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The mathematical relations between the regular Coulomb function Fη`(ρ) and the

irregular Coulomb functions H±η`(ρ) and Gη`(ρ) are obtained in the complex plane of

the variables η and ρ for integer or half-integer values of `. These relations, referred

to as “connection formulas”, form the basis of the theory of Coulomb wave functions,

and play an important role in many fields of physics, especially in the quantum theory

of charged particle scattering. As a first step, the symmetry properties of the regular

function Fη`(ρ) are studied, in particular under the transformation ` 7→ −` − 1, by

means of the modified Coulomb function Φη`(ρ), which is entire in the dimensionless

energy η−2 and the angular momentum `. Then, it is shown that, for integer or

half-integer `, the irregular functions H±η`(ρ) and Gη`(ρ) can be expressed in terms

of the derivatives of Φη,`(ρ) and Φη,−`−1(ρ) with respect to `. As a consequence,

the connection formulas directly lead to the description of the singular structures of

H±η`(ρ) and Gη`(ρ) at complex energies in their whole Riemann surface. The analysis

of the functions is supplemented by novel graphical representations in the complex

plane of η−1.
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I. INTRODUCTION

The Coulomb wave functions are defined as particular solutions of the Schrödinger equa-

tion in a 1/r potential. They have been introduced in the 1930s by Yost, Wheeler and

Breit1 to describe the scattering of charged particles due to the Coulomb repulsion. Most of

the properties of these functions have been developed by Breit and Hull,2–4 Abramowitz and

Stegun,5–7 and later by Seaton,8–10 Thompson and Barnett,11,12 Humblet13–16 and others. As

pointed out in Ref. 17, the literature about the Coulomb functions is so broad and plentiful

that it is often difficult to find formulas covering general properties, such as the relations

between the regular and the irregular Coulomb functions, their analytic continuation to

complex arguments, or their singular structures in the complex plane of the energy. These

important properties are rarely given in reference handbooks,18,19 yet equivalent formulas

are given for the closely related Bessel functions or the confluent hypergeometric functions.

However, the Coulomb wave functions for complex arguments are of major interest in

various fields such as charged particle scattering in nuclear and atomic physics,14,16,20–25

quantum defect theory,9 Regge pole theory,26 or the scattering of gravitational waves.27,28

The in-depth survey of these functions has led to recent advances in the theory of effective-

range function for charged particles.29–32

The main purpose of this paper is to determine the relations between the regular and

the irregular Coulomb functions, respectively denoted as Fη`(ρ) and Gη`(ρ), in an easy-to-

read fashion. These relations are generically referred to as the “connection formulas” in the

NIST Handbook.18 The focus of this paper is on integer or half-integer values of the angular

momentum ` and complex values of the variables η and ρ. When ` is an integer or a half-

integer, the connection formulas relate Gη`(ρ) to derivatives of Fη`(ρ) with respect to the

angular momentum `.14,17 The connection formulas are of prime importance since they allow

the user to deduce from any representation of Fη`(ρ) valid for complex `, the corresponding

representation of Gη`(ρ). The properties of the resulting representation of Gη`(ρ) are also

inherited from Fη`(ρ).14

This paper investigates the limitation of Fη`(ρ) and Gη`(ρ) at complex energies due to

their singularities, and introduces regularized versions of the Coulomb functions, namely

Φη`(ρ) and Ψη`(ρ), that are holomorphic in energy. It is shown why these versions are more

suitable than Fη`(ρ) and Gη`(ρ) for the analysis and the complex continuation of Coulomb-
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related functions, especially at low energy.

