensitive to measurement noise.

Little work has been carried out by resorting to the late lumping. A PDE observer
based on output error injection was designed using the SPM [75]. The observer gains
were chosen in order to comply with the material balance. Although the observer
robustness was proven against model mismatch and noise, thermal dynamics were
missing and later added [76]. Another approach consisted in a backstepping PDE ob-
server for adaptive SOC/SOH estimation [77]. The adaptation was achieved through
parameter identification methods, such as filtering and a nonlinear least squares,
in order to estimate SOH-related parameters. Despite the estimation convergence,
some parameter estimates were biased given the model complexity. Anyhow, the
estimation bias can be mitigated by carefully selecting the adaptation gains. The
paper concludes highlighting the importance of either an accurate model knowledge
or on-line adaptation for a successful state estimation.
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2.5 Parameter Estimation

Besides the internal state of the system, one relevant concern in battery systems is
their reliability and safety. Both issues get more compromised as the battery ages and
the state of health of the battery diminishes. In contrast to the SOC definition of Eq.
(2.33), the battery state-of-health (SOH) has not been formally defined by industry [8].
In general, any physical quantity that reflects the battery loss of performance with
usage can be regarded as a SOH indicator [78]. Thus, the SOH can be defined as

SOH ,
θ̂ − θ(0)

θ(0)
(2.34)

where θ̂ and θ(0) denote respectively the current and initial state of any chosen SOH
variable.

The SOH estimation problem can be solved by resorting to two different ap-
proaches, namely experimental-based and model-based [79]. The former approach is
simple from the computational standpoint, but it might require specific measurements
only available in controlled environments. Besides, access to the entire cycling history
of the battery might be needed. The second approach requires to develop an accurate
parametric model to start with, to link degradation to specific model parameters and
to devise a suitable procedure to estimate them from standard on-line measurements.
The challenge with this approach lies in the limited available measurements (current,
voltage, surface temperature). Roughly speaking, the experimental burden of the first
approach is translated into model and estimator design efforts in the second. The
payoff is a method that provides SOH estimation in real time during battery daily
regular operation.

Here we are interested in model-based SOH monitoring. As stated above, the
first step to achieve it is to build or select a parametric model that best describes
the physical phenomena under study. Although equivalent-circuit models have
been used as a basis for parameter identification of battery models, this modeling
framework does not reflect the electrochemical processes of the battery. To this end,
electrochemical models, such as the ones introduced in Section 2.3, are the most
suitable ones, whose parameters are rooted in physical meaning. Once the parametric
model is obtained, the next step is to identify the meaningful parameter set that
captures SOH degradation.

Popular choices of SOH variables are parameters related to capacity and power
fade. However, the isolation of any given degradation mechanism through a sin-
gle parametric change is a tough task due to the intertwined nature of degradation
sources. This means that different degradation mechanisms might contribute to the
variation of a single parameter, and one degradation mechanism might be responsible
for multiple parameters changing simultaneously. An example of the former situation
is the effect that side reactions, electrode morphological changes, particles cracking
and pores plugging have on the solid-phase diffusion coefficient. For its part, an
example of the latter situation is the influence of side reactions over the diffusion
coefficient, film resistance and moles of lithium. If that was not enough, the battery
response to aging depends on the battery chemistry [9, 15, 80] and operating condi-
tions, which further complicates the situation. Some efforts have been carried out to
associate general sources of capacity and power loss to specific parameter variations.
For instance, side reactions consume available lithium that contributes to capacity
fade, which can affect the solid-phase diffusion coefficient parameter (Ds). For its
part, film formation and growth yields power fade, which can be reflected in changes
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of the film resistance parameter (R f ) [81, 37]. Magnitude changes of these parameters
can be as large as 100% drop for Ds and 400% increase for R f when a LCO battery
is subject to 500 charge/discharge cycles of maximum 1C [37]. Similar degradation
trends have been reported for other types of lithium-ion batteries [82, 83, 84].

SOH indicators deduced from models vary depending on the model choice. Simi-
larly to the state estimation Section 2.4, this section on parameter estimation focuses
on electrochemical models. The interested reader is referred to [78, 79] covering
different SOH estimation methods. Model-based SOH indicators have been built
resorting to two main tools, namely parameter estimation techniques and adaptive
state observers. Within the first category lie optimization-based techniques, such as
Levenberg-Marquardt method [85] and Gauss-Newton method [82, 86], as well as
recursive parameter update laws such as gradient method [87]4. These approaches
may require specific battery tests, and the acquired data has to be processed off-line
due to the computational complexity involved in the optimization problems. For its
part, SOH assessment during real time operation may require access to the internal
battery state, which leads to joint state/parameter estimation. Within this second
category are state observers, such as the ones introduced in Section 2.5, with recursive
parameter estimation update laws based on least squares [91, 77, 92], cascaded estima-
tion resorting to sliding mode [93, 94], Lyapunov-based [95] and proportional-integral
observers [96], as well as lumped parameter/state estimation via Kalman filters (KF)
[51, 97, 73, 98, 99], particle filters [99, 100] and nonlinear geometric observers [74].

4This literature review focuses on parameter identification techniques that have been explicitly used
to estimate SOH-related parameters. Therefore, we are leaving aside the body of literature dealing with
a more general parameter identification problem of batteries, which notably encompasses methods such
as genetic algorithm [88] and Levenberg-Marquardt method [89], and methodologies such as optimal
experiment design [90].
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2.6 Fault Detection and Isolation

Early detection of battery failure is a big concern nowadays. From applications
with few battery cells such as mobile phones or laptops, to large scale battery packs
of electric vehicles, battery malfunctions can potentially become a safety hazard for
the user. This kind of threat coming from such an ubiquitous and autonomy-enabling
technology cannot be tolerated. In recent years, fault detection and isolation (FDI)
systems have been explored in order to make batteries safer and failure-proof.

The literature on FDI systems for batteries can be divided in two categories. In
the first one, the design of state-of-health (SOH) indicators is considered. As bat-
tery degradation induces changes in the battery model, any parameter estimation
approach for modeling a battery from experimental data can be seen as a method for
SOH monitoring. Most of the work in this field resorts to equivalent circuit models
(ECM) to describe battery behavior. However, among the possible battery internal
faults, one can notably distinguish between capacity and power fade. Each one of
these degradation sources is associated to different physico-chemical phenomena [37].
The only way to discern between such specific and relevant electrochemical faults is
to use electrochemical models (ECheM) as opposed to ECMs. This approach corre-
sponds to the line of research introduced in the previous Section 2.5 and references
therein. In contrast to parameter estimation-oriented approaches, the diagnostics
problem has also been framed in terms of observer-based FDI systems [101, 102] for
residual generation. These approaches consider equivalent-circuit models together
with additive faults [101] and experimentally characterized parametric changes [102]
for observer design. All these contributions assume that the different sensors are fault
free.

The second category of literature deals with the design of FDI systems for sen-
sor and actuator faults in battery cells and packs. Notice that battery monitoring
heavily relies on the information provided by the deployed sensors, while confining
the battery state within a certain region of safe operation strongly depends on the
effectiveness of the actuator. If the instrumentation delivers biased information, the
output feedback control of the battery may result in a dangerous situation, specially
when high currents are used as it is the case of fast charging. There is no simple table
of sensor failure modes with their probability of occurrence, because the failure mode
depends on the type of sensor, manufacturing practices, application and environmen-
tal conditions [103]. However, failure rates λs [failures·10−6 h] for thermal sensors
range from 1.50 to 20.00, while sensors based on the Hall effect (like current and
voltage) can have 2.50 failure rate [103]. Large scale battery packs can have thousands
of cells, whose voltages need to be properly monitored to guarantee safe operations,
current sensors are used for each string of battery cells and a couple of temperature
sensors are deployed for each battery module. On the one hand, more sensors involve
a greater chance of one of them failing, even if they failure rate is low like for current
and voltage. On the other hand, few sensors with a possibly higher failure rate as
thermal sensors might compromise the use of the application. A proper study of
sensor reliability in the context of battery packs does not exist yet to the best of our
knowledge, despite its relevance.

Sensor faults have been considerably less explored than e.g. battery state and
parameter estimation. The proposed solutions usually rely on simple, electric and
thermal models of the cell or the pack. The diagnostic problem has been addressed
notably through a nonlinear parity equation approach, possibly determined by struc-
tural analysis [104, 105] and state observers [106, 107]. The interplay between battery
aging monitoring and sensor FDI has been very little studied so far. To the best of
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the author’s knowledge, sensor and battery internal resistance faults have been only
explored using structural analysis [108] and state observers [109], respectively, both
based on equivalent-circuit models.
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2.7 Constrained Control

The most widely used battery charging strategy is the constant-current/constant-
voltage (CCCV) protocol [110]. It consists of two stages. During the first stage, the
battery is operated under a constant current (CC) or galvanostatic condition until the
voltage reaches a pre-defined upper cut-off threshold. From this point onwards, the
battery is operated under a constant voltage (CV) or potentiostatic condition until the
current drops to a given pre-defined lower cut-off threshold. The CCCV protocol is
an ad hoc solution where the parameters (e.g. current rate, and voltage and current
thresholds) are specified a priori based on heuristic tuning [111]. Although they might
be regarded as rather conservative at the battery beginning-of-life, these charging
specifications could become a safety hazard in the long run [10]. To address this issue,
a careful monitoring of the battery internal states is required, along with a control
strategy that cashes in on such estimation to avoid unsafe operating conditions.

Recently, a few alternative strategies based on constrained optimal control have
been proposed. In spite of the added complexity, these solutions are capable of
fast charging lithium-ion batteries while ensuring a higher level of safety. There
are two main routes for solving a constrained control problem, namely to solve
the problem altogether as in model predictive control, or to separately solve the
control and the constraint handling problems, and to put the pieces together as in the
reference governor. The first route was followed in [112], where an optimal current
profile for fast charging was obtained from a simple one-step predictive controller
based on the DFN model. However, the use of the DFN model in this approach
prohibits its on-line (closed-loop) implementation due to the high computing load.
This makes the method unable to cope with modeling uncertainties and/or different
initial conditions. To fight against computational burden, reduced-order models, such
as the ones introduced in Section 2.3, have been exploited within model predictive
control (MPC) schemes [113, 114]. Although the resulting schemes exhibit a much
reduced computational complexity, it is still an open question if they can be easily
implemented on-line on low-cost devices. An attractive alternative able to further
reduce the computational demand is the reference governor (RG) [115, 116].

The second route, which concerns RG schemes, has produced a few preliminary
results. An early use of a RG was based on a reduced-order linear EChM valid at 50%
SOC and equipped with constraints only on the solid-phase lithium concentration
[117]. Another approach involves a modified RG scheme that uses both the DFN
model and a linearized version of it [118]. The authors showed that constraint
satisfaction can be ensured for the DFN model but not for the linearized model. It is
worth mentioning that both of the above approaches used modified versions of the
classical RG to deal with marginally stable systems, which puts into question their
robustness properties.
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2.8 Concluding Remarks

This chapter focuses on the state of the art related to the different topics covered
in this dissertation, namely description of the battery operation and aging, battery
modeling, internal state and parameter estimation, sensor fault detection and isolation
and optimal control subject to constraints.

The mathematical representation of the battery operation has been traditionally
done through the so-called DFN model, which has been extended to include e.g.
thermal and aging dynamics. Among the different degradation mechanisms that
promote aging, parametric variations with time and side reactions leading to SEI
growth and lithium plating are the most relevant ones. Some aging mechanisms can
be mitigated by establishing suitable constraints, while others cannot be avoided in
any way so what is left is to track them. An example of the former is lithium plating
and of the latter are SEI growth and calendar aging.

Although the use of very detailed models such as the DFN model is highly
advised for battery simulation, its complexity precludes its real time implementation
for estimation and control. Then, reduced-order electrochemical models have been
derived, which can be chemistry specific or chemistry agnostic. The former models
are intended to provide physical insight into the electrochemical processes limiting the
operation of a given battery chemistry. The latter models are generic and often simpler
than the former ones. A generic model able to describe the dynamic behaviour of any
battery chemistry is desirable. This model should be rooted in first principles so that
the physical meaning of its states and parameters can be exploited for monitoring
and control.

Some of the electrochemical models proposed in the literature have been already
used to design state observers with a view to estimating the short-term battery
dynamics, e.g. SOC. Late lumping of the system PDEs gives rise to PDE observers,
which is a field where little work has been done. In contrast, observer design based
on a system of ODEs resulting from early lumping is a more prolific research area.
Kalman filters (KF) and its variants are by far the most used approach for state
estimation. The wide use of KFs lie in its computational simplicity and proven
success when implemented in real life applications. However, the KFs designed
for batteries are usually based on restrictive models, consider specific operating
conditions and often lack a systematic procedure to tune the filter.

Apart from the short-term battery operation, its SOH deteriorates in the long
term affecting battery performance and price. To track the battery SOH, different
parameter identification approaches have been proposed in the literature. However,
most of them rely on least squares estimation, which requires some a priori knowledge
of the unknown parameters to initialize the method and it produces biased estimates
in presence of colored noise. While parameter estimation approaches are by far the
most popular way to cope with the tracking of battery aging, other studies cast an
observer-based fault diagnostics problem to generate residuals for parameter change
detection.

Another way that fault detection and isolation systems for batteries have been
exploited is to assess the reliability of the information provided by the sensors. This
issue is relevant because both battery monitoring and closed-loop control strongly
rely on the information available from the sensors. The fact that aging and sensor
faults occur simultaneously is often overlooked in the literature.

So far, we have covered estimation methods able to infer the internal state and
aging-related parametric changes of lithium-ion batteries from standard measure-
ments, and diagnostic systems able to assess the reliability of such measurements.
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The next step is to take advantage of this information to control the battery operation.
More precisely, we focus here on feedback charge strategies for lithium-ion batter-
ies. The standard approach to achieve this goal is through model predictive control
(MPC). However, the computational burden associated to MPCs is not acceptable for
an application whose main purpose is to store energy. The use of computationally
lighter solutions such as reference governors (RG) has also been explored, but either
modified RGs or RGs based on models that are too complex or limited in both their
operating range and selected constraints were considered.
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Chapter 3

Prerequisite Material

Before jumping into the development of techniques and strategies for battery
monitoring and control, it is worth refreshing some notions of estimation, fault detec-
tion and control. All these notions have served as a basis to derive suitable solutions
to the problem that concerns us. Model state estimation introduced in Section 3.1 has
been performed by means of Kalman filters. Model parameter estimation of Section
3.2 resort to identification methods such as least squares and instrumental variables.
The fault detection system shown in Section 3.3 relies on residual generation and
statistical change detection algorithms. Finally the control scheme presented in Sec-
tion 3.4 combines a standard linear quadratic regulator with a reference governor.
The basics of all these topics are sequentially introduced and briefly described in the
following.

3.1 State Estimation

More often than not, the available information that can be directly obtained from a
given system through sensors is limited. It might be that only some linear or nonlinear
combinations of the state of the system can be accessed via sensing. Furthermore, the
gathered data is always corrupted by noise to a greater or lesser extent. In order to
reconstruct the system state from such data one resorts to state observers or filters.
One of the most widely used state observer that has been exploited across disciplines
to estimate the state of stochastic systems is the Kalman filter. Originally proposed
for linear discrete-time systems, Kalman filter-like algorithms have been developed
for nonlinear systems, such as the extended and the unscented Kalman filters. These
contributions are discussed next in terms of algorithm and properties.

3.1.1 The Kalman Filter

The Kalman filter was developed in discrete-time by Rudolph Kalman in 1960
[119], during the Apollo program. It provides the means to estimate the state x(k)
of a system from input-output measurements u(k) and y(k). Consider the following
linear discrete-time stochastic system1

x(k) = Ax(k− 1) + Bu(k− 1) + wn(k− 1)
y(k− 1) = Cx(k− 1) + vn(k− 1)

(3.1)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the input vector, y(k) ∈ Rp is the
output vector, and wn(k) ∈ Rn and vn(k) ∈ Rp are process and measurement noise
sequences, respectively, which are white, zero-mean and mutually uncorrelated with

1Discrete-time with time variable k is adopted in this section.
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covariance matrices Q and R, respectively, i.e.

wn(k) ∼ N (0, Q), vn(k) ∼ N (0, R),

E

([
wn(k)
vn(k)

] [
wn(l)Tvn(l)T]) =

[
Q 0
0 R

]
δkl

(3.2)

where E is the expectation operator and δkl is the Kronecker delta function. Besides,
the initial state x(0) is supposed to be normally distributed and uncorrelated with the
process and measurement noises. The Kalman filter provides the minimum variance
estimate of the state. As the noise and the initial state are assumed to be normally
distributed, this estimate, denoted x̂(k), is given as [120, 121]

x̂(k) = E[x(k)|Y(k− 1)] (3.3)

where Y(k − 1) is the data sequence up to and including time k, i.e. Y(k − 1) =
{y(k− 1), y(k− 2), . . . , y(0), u(k− 1), u(k− 2), . . . u(0)}.

Algorithm

The Kalman filter algorithm that provides the estimate described by Eq. (3.3) is
given in Table 3.1.

TABLE 3.1: The Kalman filter algorithm†.

Initialization: for k = 0 set
x̂0 = E[x0], P0 = E[(x0 − x̂0)(x0 − x̂0)T]

At each time instant compute:
Time-update:

x̂−k = Ax̂k−1 + Buk−1 (3.4)

P−k = APk−1AT + Q (3.5)
ŷk = Cx̂−k (3.6)

Measurement-update:

x̂k = x̂−k + Kk (yk − ŷk) (3.7)

Kk = P−k CT
(

CP−k CT + R
)−1

(3.8)

Pk = P−k − Kk

(
CP−k CT + R

)
KT

k (3.9)
†For compactness, the time argument is set as an index.

Properties

As already indicated, the Kalman filter state estimate is the best (minimum
variance) estimate that solves the following optimization problem [121]

min. E
[
(x(k)− x̂(k)) (x(k)− x̂(k))T |Y(k− 1)

]
, (3.10)

which implies that

E[(x(k)− x̂(k)) |Y(k− 1)] = 0
P(k) = E

[
(x(k)− x̂(k)) (x(k)− x̂(k))T |Y(k− 1)

]
≤ Pf ,

(3.11)
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where Pf is the error covariance of any other filter [120].

Remark 3.1.1. By taking A = I, B = 0, Q = 0, C = ϕ(k− 1)T, R = I and θ(k) , x(k),
the system becomes

θ(k + 1) = θ(k)
y(k) = ϕ(k− 1)Tθ(k) + vn(k),

(3.12)

for which the Kalman filter reduces to the recursive least-squares algorithm [120]

θ̂(k + 1) = θ̂(k) + P(k−1)ϕ(k)
ϕ(k)TP(k−1)ϕ(k)+1 (y(k + 1)− ϕ(k)Tθ̂(k))

P(k) = P(k− 1)− P(k−1)ϕ(k)ϕ(k)TP(k−1)
ϕ(k)TP(k−1)ϕ(k)+1 .

(3.13)

3.1.2 The Extended Kalman Filter

The Kalman filter provides a simple and elegant solution to the state estimation
problem of a linear stochastic dynamical system. However, all systems are ultimately
nonlinear. One way to proceed is to extend this filtering method to nonlinear systems.
This idea gives rise to the extended Kalman filter (EKF) firstly proposed by [122] ,
which is by far the most widely used nonlinear filtering technique [121]. It relies on
the linearization of the nonlinear system about the current state estimate. Consider
the following nonlinear discrete-time stochastic system

x(k) = f (u(k− 1), x(k− 1), wn(k− 1))
y(k− 1) = h (u(k− 1), x(k− 1), vn(k− 1))

(3.14)

with the same vector notation and noise assumptions as in Eqs. (3.1), (3.2). Let x̂(k)
denote the estimate of the state at time k and linearize the system Eq. (3.14) about
x(k) = x̂(k), wn(k) = 0 and vn(k) = 0, which results in

x(k) ≈ f (u(k− 1), x̂(k− 1), 0) + F(k− 1)x̃(k− 1) + Fw(k− 1)wn(k− 1)
y(k− 1) ≈ h(u(k− 1), x̂(k− 1), 0) + H(k− 1)x̃(k− 1) + Hv(k− 1)vn(k− 1)

(3.15)
where the estimation error is defined as x̃(k) = x(k)− x̂(k) and

F(k) =
∂ f
∂x

(u(k), x(k), wn(k))
∣∣∣∣ x(k) = x̂(k)

wn(k) = 0

, Fw(k) =
∂ f

∂wn
(u(k), x(k), wn(k))

∣∣∣∣ x(k) = x̂(k)
wn(k) = 0

(3.16)

H(k) =
∂h
∂x

(u(k), x(k), vn(k))
∣∣∣∣ x(k) = x̂(k)

vn(k) = 0

, Hv(k) =
∂h
∂vn

(u(k), x(k), vn(k))
∣∣∣∣ x(k) = x̂(k)

vn(k) = 0
(3.17)

Algorithm

The Kalman filter algorithm for the linearized system Eqs. (3.15)-(3.17), known
as the extended Kalman filter (EKF), is given in Table 3.2.

Properties

Despite its wide use in real applications, there is no final and conclusive proof of
the EKF convergence. Several authors have studied the deterministic EKF estimation
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TABLE 3.2: The extended Kalman filter algorithm†.

Initialization: for k = 0 set
x̂0 = E[x0], P0 = E[(x0 − x̂0)(x0 − x̂0)T]

At each time instant compute:
Time-update:

x̂−k = f (uk−1, x̂k−1, 0) (3.18)

P−k = Fk−1Pk−1FT
k−1 + Q̄k (3.19)

ŷk = h(uk, x̂−k , 0) (3.20)
Measurement-update:

x̂k = x̂−k + Kk (yk − ŷk) (3.21)

Kk = P−k HT
k

(
HkP−k HT

k + R̄k

)−1
(3.22)

Pk = P−k − Kk

(
HkP−k HT

k + R̄k

)
KT

k (3.23)

where Q̄k = Fw,kQFT
w,k, R̄k = Hv,kRHT

v,k, and

Fk, Fw,k, Hk and Hv,k are given by Eqs. (3.16),(3.17).
†For compactness, the time argument is set as an index.

problem and provided some conditions under which the filter converges [123, 124].
Similar results in the stochastic framework are more limited, although the stochastic
stability study proposed in [125] is particularly relevant for our purposes. It is
summarized below.

Let us consider a particularization of the nonlinear system Eq. (3.14) where the
noise terms enter linearly into the system, i.e.

x(k) = f (u(k− 1), x(k− 1)) + wn(k− 1)
y(k− 1) = h (u(k− 1), x(k− 1)) + vn(k− 1).

(3.24)

For the nonlinear system Eq. (3.24), the following definition holds.

Definition 3.1.1. Observability rank condition2. The nonlinear system Eq. (3.24)
satisfies the nonlinear observability rank condition at xk for the input sequence
Uk,k+n−1 = {uk, . . . , uk+n−1} if matrix Oc(Uk,k+n−1, xk) defined below has full rank n.

Oc(Uk,k+n−1, xk)=



∂h
∂x

(uk, xk)

∂h
∂x

(uk+1, xk+1)
∂ f
∂x

(uk, xk)

...
∂h
∂x

(uk+n−1, xk+n−1)
∂ f
∂x

(uk+n−2, xk+n−2) · · ·
∂ f
∂x

(uk, xk)


(3.25)

Let U∗(x(k)) denote the set of input sequences ensuring that the observability
rank condition is fulfilled for a given x(k). The main result of [125] is now recalled,
which has been modified to accommodate the system input u(k).

Theorem 3.1.2 (Stochastic stability of the EKF.). Consider system Eq. (3.24) and the
associated EKF with state x̂(k) as in Table 3.2. Assume there exists a compact subset X in
Rn such that the following conditions hold

2For compactness of notation the time argument is set as an index in the definition.
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1. The nonlinear system Eq. (3.24) satisfies the observability rank condition for every
x(k) ∈ X and U(k, k + n− 1) ∈ U∗(x(k)).

2. The nonlinear functions f , h are twice continuously differentiable with respect to x, for

every u ∈ U∗ and
∂ f
∂x

(u, x) 6= 0 holds for every x ∈ X and u ∈ U∗.

3. The sample paths of x(k) are bounded with probability one, and X contains these sample
paths as well as points with distance smaller than εX from these sample paths, where
εX > 0 is a real number independent of k.

Then the state estimation error x̃(k) = x(k)− x̂(k) is exponentially bounded with probability
one, provided that the initial estimation error satisfies ‖ x̃(0) ‖≤ ε for some ε > 0, and
U(k, k + n− 1) ∈ U∗(x(k)) for all k > 0.

The EKF is, in general, not optimal [120]. Besides, the filter might provide unreli-
able estimates in the case of strong nonlinearities. In the EKF, the state distribution is
approximated by a random variable, which is propagated analytically through the
first-order linearization of the nonlinear system [126, 121]. Consider for instance a
random vector x and an arbitrary nonlinear function

y = f (x) (3.26)

whose true mean and covariance are respectively given by

ȳnl = E[ f (x)]
Pnl = E[(ynl − ȳnl)(ynl − ȳnl)

T].
(3.27)

The EKF approximates the mean and covariance of y as

ȳl ≈ f (x̄)

Pl ≈
(

∂ f
∂x

∣∣∣
x̄

)
Px

(
∂ f
∂x

∣∣∣
x̄

)T (3.28)

where x̄ = E[x] and the associated covariance is Px. Another extension to the Kalman
filter that reduces linearization errors is the unscented Kalman filter (UKF).

3.1.3 The Unscented Kalman Filter

Similarly to the EKF, the UKF also estimates the distribution of the random
vector x for the dynamic model Eq. (3.14). In contrast to the EKF however, the UKF
approximates the distribution through a minimal set of carefully chosen sample
points. These sample points completely capture the true mean and covariance of
the random variable, and provide second-order accuracy for the posterior mean and
covariance after their propagation through the nonlinear system [126]. The process
of deterministically sampling the distribution and the resulting sample points are
respectively known as unscented transformation and sigma points.

The UKF heavily relies on the unscented transformation, which allows to calculate
the statistics of a random variable that passes through a nonlinear function. Consider
again the nonlinear transformation of Eq. (3.26), and the mean and covariance of the
random variable x ∈ Rn are denoted as x̄ and Px, respectively. The statistics of y can
be computed by forming a matrix of sigma points X ∈ Rn×(2n+1) given by

X0 = x̄,
Xl = x̄ +

(√
(n + λ)Px

)
l
, l = 1, . . . , n,

Xl = x̄−
(√

(n + λ)Px

)
l−n

, l = n + 1, . . . , 2n,
(3.29)
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where λ = α2(n + κ)− n is a scaling parameter involving the tuning parameters α
and κ. According to [126], the tuning parameters can be selected as follows. The
constant α is usually set to a small value between 10−4 and 1, and it reflects the
spread of the sigma points around x̄. The constant κ is usually set to 3− n, and it is a
secondary scaling parameter. The l-th column of the matrix square root is denoted by(√

(n + λ)Px

)
l
. These sigma points are propagated through the nonlinear function

as
Yl = f (Xl), l = 0, . . . , 2n, (3.30)

while the mean and covariance of y are approximated by the weighted sample mean
and covariance of the posterior sigma points

ȳ ≈
2n

∑
l=0

W(m)
l Yl

Py ≈
2n

∑
l=0

W(c)
l (Yl − ȳ)(Yl − ȳ)T,

(3.31)

where Wl are weights given by

W(m)
0 =

λ

n + λ

W(c)
0 =

λ

n + λ
+ 1− α2 + β

W(m)
l = W(c)

l =
1

2(n + λ)
, l = 1, . . . , 2n

(3.32)

and β is a constant that can be set to 2 for Gaussian distributions, and it is in charge
of incorporating prior knowledge of the distribution of x.

Algorithm

The UKF is a straightforward implementation of the unscented transform for
recursive estimation [126]. Its algorithm is provided in Table 3.3 for a nonlinear
system of the form of Eq. (3.14). As in the standard Kalman filter framework, the
UKF consists of two steps: a time-update when the system state is predicted, and
a measurement-update when the prediction is corrected once measurements arrive.
We first focus on the time-update step, and denote x̂−(k) and x̂(k) as the predicted
and corrected state estimates, respectively. In order to obtain x̂−(k), it is necessary
to propagate x̂(k− 1) through the nonlinear state function of Eq. (3.14). In contrast
to the EKF where x̂(k− 1) is directly passed through the nonlinear system, the UKF
first generates a sampled probability distribution of the state random variable, and
that is the one that is propagated through the system.

The system Eq. (3.14) at hand exhibits the noise entering the equations nonlinearly.
In this case, the noise has to be augmented onto the state vector and error covariance
matrix as [127, 126]

x̂a(k− 1) = [x̂(k− 1)T w(k− 1)T v(k− 1)T]T

Pa(k− 1) = diag(P(k− 1), Q, R),

where x̂a(k− 1) ∈ Rna and Pa(k− 1) ∈ Rna×na with na = 2n+ p denote the estimation
of the mean and covariance of the augmented state random variable. Both the
augmented state vector and covariance matrix can be initialized as in the initialization
step in Table 3.3, and both are exploited in Eq. (3.33) to generate the matrix of sigma
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TABLE 3.3: The unscented Kalman filter algorithm†.

Initialization: for k = 0, set
x̂0 = E[x0], P0 = E[(x0 − x̂0)(x0 − x̂0)T]
x̂a

0 = E[xa
0] = [x̂0 0 0]T,

Pa
0 = E[(xa

0 − x̂a
0)(xa

0 − x̂a
0)

T] = diag(P0, Q, R)
For k = 1, 2, . . . compute
Sigma points:

X a
k−1=

[
x̂a

k−1 x̂a
k−1+γ

√
Pa

k−1 x̂a
k−1−γ

√
Pa

k−1

]
(3.33)

Time-update:

X x
k|k−1= f

(
uk−1,X x

k−1,X w
k−1
)

(3.34)

x̂−k =
2na

∑
l=0

W(m)
l X x

l,k|k−1 (3.35)

P−k =
2na

∑
l=0

W(c)
l

(
X x

l,k|k−1 − x̂−k
) (
X x

l,k|k−1 − x̂−k
)T

(3.36)

Yk|k−1=h
(

uk,X x
k|k−1,X v

k−1

)
(3.37)

ŷk=
2na

∑
l=0

W(m)
l Yl,k|k−1 (3.38)

Measurement-update

Py,k=
2na

∑
l=0

W(c)
l

(
Yl,k|k−1 − ŷk

) (
Yl,k|k−1 − ŷk

)T (3.39)

Pxy,k=
2na

∑
l=0

W(c)
l

(
X x

l,k|k−1 − x̂−k
) (
Yl,k|k−1 − ŷk

)T (3.40)

Kk=Pxy,kP−1
y,k (3.41)

x̂k=x̂−k + Kk
(
yk − ŷ−k

)
(3.42)

Pk=P−k − KkPy,kKT
k (3.43)

Parameters
γ =
√

na + λ, λ = α2(na + κ)− na

W(m)
0 = λ

na+λ , W(c)
0 = λ

na+λ + 1− α2 + β

W(m)
l = W(c)

l = 1
2(na+λ)

, l = 1, . . . , 2na, na = 2n + p
(3.44)

†For compactness, the time argument is set as an index.

points X a ∈ Rna×(2na+1) as

X a(k− 1) =
[
(X x(k− 1))T, (X w(k− 1))T, (X v(k− 1))T

]T
.

