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Abstract

We provide a revealed preference characterization of equilibrium behav-
ior in first price sealed bid auctions. This defines testable conditions for
equilibrium play that are intrinsically nonparametric, meaning that they do
not require a (non-verifiable) specification of the individual utility functions.
We characterize equilibrium play for a sequence of observations on private
values and bids for a given individual. In a first step, we assume that the
distribution of bids in the population is fully known. In a second step, we
relax this assumption and consider the more realistic case that the empir-
ical analyst can only use a finite number of i.i.d. observations drawn from
the population distribution. We demonstrate the empirical usefulness of
our conditions through an illustrative application to an existing experimen-
tal data set of Neugebauer and Perote (2008). This application also shows
the potential of our nonparametric characterization to study the behavioral
phenomena learning and fatigue at the individual level.
Keywords: first price auctions, equilibrium play, revealed preference char-
acterization, testable implications, experimental data.
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1 Introduction

The theory of auctions is one of the most fruitful research areas in both theoret-
ical and applied economics. The most standard and well known auction model
is the first price sealed bid auction (FPA). In the FPA model, each participant
anonymously sends a bid to the auctioneer. The agent with the highest bid wins
the auction and receives the item in return for paying her bid. In this paper, we
provide a revealed preference characterization for equilibrium behavior in the FPA
model, which defines testable conditions for equilibrium play. A distinguishing and
attractive feature of our revealed preference conditions is that they do not require
a (non-verifiable) specification of the individual utility functions. The conditions
are intrinsically nonparametric and, therefore, robust to specification bias.

We have two main results. Our first result is of a theoretical nature and struc-
tures the testable nature of equilibrium behavior in a FPA context. We assume
a sequence of observations on both private values and bids for a given individual,
and we assume that the distribution of bids in the population is fully known. We
derive a revealed preference characterization that defines necessary and sufficient
conditions for the existence of a (Bernouilli) utility function that rationalizes the
observed bids. Particularly, the function represents the observed bid behavior
as equilibrium behavior for the FPA model, meaning that the individual chooses
the bid that maximizes her expected utility given the distribution of bids in the
population.

For this setting, the FPA model has strong testable empirical implications. Ad-
mittedly, the assumption that we observe not only the bids but also the evaluated
individual’s private values may seem overly strong. In this respect, however, we
also show that, when private values are not observed, then the FPA model as such
is no longer testable: any observed bid behavior can be rationalized as equilibrium
behavior. In this case, the assumption of equilibrium play can (only) be used to
define (partially) identifying structure on the distribution of private values. Par-
ticularly, it is not the case that any distribution can rationalize the observed bid
behavior and as such we can test specific structure of the distribution.

Our second main result is of a practical nature and instrumental to applying
our first theoretical result to empirical data. It relaxes the assumption that the
distribution of bids in the population is fully observed. Instead, we make the more
realistic assumption that the empirical analyst can only use a finite number of
i.i.d. observations drawn from this distribution. For this setting, we construct a
statistical hypothesis test for consistency of observed bidding behavior with the
FPA model.

Interestingly, our methodology can be applied at the level of individual auction
players, which we demonstrate through an application to the experimental data set
of Neugebauer and Perote (2008). As we will explain, this data set has a number of
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appealing features in view of illustrating our methodology, including the absence
of feedback to players between auction rounds. Based on our statistical test, we
conclude that there is strong empirical support favoring the equilibrium play hy-
pothesis. Subsequently, we document patterns for each individual separately with
respect to learning and fatigue. This provides the first fully nonparamtric empirical
evidence at the individual level of these well-studied behavioral phenomena.

The rest of this paper unfolds as follows. Section 2 positions our contribution
in the relevant literature. Section 3 sets the stage by introducing our theoretical
set-up and notation. Section 4 presents our main theoretical result, which charac-
terizes equilibrium play for a fully known population distribution of bids. Section
5 subsequently presents our statistical hypothesis test for the case in which the
empirical analyst can only use a finite number of i.i.d. observations from this
population distribution. Section 6 discusses our empirical application. Section 7
concludes.

2 Literature overview

This paper touches upon several vibrant literatures. First, there is a growing inter-
est in the revealed preference analysis of equilibrium behavior. See, among many
others, Brown and Matzkin (1996), Cherchye, Demuynck, and Rock (2011),Carva-
jal, Deb, Fenske, and Quah (2013), Echenique, Lee, Shum, and Yenmez (2013) and
Cherchye, Demuynck, De Rock, and Vermeulen (2017). A distinguishing feature
of our current study is that we consider a game theoretic setting with incomplete
information, while these papers dealt with the analysis of games characterized by
complete information. Furthermore, we are the first paper that develops a revealed
preference characterization of the FPA model.

There is also a sizeable experimental literature on auctions.1 Cox, Roberson,
and Smith (1982) and Cox, Smith, and Walker (1988) document deviations from
risk-neutral Bayesian Nash equilibrium in a FPA context. Follow-up research has
tried to explain this deviating behavior based on risk-aversion (Cox, Smith, and
Walker, 1988, 1992; Chen and Plott, 1998; Andreoni, Che, and Kim, 2007), smooth
optimization (Goeree, Holt, and Palfrey, 2002), learning (Ockenfels and Selten,
2005; Neugebauer and Selten, 2006), cognitive hierarchy models (Crawford and
Iriberri, 2007) and behavioral phenomena like spite (Morgan, Steiglitz, and Reis,
2003) or regret (Filiz-Ozbay and Ozbay, 2007). The recent paper by Kirchkamp
and Reiß (2011) finds that deviations from risk-neutral equilibrium behavior origi-
nate from failure to best-respond (assuming risk-neutral players) rather than from

1The following list of experimental research on auction theory is far from exhaustive. We
refer to the recent survey of Kagel and Levin (2016) for a more comprehensive overview.
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incorrect belief formation. However, the existing literature still does not present
conclusive evidence on whether subjects exhibit equilibrium play or not.

