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Abstract

We propose a new approach for bivariate �nancial time series modelling which allows for
mutual excitation between shocks. Jumps are triggered by changes of regime of a hidden
Markov chain whose matrix of transition probabilities is constructed in order to approximate
a bivariate Hawkes process. This model, called the Bivariate Mutually-Excited Switching
Jump Di�usion (BMESJD) presents several interesting features. Firstly, compared to alter-
native approaches for modelling the contagion between jumps, the calibration is easier and
performed with a modi�ed Hamilton's �lter. Secondly, the BMESJD allows for simultaneous
jumps when markets are highly stressed. Thirdly, a family of equivalent probability measures
under which the BMESJD dynamics are preserved, is well identi�ed. Finally, the BMESJD
is a continuous time process that is well adapted for pricing options with two underlying assets.

Keywords : Switching process, Self-Excited process, Jump-di�usions
Classi�cation: 60G46, 60G55, 91G40

1 Introduction

In the last century, �nancial markets became increasingly interconnected. The consequence of this
globalization is that violent shocks to stock markets tend to propagate across the planet. Further-
more, shocks seem to increase the probability of observing new successive jumps, in the original
and other markets. In continuous time �nance, modelling this mutual excitation between large
price moves is a challenging task. Models only based on Brownian motion fail to replicate sudden
jumps, whereas jump di�usion models do not capture the interplay between shocks across di�erent
markets.

A way to deal with the contagion of jumps between two markets, is to decompose the price
variability into two components - a bivariate Brownian process and a mutually-excited bivariate
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jump process, called Hawkes process1. In a univariate setting, Chen and Poon (2013), Boswijk et
al. (2015), and Carr and Wu (2016) investigate some self-excited jump di�usion processes for mod-
elling stock index returns. Stabile and Torrisi (2010) consider a risk process with non-stationary
Hawkes claims arrivals. Aït-Sahalia et al. (2015) used a bivariate mutually-excited jump di�usion
to evaluate the interdependence between worldwide stock markets. Dong et al. (2016) consider
a two-dimensional reduced form model for credit risk with regime-switching shot noise intensities
However, the main drawback of Hawkes based models is the absence of a robust procedure for
parameter estimation as underlined by Rasmussen (2013). Ait-Sahalia et al. (2015) use a general-
ized method of moments based on local approximations. Embrechts et al. (2011) or Hainaut and
Moraux (2017 a) propose a peak over threshold procedure. Chen and Poon (2013) or Hainaut (2017
b) instead use a particle Markov Chain Monte-Carlo (PMCMC) method to estimate parameters.
This last approach is computationally intensive and sensitive to the choice of prior and transition
density functions.

In Hainaut and Deelstra (2017 c), a model has been studied as a substitute of univariate Hawkes
processes. In this article, we propose an alternative to bivariate Hawkes processes which is easy
to calibrate, allows for simultaneous jumps and is applicable to bivariate option pricing. In our
model, called the Bivariate Mutually-Excited Switching Jump Di�usion (BMESJD), large moves
of prices are triggered by the change of regime of a hidden Markov chain. The states of this chain
are ranked by increasing levels of mutual-excitation. The matrix of transition probabilities is con-
structed such that after an upward move of the chain, the probability of climbing again the scale of
states increases instantaneously. Our model belongs to the family of regime switching processes. In
classic regime switching models as in Honda (2003), Guidolin and Timmermann (2008) or Hainaut
and Macgilchrist (2012), the Markov chain modulates the parameters of a di�usion process. In
Chourdakis (2005) and Hainaut and Colwell (2016), jumps are introduced and synchronized to the
Markov chain transitions in a two or three regimes model. The length of the stay in each regime
being memory-less exponential random variables, these models cannot explain the mutual excita-
tion between shocks in �nancial markets. The BMESJD di�ers from these previous approaches
in several directions. First, shocks are exclusively observed when the Markov chain changes of
regime. Second, compared to the existing literature, we consider a large number of regimes. But
the parsimony of the model is preserved given that the matrix of transition is parameterized by a
small number of variables. Third, the transition probabilities are designed in order to replicate the
mutual-excitation behaviour of a bivariate Hawkes process. However, the BMESJD presents an
additional feature. Contrary to Hawkes processes, simultaneous jumps may occur with a non-zero
probability when markets are stressed. Fourth, we propose a modi�ed version of the Hamilton's
�lter (1989) to calibrate this new process. Finally, we construct a family of equivalent probability
measures under which the dynamics of the BMESJD are preserved. We present the conditions
necessary to obtain risk neutral martingale measures and we price exchange options as an example
of derivative pricing in this model.

We proceed as follows to introduce the BMESJD. In section 2, we brie�y remind the features
of bivariate Hawkes processes and their intensity processes. We construct a Markov chain that
serves to replicating their behaviour and present the moment generating function of some related
jump counting processes. In section 3, we detail the construction of the BMESJD and we provide
the moment generating function of the marginal returns. In section 4, we establish the statistical
distribution of the sum of bivariate normal and exponential random variables. To the best of our

1The very �rst process, developed by Hawkes (1971), has been used in seismology to model the frequency of
earthquakes and aftershocks.
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knowledge, this result is new and is required for the implementation of the modi�ed Hamilton's
�lter. As numerical illustration, we �t the BMESJD to S&P 500 and Euronext 100 time series, over
a period from 2005 to 2017. The evolution of the hidden Markov chain allows us to detect periods
during which levels of mutual excitations between European and US markets were particularly
high. In section 5, we provide a detailed analysis of the change of measure approach in this model
and in particular of the martingale condition to be ful�lled by the BMESJD under the risk neutral
measure. The last section focuses on the pricing of exchange options and studies the impact of
contagion on these derivatives.

2 A bivariate Markov chain approximation for mutually ex-
cited processes.

This article proposes a new approach to introduce mutual excitation in the dynamics of large
moves of two �nancial assets or markets. It consists in approaching the intensity processes of
a bivariate Hawkes process by using a continuous Markov chain, with a �nite number of states,
ranked by amplitudes of mutual excitation. The states of the Markov chain with a low and high
index correspond respectively to a low and high frequency of mutual jumps. A shock of prices oc-
curs when the Markov chain climbs the scale of states. The transition probabilities of the Markov
chain are designed such that after an upward change of state, the probability that the chain climbs
again, increases. However if the chain does not jump to a higher state, it moves back with a high
probability to a lower state. By the use of this Markov chain, the dynamics of a bivariate Hawkes
process can be approached. We �rst recall the de�nition of a bivariate Hawkes process and its
main features. Next, we construct the Markov chain driving the jump processes.

Let us consider 2 processes
(
Nk
t

)
t≥0

for k = 1, 2, counting the number of shocks hitting two �nan-

cial markets or two price dynamics. Their intensity is a stochastic process denoted by
(
λkt
)
t≥0

,

depending upon the history of the processes. λkt reverts to a level θk at a speed αk and increases of
ηk,1 or ηk,2 (αk, θk, ηk,1, ηk,2 ∈ R+) when a jump occurs. Intensities are driven by the next system
of stochastic di�erential equations (SDE):

dλ1
t = α1

(
θ1 − λ1

t

)
dt+ η11dN

1
t + η12dN

2
t , (1)

dλ2
t = α2

(
θ2 − λ2

t

)
dt+ η21dN

1
t + η22dN

2
t .

These dynamics introduce both contagion and spillover e�ects between shocks. A jump in one
market immediately raises the probability of observing a new jump in the same market and a
jump in the other market. The volatility parameters η11 and η22 tune the levels of self-excitation
whereas the other volatility parameters η12 and η21 de�ne the levels of contagion.

In the remainder, we approximate the dynamics of (λ1
t , λ

2
t ) by a continuous time Markov chain

(δt)t≥0, for which each state corresponds to a couple of values (λ̃1
t , λ̃

2
t ) approaching (λ1

t , λ
2
t ). In

order to build this process, we have to remind that if ∆t represents a very small interval of time,
then λt may be related to λt−∆t as follows

λkt ≈ λkt−∆t
− αk

(
λkt−∆t

− θk
)

∆t +

2∑
j=1

ηkj

(
N j
t −N

j
t−∆t

)
. (2)

Moreover, conditionally to the sample path of λkt , N
k
t is a heterogeneous Poisson process and

therefore the probability that Nk
t jumps twice over ∆t is nearly null. We will use this feature
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later to construct the matrix of instantaneous transition probabilities of the Markov chain δt. But
before, we introduce some additional notations. Given that the number of states of δt is �nite,
we discretize and bound the domain on which (λ̃1

t , λ̃
2
t ) are de�ned. We assume that (δt)t≥0 is

de�ned on a probability space Ω and takes its values from a set of R(n+1)2

-valued unit vectors

E0 = {e0, . . . , e(n+1)2−1} where ej = (0, . . . , 1, . . . , 0)> with the (j + 1)th component equal to 1.
The �ltration generated by (δt)t≥0 is denoted by {Gt}t≥0. We also introduce a parameter ∆t that is
involved later in the construction of the transition probabilities of (δt)t≥0. If we de�ne ∆λk = ηkk

m

and let n be a multiple of m, (λ̃1
t , λ̃

2
t ) take their values in the following set of vectors

{(θ1 + i∆λ1 , θ2 + j∆λ2) | i, j = 0, . . . , n}.

The next step consists in building the matrix of instantaneous probabilities of transition for δt,
such that λ̃1

t and λ̃2
t have a similar behaviour as the intensity processes of Hawkes processes, λ1

t

and λ2
t , as de�ned by equation (1). The matrix of transition probabilities over a time interval [t, s]

is denoted as P (t, s). The elements pi,j(t, s) of this matrix are de�ned by

pi,j(t, s) = P (δs = ej | δt = ei), i, j ∈ {0, ..., (n+ 1)
2 − 1}, (3)

and represent the probabilities of switching from state i at time t to state j at time s. The proba-
bility of the chain being in state i at time t, denoted by pi(t), depends upon the initial probabilities

pk(0) at time t = 0 and the transition probabilities pk,i(0, t), where k = 0, 1, . . . , (n+ 1)
2 − 1, as

follows:

pi(t) = P (δt = ei) =

(n+1)2−1∑
k=0

pk(0)pk,i(0, t), ∀i ∈ {0, ..., (n+ 1)
2 − 1}. (4)

The matrix P (t, s) of transition probabilities over the time interval [t, s] is the matrix exponential
of the generator matrix, denoted by Q0 := [qi,j ]i,j=0:(n+1)2−1, times the length of the time interval:

P (t, s) = exp (Q0(s− t)) , s ≥ t. (5)

The elements of the generator matrix Q0 satisfy the following standard conditions:

qi,j ≥ 0, ∀i 6= j, and

(n+1)2−1∑
j=0

qi,j = 0, ∀i ∈ {0, ..., (n+ 1)
2 − 1}. (6)

For i 6= j, qi,j is the instantaneous probability that the Markov chain transits from state i to state
j.

As mentioned above, each regime of the Markov chain corresponds to a couple of intensities(
λ̃1
t , λ̃

2
t

)
. We adopt the following convention to link the index of the state i for i = 0, ..., (n+ 1)

2−1

to values of
(
λ̃1
t , λ̃

2
t

)
: If δt = ei, then{

λ̃1
t := λ1

i = θ1 + (i mod (n+ 1)) ∆λ1

λ̃2
t := λ2

i = θ2 +
⌊

i
n+1

⌋
∆λ2

As a consequence, λ̃1
t and λ̃

2
t evolve within our approach in corridors delimited by θ1 and θ1 +n∆λ1

and θ2 and θ2 + n∆λ2 . As mentioned earlier, if ∆t is small enough, the probability of switching
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from the state i to j is qi,j∆t for i 6= j. To approach the dynamics of λ1
t and λ

2
t over a period ∆t,

δt−∆t should transit from a state in which intensities are equal to λ̃kt−∆t
to another state in which

λ̃kt = λ̃kt−∆t
−
⌈
α
(
λ̃kt−∆t

− θ
) ∆t

∆λk

⌉
∆λk k = 1, 2 (7)

when N1
t and N2

t do not jump. If one of these processes jumps, δt−∆t
should transit over a period

∆t, from a state in which intensities are equal to λ̃kt−∆t
to another state in which

λ̃kt = λ̃kt−∆t
+

2∑
j=1

ηkj

(
N j
t −N

j
t−∆t

)
k = 1, 2. (8)

So as to build the generator Q0 of δt such that the dynamics of
(
λ̃1
t , λ̃

2
t

)
approach the dynamics

of λ1
t and λ

2
t over a period ∆t, we analyze three scenarii:

1. N1
t and N2

t do not jump,

2. N1
t jumps and N2

t do not jump,

3. N1
t do not jump and N2

t jump.

Each scenario will be associated to a transition of δt from a state i to a state j. In order to
construct the matrix Q0, we again consider the discrete version of the dynamics of λ1

t and λ2
t ,

presented in equation (2).