On this ground, it is shown that the connection formulas directly lead to the analysis of

the singularities of Gη`(ρ) in the complex plane of the energy, as well as the construction of

its Riemann surface. The analysis is also illustrated by novel color-based representations of

the functions in the complex plane of η−1.33

This paper is organized as follows. The main definitions and notations are given in

Sec. II. The important symmetry properties of Fη`(ρ) are shown in Sec. III, especially the

transformation ` 7→ −`−1 which is discussed in Sec. III B. The connection formulas between

the regular and the irregular Coulomb functions are presented in Sec. IV, in addition to the

analytic continuation, symmetries, and other little known properties of Gη`(ρ). The results

for complex angular momentum are given in Sec. IV A. Finally, the special case of integer

and half-integer values of ` is treated in Sec. IV B. Conclusions are drawn in Sec. V.

II. COULOMB EQUATION AND STANDARD SOLUTIONS

The Coulomb wave functions arise while solving the Schrödinger equation for a spinless

particle of mass m in a stationary 1/r potential. Using the radial coordinate ρ = kr rescaled

by the wave number k, the Schrödinger equation of the wave function u(ρ) reads

− d2u

dρ2
+

[
`(`+ 1)

ρ2
+

2η

ρ
− 1

]
u = 0 . (1)

The Sommerfeld parameter η quantifies the distortion of the wave function due to the

Coulomb potential with respect to the free wave of corresponding angular momentum `. For

instance, when η tends to zero, the radial Schrödinger equation in free space is retrieved.

The parameter η is commonly defined as1,8,10,18,22–24

η =
1

ak
=

1√
ε
, (2)

where ε is the dimensionless energy in Rydberg units

ε = η−2 = (ak)2 =
E

Ry
, (3)

and a denotes the Bohr radius.

In this paper, the focus is on the analytic properties of the functions in the complex

planes of k and ε. In this regard, it will be convenient to let the product ηρ appear in place

of the radial coordinate, because, being equal to r/a, it does not depend on k or ε anymore.
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In the literature,1,7,18,22–24 two couples of linearly independent functions are considered

as solutions of the Coulomb equation (1), namely {Fη`, Gη`} and {H+
η`, H

−
η`}. The former

consists of the regular Coulomb function Fη`(ρ), behaving like ρ`+1 as ρ → 0, and the

irregular Coulomb function Gη`(ρ), behaving like ρ−` as ρ
>−→ 0. It can be shown that the

only solution up to a factor of the Coulomb equation (1) which is regular at ρ = 0 is given

by7,18

Fη`(ρ) = Cη` ρ
`+1 e±iρ M (`+ 1± iη, 2`+ 2,∓2iρ) , (4)

where M (α, β, z) is the confluent hypergeometric function 1F1, also known as the Kummer

function of the first kind. The Kummer function is defined by the following series represen-

tation with α = `+ 1± iη, β = 2`+ 2, and z = ∓2iρ,

M (α, β, z) =
∞∑
n=0

(α)n
(β)n

zn

n!
= 1 +

α

β

z

1!
+
α(α + 1)

β(β + 1)

z

2!
+ . . . , (5)

where (α)n = α(α+1) · · · (α+n−1) = Γ(α+n)/Γ(α) is the Pochhammer symbol. The choice

of signs in the definition (4) is immaterial due to Kummer’s reflection formula of the confluent

hypergeometric function.7,18 It should be noted that the definition (4) is supposed to hold

for complex `. The properties of the Coulomb functions owing to the symmetry formulas of

the confluent hypergeometric functions are discussed in further details in Sec. III.

In Eq. (4), the coefficient Cη` normalizes the far-field behavior of Fη` to a sine wave of

unit amplitude

Fη`(ρ) −→ sin θη`(ρ) as ρ→∞ , (6)

where θη` is the far-field phase of the Coulomb wave functions7,18

θη`(ρ) = ρ− `π
2
− η ln(2ρ) + arg Γ(`+ 1 + iη) . (7)

The normalization coefficient is defined as7,14,15,18

Cη` =
2`
√

Γ(`+ 1 + iη)Γ(`+ 1− iη)

Γ(2`+ 2) eηπ/2
. (8)

Other definitions of Cη` valid in the complex plane of the wave number k are discussed in

Sec. III.

The regular Coulomb function Fη`(ρ) is shown in Fig. 1 in a repulsive and an attractive

field. This is the only function which vanishes at ρ = 0.