The notation used for sigma point generation, namely x̂a
k−1 ± γ

√
Pa

k−1 stands for

x̂a
k−1 ± γ

(√
Pa

k−1

)
l
, l = 1, . . . , na, where (·)l is the l-th column of the matrix. For the

sake of compactness the above operation is rewritten as in Eqs. (3.33). These l sigma
vectors are then passed through the nonlinear state function as in Eq. (3.34), and
the mean and covariance of x̂−(k) are approximated with a weighted sample mean
and covariance of the posterior sigma points X x

k|k−1 such as in Eqs. (3.35) and (3.36),
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respectively. The same procedure can be applied for the nonlinear output function Eq.
(3.14) using Eqs. (3.37)-(3.39). The error cross-covariance matrix Pxy(k) is computed
using Eq. (3.40).

In the measurement-update step, the Kalman gain is obtained through Eq. (3.41)
while the estimates for the state vector and error covariance matrix result from Eqs.
(3.42) and (3.43), respectively. Notice the resemblance between the Kalman gain and
the state vector and covariance matrix update of the UKF in Table 3.3 and the EKF in
Table 3.2. By setting Pxy(k) = P−(k)HT(k) and Py(k) = H(k)P−(k)H(k)T + R for the
UKF in Eqs. (3.41)-(3.43), the EKF Eqs. (3.21)-(3.23) are recovered.
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3.2 Parameter Estimation

Besides the model-based state estimation problem of the previous Section 3.1, the
model that is exploited by the observer is built upon a given set of parameters. These
model parameters can be identified a priory through feeding the system with appro-
priate input signals and post-processing the system measurements with parameter
identification tools. However, a system that degrades with time suffers parametric
changes that, if not accounted for, worsens the model performance. This issue can
be mitigated by tracking parametric changes and adapting the model parameters
as the system ages. One of the best known parameter identification techniques is
the least squares method. Although this method is simple to implement and can
be very accurate in specific situations, it provides biased estimates in the case of
data corrupted by colored noise. To overcome this limitation, instrumental variable
methods have been proposed, such as the standard instrumental variable and the
simplified refined instrumental variable methods. These contributions are discussed
next in terms of algorithm and properties.

Before entering into the mechanics of each parameter identification method, let
us contrast the parameter estimation problem with the state estimation problem of
the previous section. Consider a linear discrete-time stochastic dynamic system as
the one introduced in Eq. (3.1), i.e.

x(k) = Ax(k− 1) + Bu(k− 1) + wn(k− 1)
y(k) = Cx(k) + vn(k)

(3.45)

with the same notation for vectors and assumptions for noise sequences as in Eq. (3.1).
The parameter identification problem of the linear stochastic dynamic system Eq.
(3.45) consists in inferring, in some statistical sense, the parameters of the matrices
A, B and C based on measurements u(k) and y(k) over an observation interval k =
1, 2, . . . , N [128]. One way to do so is to estimate the parameters directly from the state
space model using an EKF, just as the one introduced in Section 3.1.2. The state vector
x(k) can be augmented to include any unknown parameter in the system matrices.
In contrast with this direct recursive estimation, this section explores the estimation
of parameters in the observation-space transfer function model (as defined in [128]
and explained below) obtained from model Eq. (3.45).

3.2.1 Least Squares Estimation

The least squares estimation was developed by Karl Friedrick Gauss in 1809 as a
statistical tool, although it was Legendre who coined the term in an earlier publication
of the theory in 1805 [128]. As Gauss stated, the least squares estimate has minimum
mean square error among all linear error-consistent estimates [128].

The first step towards identifying the parameters in the state space model Eq.
(3.45) is to transform it into the observation-space transfer function. This transfor-
mation can be achieved by first converting the model Eq. (3.45) into the innovations
model in order not to have two but only one noise term, i.e. wn(k) and vn(k) are
replaced by the innovation process ν(k)3. Then, by introducing the z−1 operator
and deriving the associated transfer function, the following observation equation is
obtained

y(k) = ẙ(k) + e(k) (3.46)

3The innovation process follows from Kalman filter theory and it is defined as ν(k) = y(k)−Cx̂−(k),
where x̂−(k) is the predicted state estimate.
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where e(k) is a white-noise sequence and ẙ(k) can be considered as a hypothetical
and unmeasurable noise-free output of the system given by

ẙ(k) =
B(z−1)

A(z−1)
u(k), (3.47)

with the polynomials A(z−1) and B(z−1) defined as

A(z−1) = 1 + a1z−1 + . . . + anz−n

B(z−1) = b0 + b1z−1 + . . . + bmz−m.
(3.48)

From Eqs. (3.47),(3.48), the deterministic output of the system is given by

ẙ(k) = b0u(k) + b1u(k− 1) + . . . + u(k−m)− a1ẙ(k− 1)− . . .− anẙ(k− n). (3.49)

By substituting the observation Eq. (3.46) into Eq. (3.49), the resulting equation
becomes explicit in the measured variables u(k) and y(k) as

y(k) = b0u(k) + b1u(k− 1) + . . . + u(k−m)
−a1y(k− 1)− . . .− any(k− n) + ξ(k), (3.50)

where
ξ(k) = e(k) + a1e(k− 1) + . . . + ane(k− n). (3.51)

The linear form of Eq. (3.50) is given by

y(k) = ϕ(k)θ + ξ(k) (3.52)

where
ϕ(k) = [u(k), . . . , u(k−m),−y(k− 1), . . . ,−y(k− n)]

θ = [b0, . . . , bm, a1, a2, . . . , an]
T (3.53)

and ξ(k) is a colored noise.

Algorithm

The least squares estimate θ̂LS of the parameter vector θ in the model Eq. (3.52) is
given by

θ̂LS =

(
N

∑
k=0

ϕ(k)T ϕ(k)

)−1( N

∑
k=0

ϕ(k)Ty(k)

)
(3.54)

Properties

In the above framework, the least squares estimates are biased and inconsistent in
the case of a noisy data set, which is commonly found in practice [128]. By using the
true system Eq. (3.52) and subtracting the true θ parameter value from the parameter
estimate θ̂LS, the following parameter difference θ̃LS is obtained [129]

θ̃LS =

(
1
N

N

∑
k=0

ϕ(k)Tϕ(k)

)−1(
1
N

N

∑
k=0

ϕ(k)Tξ(k)

)
, (3.55)
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which, after making N tend to infinity, becomes

θ̃LS =
[
Eϕ(k)T ϕ(k)

]−1 [
Eϕ(k)Tξ(k)

]
. (3.56)

Thus, the least squares estimate is biased unless

Eϕ(k)Tξ(k) = 0. (3.57)

The condition in Eq. (3.57) is very restrictive since ϕ(k) already depends on the
output y(k) and therefore on past values of ξ(k). Eq. (3.57) holds true if and only if
ξ(k) is white noise [129]. To overcome the pitfalls of the least squares method in
the parametric estimation of transfer functions from data corrupted by colored noise,
instrumental variable (IV) methods have been developed [128].

3.2.2 The Standard Instrumental Variable Estimation

Instrumental variable methods are general and simple to implement in contrast
to nonlinear estimation approaches such as the maximum likelihood method. IV
methods retain the simplicity of linear least squares estimation while providing
consistent, asymptotically unbiased and relatively efficient (low variance) parameter
estimates of the system model [128].

Let us consider the linear Eq. (3.52) and bring it here for convenience, i.e.

y(k) = ϕ(k)θ + ξ(k). (3.58)

The instrumental variable estimate θ̂IV of the parameter vector θ in the model Eq.
(3.58) is given by

θ̂IV =

(
N

∑
k=0

ζ(k)T ϕ(k)

)−1( N

∑
k=0

ζ(k)Ty(k)

)
(3.59)

where ζ(k) is the instrumental variable.
The main difficulty in the application of IV algorithms is the selection of the

instrumental variables. The IV vector must be chosen so that it should be as highly
correlated as possible with the equivalent variables in the noise free vector of ϕ(k),
i.e. ẙ(k) and u(k), and E

[
ζ(k)T ϕ(k)

]
is not singular (3.60a)

E
[
ζ(k)Tξ(k)

]
= 0. (3.60b)

IVs could be a second output measurement corrupted by noise that is statistically
independent of the output noise ξ(k), or a deterministic input u(k) that is obviously
correlated with the noise-free part of the output ẙ(k) and uncorrelated with the noise
ξ(k) (in the absence of feedback control). However, the first option might occur in
very specific cases whereas the second one requires to account for any time delay δt
in the model.

Trying to find the appropriate time delay δt that maximizes the correlation be-
tween ẙ(k) and u(k − δt) can be very hard, particularly because ẙ(k) is unknown.
Instead, an IV can be obtained by passing the input u(k) through a transfer function
so that the lag on the input caused by this filter is similar to that of the system. Such
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transfer function is called auxiliary model, and it is iteratively updated based on the
IV estimate at the previous iteration of the standard IV algorithm shown below.

Algorithm

The standard IV (SIV) algorithm that provides the estimate θ̂IV of the parameter
vector θ in the model Eq. (3.58) is given in Table 3.4.

TABLE 3.4: The standard instrumental variable algorithm†.

Initialization: given the data sequence YN={yN , yN−1, . . . , y0, uN , uN−1, . . . u0}
At iteration j = 0 compute

LS estimate : θ̂0 =

(
N

∑
k=0

ϕT
k ϕk

)−1( N

∑
k=0

ϕT
k Υk

)
where ϕk = [uk, uk−1, . . . , uk−m, −yk−1, . . . ,−y]
and Υk = yk

For iteration j = 1, 2, . . . compute

Auxiliary output : ẙk =
B(z−1, θ̂j)

A(z−1, θ̂j)
uk

Instrumental vector : ζk = [uk, uk−1, . . . , uk−m, −ẙk−1, . . . ,−ẙk−n]

Regressor vector : ϕk = [uk, uk−1, . . . , uk−m,−yk−1, . . . ,−yk−n]

IV estimate : θ̂j+1 =

(
N

∑
k=0

ζT
k ϕk

)−1( N

∑
k=0

ζT
k Υk

)
where Υk = yk

If convergence occurs according to e.g. ||θj+1−θj||
||θj|| < µ (for some user specified

threshold µ), or the maximum number of iterations is reached, then stop,
else set j = j + 1
†For compactness, the time argument is set as an index.

Properties

Once the SIV algorithm converges, the IV ζ(k) converges to the noise-free output
ẙ(k) and the IV estimates have good statistical properties. Among these properties,
the resulting parameter estimates are known to be asymptotically unbiased [128].

3.2.3 The Simplified Refined Instrumental Variable Estimation

Although the SIV of the previous section outperforms the least squares method
by providing an unbiased identification of transfer function models associated to
stochastic dynamical systems, it does so in a sub-optimal manner. In contrast, the
simplified refined instrumental variable for continuous-time systems (SRIVC) method
provides a statistically optimal solution, which is defined below. On the one hand, the
term refined arises from the operation of pre-filtering the data with an estimation of
the system model, which is iteratively updated with the IV parameter estimates. On
the other hand, the term simplified involves the assumption of additive white-noise.

Notice that the SRIVC method has been cited instead of the SRIV, the discrete-time
counterpart. Indeed, continuous-time identification is preferred since the world that
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we inhabit is set up in this time domain, and so do the most scientific laws derived to
describe it. Therefore, continuous-time identification inherently provides parameter
estimates with physical relevance. Moreover, the continuous-time parameters are
well defined and unique, in contrast to the discrete-time counterpart which depend on
sampling time. However, conversion from continuous to discrete is straightforward
if the latter parameter set is required [128]. The main challenge of continuous-time
identification is the presence of time-derivatives that cannot be measured or easily
obtained by differentiation due to data noise [128].

Consider the following linear continuous-time stochastic system

ẋ(t) = Ax(t) + Bu(t) + wn(t)
y(t) = Cx(t) + vn(t).

(3.61)

The SRIVC algorithm aims at identifying the parameters in the TF model derived
from the state-space model Eq. (3.61), which in turn implies the estimation of the
parameters in the differential equation model given by

ẙ(n)(t) + a1ẙ(n−1)(t) + . . . + anẙ(0)(t) = b0u(m)(t) + b1u(m−1)(t) + . . . + bmu(0)(t)
(3.62)

where the superscripts in parentheses denote the differentiation order. The differential
Eq. (3.62) can be written as the following transfer function

ẙ(t) =
B(s)
A(s)

u(t) (3.63)

where

A(s) = sn + a1sn−1 + . . . + an, B(s) = b0sm + b1sm−1 + . . . + bm

and s denotes the differential operator spx(t) = dpx(t)
dtp . The state matrices A, B in Eq.

(3.61) should not be confused with the functions A(s), B(s) in Eq. (3.62). Considering
data uniformly sampled according to the sampling time Ts, the measured output
y(tk), with tk = kTs, is assumed to be corrupted by an additive white-noise e(tk) as4

y(tk) = ẙ(tk) + e(tk). (3.64)

Notice that the notion of a continuous-time white noise process involves both
theoretical and practical problems, such as its associated infinite variance [128]. This
shortcoming is overcome by considering hybrid models where the additive noise is
taken in discrete-time, which is also coherent with sampled data. As stated in [128],
the estimation problem posed by the hybrid continuous-discrete time model Eqs.
(3.63),(3.64) is to estimate the parameters of the continuous-time TF Eq. (3.63) from
N sampled measurements of the input and output. A suitable error function ε(tk) for
estimating the parameters in the system model Eq. (3.64) is

ε(tk) = y(tk)−
B(s, θ̂j)

A(s, θ̂j)
u(tk) (3.65)

4For sampled signals, the adopted time variable notation is tk, not to be confused with the discrete-
time variable k.



42 Chapter 3. Prerequisite Material

By defining the pre-filter

f (s, θ̂j) ,
1

A(s, θ̂j)
(3.66)

and since the polynomial operators commute, Eq. (3.65) can be rewritten as

ε(tk) = A(s, θ̂j)yf(tk)− B(s, θ̂j)uf(tk) (3.67)

where the subscript f indicates that the associated variables have been pre-filtered by
f (s, θ̂j). Optimal stochastic estimation can be achieved by minimizing a least squares
criterion function in ε(tk). Expanding Eq. (3.67) results in

ε(tk) = y(n)f (tk) + a1y(n−1)
f (tk) + . . . + any(0)f (tk)

−b0u(m)
f (tk)− b1u(m−1)

f (tk)− . . .− bmu(0)
f (tk)

(3.68)

which can be expressed in the following pseudo-linear regression form

y(n)f (tk) = ϕ(tk)θ + ε(tk) (3.69)

where
ϕ(tk) =

[
u(m)

f (tk), . . . , u(0)
f (tk),−y(n−1)

f (tk), . . . ,−y(0)f (tk)
]

θ = [b0, . . . , bm, a1, . . . , an]
T .

(3.70)

The regression in Eq. (3.69) is equivalent to the one of Eq. (3.59) for the discrete-
time SIV. Therefore, an iterative procedure similar to that of the SIV can be obtained
for the SRIVC, which is shown next.

Algorithm

The SRIVC algorithm that provides the estimate θ̂SRIVC of the parameter vector θ
in the model Eq. (3.69) is given in Table 3.5.

Properties

The SRIVC parameter estimates θ̂SRIVC are statistically optimal in the sense that
they minimize the sum of the squares of the residuals associated with the IV normal
equation (

tN

∑
tk=0

ζ(tk)
T ϕ(tk)

)
θ −

(
tN

∑
tk=0

ζ(tk)
TΥ(tk)

)
= 0, (3.71)

i.e. they are obtained from the solution of the following optimization problem [128]

θ̂SRIVC = arg minθ

∥∥∥∥∥
(

tN

∑
tk=0

ζ(tk)
Tϕ(tk)

)
θ −

(
tN

∑
tk=0

ζ(tk)
TΥ(tk)

)∥∥∥∥∥
2

. (3.72)

The SRIVC method has been proven robust so that it can be applied in situations
where the noise process is not white [128].

Remark 3.2.1. Notice that parameter identification methods, such as the SRIVC method,
solve the problem of measurement error models caused by noise on the output variables but
not on the input variable. In the latter case, the transfer function parameter estimates are
biased. One way to tackle this problem is by resorting to errors-in-variables method, or more
complex estimation approaches such as maximum likelihood method.
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TABLE 3.5: The simplified refined instrumental variable method for
continuous-time systems algorithm, where s denotes the Laplace

variable†.

Initialization: given the data sequence YtN={ytN , ytN−1 , . . . , yt0 , utN , utN−1 , . . . ut0}
At iteration j = 0 compute

LS− SVF estimate : θ̂0 =

(
tN

∑
tk=0

ϕT
tk

ϕtk

)−1( tN

∑
tk=0

ϕT
tk

Υtk

)
with ϕtk =

1
(s +∇)n

[
smu, sm−1u, . . . , u, −sn−1y, . . . ,−y

]
t=tk

and Υtk =
sn

(s +∇)n y
∣∣∣∣
t=tk

For iteration j = 1, 2, . . . compute

Auxiliary output : ẙ(s) =
B(s, θ̂j)

A(s, θ̂j)
u(s)

Instrumental vector : ζtk =
1

A(s, θ̂j)

[
smu, sm−1u, . . . , u, −sn−1ẙ, . . . ,−ẙ

]
t=tk

Regressor vector : ϕtk =
1

A(s, θ̂j)

[
smu, sm−1u, . . . , u,−sn−1y, . . . ,−y

]
t=tk

IV estimate : θ̂j+1 =

(
tN

∑
tk=0

ζT
tk

ϕtk

)−1( tN

∑
tk=0

ζT
tk

Υtk

)

with Υtk =
sn

A(s, θ̂j)
y

∣∣∣∣∣
t=tk

If convergence occurs according to e.g. ||θj+1−θj||
||θj|| < µ (for some user specified

threshold µ), or the maximum number of iterations is reached, then stop,
else set j = j + 1
†For compactness, the time argument is set as an index.
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3.3 Fault Detection and Isolation

The parameter identification methods introduced in the previous Section 3.2
are intended to estimate model parameter changes in stochastic dynamical systems,
which can be seen as multiplicative faults. As opposed to these methods, the one
presented in this section aims at identifying additive faults for the same model setting
in the framework of fault diagnosis. A diagnosis system consists of two parts, namely
a residual generator and a decision system [130]. A residual generator is a filter
that exploits measured signals u(k) and y(k) as inputs to compute residuals ν(k).
Consider the following linear discrete-time stochastic system

x(k) = Ax(k− 1) + Bu(k− 1) + F1 f (k− 1) + wn(k− 1)
y(k− 1) = Cx(k− 1) + F2 f (k− 1) + vn(k− 1),

(3.73)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the input vector, y(k) ∈ Rp is the
output vector, f (k) ∈ Rn f is a vector of unknown input signals representing the faults
to be detected and wn(k) ∈ Rn and vn(k) ∈ Rp are process and measurement noise
sequences, respectively, with the classical noise assumptions as in Eqs. (3.1), (3.2).
The considered faults are additive since they enter linearly in the system as additional
input. Let ν(k) denote a residual given by

ν(k) = y(k)− ŷ(k), (3.74)

where ŷ(k) ∈ Rp is the output estimation given by a Kalman filter, and in this context
the residual ν(k) is also called the innovation sequence. Resorting to the Kalman
filter introduced in Table 3.1, and substituting Eqs. (3.6),(3.7) into (3.4), the following
residual generator is obtained

x̂(k) = A(I − K(k− 1)C)x̂(k− 1) + Bu(k− 1) + AK(k− 1)y(k− 1)
ν(k− 1) = y(k− 1)− Cx̂(k− 1)

(3.75)

where the filter gain and the estimation error covariance matrix are given by Eqs.
(3.19),(3.22) and (3.23) in Table 3.1. By defining the state estimation error as x̃(k) =
x(k)− x̂(k), the error system takes the form

x̃(k) = A(I−K(k−1)C)x̃(k−1)+(F1−AK(k−1)F2) f (k−1)+wn(k)−AK(k−1)vn(k−1)
ν(k−1) = Cx̃(k−1)+F2 f (k− 1)+vn(k−1).

(3.76)
By setting the noise sequences wn(k), vn(k) equal to zero, the residual can be

rewritten as
ν(k) = ν0(k) + ρ(k) (3.77)

where ν0(k) and ρ(k) are respectively generated by

x̃0(k) = A(I − K(k− 1)C)x̃0(k− 1)
ν0(k− 1) = Cx̃0(k− 1)

(3.78)

and

x̃ρ(k) = A(I − K(k− 1)C)x̃ρ(k− 1) + (F1 − AK(k− 1)F2) f (k− 1)
ρ(k− 1) = Cx̃ρ(k− 1) + F2 f (k− 1),

(3.79)

with x̃0(0) = x(0)− x̂(0) and x̃ρ(0) = 0. In steady state and without faults, ν(k) =
ν0(k) and the associated probability law is given by the distribution of the innovation
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sequence of the Kalman filter, i.e.

L(ν(k)) = N (0, CP(k)CT + R). (3.80)

For its part, in the presence of a fault of the form f(k) = f̄1k≥k0 , ν(k) = ν0(k) +
ρ(k, k0)f̄ where ρ(k, k0) is the step response of the system Eq. (3.79), and the associated
probability law is given by

L(ν(k)) = N (ρ(k, k0)f̄, CP(k)CT + R). (3.81)

As it can be seen from Eqs. (3.80) and (3.81), the residuals exhibit a change in
the mean upon fault occurrence although the variance does not change. Therefore,
residuals coming from e.g. a Kalman filter can be exploited to detect and isolate
sensor faults.

In order to detect a change in the residual mean despite the effect of measurement
noise on the residual, a generalized likelihood ratio (GLR) algorithm can be used
[130]. This algorithm estimates a posteriori the most likely change in the residual mean
and the most likely fault occurrence time. Given a sequence of nν-dimensional inde-
pendent samples ν(1), . . . , ν(k), the GLR algorithm solves the following hypothesis
testing problem:

H0 : L(ν(i)) = Pθ0 i = 1, . . . , k
H1 : from time instant 1 up to an unknown time instant k0, ν(i), i = 1, . . . , j− 1 is

distributed as:
L(ν(i)) = Pθ0

while for time instants i ≥ j
L(ν(i)) = Pθ1

(3.82)

with H0 and H1 representing the fault-free and faulty scenarios, respectively, with
probability law Pθ0 and Pθ1 (and associated probability density function pθ0(ν(k)) and
pθ1(ν(k))), θ1 = θ0 + ηµ where µ is a known change direction and η is an unknown
scalar change magnitude and j is the time instant at which a given fault takes place.

In order to discern between both hypotheses in Eq. (3.82), a statistical test is
carried out that consists of the following decisions:

if gGLR(k) ≤ h̄ accept H0
if gGLR(k) > h̄ accept H1

(3.83)

where h̄ is a user defined test threshold and gGLR(k) is the GLR decision function
taking the form

gGLR(k) = max. sup. S k
j (η).k-M+1≤j≤k η (3.84)

Let us break down the different pieces forming the decision function Eq. (3.84).
First, the term S k

j (η) is the cumulative sum of the log-likelihood ratio between faulty
and fault-free mode given by

S k
j (η) =

k

∑
i=j

ln
pθ1(ν(i))
pθ0(ν(i))

. (3.85)

Secondly, Eq. (3.84) is a double maximization problem over a moving window of
fixed size M. By restricting the fault occurrence time to the last M time instants, the
search duration for finding the optimum does not keep growing with time. Finally,
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for a given time instant k, S k
j (η) is a function of both the change time j and the change

magnitude η, both unknown. To tackle this issue, the standard statistical approach of
replacing j and η by their maximum likelihood estimates is used, which gives rise to
the double maximization problem of Eq. (3.84).
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3.4 Constrained Control

Besides battery supervision, our aim is also to achieve fast charging. This prob-
lem can be stated as a constrained control problem. A way to solve it is to resort
to a reference governor (RG). A RG [115] is an add-on scheme that exploits state
feedback, prediction, optimization and set-invariance arguments to suitably modify
the reference of a pre-stabilized (closed-loop) system in order to cope with con-
straints. Continuous-time RGs were the first ones to appear in the literature [131].
Even though model predictive control (MPC) is the most widely used approach to
optimally control systems with constraints, RGs turn out to be a very appealing
alternative when a nominal controller exists and should not be modified. That is
the case of a well-designed controller that provides the desired e.g. performance,
stability, robustness and/or computational effort [115]. The latter aspect is the key
concern when designing a BMS, since the energy required to carry out computations
for estimation/control is energy drawn from the battery. Therefore, the higher the
computational burden, the lower the battery energy efficiency.

The first step towards output tracking through RG techniques is to pre-stabilize
the plant. To this end, we can design a feedback controller. Let us consider a discrete-
time linear system of the form

x(k + 1) = Adx(k) + Bdu(k)
y(k) = Cdx(k) (3.86)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the input vector, y(k) ∈ Rp

is the output vector, and Ad ∈ Rn×n, Bd ∈ Rn×1 and Cd ∈ R1×n are the state,
input and output matrices, respectively. A control law that makes system Eq. (3.86)
asymptotically stable can be designed in different ways [132]. Let us consider a
simple linear quadratic regulator (LQR), with trajectory tracking for the reference
and integral action to eliminate the steady state error. To account for the integral
feedback, the controller state x(k) has to be augmented with an integral state xi(k)
that integrates the error between the applied reference v(k) and the output of the
plant y(k), i.e.

xcl(k + 1) = Aexcl(k) + Bu,eu(k) + Bv,ev(k)
ycl(k) = Cexcl(k)

(3.87)

where xcl(k) = [x(k), xi(k)]T and ycl(k) are the closed-loop state and output vectors,
respectively, and

Ae =

[
Ad 0
−BiCd Ai

]
, Bu,e =

[
Bd
0

]
, Bv,e =

[
0
Bi

]
, Ce =

[
Cd
0

]T

(3.88)

are the state, input, applied reference and output matrices, respectively, with Ai = 1
and Bi = 1.

The optimal state feedback law can be obtained by solving the following opti-
mization problem [133]

min
u

. J =
1
2

∞

∑
k=0

xcl(k)TQcxcl(k) + u(k)TRcu(k)

s.t. Eqs. (3.87), (3.88)
(3.89)
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where Qc ≥ 0 and Rc > 0, whose closed form solution is given by

u(k) = −Kcxcl(k). (3.90)

If the pair (Ae, Bu,e) is stabilizable and the pair (Ae, Ce) is detectable (with Qc =
CT

e Ce), then the steady-state feedback gain takes the form

Kc = (BT
u,ePcBu,e + Rc)

−1BT
u,ePc Ae = [Kx Ki], (3.91)

where Pc is the unique positive definite solution to the algebraic Riccati equation

Pc = AT
e Pc Ae − AT

e PcBu,e(BT
u,ePcBu,e + Rc)

−1BT
u,ePc Ae + Qc. (3.92)

Substituting Eq. (3.90) into Eqs. (3.87),(3.88) results in the closed-loop system
given by

xcl(k + 1) = Aclxcl(k) + Bclv(k) (3.93)

where

Acl =

[
Ad−BdKx −BdKi
−BiCd Ai

]
, Bcl =

[
0
Bi

]
. (3.94)

The closed-loop system Eqs. (3.93),(3.94) is asymptotically stable, i.e. the matrix
Acl is Schur. The weighting matrices Qc and Rc are chosen in order to get an ag-
gressive control regardless potential constraint violations. The capabilities to handle
constraints are in turn provided by the RG scheme.

The most used RG for discrete-time linear systems of the form Eqs. (3.93),(3.94)
was presented in [134]. The RG is able to manage nc linear constraints associated to
the closed-loop state of the system such as

Sxcl(k) ≤ s (3.95)

where S ∈ Rnc×n and s ∈ Rnc .
The goal of all RG schemes is to compute, at each time instant and on the basis of

the current state xcl(k), an applied reference v(k) approximating the desired reference
r(k) so that, if v(k) is constantly applied from now to infinity, the constraints will
always be satisfied [115]. In other words, on the basis of the currently available state
xcl(k), the applied reference v(k) ensures

Sx̂cl(`|xcl(k), v(k)) ≤ s, ` = 0, ..., ∞, (3.96)

where the ` step ahead prediction x̂cl(`|xcl , v) starting from the initial state xcl and
with constant applied reference v is defined as

x̂cl(`|xcl , v) = A`
clxcl + (I − Acl)

−1(I − A`
cl)Bclv. (3.97)

The set of all the initial states xcl and applied references v for which Eq. (3.96) is
satisfied is denoted as the maximal output admissible set O∞ [135]. The computation
of O∞ is often avoided due to computational reasons. Instead, a slightly tightened
version of O∞, denoted as Õ∞, is usually used. To obtain Õ∞, the applied reference v
is constrained in such a way that the steady state x̄cl,v = (I − Acl)

−1Bclv satisfies the
constraints with an arbitrarily small margin ε > 0 [115]. Moreover, if the constraints
Eq. (3.95) define a compact set, then the set Õ∞ is finitely-computable, which means



3.4. Constrained Control 49

that there exists a finite integer `∗ such that

Õ∞ ={(xcl , v) |Hxxcl + Hvv ≤ h} (3.98)

where

Hx ,



SA0

SA1

SA2

...
SA`∗

0


, Hv ,



S(I − Acl)
−1(I − A0

cl)Bcl
S(I − Acl)

−1(I − A1
cl)Bcl

S(I − Acl)
−1(I − A2

cl)Bcl
...

S(I − Acl)
−1(I − A`∗

cl )Bcl
S(I − Acl)

−1Bcl


, h ,



s
s
s
...
s

s(1− ε)


. (3.99)

All the matrices and the vectors defined above have the same number of rows
Nc , nc · (`∗ + 2). Note that Õ∞ can be made arbitrarily close to O∞ by reducing ε.

Remark 3.4.1. Notice that the form of Õ∞ in Eq. (3.98) defines a set of linear inequalities.
There are several ways to compute a minimal set Õ∞ [134, 115]. One way to do it is to draw
the constraints Eqs. (3.98),(3.99) for a given time horizon ` and check if there are redundant
constraints. If not, ` = `+ 1 and the verification is carried out again. This process continues
until constraint redundancy is found, instant in which ` = `∗.

In the Scalar Reference Governor [136], a scalar κ(k) ∈ [0, 1] indicates how much
a previously applied reference v(k− 1) can move towards r(k) while ensuring that
(xcl(k), v(k)) ∈ Õ∞. The scalar κ(k) is an adjustable bandwidth parameter that can be
computed through the following optimization problem

κ(k) = max
κ∈[0,1]

. κ (3.100)

s.t. Hxxcl(k) + Hv(v(k− 1) + κ(r(k)− v(k− 1))) ≤ h (3.101)

and the command to be applied to the system is given by

v(k) = v(k− 1) + κ(k)(r(k)− v(k− 1)). (3.102)

This scheme ensures recursive feasibility under the assumption that at time zero
(xcl(0), v(0)) ∈ Õ∞, and for a constant reference r(k) = r, it also guarantees finite
time convergence of v(k) to the best steady-state feasible approximation of r along
the line segment connecting v(0) and r [134].

The optimization problem Eqs. (3.100)-(3.101) can be computed very efficiently
by inspecting one by one the lines of Eq. (3.101) [115]. By denoting as HT

x,i, HT
v,i, hi the

i-th line of Hx, Hv, and h, respectively, the i-th constraint can be written as

κ
(

HT
v,i(r(k)− v(k− 1))

)
≤ hi − HT

x,ixcl(k)− HT
v,iv(k− 1), (3.103)

where κ is the only unknown. Thanks to recursive feasibility, v(k − 1) is always
admissible and therefore the right-hand side of Eq. (3.103) is always positive. Only
two cases are then possible:

• If
(

HT
v,i(r(k)− v(k− 1))

)
> 0, any positive κ such that

κ ≤ κ∗i ,
hi − HT

x,ixcl(k)− HT
v,iv(k− 1)

HT
v,i(r(k)− v(k− 1))
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is a feasible solution.

• If
(

HT
v,i(r(k)− v(k− 1))

)
≤ 0, any positive κ ∈ [0, 1] is a feasible solution.

Accordingly, for this i-th constraint we can define κ∗i , 1.