First scenario: No jump for N1
t and N2

t between t−∆t and t.
From relation (7), if the chain is in state i at time t−∆t, we infer that λ̃

1
t must be equal to

λ̃1
t = θ1 + (i mod (n+ 1)) ∆λ1 −

⌈
α1 (θ1 + (i mod (n+ 1)) ∆λ1 − θ1)

∆t

∆λ1

⌉
∆λ1

= θ1 + (i mod (n+ 1)) ∆λ1 − dα1 (i mod (n+ 1)) ∆te∆λ1 .

Similar, if the chain is in state i at time t−∆t, λ̃
2
t must be

λ̃2
t = θ2 +

⌊
i

n+ 1

⌋
∆λ2 −

⌈
α2

(
θ +

⌊
i

n+ 1

⌋
∆λ2 − θ2

)
∆t

⌉
= θ2 +

⌊
i

n+ 1

⌋
∆λ2 −

⌈
α2

⌊
i

n+ 1

⌋
∆t

⌉
∆λ2 .

Therefore, if N1
t and N2

t do not jump (and by ignoring possible constraints), the Markov chain δt
should switch from state i at time t−∆t to state j given by

j = i− dα1 (i mod (n+ 1)) ∆te −
⌈
α2

⌊
i

n+ 1

⌋
∆t

⌉
(n+ 1)

at time t and the probability of this movement is equal to 1 − λ1
i∆t − λ2

i∆t. However since the
size of the matrix is �nite and the di�erent values of λ̃1

t ≥ θ1, the index arrival state is bounded
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by the state given by the sum of the following two maxima2:

max ((i mod (n+ 1))− dα1 (i mod (n+ 1)) ∆te ; 0)

+ max

(⌊
i

n+ 1

⌋
(n+ 1)−

⌈
α2

⌊
i

n+ 1

⌋
∆t

⌉
(n+ 1) ; 0

)
.

Second scenario: Only a jump of N1
t between t−∆t and t.

In the discrete framework, N1
t jumps with a probability λ1

t∆t. When δt−∆t
= ei and if we ignore

the drift term, the arrival state of δt corresponds to the following values for λ̃1
t and λ̃

2
t

λ̃1
t = θ1 + [(i mod (n+ 1)) +m] ∆λ1

λ̃2
t = θ2 +

[⌊
i

n+ 1

⌋
+

⌈
η21

∆λ2

⌉]
∆λ2

which corresponds at �rst sight to the regime i + m +
⌈
η21

∆λ2

⌉
(n + 1) of δt. However, the size of

the matrix being �nite, the arrival state must be bounded by the state given by the sum of the
following two minima:

min ( i mod (n+ 1) +m ; n)

+ min

(⌊
i

n+ 1

⌋
(n+ 1) +

⌈
η21

∆λ2

⌉
(n+ 1) ; n (n+ 1)

)
.

Third scenario: Only a jump of N2
t between t−∆t and t.

By construction, N2
t jumps with a probability λ2

i∆t when δt = ei. If we ignore the drift term, the
arrival state of δt corresponds to the following values for λ̃1

t and λ̃
2
t

λ̃1
t = θ1 + (i mod (n+ 1)) ∆λ1 +

⌈
η12

∆λ1

⌉
∆λ1

λ̃2
t = θ2 +

⌊
i

n+ 1

⌋
∆λ2 +m∆λ2

which corresponds at �rst sight to the regime i +
⌈
η12

∆λ1

⌉
+ m(n + 1). However, the size of the

transition matrix being �nite, the arrival state is bounded by the state given by the sum of the
following two minima:

min

(
i mod (n+ 1) +

⌈
η12

∆λ1

⌉
;n

)
+ min

(⌊
i

n+ 1

⌋
(n+ 1) +m(n+ 1) ; n (n+ 1)

)
.

In order to de�ne later the jump processes
(
Ñ1
t , Ñ

2
t

)
that jump according to the intensities(

λ̃1
t , λ̃

2
t

)
, we also need to de�ne three (n+ 1)

2 × (n+ 1)
2
matrix: H1 =

(
h1
i,j

)
i,j=0:(n+1)2−1

,

H2 =
(
h2
i,j

)
i,j=0:(n+1)2−1

and H3 =
(
h3
i,j

)
i,j=0:(n+1)2−1

. The matrix H1 (resp. H2) informs us

about arrival states of transitions between regimes of δt that correspond in a unique way to a

2Notice that we use the relation i = i mod (n+ 1) +
⌊

i
n+1

⌋
(n+ 1)
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jump of N1
t (resp. N2

t ). As the domain of
(
λ̃1
t , λ̃

2
t

)
is bounded, the highest regimes of δt (e.g.

δt = e(n+1)2−1) may be reached after either a jump of N1
t or a jump of N2

t . These states are
identi�ed by the matrix H3 and will play a particular role in the construction of jump processes(
Ñ1
t , Ñ

2
t

)
on which the BMESJD is based.

Algorithm 1 Construction of Q0, H
1, H2 and H3.

Initialization : (qi,j)i,j=0:n = 0 ,
(
h1
i,j

)
i,j=0:n

= 0,
(
h2
i,j

)
i,j=0:n

= 0,
(
h3
i,j

)
i,j=0:n

= 0

(
λ1
i

λ2
i

)
=

(
θ1 + (i mod (n+ 1)) ∆λ1

θ2 +
⌊

i
n+1

⌋
∆λ2

)
for i = 0, ..., (n+ 1)

2 − 1.

For i = 0 to (n+ 1)2 − 1
For j = 0 to (n+ 1)2 − 1

qi,j =



qi,j + λ1
i if j = min ( i mod (n+ 1) +m ; n)

+ min
(⌊

i
n+1

⌋
(n+ 1) +

⌈
η21

∆λ2

⌉
(n+ 1) ; n (n+ 1)

)
qi,j + λ2

i if j = min
(
i mod (n+ 1) +

⌈
η12

∆λ1

⌉
;n
)

+ min
(⌊

i
n+1

⌋
(n+ 1) +m(n+ 1) ; n(n+ 1)

)
1

∆t
− λ1

i − λ2
i if j = max ((i mod (n+ 1))− dα1 (i mod (n+ 1)) ∆te ; 0)

+ max
(⌊

i
n+1

⌋
(n+ 1)−

⌈
α2

⌊
i

n+1

⌋
∆t

⌉
(n+ 1) ; 0

)
0 else

(9)

h1
i,j = 1 if j = min ( i mod (n+ 1) +m ; n)

+ min

(⌊
i

n+ 1

⌋
(n+ 1) +

⌈
η21

∆λ2

⌉
(n+ 1) ; n (n+ 1)

)

h2
i,j = 1 if j = min

(
i mod (n+ 1) +

⌈
η12

∆λ1

⌉
;n

)
(10)

+ min

(⌊
i

n+ 1

⌋
(n+ 1) +m(n+ 1) ; n(n+ 1)

)
If h1

i,j = h2
i,j = 1 then h3

i,j = 1 and h1
i,j = h2

i,j = 0
End loop on j

qi,i = −
∑
j 6=i qi,j

End loop on i

The analysis of the three scenarii suggests the following algorithm 1 for the construction of
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Q0, H
1, H2 and H3. Notice that (δt)t≥0 is a continuous Markov chain. Therefore, ∆t must be

seen as a parameter of Q0 and no more as a time interval (even if it was intuitively its origin for
constructing the transition probability matrix). For such a generator, the probability of switching
from a state i to j over a small time-interval ∆t (equal to qi,j∆t ) is either null, either equal to
λ1
i∆t, λ

2
i∆t,

(
λ1
i + λ2

i

)
∆t or 1 −

(
λ1
i + λ2

i

)
∆t. The probability of staying in the same state over

∆t is nearly null. To ensure the positiveness of non-diagonal elements of the generator, we impose
that 1

θ2+θ2+n(∆λ1
+∆λ2

) > ∆t.

The remainder of this section studies the properties of the Markov Chain δt de�ned by this gen-
erator. Firstly, we de�ne new point processes counting the number of transitions between states.
To each pair of distinct states i and j in the state space of the Markov chain δt, we de�ne a point
process Ni,j(t) as follows

Ni,j(t) :=
∑

0<s≤t

I{δs−=ei}I{δs=ej} ,

where I is the indicator function. Ni,j(t) is Gt-adapted and counts the number of transitions from
states i to j up to time t. We further de�ne the following intensity process

λi,j(t) := qi,jI{δt−=ei} .

Compensating the counting process Ni,j(t) by the integral of λi,j(.), the resulting process

Mi,j(t) := Ni,j(t)−
∫ t

0

λi,j(s)ds ,

is a martingale.
The next step consists in de�ning Gt-adapted point processes Ñ1

t and Ñ2
t , counting the number of

transitions between states assimilated to jumps of N1
t and N2

t . Let us de�ne

Ñk
t :=

(n+1)2−1∑
i=0

(n+1)2−1∑
j=0,j 6=i

∫ t

0

e>i
(
Hk +H3

)
ej dNi,j(s) (11)

for k = 1, 2. By construction, the intensity processes are for k = 1, 2 equal to:

λ̃kt :=

(n+1)2−1∑
i=0

(n+1)2−1∑
j=0,j 6=i

λi,j(t)e
>
i

(
Hk +H3

)
ej (12)

=

(n+1)2−1∑
i=0

(n+1)2−1∑
j=0,j 6=i

qi,jδ
>
t−
(
Hk +H3

)
ej .

Compensating the counting processes Ñ1
t and Ñ

2
t by resp. the integral of λ̃

1
t and of λ̃

2
t , the resulting

processes

Mk
t := Ñk

t −
∫ t

0

λ̃ksds ,

for k = 1, 2, are martingales. We mentioned earlier that states of the Markov chain identi�ed by
the matrix H3 correspond to either a jump of N1

t or N2
t (and it cannot be distinguished which

one). Such states exist only because the Markov chain counts a �nite number of states. In our
framework, it is clear that if δt transits from states i to j for which h3

i,j = 1, Ñ1
t and Ñ2

t jump at
the same time. We think that it is a particularly interesting feature of our bivariate process. When
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the level of mutual excitation is low, Ñ1
t and Ñ2

t never jump simultaneously. On the contrary,
when the mutual excitation is high (in other words when δt reaches its highest states), Ñ

1
t and Ñ2

t

can jump at the same time with a non-zero probability. The next proposition presents the moment
generating function (mgf) of the bivariate jump process.

Proposition 2.1. The joint mgf of Ñ1
s and Ñ2

s for s ≥ t with ω1, ω2 ∈ C−, is given by the
following expression

E
(
eω1Ñ

1
s+ω2Ñ

2
s | Ft

)
= exp

(
A(ω1, ω2, t, s, δt) + ω1Ñ

1
t + ω2Ñ

2
t

)
u = 1, 2 .

where

Ã(ω1, ω2, t, s) =
[
eA(ω1,ω2,t,s,e0), ..., eA(ω1,ω2,t,s,e(n+1)2−1)

]>
=
[
Ã(ω1, ω2, t, s, e0), ..., Ã(ω1, ω2, t, s, e(n+1)2−1)

]>
is a (n+ 1)2-vector of functions, solution of the system of ODE's

0 =
∂

∂t
Ã(.) +

(n+1)2−1∑
j 6=k

qk,je
>
k H

1ej

(
Ã(., ej) e

ω1 − Ã(., ek)
)

(13)

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

2ej

(
Ã(., ej) e

ω2 − Ã(., ek)
)

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

3ej

(
Ã(., ej) e

ω1+ω2 − Ã(., ek)
)
,

for k = 0, . . . , (n+ 1)2 − 1, under the terminal boundary conditions

Ã(ω1, ω2, s, s, ek) = 1 k = 0, . . . , (n+ 1)2 − 1.

Proof of Proposition 2.1. If we denote f(t, Ñ1
t , Ñ

2
t , δt) = E

(
eω1Ñ

1
s+ω2Ñ

2
s | Ft

)
, then f is by

Itô's lemma solution of the equation:

Af(t, Ñ1
t , Ñ

2
t , δt) = 0,

with the in�nitesimal generator A for δt = ek ( k ∈ {0, . . . , (n+ 1)2 − 1}) equal to

Af(t, Ñ1
t , Ñ

2
t , ek)

=
∂f

∂t
+

(n+1)2−1∑
j 6=k

qk,je
>
k H

1ej

(
f(t, Ñ1

t + 1, Ñ2
t , ej)− f(t, Ñ1

t , Ñ
2
t , ek)

)

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

2ej

(
f(t, Ñ1

t , Ñ
2
t + 1, ej)− f(t, Ñ1

t , Ñ
2
t , ek)

)
(14)

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

3ej

(
f(t, Ñ1

t + 1, Ñ2
t + 1, ej)− f(t, Ñ1

t , Ñ
2
t , ek)

)
.

