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Abstract
Pine wilt disease is one of the most serious introduced threats to coniferous forests worldwide. Its causal agent, the pinewood 
nematode (PWN), Bursaphelenchus xylophilus, is vectored primarily by cerambycids of the genus Monochamus Dejean 
throughout its native (North America) and introduced (Japan, China, Korea, Taiwan, Portugal) ranges. Despite strict import 
regulations and phytosanitary measures, interception records indicate that PWN and Monochamus species continue to be 
moved worldwide. Following its introduction in Portugal in the late 1990s, extensive monitoring programs for PWN and its 
vectors have been conducted throughout the European Union, using locally developed and tested lures and traps. The trap-
ping system developed in Europe and used in this study is composed of a Crosstrap® and Galloprotect Pack® lures. These 
trapping systems were deployed in two locations in the USA, two locations in Canada, and one location in China in order 
to test their capacity to detect Monochamus species exotic to Europe. Large numbers of M. carolinensis, M. mutator, M. 
notatus, M. s. scutellatus, M. clamator, and M. titillator were trapped in North America, while large numbers of M. alter-
natus were trapped in China. The trapping systems developed in Europe for monitoring the European Monochamus species 
are also effective for the detection of many exotic Monochamus species and could thus be used as an early detection tool in 
ports and other high-risk sites.
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Key message

1.	 This study was conducted to confirm that traps and lures 
developed in Europe are also effective in detecting non-
European Monochamus species, vectors of the pinewood 
nematode.

2.	 Several North American and Chinese Monochamus 
species were detected: M. carolinensis, M. mutator, M. 
notatus, M. s. scutellatus; M. obtusus, M. clamator, M. 
titillator, M. alternatus.

3.	 The European trapping system can be effectively 
employed for early detection of exotic Monochamus spe-
cies at high-risk sites and possibly used in eradication or 
containment efforts.

Introduction

Pine wilt disease (PWD) is the most serious introduced 
threat to susceptible coniferous forests worldwide. Since its 
introduction into Japan via the timber trade over a century 
ago, PWD spread throughout Asia in the 1980s, and con-
tinuous control and containment efforts, as well as imple-
mentation of comprehensive regulations and embargoes, 
have been ineffective in preventing its spread (Commission 
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Decision 2006/133/EC of 13 February 2006 (European 
Council 2006). In 1999, PWD was reported in Portugal 
(Mota et al. 1999) and now affects a major part of the coun-
try and the island of Madeira. PWD was further discovered 
in several naturally forested areas of Spain near the border 
with Portugal in the provinces of Caceres (in 2008 and 2012, 
EPPO 2010a, b, 2012), Pontevedra (in 2011 and 2016, EPPO 
2014), and Salamanca (in 2013, EPPO 2014), where it is 
officially declared transient, actionable, and under eradica-
tion (EPPO 2014).