Finally, there is a growing literature that focuses on the econometric analysis
of auctions. See, for example, Guerre, Perrigne, and Vuong (2000) and Athey and
Haile (2002, 2007). Most of this literature focuses on identifying the distribution
of values from the observed distribution of bids. The present paper, by contrast,
concentrates on testing whether the observed behavior is consistent with the FPA
model, rather than on identifying the structure that underlies the observed bidding
behavior (using behavioral consistency with equilibrium play as a key identifying
assumption).

To some extent, the developed econometric techniques can also be applied to
laboratory data (with known value distribution) in order to test whether subjects
exhibit equilibrium play. For example, Bajari and Hortacsu (2005) compare the
empirical performance of different structural decision models for some a priori
specified parametric specification of the decision makers’ utility functions. They
first estimate the distribution of values imposed by some model, and subsequently
compare this estimated distribution to the true (known) distribution of values.

From this perspective, the current paper presents an alternative approach to
test the FPA model, which is based on revealed preference principles. Two distin-
guishing features are that (1) we can test for equilibrium behavior at the individual
level rather than at the aggregate group level, and (2) our results do not depend
on some (unverifiable) structure for the individual utility functions. Moreover, the
existing methods to estimate value distributions generally assume that bidders are
risk-averse (Zincenko, 2018), while we only require subjects to be expected utility
maximizers (without imposing any structure on their risk attitude).2

3 Set-up and notation

We assume a first price auction (FPA) with N = {1, . . . , n} the set of participating
players. Before the auction starts every player i ∈ N receives a private value for
the item, which we denote by vi ∈ [0, v̄]. After receiving their private values, all
players simultaneously submit a bid bi for the item. The player with the highest
bid wins and pays her bid bi in return for the auctioned item. The payoff for player
i when winning the auction equals

xi = vi − bi.

A player who does not win the auction receives a payoff of zero.

2The majority of existing papers estimates the decision makers’ utility values. To retrieve the
distribution of values, they require specific assumptions about the shape of the individual utility
functions.
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We assume an experimental setting with bids obtained from a random popu-
lation of subjects (i.e. the participants of the experiment), who are (randomly)
endowed with some private value for the auctioneered item. More formally, we
assume a probability space of individuals (J ,FJ , ν), with J the set of individ-
uals, FJ a suitable σ-algebra on J , and ν : FJ → [0, 1] a probability measure.
Intuitively, participants in the auction are randomly drawn from the set J ac-
cording to the measure ν. Further, we assume that there is a probability space of
values ([0, v],B[0,v], µ) that determines how the participants in the auction receive
their values for the auctioned item. We assume that 0 < v and B[0,v] is the Borel
σ-algebra on [0, v].

We denote by G the distribution of bids in the population. Bids are determined
by some measurable random variable B(j, v) on the product space (J ×[0, v],FJ ⊗
B[0,v], ν×µ), where ν×µ is the product probability measure that is generated from
independent draws from (J ,FJ , ν) and ([0, v],B[0,v], µ).3 The value of B(j, v) gives
the (possibly random) bid for agent j when receiving value v in an n-player FPA.
We define G to be the cumulative distribution function of this random variable
B(j, v),

G(b) =

∫
[0,v]

∫
J

1[B(j, v) ≤ b] ν(dj)µ(dv),

with 1[B(j, v) ≤ b] the indicator function that equals one if B(j, v) ≤ b and zero
otherwise. If we assume that bids in an auction are independently drawn from the
distribution G, then the distribution of highest bids (for n− 1 players) is given by

H(b) = G(b)n−1.

We impose the following assumption on the distribution function G.

Assumption 1. The cumulative distribution function G satisfies the following
conditions:

• G is Lipschitz continuous on [0, v] (i.e. there exists a λ such that for all
y, z ∈ [0, v], |G(z)−G(y)| ≤ λ|z − y|).

• For all ε > 0 we have that G(ε) > 0.

• G(0) = 0.

3Specifically, we have in mind an experimental set-up where the values that are assigned to
the different subjects are independent from the identity of the subjects. This assumption can
easily be relaxed and is not crucial for our main results to remain valid.
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The condition of Lipschitz continuity requires that the distribution function
does not increase too quickly.4 The second condition imposes that the probability
of observing a strictly positive (possibly arbitrarily small) bid is strictly positive.
If (1) bids are always less than the received private value and (2) the probability
density of µ is strictly positive on ]0, v], then this assumption wil be satisfied.
Finally, the last condition assumes zero probability to observe a bid that is less
than zero.

In the standard FPA model it is assumed that agent i has a utility function

ui : [0, v̄]→ R+.

The agent knows the distribution of bids G, and chooses (for given private
value vi) the bid bi that maximizes her expected utility. Formally, bi solves

max
bi∈R+

H(bi)u(vi − bi), (1)

where we normalized the utility associated with not winning the auction to zero,
ui(0) = 0.

In Section 4, we will assume that the empirical analyst observes a finite number
of values and bids for a given individual, and knows the full distribution of bids in
the population. For this setting, we derive the nonparametric revealed preference
conditions for behavioral consistency with the FPA model. We will also show
that, if the empirical analyst would not observe the individual’s values, then any
observed bid behavior could be rationalized, meaning that the FPA model as such
is no longer (nonparametrically) testable. In Section 5, we relax the assumption
that the distribution of bids is fully known, and we consider the more realistic
setting in which the empirical analyst can only use an estimate of this distribution.

4 Characterizing equilibrium play

We assume that the empirical analyst observes an individual who participates mul-
tiple times in a randomly matched n-player auction. The different auctions faced
by the individual differ only in terms of her private values, which are randomly
drawn according to ([0, v],B[0,v], µ), possibly under the control of the experimental
designer.

4In fact, we can relax the assumption that the function G is Lipschitz continuous, but then we
can only guarantee that the utility function that rationalizes the data is upper-semicontinuous
instead of continuous. Recall, however, that upper semi-continuity is still sufficient for the
function to achieve its maximum on compact domains.

6



In the current section, we consider the case where the distribution G of bids in
the population is fully observed.5 Then, the data set for the given player i can be
represented by the tuple

D = {(vti , bti)Tt=1, G},

which consists of a finite number of private values vti , the corresponding bids bti,
and the distribution G. Throughout the paper, we will analyze the behavior of
player i separately, without imposing any assumption on the behavior of the other
players. Therefore, we will drop the subscript i from now onwards.