9



Let us assume that f is an exponential a�ne function of Ñ1
t and Ñ2

t as follows:

f = exp
(
A(ω1, ω2, t, s, ek) +B1(ω1, t, s)Ñ

1
t +B2(ω2, t, s)Ñ

2
t

)
,

where A(ω1, ω2, t, s, ek) for k = 0, . . . , (n + 1)2 − 1 and B1(ω1, t, s), B
2(ω2, t, s) are time depen-

dent functions with terminal conditions given by A(ω1, ω2, s, s, ek) = 0, B1(ω1, s, s) = ω1 and
B2(ω2, s, s) = ω2. The partial derivatives of f are then given by:

ft =

(
∂

∂t
A(ω1, ω2, t, s, ek) +

∂

∂t
B1(ω1, t, s)Ñ

1
t +

∂

∂t
B2(ω2, t, s)Ñ

2
t

)
f,

whereas the sums in equation (14) are equal to respectively

(n+1)2−1∑
j 6=k

qk,je
>
k H

1ej

(
f(t, Ñ1

t + 1, Ñ2
t , ej)− f(t, Ñ1

t , Ñ
2
t , ek)

)

= f

(n+1)2−1∑
j 6=k

qk,je
>
k H

1ej

(
eA(.,ej)−A(.,ek)+B1(.) − 1

)
,

(n+1)2−1∑
j 6=k

qk,je
>
k H

2ej

(
f(t, Ñ1

t , Ñ
2
t + 1, ej)− f(t, Ñ1

t , Ñ
2
t , ek)

)

= f

(n+1)2−1∑
j 6=k

qk,je
>
k H

2ej

(
eA(.,ej)−A(.,ek)+B2(.) − 1

)
and

(n+1)2−1∑
j 6=k

qk,je
>
k H

3ej

(
f(t, Ñ1

t + 1, Ñ2
t + 1, ej)− f(t, Ñ1

t , Ñ
2
t , ek)

)

= f

(n+1)2−1∑
j 6=k

qk,je
>
k H

3ej

(
eA(.,ej)−A(.,ek)+B1(.)+B2(.) − 1

)
.

Substituting these expressions into equation (14), leads to the following relation:

0 =

(
∂

∂t
A(.) +

∂

∂t
B1(.)Ñ1

t +
∂

∂t
B2(.)Ñ2

t

)
eA(.,ek)

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

1ej

(
eA(.,ej)+B

1(.) − eA(.,ek)
)

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

2ej

(
eA(.,ej)+B

2(.) − eA(.,ek)
)

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

3ej

(
eA(.,ej)+B

1(.)+B2(.) − eA(.,ek)
)
,

10



from which we deduce that B1(ω1, t, s) = ω1 and B2(ω2, t, s) = ω2. Regrouping terms allows to
infer that the functions A are solutions to the following system of ODE's:

0 =
∂

∂t
A(.)eA(.,ek) +

(n+1)2−1∑
j 6=k

qk,je
>
k H

1ej

(
eA(.,ej)+B

1(.) − eA(.,ek)
)

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

2ej

(
eA(.,ej)+B

2(.) − eA(.,ek)
)

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

3ej

(
eA(.,ej)+B

1(.)+B2(.) − eA(.,ek)
)
.

De�ning Ã(ω1, ω2, t, s) = (eA(ω1,ω2,t,s,ek))k=0,...,(n+1)2−1, leads to the relation (13).

�

3 The Bivariate Mutually-Excited Switching Jump Di�usion
(BMESJD) model

In this section, we construct a bivariate price process
(
S1
t , S

2
t

)
for �nancial assets with jumps

induced by the jump processes Ñ1
t and Ñ2

t de�ned in (11) and modelled by the use of random
variables J1 and J2, which are assumed to be independent of the processes Ñ i

t for i = 1, 2. This
bivariate process

(
S1
t , S

2
t

)
is de�ned on Ω and the �ltration generated by the asset prices is denoted

by {Ht}t≥0. We recall that the information about the Markov Chain (δt)t≥0 is contained in the

�ltration {Gt}t≥0. The augmented �ltration gathering information about
(
S1
t , S

2
t , δt

)
is denoted

by Ft = Gt ∨Ht. We assume that (Wt)t is a standard Brownian motion under P independent of

Ji and Ñ
i
t for i = 1, 2; and that the instantaneous return of the asset price process is modelled by

the following sum of a drift term, a Brownian motion term, and a compensated jumps part: dS1
t

S1
t−
dS2
t

S2
t−

 =

(
µ1
t

µ2
t

)
︸ ︷︷ ︸

µt

dt+

(
σ11
t 0
σ21
t σ22

t

)
︸ ︷︷ ︸

Σt

(
dW 1

t

dW 2
t

)
︸ ︷︷ ︸

dWt

(15)

+

( (
eJ1 − 1

)
dÑ1

t(
eJ2 − 1

)
dÑ2

t

)
−
(
λ̃1
tE
(
eJ1 − 1

)
λ̃2
tE
(
eJ2 − 1

) ) dt
The drift rates µt =

(
µ1
t , µ

2
t

)
, and Brownian volatilities

(
σ11
t , σ

21
t , σ

22
t

)
are modulated by the

Markov chain δ. That is, for j = 1, 2, µjt = δ>t µ̄
j where

µ̄j =
(
µj0, . . . , µ

j
(n+1)2−1

)>
∈ R(n+1)2

and for the pairs (i j) = (1 2) , (2 1) , (2 2), σijt = δ>t σ̄
ij where

σ̄ij =
(
σij0 , . . . , σ

ij

(n+1)2−1

)>
∈ R(n+1)2

+ .

11



The matrix of covariance of the Brownian part is then stochastic and equal to ΣΣ>.

We call this model the bivariate mutually-excited switching jump di�usion (BMESJD) model.
Applying Itô's lemma to lnSjt leads to the alternative representation:(

d lnS1
t

d lnS2
t

)
=

(
µt −

1

2
diag

(
ΣtΣ

>
t

))
dt+ Σt

(
dW 1

t

dW 2
t

)
(16)

+

(
J1dÑ

1
t

J2dÑ
2
t

)
−
(
λ̃1
tE
(
eJ1 − 1

)
λ̃2
tE
(
eJ2 − 1

) ) dt
from which we deduce that

(
S1
t , S

2
t

)
are equal to the following exponential processes:

Sjt = exp

(∫ t

0

e>j

(
µs −

1

2
diag

(
ΣsΣ

>
s

))
ds+

∫ t

0

e>j ΣsdWs (17)

+

∫ t

0

JjdÑ
j
s −

∫ t

0

λ̃jsE
(
eJj − 1

)
ds

)
j = 1, 2
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t
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0.1

J
1
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1

t
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Year

-0.06

-0.04

-0.02

0

0.02
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0.06

J
2
dN

2

t

Figure 1: Upper graphs: simulated sample path for S1
t and S2

t . Lower graphs: jump components
of S1

t and S2
t .

We assume that J1 and J2 are i.i.d. copies of double exponential distributions. Their probability
density function (de�ned on R) is given by

νj (z) = pjρ
+
j e
−ρ+

j zI{z≥0} − (1− pj) ρ−j e
−ρ−j zI{z<0}, (18)

while the associated cumulative distribution function equals

P [Jj ≤ z] = (1− pj) e−ρ
−
j zI{z≤0} +

[
(1− pj) + pj

(
1− e−ρ

+
j z
)]

I{z>0}.

12



This distribution of Jj for j = 1, 2 depends on three parameters: ρ+
j ∈ R+, ρ−j ∈ R−, and pj ∈

(0, 1), where pj (resp. (1− pj)) denotes the probability of observing an upward (resp. downward)
exponential jump, and 1

ρ+
j

(resp. 1
ρ−j

) gives the size of an average positive (resp. negative) jump.

The expected value of the size of the jumps is the weighted sum of these average sizes; E(Jj) =
pj

1
ρ+
j

+ (1− pj) 1
ρ−j

. The moment generating function of Jj is given by

ψj(ω) = E
(
eωJj

)
= pj

ρ+
j

ρ+
j − ω

+ (1− pj)
ρ−j

ρ−j − ω
j = 1, 2. (19)

By construction, the jump processes are mutully-excited. Figure 1 below illustrates this point by
showing a simulation of sample paths of S1

t and S
2
t . The lower graphs report the jumps hitting each

time series. We clearly observe a clustering of jumps caused by the self-excitation and contagion
between shocks. In the next section, we propose an algorithm to estimate parameters by using
historical �nancial time series.

We conclude this section by studying the moment generating function of the log-return of
(
S1
t , S

2
t

)
.

Hereto we introduce some new notations. First, the drift of
(
lnS1

t , lnS
2
t

)
is denoted by µ̃t:

µ̃t :=

(
µ̃1
t

µ̃2
t

)
=

(
µ1
t

µ2
t

)
− 1

2
diag

(
ΣtΣ

>
t

)
−
(
λ̃1
tE
(
eJ1 − 1

)
λ̃2
tE
(
eJ2 − 1

) ) (20)

such that the log-return Xj
t := ln

Sjt
Sj0

is given by:

Xj
t = exp

(∫ t

0

e>j µ̃
j
sds+

∫ t

0

e>j ΣsdWs +

∫ t

0

JjdÑ
j
s

)
. j = 1, 2 (21)

By construction, µ̃jt takes its value in a R(n+1)2

vector µ̃j = (µ̃j0, ..., µ̃
j
(n+1)2−1) and is such that µ̃jt =

δtµ̃
j , for j = 1, 2. According to the Itô's lemma for semi-martingales, any function f(t,X1

t , X
2
t , δt) :

R+×R2×E0 → R that is C1 with respect to time and C2 with respect to X1
t and X2

t admits the
following relation for X1

t = x1 , X2
t = x2 and δt = ek :

df(t, x1, x2, ek) =

(
∂f

∂t
+

∂f

∂x1
µ̃1
k +

∂f

∂x2
µ̃2
k

)
dt (22)

+
1

2

(
∂2f

∂x2
1

(
σ11
k

)2
+
∂2f

∂x2
2

((
σ21
k

)2
+
(
σ22
k

)2)
+ 2

∂2f

∂x2∂x1
σ11
k σ

21
k

)
dt

+

(
∂f

∂x1
σ11
k +

∂f

∂x2
σ21
k

)
dW 1

t +
∂f

∂x2
σ22
k dW

2
t

+

(n+1)2−1∑
j 6=k

e>k H
1ej (f(t, x1 + J1, x2, ej)− f(t, x1, x2, ek)) dNkj(t)

+

(n+1)2−1∑
j 6=k

e>k H
2ej (f(t, x1, x2 + J2, ej)− f(t, x1, x2, ek)) dNkj(t)

+

(n+1)2−1∑
j 6=k

e>k H
3ej (f(t, x1 + J1, x2 + J2, ej)− f(t, x1, x2, ek)) dNkj(t) .
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The last three terms of this equation correspond respectively to the variation of f(.) caused by a
jump of Ñ1

t , a jump of Ñ2
t and simultaneous jumps of Ñ1

t and Ñ2
t . The in�nitesimal generator

Af(t, x1, x2, ek) is equal to:

Af(t, x1, x2, ek) =
∂f

∂t
+

∂f

∂x1
µ̃1
k +

∂f

∂x2
µ̃2
k

+
1

2

∂2f

∂x2
1

(
σ11
k

)2
+

1

2

∂2f

∂x2
2

((
σ21
k

)2
+
(
σ22
k

)2)
+

∂2f

∂x2∂x1
σ11
k σ

21
k

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

1ej

∫
(f(t, x1 + z, x2, ej)− f(t, x1, x2, ek)) ν1(z)dz

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

2ej

∫
(f(t, x1, x2 + z, ej)− f(t, x1, x2, ek)) ν2(z)dz

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

3ej

∫ ∫
((f(t, x1 + z1, x2 + z2, ej)

−f(t, x1, x2, ek)) ν1(z1)ν2(z2)dz1dz2

We use these results to infer the moment generator funcion (mgf) of
(
X1
s , X

2
s

)
.

Proposition 3.1. Let us de�ne the 2× 2 matrix

Σω1,ω2

k =

(
ω1σ

11
k 0

ω2σ
21
k ω2σ

22
k

)
k = 0, ..., (n+ 1)2 − 1 ,

and 1 = (1, 1)>. The mgf of
(
X1
s , X

2
s

)
for s ≥ t and (ω1, ω2) ∈ C2

−, is given by the following
expression

E
(
eω1X

1
s+ω2X

2
s | Ft

)
=

(
S1
t

S1
0

)ω1
(
S2
t

S2
0

)ω2

exp (A(ω1, ω2, t, s, δt)) , (23)

where

Ã(ω1, ω2, t, s) =
[
eA(ω1,ω2,t,s,e0), ..., eA(ω1,ω2,t,s,e(n+1)2−1)

]>
=
[
Ã(ω1, ω2, t, s, e0), ..., Ã(ω1, ω2, t, s, e(n+1)2−1)

]>
is a (n+ 1)2 − 1 vector of functions, solution of the following ODE system

0 =
∂

∂t
Ã+

(
ω1µ̃

1
k + ω2µ̃

2
k +

1

2
1>Σω1,ω2

k Σω1,ω2>
k 1

)
Ã+

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

1ej

(
Ã(., ej)ψ1(ω1)− Ã(., ek)

)

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

2ej

(
Ã(., ej)ψ2(ω2)− Ã(., ek)

)

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

3ej

(
Ã(., ej)ψ1(ω1)ψ2(ω2)− Ã(., ek)

)

14



under the terminal boundary condition:

Ã(ω1, ω2, s, s, ek) = 1 for k = 0, . . . , (n+ 1)2 − 1.

