

Université Libre de Bruxelles

Ecole Polytechnique de Bruxelles

Formation doctorale en Sciences de l'ingénieur et technologie

Université de Liège

Faculté des Sciences Appliquées

Collège de doctorat en Électricité, électronique et informatique

Energy-Based Magnetic Hysteresis Models

Theoretical Development and Finite Element Formulations

Doctoral Dissertation presented by

Kevin JACQUES

in fullfilment of the requirements for the degree of Docteur en Sciences de l'Ingénieur

November 2018

Thesis committee:

Prof. Christophe GEUZAINE (Université de Liège), Advisor
Prof. Johan GYSELINCK (Université Libre de Buxelles), Advisor
Dr. Zacharie DE GREVE (Université de Mons)
Prof. François HENROTTE (Université Catholique de Louvain - Université de Liège)
Prof. Artem NAPOV (Université Libre de Buxelles)
Prof. Afef KEDOUS LEBOUC (CNRS, G2Elab - Université Grenoble Alpes)
Prof. Paavo RASILO (Tampere University of Technology)
Prof. Benoît VANDERHEYDEN (Université de Liège), President

Author contact information:

Kevin Jacques

BEAMS - Bio Electro and ACE - Applied and Computational Mechanical Systems, Electromagnetics, Dept. of Engineering, Dept. of Electrical Engineering and **Computer Science**, Université Libre de Bruxelles University of Liège Campus du Solbosch, Bâtiment L, Montefiore Institute B28, Av. F. Roosevelt 50, Quartier Polytech 1, 1050 Brussels, Belgium Allée de la Découverte 10, 4000 Liège, Belgium Email: Kevin.Jacques@ulb.ac.be

Email: Kevin.Jacques@uliege.be

Funding:

This work was supported in part by the Belgian Science Policy under grant IAP P7/02 and the Walloon Region of Belgium under grant RW-1217703 (WBGreen FEDO).

Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11.

© 2018 Kevin Jacques

Abstract

This work focuses on the development of a highly accurate energy-based hysteresis model for the modeling of magnetic hysteresis phenomena. The model relies on an explicit representation of the magnetic pinning effect as a dry friction-like force acting on the magnetic polarization. Unlike Preisach and Jiles-Atherton models, this model is vectorial from the beginning and derives from thermodynamic first principles.

Three approaches are considered: the first one, called vector play model, relies on a simplification that allows an explicit, and thus fast, update rule, while the two others, called the variational and the differential approaches, avoid this simplification, but require a non-linear equation to be solved iteratively. The vector play model and the variational approach were already used by other researchers, whereas the differential approach introduced in this thesis, is a new, more efficient, exact implementation, which combines the efficiency of the vector play model with the accuracy of the variational approach. The three hysteresis implementations lead to the same result for purely unidirectional or rotational excitation cases, and give a rather good approximation in all situations in-between, at least in isotropic material conditions.

These hysteresis modeling approaches are incorporated into a finite-element code as a local constitutive relation with memory effect. The inclusion is investigated in detail for two complementary finite-element formulations, magnetic field \mathbf{h} or flux density \mathbf{b} conforming, the latter requiring the inversion of the vector hysteresis model, naturally driven by \mathbf{h} , for which the Newton-Raphson method is used. Then, at the finite-element level, once again, the Newton-Raphson technique is adopted to solve the nonlinear finite-element equations, leading to the emergence of discontinuous differential reluctivity and permeability tensors, requiring a relaxation technique in the Newton-Raphson scheme. To the best of the author's knowledge, the inclusion of an energy-based hysteresis model has never been successfully achieved in a \mathbf{b} -conform finite-element formulation before.

Résumé

Ce travail se concentre sur le développement d'un modèle d'hystérésis précis basé sur l'énergie pour la modélisation du phénomène d'hystérésis magnétique. Ce modèle repose sur une représentation de l'effet d'ancrage (pinning) comme une force de friction agissant sur la polarisation magnétique. Contrairement aux modèles de Preisach et de Jiles-Atherton, ce modèle est vectoriel dés le début et dérive des premiers principes de la thermodynamique.