We say that the data set D is rationalizable in terms of the FPA model (FPA-
rationalizable) if there exists a utility function u that represents the observed bids
bt as solving problem (1). The player chooses each bid in order to maximize her
expected utility over the binary lottery that delivers a payoff vt−b with probability
(G(b))n−1 and a payoff of zero otherwise. This yields the following definition.

Definition 1. A data set D = {(vt, bt)Tt=1, G} is FPA-rationalizable, if there
exists a continuous, non-decreasing utility function u : R→ R, such that u(0) = 0,
u is locally non-satiated at zero and, for all observations t = 1, . . . , T ,

bt ∈ argmax
b∈R

H(b)u(vt − b) where H(b) = (G(b))n−1.

As before, we set the utility of losing the auction equal to zero, u(0) = 0.
Obviously, this implies no loss of generality. Further, local non-satiation at zero
requires, for all ε > 0, that there exists x ∈] − ε, ε[ such that u(x) > 0. Together
with non-decreasingness of u, this is equivalent to requiring u(x) > 0 for all x > 0.
This condition is necessary to obtain testable conditions associated with FPA-
rationalizability. Indeed, without this condition, we could trivially rationalize
any observed behavior by using the constant utility function u(x) = 0 for all x.
Moreover, local non-satiation at zero is necessary for players to have an incentive
to participate to the auction in the first place.

The following lemma states a first auxiliary result.6

Lemma 1. If D = {(vt, bt)Tt=1, G} is FPA-rationalizable, and vt > 0 for all t =
1, . . . , T , then bt ∈]0, vt[ and H(bt) > 0.

Thus, if vt > 0 in each observation t, a data set D is FPA-rationalizable only
if every bid bt is strictly between zero and the value vt, and the probability of
winning the auction at every observed bid is strictly positive. The intuition is

5In principle, we could allow the distribution of bids G to depend on t as well. However, the
more common experimental framework is the one in which subjects are repeatedly playing the
auction with G fixed over observations, without feedback between trials.

6Appendix A contains the proofs of our results.
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straightforward. If bids are either less than or equal to zero, higher than or equal
to vt, or if the probability of winning is zero, then the expected utility of the
auction is less than or equal to zero. On the other hand, the agent can always get
a strictly positive expected utility by bidding marginally below her private value.

We remark that the condition vt > 0 in Lemma 1 is very weak in the sense
that observing vt = 0 for some t occurs with zero probability. In what follows, we
will say that a data set D is regular if it satisfies the conditions in Lemma 1.

Definition 2. The data set D = {(vt, bt)Tt=1, G} is regular if, for all t = 1, . . . , T ,
we have that vt > 0, bt ∈]0, vt[ and H(bt) > 0.

For every t = 1, . . . , T , we let xt = vt − bt represent the payoff associated
with winning the auction in observation t. It follows directly from Lemma 1 that
xt ∈]0, vt[ for a regular data set. The following theorem provides the revealed
preference conditions for a data set D to be FPA-rationalizable. Importantly,
these conditions are intrinsically nonparametric as they do not require an explicit
specification of the utility function u.

Theorem 1. A regular data set D = {(vt, bt)Tt=1, G} is FPA-rationalizable if and
only if, for all t = 1, . . . , T , there exist numbers U t > 0 such that, for all t, s =
1, . . . , T ,

H(vt − xt)U t ≥ H(vt − xs)U s. (2)

Theorem 1 presents a set of inequalities that give necessary and sufficient con-
ditions for FPA-rationalizability. These inequalities are linear in the unknown
numbers U t, which makes them easy to check. Intuitively, every number U t rep-
resents the utility of winning the auction in period t, i.e. U t = u(xt). Further,
condition (2) corresponds to the individual’s maximization problem in Definition
1. In particular, the expected utility of using the observed bid bt should be at least
as high as the expected utility of making any other bid, including the bid vt − xs.
This yields the condition

H(vt − xt)U t = H(bt)u(vt − bt),
≥ H(vt − xs)u(vt − vt + xs),

= H(vt − xs)U s.

Observe that condition (2) only needs to be verified for t, s with vt − xs > 0,
as otherwise the right hand side equals zero by definition, which makes that the
inequality is satisfied automatically.

The necessity of condition (2) is relatively straightforward and may seem a
rather weak implication. Interestingly, however, Theorem 1 shows that data
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consistency with condition (2) is not only necessary but also sufficient for FPA-
rationalizabiliy. Particularly, in Appendix A.2 we provide a constructive proof that
specifies a data rationalizing utility function based on the inequality condition (2).

Example 1 provides a practical illustration of the rationalizability condition
in Theorem 1. It contains a data set that does not satisfy the condition. This
shows that our nonparametric condition for FPA-rationalizability has substantial
empirical bite as soon as the data set contains at least two observations.

Example 1. Assume a data set D with two observations t, v such that

H(vt − xt) =
1

10
H(vt − xs) =

1

4
,

H(vs − xt) =
1

3
H(vs − xs) =

1

2
.

Then, condition (2) in Theorem 1 requires that

1

10
U t ≥ 1

4
U s ⇔ U t

U s
≥ 2.5, and

1

2
U s ≥ 1

3
U t ⇔ U t

U s
≤ 1.5,

which is impossible. We conclude that the data set is not FPA-rationalizable.
One important final remark pertains to the fact that our characterization of

equilibrium play in Theorem 1 assumes that the individual’s private values are ob-
served by the empirical analyst. This raises the question whether the FPA model
has any testable implications if these private values were not observed. We will
conclude this section by showing that the answer to this question is negative. Par-
ticularly, if only the bids bt and the distribution G are observed, then we can always
construct values ṽt such that the data set {(ṽt, bt)Tt=1, G} satisfies condition (2) in
Theorem 1, which implies that the data set is FPA-rationalizable.

To formally demonstrate our non-testability result, we let

∆ ∈
]
0, v̄ − max

t∈{1,...,T}
bt
[
.