The optimal solution of Eqs. (3.100)-(3.101) is thus given by

κ(k) = min
{

min
i=1,...,Nc

(κ∗i , 1)
}

. (3.104)
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Chapter 4

Battery Modeling

As stated in Section 2.3, battery models are developed with a double objective in
mind, namely to become a battery simulator or to get a supervisory control system
out of it. Dynamic models for both battery regular operation and battery degradation
are derived. The degradation modeling is exemplified with a limited number of
aging phenomena and it is exploited later for SOH monitoring and sensor diagnosis
in Chapter 5. Only unavoidable aging mechanisms are represented in simulation,
whereas others will be avoided by proper control in Chapters 6 and 7. Global
validation through experiments is also provided. The electrochemical models used
for the aforementioned different tasks are subsequently described in this chapter,
which is structured as follows. Section 4.1 introduces the battery cell simulator based
on the DFN model, whereas Section 4.2 derives a reduced-order electrochemical
model for battery monitoring and control.

4.1 Battery Cell Simulator

Unless otherwise stated, the DFN model of Table 2.1 is the benchmark used
as a virtual battery cell to test the different state estimation and control strategies
developed in this work. The DFN model has been extended to include the thermal
dynamics of Table 2.2 and aging dynamics of Table 2.3. However, some functions of
the aging model have been neglected in order to avoid long simulations and some
others have been modified to exhibit accelerated aging.

The only side reaction that has been considered here is the SEI growth, which
translates in jsr = jSEI in Eq. (2.21). Although the lithium plating mechanism is not
explicitly modeled here, its associated electrochemical constraints are accounted for
in the control law developed in Section 6.1 below. In this way, the degrading effect of
this mechanism in battery life is alleviated. Diffusion limitations of the solvent are
assumed to be negligible, and therefore Eq. (2.24) is not considered. The impedance
increase Eq. (2.27) is modified so that the time instant τR,0 triggers its degrading
influence. This strategy allows to consider accelerated aging starting from a given
time instant, which reduces simulation time without compromising the validity of
the developed estimator/controller. Thus, power fade is given by1

dR f

dt
(t) =

{
0 if t < τR,0

− Mp
κpρp

jsr(t) if t ≥ τR,0
(4.1)

1Continuous-time with time variable t and the time derivative as dχ
dt (·, t) is adopted in this section

for the DFN model modifications.
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where R f (0) = R f ,0 is a standard film resistance from a brand new battery electrode
(R f ,0 ≈ 0 Ω.m2) and τR,0 is the time instant at which resistance degradation starts to
occur.

Finally, the diffusion coefficient Ds is also considered to be time-varying due to
aging caused by electrode phase changes. The functional form Eq. (2.30) has been
adapted here, resulting in the following expression:

Ds,ref(t) =

{
Ds,0 if t < τD,0

Ds,0 k1 exp
(

k2
k3(t−τD,0)+1

)
if t ≥ τD,0

(4.2)

where Ds,0 is a standard diffusion coefficient from a brand new battery electrode,
ki, i = 1, 2, 3 are constants, and τD,0 is the time instant at which diffusion degradation
starts to take place.

Then, the aging model considered here consists of Eqs. (2.21)-(2.23), (2.25)-(2.27)
in Table 2.3 for sr = SEI, along with Eqs. (4.1),(4.2).

Remark 4.1.1. Although the DFN model with thermal dynamics is a mature modeling
framework for lithium-ion batteries, the field of aging modeling covers a wide spectrum of
model derivations ranging from electrochemical principles to empirical functions. Such a
plethora of models is due to the complexity and intertwined degradation mechanisms that
occur within a battery cell. That is why we need to clarify our aging framework. Here we have
chosen popular and at the same time diverse aging mechanisms that we consider particularly
relevant.

4.2 Modeling for State Estimation & Control

The DFN model with thermal and aging dynamics described in Section 4.1
consists of a coupled set of algebraic nonlinear partial-differential equations (PDEs).
Although accurate for simulation, this complex model structure prevents its use in
on-line scenarios of estimation/control. Therefore model reduction is required.

Different reduced-order models have been proposed in the literature, as referred
in Section 2.3. However, most of those models are based on equivalent-circuit models,
neglect relevant battery dynamics or loose in some degree the physical meaning they
are intended to keep. In this scenario, we opted for deriving a reduced model that
does not suffer from the last pitfalls, which exploits some existent reduced-order
modeling efforts, together with the simplification of the DFN model. The way we
perform model reduction is addressed in the following sections. More specifically,
only one electrode is considered first for the exposition of the solid-phase diffusion
equation, since the counter electrode corresponding equation is exactly the same
but with a flip in the current sign. Then, the number of independent variables of
the solid-phase diffusion equation is squeezed from (x, r, t) to (r, t) by focusing on a
single spherical particle. The number of the remaining independent variables for both
the solid and electrolyte-phase diffusion PDEs are further squeezed from ({r, x}, t)
to (t) by evaluating them at especially relevant boundary conditions. This procedure
results in transcendental transfer functions that are later truncated through a Padé
approximation. The obtained approximated transfer function is transformed into a
state-space model based on an hydraulic equivalence. The material balance property
of physical systems is then exploited to discard one of the electrodes in the battery
cell model. Finally, the simplification of the thermal model, the output equation, the
algebraic constraint arising from the aging dynamics and electrochemical constraints
associated to degradation are discussed successively.
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4.2.1 Diffusion Equations & Material Balance

Lithium-ions diffusion is one of the most relevant processes taking place inside a
battery cell in both solid and electrolyte phases, while lithium has to be conserved ac-
cording to the principle of mass conservation. These notions and associated equations
are explored in the next subsections in order to derive a reduced-order electrochemical
model for the lithium-ion diffusion process.

Solid-Phase Diffusion Equation

One common simplification of the DFN model is to neglect the x-spatial depen-
dency of the state variables and to consider the entire electrode as a single spherical
particle (i.e. the single-particle model, SPM). The scaling between both models relies
on the equivalence between the surface area of the spherical particle and the active
area of the porous electrode. The diffusion Eq. (2.6) resulting from Fick’s law can
be simplified by considering that the solid-phase diffusion coefficient is spatially
constant and by using the change of variables c̄s(r, t) = rcs(r, t) [77], where cs(r, t) is
the solid-phase concentration. The following diffusion equation with Dirichlet and
Robin boundary conditions is then obtained2

∂c̄s

∂t
(r, t) = Ds

∂2c̄s

∂r2 (r, t)

c̄s(r, t)|r=0 = 0

Rs
∂c̄s

∂r
(r, t)− c̄s(r, t)

∣∣∣∣
r=Rs

=
R2

s
Ds

jn(t)

(4.3)

where r ∈ [0, Rs], t ≥ 0, and Ds and Rs are the diffusion coefficient and the particle
radius, respectively. Assuming that the reaction rate is uniform along the x-axis,
the pore-wall molar flux jn(t) is a function dependent on the current applied to the
battery I(t) given by

jn(t) ≈
1

FasL
I(t) (4.4)

where F is Faraday’s constant, L is the thickness of the electrode region and as is the
specific interfacial area of each electrode. Taking the Laplace transform of Eq. (4.3)
with respect to the time variable, solving the resulting ODE and setting r = Rs (i.e.
the spherical particle surface) yields the following solid-phase diffusion impedance
equation [137]

Css(s)
I(s)

=
1

FasLcs,max

Rs sinh(α)
Ds(α cosh(α)− sinh(α))

(4.5)

with α = Rs

√
s

Ds
. Css(s) and I(s) denote the Laplace transforms of css(t) and I(t)

respectively, where css(t) = cs(r, t)|r=Rs is the solid surface concentration and s is the
Laplace variable.

Remark 4.2.1. The system in Eq. (4.5) has a non integer order, i.e. irrational transfer func-
tion, with an infinite number of zeros −(kπ

√
DsR−1

s )2, k ∈N and poles −(αk
√

DsR−1
s )2,

where αk is the k-th root of tanh α = α.
2The remainder of this section adopts continuous-time with time variable t and the time derivative

of χ denoted as χ̇, while the discrete-time variable is denoted as k in difference equations.
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Electrolyte-Phase Diffusion Equation

Looking now at the electrolyte phase, the diffusion Eq. (2.9) can be simplified
by considering a spatially constant electrolyte-phase diffusion coefficient. This is
a strong assumption, since this coefficient does vary nonlinearly with electrolyte
concentration as shown in Table 2.1. However, the resulting nonlinear PDE is too
complex to obtain an analytical solution out of it, which is required to derive a transfer
function. Similarly as for the solid-phase PDE, there might be a state transformation
that renders a linear electrolyte-phase PDE, but we could not find one. Therefore, the
constant parameter approximation is adopted here [21, 138, 139], which results in the
following PDEs

TABLE 4.1: Electrolyte-phase diffusion partial differential equations.

In-domain Equations Boundary Conditions

Negative
electrode

∂c−e
∂t

=
D−e,eff

ε−e

∂2c−e
∂x2 +

a−s (1− t0
c)

ε−e
j−n ,


∂c−e
∂x

∣∣∣∣
x=0
=

∂c+e
∂x

∣∣∣∣
x=L
= 0

D−e,eff
∂c−e
∂x

∣∣∣∣
x=L−

=Ds
e
∂cs

e
∂x

∣∣∣∣
x=L−

c−e
∣∣

x=L−= cs
e|x=L−

Ds
e
∂cs

e
∂x

∣∣∣∣
x=L−s

=D+
e,eff

∂c+e
∂x

∣∣∣∣
x=L−s

cs
e|x=L−s= c+e

∣∣
x=L−s

Separator
∂cs

e
∂t

=
Ds

e
εs

e

∂2cs
e

∂x2 ,

Positive
electrode

∂c+e
∂t

=
D+

e,eff

ε+e

∂2c+e
∂x2 +

a+s (1− t0
c)

ε+e
j+n

where the spatio-temporal dependence (x, t) is not shown here for the sake of com-
pactness, and x ∈ [0, L] and t ≥ 0. De,eff is an effective coefficient that is a function of
the electrolyte-phase diffusion coefficient De, and t0

c is the transference number. No-
tice that the in-domain equations and boundary conditions for each electrode domain
are spanned in Table 4.1, while a general in-domain equation with terminal boundary
conditions at x = 0 and x = L are shown in Eq. (2.9) due to space limitations.

The approach proposed in [139] is leveraged here to analytically solve the elec-
trolyte diffusion PDE of Table 4.1. The same uniform reaction rate assumption as
in Eq. (4.4) for the pore-wall molar flux is used. Taking the Laplace transform of
the negative electrode PDE in Table 4.1 with respect to the time variable, solving
the resulting ODE and setting x = 0 (i.e. the current collector/negative electrode
interface) yields the following electrolyte-phase impedance equation

Ce(s)
I(s)

=
Nc(s)
Dc(s)

(4.6)

where
Nc(s) = −b+αsε−e Ds

e sinh(β+L+)
+b− (−αsε+e Ds

e cosh(βsLs) sinh(β+L+)
−α+εs

eDs
e cosh(β+L+) sinh(βsLs)

+α−ε+e D−e sinh(β−L−) sinh(β+L+) sinh(βsLs)
+αsε+e Ds

e cosh(β−L−) cosh(βsLs) sinh(β+L+)
+α+εs

eDs
e cosh(β−L−) cosh(β+L+) sinh(βsLs)

+α−α+αsD−e Ds
e cosh(β+L+) cosh(βsLs) sinh(β−L−))

(4.7)

Dc(s) = ε−e s (α−ε+e D−e sinh(β−L−) sinh(β+L+) sinh(βsLs)
+α+εs

eDs
e cosh(β−L−) cosh(β+L+) sinh(βsLs)

+αsε+e Ds
e cosh(β−L−) cosh(βsLs) sinh(β+L+)

+α−α+αsD−e Ds
e cosh(β+L+) cosh(βsLs) sinh(β−L−))

(4.8)
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with β±s =
√

ε±s
e s

D±s
e

, α±s =
√

ε±s
e

D±s
e

and b± = ∓ 1−t0
c

FL±A . Ce(s) and I(s) denote the Laplace
transforms of ce(t) and I(t) respectively, where ce(t) = ce(x, t)|x=0 and s is the Laplace
variable. The computation of the transfer function Eq. (4.6) following the line of [139]
is exemplified in Appendix D.

Model-Order Reduction

The Padé expansion approximates functions as the quotient of two polynomials.
Given the first m + n + 1 terms of the Taylor series expansion T(s) of a function C(s)

I(s) ,
two polynomials, one P(s) of order m and one Q(s) of order n can be obtained, such
that P(s)

Q(s) is the Padé approximation of order [m/n]. In contrast to the standard Padé
approximation, here we first have to multiply by s, then compute the approximation
and finally divide by s. This procedure is required because the expansion is about
zero, where the functions C(s)

I(s) are undefined [48]. Given that

sT(s)− s
P(s)
Q(s)

= 0

where P(s) = p0 + p1s + p2s2 + . . . + pmsm and Q(s) = 1 + q1s + q2s2 + . . . + qnsn,
the polynomial coefficients are calculated by exploiting the Taylor’s coefficients
ai, i = 0, 1, . . . , m + n, such that

a0 = p0
a1 + a0q1 = p1
a2 + a1q1 + a0q2 = p2
...
am + am−1q1 + . . . + a0qm = pm
am+1 + amq1 + am−1q2 + . . . + am−n+1qm = 0
...
am+n + am+n−1q1 + . . . + anqm = 0.

(4.9)

The resulting transfer function GPade(s) corresponds to

GPade(s) = p0
P′(s)
Q(s)

=
p0

s
1 + p′1s + p′2s2 + . . . + p′msm

1 + q1s + q2s2 + . . . + qnsn (4.10)

where p0 was taken as a common factor and thus P′(s) = P(s)/p0. To be able to
design a Kalman filter, which will be needed subsequently in Sections 5.1 and 5.3,
a state-space representation is required. One way to go is to take the controllable
canonical form of the transfer function GPade(s) [48]. However, the state vector lacks
physical meaning in such a representation, and therefore a linear transformation
is required to recover the physics of the problem. One option to enforce a physics-
based state vector is to resort to a different parameterization. Here, we opted for the
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following n-tanks equivalent-hydraulic model (EHM)3


β1q̇1
β2q̇2
β3q̇3

...
βnq̇n

=


−g12 g12 0 · · · 0 0
g12 −(g12 + g23) g23 0 · · · 0
0 g23 −(g23 + g34) g34 · · · 0
...
0 · · · 0 gn−2,n−1−(gn−2,n−1 + gn−1,n) gn−1,n
0 0 · · · 0 gn−1,n −gn−1,n




q1
q2
q3
...

qn


+[0 0 0 · · · 0 ζ0]Tu

(4.11)
which is depicted in Fig. 4.1.

FIGURE 4.1: Equivalent-hydraulic model consisting of n tanks, where
u, qi, gi,i+1 and βi, i = 1, . . . , n, are respectively the input current, tank
level state, valve coefficient and tank cross-section area for a given

number of tanks n.

The physical equivalence between batteries and tanks builds on the idea that
the transportation phenomena taking place within an electrode spherical particle
(see e.g. Fig. 4.2 below) or throughout the electrolyte solution can be represented
as the mass flow among tanks with levels qi, tank cross-section areas βi and valve
coefficients gi,i+1 with i = 1, . . . , n. The tank levels may be translated into relevant
electrochemical states, such as the total lithium concentration state cbulk = ∑n

i=1 βiqi
and the concentration state just adjacent to a lithium source (input) csurf = qn. The
remaining tanks can be associated to successive layer concentrations within the bulk
of the phases, e.g. ci = qi, i = 2, . . . , n− 1. Considering this change of variables, the
new state vector is given by

x(t) = [cbulk(t), c2(t), . . . , cn−1(t), csurf(t)]T, (4.12)

3For compactness of notation the time argument (t) in q(t) and u(t) is dropped in the EHM state-
space representation.
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with the state-space model taking the form


ċbulk

ċ2
ċ3
...

ċsurf

=



0 0 0 · · · 0 0
g12

β1β2
−
(

g12
β1

+ g12+g23
β2

)
g23
β2
− g12β3

β1β2
− g12β4

β1β2
· · · − g12βn

β1β2

0 g23
β3

− (g23+g34)
β3

g34
β3

· · · 0
...
0 · · · 0 gn−2,n−1

βn−1
− gn−2,n−1+gn−1,n

βn−1

gn−1,n
βn−1

0 0 · · · 0 gn−1,n
βn

− gn−1,n
βn




cbulk

c2
c3
...

csurf


(4.13)

+ [ζ0 0 0 · · · 0 ζ0/βn]
Tu

y = [0 0 · · · 1] [cbulk, c2, c3, · · · , csurf]
T . (4.14)

FIGURE 4.2: Equivalent-hydraulic model representing the spherical
particle with n sections, where u and gi,i+1 represent the input current

and valve coefficient, respectively.

It can be transformed into the transfer function GEHM(s) through

GEHM(s) = C0(sI − A0)
−1B0 =

Π(s)
Σ(s)

= ζ0
π0 + π1s + π2s2 + · · ·+ πmsm

s (σ0 + σ1s + σ2s2 + · · ·+ σnsn)
,

where A0 ∈ Rn×n, B0 ∈ Rn×1 and C0 ∈ R1×n are the state, input and output matrices,
respectively. It turns out that π0 = σ0, and therefore GEHM(s) can be rewritten:

G′EHM(s) =
Π′(s)
Σ′(s)

= ζ0
1 + π′1s + π′2s2 + · · ·+ π′msm

s
(
1 + σ′1s + σ′2s2 + · · ·+ σ′nsn

) (4.15)

where Π′(s) = Π(s)/π0 and Σ′(s) = Σ(s)/π0. To obtain the EHM parameters,
namely βi, gi,i+1 with i = 1, . . . , n and ζ0, it is just a matter of equating the coefficients
of GPade(s) with the ones of G′EHM(s) and solving the following system of equations

p0 = ζ0
p′1 = π′1, q′1 = σ′1

...
...

p′m = π′m, q′m = σ′m.

(4.16)

After completing this procedure, it was found that the EHM parameter gi,i+1
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relates to the lithium diffusion parameters through gi,i+1 = γi
Ds
R2

s
for the solid and

gi,i+1 = δiDe for the electrolyte-phase diffusion, where γi, δi and βi are constants that
depend on the system order.

The state-space representation of the EHM then takes the general form

ẋj(t) = Ajxj(t) + Bju(t) (4.17)

where j ∈ {s, e} for solid and electrolyte phases, respectively. The solid-phase
diffusion state vector xs(t) ∈ Rns is defined as

xs(t) = [SOC(t), cs,2(t), . . . , cs,n−1(t), CSC(t)]T ,

where cbulk(t) and csurf(t) of Eq. (4.12) were substituted by the state-of-charge
SOC(t) = cbulk(t) and the critical-surface-concentration CSC(t) = csurf(t)/cs,max,
since these state variables are particularly relevant for a battery cell. The SOC reflects
the amount of battery energy that is available at a given time instant, while the CSC
directly impacts the battery voltage and therefore provides a measure of the battery
power.

Remark 4.2.2. Notice that the solid-phase diffusion variables c̄s(x, t) and css(x, t) for the
average and surface lithium concentration, respectively, of the DFN model in Eq. (2.7)
map into the current reduced-order model framework for solid-phase diffusion as SOC(t) =
c̄s(t)/cs,max and CSC(t) = css(t)/cs,max without the x-spatial dependence as in the SPM.
This relationship between both models comes handy when translating constraints, as it
becomes apparent below.

The electrolyte-phase diffusion state vector xe(t) ∈ Rne is defined as

xe(t) = [ceb(t), ce,2(t), . . . , ce,n−1(t), ces(t)]
T ,

where cbulk(t) and csurf(t) of Eq. (4.12) were replaced by ceb(t) and ces(t) for notational
compactness, with each of them having a similar interpretation as SOC and CSC for
the electrolyte phase, respectively. The input is the current applied to the battery
u(t) = I(t).

The state and input matrices, Aj and Bj respectively, are shown in Table 4.2 for
different system orders. Increasing the model dimension (i.e. the order of the Padé
approximation and the number of tanks) increases the model accuracy towards higher
frequencies, which is evidenced in Fig. 4.3.

TABLE 4.2: State Aj and input Bj matrices for the diffusion equation
of different orders, where j ∈ {s, e} for solid and electrolyte phases,

respectively.

Order State Matrix Aj Input Matrix Bj

1st 0 ζ0 (4.18)

2nd
[

0 0
g γ

β1β2
−g γ

β1β2

]
ζ0

[
1
1
β2

]
(4.19)

3rd

 0 0 0
g γ1

β1β2
−g
(

γ1
β1

+ γ1+γ2
β2

)
g
(

γ2
β2
− β3γ1

β1β2

)
0 g γ2

β3
−g γ2

β3

 ζ0

 1
0
1
β3

 (4.20)
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FIGURE 4.3: Bode plots of the irrational transfer function Eq. (4.5) in
black, and from the 2nd to the 3rd-order Padé approximations of Eq.

(4.17) and Table 4.2 in red, green and blue respectively.

Material Balance

Although the state estimation and control of the solid-phase lithium concentration
in each electrode domain independently would be ideal to track electrode aging
and handle it properly, this cannot be achieved with currently available sensors.
It turns out that the entire state vector comprising positive and negative electrode
concentrations is weakly observable from voltage measurements [44]. One way to
tackle this issue is to simplify further the model by considering a single electrode
while accounting for the counter electrode through material conservation [77]. The
electrode with the limiting diffusion process (i.e. the one with slower dynamics),
which is usually the negative electrode, is the one that is chosen. Moreover, the
most popular negative electrodes are graphite-based, which are known to limit long
term battery performance due to aging. This aspect further motivates its careful
monitoring and control. Finally, given the fast dynamics of the positive electrode
with respect to the negative, the solid-phase diffusion process taking place in the
former can be seen as instantaneous. Therefore, the resulting approximation of the
positive electrode dynamics is given by the following conditions

CSC+(t) = SOC+(t)
SOC+(t) = ρsSOC(t) + σs.

(4.21)

In line with the reference electrode for solid-phase diffusion, the negative electrode
is also chosen to evaluate the electrolyte diffusion model. More specifically, the current
collector/electrode boundary x = 0 is the selected location, since it corresponds
to one of the voltage terminals. Similarly as with the solid-phase, the electrolyte
concentration at the positive battery terminal is also obtained from material balance.
However, the instantaneous diffusion assumption for the solid-phase concentration
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does not hold for the electrolyte. Therefore, a direct link is drawn between the
electrolyte surface concentrations of both electrode domains through material balance
as:

c+es(t) = ρeces(t) + σe. (4.22)

In both Eqs. (4.21) and (4.22), the states of the positive electrode are denoted by
SOC+(t), CSC+(t) and c+es(t), whereas SOC(t), CSC(t) and ces(t) are the states of the
negative one obtained by dropping the superscript "−" for notational convenience.
Parameters ρj and σj, with j ∈ {s, e} for respectively solid and electrolyte phases, are
constants given in Table 4.3, Eqs. (4.23),(4.24).

TABLE 4.3: Functions associated to the material balance and output
equations.

Var Function Eq. Eq. involved

ρs, σs ρs = −
c−s,maxR−s L−a−s
c+s,maxR+

s L+a+s
, σs =

3nLi
s,0

c+s,maxR+
s L+a+s

(4.23)
(4.21)

ρe, σe ρe = −
ε−e L−

ε+e L+
, σe = −

εs
eLs

ε+e L+
ce,0 +

nLi
e

ε+e L+A
(4.24)

(4.22)

η+
s (t)

RgTbc(t)
α0F

sinh−1
( −1

2a+s L+i+0
u(t)

)
(4.25) (4.35)

η−s (t)
RgTbc(t)

α0F
sinh−1

(
1

2a−s L−i−0
u(t)

)
(4.26) (4.35)

i±0 (t) k±n c±s,max

√
c±e (t)CSC±(t)

(
1−CSC±(t)

)
(4.27)

(4.35)

aΦ could be Ds, De, kn, κ or jsr . bTaken from [26].

4.2.2 Thermal Equation

The thermal process described by Eqs. (2.18), (2.19) has a distributed nature
due to the integral term in Eqs. (2.18). However, under the assumption of uniform
pore-wall molar flux given by Eq. (4.4), the core temperature Eq. (2.18) [30] together
with the same Eq. (2.19) are given by

ρcCpc
dTbc

dt
(t) = kc (Tbs(t)− Tbc(t))− I(t)

(
∆U±b (t)− Tbc(t)∆

∂U±b
∂Tbc

(t)−V(t)

)
(4.28)

ρsCps
dTbs

dt
(t) = kc (Tbc(t)− Tbs(t)) + hc (Tamb − Tbs(t)) (4.29)

Thermal parameters hc and kc are convection and conduction coefficients, respec-
tively, ρj and Cpj, j ∈ {c, s} are the density and specific heat of core and surface
variables respectively, and Tamb is the ambient temperature considered as constant.
The difference between functions χ+(t) and χ−(t) for any function χ(t) is denoted as

∆χ±(t), while functions U±b (SOC(t)) and ∂U±b
∂Tbc

(SOC(t)) depend on the battery chem-
istry. Note that in Eq. (4.28) the explicit dependence of U±b on SOC is not indicated
for the sake of compactness. The general form of the thermal model is given by

ẋT(t) = ATxT(t) + fT (u(t), xT(t), SOC(t), V(t)) (4.30)
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where xT(t) ∈ R2 is the temperature state vector given by xT(t) = [Tbc(t), Tbs(t)]
T

with Tbc and Tbs as the battery core and skin temperature, respectively, and the matrix
and nonlinear function are given by

AT=

[
− kc

ρcCpc

kc
ρcCpc

kc
ρsCps

− hc+kc
ρsCps

]
, fT=

 1
ρcCpc

(
∆U±b (t)− ∆ ∂U±b

∂Tbc
(t)Tbc(t)−V(t)

)
I(t)

1
ρsCps

hcTamb

. (4.31)

4.2.3 State Space Model Summary

The representation of the state space model takes the form

ẋ(t) = A(x(t))x(t) + Buu(t) + fx(u(t), x(t), y(t)) (4.32)

where x(t) ∈ Rn with n = ns + ne + 2 is the differential state vector defined as

x(t) =
[

xs(t)T, xe(t)T, xT(t)T
]T

,

u(k) ∈ R is the input vector u(t) = I(t) and y(t) ∈ R2 is the output vector y(t) =
[V(t), Tbs(t)]

T. The matrices and functions of the state equation are given by

A(x(t)) = diag (As(x(t)), Ae(x(t)), AT)
Bu = [BT

s , BT
e , 01×2]

T

fx(u(t), x(t), y(t)) = [01×(ns+ne), f T
T (u(t), x(t), y(t))]T.

(4.33)

By abuse of notation, function fT introduced in Eq. (4.30) is considered here only
with three arguments as x(t) includes xs(t) and SOC(t).

4.2.4 Output Equation

The internal states of a battery cell, namely the solid and electrolyte-phase concen-
trations along with the core temperature, cannot be directly measured using standard
sensors available in daily life applications. Only voltage and surface temperature can
be measured. The former is linked to the state vector via a nonlinear transformation.

The voltage of a battery cell is the electric potential difference between the positive
and negative battery terminals given by Eq. (2.17) in Table 2.1. Solving Eq. (2.14) for
φ±s and subtracting the negative potential from the positive potential results in

V(t) =
(

U+
s (x, t) + η+

s (x, t) + φ+
e (x, t) + R+

f Fj+n (x, t)
)
|x=L

−
(

U−s (x, t) + η−s (x, t) + φ−e (x, t) + R−f Fj−n (x, t)
)
|x=0

(4.34)

Assuming a uniform reaction rate along the battery thickness (as expressed by Eq.
(4.4)), the spatial dependency of each variable can be neglected. Moreover, usually
the negative electrode exhibits a thicker film surrounding the electrode and a larger
associated resistance than that of the positive electrode, so that R+

f ≈ 0 Ω.m2 and the
superscript "-" can be dropped from R−f . The voltage output equation then takes the
form

V(t) = ∆U±s (t) + ∆η±s (t) + ∆φe(t)−
R f

asL
I(t) (4.35)

which is a spatially independent and rearranged version of Eq. (4.34). The surface
equilibrium potential functions U±s (SOC(t), CSC(t)) depend on the battery chemistry,
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while the surface overpotential functions η±s (u(t), CSC(t)) are given in Table 4.3,
Eqs. (4.25),(4.26). To obtain the electrolyte phase potential drop ∆φe(u(t), ce(t)), the
electrolyte potential Eq. (2.10) is simplified by three means: the electrolyte-phase ionic
conductivity κe,eff is considered spatially constant [140, 141], the activity coefficient
fc/a is assumed equal to 1 [138, 142], and the equation is linearized about the initial
electrolyte concentration ce,0 [143, 141]. Both the first and third approximations
simplify the integration of the electric potential, just as the assumption of a constant
electrolyte-phase diffusion coefficient eases the handling of the electrolyte-phase PDE.
The second approximation is made due to the absence of experimental data [21, 142].
The resulting electrolyte phase potential is given by

κe,eff
∂2φe

∂x2 (x, t) = −asFjn(x, t) +
2RgTbc(t)

Fce,0
(1− t0

c)κe,eff
∂2ce

∂x2 (x, t). (4.36)

Since the battery cell voltage response results from the potential difference be-
tween battery terminals, φe can be set to zero at x = 0 and only potential differences
might be considered. Defining the electrolyte potential difference along the cell thick-
ness as ∆φe(t) = φ+

e (L, t)− φ−e (0, t) and integrating directly Eq. (4.36), the following
expression arises

∆φe(t) =
2RgTbc(t)

Fce,0
(1− t0

c)(c
+
es(t)− ces(t))−

1
κe,eff

(
L+

2(ε+e )ε
+

Ls

(εs
e)

ε
+

L−

2(ε−e )ε

)
I(t)

(4.37)
where the assumption of uniform utilization has been used [140, 141].

The general form of the output voltage equation is given by

yn(t) = hn (u(t), x(t)) (4.38)

where yn(t) ∈ R with yn(t) = V(t), the subscript n stands for the main intercalation
reaction, the input u(t) = I(t), the state vector x(t) =

[
xs(t)T, xe(t)T, xT(t)T]T and

the nonlinear function is

hn (u(t), x(t)) = ∆U±s (t) + ∆η±s (t) + ∆φe(t)−
R f

asL
u(t). (4.39)

The general form of the output equation, i.e. where the surface temperature is
accounted for, is then given by

y(t) = hy (u(t), x(t)) (4.40)

where y(t) ∈ R2 with y(t) = [V(t), Tbs(t)]
T, and the associated nonlinear output

function is given by

hy (u(t), x(t)) = [hn (u(t), x(t)) , [0, 0, . . . , 0, 1]x(t)]T . (4.41)

4.2.5 Analysis of Aging

So far, no degradation mechanisms have been considered when deriving the
diffusion, thermal and output equations in Sections 4.2.1-4.2.4. However, the model
presented above has to be upgraded with parameter and equation dependencies in
order to account for aging dynamics. These captured aging phenomena can be then
used for SOH monitoring or to define unsafe regions that should be avoided during
battery operation. We consider the degradation processes described in Section 2.2,
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whereas the distributed nature of model equations and constraints in Section 2.3 for
the DFN model is simplified in the present section. As we always want a physical
interpretation of the model we are developing, we need first to understand aging
before introducing the required model modifications.