Proof of Proposition 3.1. Let us denote f(t,X1
t , X

2
t , δt) = E

(
eω1X

1
s+ω2X

2
s | Ft

)
. If δt = ek,

this function is solution of the following equation, implied by the usual argument based on Itô's
lemma:

0 = ft + fX1
µ̃1
k + fX2

µ̃2
k +

1

2
fX1X1

(
σ11
k

)2
+

1

2
fX2X2

((
σ21
k

)2
+
(
σ22
k

)2)
+ fX1,X2

σ11
k σ

21
k

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

1ej

∫
(f(t, x1 + z, x2, ej)− f(t, x1, x2, ek)) ν1(z)dz (24)

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

2ej

∫
(f(t, x1, x2 + z, ej)− f(t, x1, x2, ek)) ν2(z)dz

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

3ej

∫ ∫
(f(t, x1 + z1, x2 + z2, ej)− f(t, x1, x2, ek)) ν1(z1)ν2(z2)dz1dz2

Let us further assume that f is an exponential a�ne function of
(
X1
t , X

2
t

)
:

f = exp
(
A(ω1, ω2, t, s, ek) +B1(ω1, t, s)X

1
t +B2(ω2, t, s)X

2
t

)
,

where A(., ek) (for k = 0, . . . , n), B1(.) and B2(.) are time dependent functions with terminal
conditions A(ω1, ω2, s, s, ek) = 0, B1(ω1, s, s) = ω1 and B2(ω2, s, s) = ω2. The partial derivatives
of f with respect to the state variables are given by:

ft =

(
∂

∂t
A+

∂

∂t
B1X

1
t +

∂

∂t
B2X

2
t

)
f,

fX1 = B1f fX1X1 = (B1)
2
f ,

fX2 = B2f fX2X2 = (B2)
2
f ,

fX1X2 = B1B2 f

The last terms in equation (24) can be developped as respectively

(n+1)2−1∑
j 6=k

qk,je
>
k H

1ej

∫
(f(t, x1 + z, x2, ej)− f(t, x1, x2, ek)) ν1(z)dz

= eB1X
1
t+B2X

2
t

(n+1)2−1∑
j 6=k

qk,je
>
k H

1ej

(
eA(.,ej)ψ1(B1)− eA(.,ek)

)
,

(n+1)2−1∑
j 6=k

qk,je
>
k H

2ej

∫
(f(t, x1, x2 + z, ej)− f(t, x1, x2, ek)) ν2(z)dz

= eB1X
1
t+B2X

2
t

(n+1)2−1∑
j 6=k

qk,je
>
k H

2ej

(
eA(.,ej)ψ2(B2)− eA(.,ek)

)

15



and

(n+1)2−1∑
j 6=k

qk,je
>
k H

3ej

∫ ∫
(f(t, x1 + z1, x2 + z2, ej)− f(t, x1, x2, ek)) ν1(z1)ν2(z2)dz1dz2

= eB1X
1
t+B2X

2
t

(n+1)2−1∑
j 6=k

qk,je
>
k H

3ej

(
eA(.,ej)ψ1(B1)ψ2(B2)− eA(.,ek)

)
.

Injecting these expressions into equation (24), leads to the following relation:

0 =

(
∂

∂t
A+

∂

∂t
B1X

1
t +

∂

∂t
B2X

2
t

)
eA +

(
B1µ̃

1
k +B2µ̃

2
k

)
eA (25)

+
1

2

((
B1σ

11
k

)2
+
((
B2σ

21
k

)2
+
(
B2σ

22
k

)2)
+ 2B1B2σ

11
k σ

21
k

)
eA

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

1ej

(
eA(.,ej)ψ1(B1)− eA(.,ek)

)

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

2ej

(
eA(.,ej)ψ2(B2)− eA(.,ek)

)

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

3ej

(
eA(.,ej)ψ1(B1)ψ2(B2)− eA(.,ek)

)
from which we infer that B1(ω1, t, s) = ω1 and B2(ω2, t, s) = ω2. This fact allows to conclude that
A(ω1, ω2, t, s, ek) for k = 0, . . . , n are solutions of the following system of ODE's:

0 =
∂

∂t
AeA +

(
ω1µ̃

1
k + ω2µ̃

2
k

)
eA (26)

+
1

2

((
ω1σ

11
k

)2
+
((
ω2σ

21
k

)2
+
(
ω2σ

22
k

)2)
+ 2ω1ω2σ

11
k σ

21
k

)
eA

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

1ej

(
eA(.,ej)ψ1(ω1)− eA(.,ek)

)

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

2ej

(
eA(.,ej)ψ2(ω2)− eA(.,ek)

)

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

3ej

(
eA(.,ej)ψ1(ω1)ψ2(ω2)− eA(.,ek)

)
.

If we de�ne the matrix Σω1,ω2

k as follows

Σω1,ω2

k =

(
ω1σ

11
k 0

ω2σ
21
k ω2σ

22
k

)
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and Ã(t, s) = (eA(ω1,ω2,t,s,ei))i=0,...,n, equation (26) can easily be rewritten as follows:

0 =
∂

∂t
Ã+

(
ω1µ̃

1
k + ω2µ̃

2
k +

1

2
1>Σω1,ω2

k Σω1,ω2>
k 1

)
Ã

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

1ej

(
Ã(., ej)ψ1(ω1)− Ã(., ek)

)

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

2ej

(
Ã(., ej)ψ2(ω2)− Ã(., ek)

)

+

(n+1)2−1∑
j 6=k

qk,je
>
k H

3ej

(
Ã(., ej)ψ1(ω1)ψ2(ω2)− Ã(., ek)

)
.

�
The bivariate density of

(
S1
t , S

2
t

)
may be obtained by inverting the mgf in a numerically way,

e.g. by using a discrete Fourier transform algorithm. In theory, we can then use this probability
density (pdf) to estimate parameters from time series by log-likelihood maximization techniques.
However, this approach is computationally intensive and may be inaccurate due to numerical errors.
For these reasons, we propose an alternative estimation method in the next section.

4 BMESJD Parameters estimation with a modi�ed Hamilton
�lter

At the best of our knowledge, �tting a bivariate Hawkes jump di�usion process is a challenging
task. Aït-Sahalia et al. (2015) estimate parameters with a generalized moment matching method.
However this approach is based on some approximations of moments. An alternative method
consists in implementing a particle Markov Chain Monte Carlo procedure but the speed of con-
vergence to reliable estimates depends upon the choice of the prior distribution of the parameters.
The BMESJD model does not present this drawback and can be �tted to a time series with an
enhanced version of the Hamilton �lter (see Hamilton, 1989). This procedure requires the following
new result about the probability density function of the sum of a bivariate normally distributed
random variable with independent exponentially distributed random variables.

Proposition 4.1. Let us denote the elements of the inverse matrix
(
∆ΣiΣ

>
i

)−1
by

(
∆ΣiΣ

>
i

)−1
=

(
v1 v12

v12 v2

)
, (27)

and Φ∆ΣiΣ>i
(z1, z2) the cdf of a bivariate normally distributed random variable, with zero mean

and ∆ΣiΣ
>
i as its covariation matrix, which is independent of J1 and J2.

17



1. The probability density function of the sum

(
J1

0

)
+ Σi

(
W 1

∆

W 2
∆

)
is equal to

gJ1(z1, z2 | δt = ei) (28)

= p1ρ
+
1 e
−
(
z1ρ

+
1 −

1
2 (ρ+

1 )
2
v−1
1 ∆

)
− v12
v1
z2ρ

+
1
∂

∂z2
Φ∆ΣiΣ>i

(
z1 −

ρ+
1

v1
∆ , z2

)
− (1− p1) ρ−1 e

−
(
z1ρ
−
1 −

1
2 (ρ−1 )

2
v−1
1 ∆

)
− v12
v1
z2ρ
−
1 ×

×
(

∂

∂z2
Φ∆ΣiΣ>i

(∞ , z2)− ∂

∂z2
Φ∆ΣiΣ>i

(
z1 −

ρ−1
v1

∆ , z2

))
.

2. The probability density function of the sum

(
0
J2

)
+ Σi

(
W 1

∆

W 2
∆

)
is given by the relation:

gJ2(z1, z2 | δt = ei) (29)

= p2ρ
+
2 e
−
(
z2ρ

+
2 −

1
2 (ρ+

2 )
2
v−1
2 ∆

)
− v12
v2
z1ρ

+
2
∂

∂z1
Φ∆ΣiΣ>i

(
z1 , z2 −

ρ+
2

v2
∆

)
− (1− p2) ρ−2 e

−
(
z2ρ
−
2 −

1
2 (ρ−2 )

2
v−1
2 ∆

)
− v12
v2
z1ρ
−
2 ×

×
(

∂

∂z1
Φ∆ΣiΣ>i

(z1 , ∞)− ∂

∂z1
Φ∆ΣiΣ>i

(
z1 , z2 −

ρ−2
v2

∆

))
.

3. Let us de�ne for S1 ∈ {+,−} and S2 ∈ {+,−}

αS1S2
1 =

∆
(
v2ρ

S1
1 − v12ρ

S2
2

)
v1v2 − (v12)

2 and αS1S2
2 =

∆
(
v1ρ

S2
2 − v12ρ

S1
1

)
v1v2 − (v12)

2 ,

and

γS1S2(z1, z2) = 2αS1S2
1 (v1z1 + v12z2) + 2αS1S2

2 (v12z1 + v2z2)

−
(
αS1S2

1

)2
v1 − 2αS1S2

1 αS1S2
2 v12 −

(
αS1S2

2

)2
v2 .

The probability density function of the sum

(
J1

J2

)
+ Σi

(
W 1

∆

W 2
∆

)
is then given by the

following expression

gJ1J2(z1, z2 | δt = ei) (30)

= p1p2ρ
+
1 ρ

+
2 e
− 1

2∆γ
++(z1,z2)Φ∆ΣiΣ>i

(
z1 − α++

1 , z2 − α++
2

)
− p1(1− p2)ρ+

1 ρ
−
2 e
− 1

2∆γ
+−(z1,z2)

(
Φ∆ΣiΣ>i

(
z1 − α+−

1 ,∞
)

−Φ∆ΣiΣ>i

(
z1 − α+−

1 , z2 − α+−
2

))
− p2 (1− p1) ρ−1 ρ

+
2 e
− 1

2∆γ
−+(z1,z2)

(
Φ∆ΣiΣ>i

(
∞, z2 − α−+

2

)
−Φ∆ΣiΣ>i

(
z1 − α−+

1 , z2 − α−+
2

))
+ (1− p1) (1− p2) ρ−1 ρ

−
2 e
− 1

2∆γ
−−(z1,z2)

(
1− Φ∆ΣiΣ>i

(
∞, z2 − α−−2

)
−Φ∆ΣiΣ>i

(
z1 − α−−1 ,∞

)
+ Φ∆ΣiΣ>i

(
z1 − α−−1 , z2 − α−−2

))
.
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Proof of Proposition 4.1. Σi

(
W 1

∆

W 2
∆

)
is a bivariate normal distribution with zero mean and

its covariance matrix equal to ∆ΣiΣ
>
i . The probability density function of this bivariate Gaussian

random variable is denoted by:

f(z1, z2) = det(2π∆ΣiΣ
>
i )−

1
2 e−

1
2 (z1,z2)(∆ΣiΣ

>
i )
−1

(z1,z2)> .

1. The density function gJ1(z1, z2 | δt = ei) of (J1, 0)
>

+ Σi
(
W 1

∆,W
2
∆

)>
is equal to the convolution

of ν1 and f :

gJ1(z1, z2 | δt = ei) =

∫ +∞

−∞
ν1(u)f(z1 − u, z2)du

=
p1ρ

+
1

det(2π∆ΣiΣ>i )
1
2

∫ +∞

0

e
− 1

2∆

(
2∆ρ+

1 u+(z1−u,z2)(∆ΣiΣ
>
i )
−1

(z1−u,z2)>
)
du

− (1− p) ρ−1
det(2π∆ΣiΣ>i )

1
2

∫ 0

−∞
e
− 1

2∆

(
2∆ρ−1 u+(z1−u,z2)(∆ΣiΣ

>
i )
−1

(z1−u,z2)>
)
du .