Lemma 1 shows that ∆ exists under FPA-rationalizability. For every t =
1, . . . , T , we then consider the values ṽt = bt + ∆, which are contained in ]0, v[.
This specification of the values ensures xt = ṽt − bt = ∆, i.e. xt is the same for
each observation t. Furthermore, for all t, s = 1, . . . , T , we let U t = U s = 1. All
this gives

H(ṽt − xt)U t = H(ṽt − xs)U s = H(bt),
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which implies that the FPA-rationalizability condition (2) in Theorem 1 is satisfied.
We thus obtain the following corollary.

Corollary 1. For every data set D = {(bt)Tt=1, G} with G(bt) > 0 and bt ∈
]0, v[, there exist values ṽt such that D′ = {(ṽt, bt)Tt=1, H} is regular and FPA-
rationalizable.

In a sense, Corollary 1 reproduces the non-identification result of Guerre, Per-
rigne, and Vuong (2009) for our specific setting. At this point, however, it is
important to emphasize that our characterization in Theorem 1 can still be used
to define (partially) identifying structure on the distribution of values. Corollary
1 does not imply that it is impossible to partially identify the underlying values
that rationalize the observed behavior in terms of the FPA model. Indeed, we
cannot conclude that, for a given data set {(bt)Tt=1, G}), any possible sequence of
values v1, . . . , vT will satisfy condition (2) in Theorem 1. Putting it differently, we
can test specific structure on the values distribution; it is not the case that any
distribution can rationalize the observed bid behavior. For instance, Example 1
shows that, for a given distribution of bids, some specifications of the individual’s
private values may effectively reject the rationalizability condition in Theorem 1.

5 Unobserved distribution of bids

So far we have assumed that the distribution of bids G is fully observed by the
empirical analyst. In this section, we show how to use our characterization in
Theorem 1 if this strong observational assumption no longer holds. Particularly,
we consider the more realistic scenario that the analyst can (only) construct an
estimate of the distribution G from a finite sample of players’ observed bids. In
such a case, we can construct a statistical hypothesis test for FPA-rationalizability
as characterized in Theorem 1.

More formally, we assume an empirical auction setting with n players, with
the evaluated individual playing each time against a random draw of n− 1 other
participants (who themselves are also given random private values). This obtains
a random sample of m = T (n−1) i.i.d. bids bj drawn from G. Then, it is possible
to construct an estimator of the distribution G by using the empirical distribution
function

Gm(b) =
1

m

m∑
j=1

1[bj ≤ b],

with associated small sample bias

εm(b) = Gm(b)−G(b).
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We recall that our characterization in Theorem 1 only requires us to evaluate
the distribution H (and therefore G) at a finite number of values vt − xs, with
vt−xs > 0 for every t, s ∈ {1, . . . , T} (which automatically implies G(vt−xs) > 0
for all t, s). Correspondingly, it suffices to construct a finite vector of errors εm,
with entries

(εm)t,s = Gm(vt − xs)−G(vt − xs).7

The vector m1/2εm has an asymptotic distribution that is multivariate normal
with mean zero and variance-covariance matrix Ω, where

(Ω)(t′,s′),(t,s) =

{
G(vt

′ − xs′)(1−G(vt − xs)) if vt
′ − xs′ < vt − xs

G(vt − xs)(1−G(vt
′ − xs′)) if vt − xs < vt

′ − xs′ .

Thus, standard results yield

mε′Ω−1ε ∼a χ2(K),

where ∼a denotes convergence in distribution and K is the size of the vector ε.8

Of course, in practice we do not observe the matrix Ω. We can approximate it
using the finite sample analogue Ω̂m, where

(Ω̂m)(t′,s′),(t,s) =

{
Gm(vt

′
i − xs

′
i )(1−Gm(vti − xsi )) if vt

′ − xs′ < vt − xs,
Gm(vt − xs)(1−Gm(vt

′ − xs′)) if vt − xs < vt
′ − xs′ .

Because Ω̂m is a consistent estimate of Ω, it follows that

mε′(Ω̂m)−1ε ∼a χ2(K),

We use this last result as the basis for our asymptotic hypothesis test for FPA-
rationalizability. Specifically, consider the null hypothesis

H0 : the data set D = {(vt, bt)Tt=1, G} is FPA-rationalizable,

To empirically check this hypothesis, we can solve the following minimization
problem.
OP.I

Zm = min
et,s∈R,Ĝ∈[0,1]K ,Ut>0

m (e1,1, e1,2, . . .)
′(Ω̂m)−1(e1,1, e1,2, . . .),

s.t. ∀t, s with vt − xs > 0 : et,s = Gm(vt − xs)− Ĝt,s, (3)

(Ĝt,t)
n−1U t ≥ (Ĝt,s)

n−1U s (4)

7For simplicitly, we assume that all values vt−xs are different. Obviously, this does not affect
the core of our argument.

8See, for example, Sepanski (1994).
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If the hypothesis H0 holds true, we must have

Zm ≤ mε′(Ω̂m)−1ε,

Let us denote by cα the (1 − α) × 100th percentile of the χ2(K) distribution.
Then, if H0 holds, we must have

lim
m→∞

Pr[Zm > cα] ≤ lim
m→∞

Pr[mε′(Ω̂m)−1ε > cα] = α.

Thus, we can construct an asymptotic test of H0 by solving OP.I for the given
data set, to subsequently verify whether its solution value exceeds cα.

Two concluding remarks are in order. First, our empirical hypothesis test is
conservative in nature when compared to the theoretical test (based on Theorem
1) that uses the true distribution of bids G. In this sense, our asymptotic test bears
similarities to Varian (1985)’s statistical test for rational consumer behavior (based
on revealed preference conditions) in the case of measurement error. However,
there is one important difference. An intrinsic problem of Varian’s test is that
the variance of the error distribution cannot be estimated and, therefore, needs to
be assumed. By contrast, the variance-covariance matrix used in our test can be
estimated consistently.