Trois approches sont considérées: la première, qui se rapproche d'un modèle de type "vector-play", repose sur une simplification qui permet de dégager une loi de mise à jour explicite, et donc rapide, alors que les deux autres, appelées approche variationelle et approche différentielle, évitent cette simplification mais nécessitent la résolution d'une équation non-linéaire par un processus itératif. Le modèle "vectorplay" et l'approche variationelle ont déjà été utilisés par d'autres chercheurs, alors que l'approche différentielle introduite dans cette thèse, est une nouvelle implémentation exacte, plus efficace, qui combine l'efficacité du modèle "vector-play" avec la précision de l'approche variationelle. Les trois implémentations d'hystérésis mènent au même résultat pour des cas d'excitation purement unidirectionel ou rotationel, et donnent une assez bonne approximation dans toutes les situations intermédiaires, du moins dans les conditions où le matériau est isotrope.

Ces approches de modélisation de l'hystérésis sont incorporées dans un code d'éléments finis comme une relation constitutive locale avec effet de mémoire. L'inclusion fait l'objet d'un examen détaillé dans deux formulations complémentaires d'éléments finis, conformes en champ magnétique **h** ou en densité de flux **b**, cette dernière nécessitant l'inversion du modèle d'hystérésis vectorial, naturellement piloté par **h**, pour laquelle la méthode de Newton-Raphson est utilisée. Ensuite, au niveau éléments finis, une nouvelle fois, la technique de Newton-Raphson est adoptée pour résoudre les équations non-linéaires des éléments-finis, conduisant à l'émergence de tenseurs discontinus de réluctivité et perméabilité différentielles, qui nécessitent une technique de relaxation dans le schéma de Newton-Raphson. A la connaissance de l'auteur, l'inclusion d'un modèle d'hystérésis basé sur l'énergie n'a jamais été réalisée avec succès dans une formulation éléments finis conforme en **b** auparavant.

Remerciements

Je tiens à remercier mes promoteurs Christophe Geuzaine et Johan Gyselinck de m'avoir fait confiance et donné l'opportunité de mener ce travail avec une grande liberté, dans d'excellentes conditions, au sein des équipes de recherche ACE de l'Université de Liège et BEAMS de l'Université de Bruxelles. Je vous suis reconnaissant de m'avoir fait découvrir le monde de la recherche scientifique, chacun avec votre vision personnelle, et de m'avoir guidé par vos conseils et votre soutien. Cela a été un plaisir de travailler avec vous durant ces cinq années. Christophe, je suis particulièrement admiratif de ton inébranlable optimisme et ta passion communicative pour ton travail qui ont été des sources de motivation et d'avancement continuels. Johan, je te remercie d'avoir partagé ton expertise technique et ta rigueur scientifique, et j'ai apprécié la disponibilité et l'implication dont tu as fait preuve pour contribuer à l'amélioration de mes productions scientifiques.

Je remercie également les membres de mon comité de thèse, Christophe Geuzaine, Johan Gyselinck, Zacharie De Greve, François Henrotte, Artem Napov, Afef Kedous Lebouc, Paavo Rasilo et Benoît VanderHeyden, pour leur participation, l'intérêt porté sur mon travail et leurs conseils prodigués pour la révision du présent manuscrit. Plus particulièrement, je tiens à remercier François Henrotte avec qui j'ai eu la chance de collaborer plus étroitement et d'échanger de nombreuses idées lors de discussions techniques ou philosophiques. J'ai ainsi pu compter sur ton expérience pour démarrer et poursuivre ma recherche dans la continuité de tes travaux précédents sur l'hystérésis.

Je souhaite aussi remercier toutes les personnes avec qui j'ai eu la chance de cosigner des articles scientifiques. Plus spécifiquement, je pense ici à Patrick Dular et Ruth V. Sabariego qui m'ont donné leur précieuse aide pour le développement de modèles sur les supports Gmsh et GetDP. J'ai beaucoup appris de leur savoir et de leurs conseils. Dans cette continuité, je remercie également Innocent Niyonzima, avec qui j'ai partagé mon bureau au début de ma thèse; Christophe Guérin, pour nos enrichissants échanges de point de vue; et Simon Steentjes, pour son suivi par correspondance et ses données expérimentales fournies. Je remercie aussi sincèrement Laurent Stainier de m'avoir accueilli à l'École centrale de Nantes, pour ses idées et suggestions intéressantes, issues de sa longue expérience dans la résolution de systèmes non-linéaires et qui m'ont été profitables dans mon travail.