Since the following equality holds (and its analogue for ρ−1 )

− 1

2∆

(
2∆ρ+

1 u+ v1 (z1 − u)
2

+ 2v12z2 (z1 − u) + v2z
2
2

)
= − 1

2∆

((
z1 − u− ρ+

1 v
−1
1 ∆ , z2

) (
∆ΣiΣ

>
i

)−1 (
z1 − u− ρ+

1 v
−1
1 ∆ , z2

)>)
−
(
z1ρ

+
1 −

1

2

(
ρ+

1

)2
v−1

1 ∆

)
− v12

v1
z2ρ

+
1 ,

the density function gJ1(z1, z2 | δt = ei) may be rewritten as follows

gJ1(z1, z2 | δt = ei) (31)

=
p1ρ

+
1 e
−
(
z1ρ

+
1 −

1
2 (ρ+

1 )
2
v−1
1 ∆

)
− v12
v1
z2ρ

+
1

det(2π∆ΣiΣ>i )
1
2

×
∫ +∞

0

e
− 1

2∆

(
(z1−u−ρ+

1 v
−1
1 ∆ , z2)(∆ΣiΣ

>
i )
−1

(z1−u−ρ+
1 v
−1
1 ∆ , z2)

>
)
du

− (1− p) ρ−1 e
−
(
z1ρ
−
1 −

1
2 (ρ−1 )

2
v−1
1 ∆

)
− v12
v1
z2ρ
−
1

det(2π∆ΣiΣ>i )
1
2

×
∫ 0

−∞
e
− 1

2∆

(
(z1−u−ρ−1 v

−1
1 ∆ , z2)(∆ΣiΣ

>
i )
−1

(z1−u−ρ−1 v
−1
1 ∆ , z2)

>
)
du ,

Using the substitution y1 = z1 − u− ρ+
1 v
−1
1 ∆ implies that u = z1 − y1 − ρ+

1 v
−1
1 ∆ and du = −dy1.

Moreover, if u = 0 then y1 = z1 − ρ+
1 v
−1
1 ∆ and if u = +∞, then y1 = −∞. As a consequence, the
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�rst integral in equation (31) becomes:∫ +∞

0

exp

(
− 1

2∆

((
z1 − u− ρ+

1 v
−1
1 ∆ , z2

) (
∆ΣiΣ

>
i

)−1 (
z1 − u− ρ+

1 v
−1
1 ∆ , z2

)>))
du

= −
∫ −∞
z1−ρ+

1 v
−1
1 ∆

exp

(
− 1

2∆

(
(y1 , z2)

(
∆ΣiΣ

>
i

)−1
(y1 , z2)

>
))

dy1

=

∫ z1−ρ+
1 v
−1
1 ∆

−∞
exp

(
− 1

2∆

(
(y1 , z2)

(
∆ΣiΣ

>
i

)−1
(y1 , z2)

))
dy1. (32)

The second integral in equation (31) turns out to be equal to∫ 0

−∞
exp

(
− 1

2∆

((
z1 − u− ρ−1 v

−1
1 ∆ , z2

) (
∆ΣiΣ

>
i

)−1 (
z1 − u− ρ−1 v

−1
1 ∆ , z2

)>))
du

= −
∫ z1−ρ−1 v

−1
1 ∆

+∞
exp

(
− 1

2∆

(
(y1 , z2)

(
∆ΣiΣ

>
i

)−1
(y1 , z2)

>
))

dy1

=

∫ +∞

z1−ρ−1 v
−1
1 ∆

exp

(
− 1

2∆

(
(y1 , z2)

(
∆ΣiΣ

>
i

)−1
(y1 , z2)

>
))

dy1

=

∫ ∞
−∞

exp

(
− 1

2∆

(
(y1 , z2)

(
∆ΣiΣ

>
i

)−1
(y1 , z2)

>
))

dy1

−
∫ z1−ρ−1 v

−1
1 ∆

−∞
exp

(
− 1

2∆

(
(y1 , z2)

(
∆ΣiΣ

>
i

)−1
(y1 , z2)

>
))

dy1 . (33)

From equations (31)-(33), we conclude that gJ1(z1, z2 | δt = ei) equals expression (28).

2. The density function gJ2(z1, z2 | δt = ei) is obtained in the same way.

3. The density function gJ1J2(z1, z2 | δt = ei) is the double convolution of ν1, ν2 and f

gJ1J2(z1, z2 | δt = ei) =

∫ +∞

−∞

∫ +∞

−∞
ν1(u1)ν2(u2)f(z1 − u1, z2 − u2)du1du2 .

First, we notice that the product of the jump densities equals

ν1(u1)ν2(u2) = p1p2ρ
+
1 ρ

+
2 e
−ρ+

1 u1−ρ+
2 u2I{u1≥0,u2≥0}

−p1(1− p2)ρ+
1 ρ
−
2 e
−ρ+

1 u1−ρ−2 u2I{u1≥0,u2<0}

−p2 (1− p1) ρ+
2 ρ
−
1 e
−ρ−1 u1−ρ+

2 u2I{u1<0,u2≥0}

+ (1− p1) (1− p2) ρ−1 ρ
−
2 e
−ρ−1 u1−ρ−2 u2I{u1<0,u2<0} ,

Therefore, gJ1J2(.) can be developped as the sum of four integrals:

gJ1J2(z1, z2 | δt = ei)

=
p1p2ρ

+
1 ρ

+
2

det(2π∆ΣiΣ>i )
1
2

I1(z1, z2)− p1(1− p2)ρ+
1 ρ
−
2

det(2π∆ΣiΣ>i )
1
2

I2(z1, z2)

− p2 (1− p1) ρ+
2 ρ
−
1

det(2π∆ΣiΣ>i )
1
2

I3(z1, z2) +
(1− p1) (1− p2) ρ−2 ρ

−
1

det(2π∆ΣiΣ>i )
1
2

I4(z1, z2) ,
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where

I1(.) =

∫ +∞

0

∫ +∞

0

e
− 1

2∆

[
2∆ρ+

1 u1+2∆ρ+
2 u2+(z1−u1,z2−u2)(∆ΣiΣ

>
i )
−1

(z1−u1,z2−u2)>
]
du1du2,

I2(.) =

∫ 0

−∞

∫ +∞

0

e
− 1

2∆

[
2∆ρ+

1 u1+2∆ρ−2 u2+(z1−u1,z2−u2)(∆ΣiΣ
>
i )
−1

(z1−u1,z2−u2)>
]
du1du2,

I3(.) =

∫ +∞

0

∫ 0

−∞
e
− 1

2∆

[
2∆ρ−1 u1+2∆ρ+

2 u2+(z1−u1,z2−u2)(∆ΣiΣ
>
i )
−1

(z1−u1,z2−u2)>
]
du1du2,

I4(.) =

∫ 0

−∞

∫ 0

−∞
e
− 1

2∆

[
2∆ρ−1 u1+2∆ρ−2 u2+(z1−u1,z2−u2)(∆ΣiΣ

>
i )
−1

(z1−u1,z2−u2)>
]
du1du2 .

If S1 ∈ {+,−} and S2 ∈ {+,−}, the following relation holds

2∆ρS1
1 u1 + 2∆ρS2

2 u2 + (z1 − u1, z2 − u2)
(
∆ΣΣ>

)−1
(z1 − u1, z2 − u2)>

= (z1 − u1 − αS1S2
1 , z2 − u2 − αS1S2

2 )
(
∆ΣΣ>

)−1

× (z1 − u1 − αS1S2
1 , z2 − u2 − αS1S2

2 )> + γS1S2(z1, z2)

where

αS1S2
1 =

∆
(
v2ρ

S1
1 − v12ρ

S2
2

)
v1v2 − (v12)

2 ,

αS1S2
2 =

∆
(
v1ρ

S2
2 − v12ρ

S1
1

)
v1v2 − (v12)

2 ,

and

γS1S2(z1, z2) = 2αS1S2
1 (v1z1 + v12z2) + 2αS1S2

2 (v12z1 + v2z2)

−
(
αS1S2

1

)2
v1 − 2αS1S2

1 αS1S2
2 v12 −

(
αS1S2

2

)2
v2 .

gJ1J2(.) can then be rewritten as

gJ1J2(z1, z2 | δt = ei) (34)

=
p1p2ρ

+
1 ρ

+
2 e
− 1

2∆γ
++(z1,z2)

det(2π∆ΣiΣ>i )
1
2

Ib1(z1, z2)− p1(1− p2)ρ+
1 ρ
−
2 e
− 1

2∆γ
+−(z1,z2)

det(2π∆ΣiΣ>i )
1
2

Ib2(z1, z2)

−p2 (1− p1) ρ−1 ρ
+
2 e
− 1

2∆γ
−+(z1,z2)

det(2π∆ΣiΣ>i )
1
2

Ib3(z1, z2)

+
(1− p1) (1− p2) ρ−1 ρ

−
2 e
− 1

2∆γ
−−(z1,z2)

det(2π∆ΣiΣ>i )
1
2

Ib4(z1, z2)
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where

Ib1(.) =

∫ +∞

0

∫ +∞

0

e
− 1

2∆

[
(z1−u1−α++

1 ,z2−u2−α++
2 )(∆ΣΣ>)

−1
(z1−u1−α++

1 ,z2−u2−α++
2 )>

]
du1du2,

Ib2(.) =

∫ 0

−∞

∫ +∞

0

e
− 1

2∆

[
(z1−u1−α+−

1 ,z2−u2−α+−
2 )(∆ΣΣ>)

−1
(z1−u1−α+−

1 ,z2−u2−α+−
2 )>

]
du1du2,

Ib3(.) =

∫ +∞

0

∫ 0

−∞
e
− 1

2∆

[
(z1−u1−α−+

1 ,z2−u2−α−+
2 )(∆ΣΣ>)

−1
(z1−u1−α−+

1 ,z2−u2−α−+
2 )>

]
du1du2,

Ib4(.) =

∫ 0

−∞

∫ 0

−∞
e
− 1

2∆

[
(z1−u1−α−−1 ,z2−u2−α−−2 )(∆ΣΣ>)

−1
(z1−u1−α−−1 ,z2−u2−α−−2 )>

]
du1du2.

Using the substitutions y1 = z1 − u1 − α++
1 , y2 = z2 − u2 − α++

2 implies that u1 = z1 − y1 − α++
1 ,

u2 = z2−y2−α++
2 and that du1 = −dy1, du2 = −dy2. Moreover, if u1 = u2 = 0 then y1 = z1−α++

1 ,
y2 = z2 − α++

2 and if u1 = u2 = +∞, then y1 = y2 = −∞. As a consequence, the �rst term in
equation (34) becomes

p1p2ρ
+
1 ρ

+
2 e
− 1

2∆γ
++(z1,z2)

det(2π∆ΣiΣ>i )
1
2

∫ z2−α++
2

−∞

∫ z1−α++
1

−∞
e
− 1

2∆

[
(y1,y2)(∆ΣΣ>)

−1
(y1,y2)>

]
dy1dy2

= p1p2ρ
+
1 ρ

+
2 e
− 1

2∆γ
++(z1,z2)Φ∆ΣiΣ>i

(
z1 − α++

1 , z2 − α++
2

)
Applying the same substitutions in the three last integrals of equation (34) leads to the expression
(30). �

Figure 2 shows the three probability density functions (pdf) introduced in proposition (2). We
clearly observe the in�uence of jumps on the bivariate normal random variable: jumps distort the
pdf in the predominant direction of the shocks.
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Figure 2: Examples of bivariate distributions. Σ is set to the identity matrix.

In the rest of this section, we denote by
(
x1

1, x
2
1

)
,
(
x1

2, x
2
2

)
, ...,

(
x1
T , x

2
T

)
, the bivariate time series

of log-returns of two �nancial assets or indices, measured at times t1, . . . , tT equally spaced by ∆
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(which is not necessary equal to ∆t involved in the de�nition of Q0 for δt):

xji = ln

(
Sjti−1+∆

Sjti−1

)
i = 1, ..., T , j = 1, 2.

We assume that the Markov chain δt only changes of regime at times ti for i = 1, . . . , T . Hence, if
the economy stays in the jth state over the period of time [ti−1, ti] with no jumps, then the log-

returns are distributed according to a bivariate normal distribution
(
X1
i , X

2
i

)
∼ N

((
µ̃1
j∆, µ̃

2
j∆
)>
,∆ΣjΣ

>
j

)
.

When the Markov chain switches by a jump from regime i to j, the density of the log-return can
be found by using proposition 4.1. The set of parameters of the BMESJD is denoted by

Θ =

(
µ̄1, µ̄2, σ̄11, σ̄12, σ̄22, α1, α2, θ1, θ2,
η11, η12, p1, p2, ρ

+
1 , ρ

+
2 , ρ

−
1 , ρ

+
1

)
.

∆t, m and n are not considered as parameters and are chosen a priori.
Using the Bayes' rule, we reformulate the log-likelihood of observed returns as follows:

log f
((
x1

1, x
2
1

)
, ...,

(
x1
T , x

2
T

)
|Θ
)

= log f
((
x1

1, x
2
1

)
|Θ
)

+ log f
((
x1

2, x
2
2

)
|Θ,
(
x1

1, x
2
1

))
+ . . .+ log f

((
x1
T , x

2
T

)
|Θ,
(
x1

1, x
2
1

)
, . . . ,

(
x1
T−1, x

2
T−1

))
where f

((
x1
k, x

2
k

)
|Θ,
(
x1

1, x
2
1

)
, . . .

(
x1
k−1, x

2
k−1

))
is the density function of the return on the kth pe-

riod, for parameters Θ and conditionally to previous observations
(
x1

1, x
2
1

)
, . . .

(
x1
k−1, x

2
k−1

)
. The

parameters are estimated by maximizing this log-likelihood function.

Therefore, we concentrate upon the terms in the right-hand side of this log-likelihood. Condi-
tioning upon the state of δk allows us to infer that

f
((
x1
k, x

2
k

)
|Θ,
(
x1

1, x
2
1

)
, . . .