Second, implementing our hypothesis test in principle requires solving the non-
linear minimization problem OP.I, which is computationally difficult because the
constraints (4) are nonlinear in unknowns. Interestingly, however, we can convert
this problem into a minimization problem with linear constraints and a quasi-
convex objective function, which is easily solvable through standard algorithms
for finding global minima.9 To see this, we define gt,s = ln(Gt,s) and βt = ln(U t)
for t, s with vt − xs > 0. Then, we can linearize the constraints (4) as

(n− 1)gt,t + βt ≥ (n− 1)gt,s + βs,

while the constraints (3) yields

et,s = Gm(vt − xs)− exp(gt,s).

Taken together, this gives rise to the following problem with only linear con-
straints and a quasi-convex objective function.
OP.II

min
gt,s

m (e1,1, e1,2, . . .)
′(Ω̂m)−1(e1,1, e1,2, . . .),

s.t. (n− 1)gt,t + βt ≥ (n− 1)gt,s + βs,

where we defined et,s = Gm(vt − xs)− exp(gt,s) for all t, s with vt − xs > 0.

9In particular the minimum can be found by using the subgradient projection method (see
Kiwiel, 2001). Moreover, it can be well approximated using standard techniques for local mini-
mization (e.g. trust region).
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6 Illustrative application

We demonstrate the practical usefulness of our statistical revealed preference test
for equilibrium play through an empirical application to the experimental data set
of Neugebauer and Perote (2008). We begin by briefly explaining the experimental
design and the set-up of our empirical analysis. This motivates that the assump-
tions underlying our statistical test are plausible for the given data. Subsequently,
we will consider two types of empirical exercises. First, we evaluate the results of
our statistical test both in terms of pass rates and discriminatory power. Next, we
use our test results to study the behavioral phenomena of learning and fatigue at
the level of individual decision makers.

Set-up. Neugebauer and Perote (2008) conducted their FPA experiment on a
sample of 28 subjects. Every subject participated in 50 rounds of a 7-player FPA.
At the beginning of every round, every subject received an i.i.d. value drawn from
the uniform distribution on [0, 100]. Subjects got no feedback between the differ-
ent auction rounds, and the data set contains the observed bidding behavior for
each of the 28 subjects.10 Interestingly, the absence of feedback between the sub-
sequent auctions allows us to exclude various behavioral reasons for overbidding.
In particular, there is no winner or loser regret. Moreover, there is no basis for
updating subjects’ beliefs about the distribution of bids in the population.

Our FPA model assumes that every subject acts against the population of
bidding functions. We believe this is a plausible assumption for our data set given
that feedback between rounds is absent, and because subjects do not know with
whom they are matched. Moreover, the submitted bids can be assumed to be
independent as there is no communication between the subjects and groups are
randomly formed. This implies that we can reasonably use the observed bids to
estimate the bidding distribution G. At this point, we remark that the observed
bids do contain multiple observations from the same individuals. However, this
does not violate the i.i.d. assumption as long as we assume the population of
players to equal the set of participants of the experiment.11

10We actually only consider a subset of Neugebauer and Perote (2008)’s original data set.
In their original experiment, these authors also conducted a second session with every subject
participation in 50 additional auctions. However, in this session the subjects did receive feedback
after every auction round. As the absence of feedback is important to motivate the validity of
our statistical test, we have excluded these data from our application. Further, Neugebauer and
Perote’s original study also contained 28 additional subjects who played 50 rounds with feedback
in a first session, and 50 periods without feedback in a second session. For the same reason as
before, we chose not to include these subjects in our empirical application.

11If the population equals all potential participants of the experiment (i.e. also the individuals
who did not participate), then the i.i.d. assumption might be violated. In this case, a solution
would be to include only one (random) bid for every participant in the auction, which would
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For our main analysis, we have split the data per subject into five blocks of
10 rounds each. Our motivation for this is threefold. A first reason relates to
the power of our statistical test. The critical values of our test statistic are based
on the percentiles of the χ2 distribution with degrees of freedom proportional to
the number of observations squared. As an implication, increasing the number
of observations does not necessarily improve the power of our test. For example,
by going from 10 to 20 observations we scale up the degrees of freedom from 100
to 400, which leads to a substantial increase in our critical values. Including 10
observations per person appears to define a good compromise between fit and
power. Secondly, restricting the number of observations used in the statistical
test is also useful from a computational point of view. Although the optimization
problem OP.II is well behaved, the number of constraints is also proportional to
the square of the number of observations. Finally, an attractive feature of splitting
up the sample into blocks of 10 rounds is that it allows us to investigate dynamic
patterns in the data. Particularly, as we will explain below, it allows us to study
learning behavior and fatigue.

In our test of equilibrium play for a given individual i, we compute G as the
empirical distribution function of all bids except from the bids of player i herself.
This gives a total of 27 × 10 observed bids when using five blocks of 10 rounds
per subject. As a sensitivity check, we have also conducted our statistical test for
blocks consisting of 8 and 12 rounds. Our results in Appendix B show that our
main test results are robust for these alternative data splittings.

Test results. Table 1 summarizes our test results for each block of 10 rounds.
We consider significance levels (α) of 5% and 10%. The first row in every block
presents the number and percentage of individuals for which we do not reject the
null hypothesis of FPA-rationalizable behavior. In the second row of each block,
we show 95% confidence intervals for the percentage of individuals passing our test
(meaning that H0 was not rejected). These confidence intervals are computed by
using the Clopper–Pearson procedure.