Two different sources of battery degradation have been identified from the litera-
ture and are the subject of our studies. The first one is temporal-induced degradation
or calendar aging, while the second one corresponds to operation-induced degrada-
tion associated to side reactions, either SEI growth or lithium plating. Depending
on the nature of the side reaction, the degradation can be mitigated in more or less
extent. An advanced battery-management system (BMS) should ideally be able to
process the information about degradation and act accordingly. The present situ-
ation of a BMS is shown in Fig. 4.4, together with the role of an advanced BMS.
Fig. 4.4(a) depicts an operating map built from measured variables, namely applied
current and terminal voltage, while Fig. 4.4(b) portrays a similar map but based
on unmeasurable electrochemical variables like solid-phase surface concentration
and overpotential. Nowadays, a BMS imposes current and voltage restrictions that
delimit an operating region given by the purple rectangle in the Fig. 4.4(a). Such
region defines e.g. the purple polygon in Fig. 4.4(b), but it is conservative if compared
with the safe region that results when the electrochemistry behind the degradation
mechanisms is accounted for. This safe region is represented by the green rectangle
in Fig. 4.4(b), which has a counterpart region in Fig. 4.4(a). The red region in both
plots represents unsafe scenarios where battery degradation takes place. Notice how
the advanced BMS enlarges the operating range of the present BMS by imposing
electrochemical constraints directly linked to degradation mechanisms. However,
other degradation mechanisms cannot be circumvented regardless the battery opera-
tion, which is depicted in Fig. 4.4(a) and (b) by the orange region overlapping the
green region of safe operation. In such situations, degradation cannot be mitigated
but its influence in the battery operation can be properly tracked. The fact of having
different types of degradation motivates the BMS to possess different ways to handle
them accordingly, namely to steer the system state to keep it inside the safe region
while tracking unavoidable degradation.

In the following, the two referred types of degradation are considered. First, the
unavoidable degradation mechanisms are detailed and an aging model is developed
in order to track them. Secondly, the (possibly) mitigable degradation mechanisms
are explained and electrochemical constraints meant to be avoided are derived.

Aging Model

This subsection presents the required model modifications so that an aging model
consistent with the thermal and electrolyte enhanced EHM is obtained. This model
aims at tracking battery aging caused by degradation mechanisms that cannot be
avoided by no means. Whether the battery is used in a very conservative fashion
or even not in use at all, the battery ages due to e.g. calendar aging and parasitic
side reactions. Two sources of battery degradation are considered. First, purely
temporal-induced degradation is accounted for via time-varying parameters, namely
the diffusion coefficient Ds,ref and the film resistance R f . These parameters are
collected in the parameter vector θ(t) ∈ R2 defined as

θ(t) = [θ1(t), θ2(t)]
T ,
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a) b)

FIGURE 4.4: Present situation of a BMS (purple region) together with
the ideal situation of an advanced BMS (green region) in terms of
the operational envelope defined by the accounted constraints. The
operating map is derived from a) measured variables and b) elec-
trochemical variables. Safe operation region, region where lithium
plating takes place and region where solvent reduction reaction occurs

are represented by green, red and orange regions, respectively.

and their evolution is described by the empirical expressions given in Eqs. (4.1) and
(4.2).

The second degradation source corresponds to the side reaction associated to
SEI growth (orange area in Fig. 4.4). This mechanism is a mixture of temporal and
operation-induced aging, i.e. the battery always degrades, but it does it faster as the
power demand becomes larger. The fact that the battery degrades even with zero
current will become clearer with the study of the system equilibrium points detailed
below. It turns out that the SEI growth is a degradation mechanism that is difficult to
mitigate for a "reasonable" use of the battery. The term "reasonable" is explained next
with the help of Fig. 4.5. In the figure, the battery voltage is represented by the solid
red curve associated to the right y-axis, whereas negative electrode potentials such as
surface overpotential plus equilibrium potential η−s + U−s and equilibrium U−s , SEI
growth U−SEI and lithium plating U−lp potentials are respectively depicted by dashed
and solid blue and dotted and dashed black curves associated to the left y-axis. Let
us consider, for instance, a standard operating voltage window provided by battery
manufacturers, i.e. from 2.5 V to 4.2 V, where the lower and upper cut-off voltage
implies 0% and 100% SOC respectively. Side reactions such as SEI growth take place
when the negative electrode potential U−s + η−s drops below USEI = 0.4 V, which may
occur when the battery SOC reaches 20% or the voltage V rises above 3.5 V (see Fig.
4.5). These limits can be even tighter depending on the chemistry and manufacturing
process. This means that for mitigating the impact of SEI growth, the battery should
be operated between 2.5 V and 3.5 V, which could translate in 0% and 20% SOC (recall
that the mapping SOC 7→ V is not linear). This usage strategy could potentially
increase battery life, but at the expense of imposing operating limits that are overly
conservative. Imagine for example that you need to charge your phone every 30
min, assuming an average rate of discharge of C/2. This is not a "reasonable" use
of the battery, which we then define as the battery operating window that offers the
maximum autonomy to a given application, i.e. the maximum time without needing
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to plug the battery in for recharging.

FIGURE 4.5: Galvanostatic charge of a graphite|LCO battery cell at 5C.
The left y-axis portrays the different negative electrode potential con-
tributions to the battery voltage, as well as the side reaction potentials.

The right y-axis shows the battery voltage.

The principle behind side reactions is the following. When side reactions occur,
not all the input current I(t) contributes to the main intercalation reaction jn(t), and
therefore Eq. (4.4) is not valid anymore. Instead, the current balance Eq. (2.21) has to
be considered such that

jn(t) + jSEI(t) ≈
1

FasL
I(t) (4.42)

under the assumption of uniform reaction rate and considering SEI growth as the
only side reaction (in accordance with Section 4.1). Eq. (4.42) can be written in a
general form as

z(t) + d(t) = u(t) (4.43)

where u(t) = I(t) is the battery applied current, z(t) = FasLjn(t) is the main reaction
current and d(t) = FasLjSEI(t) is the side reaction current. Both the main intercalation
reaction and side reaction compete to take away a part of the current applied to the
battery. The ratio of this current split is determined by the electric potential of each
reaction. Let us define the voltage drop due to SEI growth with the nonlinear function

hSEI (u(t), d(t), x(t)) = ∆USEI(t) + ∆ηSEI(t) + ∆φe(t)−
R f

asL
u(t) (4.44)

where the difference between functions χ+(t) and χSEI(t) for any function χ(t) is
denoted as ∆χSEI(t), whereas USEI is a scalar that represents the equilibrium potential
of the side reaction and ηSEI(t) is the overpotential of the side reaction given by

ηSEI(t) = −
RgTbc(t)

α0F
ln
( −1

asLiSEI,0
d(t)

)
. (4.45)

Then Kirchhoff’s law states the following relationship between electric potentials

hn (z(t), x(t))− hSEI (u(t), d(t), x(t)) = 0 (4.46)

where hn(z(t), x(t)) is given by Eq. (4.39) with z(t) replacing u(t). Notice that Eq.
(4.46) is a nonlinear algebraic constraint, whose algebraic state variable corresponds
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to z(t) (or d(t) through Eq. (4.43)). This nonlinear model structure precludes the
possibility of finding an explicit solution for either variable.

The distributed nature of the capacity loss Eq. (2.25) given by its integral term can
be disregarded through the uniform reaction rate assumption. The capacity loss is
then given by

dQloss

dt
(t) = −Fas AL

3600
jSEI(t) (4.47)

or in general form as
ẋQ(t) = AQxQ(t) + BQd(t) (4.48)

Since some amount of lithium is lost with time, the material balance of Eq. (4.21)
has to be corrected. The initial amount of lithium in the solid phase nLi

s,0 encoded in
the parameter σs can be updated through

σs(t) =
3

c+s,maxR+
s L+a+s

(
nLi

s,0 −
3600

F
Qloss(t)

)
.

Electrochemical Constraints

In contrast to the previous subsection where unavoidable degradation mecha-
nisms are displayed, this subsection focuses on other degradation mechanisms that
take place just outside the boundaries of "reasonable" operating windows (red area
in Fig. 4.4). Compare, for instance, the negative electrode potential U−s + η−s with
SEI growth potential USEI = 0.4 V and lithium plating potential Ulp = 0.0 V. The
growth of SEI layer and lithium plating happen when the negative electrode poten-
tial drops below the respective side reaction constant potential. While SEI growth
occurs very early in the charging process (i.e. U−s + η−s ≤ USEI), lithium platting
takes place half way the charging process (i.e. U−s + η−s ≤ Ulp) as shown in Fig. 4.5.
Furthermore, although a steady-state battery4 avoids these unsafe regions thanks
to such operating conditions, nothing precludes a battery under dynamic operation
to overstep these limits and to fall into possibly degrading operating modes. This
issue becomes apparent in Fig. 4.5, where the battery at equilibrium is represented by
the open-circuit potential U−s , the battery dynamic operation involves the additional
effect of the surface overpotential η−s and the lithium plating potential is denoted
by Ulp. Notice the positive gap between the negative electrode potential U−s + η−s
and the lithium plating potential Ulp at the beginning of the charge (before 0.5 SOC),
but how this potential drops below the threshold at the end of the considered time
horizon (after 0.5 SOC). Moreover, safe operating regions tend to shrink as the battery
ages, which further promotes a faster battery degradation. These are the regions that
we are interested in so that we can impose hard constraints and track their evolution
to guarantee the battery safe operation.

Since the variables of the EHM have an explicit link with the ones of the DFN
model as highlighted in Remark 4.2.2, it is possible to map constraints Eq. (2.32) into

4A battery is at equilibrium when the applied current is zero for a long enough period of time.
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the following constraints for the EHM

0 ≤ SOC(t) ≤ r̄cs , (4.49a)
0 ≤ CSC(t) ≤ r̄cs (4.49b)

η−sr(t) = η−s (t) + U−(t) +
R f

asL
I(t)−U−sr > 0 (4.49c)

η+
sr(t) = η+

s (t) + U+(t) +
R f

asL
I(t)−U+

sr < 0 (4.49d)

where r̄cs is the upper bound of the SOC(t) and CSC(t), and U±sr are scalars. This
constraint mapping can be explained as follows. Since SOC = c̄s/cs,max and CSC =
css/cs,max (see Remark 4.2.2), constraints Eq. (2.32a) of the negative electrode can be
rewritten as Eqs. (4.49a),(4.49b). The left-hand side of these inequalities are added
because SOC and CSC are physically nonnegative quantities. Since the dynamics of
the positive electrode are negligible, constraints Eq. (2.32b) of the positive electrode
can be satisfied by controlling the negative ones, and therefore they are not necessary.
Constraints Eqs. (4.49c),(4.49d) are obtained by substituting φ±s − φe of Eq. (2.15)
in Eqs. (2.32c),(2.32d) under the assumption of uniform reaction rate. Notice that
electrolyte constraint Eq. (2.32e) requires the extension of the EHM to account for
electrolyte dynamics. However, such constraint is not violated under the considered
conditions. Extensive simulations have shown that the satisfaction of constraints Eq.
(4.49) implies the satisfaction of constraints Eq. (2.32) for given values of r̄SOC, r̄CSC,
and U±sr . This result is not surprising from the physical viewpoint since the EHM is
derived by suitably neglecting the spatial distribution of the DFN variables.

As done with the different submodels introduced in the previous subsections, let
us generalize the constraint set Eq. (4.49) as the set of linear constraints

ST
j x(k) ≤ sj, j = 1, . . . , nc, (4.50)

where nc is the number of constraints. This kind of generalization allows us to end
up with a general model structure in the next subsection. Notice that constraints
such as Eqs. (4.49a) and (4.49b) are linear, while constraints of the form Eqs. (4.49c)
and (4.49d) are typically nonlinear and may delimit a nonconvex region. However,
nonlinear nonconvex constraints can be approximated by affine constraints of the
form Eq. (4.50).

4.2.6 Summary of Reduced-Order Model with Constraints

The model presented in Sections 4.2.1-4.2.5 involves solid-phase diffusion dynam-
ics, as in the original equivalent-hydraulic model (EHM) [52], but it also incorporates
electrolyte-phase diffusion, thermal and aging dynamics. Therefore, it is referred to
as enhanced EHM and it is denoted by eEHM.

The overall state equation of Section 4.2.3 with the aging dynamics of Section 4.2.5
can be written as

ẋ(t) = A(x(t), θ(t))x(t) + Bzz(t) + Bdd(t) + fx(u(t), x(t), y(t)) (4.51)
θ̇(t) = fθ(t) (4.52)
y(t) = hy (z(t), x(t), θ(t)) (4.53)

0 = hn(z(t), x(t), θ(t))− hSEI(u(t), d(t), x(t), θ(t)) (4.54)
u(t) = z(t) + d(t) (4.55)
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where x(t) ∈ Rn with n = ns + ne + 3 is the differential state vector x(t) =
[
xs(t)T,

xe(t)T, xT(t)T, xQ(t)
]T, u(k) ∈ R is the input vector u(t) = I(t), y(t) ∈ R2 is the

output vector y(t) = [V(t), Ts(t)]
T, z(t) ∈ R is the algebraic state vector z(t) =

FasLjn(t) and θ(t) ∈ R2 is the parameter vector θ(t) =
[
Ds(t), R f (t)

]T. The matrices
and functions of the state Eq. (4.51) are given by

A(x(t), θ(t)) = diag (As(x(t), θ(t)), Ae(x(t)), AT, AQ)
Bz = [BT

s , BT
e , 01×3]

T

Bd = [01×(ns+ne+2), BQ]
T

fx(u(t), x(t), y(t)) = [01×(ns+ne), f T
T (u(t), x(t), y(t)), 0]T,

(4.56)

whereas the function for the parameter Eq. (4.52) is given by Eqs. (4.1) and (4.2). The
output function for Eq. (4.53) is given by

hy(z(t), x(t), θ(t)) =

[
∆U±s (t) + ∆η±s (t) + ∆φe(t)− R f (t)

as L u(t)
[0, 0, . . . , 0, 1] x(t)

]
, (4.57)

while the equality constraint functions for Eq. (4.54) are given by:

hSEI(u(t), d(t), x(t), θ(t)) = ∆USEI(t) + ∆ηSEI(t) + ∆φe(t)− R f
as L u(t)

hn (z(t), x(t), θ(t)) = ∆U±s (t) + ∆η±s (t) + ∆φe(t)− R f
as L u(t)

(4.58)

By abuse of notation, the state matrix A and functions hy, hn and hSEI of Eqs.
(4.56)-(4.58) are considered here with an extra argument for θ(t), since time-varying
parameters arise when calendar aging is accounted for.

The model Eqs. (4.51)-(4.58) is subject to inequality constraints associated to
degradation mechanisms such as

ST
j x(t) ≤ sj, j = 1, . . . , nc. (4.59)

These inequalities describe a region within which it is safe to operate the battery.
These constraints are not embedded in the model, but they will be exploited to
develop a constrained control scheme in Chapter 6 and 7 below.

4.2.7 Analysis of Equilibrium Points

One of the main tasks that an engineer is asked to do when controlling a plant is
to analyze its stability, more precisely the stability of its equilibrium points. In our
context, such analysis also renders the means to initialize the different electrochemical
models (EHM, eEHM, DFN) that we use for simulation, estimation and control. A
similar derivation as the one proposed in [76] to determine the equilibrium points of
a battery model is retrieved, although with a different model.

Let us analyze the equilibrium points of the eEHM with no side reaction taking
place, and denote the associated equilibrium variables with the superscript "∗". At
equilibrium, the integrator of Eq. (4.17) (see Table 4.2, Eqs. (4.18)-(4.20) for instance)
yields a main reaction equilibrium current j∗n = 0, which implies that the equilibrium
current applied to the battery is I∗ = 0 from Eq. (4.4). The rest of the state vector
takes the form SOC∗ = c∗s,2 = . . . = c∗s,n−1 = CSC∗ and c∗eb = c∗e,2 = . . . = c∗e,n−1 = c∗es
for the solid and electrolyte phase diffusion processes, respectively. Given that I∗ = 0,
the thermal equilibrium states are T∗bc = T∗bs = Tamb obtained from Eq. (4.30).
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The last variable whose equilibrium needs to be defined is the output voltage
given by the function hn(z(t), x(t)) in Eq. (4.39). The terms R f u(t) and ∆η±s (t) given
by Eqs. (4.25), (4.26) become zero for a zero input current. The function ∆φe(t) is also
zero in the case that I = 0 and ces = c+es (see Eq. (4.37)). The first equality follows
from I∗, while the second can be obtained from the continuity boundary conditions
for the electrolyte concentration of the original electrolyte-phase diffusion PDE of
Table 4.1. Therefore, at equilibrium, it follows that c+,∗

es = c∗es, which makes ∆φe = 0.
The resulting output voltage equilibrium equation derived from Eq. (4.35) is given by

V∗(SOC∗) = U+,∗
s (SOC∗)−U−,∗

s (ρsSOC∗ + σs), (4.60)

where the independent variable of each function has been made explicit in this
equation. Under the assumption of strict monotonicity for the open-circuit potentials
U±s (which is usually the case), there is a set of solid-phase equilibrium concentrations
that generate a unique set of equilibrium voltages. Therefore, there is an infinite
set of equilibrium points [76]. This result is expected when analyzing the physics
of the system, since its state consists of concentrations of lithium in the solid phase.
Concentration is an intensive property that reflects a continuum between a minimum
and a maximum value. Thus, whenever the current applied to the battery is zero and
the concentration gradient is allowed to relax, the resulting state is an equilibrium
point. Since the eEHM can be seen as a spatially discretized version of the DFN
model, the equilibrium conditions resulting from the present analysis based on the
former model can be extrapolated to the latter model.

If side reactions such as SEI growth is considered, Kirchhoff’s law for both the
main and the side reaction has to be included in the model. By explicitly expanding
the functions of Eq. (4.46) and setting u(t) = I∗ = 0, the following expression is
obtained

U−s (x(t)) + η−s (z(t), x(t)) = USEI + ηSEI(d(t), x(t)) (4.61)

with the side reaction current rate given by

jSEI(t) = −asLiSEI,0 exp
(
− α0F

RgTbc(t)
ηSEI(t)

)
(4.62)

Three situations can be distinguished:

• If U−s (x(t)) = USEI, the main and the side reactions are balanced, and therefore
no side reaction takes place.

• If U−s (x(t)) 6= USEI, side reactions occur in lesser or greater extent. Assuming
that USEI ≥ 0 (which is usually the case), we have:

– If U−s + η−s > USEI =⇒ ηSEI > 0 and the side reaction current rate
given by Eq. (4.62) results in |jSEI| < asLiSEI,0 mol·m−2·s−1. Notice that the
bigger ηSEI > 0, the smaller |jSEI| (exponentially).

– If U−s + η−s < USEI =⇒ ηSEI < 0 and the side reaction current rate of
Eq. (4.62) results in |jSEI| > asLiSEI,0 mol·m−2·s−1. Notice that the smaller
ηSEI < 0, the bigger jSEI (exponentially).

These dependencies can be clearly seen in Fig. 4.6 for some values of the side
reaction equation.

The side reaction has to be accompanied to some extent by the main reaction for
Eq. (4.61) to hold. However, the total current applied to the battery cell can be the
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FIGURE 4.6: Dependence of side reaction current density due to SEI
growth on surface overpotential.

equilibrium current I∗ = 0 and both the main and the side reaction currents with
opposite signs might be flowing through the system respecting u∗ = 0 = z(t) + d(t).
This process exemplifies the self-discharge in batteries, and it tends to be low for
lithium-ion chemistries (it is a function of the side reaction exchange current density
iSEI,0). However, from the above analysis follows that side reactions such as SEI
growth are diminished when ηSEI > 0 (see Fig. 4.6), implying that U−s + η−s > USEI
which holds for low battery voltages (see Fig. 4.5). Therefore, self-discharge can
be mitigated by storing the batteries at low state-of-charges. The presence of self-
discharge translates in a slight persistent perturbation of the equilibrium presented
above (i.e. the one without side reaction). Taking the SOC as an example, the previous
SOC∗ takes the form SOC∗ + SÕC∗, with SÕC∗ as a perturbation due to the presence
of side reactions.

4.2.8 Discretization for Implementation

The eEHM described throughout this section, whose general structure is given in
Eqs. (4.51)-(4.55), is in continuous-time domain. However, the digital implementation
of estimators and controllers that come up in the next Chapter 5 to 7 requires a discrete-
time version of this eEHM. The simplest way to discretize such a nonlinear system is
through Euler approximation, which yields a discrete-time eEHM of the following
form

x(k + 1) = Ad(x(k), θ(k))x(k) + Bd
z z(k) + Bd

dd(k) + f d
x (u(k), x(k), y(k)) (4.63)

θ(k + 1) = θ(k) + f d
θ (θ(k), k) (4.64)

y(k) = hy (z(k), x(k), θ(k)) (4.65)
0 = hn(z(k), x(k), θ(k))− hSEI(d(k), x(k), θ(k)) (4.66)

u(k) = z(k) + d(k) (4.67)

where the superscript d in Eqs. (4.63),(4.64) denote discrete-time matrices and func-
tions. With an abuse of notation, we consider the same variables for the differ-
ence state x(k), parameter θ(k), output y(k) and algebraic state z(k) vectors for
the continuous-time system Eqs. (4.51)-(4.55) and the discrete-time system Eqs.
(4.63)-(4.67). x(k) ∈ Rn with n = ns + ne + 3 is the dynamic state vector x(k) =
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[
xs(k)T, xe(k)T, xT(k)T, xQ(k)

]T, u(k) ∈ R is the input vector u(k) = I(k), y(k) ∈ R2

is the output vector y(k) = [V(k), Tbs(k)]
T, z(k) ∈ R is the algebraic state vector

z(k) = FasLjn(k) and θ(k) ∈ R2 is the parameter vector θ(k) =
[
Ds(k), R f (k)

]T.
The discrete-time version of the state and parameter matrices and functions in Eqs.
(4.63),(4.64) are given by

Ad(x(k), θ(k)) = Id + Ts A(x(k), θ(k))
Bd

z = TsBz
Bd

d = TsBd
f d
x (u(k), x(k), y(k)) = Ts fx(u(k), x(k), y(k))

f d
θ (θ(k), k) = Ts fθ(θ(k), k)

where Id is an identity matrix with appropriate dimensions, Ts is the sampling period
and the concatenation of matrices and functions are given by

A(x(k), θ(k)) = diag (As(x(k), θ(k)), Ae(x(k)), AT, AQ) (4.68)
Bz = [BT

s , BT
e , 01×3]

T (4.69)
Bd = [01×(ns+ne+2), BQ]

T (4.70)

fx(u(k), x(k), y(k)) = [01×(ns+ne), f T
T (u(k), x(k), y(k)), 0]T (4.71)

The function of the parameter Eq. (4.64) is given by the discrete-time version of
Eqs. (4.1) and (4.2). In the next chapters however, the superscript d in the system
model Eqs. (4.63)-(4.64) is dropped for the sake of simplicity.

The output function for Eq. (4.65) follows, taking the form

hy(z(k), x(k), θ(k)) =

[
∆U±s (k) + ∆η±s (k) + ∆φe(k)− R f

as L (k)u(k)
[0, 0, . . . , 0, 1] x(k)

]
, (4.72)

and the equality constraint functions for Eq. (4.66) as

hSEI(u(k), d(k), x(k), θ(k)) = ∆USEI(k) + ∆ηSEI(k) + ∆φe(k)− R f
as L u(k)

hn (z(k), x(k), θ(k)) = ∆U±s (k) + ∆η±s (k) + ∆φe(k)− R f
as L u(k).

(4.73)

The resulting model Eqs. (4.63)-(4.73) is a nonlinear difference algebraic equation
(NLDAE) system. Similarly as the continuous-time model, the model Eqs. (4.63)-(4.73)
is subject to the inequality constraints given by

ST
j x(k) ≤ sj, j = 1, . . . , nc. (4.74)

4.3 Concluding Remarks

This chapter has introduced the framework used to develop different battery
electrochemical models. These models differ in complexity and accuracy. The most
accurate model is the DFN model with thermal and aging dynamics, which is ex-
ploited as a battery cell simulator. However, its complexity precludes its use for
estimation/control. Model-order reduction has been performed in the different sub-
systems comprising the DFN model, namely solid and electrolyte-phase diffusion
equations, thermal, aging and output equations. The resulting model is denoted as
eEHM. Although the EHM and its extension by adding dynamics to the model is
not new, the link between this model and the electrochemical ones has been drawn
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here for the first time. This link renders an easy to interpret model that is totally
transparent from the physical viewpoint in terms of states and parameters. This is
particularly relevant for state and SOH estimation. Electrochemical constraints associ-
ated to battery degradation have also been defined for the reduced model. Although
these degradation-related constraints are directly borrowed from the literature, their
combination with unavoidable degradation mechanisms and the different ways of
handling both of them are a novelty that comes out from this work. The state of
equilibrium of the resulting reduced-order electrochemical model has been studied
under healthy and faulty conditions. This analysis can be extended to higher-order
models such as the DFN model, providing a way to initialize the associated states.
Furthermore, it gives us insight into the impact of degradation processes even under
zero input current. Finally, a discrete-time version of the eEHM is derived, which will
be necessary when monitoring and controlling the battery. The proposed eEHM is
conceived to be scalable and modular. The former characteristic means that the order
of the solid and electrolyte-phase diffusion subsystems can be increased according to
the model accuracy specification. The latter characteristic translates in the possibility
of considering specific subsystems and neglecting others. Such assets will be explored
in the following chapters for supervisory control.
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Chapter 5

System Identification & Fault
Detection and Isolation

Following the state of the art of Sections 2.4 to 2.6, a battery monitoring and
diagnosis system is developed in this chapter, which is structured as follows. On the
one hand, Section 5.1 introduces an extended Kalman filter along with parameter
identification methods for SOH estimation (green block in Fig. 5.1). This state and
parameter estimation strategy is validated through both a high-fidelity battery cell
simulator and real battery experiments in Section 5.2. On the other hand, Section 5.3
presents an unscented Kalman filter to generate residuals to diagnose sensor faults
(blue block in Fig. 5.1). This fault diagnosis system has been validated via simulation
so far, and the results are presented in Section 5.4. Although the SOH monitoring and
the sensor FDI system are two different pieces of work, they can be combined so that
the monitoring system has these two distinctive features. The light red block in Fig.
5.1 corresponds to the output feedback controller developed in Chapters 6 and 7 for
safe and fast battery changing. The common element tying all the pieces of this work
together is the state observer (orange block in Fig. 5.1).

FIGURE 5.1: Block diagram of the monitoring system for a battery cell.

5.1 State/Parameter Estimation for SOH

This section deals with the estimation problem of providing battery SOH indi-
cators based on changes in the model parameters. Two groups of parameters are
sorted out, namely parameters that change according to operating conditions, and
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the ones that change due to aging. We resort to a mix of on-line and batch parameter
identification approaches to respectively handle each group of parameters, which are
coupled with an observer for state estimation. The standard extended Kalman filter
(EKF) of Section 2.4 is modified to account for state constraints (orange block in Fig.
5.2). For the on-line identification, the EKF state vector is augmented with unknown
and slowly time-varying parameters to perform joint state/parameter estimation.
For the batch identification, the EKF state estimate is further exploited to periodically
identify parameter changes through instrumental variable (green "SRIVC" block in
Fig. 5.2) and least squares (green "LS" block in Fig. 5.2) methods. This procedure
results in capacity and power fade SOH indicators. In the event that only parameter
changes due to operating conditions are expected, on-line parameter monitoring
through a state observer should be performed. Conversely, if only parameter changes
due to aging are expected, the batch parameter identification can be pursued.

FIGURE 5.2: Block diagram of the identification scheme.

5.1.1 Constrained Extended Kalman Filter

In this early work, a simplified version of the system Eqs. (4.63)-(4.67) was
considered. First, the electrolyte diffusion and thermal dynamics are neglected in
the state Eq. (4.63), and only the solid-phase diffusion dynamics are considered (i.e.
x(k) = xs(k)) through a third-order EHM. Secondly, in contrast to the parameter
vector θ(k) = [Ds(k), R f (k)]T and function fθ(θ(k), k) in Eq. (4.64) whose component-
wise functional forms come from Eqs. (4.1),(4.2), here the parameter vector comprises
θ1(k) = gs(k) = R−2

s Ds and θ2(k) = R f (k), whose dynamic evolution is represented
by slowly time-varying processes as fθ(θ(k), k) = [θ1(k), θ2(k)]

T. This choice for the
parameter evolution is motivated by the ignorance regarding expected functional
forms for parameter variations associated to degradation and the fact that aging is
a slow process. Thirdly, by neglecting degradation mechanisms via d(k) = 0 (i.e.
u(k) = z(k) = I(k)), the algebraic Eqs. (4.66),(4.67) disappear and the DAE model
becomes an ODE model. Finally, noise sources are introduced. The resulting model
has the following form1

xs(k + 1) = As(θ(k))xs(k) + Bsu(k) + wn(k)
θ(k + 1) = θ(k) + wn,θ(k)

yn(k) = hn (u(k), xs(k), θ(k)) + vn(k)
(5.1)

1Although the solid-phase diffusion state matrix As(x(k), θ) has both the state and parameter
vectors as arguments in the general model Eq. (4.68), the simplified model considered here makes this
matrix to be only dependent on the parameters. For convenience in the presentation, we use the same
notation in both cases, and just drop the independent term in Eq. (5.1).
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which, after augmenting the state vector xs(k) with the parameter vector θ(k) denoted
as xsθ(k) ∈ R5 given by xsθ(k) = [xs(k), θ(k)]T, takes the equivalent form2

xsθ(k + 1) = Asθ(xsθ(k))xsθ(k) + Bsθu(k) + wsθ(k) (5.2)
yn(k) = hn(u(k), xsθ(k)) + vn(k) (5.3)

where xs(k) ∈ R3 is the solid-phase diffusion state vector xs(k) = [SOC(k), cs,2(k),
CSC(k)]T, θ(k) ∈ R2 is the parameter vector θ(k) =

[
gs(k), R f (k)

]T, u(k) ∈ R

is the battery current input vector u(k) = I(k), yn(k) ∈ R is the battery voltage
output vector yn(k) = V(k), wsθ(k) ∈ R5 results from the concatenation of the
process wn(k) ∈ R3 and parameter wn,θ(k) ∈ R2 noise sequences, i.e. wsθ(k) =

[wn(k), wn,θ(k)]
T, and vn(k) ∈ R is a measurement noise sequence. These noise

sequences are normally distributed, zero-mean mutually uncorrelated white noise
sequences with covariance matrix

E

([
wsθ(k)
vn(k)

] [
wsθ(l)Tvn(l)T]) =

[
Qsθ 0
0 R

]
δkl (5.4)

where E is the expectation operator and δkl is the Kronecker delta function. The
state As(xsθ(k)) ∈ R5×5 and input Bs ∈ R5×1 matrices in Eq. (5.3) are equivalent to
the ones of Table 4.2 but with a time-varying parameter gs(k) and the system state
augmented with θ(k), i.e.

Asθ(xsθ(k))=


1 0 0 0 0

gs(k)
γ1

β1β2
1− gs(k)

(
γ1
β1

+ γ1+γ2
β2

)
gs(k)

(
γ2
β2
− β3γ1

β1β2

)
0 0

0 gs(k)
γ2
β3

1− gs(k)
γ2
β3

0 0
0 0 0 gs(k) 0
0 0 0 0 R f (k)

,(5.5)

Bsθ=ζ0

[
1 0 1

β3
0 0
]T

, (5.6)

whereas the nonlinear output function hn (u(k), xsθ(k)) is given in Eq. (4.39), whose
dependency on the underlying parameter vector θ(k) can be made explicit as

hn (u(k), xsθ(k)) = ∆U±s (k) + ∆η±s (k) + ∆φe(k)−
R f (k)

asL
u(k). (5.7)

Since this model neglects electrolyte dynamics, the electrolyte potential drop ∆φe(k)
reduces to

∆φe(k) = −
1

2κe,eff

(
L+

(ε+e )ε
+ 2

Ls

(εs
e)

ε
+

L−

(ε−e )ε

)
I(k). (5.8)

Remark 5.1.1. The electrolyte-phase electric potential drop of Eq. (5.8) results from a
simplification of the discrete version of Eq. (4.37). By considering a constant electrolyte
concentration, the first term in the right-hand side of Eq. (4.37) becomes zero.