The PWD is a multipartite system involving intimate 
relationships between the pathogen, the pinewood nema-
tode (PWN), Bursaphelenchus xylophilus (Steiner & Buhrer) 
Nickle, its vectors, and symbiotic microorganisms. PWN 
is native to North America and is transferred between host 
trees primarily by beetles in the genus Monochamus Dejean 
(Coleoptera: Cerambycidae) (Linit 1988). In North Amer-
ica, all available Monochamus species appear to be viable 
vectors of PWN (Pimentel et al. 2014), and in each newly 
established region of the world it is vectored by congeneric 
counterparts (see Humble and Allen 2006). The disease 
cycle is a positive feedback system, i.e. when the pathogen 
(PWN) infects and subsequently kills its host, it creates a 
suitable substrate (stressed/dying tree) for oviposition by 
its vector (Naves et al. 2006), facilitating its establishment 
and dispersal. The success of PWN as an invasive species 
is supported by several life history attributes: it is cryptic 
within its vector, i.e. fourth-stage nematode juveniles are 
transported to susceptible hosts predominantly within the 
trachea of their vector but also in other parts of their body 
(Naves et al. 2006); its vectors are cryptic xylophagous bee-
tles which are often undetected while being transported in 
wood products and wood packaging material; it does not 
require the establishment of its vector, because after reach-
ing a susceptible host it can establish and subsequently infect 
native Monochamus species. These aspects, combined with 
the increasing international trade flow, make future invasions 
inevitable (Brockerhoff et al. 2006). The EU Commission 
Decision 2012-535-EC (European Council 2012) on emer-
gency measures to prevent the spread of PWN within the 
Union, as well as earlier EU regulatory documents, require 
member states to conduct annual surveys in susceptible 
areas (e.g. pine stands, green areas, and logging and wood 
processing facilities) in which PWN is not known to occur. 
Due to the obligatory association between the PWN and its 
insect vectors (Akbulut and Stamps 2012), directing moni-
toring efforts towards the vector could be an effective means 
to intercept and prevent the establishment of PWN. How-
ever, national surveys and monitoring networks for native 
and non-native Monochamus require an effective trap and 
attractant lure system.

Extensive research has led to significant improvements 
in trap design and lure development. The response of 

cerambycids to different trap types is often species specific 
(Morewood et al. 2002; Dodds et al. 2015), but panel traps 
are generally superior to other trap models (Allison and 
Redak 2017), especially when coated with Teflon or Fluon 
(Graham et al. 2010; Allison et al. 2011, 2016; Álvarez 
et al. 2015). In general, the addition of Teflon or Fluon to 
cross-vane, panel, and multiple funnel traps significantly 
increased captures and retention of Cerambycidae, in par-
ticular, Monochamus species (Graham et al. 2010; Alli-
son et al. 2011, 2016; Álvarez et al. 2015). Additionally, 
advancements in the understanding of the chemical ecol-
ogy of Monochamus species have led to the development 
of effective lure combinations which includes both phero-
mones of Monochamus species and kairomones. Monocha-
mol (2-undecyloxy-ethanol) is an aggregation pheromone 
produced by mature males of Monochamus species native 
to Asia, Europe, and North America, attractive to both 
sexes (Pajares et al. 2010; 2013; Teale et al. 2011; Allison 
et al. 2012; Fierke et al. 2012; Ryall et al. 2014; Lee et al. 
2017b). Several studies have also confirmed the attractive-
ness of two pheromones of Ips De Geer species (Curcu-
lionidae: Scolytinae) (ipsenol and 2-methyl-3-buten-2-ol 
(methyl butenol)) (de Groot and Nott 2004; Pajares et al. 
2010), and their subsequent synergy with monochamol 
(Miller et al. 2016; Kim et al. 2016; Pajares et al. 2017). 
Certain host volatiles are also known to indicate suita-
ble hosts to woodborers of conifers, such as ethanol and 
α-pinene, and are therefore often incorporated into lure 
blends due to their synergistic activity with ipsenol and 
ipsdienol (Morewood et al. 2002; de Groot and Nott 2004; 
Miller and Asaro 2005). In some cases, the addition of 
α-pinene does not significantly increase captures of Mono-
chamus, but it increases captures of associated insects, 
such as non-target bark and wood borers and their natural 
enemies (Álvarez et al. 2016). A four-component semio-
chemical blend (monochamol, ipsenol, methyl butenol, 
and α-pinene) in combination with a black Teflon-coated 
cross-vane trap has been shown to be an effective system 
to capture Cerambycidae, in particular, M. galloprovin-
cialis (Pajares et al. 2010; Bonifácio et al. 2012; Álvarez 
et al. 2013), the main vector of PWN in Europe (Sousa 
et al. 2001).