(
x1
k−1, x

2
k−1

))
=

(n+1)2−1∑
i=0

(n+1)2−1∑
j=0

pi
(
tk−1|Θ,

(
x1

1, x
2
1

)
, . . .

(
x1
k−1, x

2
k−1

))
pi,j(tk−1, tk|Θ)

× f
((
x1
k, x

2
k

)
|Θ, δtk = ej , δtk−1

= ei
)

where

• f
((
x1
k, x

2
k

)
|Θ, δtk = ej , δtk−1

= ei
)
is

� either the bivariate Gaussian density N
((
µ̃1
i∆, µ̃

2
i∆
)>
,∆ΣiΣ

>
i

)
in state i, if i ≥ j,

� or either

∗ gJ1(z1 − µ̃1
i∆, z2 − µ̃2

i∆ | δt = ei) if i 6= j and h1
ij = 1, where gJ1(.) is de�ned by

equation (28),

∗ gJ2(z1 − µ̃1
i∆, z2 − µ̃2

i∆ | δt = ei) if i 6= j and h2
ij = 1, where gJ2(.) is de�ned by

equation (29),

∗ gJ1J2(z1 − µ̃1
i∆, z2 − µ̃2

i∆ | δt = ei) if i 6= j and h3
ij = 1, where gJ1J2(.) is de�ned

by equation (30).

• pi,j(tk−1, tk|Θ) is the probability of transition, as de�ned by eq. (3), from state i at time
tk−1 to state j at time tk for the set of parameters Θ.
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• pi
(
tk−1|Θ,

(
x1

1, x
2
1

)
, . . .

(
x1
k−1, x

2
k−1

))
is the probability of presence in state i at time tk−1,

conditionally to observations up to tk−1.

Using again the Bayes' rule, the probability pi
(
tk−1|Θ,

(
x1

1, x
2
1

)
, . . .

(
x1
k−1, x

2
k−1

))
may be inferred

recursively from f
((
x1
k, x

2
k

)
|Θ, δtk = ej , δtk−1

= ei
)
as follows:

pi
(
tk−1|Θ,

(
x1

1, x
2
1

)
, . . .

(
x1
k−1, x

2
k−1

))
(35)

= f
((
x1
k−1, x

2
k−1

)
|Θ,
(
x1

1, x
2
1

)
, . . .

(
x1
k−2, x

2
k−2

))−1

×
(n+1)2−1∑

j=0

pj
(
tk−2|Θ,

(
x1

1, x
2
1

)
, . . .

(
x1
k−2, x

2
k−2

))
×pj,i(tk−2, tk−1|Θ) f

((
x1
k−1, x

2
k−1

)
|Θ, δtk−2

= ej , δtk−1
= ei

)
To initialize the �lter, we need to determine f

((
x1

1, x
2
1

)
|Θ
)
. If the Markov chain has been running

for a su�ciently long enough period of time, we assume that the probability of presence in state i
is equal to its stationary probability, pi(Θ). Then, we infer that:

f
((
x1

1, x
2
1

)
|Θ
)

=

(n+1)2−1∑
i=0

(n+1)2−1∑
j=0

pi(Θ)pi,j(t0, t1|Θ) f
((
x1

1, x
2
1

)
|Θ, δt0 = ei , δt1 = ej

)
.

Therefore, the log-likelihood is computed by recursion and maximized numerically to estimate
parameters. After this calibration, we �lter the states through which the Markov chain transits by
using the relation:

E

δ>tk
 0

...

(n+ 1)
2 − 1

 | Ftk
 =

(n+1)2−1∑
i=0

pi(tk|Θ,
(
x1

1, x
2
1

)
, . . .

(
x1
k, x

2
k

)
) i.

To illustrate our developments, we �t the BMESJD model to time series of the S&P 500 and
Euronext 100 (EN 100) stock index, containing daily returns from the 6/9/05 to 5/9/17 (3131
observations). In order to limit the number of parameters to estimate, the drifts µ1

t , µ
2
t and the

matrix Σt are assumed to be constant. This choice also allows us to clearly evaluate the periods of
self and mutual excitation between the US and European markets. The parameter of discretization
m is either equal to 2 or 4. n is assumed to be equal to 2m, 3m or 4m whereas ∆t = 1

200 and ∆ is
chosen to be equal to one trading day (∆ = 1

252 ). Table 1 reports the log-likelihood and AIC values
of several tested models. As we could expect, the goodness of �t is better for the BMESJD model
than for a pure di�usion process. Moreover, increasing m and therefore the number of states of δt,
improves the log-likelihood. Table 2 presents the parameter estimates for m = 4 and n = 12. The
S&P 500 and the EN 100 turn out to have downward jumps with a probability of respectively 56%
and 64%. A comparison of η11 and η22 indicates that the self-excitation risk is more important
in the US than in the European market; whereas the levels of mutual contagion, η12 and η21, are
comparable. The volatilities of di�usion parts are around 14.19% for the S&P 500 and 17.08% for
the EN 100. The higher volatility of the EN 100 can be explained by a smaller diversi�cation of the
European index compared to the S&P 500. Figure 3 compares the �ltered values for λ̃1

t (S&P 500)
and λ̃2

t (EN 100) log-returns. Both processes climb the scale of states during the periods of high
volatility: from September 2008 to the end 2009 (the US credit crunch period), from September
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2011 to February 2012 (the second period of the double-dip recession) or the �rst months of 2016
(the fear of de�ation). We will use the set of parameters reported in Table 2 for further numerical
illustrations in the next sections.

Model Log-likelihood AIC Number of states

Brownian Motion 19 275 -38 538
m = 2, n = 6 19 900 -39 766 49
m = 2, n = 8 19 890 -39 745 91
m = 4, n = 8 19 925 -39 817 91
m = 4, n = 12 19 933 -39 832 169

Table 1: The �rst line presents the log-likelihood and AIC for a di�usion with a drift �tted to S&P
500. The other lines present the log-likelihood and AIC for the BMESJD model, with di�erent
levels of discretization.

S&P 500 Euronext 100
Values St.dev. Values St.dev.

α1 16.4878 0.2141 α2 12.6418 0.1823
θ1 0.4034 0.0012 θ2 0.1081 0.0025
η11 32.6738 0.0490 η21 5.8323 0.0012
η12 5.7346 0.0016 η22 11.4693 0.0029
p1 0.4392 0.0011 p2 0.3597 0.0021

ρ+
1 37.6933 0.0759 ρ+

2 41.9427 0.1148

ρ−1 -40.3355 0.0832 ρ−2 -39.0573 0.1075
µ1 0.0561 0.0002 µ2 0.0220 0.0003
σ11 0.1419 0.0003 σ21 0.1061 0.0003

σ22 0.1339 0.0004

Table 2: Parameter estimates for m = 4, n = 3 and ∆t = 1
200 .

Notice that it is possible to enhance the �t of our model by considering a regime dependent
matrix Σt instead of a constant one. To illustrate this, we calibrate a model with m = 2 and
n = 6 and in which Σt is either equal to Σ1 if λ̃1

t λ̃
1
t ≥ g or to Σ2 if λ̃1

t λ̃
1
t < g. Here, g is a

threshold parameters that we �t by likelihood maximisation. The log-likelihood and AIC for this
model are respectively equal to 20 515 and -40 988. A comparison of these results with �gures in
absence of switching covariance (see Table 1: Log-lik.= 19 900, AIC=-39 766) clearly emphasizes
the improvement of the �t caused by the introduction of a switching covariance matrix.
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Figure 3: The upper graph shows the �ltered sample paths for λ̃1
t and λ̃

2
t . The second and third

graph present daily log-returns of resp. the S&P 500 and the EN 100 from September 2005 to 2017.

5 Change of measure

Previous sections focus on features of the pair
(
S1
t , S

2
t

)
under the real measure P. As option pricing

is performed under a risk neutral measure Q, we �rst need to de�ne the set of eligible probability
measures equivalent to P. During this analysis, we will underline the role of the simultaneous
jumps under a change of measure. Secondly, we infer the conditions that ensure that discounted
stock prices are martingales under the risk neutral measure. Given the nature of

(
S1
t , S

2
t

)
, the

market is incomplete and the set of equivalent measures is not �nite.
Let νb1(.) and νb2(.) denote the pdf of the jumps J1 and J2 under Q. We assume that they are
de�ned on the same domain as ν1(.) and ν2 (.), the pdf's of the jumps under P. Next, we de�ne
the log-ratios:

φj (b, u) := ln

(
b
νbj (u)

νj(u)

)
j = 1, 2 (36)

where u is in the support of νj(.) for j=1,2; and b ∈ R+ such that the logarithm in equation (36)

is well de�ned. We further take bi,j ∈ R+, for i, j = 0, ..., (n+ 1)
2 − 1, such that the following
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compensated jump processes are well de�ned and are martingales by construction:

Mi,j(t) =

Ni,j(t)∑
k=1

(
e(h

1
ij+h

3
ij)φ1(bi,j ,J1 k)+(h2

ij+h
3
ij)φ2(bi,j ,J2 k) − 1

)
(37)

−
∫ t

0

λi,j(s)E
(
e(h

1
ij+h

3
ij)φ1(bi,j ,J1)+(h2

ij+h
3
ij)φ2(bi,j ,J2) − 1 | F0

)
ds

=

Ni,j(t)∑
k=1

(
e(h

1
ij+h

3
ij)φ1(bi,j ,J1 k)+(h2

ij+h
3
ij)φ2(bi,j ,J2 k) − 1

)
−
∫ t

0

λi,j(s)
(

(bi,j)
h1
ij+h

2
ij+2h3

ij − 1
)
ds.

We will see later that bi,j is involved in the de�nition of the transition probabilities of δt under the
risk neutral measure. Notice that one could consider the generalization that bi,j is a Ft−adapted
process but, in this case, the process δt would no longer be a Markov chain under equivalent mea-
sures.

In the next proposition, we will de�ne an interesting family of equivalent probability measures
and the law under the new measures of some point processes, which are used to construct the
BMESJD. This proposition follows from Girsanov's theorem for semi-martingales, but we include
the proof for comprehension in this speci�c case.

Proposition 5.1. Let Z1
i,j(t) and Z2

i,j(t) be point processes de�ned under P by

Z1
i,j(t) := e>i

(
H1 +H3

)
ej

Ni,j(t)∑
k=1

J1 k

 (38)

Z2
i,j(t) := e>i

(
H2 +H3

)
ej

Ni,j(t)∑
k=1

J2 k


for i, j = 0, ..., (n+ 1)2 − 1. Under the regularity conditions mentioned above on bi,j, the processes
Li,j(t) de�ned as follows

Li,j(t) = exp

(∫ t

0

((
h1
ij + h3

ij

)
φ1 (bi,j , J1 s) +

(
h2
ij + h3

ij

)
φ2 (bi,j , J2 s)

)
dNi,j(s)

−
∫ t

0

λi,j(s)
(

(bi,j)
h1
ij+h

2
ij+2h3

ij − 1
)
ds

)
(39)

for i, j = 0, ..., (n+ 1)2 − 1, are Radon-Nikodym derivatives dPb
dP from the real measure P to a new

probability measure Pb. Under Pb, Z1
i,j(t) and Z2

i,j(t) are still point processes but their dynamics
are given by

Z1
i,j(t) = e>i

(
H1 +H3

)
ej

Nbi,j(t)∑
k=1

Jb1 k

 , (40)

Z2
i,j(t) = e>i

(
H2 +H3

)
ej

Nbi,j(t)∑
k=1

Jb2 k

 ,
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where Jb1 k and Jb2 k are i.i.d. jumps with pdf νb1(u) and νb2(u); and where N b
i,j(t) is a counting

process of intensity λi,j(t)bi,j if h
1
i,j = 1 or h2

i,j = 1, and a counting process of intensity λi,j(t)b
2
i,j

if h3
i,j = 1.

Proof of Proposition 5.1. From equation (37), Mi,j(t) are martingales satisfying the SDE:

dMi,j(t) =
(
e(h

1
ij+h

3
ij)φ1(bi,j ,J1)+(h2

ij+h
3
ij)φ2(bi,j ,J2) − 1

)
dNi,j(t)

−λi,j(t)
(

(bi,j)
h1
ij+h

2
ij+2h3

ij − 1
)
dt .

Then, we can construct the martingale Li,j(t) with geometric dynamics given by:

dLi,j(t) = Li,j(t) dMi,j(t)

= Li,j(t)
(
e(h

1
ij+h

3
ij)φ1(bi,j ,J1)+(h2

ij+h
3
ij)φ2(bi,j ,J2) − 1

)
dNi,j(t)

−Li,j(t)λi,j(t)
(

(bi,j)
h1
ij+h

2
ij+2h3

ij − 1
)
dt

By applying Itô's lemma, it is easy to see that the di�erential of ln Li,j(t) is equal to

d ln Li,j(t) =
((
h1
ij + h3

ij

)
φ1 (bi,j , J1) +

(
h2
ij + h3

ij

)
φ2 (bi,j , J2)

)
dNi,j(t)

−λi,j(t)
(

(bi,j)
h1
ij+h

2
ij+2h3

ij − 1
)
dt .