En outre, je tiens à souligner l'excellente atmosphère de travail qui a régné au sein du groupe ACE depuis le départ et à remercier chaleureusement tous les collègues actuels et anciens que j'ai eu l'opportunité de côtoyer, à savoir Anthony Royer, Alexandre Halbach, Alexandre Vion, Amaury Johnen, Ariel Lozano, Axel Modave, Christophe Geuzaine, David Colignon, Erin Kuci, Fabrice Frebel, François Henrotte, Frédéric Olivier, Frédéric Plumier, Innocent Niyonzima, Isabel Molenberg, Jean-Fernand Arban, Jean de Dieu Nshimiyimana, Jonathan Velasco, Maryse Ledent, Maxime Graulich, Maxime Spirlet, Nicolas Marsic, Patrick Dular, Pierre Beerten, Ruth V. Sabariego, Simon Tournier, Sophie Cimino, Steven Roman, Valera Biangani, Vanessa Mattesi, Véronique Beauvois, Vincent Nivoliers et Yannick Paquay. Par ailleurs, je remercie la Région wallonne de Belgique pour la subvention RW1217703 associée au projet WBGreen FEDO, la Politique scientifique fédérale belge (BELSPO) dans le cadre de la subvention PAI/IAP P7/02 et la subvention du partenariat d'innovation technologique TRACTION 2020, qui ont toutes soutenu, en partie, le développement de cette thèse. Je tiens également à remercier le Consortium des Équipements de Calcul Intensif (CÉCI), pour la mise à disposition des clusters informatiques que j'ai eu la chance d'utiliser.

Je souhaite également adresser une pensée à toutes les personnes qui m'ont entouré et soutenu à un moment où un autre au cours de cette aventure. Merci à mes amis, ma belle-famille et ma famille pour tous les bons moments passés ensemble. Je remercie du fond du coeur mes parents qui ont toujours cru en moi et sur qui j'ai pu compter en toutes circonstances. Merci pour vos encouragements, votre soutien, et votre compréhension, y compris dans les moments ou j'avais besoin de m'isoler pour me concentrer sur mon travail. J'espère être à la hauteur de vos sacrifices et vous rendre fiers. Enfin, je remercie ma compagne Stéphanie qui a partagé mon quotidien et a su me pousser à avancer toujours plus loin. Merci pour ton amour et ta patience. J'ai de la chance de t'avoir rencontré et me réjouis de savoir ce que nous réserve la suite. A tes côtés, tout me paraît surmontable et le champ des possibles s'élargit.

Kevin Jacques, Novembre 2018.

Contents

Conte	nts		i
List of	Figures		v
List of	Tables		ix
List of	Symbol	S	xi
Introd Co Dis Dis Ori	uction ntext an ssertatio ssertatio iginal co	d Motivations	1 1 4 5 6
Chapt	er 1 M	agnetic Losses Modelling - State of the Art	9
1	Physi	cal Origins of Magnetism	9
	1.1	Review of Definitions and Notations	9
	1.2	Classes of Magnetic Materials	11
	1.3	Multi-Scale Origin of Ferromagnetism	14
	1.4	The Hysteresis Curve	18
	1.5	Iron Losses	23
2	Simp	le Iron Loss Models	25
	2.1	Approaches based on the Steinmetz Equation	25
	2.2	Standard Loss Separation Approach	26
	2.3	Rotational Iron Loss Models	28
3	Hyste	eresis Models	29
	3.1	Classical Preisach Hysteresis Model	29
	3.2	Play and Stop Models	30
	3.3	Notable Experimental Hysteresis Models	32
	3.4	Jiles-Atherton Model	32
	3.5	Bergqvist Model	34

Chapte	r 2 Energy-Based Hysteresis Model	37
1	Fundamentals in Thermodynamics	37
2	Reversible Part - Helmholtz Free Energy and Anhysteretic Curve	38
3	Irreversible Part - Pinning Force and Hysteresis Dissipation	40
4	Single-Cell Model	41
5	Multi-Cells Model	43
	5.1 Homogenization of the Energy Balance	44
	5.2 Homogenization of the Magnetic Field	45
Chapte	r 3 Discrete Energy-Based Hysteresis Model Implementations	47
1	Discretization	47
2	Simplified Differential Approach - Vector Play Model	49
3	Variational Approach - Functional Minimization	51
4	Full Differential Approach - Angle Searching	58
5	Numerical Comparison	60
	5.1 Unidirectional Excitation Field Source	61
	5.2 Purely Circular Rotational Excitation Field Source	64
	5.3 Growing Spiral Excitation Field Source	65
	5.4 Scanning of Excitation Fields from Unidirectional to Rotational	
	Sources	66
Chapte	r 4 Inversion of the Energy-Based Hysteresis Model	71
1	Preliminary Remarks	71
2	Newton-Raphson Method	72
	2.1 Classical Newton-Raphson Method	72
	2.2 Analytical Expressions of the Differential Permeability Tensor .	73
	2.3 Practical Considerations about the Convergence	84
	2.4 Relaxation Technique	88
3	Approximated Newton-Raphson Methods	91
	3.1 Numerical Newton-Raphson Method	92
	3.2 Quasi Newton-Raphson Methods	94
4	Numerical Comparison	97
Chapte	r 5 Finite Element Formulations	109
1	Electromagnetic Models	109
	1.1 General Description	109
	1.2 Magnetodynamics	111
	1.3 Magnetostatics	111
2	Magnetic Field Conforming Formulations	112
	2.1 Magnetodynamic $\mathbf{h} - \phi$ Formulation	112
	2.2 Magnetostatic ϕ Formulation	115
3	Magnetic Flux Density Conforming Formulations	116
	3.1 Magnetodynamic $\mathbf{a} - v$ Formulation	116
	3.2 Magnetostatic a Formulation	119
4	Improvements of the Nonlinear Resolution	121
	4.1 About the Nonlinear Resolution	121