2Since the state vector has been augmented here with the parameters, the state matrix As(θ(k)) and
the output function hn (u(k), xs(k), θ(k)) in Eq. (5.1) now depend on the augmented state vector xsθ(k)
in model Eqs. (5.2),(5.3). For convenience in the presentation, we do not change notation despite this
modification.
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Before describing the state estimation procedure for model Eqs. (5.2),(5.3), the
model is complemented by accounting for physical constraints, namely:

0 ≤ xs(k) ≤ 1
0 ≤ θ(k) (5.9)

Remark 5.1.2. The complete set of constraints for the solid-phase diffusion process involves
the whole solid-phase diffusion state vector such as 0 ≤ xs(k) ≤ 1. Some of these constraints
might be redundant from the physical viewpoint, since if the surface state is constrained as
0 ≤ CSC(k) ≤ 1, there is no way that the internal states violate their inequality constraints.
However, the evolution of the state estimate is not governed only by the physics of the process.
It is affected by the modeling uncertainties, the level of excitation, the initial estimation error
and the noise level notably. Therefore, considering the entire constraint set such as in Eq.
(5.9) ensures that the state estimates retain a physical sense.

To perform state estimation while enforcing constraints Eq. (5.9) on the estimated
state, the standard EKF of Table 3.2 has to be modified accordingly. A constrained
EKF with estimate projection is used here. This is a direct extension of the Kalman
filter with state constraints presented in [144] . To apply this method, first note that,
given the definition of the state variables in Eq. (5.2), the constraints Eq. (5.9) can be
rewritten in the form

ST
j xsθ(k) ≤ sj, j = 1, . . . , 8 (5.10)

where S1 = −[1 01×4]
T, S2 = −S1, S3 = −[0 1 01×3]

T, S4 = −S3, S5 = −[01×2 1 01×2]
T,

S6 = −S5, S7 = −[01×3 1 0]T, S8 = −[01×4 1]T, and s1 = s3 = s5 = 1 and
s2 = s4 = s6 = s7 = s8 = 0.

Now, at any time instant, only a subset of the constraints Eq. (5.10) will be active.
In particular, only one of the first pair, second pair and third pair of constraints can
be active at a given time. Let (Sac

j )T and sac
j denote the matrix and vector made of

the rows of ST
j and sj corresponding to the active constraints. Furthermore, let x̂sθ(k)

denote the state estimate at time k given measurements up to time k − 1, and let
x̂+sθ(k) denote its constrained counterpart. Then the projection step in the Kalman
filter amounts to solving the following optimization problem:

x̂+sθ(k) = arg minxsθ(k)
(xsθ(k)− x̂sθ(k))T(xsθ(k)− x̂sθ(k))

s.t. (Sac
j )Txsθ(k) = sac

j .
(5.11)

This yields the following solution

x̂+sθ(k) = x̂sθ(k)− Sac
j ((Sac

j )TSac
j )−1((Sac

j )T x̂sθ(k)− sac
j ).

The complete EKF algorithm with state projection is summarized in Table 5.1 for
system Eqs. (5.2),(5.3) with fsθ(xsθ(k)) = Asθ(xsθ(k))xsθ(k).

The initialization step in Table 5.1 involves setting the state estimate x̂sθ(0) =[
SÔC(0), ĉs,2(0), CŜC(0), ĝs(0), R̂ f (0)

]T
and the variance of the state estimation er-

ror P(0). Initialization of the state elements comprising the solid concentration is
straightforward by assuming that the battery cell was at rest (zero current) during a
long enough period of time before its use. This condition ensures equilibrium where
SOC(0) = cs,2(0) = CSC(0), which can be estimated by inverting the open circuit
voltage (OCV) function. Initialization of the uncertain parameters θ relies on the
knowledge of the battery chemistry. Parameter gs can be initialized with a reasonable
a priori estimate of the diffusion time constant τs, since gs = τ−1

s . Parameter R f can
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TABLE 5.1: Extended Kalman filter with state constraints†.

Initialization: for k = 0 set
x̂sθ,0 = E[xsθ,0], P0 = E[(xsθ,0 − x̂sθ,0)(xsθ,0 − x̂sθ,0)

T]
At each time instant compute:
Time-update:

x̂−sθ,k = fsθ(x̂+sθ,k−1) + Bsθuk−1 (5.12)

P−k = Fk−1Pk−1FT
k−1 + Qsθ (5.13)

ŷn,k = hn(uk, x̂−sθ,k) (5.14)

Measurement-update

x̂sθ,k = x̂−sθ,k + Kk (yn,k − ŷn,k) (5.15)

x̂+sθ,k = x̂sθ,k − Sac
j ((Sac

j )TSac
j )−1((Sac

j )T x̂sθ,k − sac
j )(5.16)

Kk = P−k HT
k

(
HkP−k HT

k + R
)−1

(5.17)

Pk = P−k − Kk

(
HkP−k HT

k + R
)

KT
k (5.18)

where Fk =
∂ fsθ(xsθ,k)

∂xsθ,k

∣∣∣∣
xsθ,k=x̂sθ,k

, Hk =
∂hn(uk, xsθ,k)

∂xsθ,k

∣∣∣∣
xsθ,k=x̂sθ,k

†For compactness, the time argument is set as an index.

be initialized e.g. with a value around 1 Ω·m2. Finally, P(0) is chosen as a diagonal
matrix. Its diagonal elements are taken as tuning parameters in order to ensure an
appropriate trade-off between convergence speed and "noise level" on the estimate.
The variance matrix Qsθ is also used as a tuning parameter, since it accounts for model
inaccuracies that are difficult to quantify.

The EKF of Table 5.1 provides the means to estimate the internal state of the
battery cell while adapting the operation-induced parameter changes. However, a
lithium-ion battery is also prone to suffer degradation, in which case the tracking
of aging-induced parameter changes is required. In the next section, we introduce
parameter identification techniques that allow to process a batch of data in order to
estimate aging parameters. In contrast to permanent monitoring at each sample time,
periodic monitoring using a batch of data can be exploited due to the characteristic
slow dynamics of aging mechanisms. In this way, unnecessary computational burden
is avoided.

5.1.2 The SRIVC & LS Methods

An important issue that is not well recognized in the literature, except for [99],
is that battery aging is a slow phenomenon as stressed above. Therefore, there is a
time-scale separation between parameter estimation and state estimation that can
be exploited. It suffices to evaluate the aging level periodically without necessarily
performing a permanent monitoring. Some identification methods require specific
battery tests, i.e. battery operation has to be interrupted for battery health assessment.
Other methods involve an excessive computational burden due to nonlinear (even
nonconvex) optimization problems. Instead, we resort to algorithms that keep the
simplicity of least squares estimation, and develop a two-step procedure to ensure
time separation between states and aging dynamics. Hence, SOH indicators are not
subject to short term transients and they only capture the monotonic variation due to
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aging [87]. This can be beneficial since otherwise SOH indicators are overly sensitive
to noise or operating point changes.

Besides the way in which aging dynamics are accounted for as mentioned in the
previous paragraph, there are intrinsic flaws in the parameter estimation methods
presented in the literature. Most of them, covered in Section 2.5, are based on the least
squares method, which involves two drawbacks: 1) the initialization of these methods
requires some a priori knowledge of the unknown parameters, and 2) they produce
biased estimates in presence of colored noise. These pitfalls can be circumvented by
resorting notably to instrumental variable (IV) methods [145, 128, 146], which provide
unbiased estimates regardless of the noise type and initial parameter uncertainty.

In the following, two parameter identification techniques are explained. The first
one exploits the dynamic EHM Eq. (5.2), corresponding to the solid-phase diffusion
process, to estimate the electrode diffusion time constant τs = D−1

s R2
s . The second one

exploits the output Eq. (5.3), corresponding to the electrochemical reaction process, to
estimate the film resistance R f around the electrode. The former and latter parameters
are related to capacity and power fade of the battery, respectively.

Estimation of the Diffusion Time Constant

As discussed in Section 3.2, the parameter identification problem is based on
model Eq. (4.10). This model has constant parameters in contrast to model Eq. (5.2).
The battery is thus assumed to operate around a given current intensity along the
considered data set. A third-order model is considered, which is in line with the
model order selected in [140] for the solid-phase diffusion model. Such model order
selection results from the frequency response of the model and the frequency content
of the input signal, which happens to be driving cycles in [140]. The estimation
problem now boils down to estimating parameters Rs and Ds in

CSC(s)
I(s)

≈ 1
FasLcs,max

21R3
s s2 + 1260RsDss + 10395R−1

s D2
s

s(R4
s s2 + 189R2

s Dss + 3465D2
s )

(5.19)

given the measurements

CŜC(tk) = CSC(tk) + vn1(tk) (5.20)

provided by the EKF of Section 5.1.1, with tk = kTs, Ts the sampling period. vn1(tk) is
a noise source that notably accounts for the estimation error of the EKF. This noise is
assumed to be uncorrelated with the input data. As the EKF relies on the nonlinear
model Eqs. (5.2),(5.3) and its error covariance matrix changes with time, the additive
noise of the state estimation is not granted to be white and it is heteroscedastic3.
Special attention to this feature is then necessary.

The above stated parameter estimation problem does not directly fall into a
standard continuous-time parameter estimation problem in the prediction error
framework since:

(a) The transfer function has a pole at the origin.

(b) The parameters of interest Ds and Rs appear nonlinearly in Eq. (5.19).

These issues prohibit the direct use of the standard SRIVC method of Table 3.5. How-
ever, the issues can be overcome by first removing the unstable part of the transfer

3An heteroscedastic noise is a noise whose variance varies with time.
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function through data pre-filtering with a state-variable filter (SVF). Secondly, the
resulting transfer function is identified by using instrumental variable (IV) techniques.
Finally the nonlinear function in the coefficients Ds and Rs can be turned into a linear
form to obtain the capacity fade SOH indicator.

Starting with the SVF, it yields the filtered quantities CSCf(s), If(s), CŜCf(tk) and
vn1,f(tk) defined as

CSCf(s) =
s

s +∇CSC(s) and If(s) =
1

s +∇ I(s) (5.21)

CŜCf(tk) =
s

s +∇CŜC(tk) and vn1,f(tk) =
s

s +∇ (CŜC(tk)−CSC(tk))(5.22)

where the cutoff frequency ∇ should be properly chosen to keep the relevant fre-
quency range of the third-order Padé approximation.

Based on the new set of signals Eqs. (5.21) and (5.22), the filtering operation
transforms model Eq. (5.19) and the associated measurement equation into:

CSCf(s)
If(s)

=
1

FasLcs,max

21R3
s s2 + 1260RsDss + 10395R−1

s D2
s

R4
s s2 + 189R2

s Dss + 3465D2
s

(5.23)

CŜCf(tk) = CSCf(tk) + vn1,f(tk). (5.24)

This filtering operation a priori accounts for the pole at the origin, rendering a
stable system in Eq. (5.23). Similarly to vn1(tk) in Eq. (5.20), vn1,f(tk) in Eq. (5.24) is
an heteroscedastic colored noise.

Moving now to the IV-based estimation of parameters Ds and Rs in Eq. (5.23), let
us first rewrite the model as:

CSCf(s) =
B(s, θcoef)

A(s, θcoef)
αIf(s) (5.25)

where A(s, θcoef) and B(s, θcoef) respectively stand for{
B(s, θcoef) = b2s2 + b1s + b0 (5.26a)
A(s, θcoef) = s2 + a1s + a0 (5.26b)

with θcoef = [a1 a0 b2 b1 b0]T and α = 1/(FasLcs,max). The constant FasLcs,max
involves geometric parameters assumed to be known, although the method could
be extended to the case where this is not true. Comparing Eq. (5.25) and Eq. (5.23)
directly yields the expressions for the unknown parameters:

a1 = 189R−2
s Ds, a0 = 3465R−4

s D2
s ,

b2 = 21R−1
s , b1 = 1260R−3

s Ds and b0 = 10395R−5
s D2

s
(5.27)

The identification of the parameter vector θcoef from Eqs. (5.24), (5.25) cannot be
solved by the least-squares approach because the output measurements are corrupted
by colored noise. In this scenario, the least squares approach would give biased
estimates [128]. Therefore, the so-called simplified refined instrumental variable for
continuous-time systems (SRIVC) method [146] is used here. The corresponding
algorithm is summarized in Table 5.2. It returns both an estimate of θcoef, θ̂coef, and of
the variance of this estimate, σ̂2

θcoef
= diag(Pθcoef) [147].

The last step of the procedure consists in recovering the physical parameter
estimate θ̂phys =

[
R̂s D̂s

]
. Taking the logarithm of θcoef component-wise in Eq. (5.27)
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TABLE 5.2: The simplified refined instrumental variable method for
continuous-time systems for the parameter identification of the trans-

fer function Eq. (5.19) given the measurements Eq. (5.20)†.

Initialization: given the data sequences YtN = {ytN , ytN−1 , . . . , yt0 , utN , utN−1 , . . . , ut0}
At iteration j = 0 compute

LS− SVF estimate : θ̂0 =

(
N

∑
k=0

ϕT
tk

ϕtk

)−1( N

∑
k=0

ϕT
tk

Υtk

)
with ϕtk =

1
(s +∇)2

[
s2αIf, sαIf, αIf, −sCŜCf, −CŜCf

]
t=tk

and Υtk =
s2

(s +∇)2 CŜCf

∣∣∣∣
t=tk

For iteration j = 1, 2, . . . compute

Auxiliary output : CS̊Cf(s) =
B(s, θ̂j)

A(s, θ̂j)
αIf(s)

Instrumental vector : ζtk =
1

A(s, θ̂j)

[
s2αIf, sαIf, αIf, −sCS̊Cf, −CS̊Cf

]
t=tk

Regressor vector : ϕtk =
1

A(s, θ̂j)

[
s2αIf, sαIf, αIf, −sCŜCf, −CŜCf

]
t=tk

IV estimate : θ̂j+1 =

(
N

∑
k=0

ζT
tk

ϕtk

)−1( N

∑
k=0

ζT
tk

Υtk

)

with Υtk =
s2

A(s, θ̂j)
CŜCf

∣∣∣∣∣
t=tk

If convergence occurs according to a user-specified criterion,

e.g. ||θj+1−θj||
||θj|| < µ, or the maximum number of iterations is reached,

then stop, else set j = j + 1
Output:
An estimate of the parameter vector θ, θ̂, and the associated error
covariance matrix:

Error covariance matrix: Pθ = σ2
vn1

(
N

∑
k=0

ζT
tk

ζtk

)−1

†For compactness, the time argument is set as an index.

results in:
log10 θ̂coef = M1 log10(θ̂phys) + M2 (5.28)

where M1 and M2 are given by

M1 =


−2 1
−4 2
−1 0
−3 1
−5 2

 and M2 =


log10(189)
log10(3465)

log10(21)
log10(1260)
log10(10395)

 . (5.29)
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From Eq. (5.28), the following least squares estimate of θphys (in logarithmic scale)
can be obtained:

log10(θ̂phys) =
(

MT
1 M1

)−1
MT

1
(
log10 θ̂coef −M2

)
(5.30)

which provides the means to estimate Ds and Rs, whose respective variances σ̂2
Ds

and
σ̂2

Rs
come from the error propagation of σ̂2

θcoef
. Both estimates can be lumped together

in order to have an estimate of the solid-phase diffusion time constant τs.
It might be argued that the particle radius Rs is not expected to vary with time

and its value could be known in advance through the physical characterization of the
battery electrodes. However, its simultaneous estimation along with the solid-phase
diffusion coefficient Ds is convenient. Indeed, it was observed that it reduces the
estimation error while providing an accuracy indication of the overall estimation.
For its part, the solid-phase diffusion coefficient Ds, and therefore the diffusion time
constant τs, may change in the short term with operating conditions and in the long
term with aging [10]. To distinguish between operation-induced and aging-induced
parameter changes for a given battery, the following approach could be used. Firstly,
parameter estimates are determined at the beginning of the battery life for a set
of operating conditions covering the operating range. This yields a set of values
τ̂s,i(0), i = 1, . . . , noc where noc stands for the number of operating conditions. Next,
new parameter estimates τ̂sc,j are determined regularly from current data in a given
operating condition, say the j-th one. A suitable SOH indicator is then deduced as

SOH =
τ̂sc,j − τ̂s,j(0)

τ̂s,j(0)
.

Estimation of the Film Resistance

The identification of R f is simpler than the previous identification of τs since
it involves the static electrochemical reaction process in contrast to the dynamic
solid-phase diffusion process. The output voltage equation given in Eq. (5.3) can be
rewritten in the following linear form

Υ2(tk) = R f ϕ2(tk) + vn2(tk) (5.31)

where 
Υ2(tk) = yn(tk)− η+

s (tk) + η−s (tk)−U+(tk)− ∆φe(tk)

ϕ2(tk) = −
1

asL
I(tk)

The stated estimation problem can be solved within the output error minimization
framework through a least squares (LS) method. The parameter estimate for the film
resistance R̂ f is given by

R̂ f =

(
N

∑
k=0

ϕ2(tk)
Tϕ2(tk)

)−1( N

∑
k=0

ϕ2(tk)
TΥ2(tk)

)
(5.33)
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whose variance can be computed through

σ̂2
R f

= σ2
vn2

(
N

∑
k=0

ϕ2(tk)
Tϕ2(tk)

)−1

(5.34)

where σ2
vn2

is the residual variance.

5.2 Validation of State/Parameter Estimation for SOH

During regular battery operation, the available (measurable) information is
limited to current, voltage and surface temperature. Therefore, before applying the
state/parameter estimation strategies proposed in Section 5.1 to an experimental
setup, they are first validated via simulation. This allows us to perfectly know all the
battery cell internal states and parameters. Then, experimental validation is carried
out with data coming from a LFP half battery cell.

5.2.1 Validation Through Simulation

The SOH indicator proposed in Section 5.1 is now studied using a LFP half
battery cell, which is simulated resorting to the DFN model described in Section
2.3. As a half battery cell is considered, the negative electrode OCP corresponding
to the lithium metal foil is set to U− = 0 V [21] while i−0 is a constant. Moreover,
two specific features traditionally associated to LFP electrodes are introduced in the
DFN modeling framework in the form of parameter variations. On the one hand,
a C-rate dependent solid-phase diffusion coefficient Ds(I(t)) [57, 148] represents
a variable solid-phase diffusion coefficient [54, 55]. On the other hand, a contact-
resistance distribution [55, 67] Rr reflects resistive-reactant effects [57, 59, 67]. This
distribution is uniform over the interval [0.835, 1.660]Ω·m2, and it was introduced
in a discrete way into the DFN model by associating to each considered spherical
particle a contact-resistance sampled from the distribution. The solid-phase diffusion
process of the DFN model is implemented through a fifth-order Padé approximation
while discretizing all the other PDEs with a central difference method. The system
of nonlinear equations is solved using Newton’s method at each time step. The
parameter values used to set up the simulator are given in the Table C.1, Appendix C.

The input current profile feed to the simulator is the same type as the one used
in the experiments of the next Section 5.2.2 below. This profile consists of a series of
galvanostatic charge/discharge consecutive steps with three different C-rates: C/5,
C/2 and 1C (see Fig. 5.3(a)). For convenience, the charge/discharge cycles that share
the same C-rate are called here cycle blocks and each set of charge/discharge cycles
within each block is denoted as a period. Therefore, the considered input profile has
three cycle blocks made of 3, 5 and 10 periods respectively. The voltage sequence
obtained from the simulator (see Fig. 5.3(b), solid black line) was corrupted with a
white noise sequence with variance σ2 = 1 mV2.

Before implementing the EKF, we verify in simulation if the stochastic stability
conditions provided by Theorem 3.1.2 hold true. This theorem is applied to model
Eqs. (5.2),(5.3), which has been modified according to the considered half battery
cell, i.e. it is expressed in terms of the LFP positive electrode. The same current
profile described above is used. The first condition holds for such a profile, while the
second condition is easy to prove from model Eqs. (5.2),(5.3). In order to verify the
third condition, the procedure outlined in [125] was followed based on numerical
simulations.
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a)

b)

FIGURE 5.3: a) Series of galvanostatic charge/discharge current profile
of C/5, C/2 and 1C consecutive cycles; b) simulated voltage (noise
free as solid black curve) and predicted voltage (dashed blue curve).

The simulator was set up with the parameters and initial conditions given in Table
C.1, Appendix C. Three cases were considered for different filter initializations and
measurement noise variance, namely 1) small initial error and small measurement
noise, 2) small initial error and large measurement noise, and 3) large initial error and
small measurement noise. The values of P(0) and Qsθ were kept constant for all the
cases, namely

diag(P(0)) =
[
10−10, 10−10, 10−10, 10−17, 10−9]

diag(Qsθ) =
[
10−21, 10−19, 10−13, 10−21, 10−10] ,

(5.35)

whereas Table 5.3 summarizes the value of each variable per considered case. The
units of P and Qsθ in Eq. (5.35) are coherent with the units of the state vector.

TABLE 5.3: Initial estimates and measurement noise variance for the
stochastic stability study.

Case x̂sθ,0 [-,-,-,s−1,Ω·m2] R [mV2]
1

[
[0.41, 0.41, 15.78] · 10−2, 1.92 · 10−5, 1.3

]T 10−2

2
[
[0.41, 0.41, 15.78] · 10−2, 1.92 · 10−5, 1.3

]T 102

3
[
[50.00, 50.00, 50.00] · 10−2, 19.20 · 10−5, 1.0

]T 10−2

The simulation results are shown in Fig. 5.4. The input current profile together
with the noiseless output voltage are shown in Fig. 5.4(a), whereas the simulated
and estimated CSC and the associated estimation error are depicted in Figs. 5.4(b)
and (c), respectively. The changes in C-rate are clearly observed in Fig. 5.4(c). The
best scenario is case 1, where the state estimate tracks well the simulated state and
the error remains close to zero. Cases 1 and 2 share the same state initialization. In
both cases, as soon as a different current density kicks in, the estimate suddenly drifts
apart. Although the transient error is higher for the estimate of case 1, this estimate
converges faster than the one of case 2 given the smaller measurement noise and
hence the higher filter gain of case 1. Cases 1 and 3 have the same measurement
noise variance, but the higher initial error of case 3 causes its estimation error to be
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larger than in the other two cases for the first two applied currents. Nevertheless,
this error is considerably reduced for the last applied C-rate to the extent that the
estimation error of case 3 is similar to the one of case 1 once the large initial error
transient is overcome. Thus, it is observed that the estimation error remains bounded
for large initial error or large measurement noise given the P(0) and Qsθ provided in
Eq. (5.35).

a)

b)

c)

FIGURE 5.4: Stochastic stability simulation study considering three
cases, namely: 1) small initial error and small measurement noise (solid
red curve), 2) small initial error and large measurement noise (dashed
green curve), and 3) large initial error and small measurement noise
(dotted blue curve). The plotted signals are a) series of galvanostatic
charge/discharge current profile of C/5, C/2 and 1C consecutive
cycles, and associated voltage (noise free simulation); b) simulated

(solid black curve) and estimated CSC; c) estimation error of CSC.

Now that the constrained EKF has been proven to be stochastically stable, we are
in position to confidently use it. The initial conditions and tuning parameters used
for setting the EKF are

x̂sθ(0) =
[
[0.19, 0.19, 0.19] · 10−2, 6.40 · 10−6, 1.30

]T ,
diag(P(0)) =

[
10−10, 10−10, 10−10, 10−17, 10−9] ,

diag(Qsθ) =
[
10−21, 10−19, 10−13, 10−21, 10−10] ,

(5.36)

where
[
SÔC(0), ĉs,2(0), CŜC(0)

]
were obtained by inverting the OCV function taken

from [148]. Regarding the parameters, gs (= R−2
s Ds) was initialized with a value

of Ds = 10−17 m2·s−1 within the range reported in the literature, i.e. [10−22, 10−14]
m2·s−1 [67], along with a particle radius of Rs = 1.25 · 10−6 m provided by the
manufacturer. For its part, R f was initialized by comparing the voltage drop at the
onset of the voltage-capacity curve of the synthetic data with that obtained from the
EHM Eqs. (5.2),(5.3). The measurement noise variance R was set to 10−2 mV2, which
is two orders of magnitude less than the actual noise value, to improve convergence
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speed.
Some guidelines coming from the physics of the problem were followed in order

to set the process noise variance matrix. First of all, the solid phase concentration
state estimates within each charge/discharge cycle have to be smooth; no abrupt
changes are allowed. Moreover, the CSC estimate has to cover all its possible range,
from 0 to 1, since this ensures that the battery-cell voltage achieves the maximum and
minimum cut-off voltages. The transient of these state estimates should vanish in one
period. The gs estimate has to slowly vary between cycles and blocks, and to exhibit
some convergence trend at the end of each block. The R f estimate is responsible
for the ohmic drop of the voltage within the intermediate composition region, and
therefore it has to ensure that the filtered output voltage is as close as possible to the
measured voltage.

The state estimation results are shown in Fig. 5.5 for SOC and Fig. 5.6 for CSC.
Fig. 5.5(a) shows the simulated and predicted SOC, whereas Fig. 5.5(b) portrays the
estimation error that is incurred. The same convention is used in Figs. 5.6(a)-(b) for
the CSC. From the figures it follows an overall good match after transient between
simulated and predicted battery internal states. Most of the transient dynamics of
the filter appear in the first period of each cycle block, with estimation errors as large
as [0.20, 0.17, 0.12] for SOC and [0.41, 0.29, 0.18] for CSC during C/5, C/2 and 1C,
respectively. After these first periods, the estimation error converges towards zero,
remaining smaller than 0.09 for both states. The predicted voltage coming from the
EKF based on the EHM Eqs. (5.2),(5.3) is shown in Fig. 5.3(a).

a)

b)

FIGURE 5.5: State estimation study: a) simulated (solid black curve)
and predicted SOC (dashed blue curve); b) SOC estimation error.

The parameter estimation results are displayed in Fig. 5.7, where both the fixed
parametric values of the simulation and the parametric time evolution of the esti-
mation are shown. Fig. 5.7(a) corresponds to the parameter gs while Fig. 5.7(b)
corresponds to the film resistance R f , where the bounds (minimum and maximum
values) on the contact-resistance distribution Rr are represented by the solid and
dashed black constant curves. From 5.7(a) follows that ĝs exhibits a monotonic
increase within the considered time horizon and in turn within each cycle block.
Within each block, the gs estimate moves towards its true value specified in the
simulator (gs = R−2

s Ds, see Table C.1, Appendix C) but it requires more periods
to converge as the C-rate increases. For its part, two resistive contributions can be
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a)

b)

FIGURE 5.6: State estimation study: a) simulated (solid black curve)
and predicted CSC (dashed blue curve); b) CSC estimation error.

ascribed to R̂ f in Fig. 5.7(b). The first one is a constant resistance along the considered
time horizon, whereas the second one is a resistance that increases non-linearly (in
contrast with the proposition in [140]) in the extreme composition regions at each
charge/discharge cycle, i.e. where the nonlinearities prevail. The former and the
latter contributions can be associated to a film resistance and the LFP resistive reactant
feature, respectively. While the film resistance contribution remains within the Rr
bounds (0.835, 1.660) Ω.m2, the resistive-reactant contribution tends to overstep these
bounds by forming the spikes clearly observed in the figure. These spikes are artifacts
that cause a small overpotential in the filtered output (inset plot), but it is corrected
within seconds (less than 10 s). These artifacts might be avoided by modifying the
tuning parameters of the filter, but it would render a slower convergence.

The CSC estimate coming from the EKF is now used to obtain a refined estimate
parameter set θ̂phys = [ D̂s, R̂s ] and R̂ f for each C-rate. The SRIVC estimation was
carried out using the available data after removing the transient, i.e. the first 1, 2
and 4 periods for C/5, C/2 and 1C, respectively. The need to account for longer
transient periods as the current rate increases comes from the fact that both current
and diffusion coefficient are approximately doubled simultaneously. Table 5.4 shows
the Ds and Rs refined estimates, along with their standard deviation. By comparing
these results with the true values (Table C.1, Appendix C), it is observed that the
diffusion coefficient exhibits relative errors of 15%, 9% and 13%, while the particle
radius presents relative errors of 10%, 4% and 9% for C/5, C/2 and 1C, respectively.
This error level is acceptable in the considered framework aiming at SOH monitoring
as will be justified below.

In spite of the gap between estimated and true parameters, their standard de-
viations do not reflect such a difference. This issue can be explained in terms of
modeling error. Indeed, the parameter estimation procedure relies on a single-particle
third-order model (for both the Kalman filter and the SRIVC method), while the
simulator relies on a multi-particle higher-order model (fifth-order model). In order
to exhibit that the misfit stems from modeling uncertainties, the fit goodness, defined
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a)

b)

FIGURE 5.7: State estimation study: a) fixed (solid black curve) and
predicted gs (dashed blue curve); b) solid and dashed black lines re-
spectively depict the lower and upper bound of the contact-resistance

distribution Rr while dashed blue curve is the predicted R f .

TABLE 5.4: Results obtained using the SRIVC method for the estima-
tion of Ds and Rs, and the LS method for the estimation of R f on each

cycle block of simulated data.

C-rate D̂s · 1017 σ̂Ds

·1019 R̂s · 106 σ̂Rs

·109 R̂ f
σ̂R f

·105

[m2·s−1] [m] [Ω·m2]
C/5 2.55 1 1.127 3 1.2951 10
C/2 6.83 5 1.201 5 1.26830 4
1C 13.0 14 1.357 8 1.23295 2

by the following metric, is evaluated:

Fit = 100

(
1− ‖ CŜC−CSC ‖
‖ CŜC−CS̄C ‖

)
(5.37)

where ‖ · ‖ denotes the 2-norm, CŜC is the EKF estimate of the surface concentration,
CS̄C is the mean of CŜC and CSC is captured from the third-order Padé approximation
Eq. (5.19). CSC is evaluated twice, respectively with the estimated parameters θ̂phys
from Table 5.4, and with the true parameters θ = [Ds, Rs] from Table C.1, Appendix
C, which results in the values of the fit reported in Table 5.5. In both cases the fit has
the same order of magnitude, demonstrating that modeling uncertainties rather than
parameter estimation is the main source of misfit.

The R f refined estimates obtained using the LS method and the associated stan-
dard deviation are also shown in Table 5.4, where it can be seen that the film resistance
estimates are within the considered contact-resistance range (Table C.1, Appendix C).

In order to have a benchmark to compare the simulation results on SOH estimation
obtained from the SRIVC method, the widely popular least squares estimation method
is now used to estimate the same parameter set θphys = [Ds, Rs]. This method has
been already used to tackle similar battery parameter identification problems as
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TABLE 5.5: Fit results obtained from comparing the EKF estimation
with the Padé approximation model using the true (θ) and estimated

(θ̂phys) parameters.

C-rate [h−1] \ Fit [%] θ θ̂phys
C/5 81 86
C/2 79 84
1C 79 72

the one considered here [87, 91, 77]. The parameter estimates obtained from the LS
method are denoted as D̂LS

s and R̂LS
s , which are shown in Table 5.6 together with their

associated standard deviation. In contrast to the SRIVC method, the LS parameter
estimates for Ds and Rs exhibit a bigger error with respect to the true values (Table
C.1, Appendix C). The diffusion coefficient shows relative errors of 62%, 88% and
96% whereas the particle radius incurs in 25%, 40% and 100% of relative error for C/5,
C/2 and 1C, respectively. Not only these estimates are more biased than the ones
obtained through SRIVC method, but they are also inconsistent since the wrong trend
can be seen as the magnitude of the current applied to the battery becomes larger.
It is worth recalling that the true value of Ds increases with battery current while
Rs is constant throughout the simulation studies, which are trends revealed by the
SRIVC method despite some offset in the actual value of the estimated parameters.
Indeed, in presence of colored noise on the output data, the LS method applied to
continuous-time systems is known to provide biased estimated parameters [128].