Finally, the bottom row in every block reports on the power of our test, which
gives the probability of rejecting H0 in the case of (simulated) random bidding
behavior. We compute power by using an adaptation of Bronars (1987)’s proce-
dure, which was originally developed to evaluate the power of revealed preference
tests for rational consumer behavior. Particularly, we simulate random behavior
by generating 500 data sets of random bids (using a uniform distribution) between

bring the data generating process closer to the i.i.d. assumption. However, for our exercise this
would mean that we can use only 27 observation to estimate G, which is obviously far too low to
rely on asymptotic convergence results. As all 28 subjects participated in the same session and
every participant has seen all possible opponents, we believe that equating the total population
with the population of participants is not overly restrictive for our data set.
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Rounds α ≥ .05 α ≥ .10

1 ≤ t ≤ 10
Pass Rate 14 (50%) 14 (50%)

95% conf. interval 31% – 69% 31% – 69%

Random subjects 40% 37%

11 ≤ t ≤ 20
Pass Rate 26 (93%) 24 (86%)

95% conf. interval 77% – 99% 67% – 96%

Random subjects 45% 42%

21 ≤ t ≤ 30
Pass Rate 22 (79%) 22 (79%)

95% conf. interval 59% – 92% 59% – 92%

Random subjects 44% 42%

31 ≤ t ≤ 40
Pass Rate 20 (71%) 20 (71%)

95% conf. interval 51% – 87% 51% – 87%

Random subjects 55% 53%

41 ≤ t ≤ 50
Pass Rate 24 (86%) 24 (86%)

95% conf. interval 67% – 96% 67% – 96%

Random subjects 46% 43%

Table 1: Non-rejection rates for H0 – significance levels of 5% and 10%

zero and the observed value. Next, we compute the fraction of these randomly
generated data sets for which we can reject H0 at the given significance level. The
lower this fraction, the higher the power of our tests.

Some interesting conclusions can be drawn from Table 1. First, the pass rates
for the “real” subjects in our sample are always above the pass rates for the
“randomly generated” subjects. This suggests that the real subjects behave sub-
stantially more rational than the random subjects. Interestingly, when considering
the 95% confidence intervals for our pass rates, we conclude that the difference is
also statistically significant in most cases. This shows that our statistical test
is sufficiently powerful to effectively discriminate between rational and random
behavior.

The results in Table 1 use generic significance levels of 5% and 10%. In this
respect, we recall from our discussion in Section 5 that our statistical test is a
conservative one when compared to the theoretical test (based on Theorem 1)
that uses the true distribution of bids. Therefore, in a following exercise we use
“power-adjusted” significance levels. Particularly, we set the critical values used
in our test such that only 10% and 5% of our randomly generated data sets pass
the test (meaning that we cannot reject H0). By construction, these critical values
correspond to statistical tests with power equal to 90% and 95%, respectively.

The results of this additional exercise are given in Table 2. Comparing these
results with the ones in Table 1 gives an indication of the conservative nature of
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Rounds Power= .9 Power= .95

1 ≤ t ≤ 10
Pass Rate 8 (29%) 6 (21%)

95% conf. interval 13% – 49% 8% – 41%

Random subjects 10% 5%

11 ≤ t ≤ 20
Pass Rate 12 (43%) 8 (29%)

95% conf. interval 25% – 63% 13% – 49%

Random subjects 10% 5%

21 ≤ t ≤ 30
Pass Rate 16 (57%) 16 (57%)

95% conf. interval 37% – 76% 37% – 76%

Random subjects 10% 5%

31 ≤ t ≤ 40
Pass Rate 16 (57%) 14 (50%)

95% conf. interval 37% – 76% 31% – 69%

Random subjects 10% 5%

41 ≤ t ≤ 50
Pass Rate 18 (64%) 16 (57%)

95% conf. interval 44% – 81% 37% – 76%

Random subjects 10% 5%

Table 2: Non-rejection rates for H0 – power-adjusted significance levels

our statistical test. Particularly, from Table 1 we learn that the use of generic
significance levels (of 5% and 10%) still tolerates a substantial amount of the
randomly generated data sets: we do not reject H0 for about 40-50% of our random
data sets. Table 2 shows that the pass rates drop considerably (i.e. by about 20%)
if we adjust the significance levels to control for power. Interestingly, however, a
significant fraction of the subjects in our sample do remain FPA-rationalizable.
Moreover, the pass rates for actual behavior are again significantly above the pass
rates for random behavior.

Learning and fatigue. We conclude our empirical exercise by studying the
behavioral phenomena of learning and fatigue effects. The underlying intuition is
that subjects may need some time to learn their optimal bidding behavior but, after
a significant amount of repetitions, they may also get tired (or bored) and start to
act less rational. Hence, subjects can be inconsistent with FPA-rationalizability in
the initial time blocks, become consistent later (learning), and finally again exhibit
inconsistent behavior (fatigue). In our following evaluation, we will exploit the
fact that our rationalizability test can be performed at the level of the individual
decision makers. As such, we are not restricted to only consider group dynamics.
We can also evaluate how behavioral dynamics affect the individual consistency
patterns.

Table 2 indicates a pattern of learning at the aggregate sample level. Gen-
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erally, the difference in pass rates between actual and random behavior is more
pronounced for the later blocks of 10 rounds. This provides stronger evidence for
FPA-rationalizability in the later auction rounds. However, when considering the
results in more detail, we see that the pass rates actually stabilize between the
third and fifth time blocks. For example, in the last column of Table 2 the pass
rate decreases slightly from the third time block to the fourth time block, and
picks up again in the fifth time block. Interestingly, these trends fall in line with
the ones reported by Neugebauer and Perote (2008) for the same data.

In order to better understand these aggregate patterns, we next take a closer
look at the individual pass rates. Table 3 describes the four different patterns
of behavior that we found in our data. From this table, we observe that most
subjects in the sample satisfy the second or third scenario, which are all directly
connected to learning effects. We also find evidence suggesting fatigue effects
for some subjects, which explains that the aggregate pass rates in Table 2 are
not strictly increasing, but rather stabilizing in the later blocks. More generally,
these results show the usefulness of our revealed preference methodology to study
dynamics of rationalizability at the level of individual decision makers. This can
provide useful insights to explain observed dynamics at the aggregate level.