Early detection of alien species strongly depends on both 
the attractiveness of the lures used as bait and trap design 
(Rassati et al. 2014); it is therefore essential to confirm the 
efficacy of traps and lures developed for European Mono-
chamus species to detect Monochamus species non-native 
to Europe. Here we tested the efficacy of a trapping system 
developed in Europe towards non-European Monochamus 
species, deploying traps in North America, the area of origin 
of the PWN, and China, a country where the PWN is estab-
lished and that represents a significant international trading 
partner of Europe.

Author's personal copy
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Methods

Four black Teflon-coated cross-vane traps (Crosstrap®, 
Econex, Murcia, Spain) and four four-component commer-
cially available lures (Galloprotect Pack®, SEDQ, Barce-
lona, Spain) were distributed to each of the following five 
locations: Canada (New Brunswick and British Columbia in 
2013), USA (Arkansas and Utah in 2013), and China (Nanjing, 
Jiangsu Province in 2014). Release rates of lure components 
are as follows: monochamol: 2 mg/day; ipsenol: 2.5 mg/day; 
2-methyl-3-buten-1-ol: 10 mg/day; and α-pinene: 500 mg/
day. Each lure component was placed at a specific height on 
the trap: ipsenol and 2-methyl-3-buten-1-ol were hung in the 
lower level, α-pinene was hung in the centre, and the mono-
chamol was hung in the upper level. Lures were replaced at 6 
or 8 week intervals to ensure continuous delivery of volatiles. 
The attractive lures used in this study were chosen because 
they were specifically developed in Europe for detecting Euro-
pean Monochamus species (Pajares et al. 2010). The host vola-
tile, α-pinene, was included because there were no reports of 
interference or deterrence towards Monochamus species, and 
it can attract a broader range of xylophagous insects, providing 
further insights on trapping efficacy.

Traps were deployed in predominantly pine forests with 
minor components of deciduous and/or other conifer species 
located in areas known to have populations of Monochamus 
species. Specific site and sampling information is listed in 
Table S1. Traps were suspended from ropes spanning between 
two trees, by rope from a branch, or from a free-standing sup-
porting structure so that the collection cup was approximately 
0.5 m above ground. Trapped insects were collected weekly in 
Arkansas, biweekly in New Brunswick, British Columbia, and 
Utah, and monthly in Nanjing. All locations employed the wet 
capture method using either monoethylene glycol or saturated 
salt solution plus detergent to preserve the trapped individu-
als in the field. Monoethylene glycol does not interfere with 
identification of PWN for inspection purposes (Berkvens et al. 
2017). Collaborators identified Monochamus species in their 
laboratories. Other cerambycid species and some associated 
insects were identified in New Brunswick and Arkansas. Spe-
cies of Cerambycidae from British Columbia were identified 
at the Royal Belgian Institute of Natural Sciences. Voucher 
specimens of relevant species were provided to ULB from all 
locations except Nanjing and deposited in the Royal Belgian 
Institute of Natural Sciences.

Results

Crosstraps baited with Galloprotect Pack were effective in 
trapping exotic Monochamus species at all sites in which 
they were deployed. Overall, the Crosstraps captured 

4550 individuals of seven Monochamus species in North 
America, including M. carolinensis (Olivier), M. clama-
tor (LeConte), M. mutator Leconte, M. notatus (Drury), 
M. obtusus Casey, M. s. scutellatus Say, and M. titillator 
(Fabricius), and 244 specimens of one species, M. alter-
natus (Hope) in China (Table 1). Monochamus species 
dominated catches in North America [87–99% depend-
ing on the site, of all cerambycid species (Tables 1, 2)], 
whereas in Nanjing, China, the Cerambycidae M. alter-
natus (51.2%) and Nadezhdiella cantori (Hope) (48.0%) 
were the two most abundant species, with minor captures 
of other species.