	4.2 Choice of a Stopping Criterion	122	
	4.3 Computation of an Optimal Relaxation Factor	123	
	4.4 Evaluation of a Jacobian Matrix	126	
	4.5 Initialization using a Prediction of the Solution	127	
	4.6 Use of an Adaptive Time Increment	128	
Chapter	r 6 Parameter Identification	131	
1	Identification of the Pinning Field Probability Density	131	
2	Automatic Discretization of the Pinning Field Distribution	139	
3	Identification of the Anhysteretic Curve	143	
4	Validation on Material Measurements	145	
Chapter	7 Finite Element Simulations	153	
1	Infinite Ferromagnetic Sheet - 1D	153	
2	Square - 2D	157	
3	T-joint - 2D	170	
4	Three-Phase Transformer - 2D	176	
5	Transformer from <i>TEAM</i> Problem 32 Benchmark - 2D	186	
Conclus	sion	195	
Maiı	n Achievements and Conclusions	195	
Futu	rre Prospects	196	
Append	ix A Ferromagnetism at the Microscopic Scale	201	
1	Classical Langevin Theory of Paramagnetism	201	
2	Quantum Mechanical Theory of Paramagnetism	203	
3	Weiss Theory of Ferromagnetism	205	
Append	Appendix B Ferromagnetism at the Mesoscopic Scale		
1	Magnetic Domain Structure in a Monocrystalline Sample	209	
2	Magnetic Domain Structure in Polycrystalline material	213	
Bibliog	caphy	215	

List of Figures

0.1	Different spatial scales involved in the magnetic properties	3
1.1	The magnetic susceptibilities χ and the magnetic permeabilities μ	13
1.2	The Langevin and the Brillouin functions.	15
1.3	Division of the magnetic material into magnetic domains.	17
1.4	Evolution of the magnetization of a single crystal with its magnetic domain	
	structure in presence of pinning sites.	19
1.5	Typical magnetic hysteresis curve.	20
1.6	The Virgin curve and Anhysteretic curve.	21
1.7	Typical $b - h$ curves for soft and hard materials; Easy and hard directions .	22
1.8	Dynamic influence on the hysteresis loops.	25
1.9	Illustration of the Preisach model.	30
2.1	Reversible anhysteretic magnetization curve with the Helmholtz free energy.	39
2.2	Illustration of the subgradient concept.	41
2.3	Mechanical analogy of the hysteresis model with 1 cell	42
2.4	Magnetic polarization curve with hysteresis in one spatial direction.	43
21	Machanical analogy of the hystoresis model with N cells	10
2.1	Illustration of the unm approach	40 50
22	Illustration of the <i>ugr</i> approach	52
3.3	Example of a functional minimization using a stoopost descent algorithm	52
3.4	Example of a functional minimization using a scepest descent algorithm	57
3.5	Example of Line Search with a <i>naive</i> technique and an approach satisfying	54
5.0	Wolfe Conditions	55
37	Example of Loss of Significance	57
3.0	Illustration of the <i>diff</i> approach	58
3.0	Example of an angle search with the <i>diff</i> approach	50
3.3 3.10	Unidirectional and Multi harmonic excitations of 2 coll <i>EP</i> models	62
3.1U 2.11	2D Duraly rotational availation with 2 coll <i>EP</i> models	64
0.11 2.10	2D Fully folduorial excitation with 2 coll <i>EP</i> models	04 66
3.12		00