TABLE 5.6: Results obtained using the LS method for the estimation of
Ds and Rs on each cycle block of simulated data.

C-rate D̂LS
s · 1017 σ̂DLS

s

·1019 R̂LS
s · 106 σ̂RLS

s

·109

[m2·s−1] [m]
C/5 1.15 5 0.933 20
C/2 0.88 4 0.755 20
1C 0.66 1 0.002 0.01

The above results demonstrate that the proposed approach is able to detect pa-
rameter changes in the order of 100% with less than 15% of relative error (for e.g. Ds
at C/5) once the transient has vanished. Given the simplicity of the third-order model
compared to the target system, the obtained results are satisfactory. Even though the
results focus on parameter changes of a LFP battery cell during regular operation, the
considered parameters are directly related with aging processes and their evolution
reflects the SOH of most lithium-ion batteries. Indeed, magnitude changes of more
than 70% and 400% are expected for Ds and R f , respectively, after 360-500 operating
cycles [37, 82, 83, 84]. Therefore the methodology is suitable for SOH monitoring. The
proposed approach is now tested in the light of experimental data in the next section.

5.2.2 Experimental Validation

After the validation through simulation, we had the opportunity to get experi-
mental data from a LFP half battery cell gathered by Prof. Alexandre Léonard at the
Department of Chemical Engineering, Université de Liège. Such data was exploited
to assess the performance of the proposed approach. This section introduces the
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experimental setup and testing conditions, followed by the discussion of the obtained
results.

Setup and Testing Conditions

The considered positive electrode consists of lithium iron phosphate, LiFePO4
(LFP), as active material provided by beLife/Prayon (Pholicat FE100). Slurries con-
taining LFP, binder and conducting carbon (Timcal C-nergy Super C65) in weight
ratios 75:5:20 respectively were coated on Al acting as current collector. After drying
at 60◦C overnight, the coated electrodes were weighted, giving access to the mass of
active material with good accuracy (≈ 2 mg·cm−2). These electrodes were then dried
under vacuum (2 · 103 Pa) during 2 h and introduced in a glovebox (M-Braun) under
argon atmosphere for half-cell assembly.

To evaluate the electrochemical behavior, the formed electrodes were assembled
in CR2032 coin-cells, with 2 Celgardr separators (25 µm thickness and 16 mm diam-
eter each) soaked with 80 µL of electrolyte (lithium hexafluorophosphate, LiPF6 1
mol·L−1 in an ethylene carbonate:diethyl carbonate – 1:1 mixture). 15-mm diameter
metallic lithium disks were used as reference- and counter-electrode (half-cell design).
The half-cells were then tested in galvanostatic cycling mode on a BioLogic VMP3
multichannel potentiostat at 25◦C in a temperature-controlled climate chamber. Gal-
vanostatic charge/discharge was carried out at C-rates of C/5, C/2 and 1C between
2.0 and 4.2 V vs. Li+/Li. The equilibrium potential of the material was obtained
from the average of charge and discharge curves at a C-rate of C/100. The maximum
experimental capacity of the material was 155 mAh·g−1.

Results and Discussion

A set of current and voltage data was gathered from the above introduced
experiment. Notice that both the simulation of Section 5.2.1 and the experiments of
the current section share the same type of input current profile. The only difference
is in the last cycle block of the experimental data, where five periods are considered
instead of ten (see Fig. 5.8(a) and (b) for measured current and voltage, respectively,
coming from the LFP half battery cell).

The same procedure for state initialization and parameter tuning outlined in the
simulation Section 5.2.1 to set up the constrained EKF was followed in the experi-
ments. Nevertheless, the OCP function used with experimental data was the one
obtained from LFP half battery cell measurements at C/100. The measured OCP was
fitted using a nonlinear least squares method and its functional form is given by Eq.
(C.1), Appendix C. The initial state and tuning parameter values were the following

x̂sθ(0) =
[
[8.41, 8.41, 8.41] · 10−4, 6.40 · 10−6, 1.00

]T ,
diag(P(0)) =

[
10−10, 10−10, 10−10, 10−17, 10−9] ,

diag(Qsθ) =
[
10−12, 10−13, 10−14, 10−22, 10−12] ,

(5.38)

where the first three components of the state vector are dimensionless, and the fourth
and fifth components are associated to the inverse of the diffusion time constant [s−1]
and an ohmic resistance [Ω ·m2], respectively. The units of P and Qsθ are coherent
with the units of the state vector. While the variance of the measured voltage was
found to be between (1.1, 14.2) · 10−1 mV2 according to the considered cycle block,
the measurement noise variance was set to a smaller value of 10−2 mV2 to improve
convergence speed.
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a)

b)

FIGURE 5.8: a) Series of galvanostatic charge/discharge current profile
of C/5, C/2 and 1C consecutive cycles carried out at 25◦C between 2.0
and 4.2 V; b) experimental (solid black curve) and predicted voltage

(dashed blue curve).

Fig. 5.9(a) presents the rightly initialized Coulomb-counted SOC and the SOC
estimated by the filter, whereas Fig. 5.9(b) shows the estimated CSC. Although the
CSC estimate covers the entire range of allowed values (0 and 1, respectively), the
SOC estimate exhibits a smaller operating range (from approximately 0.2 to 0.8). This
cyclic behavior can be ascribed to the slow diffusion dynamics of the LFP chemistry,
which results in a difference between the lithium concentration at the outer shell and
the inner core of the spherical particle model. The resulting model output voltage is
shown in Fig. 5.8(b).

a)

b)

FIGURE 5.9: State estimation study: a) Coulomb-counted (solid black
curve) and estimated SOC (dashed blue curve); b) estimated CSC.

Fig. 5.10(a) and (b) shows the tracking of the uncertain parameters, namely gs
and R f respectively, together with the mean value of a contact resistance determined
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experimentally R̄r. The estimated gs follows a similar trend as in the simulation Sec-
tion 5.2.1. Considering a constant particle radius, it can be argued that the diffusion
coefficient changes not only with C-rate but even within each cycle block. Neverthe-
less, the simulation in Section 5.2.1 showed that gs time-variation within each block is
due to the transient in the estimate and not because of an actual parameter variation.

With regard to the other parameter, the film resistance, there are multiple ways to
obtain a reference value from experimental data [31, 149]. Here, this experimental
value was computed using the following expression:

R̄r = asL
∆V
∆I

, (5.39)

where ∆V is the first potential drop at the onset of the discharge voltage curve as soon
as a current is applied, and ∆I is the current magnitude that causes such a voltage
change. The R f estimate coming from the filter underestimates the contact resistance
with respect to the reference value R̄r. However, R̄r might be larger than the real
impedance of the battery since it was computed just after the current flip from charge
to discharge. Therefore, effects such as concentration gradients might be included in
R̄r. Even if R̄r is an overestimation, its order of magnitude and decreasing trend as the
current rate increases coincides with those ones of the R̂ f . The same two contributions
observed in the simulation Section 5.2.1 are exhibited by the R f estimate, namely the
film resistance and the resistive-reactant feature. Moreover, this estimate also shows
similar spikes as the ones observed in simulation. Nonetheless, these spikes have
smaller magnitude than in simulation, which also reduces the fictitious overpotential
in the filtered output (inset plot in Fig. 5.8(b)). Again, the spikes are artifacts made
up by the filter given the tuning parameters.

a)

b)

FIGURE 5.10: State estimation study: a) estimated gs; b) experimen-
tally determined contact resistance mean R̄r (solid black curve) and

estimated R f (dashed blue curve).

In contrast to other modeling efforts, the EHM Eqs. (5.2),(5.3) used here does not
embed any special feature or mechanism limitation, such as bulk-related rate [54, 55]
or resistive-reactant rate limitations [57, 59, 67]. This model relies on few assump-
tions and gives "freedom" to these parameters, that in turn govern the controversial
electrochemical mechanism of LFP electrode operation (see Section 2.3). The slowly
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time-varying parameters are expected to adjust their values according to the data,
revealing the underlying electrochemical mechanism instead of imposing it. This is
only possible in a state/parameter estimation setting.

The SRIVC method is now used to split ĝs into its contributions D̂s and R̂s. The
data was pretreated similarly as in simulation Section 5.2.1, by removing the first 1,
2 and 4 transient periods for C/5, C/2 and 1C, respectively. The obtained refined
estimates and associated standard deviations are shown in Table 5.7. As expected, D̂s
increases for each cycle block, whereas R̂s can be considered as constant. Therefore,
the ĝs dynamics can be mainly ascribed to Ds. This further motivates the notion of
a C-rate dependent diffusion coefficient [57] to describe the rate capability of LFP
electrodes. Given these results, it seems clear that the electrochemical reaction is
facilitated at the bulk diffusion level with higher current densities.

TABLE 5.7: Results obtained using the SRIVC method for the estima-
tion of Ds and Rs, and the LS method for the estimation of R f on each

cycle block of experimental data.

C-rate D̂s · 1017 σ̂Ds

·1019 R̂s · 106 σ̂Rs

·108 R̂ f
σ̂R f

·105

[m2·s−1] [m] [Ω·m2]
C/5 1.15 4 2.42 1 0.5961 10
C/2 5.09 3 2.19 2 0.38591 4
1C 28.0 20 2.3 10 0.31090 3

The particle radius Rs refined estimate is c.a. 2.30 · 10−6 m in contrast with
the value of 1.25 · 10−6 m provided by the manufacturer. This discrepancy can be
explained in terms of the real infinite-dimensional system and the considered reduced-
order model. While LFP electrodes are comprised by a particle-size distribution
within a range of c.a. (0.1, 2.0) · 10−6 m, the reduced-order model is based on a
single-particle approach. Therefore, the particle radius estimate should be considered
as an apparent one describing LFP crystals agglomeration. Considering the radius of
agglomerates as the characteristic diffusion length renders larger values of diffusion
coefficient [150].

Finally, the film resistance parameter variation is obtained using the LS method
and it is shown in Table 5.7. The overall trend of the film resistance estimate is to
decrease its value as the C-rate increases, suggesting that the reaction becomes easier
at the surface reaction level besides the bulk diffusion level assessed above.
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5.3 State/Parameter Estimation for Battery Monitoring & FDI

This section deals with the diagnosis problem of internal and sensor faults
occurring simultaneously in a battery. As opposed to the EKF in Section 5.1, this
section focuses on an unscented Kalman filter for state/parameter estimation (orange
block in Fig. 5.11) and it motivates this observer upgrade first. More specifically, a
dual unscented Kalman filter is proposed in this section, followed by a FDI system
for internal and sensor faults. The standard UKF of Section 2.4 is modified to account
for the nonlinear algebraic constraint arising from side reactions taking place. The
state observer provides residuals (blue "residual generator" block in Fig. 5.11), which
are statistically post-processed with a log-likelihood ratio algorithm (blue "decision
system" block in Fig. 5.11) to determine whether a sensor fault has occurred. This
procedure enables the detection and isolation of both internal faults, such as capacity
and power fade, and sensor faults, for voltage and temperature measurements.

It is worth stressing that while the work in Section 5.1 aims at SOH tracking, the
work in this section aims at sensor fault diagnosis while accounting for model uncer-
tainty of SOH-related parameters. Both pieces of work are not mutually exclusive
by no means, and future contributions should combine these two ingredients in an
unified framework.

FIGURE 5.11: Block diagram of the fault detection and isolation
scheme.

5.3.1 From the EKF to the UKF

The previous Section 5.1.1 introduced an EKF as a basis for the state estimation
of a lithium-ion battery. Although simple and widely used in engineering, the EKF
comes associated with intrinsic errors due to the model linearization it relies on.
One way to improve upon the EKF is to resort to another Kalman-based nonlinear
filter, namely the unscented Kalman filter (UKF). In contrast to the EKF, the UKF
avoids linearization by approximating the probability distribution of the state random
variable, and it propagates such sampled distribution through the true nonlinear
system. To see the advantages of using the UKF over the EKF when a lithium-ion
battery model is concerned, let us take two of the most nonlinear transformations of
the eEHM of Section 4.2, namely the core temperature and voltage equations given



94 Chapter 5. System Identification & Fault Detection and Isolation

by:

V = ∆U±s + ∆η±s + ∆φe − R f FI (5.40)

T+1
bc = Tbc +

Ts

ρcCpc

(
kc (Tbs − Tbc)− I

(
∆U±b − Tbc∆

∂U±b
∂Tbc

−V

))
(5.41)

where the time argument has been dropped for each state variable, Eq. (5.40) and the
right-hand side of Eq. (5.41) are referred to the k time instant, while the variable T+1

bc in
Eq. (5.41) is referred to the k + 1 time instant. The sampling time is represented by Ts.
Both Eqs. (5.40),(5.41) depend on a state vector of the form xsT = [SOC, CSC, Tbc, Tbs]

T.
However, let us fix SOC = 0.50 and Tbs = 298 K in order to have two nonlinear func-
tions dependent on two state variables only, namely x = [CSC, Tbc]

T. The nonlinear
transformation Eqs. (5.40),(5.41) can be written in general form as

ynl = hnl(x), (5.42)

where ynl = [V, T+1
bc ]T. The true mean and covariance of the random variable x

subject to the nonlinear transformation Eq. (5.42) are respectively given by

ȳnl = E[hnl(x)]
Pnl = E[(ynl − ȳnl)(ynl − ȳnl)

T].
(5.43)

For the sake of illustration, let us assume that CSC and Tbc are independent ran-
dom variables, whose mean and variance are respectively denoted by x̄ = [CS̄C, T̄bc]

T

and Px = diag{[σ2
CSC, σ2

Tbc
]}. Considering the first-order linearization of Eq. (5.42)

and taking the expected value of both sides yields

ȳl ≈ hnl(x̄) (5.44)

with an associated covariance matrix given by

Pl ≈
(

∂h
∂x

∣∣∣∣
x̄

)
Px

(
∂h
∂x

∣∣∣∣
x̄

)T

. (5.45)

Finally, the unscented transform (UT) generates a set of 2n + 1 sigma points (see
Section 3.1.3), with n = 2 for system Eqs. (5.40),(5.41), according to

X =
[

x̄ x̄ +
(√

nP
)

l
x̄−

(√
nP
)

l

]
, l = 1, . . . , n (5.46)

where n is the dimension of x and (·)l is the l-th column of the matrix. The mean
approximation is obtained by transforming the sigma points of Eq. (5.46) using the
nonlinear function in Eq. (5.42) as

Y = hnl(X ), (5.47)

and then taking the weighted sum of the transformed sigma points according to

ȳUT =
2n

∑
l=0

WlYl (5.48)
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with W0 = 0 and Wl = 1/(2n), l = 1, . . . , 2n. The associated covariance matrix is
given by

PUT =
2n

∑
l=0

Wl (Yl − ȳUT) (Yl − ȳUT)
T . (5.49)

In general, it is difficult to transform a probability density function through a
nonlinear function. Exact analytic nonlinear transformations with indicated mean and
variance can only be obtained for simple transformations such as polar-to-rectangular
coordinate transformation [121]. For the nonlinear system at hand Eq. (5.42), we
exploit simulation to show what happens to random variables when propagated
through the system. For this end, 104 sample points are generated randomly for CSC
and Tbc, which are assumed to be normally distributed. Three cases are considered,
namely 1) nominal case, 2) high mean CSC case and 3) high mean and variance Tbc
case. The mean and standard deviation values used for each case are shown in Table
5.8.

TABLE 5.8: Mean and standard deviation values of the random vari-
ables used to simulate model Eqs. (5.40),(5.41).

Case CS̄C σCSC T̄bc [K] σTbc [K]
1 0.50 0.01 298 0.5
2 0.95 0.01 298 0.5
3 0.50 0.01 318 7

The results obtained for cases 1-3 in Table 5.8 are depicted in Figs. 5.12(a)-(c),
respectively. The gray points denoted as "PD" correspond to the sampled a posteriori
probability distribution. The empirical estimate of the mean and covariance at the
output of the nonlinearity, together with the mean and covariance approximated via
linearization and unscented transformation, are shown in the figure with symbols
and ellipses of red, green and blue colors, respectively. As shown in Fig. 5.12(a),
in nominal conditions of SOC = 50% and ambient temperature of 25◦C (case 1),
the mean and covariance estimates obtained from linearization and the unscented
transformation are very close to those of the nonlinear system. However, when
the mean of the first and second state variables is increased towards more extreme
conditions and their associated variance are stretched over a wider operating range
(cases 2 and 3), the difference between the considered approximations becomes more
accentuated. In such situations, the linearized approximation suffers a considerable
mean bias with respect to that of the empirical mean, which is not so marked for the
unscented transform mean as seen in Figs. 5.12(b)-(c). Therefore, the UKF is able to
approximate nonlinear functions with a higher accuracy than the EKF, which implies
that the battery states can be confidently estimated in a wider operating range by
using such UKF.

5.3.2 The Dual Unscented Kalman Filter for NLDAE Systems

In contrast to the previous Section (5.1), the specific model Eqs. (5.2),(5.3) is
dropped and the more general eEHM Eqs. (4.63)-(4.67) is recovered including state,
parameter, output and algebraic equations. Compared to the model of the previous
section that was able to handle mild applied currents (less than 1C), this more complex
model allows one to obtain reliable state estimates over a wider operating range,
as was observed in the experiments later described in Chapter 7. Moreover, this
model also includes a more descriptive side reaction model typically associated to
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a)

b)

c)

FIGURE 5.12: Nonlinear (in red), linearized (in green) and unscented
transformed (blue) mean (symbol) and covariance (curve) of normally
distributed random variables for a) case 1, b) case 2 and c) case 3
in Table 5.8. The gray dots correspond to the sampled probability

distribution of the random variable.

negative electrode degradation processes. This eEHM is based on a third-order EHM
for the solid-phase diffusion dynamics of the state Eq. (4.63) such as the one used
in Section 5.1.1. The extra model dynamics rely on a second-order EHM for the
electrolyte-phase diffusion dynamics, and thermal and aging submodels following
from Sections 4.2.2 and 4.2.5 in discrete-time. For the aging models, both parametric
changes and algebraic constraints are considered. This model choice preserves the
nonlinear difference algebraic equation (NLDAE) model Eqs. (4.63)-(4.67). After
including the noise sources in a more general framework than in Section 5.1.1, the
resulting model has the following form

x(k + 1) = A(x(k), θ(k))x(k) + Bzz(k) + Bdd(k) + fx(u(k), x(k), y(k)) + wn(k) (5.50)
θ(k + 1) = fθ(θ(k), k, wn,θ(k)) (5.51)

y(k) = hy (z(k), x(k), θ(k), vn(k)) (5.52)
0 = hn(z(k), x(k), θ(k))− hSEI(d(k), x(k), θ(k)) (5.53)

u(k) = z(k) + d(k) (5.54)

where x(k) ∈ R8 is the difference state vector x(k) =
[
xs(k)T, xe(k)T, xT(k)T, xQ(k)

]T,
u(k) ∈ R is the input vector u(k) = I(k), y(k) ∈ R2 is the output vector y(k) =

[V(k), Tbs(k)]
T, z(k) ∈ R is the algebraic state vector z(k) = FasLjn(k) and θ(k) ∈ R2

is the parameter vector θ(k) = [θ1(k), θ2(k)]
T. Unlike the parameter vector of Section

5.1 defined over the physically meaningful variables Ds and R f , now the parameter
vector θ corresponds to perturbed or normalized versions of the physical variables
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like θ1(k)Ds,ref and θ2(k)R f , where Ds,ref and R f stand for the value of the given
variable at the beginning of the battery life (while Ds,ref changes with aging, Ds
depends on Ds,ref(k) and Tbc(k) according to the Arrhenius Eq. (2.20)). Therefore, a
given change in the physical parameters is reflected in the variables comprised in
θ(k). Process, parameter and measurement noise sequences are respectively denoted
by wn(k) ∈ R8, wn,θ(k) ∈ R2 and vn(k) ∈ R2. These noise sequences are normally
distributed, zero-mean mutually uncorrelated white noise sequences with covariance
matrix

E

 wn(k)
wn,θ(k)
vn(k)

 [wn(l)Twn,θ(l)Tvn(l)T] =

 Q 0 0
0 Qθ 0
0 0 R

 δkl . (5.55)

The state A(x(k), θ(k)), input Bz and disturbance Bd matrices, as well as state
fx(u(k), x(k), y(k)), output hy(z(k), x(k), θ(k)) and algebraic hn(z(k), x(k), θ(k)),
hSEI(d(k), x(k), θ(k)) nonlinear functions are given in Section 4.2.8. The parameter
function fθ(θ(k), k) takes the form fθ(θ(k), k) = θ(k). As aging is a slow process, the
parameter θ is modeled as a constant subject to changes due to the noise term. To clar-
ify how the parameter vector θ(k) enters in the system model, the solid-phase diffu-
sion matrix As(x(k), θ(k)) and the main reaction output equation hn(u(k), x(k), θ(k))
dependent on θ(k) are reported in the following:

As(x(k), θ(k))=

 1 0 0
θ1(k)gs(k)

γ1
β1β2

1− θ1(k)gs(k)
(

γ1
β1

+ γ1+γ2
β2

)
θ1(k)gs(k)

(
γ2
β2
− β3γ1

β1β2

)
0 θ1(k)gs(k)

γ2
β3

1− θ1(k)gs(k)
γ2
β3


(5.56)

for the state matrix and

hn (u(k), x(k), θ(k)) = ∆U±s (k) + ∆η±s (k) + ∆φe(k)− θ2(k)
R f

asL
u(k) (5.57)

for the output function. The time variation of gs(k) comes from its dependency
on the core temperature state variable as referred above for Ds (gs(k) = τs(k)−1 =
R−2

s Ds(k)).
The just introduced eEHM Eqs. (5.50)-(5.54) is now exploited to design a state

observer. The estimation of the parameter vector θ provides parameter-based SOH
indicatiors, while state estimation will result in state estimates used for battery
monitoring and in residuals. Since the UKF provides a more accurate estimation of
the mean and variance of a random variable subject to a nonlinear transformation
as shown in Section 5.3.1, we opted for this observer over the EKF of Section 5.1.1.
Time-varying parameters are tracked through dual estimation, which is preferred
over the joint estimation used in Section 5.1.1 given its lower computational burden
due to smaller covariance matrices. These computational savings are at the expense of
neglecting (possible) correlations between state and parameters. This dual estimation
approach is however convenient in order to possibly account for different time scales
between state and parameter dynamics.

While the dual UKF is recognized as the most suitable approach for our specific
estimation problem, there is one last issue that needs to be tackled, namely the
NLDAE system model Eqs. (5.50)-(5.54). This model contrasts with the ordinary
difference equation estimation problem solved in the previous section. Different
approaches have been proposed in the literature to deal with the state estimation
problem of NLDAE systems. As there is no classical way to handle these systems,
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to the best of our knowledge, and no solution has been proposed in the battery
community, these approaches have not been included in the State of the Art, Chapter
2 and the Prerequisite Material, Chapter 3. Nonetheless, other communities like
power systems are obliged to deal with this type of systems, and therefore we resort
to their contributions on the topic. The following joint state and parameter estimation
for NLDAE systems found in the literature are worth mentioning:

(a) Nonlinear moving horizon observer handling constraints [151].

(b) Constrained ensemble Kalman filter [152].

(c) Extended Kalman filters based on an ODE model deduced from the NLDAE
model by elimination of the algebraic state [153, 154].

(d) Unscented Kalman filter [154].

Approaches like (a) and (b) come associated with high computational burden. The
EKF in (c) is prone to accumulate linearization errors, which might be significant in
the case of batteries at high and low SOC and temperatures as shown in Section 5.3.1.
The UKF in (d) resorts to a DAE solver and provides a trade-off between complexity
and accuracy. The UKF algorithm proposed below departs from the above methods
in two ways:

• First, it uses a dual framework to solve the state/parameter estimation.

• Second, it handles the nonlinear algebraic equation in a different way as de-
scribed below.

The corresponding algorithm is presented in Table 5.9 for system Eqs. (5.50)-(5.54)
with

f (u(k), z(k), x(k), θ(k), y(k), wn(k)) = A(x(k), θ(k))x(k) + Bzz(k)
+Bdd(k) + fx(u(k), x(k), y(k)) + wn(k).

For the dual framework, a second output equation must be introduced to handle
the measurement update for the parameter vector (see Eq. (5.75) in Table 5.9 below).
This output equation can be written as

δ(k + 1) = hn (z(k + 1), x(k + 1), θ(k)) + vn(k + 1) + vn,θ(k + 1), (5.58)

where vn,θ(k) is a white noise sequence of variance matrix Rθ and

x(k + 1) = A(x(k), θ(k))x(k) + Bzz(k) + Bdd(k) + fx(u(k), x(k), y(k)) + wn(k).

Notice that Eq. (5.58) is a copy of the voltage component of the output Eq. (5.52)
with a fictitious noise vn,θ(k), where the nonlinear function hn (z(k + 1), x(k + 1), θ(k))
is evaluated with the parameter θ(k) in both the state and the output functions. The
output Eq. (5.58) considers the previous states x(k), z(k), d(k) as a given (known)
inputs.

Secondly, contrary to the methods presented in the above references, the system
Eqs. (5.50)-(5.54) is not linearized in order to eliminate the algebraic state, nor solved
as a DAE system at each time step. An alternative method that turns out to limit
the computational burden while keeping a similar estimate quality for the battery
application is considered. The algebraic state z(k) characterizing the current split
between main (z(k)) and side reactions (d(k) = u(k)− z(k)) is estimated by solving
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the nonlinear optimization problem Eqs. (5.61) and (5.66) in Table 5.9 below through
the trust-region-reflective method. This could be interpreted as "peaking up" the
random variable around its mean, i.e. Pz → 0 [155] where Pz is the covariance matrix
of z). This approach decouples the difference and algebraic state estimation while
avoiding linearization errors. The resulting estimator is then able to exploit Euler
discretization to solve an ODE model, which speeds up computation when compared
to solving the DAEs, without significantly sacrificing state and parameter estimation
accuracy. The resulting UKF is able to handle NLDAEs of index 14. The gain in
computation burden essentially results from the fact that the algebraic equation is
solved only once to get the average of the algebraic state distribution, instead of
solving it for each sigma-point.

5.3.3 Fault Detection and Isolation

In contrast to other contributions in the field of FDI systems for lithium-ion
batteries described in Section 2.6, we consider multiple process and sensor faults
simultaneously. The dual UKF of the previous Section 5.3.2 provides an estimation
of both the system state and SOH-related parameters. By monitoring the temporal
evolution of variables as the state Qloss(k) and parameters θ(k) and comparing them
with their nominal value, fault diagnosis for internal faults can be achieved. Magni-
tude changes of 100% and 400% could be expected for Ds,ref and R f , and 30% loss of
capacity after 500 operating cycles [37].

The same UKF of Section 5.3.2 also generates residuals of the form

ν(k) = y(k)− ŷ(k), (5.78)

which can be exploited for sensor fault detection and isolation using the tools intro-
duced in Section 3.3. Here, the generalized likelihood ratio (GLR) algorithm [130] is
used as statistical test to detect a change in the residual mean. Thus, when the GLR
decision function Eq. (3.84) is compared with a threshold h̄, it provides the required
criterion to distinguish between the hypotheses of Eq. (3.82).

4The DAE system has to be differentiated once to transform it into an explicit ODE system [154].
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TABLE 5.9: The dual unscented Kalman filter algorithm for the consid-
ered NLDAE system [156, 126]†.

Initialization: for k = 0, set
x̂0 = E[x0], P0 = E[(x0 − x̂0)(x0 − x̂0)

T]
x̂a

0 = E[xa
0] = [x̂T

0 0 0]T

Pa
0 = E[(xa

0 − x̂a
0)(xa

0 − x̂a
0)

T] = diag(P0, Q, R)
θ̂0 = E[θ0], Pθ,0 = E[(θ0 − θ̂0)(θ0 − θ̂0)

T]

Computation: for k = 1, 2, . . . compute
Sigma points:

X a
k−1 =

[
x̂a

k−1 x̂a
k−1+γ

√
Pa

k−1 x̂a
k−1−γ

√
Pa

k−1

]
(5.59)

Θk−1 =
[
θ̂k−1 θ̂k−1+γ

√
Pθ,k−1 θ̂k−1−γ

√
Pθ,k−1

]
(5.60)

Algebraic state estimation:
ẑk−1 = arg minzk−1

‖ ek−1 ‖2
2

s.t. ek−1 = hn
(
zk−1, x̂k−1, θ̂k−1

)
− hSEI

(
dk−1, x̂k−1, θ̂k−1

) (5.61)

Time-update:
X x

k|k−1 = f
(
uk−1, ẑk−1,X x

k−1, θ̂−k , ŷk−1,X w
k−1
)

(5.62)

x̂−k =
2nax

∑
l=0

W(m)
l X x

l,k|k−1, θ̂−k =θ̂k−1 (5.63)

P−k =
2nax

∑
l=0

W(c)
l

(
X x

l,k|k−1 − x̂−k
) (
X x

l,k|k−1 − x̂−k
)T

(5.64)

P−θ,k = Pθ,k−1 + Qθ (5.65)

Algebraic state prediction :
ẑ−k = argminzk

‖ e−k ‖2
2

s.t. e−k = hn
(
zk, x̂−k , θ̂−k

)
− hSEI

(
dk, x̂−k , θ̂−k

) (5.66)

Yk|k−1 = hy

(
ẑ−k ,X x

k|k−1, θ̂−k ,X v
k−1

)
(5.67)

∆k|k−1 = hn
(
ẑ−k , f (uk−1, ẑk−1, x̂k−1, Θk−1, yk−1, w̄k−1) , Θk−1, v̄k

)
(5.68)

ŷk =
2nax

∑
l=0

W(m)
l Yl,k|k−1, δ̂k=

2naθ

∑
l=0

W(m)
l ∆l,k|k−1 (5.69)

Measurement-update

Py,k =
2nax

∑
l=0

W(c)
l

(
Yl,k|k−1 − ŷk

) (
Yl,k|k−1 − ŷk

)T
(5.70)

Pδ,k =
2naθ

∑
l=0

W(c)
l

(
∆ l,k|k−1 − δ̂k

) (
∆ l,k|k−1 − δ̂k

)T
+ Rθ (5.71)

Pxy,k =
2nax

∑
l=0

W(c)
l

(
X x

l,k|k−1 − x̂−k
) (
Yl,k|k−1 − ŷk

)T
(5.72)

Pθδ,k =
2naθ

∑
l=0

W(c)
l

(
Θl,k|k−1 − θ̂−k

) (
∆ l,k|k−1 − δ̂k

)T
(5.73)

Kk = Pxy,kP−1
y,k , Kθ,k=Pθδ,kP−1

δ,k (5.74)

x̂k = x̂−k + Kk (yk − ŷk) , θ̂k=θ̂−k + Kθ,k
(
yk − δ̂k

)
(5.75)

Pk = P−k − KkPy,kKT
k , Pθ,k=P−θ,k − Kθ,kPδ,kKT

θ,k (5.76)
Parameters for x and θ

γ =
√

na + λ, λ = α2(na + κ)− na

W(m)
0 = λ

na+λ , W(c)
0 = λ

na+λ + 1− α2 + β

W(m)
l = W(c)

l = 1
2(na+λ)

, l = 1, . . . , 2na, na = 2n + p
(5.77)

†For compactness, the time argument is set as an index.
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5.4 Validation of State/Parameter Estimation for Battery Mon-
itoring & FDI

Similarly as in Section 5.2, the first step for validating the approach proposed
in Section 5.3 is to carry out simulations. The obtained results are shown in this
section. In contrast to the estimation strategy for SOH monitoring of Section 5.1, the
estimation strategy for FDI could not be experimentally validated in the present work,
but it remains as a pending task for future work.