Peak flight activity of Monochamus species varied 
depending on site and species (Fig. 1) . In Currie Moun-
tain (New Brunswick, Canada), peak captures of the domi-
nant species M. notatus and M. scutellatus likely occurred 
prior to the initiation of the sampling (Fig. 1d), while the 
dominant species in Sevogle (New Brunswick, Canada), 
M. mutator, appeared to have had two peaks, one prior to 
the initiation of the sampling and a second in mid-August, 
but this could be an artefact due to the sampling frequency 
(Fig. 1c). The other Monochamus species in New Brun-
swick did not have a distinct peak flight activity. In Arkan-
sas (USA), M. titillator and M. carolinensis peaked in mid-
late July (Fig. 1a), as did M. alternatus in Nanjing (China) 
(Fig. 1f). In British Columbia (Canada), M. scutellatus, 
M. clamator, and M. obtusus peaked in early September 
(Fig. 1e), as did M. scutellatus in Utah (USA) (Fig. 1b).

Table 1   Species and abundance (i.e. total number of individuals) of 
Monochamus captured during international trapping. Abundance is 
pooled across four traps deployed at each location

Location Monochamus spp. Abundance

Canada (2013)
 New Brunswick M. carolinensis (Olivier 1792) 17

M. mutator Leconte in Agassi, 1850 422
M. notatus (Drury, 1773) 186
M. s. scutellatus Say, 1824 139

British Columbia M. s. scutellatus Say, 1824 62
M. obtusus Casey, 1891 45
M. clamator (LeConte, 1852) 20

USA (2013)
 Arkansas M. carolinensis (Olivier, 1792) 997

M. titillator (Fabricius, 1775) 2153
 Utah M. s. scutellatus Say, 1824 418

China (2014)
 Nanjing M. alternatus Hope, 1842 244

Author's personal copy
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Discussion

The trapping system consisting of Crosstrap® and Gallo-
protect Pack® developed in Europe, and currently recom-
mended for monitoring Monochamus species in the EU, is 
effective in detecting multiple Monochamus species native 
to North America where PWN is endemic, and as well as M. 
alternatus, the main vector of PWN in Asia. However, Blatt 
et al. (2017) found that the combination of a North Ameri-
can developed panel trap treated with Fluon, in combination 
with the European developed Galloprotect Pack, was more 
effective in capturing two of those species, M. notatus and 
M scutellatus, than Crosstraps and North American lures. 
A plethora of literature exists on the attraction of Monocha-
mus species to various lures, including host plant volatiles 
and pheromones of other xylophagous beetles sharing the 
same habitat. In various locations throughout North Amer-
ica, Europe, and Asia, blends containing ethanol, α-pinene, 
and components of Ips pheromones, usually ipsenol, and/or 
ipsdienol (e.g. Allison et al. 2003; de Groot and Nott 2004; 
Costello et al. 2008; Miller et al. 2013; Hanks and Millar 

2013), and/or methyl butenol (e.g. Ibeas et al. 2007; Pajares, 
et al. 2010; Bonifácio et al. 2012), have been shown to be 
effective in attracting Monochamus species, and the addition 
of monochamol to these blends increased their attractive-
ness (Pajares et al. 2010). The consistent captures of the 
transcontinentally distributed species M. scutellatus in this 
study suggest that it responds positively to the combina-
tion of monochamol, ipsenol, methyl butenol, and α-pinene 
across a broad geographic range in North America. These 
results are consistent with those of Ryall et al. (2014) who 
found similar responses of M. scutellatus to combinations 
of monochamol, ipsenol, and α-pinene, and Miller et al. 
(2015) who showed that several Monochamus species in 
North America were attracted to a lure consisting of alpha 
pinene, monochamol, and ipsenol. The addition of α-pinene 
to the combination of monochamol, methyl butenol, and ips-
dienol does not, however, significantly increase captures of 
M. galloprovincialis, but is attractive to non-target insects, 
such as secondary xylophagous insects and bark beetle natu-
ral enemies resulting in trapping and killing these species 
(Álvarez et al. 2016; Jurc et al. 2016). Thus, the inclusion 