Patterns Power= .9 Power= .95
No pattern at all:

H0 is either rejected or not rejected 2 4
for each of the five blocks

Learning pattern:
H0 is rejected for the earlier blocks 14 10

but not for the later blocks
Learning and fatigue pattern:

H0 is rejected for the earlier blocks, 6 6
followed by non-rejection in the middle blocks

and rejection in the last blocks
Opposite pattern:

H0 not rejected in the earlier blocks, 6 8
rejected in the middle blocks,

and not rejected in the last blocks

Table 3: Different patterns for learning and fatigue
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7 Concluding discussion

We provided a revealed preference characterization of equilibrium play in the FPA
model. Our characterization is intrinsically nonparametric, which makes it robust
to specification bias. We derived testable necessary and sufficient conditions such
that observed bidding behavior is consistent with expected utility maximization for
a known distribution of bids in the population. Building on this characterization,
we next developed a statistical test that can be used in empirical settings, where
the population distribution of bids is not fully observed.

We also demonstrated the practical usefulness of this statistical test through
an application to experimental data. We could not reject the hypothesis of equi-
librium for a large fraction of the subjects in the experiment. At a more general
level, our results suggest that observed bidding behavior is largely consistent with
equilibrium play as long as we control for behavioral biases and learning and re-
lax implausible assumptions about players’ preferences (such as risk-neutrality).
Next, our analysis showed the value added of our methodology in terms of analyz-
ing equilibrium play at the level of individual decision makers (e.g. to investigate
learning and fatigue effects).

We see multiple directions for follow-up research. Most notably, our nonpara-
metric characterization assumed that individuals are expected utility maximizers,
without imposing any structure on their risk attitude. Future research can focus
on extending our characterization by relaxing or strengthening our assumptions
regarding individual preferences. For example, we may consider the weaker as-
sumption that individual utility functions are continuous and satisfy first-order
stochastic dominance. More formally, this means that an individual’s utility is
increasing in both the payoff x and the probability of winning H(v − x). This
extension would lead to a test of the FPA model for preferences that (only) satisfy
first order stochastic dominance.

Conversely, we may also want to extend our framework by incorporating stronger
restrictions on preferences than the ones we imposed in the current paper. For ex-
ample, we may assume that agents are expected utility maximizers with risk-averse
utility functions (implying concave utility functions). In this respect, an immedi-
ate consequence of risk-aversion is that the bidding function (i.e. the optimal bid
as a function of the value) must be increasing. Interestingly, when checking this
implication for the data set we used in our empirical application, we find that the
implication holds for only about 50% of the subjects for whom we do not reject
FPA-rationalizability. In other words, a substantial fraction of FPA-rationalizable
subjects do not have a monotone bidding functions and, therefore, cannot be risk-
averse.
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A Proofs

A.1 Proof of Lemma 1

Let vt > 0. If bt ≤ 0, then we know that G(bt) = 0 and H(bt) = 0. Also, if bt ≥ vt

then u(vt − bt) ≤ 0. This implies in both cases that

H(bt)u(vt − bt) ≤ 0.

Given our assumptions related to G, we have that vt > 0 implies G(vt) > 0.
Therefore there exists a ε > 0, small enough, such that, G(vt − ε) > 0 and
H(vt − ε) > 0. Then, if the agent chooses the bid vt − ε, we have

H(vt − ε)u(ε) > 0 ≥ H(bt)u(vt − bt).

This implies that a bid bt ≤ 0 or bt ≥ vt can never maximize (1), which proves
this lemma.

A.2 Proof of Theorem 1

In the main text we showed the necessity of the conditions. To prove the sufficiency,
we will construct a utility function u : R → R that FPA-rationalizes the data
set.This utility function u(x) will be differently defined on three parts of the domain
R (labeled by w1, w2 and w3). One part for medium to large values of x. A second
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part for small values of x and a final part for negative values of x. The reason for
splitting up the domain is to make sure that u(0) = 0.

Given that G is Lipschitz continuous, we have that H is also Lipschitz contin-
uous. Let λ be the Lipschitz constant on the cumulative distribution function H,
that is, for all x, y ∈ [0, v],

|H(x)−H(y)| < λ|x− y|.

The cut-off for the domain of our utility function is given by the following technical
lemma.

Lemma 2. Assume that, for all t = 1, . . . , T , vt > 0. Then there exists a number
0 ≤ x ≤ v such that, for all t = 1, . . . , T ,

x ≤ H(vt − x)

λ
.

Proof. Let t ∈ {1, . . . , T}. As vt > 0 we have that H(vt) > 0. Continuity of H
implies that there exists εt, small enough, such that

H(vt − εt) > 0.

Define

x = min
t=1,...,T

{εt,
H(vt − εt)

λ
}.

Then x is clearly positive and

x ≤ min
t=1,...,T

H(vt − εt)
λ

≤ min
t=1,...,T

H(vt − x)

λ
.

Let U t solve the inequalities in (2). By rescaling all values of U t, we can require
that U t ≤ 1 for all t. Let x be as in the lemma above and assume without loss of
generality that x ≤ xt for all t = 1, . . . , T (since we can choose the εt arbitrarily
small).

First part: x ∈ [x, v̄]. We set

w1(x) = min
t=1,...,T

{
min

{
U tH(vt − xt)

H(vt − x)
; 1

}}
,

where we define a
0

= +∞ for all a > 0. Given that H(vt − xt) = H(bt) > 0,
the right hand side is well defined. First, notice that w1(x) is the minimum of
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a finite number of continuous, non-decreasing functions, so it is continuous and
non-decreasing.

Next, we need to show that the constructed utility function rationalizes the
data. To do, we first argue that w1(x

t) = U t. Since the conditions of Theorem 1
are satisfied, we have that, for all observations s,

U t ≤ min

{
U sH(vs − xs)

H(vs − xt)
; 1

}
,

which shows that w1(x
t) = U t. Next we show that bt is the optimal bid at obser-

vation t. If H(vt − x) > 0, then by construction

w1(x) ≤ U tH(vt − xt)
H(vt − x)

,

and therefore

H(vt − x)w1(x) ≤ H(vt − xt)U t = H(vt − xt)w1(x
t).

If H(vt − x) = 0, then by default H(vt − xt)U t ≥ H(vt − x)w1(x) = 0 holds.

Second part: x ∈ [0, x[. Let ∆ = w1(x)
x

, and define

w2(x) = ∆x,

for every x ∈ [0, x[. This construction guarantees that utility is nondecreasing,
continuous and that w2(0) = 0. Note that, since U t > 0 and H(vt − x) ≥ H(vt −
xt) > 0 for all t, we have that w2(x) > 0. As such, ∆ > 0 and w2(x) > 0 for all
x ∈]0, x[. Therefore, the utility function satisfies local non-satiation at zero.