3.13	Loci with various phase shifting angles with $h_{max} = 50 \text{ A/m.}$	67
3.14	Loci with various phase shifting angles with $h_{\text{max}} = 200 \text{ A/m.} \dots$	67
3.15	<i>RMSDN</i> of the <i>vpm</i> and <i>var</i> approaches, compared to <i>diff.</i>	69
3.16	<i>CPU</i> times of the <i>vpm</i> and <i>var</i> approaches, compared to <i>diff</i>	70
3.17	<i>CPU</i> times in function of the number of cells	70
4.1	llustration of the <i>NR</i> Method.	73
4.2	Symmetry of the differential permeability tensor of the <i>vpm</i> approach in	
	purely rotational excitation.	76
4.3	General asymmetry of the differential permeability tensor of the <i>vpm</i> ap-	
	proach	77
4.4	General symmetry of the differential permeability tensor of the <i>diff</i> approach.	83
4.5	Failures of the classical <i>NR</i> Method	85
4.6	Discontinuity in the differential permeability tensor.	87
4.7	Failure of the classical NR method for the inversion of the EB model near an	
	angular point	88
4.8	Illustration of the relaxed <i>NR</i> method	89
4.9	Convergence of the relaxed <i>NR</i> method	90
4.10	Direct and inverse forms of the <i>EB</i> model with ramp excitation	90
4.11	Direct and inverse forms of the <i>EB</i> model with rotational excitations, with	
	or without higher harmonic content.	91
4.12	Illustration of the secant method.	95
4.13	Convergence of the secant method	95
4.14	Details on the performance of non-relaxed inversion techniques on <i>vpm</i> .	102
4.15	Details on the performance of relaxed inversion techniques on <i>vpm</i>	103
4.16	Details on the performance of non-relaxed inversion techniques on <i>var</i>	104
4.17	Details on the performance of relaxed inversion techniques on <i>var</i>	105
4.18	Details on the performance of non-relaxed inversion techniques on <i>diff</i>	106
4.19	Details on the performance of relaxed inversion techniques on <i>diff</i>	107
5.1	<i>Standard</i> and <i>heavy</i> search technique for the relaxation factor.	125
5.2	Extrapolating predictions with polynomial of different degrees for a given	
	$DOF \mathbf{x}(t)$.	128
6.1	Coercive field $h_c(h)$ measured for five materials	134
6.2	Coercive field $h_c(h)$ and function $F(h)$ for the material M235-35A.	135
6.3	Function $F(h)$ and pinning field cumulative distribution function for the	
	material M235-35A.	135
6.4	Pinning field cumulative distribution function for five materials.	137
6.5	Identified pinning field probability density for five materials	137
6.6	Pinning field cumulative distribution function for M235-35A in <i>RD</i> and <i>TD</i> .	139
6.7	Identified pinning field probability density for M235-35A in <i>RD</i> and <i>TD</i>	139
6.8	Discretization with 3 cells of the pinning field distribution characteristics.	141
6.9	Discretization with 2+1 cells of the pinning field distribution characteristics.	142
6.10	Discretization with 5+1 cells of the pinning field distribution characteristics.	142
6.11	Discretization with 14+1 cells of the pinning field distribution characteristics.	143