Table 2   Other insects captured 
in Crosstraps® baited with 
Galloprotect Pack® in North 
America (2013) and China 
(2014)

Data on insects captured in select non-cerambycid families are reported for Arkansas, Utah, British Colum-
bia, and Nanjing only

Family Subfamily or species Total number Location

 Coleoptera
  Cerambycidae Acanthocinus obsoletus (Olivier) 234 Arkansas

Megasemum asperum (Leconte) 4 British Columbia
Nadezhdiella cantori (Hope) 229 Nanjing
Xylotrechus longitarsis Casey 4 British Columbia
Xylotrechus sagittus (Germar) 223 Arkansas
Xylotrechus sp. 1 British Columbia
Unidentified sp. 1 10 Utah
Unidentified sp. 2 8 British Columbia
Unidentified sp. 3 3 Nanjing

 Buprestidae Buprestis sp. 196 Arkansas
  Cleridae 53 British Columbia
  Curculionidae Hylobius pales Herbst 324 Arkansas

Ips avulsus (Eichhoff) 173 Arkansas
Ips grandicollis (Eichhoff) 3539 Arkansas
Scolytinae 563 Nanjing

  Elateridae 17 British Columbia
  Meloidae 344 Nanjing
  Trogossitidae Temnochila virescens (Fabricius) 274 Arkansas
  Other 182 Nanjing

 Hymenoptera
  Siricidae Sirex juvencus (Linneaus) 1 Utah

Urocerus albicornis (Fabricius) 3 Utah
  Ichneumonidae 8

 Other orders 2 British Columbia
83 Nanjing
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Fig. 1   Flight activity of 
Monochamus species. cap-
tured in Pinus species stands 
in North America and China 
using Crosstraps baited with 
Galloprotect Pack®: a P. echi-
nata, Ozark National Forest, 
Arkansas 2013; b P. contorta, 
Logan Canyon, Utah 2013; c P. 
banksiana, Sevogle, New Brun-
swick 2013; d P. strobus, Currie 
Mountain, New Brunswick 
2013; e P. contorta, Southern 
Interior, British Columbia 2013; 
f P. massionana, Xixia Moun-
tains, Nanjing 2014. Data are 
pooled within locations, except 
New Brunswick (2 sites)

Author's personal copy
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of α-pinene in blends might be avoided in pine forests where 
these non-target insects would be impacted, but could con-
tinue in imports areas, such as ports and warehouses, where 
the latter would not be affected.

Most Monochamus species exhibited peak flight activ-
ity between mid-July and early September, confirming data 
reported in previous studies (e.g. Hanks and Millar 2013; 
Miller et al. 2013). Pimentel et al. (2014) found that PWN 
phoresy in eastern forests was highest on the Monochamus 
species that flew earliest in the year. Conversely, in the 
south-western USA, where Monochamus species are likely 
multivoltine and have long flight periods, PWN load on adult 
Monochamus beetles was high throughout the season, indi-
cating that PWN can be transmitted to new hosts during 
most of the year. This suggests that PWN has an ecology that 
is sufficiently flexible to allow it to exploit different species 
(and both genders) of Monochamus, and to disperse at dif-
ferent times of the year, further contributing to its success in 
invading Eurasian pine forests (Pimentel et al. 2014). Moreo-
ver, seasonal activity, e.g. phenology, flight, and voltinism, 
of adult Monochamus beetles can affect both the PWD sys-
tem and the dynamics of damages in the invaded forests.