The battery internal and sensor FDI system is assessed through a simulated
graphite|LCO battery cell based on the eEHM described in Section 4.2. The parameter
values used to set up the simulator are the ones provided in Table C.2, Appendix C
[157]. This model is solved using the interior-reflective Newton’s method at each time
step. The current profile is a positive and negative square wave with resting periods
of 100 s in-between each pulse. The pattern of the total current u(k) applied to the
battery is very similar to the one of the main reaction current (algebraic state z(k))
shown in Fig. 5.13 given the small side reaction rate, i.e. d(k) ≈ 0→ u(k) ≈ z(k).

Remark 5.4.1. Notice that the previous Section 5.2.1 has shown a good agreement between
the state estimation based on a EHM and the true state values coming from the DFN model
for low applied currents (equal or less than 1C). Although we are aware that a strict validation
requires an accurate simulator and experiments, at this point we think that it is reasonable to
exploit the low computational burden of reduced-order models to validate our approach.

FIGURE 5.13: Primary reaction current state (ẑ) estimated with the
dual UKF in the left y-axis, where solid black and dashed red, green
and blue (overlapping) curves represent the scenarios of fault-free,
internal faults, voltage sensor fault and surface temperature sensor
fault, respectively. The right y-axis corresponds to the associated

estimation error (dotted blue curve).

A white noise sequence with variance diag(R) = [R1, R2]T, R1 = 10 mV2 and
R2 = 102 mK2 was added to the output signals obtained from simulation. Although
the input signal is also corrupted by noise in real applications, it could be accommo-
dated in the proposed UKF framework and we assume a noiseless current here. Both
system and sensor faults are considered in three different scenarios, namely:

• Case 1: process faults comprising capacity and power fade.

• Case 2: voltage sensor fault.

• Case 3: temperature sensor fault.
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Within process faults, capacity fade Qloss due to side reactions starts to happen from
the very beginning of the battery utilization [37], it increases linearly over time and it
is always present. The other two process faults, namely capacity fade due to aging
and power fade, are injected as drifts in the parameters Ds,ref and R f respectively,
according to Eqs. (4.1) and (4.2). These assumed aging-induced parameter variations
contrast with the additional operation-induced parameter changes considered in the
previous Section 5.1. The latter are not required by the battery chemistry explored
in the current section. These equations of degradation have been slightly modified
to evidence an accelerated aging process within the considered time horizon. Both
faults are considered simultaneously since it is the most likely situation. Within
sensor faults, a bias is injected in both voltage and surface temperature measured
signals. These sensor faults are considered independently of each other since it is the
most likely situation. The equation numbers describing parameter drifts, sensor fault
magnitudes f and time instants τf,0 of fault injection are given in Table 5.10 for each
variable.

TABLE 5.10: Equations describing parameter drift, sensor fault magni-
tudes and fault injection time instants for each variable.

Qloss Ds,ref R f V Tbs
(Eq.),f (2.25) (4.2) (4.1) 10−2 V 10−1 K

τf,0 [min] 0.00 36.67 23.33 35.00 25.00

A similar procedure for state initialization and parameter tuning outlined in the
previous Section 5.2.1 to set up the constrained EKF was followed for the dual UKF.
The tuning parameter values were the following

x̂(0) =
[
1T

3 · 0.67, 1T
2 · 103, 1T

2 · 298, 0
]T

diag(P0) = 1T
8 · 10−14, diag(Q) = 1T

8 · 10−16

diag(Pθ,0) = [10−3, 10−8]T, diag(Qθ) = 1T
2 · 10−4

αx = 0.01, βx = 2, κx = 3− nax = −15
αθ = 0.1, βθ = 2, κθ = 3− naθ = 1

(5.79)

where the first three components of the state vector are dimensionless, the second
two components are associated to the electrolyte-phase concentration [mol ·m−3],
the third two components are thermal states [K] and the last component is capacity
loss [Ah]. The units of P and Q are coherent with the units of the state vector. The
units of the parameter vector are defined as [s−1] and [Ω ·m2] for the first and
second component related to the inverse of the diffusion time constant and an ohmic
resistance, respectively. The units of Pθ and Qθ are coherent with the units of the
parameter vector.

Fig. 5.13 shows the estimation of the algebraic state, while its state estimation error
is represented by the dotted blue curve at the bottom of this plot, with the associated
y-axis on the right. Fig. 5.14 depicts the estimation of the dynamic states of the main
reaction, namely the solid-phase diffusion states in Fig. 5.14(a), the electrolyte-phase
diffusion states in Fig. 5.14(b) and the thermal states in Fig. 5.14(c). The dynamic
state of the side reaction, i.e. the capacity fade state, is shown in Fig. 5.15(a). The
obtained results are considered as satisfactory for every injected fault. Indeed, the
estimation performed over the different faulty scenarios is so close to each other and
to the actual states (solid black curves) that the curves overlap even for the considered
parameter faults (dashed red curves), voltage sensor fault (dashed green curves) and
temperature sensor fault (dashed blue curves). Thus, the considered faults do not
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affect significantly the state estimate to be used for battery monitoring. Let us see
whether they can be detected in such an early stage.

a)

b)

c)

FIGURE 5.14: State estimation study: a) solid-phase diffusion states;
b) electrolyte-phase diffusion states; c) thermal states. Solid black
and dashed red, green and blue (overlapping) curves represent the
scenarios of fault-free, internal faults, voltage sensor fault and surface

temperature sensor fault, respectively.

Fig. 5.15(b) shows the estimation of the normalized slow time-varying parameters,
namely the capacity fade due to aging on the left y-axis and the power fade on the
right y-axis. When only internal faults take place, the parameter estimates (dashed red
curves) try to track the actual parameter changes (solid black curves). The estimation
of the power fade, θ̂2, is closer to the actual power fade when compared with the
aging-induced capacity fade estimation, θ̂1. This might be related to the sensitivity
of the voltage output function, which is higher for the film resistance R f than for
the diffusion coefficient Ds under the considered operating conditions. When only a
voltage sensor fault occurs, both capacity and power fade estimates start to oscillate
(dashed green curves). When only a temperature sensor fault occurs, neither the
capacity nor the power fade estimates considerably move from their operating points
(dashed blue curves). Therefore, the parameter estimation is more sensitive to voltage
changes than to temperature changes. The detection and isolation of the latter two
faults can be achieved by processing each residual given by

νV(k) = V(k)− V̂(k)
νT(k) = Tbs(k)− T̂bs(k)

(5.80)

through a GLR algorithm Eq. (3.84).
Figs. 5.16 and 5.17 show residual information associated to voltage and temper-

ature sensors, respectively. Fig. 5.16(a) and 5.17(a) depict the generated residuals
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a)

b)

FIGURE 5.15: State estimation study: a) capacity fade state; b) normal-
ized aging parameters, namely rate capability and power fade on the
left and right y-axis, respectively. Solid black and dashed red, green
and blue curves represent the scenarios of fault-free, internal faults,
voltage sensor fault and surface temperature sensor fault, respectively.

ν(k), whereas 5.16(b) and 5.17(b) portray the decision functions gGLR(k) associated to
each residual for each respective sensor. For setting the GLR parameters, the residual
mean and variance for the healthy condition are estimated from a residual sequence
obtained in healthy operation. Besides, the window size is chosen as M = 5. This
window size ensures fast change detection of abrupt faults with a low computational
burden. Should the signal-to-noise ratio decrease, a longer window size would be
needed resulting in larger computational costs. When only internal faults take place
(solid red curves), the residual sequences do not exhibit a significant change in the
mean and none of the GLR functions exceed the preselected threshold (dashed black
curves). This threshold is 2× 102, which was chosen through simulation to ensure
fast detection and absence of false alarm in the considered data set. Thus, hypothesis
0 in Eq. (3.82) associated to a healthy operation can be declared. When a given sensor
fault occurs (green and blue curves), the residual sequence associated to that fault
exhibits an evident change in the mean, which translates into the GLR function ex-
ceeding its threshold. Thus, hypothesis 1 in Eq. (3.82) associated to a faulty operation
can be flagged. Notice that voltage and temperature faults can be distinguished from
each other since each residual only reacts to a fault occurring to its associated sensor.

5.5 Concluding Remarks

This chapter has dealt with the state and parameter estimation problem towards
SOH monitoring and sensor fault diagnosis. Two battery systems were considered,
namely a LFP half battery cell and a graphite|LCO battery cell. On the one hand,
special features of the LFP electrode, such as a solid-phase diffusion process depen-
dent on the operating condition and a contact-resistance distribution, have been
accounted for. On the other hand, a more thorough degradation model associated to
side reactions and SEI growth in the graphite electrode has been considered for the
graphite|LCO battery.
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a)

b)

FIGURE 5.16: Fault detection study considering the voltage sensor: a)
generated residuals and b) associated GLR decision function. Solid
red, dashed green and dotted blue curves represent the scenarios of
internal faults, voltage sensor fault and surface temperature sensor

fault, respectively.

a)

b)

FIGURE 5.17: Fault detection study considering the surface tempera-
ture: a) generated residuals and b) associated GLR decision function.
Solid red, dashed green and dotted blue curves represent the scenarios
of internal faults, voltage sensor fault and surface temperature sensor

fault, respectively.

Two approaches for SOH monitoring and sensor FDI have been presented inde-
pendently, but both have strengths and weaknesses and they could be merged into
a single solution. Different models and state observers were explored, which vary
in complexity and accuracy. Within the modeling framework, a simple third-order
EHM was used as a basis to design an EKF for SOH monitoring, whereas a more
sophisticated eEHM including electrolyte diffusion, thermal and aging dynamics
was exploited to design an UKF. While the EHM has been proven to be accurate at
low currents (less than 1C), the eEHM can be confidently used in more demanding
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operating conditions such as larger currents. This is particularly relevant for fast
charging, which is discussed in the next two Chapters 6 and 7. However, the side
reactions of the eEHM considered here makes it a DAE system, which complicates its
handling for estimation and control.

Within the estimation framework, the EKF is computationally cheap and simple
to implement, but it requires Jacobians that might be not trivial for large systems and
it inherently comes associated with linearization errors. The UKF overcomes these
issues while being able to accommodate noise corrupting the input signal. Moreover,
a dual estimation is preferred over a joint estimation given the computational savings
and the possibility of directly exploiting the time-scale separation between battery
regular dynamics and aging dynamics for estimation update.

In the first contribution, periodic SOH indicators for capacity and power fade
have been derived. An EKF is used to estimate the internal state of the battery, which
is exploited for SOH estimation by parameter identification techniques such as SRIVC
and LS methods. The former method provides unbiased parameter estimates in
spite of the presence of (possibly colored) noise and wrong initial parameters. These
aspects are in sharp contrast with the widely popular LS methods for estimating
unknown parameters of dynamic systems. In the second contribution, the model
operating region was enlarged by considering additional battery dynamics, and the
resulting model was used to design an UKF to provide SOH estimates related to
accelerated aging and residuals to assess sensor faults. It is shown that residuals
made of the output estimation errors provide an early detection and isolation of
voltage and temperature sensor faults, while the state and parameter estimates allow
distinguishing between capacity and power fade. For the considered small fault
magnitudes the internal faults and sensor faults turn out to be decoupled.

Besides the intrinsic advantages of models like EHM and eEHM, joint and dual
estimation, and EKF and UKF observers in terms of computation and accuracy,
the two proposed approaches have the add-on monitoring units that deserve some
comments. The EHM-based EKF is able to discern between operation-induced and
aging-induced parameter changes thanks to the periodic parameter identification
scheme, to which the second proposed approach is blind. The eEHM-based UKF
is, for its part, able to assess sensor faults, to which the first proposed approach is
unaware of. Having these two features around a given state observer would be the
most robust solution for SOH monitoring and sensor diagnosis.
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Chapter 6

Fast Charging Constrained Control

While the previous Chapter 5 focused on the monitoring part of the battery
supervisory control system (light green and blue blocks in Fig. 6.1), this chapter
is centered around the constrained control strategy for battery fast charging (red
block in Fig. 6.1). A state observer is again needed to access the internal state of the
battery (orange block in Fig. 6.1). The present chapter is structured as follows. Section
6.1 describes all the theoretical development and implementation issues involved
when deriving a reference governor to solve the constrained control problem for
battery charge. Section 6.2 follows to validate the proposed approach using a detailed
battery cell simulator and compares its performance with commercial CCCV charging
strategies. The validation step in this chapter is restricted to testing the fast charging
features of the proposed controller via simulated short-term cycling. However,
Chapter 7 goes one step further by studying the safe charging capabilities, on top of
the fast charging ones, that the proposed controller is able to deliver. This is assessed
through long-term cycling experiments.

FIGURE 6.1: Block diagram of the control system for a battery cell.

6.1 State Feedback Constrained Control

After exploring state and parameter estimation for SOH monitoring and fault
diagnosis in Chapter 5, it is time to close the loop and control the battery operation.
More specifically, we aim at charging the battery faster and healthier than commercial
charging protocols. While the current chapter focuses on the fast charging, the next
chapter adds the healthy management of such charging. We achieve this through
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electrochemical modeling and constrained control. It is worth pointing out that
we restrict ourselves to using computationally cheap solutions if compared with
e.g. MPC schemes, so that we eventually could test our methods on board. Such
kind of solutions are based on reference governor (RG) schemes. However, the
standard scalar RG of Section 3.4 is modified to handle OR constraints that typically
characterize degradation mechanisms (red "reference governor" block in Fig. 6.2). The
modified RG acts on a battery that has been pre-stabilized using a linear quadratic
regulator (LQR) with integral action (red "Kx" and "Ki" blocks in Fig. 6.2). This state
feedback controller needs to be coupled with a state observer (orange block in Fig.
6.2) to come up with an output feedback controller, since the system state is unknown.

FIGURE 6.2: Block diagram of the optimal constrained control scheme.

6.1.1 Pre-Stabilization

This preliminary work on fast charging control uses an alternative version of
the system Eqs. (4.63)-(4.74) that has been simplified and modified according to the
problem needs. First, only the solid-phase diffusion dynamics are accounted for in
the state Eq. (4.63) through a second-order EHM, which translates in x(k) = xs(k).
Secondly, no unknown parameters are considered, which means that Eq. (4.64) is
dropped. Thirdly, the nonlinear output voltage function (first component of Eq. (4.65))
is replaced by the SOC(k) measurement through Cs = [1 0]. Fourthly, the algebraic
functions Eqs. (4.66),(4.67) are disregarded by neglecting degradation mechanisms,
which makes the DAE model become an ODE model. The resulting model replacing
Eqs. (4.63)-(4.73) takes the form

xs(k + 1) = Asxs(k) + Bsu(k) (6.1)
ys(k) = Csxs(k) (6.2)

where xs(k) ∈ R2 is the solid-phase diffusion state vector xs(k) = [SOC(k), CSC(k)]T,
u(k) ∈ R is the battery current input vector u(k) = I(k) and ys(k) ∈ R is the battery
state-of-charge ys(k) = SOC(k). Finally, the convex inequality constraints Eq. (4.74)
of system Eqs. (4.63)-(4.67) are substituted by a more general nonconvex counterpart
(OR constraints) for the simplified system Eqs. (6.1),(6.2), which are closer to the
original constraint set Eq. (2.32). This constraint reformulation is explored in the next
section.



6.1. State Feedback Constrained Control 109

The system Eqs. (6.1),(6.2) is equivalent to the system Eq. (3.86) for which the
standard SRG was derived. Therefore, we can pre-stabilize the system using a similar
LQR controller with integral action as in Section 3.4. Resorting to the same state
feedback control law of Eqs. (3.90),(3.91) given by

u(k) = − [Kx Ki]

[
xs(k)
xi(k)

]
(6.3)

the closed-loop system takes the form of Eqs. (3.93),(3.94), which is retrieved here for
convenience, i.e.

xcl(k + 1) = Aclxcl(k) + Bclv(k) (6.4)

where the closed-loop state vector is xcl(k) =
[
xs(k)T, xi(k)

]T, and the state and input
matrices are respectively given by

Acl =

[
As−BsKx −BsKi
−BiCs As

]
, Bcl =

[
0
Bi

]
, (6.5)

with Ai = 1 and Bi = 1.

6.1.2 Electrochemical Constraints Reformulation

Before designing the desired Reference Governor scheme, the electrochemical
constraints Eq. (4.49) derived from the original constraints Eq. (2.32) have to be
rewritten in terms of the closed-loop system Eqs. (6.4),(6.5). Instead of considering
a convex set as in Eq. (4.74), we generalize here the inequality constraints Eq. (4.49)
through a set of nonconvex constraints. Such set consists of both linear and nonlinear
nonconvex constraints. The linear constraints Eqs. (4.49a),(4.49b) can be expressed as

ST
j xcl(k) ≤ sj, j = 1, ..., 4 (6.6)

where S1 = −[1 0 0]T, S2 = −S1, S3 = −[0 1 0]T, S4 = −S3, and s1 = 0, s2 = r̄cs ,
s3 = 0, and s4 = r̄cs . These linear constraints are depicted in Fig. 6.3(a) as dashed blue
curves denoted with numbers 1-4 within blue circle symbols. The admissible region
given by the lower bounds of Eqs. (4.49a),(4.49b) is shown in green in Fig. 6.3(b), and
similarly in Fig. 6.3(c) for the upper bounds of Eqs. (4.49a),(4.49b).

The remaining DFN constraints Eqs. (2.32c)-(2.32e) are accounted for by con-
sidering the static characteristic of the battery cell on the plane (CSC− I). This is
carried out through the simulation of the DFN model, by specifying a discharged
battery cell as initial condition and galvanostatically charging the cell at different
C-rates until the boundary of any given constraint Eqs. (2.32c)-(2.32e) is reached.
Such procedure provides possibly nonconvex constraints I ≥ g(CSC), see e.g. the
red area in Fig. 6.3(a) delimited by curves denoted with numbers 5 and 6 within cyan
diamond symbols. These nonconvex constraints can be typically inner-approximated
as the union of linear constraints of the form I ≥ aj,iCSC + bj,i. For example, Fig.
6.3(a) depicts the linear approximations of the nonconvex constraint as dashed purple
curves denoted with numbers 5,1-2 and 6,1-2 within purple circle symbols. The linear
constraints 5,2 and 6,2 are the same, and the different constraints are paired such that
they delimit OR regions. For instance, the union of linear constraints 5,1 and 5,2 gives
the admissible area colored with green in Fig. 6.3(d), and similarly in Fig. 6.3(e) for
constraints 6,1 and 6,2. The union of these linear constraints can be mathematically
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a) b)

c) d)

e) f)

FIGURE 6.3: Electrochemical constraints mapping, where a) non-
linear nonconvex operating region delimited by constraint bound-
aries; admissible area for b) lower and c) upper bounds of constraint
Eqs. (4.49a),(4.49b); union of linear approximations of constraint Eqs.
(2.32c)-(2.32e), i.e. d) lines 5,1 and 5,2 and e) lines 6,1 and 6,2; and f)
resulting admissible (green) and unsafe (red) regions resulting from

the intersection of all the approximated constraints.

written as
2∨

i=1

(
ST

j,ixcl(k) ≤ sj,i

)
, j = 5, 6 (6.7)

where the use of the control law Eq. (6.3) makes the expression only dependent on
the closed-loop state, ST

j,i , aj,i[0 1 0] − [Kx − Ki] and the scalars sj,i = −bj,i for
j = {5, 6}, i = {1, 2}. Thus, the overall constrained region given by the originally
linear constraints and the nonconvex constraints approximated as the union of linear
constraints can be defined as{

ST
j xcl(k) ≤ sj, j = 1, ..., 4∨2
i=1

(
ST

j,ixcl(k) ≤ sj,i

)
, j = 5, 6

∀k > 0. (6.8)

The admissible region of the battery operation is then described by the intersection
of the union of constraints as shown in Fig. 6.3(f), which can be represented by the
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operators AND and OR in generic and compact form as

cc∧
j=1

nc,j∨
i=1

(
ST

j,ixcl(k) ≤ sj,i

)
, ∀k ≥ 0 (6.9)

where cc is the total number of constraints. In the case of Eq. (6.8), nc,j = 1, Sj,1 = Sj
and sj,1 = sj for j = 1, . . . , 4, whereas nc,j = 2 for j = 5, 6.

6.1.3 The Reference Governor with OR Constraints

Inspired by the SRG described in Section 3.4, this work extends the SRG so it can
handle a nonconvex set defined by OR-constraints of the form Eq. (6.9). As with the
SRG, the principle behind this modified RG is to compute at each time instant the
applied reference v(k) such that if it is kept constant from the time instant k onward,
the future state trajectory will never violate the constraints, i.e.

cc∧
j=1

nc,j∨
i=1

ST
j,i x̂cl(`|xcl(k), v(k)) ≤ sj,i, ` = 0, ..., ∞, (6.10)

where x̂cl(`|xcl , v) is the ` step ahead prediction previously defined in Eq. (3.97) but
repeated here for convenience:

x̂cl(`|xcl , v) = A`
clxcl + (I − Acl)

−1(I − A`
cl)Bclv.

Since this time we have the OR-constraints in Eq. (6.9), the inner approximation
of O∞ obtained for the case of the SRG [135] is no longer valid. The following lemma
shows how to compute an arbitrarily tight finitely-computable approximation Õ∞.

Lemma 6.1.1. Consider the linear system Eq. (6.4), where Acl ∈ Rn×n is Schur, and a set
of constraints Eq. (6.9). If constraints Eq. (6.9) define a compact set in Rn, then for any
arbitrarily small ε > 0, it is possible to compute a finite integer `∗ such that

Õ∞ =

(xcl , v)|
`∗∧
`=0

cc∧
j=1

nc,j∨
i=1

HT
x,`,j,ixcl + HT

v,`,j,iv ≤ hj,i

 ∩Oε (6.11)

is an inner approximation of O∞, where HT
x,`,j,i = ST

j,i A
`
cl , HT

v,`,j,i = ST
j,i(I − Acl)

−1(I −
A`

cl)Bcl , hj,i = sj,i and

Oε =

(xcl , v)|
cc∧

j=1

nc,j∨
i=1

HT
v,j,iv ≤ (1− ε)hj,i,

 (6.12)

with HT
v,j,i = ST

j,i(I − Acl)
−1Bcl .

Proof. See Appendix B.

Following the SRG, the scalar κ(k) ∈ [0, 1] that provides the best approxima-
tion of the desired reference r(k) along the line segment v(k− 1) and r(k) ensuring
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(xcl(k), v(k)) ∈ Õ∞ is the solution of the optimization problem given by

κ(k) = max
κ∈[0,1]

. κ (6.13)

s.t.
`∗+1∧
`=0

cc∧
j=1

nc,j∨
i=1

(α`
j,iκ ≤ β`

j,i) (6.14)

where α`
j,i , HT

v,`,j,i(r(k)− v(k− 1)) and β`
j,i , hj,i − HT

x,`,j,ixcl(k)− HT
v,`,j,iv(k− 1) for

` = 0, ..., `∗ and α`∗+1
j,i , HT

v,j,i(r(k)− v(k− 1)) and β`∗+1
j,i , hj,i − HT

v,j,iv(k− 1). As
with the SRG, the command to be applied to the system is given by

v(k) = v(k− 1) + κ(k)(r(k)− v(k− 1)). (6.15)

At this point, using the same arguments as for the standard RG it is possible to
prove the following result.

Theorem 6.1.2. Consider a linear system Eq. (6.4) subject to constraints Eq. (6.9) under the
usual RG assumptions that Acl ∈ Rn×n is Schur and that at time k = 0 the applied reference
v(0) is such that (xcl(0), v(0)) ∈ Õ∞. Then if the applied reference is Eq. (6.15) where κ(k)
is computed using Eqs. (6.13),(6.14):

• At each time step k, the optimization problem Eqs. (6.13),(6.14) always admits at least
one solution and the constraints Eq. (6.9) are satisfied.

• If r(k) is kept constant over time, i.e. r(k) = r and if (0, v(0) + κ(r− v(0))) ∈
Oε, ∀κ ∈ [0, 1] then v(k) will converge to r.

Proof. See [158].

Let us now build an efficient solution for the above optimization problem. Con-
sidering a generic constraint with indices `, j, i

α`
j,iκ ≤ β`

j,i, (6.16)

four cases are possible:

C1 - If α`
j,i, β`

j,i > 0, any positive κ such that κ ≤ min{κ`j,i, 1} where κ`j,i , β`
j,i/α`

j,i is
an admissible solution.

C2 - If α`
j,i ≤ 0, β`

j,i > 0, then any κ ≤ κ`j,i , 1 is an admissible solution.

C3 - If α`
j,i < 0, β`

j,i < 0, then any positive value κ such that κ ≥ κ̄`j,i , β`
j,i/α`

j,i is an
admissible solution if κ̄`j,i ≤ 1.

C4 - There is no solution for κ in all other cases.

Notice that case C1 and C2 match the two cases considered for the SRG develop-
ment in Section 3.4. The remaining cases are added here due to the nature of the OR
constraints. Keeping in mind the four cases C1-C4, let us explore the nature of the
OR operation over index i for fixed indices `, j, i.e.

nc,j∨
i=1

(α`
j,iκ ≤ β`

j,i). (6.17)
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The admissible region in terms of κ assumes then the form

(κ ≤ κ`j ) ∨ (κ ≥ κ̄`j ) (6.18)

where
κ`j = max

i=1,...,nc,j
κ`j,i and κ̄`j = min

i=1,...,nc,j
κ̄`j,i (6.19)

using the convention that if κ`j,i or κ̄`j,i are not defined, they are not considered. Due
to recursive feasibility, κ = 0 is always an admissible solution for the optimization
problem Eq. (6.13). This implies that for at least one i the case C1 or C2 apply, and
thus κ`j is always defined. Conversely, κ̄`j in case C3 might or might not be defined.
This analysis translates in two possibilities depending on whether the admissible
region defined by the OR constraints with indices `, j is equivalent to the single
κ-inequality at the left of Eq. (6.18) or both κ-inequalities in Eq. (6.18) are necessary.
Further classifying the set of all indices (`, j) in terms of these two possibilities yields

Σ1 = {(`, j) : κ ≤ κ`j} and Σ2 = {(`, j) : κ ≤ κ`j ∨ κ ≥ κ̄`j } (6.20)

depending on the fact that at least one κ̄`j,i is defined or not. In the special case where
κ̄`j ≤ κ`j , it is convenient to rewrite the condition as κ ≤ κ`j = 1. The two groups of
indices in Eq. (6.20) can be exploited to rewrite constraint Eq. (6.14) as follows: ∧

(`,j)∈Σ1

(κ ≤ κ`j )

 ∧
 ∧

(`,j)∈Σ2

(κ ≤ κ`j ) ∨ (κ ≥ κ̄`j )


or by defining κΣ1

, min
(`,j)∈Σ1

κ`j , the following simplified version is obtained:

(κ ≤ κΣ1
) ∧

 ∧
(`,j)∈Σ2

(κ ≤ κ`j ) ∨ (κ ≥ κ̄`j )

 . (6.21)

The maximum κ(k) satisfying Eq. (6.21) can be computed according to the follow-
ing simple algorithm:

Algorithm 6.1.1. Computation of κ for the RG with OR constraints.

1. IF κ̄`j ≤ κΣ1
for any (`, j) ∈ Σ2

1.1 κ(k) = κΣ1
;

1.2 STOP.

2. ELSE, for any (`, j) ∈ Σ2 such that κ̄`j > κΣ1

2.1 Set κΣ1
= min{κΣ1

, κ`j}
2.2 Update Σ2 = Σ2 \ {(`, j)}

3. GO TO 1.

Remark 6.1.3. This algorithm solves a maximization problem for the scalar κ in the presence
of nonconvex constraints without using any optimization solver. The numerical operations
involved do not require any special software nor particularly performing hardware for its real-
time implementation (this is in opposition to the high computational requirements involved
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when solving nonconvex optimization problems using more standard control schemes such as
MPC).

6.1.4 Digital Implementation

The constrained state feedback control approach presented in sections (6.1.1)-
(6.1.3) exploits the linear structure of the model state equation in Eq. (6.1) and relies on
the perfect knowledge of the internal state of the system. However, this is not realistic
since only a nonlinear combination of the state can be gathered from an operating
battery. A state observer is used to bypass this issue, resorting to an extended Kalman
filter given its simplicity and low computational cost compared with other nonlinear
estimators.

The system dynamics are based on the state Eq. (6.1), while the measurement
equation corresponds to the nonlinear output Eq. (4.65) representing the voltage
measurement in contrast to the linear output Eq. (6.2). Indeed, SOC cannot be
measured directly in a precise way. After adding the process wn(k) and measurement
vn(k) noise sources, the resulting model takes the form

xs(k + 1) = Asxs(k) + Bsu(k) + wn(k) (6.22)
yn(k) = hn (u(k), xs(k)) + vn(k) (6.23)

where xs(k) ∈ R2 is the solid-phase diffusion state vector xs(k) = [SOC(k), CSC(k)]T,
u(k) ∈ R is the battery current input vector u(k) = I(k), y(k) ∈ R is the battery
voltage output vector yn(k) = V(k), wn(k) ∈ R2 and vn(k) ∈ R are process and mea-
surement white noise sequences, respectively, with the classical noise assumptions,
and the nonlinear output function is given by

hn(u(k), xs(k)) = ∆U±s (k) + ∆η±s (k) + ∆φe(k)−
R f

asL
u(k). (6.24)

The standard EKF of Table 3.2 is directly used as state estimator, where the state
estimate is denoted by x̂s(k). Thus, the true state xs(k) is replaced in the control law
Eq. (6.3) by the estimated state x̂s(k).

6.2 Simulation Results

To evaluate the effectiveness of the RG with OR constraints proposed in Section
6.1, we tested it in simulation on two battery cells differing in chemistry, namely
graphite|LCO and graphite|LMO. The DFN model described in Section 2.3 is simu-
lated using a third-order Padé approximation for the solid-phase diffusion equations,
whereas all the other partial differential and algebraic equations are discretized with
the central difference method. The battery parameters for each chemistry are pro-
vided in Table C.2, Appendix C [22, 157, 159]. Each battery cell chemistry has an
associated set of constraints Eqs. (2.32), whose parameter values are reported in Table
6.1.

Trespassing a constraint induces a specific degradation mechanism. If inequal-
ities Eqs. (2.32a)-(2.32b) are violated, the graphite electrode deposits lithium [160],
the LCO electrode is transformed towards inactive phases and oxygen is released
[161], and the LMO electrode becomes structurally unstable and more vulnerable to
degradation [162]. If constraints Eqs. (2.32c)-(2.32d) are violated, lithium plating side
reaction takes place in the graphite electrode [10] and both LCO and LMO positive
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TABLE 6.1: Values for the DFN model constraints Eqs. (2.32) associated
to degradation mechanisms.

Parameter Graphite LCO LMO
rcs

a 1.00 0.50 0.20
Usr (V) 0.00 4.30 4.20
rce

(mol·m−3) 1.00 1.00 1.00
arcs for graphite, rcs for LCO, LMO.

electrodes undergo solvent oxidation [160, 35], which is critical for the LMO electrode
since it involves acid generation, active material dissolution [163], and manganese
deposition in the graphite electrode [164]. Finally, if inequalities Eqs. (2.32e) are
violated, the amount of lithium in the electrolyte is depleted, which may increase the
internal battery impedance.