6.12	Identified anhysteretic curves with double Langevin and hyperbolic tan-	
	gent functions (Logarithmic scale).	144
6.13	Identified anhysteretic curves with double Langevin and hyperbolic tan-	
	gent functions (Linear scale)	145
6.14	Measurements provided by the <i>TEAM</i> 32 benchmark problem	146
6.15	Evolution of the fields h and b for major loop of the <i>TEAM</i> 32 material	147
6.16	Measured and simulated major loops of the <i>TEAM</i> 32 material	148
6.17	$RMSD_r$ factor in function of the number of cells of the <i>TEAM</i> 32 material.	150
6.18	Measured and simulated minor loops of the <i>TEAM</i> 32 material	151
7.1	Lamination with the undirectional <i>FE</i> configuration.	154
7.2	Energy analysis of the lamination sheet, during one cycle.	155
7.3	Frequency dependences of the classical eddy current and hysteresis losses.	156
7.4	Static and dynamic hysteresis curves with the lamination model.	156
7.5	Geometry and mesh of the simple square domain.	158
7.6	Details on performances of <i>standard</i> relax. of the <i>FE</i> System including <i>vpm</i> .	165
7.7	Details on performances of <i>standard</i> relax. of the <i>FE</i> System including <i>var</i> .	166
7.8	Details on performances of <i>standard</i> relax. of the <i>FE</i> System including <i>diff</i> .	166
7.9	Details on performances of <i>heavy</i> relax. of the <i>FE</i> System including <i>vpm</i> .	167
7.10	Details on performances of <i>heavy</i> relax. of the <i>FE</i> System including <i>var</i>	167
7.11	Details on performances of <i>heavy</i> relax. of the <i>FE</i> System including <i>diff.</i>	168
7.12	Details on performances of <i>accelerated</i> relax. of the <i>FE</i> System including <i>vpm</i>	.168
7.13	Details on performances of <i>accelerated</i> relax. of the <i>FE</i> System including <i>var</i> .	169
7.14	Details on performances of <i>accelerated</i> relax. of the FE System including diff	169
7.15	Geometry and mesh of the T-joint domain.	170
7.16	Magnetic fluxes imposed in the three flux gates with soft start	171
7.17	Magnetomotive forces with complementary <i>FE</i> formulations of the T-joint.	173
7.18	Loci and hysteresis loops obtained with two complementary <i>FE</i> formula-	
	tions at different points in the T-joint	174
7.19	Loci and hysteresis loops obtained with the a -formulation including the in-	
	verse <i>diff</i> or <i>vpm</i> approaches, at different points in the T-joint	175
7.20	Geometry and mesh of the three-phase transformer model	176
7.21	Smooth start of the Voltages imposed in the three primary windings	178
7.22	Currents in the primary windings with each simulation configuration	179
7.23	b-h curves and loci at different points of the transformer model	180
7.24	Mesh influence on global-quantity results with the <i>vpm</i> approach	181
7.25	Mesh influence on local-quantity results with the <i>vpm</i> approach	181
7.26	Evolution of the residual in the <i>NR</i> scheme used at the <i>FE</i> system level	184
7.27	CPU times with both <i>FE</i> formulations, with the <i>vpm</i> or <i>anhy</i> approaches,	
	for different meshes	185
7.28	<i>2D</i> structure of the three-limb transformer with pick-up coils	186
7.29	Geometry and mesh of the <i>TEAM</i> problem 32	187
7.30	CASE2: Current in the windings	189
7.31	CASE2: Magnetic flux density b_y at point 3	189
7.32	CASE3: Currents in the windings.	190
7.33	CASE3: Magnetic flux density b_x at point 1	191

CASE3: Magnetic flux density b_y at point 1	192
CASE3: Magnetic flux density $b_x - b_y$ loci at point 1	192
CASE3: Magnetic flux density b_x at point 2	193
CASE3: Magnetic flux density b_y at point 2	193
CASE3: Magnetic flux density $b_x - b_y$ loci at point 2	194
·	
Langevin function	202
Brillouin function	204
Weiss Theory	206
Complex balance of four energy terms in the magnetic domain structure.	210
Magnetocrystalline anisotropy.	211
Zeeman Energy	213
Pinning effect around a non-magnetic cavity.	214
	CASE3: Magnetic flux density b_y at point 1

List of Tables

Direct model using 3 cells - Unidirectional Excitation	63
Direct model using 3 cells - 2D purely rotational Excitation.	64
Direct model using 3 cells - 2D Spiral Excitation.	66
Simulations without relaxation in the <i>inv</i> techniques, with each approach.	98
Simulations with relaxation in the inv techniques, with each approach	98
Simulations with <i>standard</i> search technique for relaxation factors in NR of	
<i>FE</i> systems	161
Simulations with <i>heavy</i> search technique for relaxation factors in <i>NR</i> of <i>FE</i>	
systems	161
Simulations with <i>accelerated</i> search technique for relaxation factors in <i>NR</i>	
of <i>FE</i> systems.	161
Convergence characteristics of <i>FE</i> formulations for the T-joint problem	172
	Direct model using 3 cells - Unidirectional Excitation.Direct model using 3 cells - 2D purely rotational Excitation.Direct model using 3 cells - 2D Spiral Excitation.Simulations without relaxation in the <i>inv</i> techniques, with each approach.Simulations with relaxation in the <i>inv</i> techniques, with each approach.Simulations with standard search technique for relaxation factors in NR ofFE systems.Simulations with heavy search technique for relaxation factors in NR of FE systems.Simulations with accelerated search technique for relaxation factors in NR ofFE systems.Convergence characteristics of FE formulations for the T-joint problem.