Several other insect species of were captured. Regard-
ing the Cerambycidae, some of the most abundant species, 
such as Acanthocinus obsoletus and Nadezhdiella cantor, 
belong to the same subfamily of Monochamus species, i.e. 
the Laminae; this is not surprising given the widespread 
pheromonal parsimony among Cerambycids at varying 
taxonomic levels (Hanks and Millar 2013). Regarding the 
other beetle species, it is known that attractant blends for 
Cerambycidae which include ethanol, α-pinene, and Ips 
pheromones, are also attractive to the guild of saproxylic 
insects occupying habitats similar to those occupied by 
cerambycids. Ethanol is released from stressed conifer 
trees (Kelsey 1996; Kelsey and Joseph 2003, Kelsey et al. 
2014), α-pinene is the predominant compound associated 
with pine trees, and Ips species are usually the first colo-
nizers of conifers with compromised defences (Furniss and 
Carolin 1980). Thus, the combination of these kairomones 
provides to several xylophagous insects signals indicating 
suitable host conditions for adult feeding, mating, and ovi-
position for saproxylic insects and their associates (Miller 
et al. 2013). Hanks and Millar (2013) suggest, in general, 
that the host plant volatile α-pinene enhances attraction 
to conifer specialists while ethanol enhances attraction to 
hardwood specialists. If, in the future, it is necessary to 
widen the range of target insects because, e.g. new phero-
mones of some Monochamus species are discovered, or 
other genera are found to vector B. xylophilus, the blend 
used in this study could be complemented with other pher-
omones, because synergism between these compounds is 
often observed for some insects, whereas inhibition is 
rare (Hanks et al. 2012; Miller et al. 2015). In addition 

to increased catches and the reduction of costs and labour 
with easier and more rapid sample processing, employ-
ing species-specific traps and attractants also reduces the 
diversity of species that can be trapped. However, a com-
mon criticism of semiochemical blends is the removal of 
beneficial insects from the environment, such as natural 
enemies of bark beetles which have co-evolved to use the 
pheromones to locate prey, and, moreover, removal of or 
interference with rare or threatened species. Conversely, 
the Crosstrap and Galloprotect Pack trapping system has 
been shown to detect species of Cerambycidae which have 
previously been considered rare when monitored using 
other trapping methods, but are actually present in homo-
geneous and stable populations, in addition to detection 
of range expansion of other species (Boone et al. 2015).

Some factors still require clarification before Crosstraps 
baited with Galloprotect Packs could be put to an optimal 
use for monitoring exotic Monochamus species in Europe. 
Trapping efficiency can vary among sites (e.g. natural 
areas, ports, and lumber yards) due to shifts in environ-
mental parameters such as population density, competing 
sources of attraction, and visual cues (Miller 2006). For 
example, Blatt et al. (2017) caught higher numbers of sev-
eral Monochamus species in Christmas tree plantations 
than in adjacent forests. Rassati et al. (2012) reported that 
funnel traps baited with the same components of Gallopro-
tect Pack are effective at low densities of Monochamus and 
can therefore be used as a general tool for beetle surveil-
lance at ports of entry and forests, but also recommend 
that tree health assessments and trapping should be con-
ducted outside of port areas as well (Rassati et al. 2014). 
A constraint of this trap/lure combination is that newly 
emerged Monochamus adults require a sexual maturation 
feeding period, during which they are not attracted to the 
pheromones, kairomones, or host volatiles included in the 
Galloprotect Pack (Álvarez et al. 2016), and during which 
they are able to disperse at least 2 km from the point of 
emergence (Sanchez-Husillos et al. 2016). Identification 
and isolation of volatiles attractive to immature Monocha-
mus adults should be a focus for the development of a truly 
comprehensive lure.

A final issue relates to the possibility of using the 
European trapping protocol for eradicating small, newly 
established populations of exotic Monochamus species. 
Sanchez-Husillos et al. (2015) reported that the current 
trap and lure system can effectively remove 95% of a mod-
erate density of a native M. galloprovincialis population 
in Spain, at a trapping density of 0.82 traps per hectare. 
More conservatively, El-Sayed et al. (2006) suggest that 
mass trapping has the potential to suppress or eradicate 
low-density, isolated populations. These prospects need 
to be further investigated.
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