Equation (39) then easily follows.
We now prove relations (40) by identifying the dynamics of Z1

ij(t) and Z2
ij(t) by their moment

generating functions (mgf). The mgf of Z1
i,j(t) under the measure Pb de�ned by the Radon-

Nikodym derivative Li,j(t), is given by

EP
b
(
euZ

1
i,j(t)

)
= E

(
e
∫ t
0 ((h1

ij+h
3
ij)(uJ1 s+φ1(bi,j ,J1 s))+(h2

ij+h
3
ij)φ2(bi,j ,J2 s))dNi,j(s)

× e
−
∫ t
0
λi,j(s)

(
(bi,j)

h1
ij+h2

ij+2h3
ij−1

)
ds

)
. (41)

In this proof, we respectively denote the �ltrations of Ni,j(t) and λi,j(t) by Gi,jt ⊂ Ft and E
i,j
t ⊂ Ft.

Using nested expectations allows to rewrite the expectation (41) as follows:

EP
b
(
euZ

1
i,j(t)

)
=

= E

[
e
−
∫ t
0
λi,j(s)

(
b
h1
ij+h2

ij+2h3
ij

i,j −1

)
ds
× (42)

× E

Ni,j(t)∏
k=1

E
(
e((h

1
ij+h

3
ij)(uJ1 k+φ1(bi,j ,J1 k))+(h2

ij+h
3
ij)φ2(bi,j ,J2 k))|Gi,jt ∨ E

i,j
t

)
|E i,jt


We assume �rst that h1

i,j = 1, which has as a consequence that h2
i,j = h3

i,j = 0. The expectation
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embedded into equation (42) then becomes

E
(
e((h

1
ij+h

3
ij)(uJ1+φ1(bi,j ,J1))+(h2

ij+h
3
ij)φ2(bi,j ,J1))|Gi,jt ∨ E

i,j
t

)
(43)

= E
(
e(uJ1+φ1(bi,j ,J1))|Gi,jt ∨ E

i,j
t

)
=

∫
bi,je

uz1νb1(z1)dz1 = bi,jE
(
euJ

b
1

)
.

Similarly, if h2
i,j = 1 (and thus h1

i,j = h3
i,j = 0), then

E
(
e((h

1
ij+h

3
ij)(uJ1+φ1(bi,j ,J1))+(h2

ij+h
3
ij)φ2(bi,j ,J2))|Gi,jt ∨ E

i,j
t

)
(44)

= E
(
e(φ2(bi,j ,J2))|Gi,jt ∨ E

i,j
t

)
= bi,j .

Finally, if h3
i,j = 1 ( h2

i,j = h3
i,j = 0 ), given that

φ1 (bi,j , z1) + φ2 (bi,j , z2) = ln

(
bij
νb1(z1)

ν1(z1)

)
+ ln

(
bij
νb2(z2)

ν2(z2)

)
= ln

(
(bij)

2 ν
b
1(z1)

ν1(z1)

νb2(z2)

ν2(z2)

)
,

the expectation embedded into equation (42) equals in this case

E
(
e(uJ1+φ1(bi,j ,J1)+φ2(bi,j ,J2))|Gi,jt ∨ E

i,j
t

)
= (bij)

2 E
(
euJ

b
1

)
. (45)

Combining equations (43), (44) and (45) allows us to infer that

E

Ni,j(t)∏
k=1

E
(
e((h

1
ij+h

3
ij)(uJ1+φ1(bi,j ,J1))+(h2

ij+h
3
ij)φ2(bi,j ,J2))|Gi,jt ∨ E

i,j
t

)
|E i,jt


= E

Ni,j(t)∏
k=1

(
h1
i,jbi,jE

(
euJ

b
1

)
+ h2

i,jbi,j + h3
i,j (bi,j)

2 E
(
euJ

b
1

))
|E i,jt

 .

Conditionally to E i,jt , Ni,j(t) is an inhomogeneous Poisson process. Using the mgf of an inhomo-
geneous Poisson law, one easily �nds that if h1

i,j = 1

E

Ni,j(t)∏
k=1

bi,jE
(
euJ

b
1

)
|E i,jt

 = E
(
e
Ni,j(t) ln

[
bi,j E

(
euJ

b
1

)]
|E i,jt

)

= exp

(∫ t

0

λi,j(s)
(
bi,jE

(
euJ

b
1

)
− 1
)
ds

)
.

Similarly, if h2
i,j = 1, we obtain that

E

Ni,j(t)∏
k=1

bi,j |E i,jt

 = E
(
eNi,j(t) ln[bi,j ]|E i,jt

)
= exp

(∫ t

0

λi,j(s) (bi,j − 1) ds

)
.
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Finally, if h3
i,j = 1, we deduce that

E

Ni,j(t)∏
k=1

b2i,jE
(
euJ

b
1

)
|E i,jt

 = exp

(∫ t

0

λi,j(s)
(

(bi,j)
2 E
(
euJ

b
1

)
− 1
)
ds

)
.

Combining these last results leads to the fact that expectation (42) is equal to

EP
b
(
euZ

1
i,j(t)

)
=

= E

e− ∫ t0 λi,j(s)
(
b
h1
ij+h2

ij+2h3
ij

i,j −1

)
ds+

∫ t
0
λi,j(s)

(
b
h1
ij+h2

ij+2h3
ij

i,j E
(
euJ

b
1

)(h1
ij+h3

ij)
−1

)
ds


which turns out to be the moment generating function of Z1

i,j(t) under the equivalent measure Pb.
The same result holds for Z2

i,j(t). �

It is well-known that arbitrage opportunities are avoided by pricing �nancial derivatives under
an equivalent martingale measure under which discounted (non-dividend paying) asset prices are
martingales. In the remainder of this section, we consider a �nancial market composed of three
assets: a risk free cash account and two stocks, (S1

t , S
2
t ). The interest rate depends on the Markov

chain δt and is de�ned as rt = δtr̄
> where r̄ =

(
r0, ..., r(n+1)2−1

)>
∈ R(n+1)2−1. The stock prices

S1
t and S

2
t follow a BMESJD, de�ned by equation (15). By construction, the risk neutral measure

is not unique. We consider Radon-Nikodym derivatives of the following form

Lt =

(n+1)2−1∏
i,j=0

exp

(∫ t

0

( (
h1
ij + h3

ij

)
φ1 (bi,j , J1 s) +

(
h2
ij + h3

ij

)
φ2 (bi,j , J2 s)

)
dNi,j(s)

)

× exp

(
−
∫ t

0

λi,j(s)
(

(bi,j)
h1
ij+h

2
ij+2h3

ij − 1
)
ds

)
(46)

× exp

(
−1

2

∫ t

0

|βs|2ds+

∫ t

0

βsdWs

)
where βt =

(
β1
t , β

2
t

)>
is a bivariate Gt measurable process such that β1

t = δ>t β
1 and β2

t = δ>t β
2

where

β1 =
(
β1

0 , β
1
0 , . . . , β

1
(n+1)2−1

)>
,

β2 =
(
β2

0 , β
2
0 , . . . , β

2
(n+1)2−1

)>
.

The last factor in the de�nition of the Radon-Nikodym derivative Lt implies that(
dW 1 β

t

dW 2 β
t

)
=

(
dW 1

t

dW 2
t

)
+

(
β1
t

β2
t

)
dt

is a Brownian motion under the equivalent measure. The next proposition establishes the dynamics
of S1

t and S2
t under such a new martingale measure, which will be denoted by Q. It is interesting

to remark that jump intensities are proportional to the square of bi,j for transitions from i to j
causing simultaneous jumps (i.e. the case that h3

i,j = 1).
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Proposition 5.2. The dynamics of the asset price under the equivalent measure Q de�ned by the
Radon-Nikodym derivative (46) equals dS1

t

S1
t−
dS2
t

S2
t−

 = (µt − Σtβt) dt+ ΣtdW
β
t (47)

+

 (
eJ

b
1 − 1

)
dÑ1

t − λ̃1 b
t E

(
eJ

b
1 − 1

)
dt(

eJ
b
2 − 1

)
dÑ2

t − λ̃2 b
t E

(
eJ

b
2 − 1

)
dt


+

 λ̃1 b
t E

(
eJ

b
1 − 1

)
− λ̃1

tE
(
eJ1 − 1

)
λ̃2 b
t E

(
eJ

b
2 − 1

)
− λ̃2

tE
(
eJ2 − 1

)
 dt

where Ñ1
t and Ñ2

t are point processes with respective intensities:

λ̃1 b
t :=

(n+1)2−1∑
i , j=0

i 6=j

λi,j(t)
(
h1
i,j bi,j + h3

i,j (bij)
2
)

λ̃2 b
t :=

(n+1)2−1∑
i , j=0

i 6=j

λi,j(t)
(
h2
i,j bi,j + h3

i,j (bij)
2
)

under Q.

Proof of Proposition 5.2. In the following expressions, the double sums over e.g. i and j
are such that the term i = j is excluded. For notational use, we de�ne the set

I : =
{

(i, j) | i, j ∈
(
0, 1, ..., (n+ 1)2 − 1

)
, i 6= j

}
Notice that by de�ning dYt :=

(
d lnS1

t , d lnS2
t

)
equation (16) can be rewritten as follows under Q(

dY 1
t

dY 2
t

)
=

(
µt −

1

2
diag

(
ΣtΣ

>
t

)
− Σtβt

)
dt+ Σt

((
dW 1

t

dW 2
t

)
+ βtdt

)

+

( ∑
(i,j)∈I dZ

1
i,j(t)∑

(i,j)∈I dZ
2
i,j(t)

)
−

 ∑
(i,j)∈I λi,j(t)

(
h1
i,j bi,j + h3

i,j b
2
i,j

)
E
(
eJ

b
1 − 1

)
∑

(i,j)∈I λi,j(t)
(
h2
i,j bi,j + h3

i,j b
2
i,j

)
E
(
eJ

b
2 − 1

)  dt

+

 ∑
(i,j)∈I λi,j(t)

((
h1
i,j bi,j + h3

i,j b
2
i,j

)
E
(
eJ

b
1 − 1

)
−
(
h1
i,j + h3

i,j

)
E
(
eJ1 − 1

))∑
(i,j)∈I λi,j(t)

((
h2
i,j bi,j + h3

i,j b
2
i,j

)
E
(
eJ

b
2 − 1

)
−
(
h2
i,j + h3

i,j

)
E
(
eJ2 − 1

))
 dt
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Applying Itô's lemma to the function f(Yt) = eYt leads to the dynamics under Q: dS1
t

S1
t−
dS2
t

S2
t−

 = (µt − Σtβt) dt+ ΣtdW
β
t (48)

+

 (
eJ

b
1 − 1

)
dÑ1

t − λ̃1 b
t E

(
eJ

b
1 − 1

)
dt(

eJ
b
2 − 1

)
dÑ2

t − λ̃2 b
t E

(
eJ

b
2 − 1

)
dt


+

 λ̃1 b
t E

(
eJ

b
1 − 1

)
− λ̃1

tE
(
eJ1 − 1

)
λ̃2 b
t E

(
eJ

b
2 − 1

)
− λ̃2

tE
(
eJ2 − 1

)
 dt

�

Given that under the risk neutral measure, all assets earn on average the risk free rate, one
easily obtains the condition that ensures that Lt de�nes a pricing measure:

Corollary 5.3. An equivalent probability measure de�ned by the Radon-Nikodym derivative (46)
is a risk neutral measure if and only if the following constraints are satis�ed:

ri = (µi − (Σtβt)i) (49)

+


∑(n+1)2−1

j=0

i 6=j
qi,j

((
h1
i,j bi,j + h3

i,j (bi,j)
2
)
E
(
eJ

b
1 − 1

)
−
(
h1
i,j + h3

i,j

)
E
(
eJ1 − 1

))
∑(n+1)2−1

j=0

i 6=j
qi,j

((
h2
i,j bi,j + h3

i,j (bi,j)
2
)
E
(
eJ

b
2 − 1

)
−
(
h2
i,j + h3

i,j

)
E
(
eJ2 − 1

))


If the no-arbitrage condition (49) is ful�lled, then the dynamics of
(
S1
t , S

2
t

)
are equivalent to dS1

t

S1
t−
dS2
t

S2
t−

 = rtdt+ ΣtdW
β
t +

 (
eJ

b
1 − 1

)
dÑ1

t − λ̃1 b
t E

(
eJ

b
1 − 1

)
dt(

eJ
b
2 − 1

)
dÑ2

t − λ̃2 b
t E

(
eJ

b
2 − 1

)
dt


where λ̃1 b

t and λ̃2 b
t are driven by a Markov chain with transition probabilities

qbi,j := qi,j

(
h1
i,j bi,j + h2

i,jbi,j + h3
i,j (bi,j)

2
)
.

It is worth to notice that the transition probabilities corresponding to simultaneous jumps are
multiplied by the square of bi,j under Q, whereas other probabilities are only multiplied by bi,j .