We are left to show that u(x) rationalizes the data. From above we have, for
all t = 1, . . . , T ,

H(vt − x)w2(x) ≤ H(vt − xt)w2(x
t).

Hence, it is sufficient to show that, for all t = 1, . . . , T and x ∈ [0, x[,

H(vt − x)w2(x) ≤ H(vt − x)w2(x).

Due to Lipschitz continuity we have

H(vt − x)w2(x) =
w2(x)

x
xH(vt − x)

≤ w2(x)
x

x

(
H(vt − x) + λ(x− x)

)
.
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This implies

w2(x)
x

x

(
H(vt − x) + λ(x− x)

)
≤ w2(x)H(vt − x)

⇔w2(x)

(
H(vt − x)

(
x

x
− 1

)
+ λ

(
1− x

x

)
x

)
≤ 0

⇔
(

1− x

x

)(
λx−H(vt − x)

)
≤ 0

⇔λx−H(vt − x) ≤ 0

⇔x ≤ H(vt − x)

λ
.

The latter holds since x ≤ x ≤ H(vt−x)
λ

Third part: x ≤ 0. The we can define w3(x) = x, which guarantees that
H(vt − x)w3(x) ≤ 0 and it is never optimal to set x ≤ 0.

B Robustness checks

In this appendix, we present two robustness checks of our empirical analysis in
Section 6. Particularly, in our main analysis we have split the data per subject
into five blocks of 10 rounds each. In what follows, we redo our statistical tests
for blocks consisting of 8 and 12 rounds. This will show that our main conclusions
are not overly reliant on our particular choice of block length.

Table 4 presents the results for the setting with 8 round blocks. Since we
shorten the time period, our test uses less inequality constraints per subject, which
makes the test less powerful. In turn, this results in larger differences between the
pass rates for generic significance levels (first two columns) and power-adjusted
significance levels (last two columns). Importantly, however, we do find again
that (almost all) all pass rates are higher for the “real” subjects than for the
“randomly generated” subjects. Also, we observe once more the increasing pass
rates from earlier to later blocks, especially in the last two columns. The results
for the first two columns are somewhat more noisy. In particular, pass rates for
the real subjects are not significantly different from pass rates for the random
subjects for the third, fourth and fifth blocks when using the generic significance
levels. In addition, there is no clearly increasing trend in pass rates over time for
these significance levels: 24 subjects pass our test of FPA-rationalizability in the
second block, while only 12 subjects pass the test in the third block. Thus, when we
decrease the length of the time blocks, the results for the generic significance levels
are somewhat more noisy, and the power adjustment becomes more important.
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Rounds α ≥ .05 α ≥ .10 Power= .9 Power= .95

1 ≤ t ≤ 8
Pass Rate 8 (29%) 8 (29%) 8 (29%) 8 (29%)

95% conf. interval 13% – 49% 13% – 49% 13% – 49% 13% – 49%

Random subjects 46% 44% 10% 5%

9 ≤ t ≤ 16
Pass Rate 24 (86%) 24 (86%) 8 (29%) 8 (29%)

95% conf. interval 67% – 96% 67% – 96% 13% – 49% 13% – 49%

Random subjects 57% 55% 10% 5%

17 ≤ t ≤ 24
Pass Rate 12 (43%) 12 (43%) 8 (29%) 8 (29%)

95% conf. interval 25% – 63% 25% – 63% 13% – 49% 13% – 49%

Random subjects 40% 40% 10% 5%

25 ≤ t ≤ 32
Pass Rate 16 (57%) 16 (57%) 12 (43%) 8 (29%)

95% conf. interval 37% – 76% 37% – 76% 25% – 63% 13% – 49%

Random subjects 47% 44% 10% 5%

33 ≤ t ≤ 40
Pass Rate 20 (71%) 20 (71%) 12 (43%) 12 (43%)

95% conf. interval 51% – 87% 51% – 87% 25% – 63% 25% – 63%

Random subjects 56% 55% 10% 5%

41 ≤ t ≤ 48
Pass Rate 28 (100%) 28 (100%) 20 (43%) 12 (43%)

95% conf. interval 88% – 100% 88% – 100% 51% – 87% 25% – 63%

Random subjects 46% 44% 10% 5%

Table 4: Non-rejection rates for H0. Time blocks of 8 periods

Table 5 presents the results for blocks consisting of 12 rounds. The pass rates
are consistent with the results presented in Section 6 of the main text. In partic-
ular, the pass rates for the real subjects are higher than for the random subjects
in all cases. In addition, there is an increasing trend in pass rates for real subjects
from the beginning to the end of the experiment. Once more, our results confirm
that block length impacts the noisiness of our estimates.
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Rounds α ≥ .05 α ≥ .10 Power= .9 Power= .95

1 ≤ t ≤ 12
Pass Rate 20 (71%) 20 (71%) 12 (43%) 12 (43%)

95% conf. interval 51% – 87% 51% – 87% 25% – 63% 25% – 63%

Random subjects 35% 34% 10% 5%

13 ≤ t ≤ 24
Pass Rate 20 (71%) 20 (71%) 16 (57%) 12 (43%)

95% conf. interval 51% – 87% 51% – 87% 37% – 76% 25% – 63%

Random subjects 44% 38% 10% 5%

25 ≤ t ≤ 36
Pass Rate 20 (71%) 20 (71%) 16 (57%) 12 (43%)

95% conf. interval 51% – 87% 51% – 87% 47% – 76% 25% – 63%

Random subjects 49% 48% 10% 5%

37 ≤ t ≤ 48
Pass Rate 24 (86%) 24 (86%) 20 (71%) 20 (71%)

95% conf. interval 67% – 96% 67% – 96% 51% – 87% 51% – 87%

Random subjects 41% 40% 10% 5%

Table 5: Non-rejection rates for H0. Time blocks of 12 periods
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