As detailed in Section 6.1.2, constraints Eq. (2.32) are mapped into constraints Eq.
(4.49) for the closed-loop system Eqs. (6.4),(6.5) with compactly written constraints Eq.
(6.9). The specific vector and scalar values defining the constraints Eq. (6.9) for each
considered battery are reported in Table 6.2. Two aspects should be highlighted. First,
recall that only the negative electrode is modeled through the EHM embedded in
system Eq. (6.4) given its slower dynamics when compared to the positive electrode.
This just means that the degradation limiting electrode is the latter one, since its state
will reach the associated constraint boundary sooner. However, material balance
allows to map the constraints of the positive electrode into the negative electrode,
which ensures that both electrodes respect their constraints. By constraining the
negative electrode with the values of Table 6.2, which are smaller than the theoretical
values reported in Table 6.1, we are able to keep the positive electrode within its con-
straint boundaries of Table 6.1. Secondly, the number of constraints differs for the two
battery chemistries because they come associated with different nonconvex regions,
and therefore different inner approximations are required (see red areas in Fig. 6.4).
Instead of taking linear approximations that are tangent to the nonlinear functions
wrapping the nonconvex regions, a certain margin (orange area) is left between the
nonlinear constraints (delimiting the red area) and the linear approximations (delim-
iting the green area) to account for model mismatch. Extensive numerical simulations
have demonstrated that for the reported values, the satisfaction of constraints Eqs.
(6.9) in system Eqs. (6.4),(6.5) always ensures the satisfaction of constraints Eqs. (2.32)
on the DFN model, even in presence of the uncertainty resulting from the difference
between the DFN and the EHM.

TABLE 6.2: Values for the constraints Eq. (6.9).

Graphite|LCO Graphite|LMO
s1,1 0 s2,1 0.712 s1,1 0 s2,1 0.622
s3,1 0 s4,1 0.712 s3,1 0 s4,1 0.622
s5,1 -9.33 s5,2 -2.59 s5,1 -17.28 s5,2 -5.76

- - - - s6,1 -33.6 s6,2 -5.76
a5,1 22.47 a5,2 0 a5,1 24 a5,2 7.2

- - - - a6,1 96 a6,2 7.2

For the model-based estimation and control, the second-order EHM Eq. (5.1) is
used with constant parameters θ(k) = θ, where gs = 2.60 · 10−3 s−1, γs = 8.81 · 10−6

C−1 and βs = 0.70 for both battery chemistries. These parameters are directly derived
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FIGURE 6.4: DFN model critical conditions for η+
sr at the positive

electrode/separator interface (electrode dependent), η−sr = 0.0 V at
the negative electrode/separator interface and ce = 1.0 mol·m−3 at
the current collector/negative electrode interface (common for both
batteries). The green, orange and red regions represent the admissible,
safety margin and unsafe operating regions, respectively. The solid
red and cyan curves represent the DFN simulator states and the EKF

state estimates, respectively.

from the DFN model given the explicit relationship between this model and the EHM.
Both battery chemistries have the same parameter set because they share the same
negative electrode. The internal state of the battery is estimated using an extended
Kalman filter (EKF), which was tuned with the following parameters:

x̂s(0) = [3.89, 3.89] · 10−2

diag(P(0)) = 12 · 10−9

diag(Q) =
[
10−13, 10−11]

R = 10−6

(6.25)

where the state vector is dimensionless, as well as diag(P) and diag(Q), while the
unit of R is [V2]. Such state estimate is exploited by the optimal LQR state feedback
with integral action, which pre-stabilizes the system with respect to the state-of-
charge. The LQR controller is designed by selecting suitable Qc and Rc values, i.e.
Qc = 103 · Id and Rc = 10−4, which results in the matrices Kx = [2.8137 0.0066] · 104

and Ki = −2.7833 · 103. The control sampling period is 1 s.
The results of the RG with OR constraints in terms of input and state trajectories

are shown in Figs. 6.4(a) and 6.4(b) for LCO and LMO, respectively. The DFN model
(actual) state is represented by the solid cyan curve, while the EKF state estimate
corresponds to the solid red curve. For both chemistries, the actual state drifts from
the state estimate during the high current stage of the charging process. While the
state estimate is perfectly riding the linear constraints once it achieves them, the
actual state overshoots the first constraint after the maximum current is applied.
Then, it stays within the safety area for a while and it goes back to the safe operating
region, to end up riding the constraint until the charging process is finished. This
behavior is due to model mismatch, which increases with the current magnitude given
the assumptions involved to derive the EHM. Indeed, the assumptions of constant
electrolyte and thermal dynamics are harder to meet as the current rate increases.
The safety margin has been tuned to enforce constraint satisfaction regardless model
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mismatch.
Let us now compare the improvements of the proposed approach with the com-

mercially available and widely used CCCV charging strategy. The virtual batteries
are charged with a 2C CC until the upper cut-off voltages are reached (4.06 V and
3.96 V for LCO and LMO, respectively), followed by a CV charge. Figs. 6.5(a) and
6.5(b) show current and voltage profiles, respectively, for LCO and LMO batteries
subject to CCCV and the RG with OR constraints charging strategies. The CCCV
profile introduces a constant amount of energy during the CC stage (30 min for 2C),
after which the CV stage takes over and gradually reduces the current rate to zero.
Meanwhile, the RG increases the input current at the beginning of charging and it
keeps it higher than e.g. 2C for most part of the charging process. This fact explains
the fast charging capabilities of the RG with OR constraints. But more importantly,
the proposed RG is healthier for battery charging, since it avoids the violation of
constraints associated to battery degradation as pointed out in Fig. 6.4. Notice how
the RG also enables safe incursions beyond the upper cut-off voltage specified for the
CCCV strategy. This result proves the point that voltage operating windows are not
really aligned with any specific degradation mechanism.
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FIGURE 6.5: Current and voltage profiles from the DFN simulator
using CCCV (as dashed curves) and the proposed RG method (as solid

curves) for LCO (in magenta) and LMO (in blue).

Although current and voltage are easy to measure and provide relevant informa-
tion of the operation state of the battery, we are more concerned about the constrained
internal states. The temporal evolution of the constrained variables in Eqs. (2.32) are
shown in Fig. 6.6 for both tested charging strategies. Fig. 6.6(a) shows the SOC evolu-
tion. For LCO, the RG with OR constraints takes 35 min to achieve 99.5% SOC, while
the CCCV strategy requires more than twice that time (90 min) for the same SOC
level. Such charging time difference becomes even greater for the LMO cell, needing
48 min for the proposed RG to reach 99.5% SOC level whereas CCCV strategy only
gets up to 87% after 120 min of charging. This is due to the different diffusion time
constants τ+

s of each positive electrode, namely τ+
s,LCO = 7.23 s and τ+

s,LMO = 722.50
s. A similar trend can also be seen in the CSC evolution of Fig. 6.6(b), but with
faster dynamics. It is interesting to inspect the SOC+ evolution (see Fig. 6.6(c)), since
it shows how the satisfaction of the negative electrode constraints guarantees the
satisfaction of constraints in the positive electrode (rc+s ≥ 0.50 for LCO and rc+s ≥ 0.20
for LMO). Finally, the electrolyte concentration ce as well as the positive and negative
side reaction overpotentials η±sr are depicted in Figs. 6.6(d)-6.6(f). In contrast to the
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CCCV, the RG with OR constraints pushes more the performance of both batteries
by forcing these variables to go closer to the constraint boundaries (namely ce ≥ 1.0
mol·m−3, η−sr > 0.0 V and η+

sr < 0.0 V), especially at the beginning of the charging
process.

These simulation results show that LCO and LMO batteries can be charged
more than twice as fast by using the RG with OR constraints when compared to
conventional charging strategies. At the same time, the proposed RG copes with elec-
trochemical constraints associated to degradation mechanisms, which are supposed
to limit battery performance in the long run.

6.3 Concluding Remarks

This chapter develops a novel RG scheme able to handle nonconvex constraints,
namely constraints that can be characterized by an OR logical operator. This mod-
ified version of the RG is based on a reduced-order electrochemical model, and it
is designed to respect nonconvex electrochemical constraints associated to battery
degradation. This RG acts on a plant that is pre-stabilized through a LQR controller,
and it has access to the battery internal state thanks to an EKF. The proposed ap-
proach has been proven to charge lithium-ion batteries faster than commercial CCCV
charging strategies in a simulation environment. This has been corroborated for two
different battery chemistries, namely LCO and LMO. However, the proposed RG also
ensures the satisfaction of constraints related with battery aging, which makes us
expect that this feedback charge strategy is also able to extend battery life beyond
what is achieved using CCCV protocols. The next Chapter 7 explores the validity of
the last claim in the light of experiments.
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FIGURE 6.6: Profiles of the constrained variables from the DFN simu-
lator using CCCV (as dashed curves) and the proposed RG method

(as solid curves) for LCO (in magenta) and LMO (in blue).
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Chapter 8

Final Remarks

This last chapter wraps up this thesis with a brief summary in Section 8.1, the
conclusions we have reached in the course of this work in Section 8.2 and some
proposed future lines of research in Section 8.3.

8.1 Thesis Summary

This thesis proposed an electrochemical modeling framework and degradation-
related constraints that, when embedded in diagnostic and control systems, proved to
be accurate for the monitoring and performant for the operation of the battery while
extending its lifetime. The recognition of the added value obtained from the tandem
of first-principles models and control theoretic tools might consolidate a leap forward
in the development of advanced battery management systems. More specifically,
the proposed schemes for state-of-health tracking and safe and fast charging were
successfully validated experimentally. The scheme for sensor fault diagnosis remains
to be validated via experiments. The fine-grained control offers the possibility to
operate the battery closer to the limits defined by degradation mechanisms and
not arbitrarily set based on a countless number of experiments and heuristics. The
immediate potential implications are smaller, lighter and cheaper batteries able to
outperform nowadays batteries while keeping reliability and safety in high priority.

Chapters 2 and 3 provide the current state of knowledge concerning the different
topics covered in this thesis as well as the standard control theoretic tools used as a
basis to develop the different proposed solutions.

In Chapter 4, a thorough description of different electrochemical models that
vary in model order and degree of detail is provided. The well-known DFN model
is used as a benchmark to test the different monitoring and control strategies. The
solid and electrolyte-phase diffusion parts of this model were simplified based on
physical notions, e.g. by assuming a single spherical particle instead of multiple
particles or a uniform reaction rate along the battery thickness. This model reduction
yields an equivalent-hydraulic model. Both a thermal and aging models are also
derived and coupled with the hydraulic model, which is finally complemented with a
nonlinear output equation corresponding to the battery voltage. A careful analysis of
degradation mechanisms showed that some of these mechanisms cannot be avoided
for regular battery operation, such as calendar aging and solid-electrolyte interphase
growth. However, some other sources of degradation such as lithium plating can be
mitigated through suitable control policies. The knowledge of the degradation limits
is exploited to come up with a set of electrochemical constraints intended to avoid
the intrinsic conservatism of control strategies nowadays and to extend the lifetime
of the battery.

Chapter 5 introduces diagnostic systems through two different approaches. On the
one hand, the meeting point in-between these two approaches is that they both require
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state observers to achieve their specific goal. On the other hand, the approaches differ
in the following aspects. The first approach aims at providing parameter-based
state-of-health (SOH) indicators to track battery aging, which is recognized to be a
slow process compared to battery dynamics. Thus, system identification techniques
are leveraged to estimate capacity and power fade from a batch of data meant to be
periodically collected. The state estimation is performed by a joint state/parameter
constrained extended Kalman filter. Besides battery monitoring of aging processes,
the second approach aims at diagnosing voltage and temperature sensor faults. To
this end, observer-based residuals are generated and evaluated via statistical change
detection algorithms. The state estimation is performed by a dual state/parameter
unscented Kalman filter for a differential algebraic equation system. Both approaches
were devised to be complementary.

Chapter 6 describes a feedback charge strategy based on electrochemical models
for the fast and health-conscious charge of lithium-ion batteries. First, the battery cell
is pre-stabilized by means of a linear quadratic regulator which is tuned to charge
the battery as fast as possible. Then, the set of electrochemical constraints associated
to battery degradation is enforced through a modified reference governor able to
handle OR constraints. For the digital implementation of this feedback controller, a
state observer is designed. The fast charging capabilities of the proposed approach
are first validated via simulation considering two different battery chemistries. This
approach is further tested in Chapter 7 via long-term battery cycling experiments.
Given the high C-rate conditions of fast charging and the considered battery cell,
the reduced-order electrochemical model used previously needs to be enhanced
with electrolyte and thermal dynamics in order to obtain a sufficiently accurate state
estimate. The resulting model is used to design an extended Kalman filter. The latter
provides the solid-phase diffusion state estimates to the modified reference governor,
which generates a suitable control policy capable of complying with constraints. The
proposed approach outperforms widely used commercial charging strategies in terms
of both capacity retention and charging time.

In summary, the different contributions presented in this thesis have shown a great
potential for improving battery systems through advanced management systems.
These systems are based on electrochemical models and involve different tasks, such
as battery state-of-charge and state-of-health monitoring, sensor fault detection and
isolation and fast and health-conscious feedback charge control. Some of the proposed
solutions were tested in simulation, while some others have been exhaustively tested
with devoted experiments for the first time, to the best of the author’s knowledge.
Through all these capabilities, the new management system should be able to reduce
battery price and size, and improve battery performance, safety and life expectancy.

As it could be seen, throughout Chapters 4-7 several electrochemical parametric
models, state observers, parameter estimators coupled with a fault detection and
isolation system or a closed-loop controller were considered. In order to have a clear
picture of all the aforementioned contributions and the different pieces comprising
them, a summary is provided in Table 8.1. The first column states the different
features that a given contribution can have, whereas the first row heading denotes
each contribution objective. The entries of the first four columns of the table show
all the four contributions with their respective features. The electrochemical models
differ on the number of states used to describe the solid-phase diffusion dynamics (2
or 3 states), as well as whether the model was enhanced with thermal, electrolyte and
aging dynamics. Degradation mechanisms consisted of capacity, rate capability and
power fade, which were associated to variables as Qloss and θ = [Ds, R f ], respectively.
State observers encompassed joint extended Kalman filter (jEKF) and dual unscented
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Kalman filter (dUKF). Finally, parameter estimation, fault detection and isolation
(FDI) diagnosis and closed-loop control were carried out by exploiting the simplified
refined instrumental variable method for continuous-time systems (SRIVC) and
least squares (LS) methods, the generalized likelihood ratio (GLR) algorithm and
a reference governor (RG) with OR constraints, respectively. The chapter/section
number corresponding to each contribution in this thesis is indicated in the last row
of the table. The last column with the heading "All" highlights the ideal scenario (and
perhaps future work) where all the different components developed at each stage of
this work are combined together.

TABLE 8.1: Summary of the different contributions proposed through-
out this thesis.

Feature\Focus Estimation FDI Control Control All
Model EHM3 eEHM3 EHM2 eEHM2 eEHM2
Aging θ θ, Qloss - θ2 θ, Qloss

Observer jEKF dUKF EKF jEKF UKF
Estimator SRIVC/LS - - - SRIVC/LS

FDI Algorithm - GLR - - GLR
Controller - - RG RG RG
Chap/Sec Sec. 5.1 Sec. 5.3 Chap. 6 Chap. 7 Sec. 8.3

8.2 Conclusions

This thesis presented a complete framework for lithium-ion battery monitoring
and control, and the conclusions that can be drawn from this work are the following.

• Electrochemical models have been proven highly useful to improve the current
state of battery systems. Although this type of models are typically too complex
to be loaded into microcontrollers for estimation and control purposes, reduced-
order electrochemical models able to keep relevant battery dynamics can be
obtained and were derived in this work. This modeling framework is beneficial
for deducing state-of-health indicators and degradation-related constraints.

• A diagnostic system for state-of-health monitoring and sensor fault detection
and isolation was proposed. On the one hand, simulations showed that the
state-of-health estimator detected 100% changes of capacity fade with 15% max-
imum error, while the power fade caused by a contact-resistance distribution
was estimated to be within the distribution bounds. The applicability of this
approach was also assessed with experimental data. On the other hand, simula-
tions revealed that internal faults and sensor faults turn out to be decoupled for
small fault magnitudes. Therefore, the battery state-of-health and voltage and
temperature sensor faults can be successfully detected and isolated.

• Feedback charge strategies for lithium-ion batteries were derived from con-
strained control. These strategies are based on electrochemical models with
degradation-related constraints. When tested in simulation, the proposed ap-
proaches proved to be very effective in charging different batteries faster than
commercial charging strategies such as CCCV. When tested in long-term bat-
tery cycling experiments, the approach outperformed widely used commercial
charging strategies such as CCCV in terms of charging time and capacity fade.
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While the proposed approach charges a battery in 75 min and reduces its capac-
ity in 5.2% after 88 cycles, a 2C CCCV needs 96 min to charge the battery and
incurs in 29.7% of capacity fade after the same number of cycles. Actually, the
capacity fade of this approach was comparable to the 4.9% of 1C CCCV, but
the latter takes up to 105 min to charge the battery. Therefore, the combination
of electrochemical modeling with constraints associated to degradation, state
observers and constrained controllers have a great potential to improve battery
systems.

8.3 Future Research Directions

This work has covered modeling, monitoring and control problems related to
lithium-ion batteries while proposing solutions that hopefully add up a small grain
of sand to create the Sahara Desert (i.e. it advances the research field one step further).
Moreover, this work allowed us to identify some open issues in the field of battery
management. We sketch the most relevant future research directions in the following
lines.

This thesis has introduced different notions for the monitoring and control of
batteries. However, many of the approaches proposed here have been proven to work
in simulation and experimental setups, but no concrete mathematical proofs have
been provided. We believe that aspects such as the convergence properties of the
dual unscented Kalman filter for nonlinear differential algebraic equations of Section
5.3.2, the small coupling between internal faults and sensor faults of Section 5.3.3 and
the separation principle for the feedback charge strategy of Section 6.1 can be proven
under suitable hypotheses.

State-of-health indicators have been developed through the study of the different
possible degradation mechanisms that can occur within a battery system. General
aging sources likely to appear in batteries were accounted for. However, our approach
was by no means exhaustive and we considered degradation mechanisms that differ
in their mathematical description. Other battery degradation sources can be added
to this framework, such as electrode particle stress and loss of active material, and
some of the ones included here can be dropped if not considered relevant for a given
battery chemistry and operating conditions.

A diagnosis system has been proposed to monitor the state of health of the battery
and to assess the state of the sensors deployed for gathering measurements. Although
both tasks were tackled separately, an advanced battery management system is
expected to have both capabilities simultaneously. Therefore, the combination of
these two aspects in a proper way remains as an interesting topic that is worth
exploring in the future. This would make the diagnosis system robust to internal
battery faults related to aging as well as sensor faults.

The feedback charge strategy proposed in this thesis has proven helpful to im-
prove battery performance by reducing charge time, increasing lifespan and avoiding
unsafe operating regions. We believe that we have reached a lower bound and these
results can be further improved if the closed-loop control scheme adapts to aging
and accounts for thermal dynamics. To this end, the first step is to analyze the data
already gathered in order to identify the most likely degradation mechanisms taking
place inside the battery. From that knowledge, the model parameters of the state
observer and the controller can be updated in real time to account for degradation.
On the other hand, the dynamics corresponding to battery temperature should also
be considered in the closed-loop system. Extending the proposed control scheme
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to accommodate thermal dynamics would allow to modify the input current such
that thermal constraints are not violated. This approach can be proven beneficial to
further reduce the typically temperature-dependent degradation mechanisms.

Another interesting road to explore is to consider a late lumping approach for the
partial differential equations describing the system, as studied in [77] for instance.
To hold the infinite-dimensional description of the system for estimation and control
design would keep the eigenvalue structure of the problem while untangling the
control synthesis from the discretization technique used for implementation. Thus,
there is no need to reanalyze the system and the control scheme can be preserved
even if a different discretization is needed. Extending the different control schemes
proposed here to infinite dimensions is appealing from the theoretical viewpoint,
although the high dimensionality of this kind of problems involves serious challenges
that need to be addressed.

Although we have focused on the battery charge problem given its relevance
nowadays, the discharge problem should also be addressed in the future. To this
end, a battery pack needs to be considered and the interaction among battery cells
accounted for. Then, the problem of managing the entire pack in terms of short term
and long term operation has to be explored when the battery is subject to unknown
discharge loads (typical of electric vehicles or household demand). Furthermore, the
charging scheme proposed here should also be modified to suit this new scenario.
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Appendix B

Õ∞ Computation in the Case of
OR-Constraints

This appendix presents the proof of Lemma 6.1.1 on how to compute an arbitrarily
tight finitely-computable approximation Õ∞. The proof is inspired by [116] and it is
borrowed from Ref. A5 in Appendix A. Since the matrix Acl is Schur, given a constant
reference v and the corresponding steady state xv = (I − Acl)

−1Bclv, a Lyapunov
function in the form

V(xcl , xv) = (xcl − xv)
TP(xcl − xv), P > 0,

exists such that

V(xcl(k + 1), xv)−V(xcl(k), xv) ≤ −(xcl(k)− xv)
TQ(xcl(k)− xv). (B.1)

with Q > 0. According to Eq. (6.9), the set of admissible states is

X =

xcl ∈ Rn|
cc∧

j=1

nc,j∨
i=1

ST
j,ixcl ≤ sj,i

 . (B.2)

According to the definition of Oε, the set of admissible equilibria xv is

Xv =

xv ∈ Rn

∣∣∣∣∣∣∃v ∈ Rm : xv = (I − Acl)
−1Bclv and

cc∧
j=1

nc,j∨
i=1

ST
j,ixv ≤ (1− ε)sj,i

 .

(B.3)
At this point since: i) X and Xv are compact sets; and ii) since Xv is contained in the
interior of X, the following two quantities exist:

• The maximum possible value of the Lyapunov function for any feasible x ∈ X
and any feasible xv ∈ Xv

Vmax , max
xcl∈X
xv∈X

.V(xcl , xv)

• The minimum value that the Lyapunov function must have so that at least one
state of the associated Lyapunov level set is able to violate the constraints if
xv ∈ Xv, i.e.

Vmin , min
xcl /∈X
xv∈Xv

.V(xcl , xv)

The important consideration here is that, if at a given time k: i) the Lypunov function
V(xcl(k), xv) is less than Vmin; ii) xv ∈ Xv; and iii) if v is kept constant from k onward,
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then, because of invariance, constraints are always satisfied in the future and then
there is no need to check the constraints. At this point to conclude the proof it is
enough to notice that because of Eq. (B.1) whenever V(xcl , xv) > Vmin, the one step
variation always decreases of at least a nonzero quantity ∆Vmin defined as

∆Vmin ,


mine∈Rn eTQe
s.t.

eTPe ≥ Vmin

.

As a consequence, for any xcl ∈ X and xv ∈ Xv, after at most a finite number of
predictions `∗ there is no need to check the constraints. The integer `∗ can be defined
as

`∗ ,
⌈

Vmax −Vmin

∆Vmin

⌉
Note that Eqs. (6.11),(6.12) ensure that xcl(k) ∈ X and xv ∈ X.



159

Appendix C

Battery Model Parameters for
Simulation

This appendix introduces tables with the parameter values used for the different
battery cell chemistries considered in this thesis for numerical simulation. Table
C.1 corresponds to a LFP half battery cell. Table C.2 shows the parameters for
a graphite|LCO and a graphite|LMO battery cells. Table C.3 corresponds to a
graphite|NCA battery cell.

TABLE C.1: List of parameters for the LFP half battery cell [148] used
in Section 5.2 to set up the DFN-based simulator.

Symbol Units Value
Design adjustable parameters

Ab m2 1.13× 10−4

Lb m 5× 10−5

εs
b - 0.14

Rs
b m 1.25× 10−6

as
b m−1 3.36× 105

c̄e
a mol·m−3 103

Lsb m 5× 10−5

Electrode parameters

Ds(I(t))d m2.s−1
3× 10−17

7.5× 10−17

15× 10−17

cs,max
c mol·m−3 22806

k+n a A·m2.5·mol−1.5 4× 10−5

i−0
c A·m−2 19.0

α0
a - 0.5

σs
b S·m−1 6.75

Rr Ω·m2 (0.835, 1.660)
U+ V c

aAssumed bMeasured cTaken from [148]
dSet according to the C-rate (C/5, C/2 and 1C, successively)
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TABLE C.2: List of parameters used for setting up the DFN-based
simulator used in Section 5.4 and Chapter 6 for a graphite|LCO [157]

and a graphite|LMO [22, 157, 159] battery cell.

Symbol Units Graphite Separator LCO LMO
Design adjustable parameters

A m2 1
L m 70× 10−6 25× 10−6 70× 10−6

εs - 0.55 0.5052 0.63
εe - 0.4382 0.45 0.3 0.3
ε - 1.5
nLi

s mol 1.75
Rs m 12.5× 10−6 8.5× 10−6 8.5× 10−6

as m−1 1.32× 105 1.78× 105 2.22× 105

Electrode parameters
Ds m2·s−1 5.5× 10−14 1× 10−11 1× 10−13

cs,max mol·m−3 30555 51555 22860
kn A·m2.5·mol−1.5 1.70× 10−6 6.43× 10−6 2.26× 10−6

α0 0.5 0.5
σs S·m−1 100 10 3.8
Rc Ω·m2 1× 10−5 5× 10−5 2.5× 10−3

t0
c - 0.4

U V a b

aTaken from [157] bTaken from [22]

TABLE C.3: List of parameters used for setting up the DFN-based
simulator used in Chapter 7 for a graphite|NCA battery cell [90].

Symbol Units Graphite Separator NCA
Design adjustable parameters

A m2 1
L m 79× 10−6 80× 10−6 61.5× 10−6

εs - 0.54 0.67
εe - 0.18 0.50 0.33
ε - 1.5
nLi

s mol 1.89
Rs m 14.9× 10−6 8.7× 10−6

as m−1 1.09× 105 2.29× 105

Electrode parameters
Ds m2·s−1 1.44× 10−14 1.41× 10−13

cs,max mol·m−3 37100 51000
kn A·m2.5·mol−1.5 1.70× 10−6 2.35× 10−6

α0 0.5 0.5
σs S·m−1 500 500
Rc Ω·m2 10−5 10−5

t0
c - 0.363

U V a

aTaken from [90]

The OCP function obtained by fitting the experimental data of Section 5.2 is shown
in Eq. (C.1) below. The measurements were taken from a LFP half battery cell subject



Appendix C. Battery Model Parameters for Simulation 161

to C/100 CC, and the fit was obtained by using the nonlinear least squares method.
The OCP functional form is the following:

U+ = −0.01284y + 0.2766 (1 + exp(896y))−1

+0.7715 (1 + exp(113.3(y− 0.002127)))−1

−0.192 (1 + (exp(−107(y− 0.015))))−1

+0.4515 (1 + exp(−108.7((1− y)− 0.03279)))−1

+0.8637 (1 + exp(−90.71(1− y)))−1 + 2.312

(C.1)
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Appendix D

Computation of Electrolyte-Phase
Diffusion Model

The reduced-order model for the lithium-ion diffusion taking place throughout
the electrolyte phase of the battery system is derived here. The approach proposed in
[139] is leveraged to analytically solve the electrolyte-phase diffusion PDEs as it was
previously shown in Ref. A7 in Appendix A. These PDEs are given by

∂ce

∂t
(x, t) =

De,eff

εe

∂2ce

∂x2 (x, t) +
as(1− t0

c)

εe
jn(x, t) (D.1)

where ce is the electrolyte concentration that covers the entire battery cell thickness.
Eq. (D.1) takes the stated form within the positive (+) and negative (−) electrode
spatial domains, while εe = 1 and jn = 0 within the separator (s) domain. The
boundary conditions that guarantee a zero flux of lithium ions outside the system
and continuity of ion flux and electrolyte concentration throughout the cell thickness
are given by 

∂c−e
∂x

(x, t)
∣∣∣∣

x=0
=

∂c+e
∂x

(x, t)
∣∣∣∣

x=L
= 0 (D.2a)

D−e,eff
∂c−e
∂x

(x, t)
∣∣∣∣

x=L−
= Ds

e,eff
∂cs

e
∂x

(x, t)
∣∣∣∣

x=L−
(D.2b)

c−e (x, t)
∣∣

x=L− = cs
e(x, t)|x=L− (D.2c)

Ds
e,eff

∂cs
e

∂x
(x, t)

∣∣∣∣
x=L−s

= D+
e,eff

∂c+e
∂x

(x, t)
∣∣∣∣

x=L−s
(D.2d)

cs
e(x, t)|x=L−s = c+e (x, t)

∣∣
x=L−s . (D.2e)

Expanding Eq. (D.1) with superindices to denote spatial domains and taking the
Laplace transform to eliminate the time derivative results in

sε±s
e C±s

e (x, s)− D±s
e,eff

d2C±s
e

dx2 (x, s) + b± I(s) = 0 (D.3)

where b± = ∓ 1−t0
c

FL±A , the pore-wall molar flux has been replaced by the uniform
utilization jn(x, t)± ≈ I(t)

Fa±s L± , Ce(x, s) and I(s) are the Laplace transforms of ce(x, t)
and I(t) respectively, with s as the Laplace variable. The solution of Eq. (D.3) is

C±s
e (x, s) = K±s

1 exp(β±sx) + K±s
2 exp(−β±sx) +

b±

ε±s
e s

I(s) (D.4)
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where β±s =
√

ε±s
e s

D±s
e

. Substituting Eq. (D.4) into boundary conditions Eqs. (D.2)
(after taking the Laplace transform of these conditions) produces six linear equations
with unknown constants {K+

1 , K+
2 , K−1 , K−2 , Ks

1, Ks
2}. After solving such system and

evaluating it at the current collector/negative electrode interface x = 0, the following
transcendental transfer function is obtained:

Ce(s)
I(s)

=
Nc(s)
Dc(s)

(D.5)

with
Nc(s) = −b+αsε−e Ds

e sinh(β+L+)
+b− (−αsε+e Ds

e cosh(βsLs) sinh(β+L+)
−α+εs

eDs
e cosh(β+L+) sinh(βsLs)

+α−ε+e D−e sinh(β−L−) sinh(β+L+) sinh(βsLs)
+αsε+e Ds

e cosh(β−L−) cosh(βsLs) sinh(β+L+)
+α+εs

eDs
e cosh(β−L−) cosh(β+L+) sinh(βsLs)

+α−α+αsD−e Ds
e cosh(β+L+) cosh(βsLs) sinh(β−L−)

(D.6)

Dc(s) = ε−e s (α−ε+e D−e sinh(β−L−) sinh(β+L+) sinh(βsLs)
+α+εs

eDs
e cosh(β−L−) cosh(β+L+) sinh(βsLs)

+αsε+e Ds
e cosh(β−L−) cosh(βsLs) sinh(β+L+)

+α−α+αsD−e Ds
e cosh(β+L+) cosh(βsLs) sinh(β−L−))

(D.7)

where β±s is as previously defined and α±s =
√

ε±s
e

D±s
e

. Only the negative electrode
external boundary x = 0 is taken to evaluate the electrolyte diffusion. Such elec-
trode choice is in line with the reference electrode for solid-phase diffusion while
the external boundary location is taken since it corresponds to one of the voltage
terminals.

The transfer function Eq. (D.5) is truncated through a second-order Padé approxi-
mation and parameterized as an equivalent-hydraulic model such as

Ce(s)
I(s)

= γe
βes + ge

s(βe(1− βe)s + ge)
(D.8)

which is finally rewritten in state-space form and discretized in time (sampling period
Ts = 1 s) via Euler’s approximation to get the following EHM

ce(k + 1) =

[
1 0
ge

βe(1−βe)
1− ge

βe(1−βe)

]
ce(k) +

[
γe
γe

1−βe

]
I(k) (D.9)

with the state vector ce(k) = [ceb(k), ces(k)]T.
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