6 Pricing of exchange options

The purpose of this section is multiple. Firstly, we illustrate that our model is well adapted for
option pricing. Secondly, we apply the technique of change of numeraire to the BMESJD model.
Finally, we illustrate numerically the in�uence of contagion on exchange option prices. We assume
for the sake of simplicity that the risk free rate is constant rt = r ∈ R. We consider an European
option that allows to exchange γS1

T with γ ∈ R+ against S2
T , at expiry T . The option price at

time t is the discounted value of the payo� under a risk neutral measure:

C(t, δt) = EQ
(
e−r(T−t)

(
S2
T − γS1

T

)
+
| Ft
)
.

32



The joint-moment generating function of (S2
T , S

2
T ) is known (see proposition 3.1). In theory, we can

then invert this mgf numerically with a bivariate Discrete Fourier transform, in order to retrieve
the bivariate pdf of (S2

T , S
2
T ) under Q. However this approach is more computationally intensive

and less elegant than performing a change of numeraire which has already been applied in a lot
of other settings (see e.g. Appendix 1). Let us denote by Bt, the cash account Bt = B0e

rt. If we
choose S1

t as numeraire, the change of measure from Q to QS1 is de�ned by:

dQS1

dQ
=

S1
T

S1
0

1

erT
.

Under the measure QS1 , ratios of assets or derivative payo�s on S1
t are martingales. It is easy to

check that dQS1

dQ is a martingale under Q and that:

EQ

(
dQS1

dQ

(
S2
T

S1
T

− γ
)

+

| Ft

)
= EQ

(
e−rT

S1
0

(
S2
T − γS1

T

)
+
| Ft
)
.

We can then deduce the following equality:

EQS1

((
S2
T

S1
T

− γ
)

+

| Ft

)
=

EQ
(
e−r(T−t)

(
S2
T − γS1

T

)
+
| Ft
)

S1
t

.

The value of the exchange option is then equal to the following expectation under the measure
QS1

:

C(t, δt) = S1
t EQS1

((
S2
T

S1
T

− γ
)

+

| Ft

)
.

The next proposition establishes the moment generating function of
S2
t

S1
t
under the measure QS1 .

Inverting this mgf by a one dimensional discrete Fourier transform will allow us to price the ex-
change option in an e�cient way.

Proposition 6.1. The mgf of
S2
s

S1
s
for s ≥ t under the measure QS1 , is given by the following

expression

EQS1

(
e
ω
S2
s
S1
s | Ft

)
= e−r(s−t)

(
S2
t

S1
t

)ω
exp (A(1− ω, ω, t, s, δt)) (50)

where A(ω, 1 − ω, t, s, δt) is de�ned in Proposition 3.1, in which parameters under P are replaced
by these under Q.
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Proof of Corollary 6.1. In order to prove this result, we develop the next expectation:

EQS1

(
e
ω ln

S2
s
S1
s | Ft

)
=

EQ

(
e−rs

S1
s

S1
0
e
ω ln

S2
s/S

2
0

S1
s/S

1
0 | Ft

)
e−rt

S1
t

S1
0

(
S2

0

S1
0

)ω

= e−r(s−t)
S1

0

S1
t

EQ

(
e

(
ω ln

S2
s
S2

0
−(ω−1) ln

S1
s
S1

0

)
| Ft

)(
S2

0

S1
0

)ω
= e−r(s−t)

S1
0

S1
t

EQ
(
e(ωX

2
s+(1−ω)X1

s) | Ft
)(S2

0

S1
0

)ω
.

Since proposition 3.1 provides the mgf of
(
X1
s , X

2
s

)
, we immediately infer that

EQ
(
e(1−ω)X1

s+ωX2
s | Ft

)
=

(
S1
t

S1
0

)1−ω (
S2
t

S2
0

)ω
exp (A(1− ω, ω, t, s, δt)) , (51)

and �nally,

EQS1

(
e
ω ln

S2
s
S1
s | Ft

)
= e−r(s−t)

S1
0

S1
t

(
S1
t

S1
0

)1−ω (
S2
t

S2
0

)ω (
S2

0

S1
0

)ω
exp (A(1− ω, ω, t, s, δt))

= e−r(s−t)
(
S2
t

S1
t

)ω
exp (A(1− ω, ω, t, s, δt))

which allows us to conclude. �

In the remainder of this section, we denote the log-return of
S2
T

S1
T

by X21
T = ln

S2
T /S

2
0

S1
T /S

1
0
. This

log-return is such that
S2
T

S1
T

=
S2

0

S1
0
eX

21
T . If the density at time t ≤ T of the log-return X21

T |Ft under
the measure QS1 , is denoted by ft,T (x, δt) then the value of the exchange option is equal:

C(t, δt) = S1
t EQS1

((
S2

0

S1
0

eX
21
T − γ

)
+

| Ft

)

=
S1
t S

2
0

S1
0

EQS1

((
eX

21
T − γ S

1
0

S2
0

)
+

| Ft

)

=
S1
t S

2
0

S1
0

∫ +∞

ln γ
S1

0
S2

0

(
ex − γ S

1
0

S2
0

)
ft,T (x, δt) dx ,

where r ∈ R+ is assumed to be a constant risk free rate.

Proposition 6.2. Let M be the number of steps used in the Discrete Fourier Transform (DFT)
and ∆x = 2xmax

M−1 be this step of discretization. Let us denote ∆z = 2π
M ∆x

and

zj = (j − 1)∆z,

for j = 1...M .

Let ψ21
t,T be the mgf of X21

T |Ft, under QS1 , namely ψ21
t,T (i zj) = EQS1

(
ei zjX

21
T |Ft

)
, such as pre-

sented in proposition 6.1, with i =
√
−1.
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The values of ft,T (x, δt) at points xk = −M2 ∆x + (k − 1)∆x are approached by the sum:

ft,T (xk, δt) ≈ 2

M ∆x
Re

 M∑
j=1

Υjψ
21
t,T (i zj) (−1)j−1e−i

2π
M (j−1)(k−1)

 . (52)

where Υj = 1
21{j=1} + 1{j 6=1}.

Proof. The density ofX21
T |Ft is retrieved by calculating the Fourier transform of ψ21

t,T (iz) as follows:

ft,T (xk, δt) =
1

2π
F [ψ21

t,T (iz)](xk)

=
1

2π

∫ +∞

−∞
ψ21
t,T (iz) e−i xk zdz

=
1

π
Re(

∫ +∞

0

ψ21
t,T (iz)e−i xk zdz)

where the last equality comes from the fact that ψ21
t,T (z) and ψ21

t,T (−z) are complex conjugate. By

using the points xk = −M2 ∆x + (k− 1)∆x, this last integral can be approached with the trapezoid
rule and this leads to the following estimate for ft,T (.):

ft,T (xk, δt) ≈ 1

π
Re

 M∑
j=1

Υjψ
21
t,T (izj)e

−i xkzj∆z


≈ 1

π
Re

 M∑
j=1

Υjψ
21
t,T (izj)(−1)j−1e−i

2π
M (j−1)(k−1)∆z

 .

We conclude this section with a numerical illustration. We evaluate European exchange options
of maturities one and six months. We assume that S1

0 = S2
0 = 100. The number of DFT steps

is chosen to be equal to M = 28. The risk free rate is set to r = 2%. The other parameters are
assumed to be those as presented in table 2. The upper graphs of �gure 4 show the probability

density functions of
S2
T

S1
T
computed numerically for T equal one and six months. As we could expect,

the variance of these densities is proportional to the intensities of the jump processes. In a Gaussian
framework, exchange options are evaluated analytically with the Margrabe's formula reported in

appendix 1. As in the Black & Scholes formula, the key parameter is the volatility of
S2
T

S1
T
under QS1 .

If we ignore the jumps, this volatility is constant and equal to

√(
(σ21 − σ11)

2
+ (σ22)

2
)

= 13.86%

based on the estimates in table 2. The lower graphs of �gure 4 present the implied volatilities of
S2
T

S1
T
, matching option values obtained with our model to Margrabe's prices. For short-term options

and when the intensities (λ1
t , λ

2
t ) are low, the smile of volatilities is a convex function of γ. For

longer maturities, the smile of the volatilities become strictly decreasing. These graphs con�rm
that the self and mutual excitation of jumps can partly explain the smile of volatilities observed
for exchange options.
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Figure 4: These graphs report the densities of
S2
T

S1
T
and implied volatilities of exchange options for

di�erent values of γ and levels of excitation. Two maturities are considered: 1 and 6 months.

7 Conclusions

The Bivariate Mutually-Excited Switching Jump Di�usion (BMESJD) is an alternative to Hawkes
processes, capable to explain the mutual-contagion between shocks observed in �nancial time series.
Jumps of prices are triggered by changes of regime of a hidden Markov chain. The excitation mech-
anism is embedded in the matrix of instantaneous transition probabilities. The BMESJD presents
several interesting features. Firstly, contrary to a bivariate Hawkes Di�usion, simultaneous jumps
may be observed when �nancial markets are under pressure. Secondly, the BMESJD belongs to
the family of switching processes but the model is parsimonious. Thirdly, the BMESJD is easy
to calibrate when jumps are double exponential random variables. We establish in this particular
case the statistical distribution of the sum of a bivariate normal and exponential random variable.
Next, we propose an enhanced version of the Hamiton �lter to estimate parameters. Finally, the
set of equivalent risk measures is explicitly de�ned.

As numerical illustration, we �t the BMESJD to S&P 500 and Euronext 100 time series, from
2005 to 2017. We observe that �ltered intensities are good indicators of market stress and reach
their highest values during periods of �nancial turmoil, like the credit crunch of 2008, or the Eu-
ropean sovereign debts crisis. Finally, we use a change of numeraire in order to price exchange
options. We show that the mutual excitation between two time series may explain the curvature
of the smile of volatilities for such options.
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Appendix: pricing of exchange options in a Brownian setting

In this appendix, we remind the formula for exchange option pricing when underlying assets are
ruled by geometric Brownian motions, dS1

t

S1
t−
dS2
t

S2
t−

 =

(
r
r

)
dt+

(
σ11 0
σ21 σ22

)(
dW 1

t

dW 2
t

)
, (53)

under the risk neutral measure Q. This formula was initially developped by Margrabe (1978) and
we brie�y redevelop it in our framework. We consider the following change of measure

dQS1
t

dQ
=

S1
T

S1
0

1

erT
= exp

(
−
∫ T

0

1

2

(
σ11
)2
ds+

∫ T

0

σ11dW 1
s

)
,

from Q to QS1 , a measure with S1
t as numeraire. According to the Girsanov theorem, the quantity(
WS1,1
t := W 1

t − σ11
t t , W

2
t

)>
is a standard Brownian motion under QS1 . Then, we infer from this last relation that the pair(
S1
t , S

2
t

)
is driven by the next dynamics under QS1 : dS1

t

S1
t−
dS2
t

S2
t−

 =

(
r +

(
σ11
)2

r + σ11σ21

)
dt+

(
σ11 0
σ21 σ22

)(
dWS1,1

t

dW 2
t

)
.

Applying Itô's lemma to the logarithm of asset prices leads to the following expressions:

d lnS1
t =

(
r +

1

2

(
σ11
)2)

dt+ σ11dWS1,1
t ,

d lnS2
t =

(
r + σ11σ21 − 1

2

((
σ21
)2

+
(
σ22
)2))

dt+ σ21dWS1,1
t + σ22dW 2

t ,

from which we infer by direct integration that the ratio
S2
t

S1
t
is given under QS1 by

S2
T

S1
T

=
S2
t

S1
t

exp

(∫ T

t

(
σ11σ21 − 1

2

(
σ11
)2 − 1

2

(
σ21
)2 − 1

2

(
σ22
)2)

ds

+

∫ T

t

(
σ21 − σ11

)
dWS1,1

s +

∫ T

t

σ22dW 2
s

)

and is a lorgnormal random variable. More precisely, ln
S2
T /S

2
t

S1
T /S

1
t
is a Gaussian random variable with

mean and volatility respectively given by

σM (t, T ) =

√(
(σ21 − σ11)

2
+ (σ22)

2
)

(T − t)

µM (t, T ) = −1

2

(
−2σ11σ21 +

(
σ11
)2

+
(
σ21
)2

+
(
σ22
)2)

(T − t)

= −1

2

(
σM (t, T )

)2
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The exchange option value is therefore given by

C(t, δt) = EQ
(
e−r(T−t)

(
S2
T − γS1

T

)
+
| Ft
)

= S1
t EQS1

((
S2
T

S1
T

− γ
)

+

| Ft

)
= S2

t Φ (−d1)− γS1
t Φ (−d2)

where d1 and d2 are de�ned as follows:

d2 =
ln
(

γ
S2
t /S

1
t

)
+ 1

2

(
σM (t, T )

)2
σM (t, T )

,

d1 = d2 − σM (t, T ),

and where Φ(.) is the cumulative distribution of a standard normal random variable. In this
setting, we call the implied volatility, the volatility

σM (0, 1) =

√(
(σ21 − σ11)

2
+ (σ22)

2
)

such that prices computed with the Margrabe's formula match market prices.
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