The definition of the irregular Coulomb function Gη` is less straightforward than Fη`. As

a preamble, additional Coulomb functions have to be introduced, namely the outgoing and
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FIG. 1. Graphs of the standard Coulomb wave functions Fη`(ρ) and Gη`(ρ) for η = ±1 and ` = 0.

At the origin, Gη,0(ρ) is equal to the finite value Gη,0(0) = 1/Cη,0.

incoming Coulomb functions denoted H+
η` and H−η` respectively. These two functions are

defined in a similar way to Eq. (4),

H±η`(ρ) = D±η` ρ
`+1 e±iρ U (`+ 1± iη, 2`+ 2,∓2iρ) , (9)

but using the confluent hypergeometric function of the second kind U (α, β, z), also known

as the Tricomi function7,18

U (α, β, z) =
Γ(1− β)

Γ(α− β + 1)
M (α, β, z) +

Γ(β − 1)

Γ(α)
z1−β M (α− β + 1, 2− β, z) (10)

After inspection of Eqs. (9) and (10), one notices that H±η` can be directly expressed as a

combination of Fη,` and Fη,−`−1, and can thus be defined in this way.17,34 These considerations

are discussed in Sec. IV.

The functions H±η` are irregular near ρ = 0, and behave like ρ−` as ρ
>−→ 0.7,18 The

normalization coefficients D±η` in Eq. (9) are defined as18

D±η` = (∓2i)2`+1Γ(`+ 1± iη)

Cη`Γ(2`+ 2)
, (11)

such that the far-field behavior of H±η` is e±iθη` . The coefficients D±η` are related to each other

by complex conjugation as long as k is real. The general conjugation formulas for complex

valued k read

D−η` = D+
η` and H−η`(kr) = H+

η`(kr) . (12)
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The regular Coulomb function Fη` can be retrieved by taking the imaginary part of H+
η` in

the following way

Fη`(ρ) =
H+
η`(ρ)−H−η`(ρ)

2i
. (13)

This definition is consistent with the expected far-field behavior (6) of Fη`. Finally, the

irregular Coulomb function Gη` is defined as the real part of H+
η`

Gη`(ρ) =
H+
η`(ρ) +H−η`(ρ)

2
, (14)

so that Gη` asymptotically behaves like cos θη` as ρ→∞.7,18,35

The function Gη` is shown along with Fη` in Fig. 1 for ` = 0. As one can see, Gη,0

is irregular at ρ = 0, but it has no vertical asymptote, contrary to what Fig. 1(a) might

suggest. In fact, Gη,0 tends to a positive constant for ρ
>−→ 0 according to the following

behavior7,18

Gη`(ρ) =
ρ−`

(2`+ 1)Cη`
+

 O(ρ ln ρ) if ` = 0

O(ρ−`+1) if ` > 0
. (15)

When ` = 0, the next-to-leading order in the series expansion of Gη` is exceptionally loga-

rithmic, hence the conditions in (15).

III. SYMMETRIES OF COULOMB FUNCTIONS

Before deriving the connection formulas between Coulomb wave functions, we have to dis-

cuss their symmetries with respect to their parameters. The connection formulas between

functions are based on the symmetries of the differential equation they satisfy. For instance,

the Schrödinger equation (1) shows a noticeable symmetry in the angular momentum: it is

left unchanged under the transformation ` 7→ −` − 1. Therefore, one can guess that con-

nection formulas between Coulomb functions for ` and for −`− 1 should exist, in particular

between the regular and the irregular Coulomb functions.

To obtain these formulas, we first have to define modified Coulomb functions that are

regular for any ` ∈ C in the complex plane of the energy. This step is motivated by the

singularities of the Kummer function M (α, β, z) in the complex β plane at β ∈ Z≤0. As

a reminder, β equals 2` + 2 and thus can reach negative integer values when ` is changed

to −` − 1. Therefore, we need the regularized version M(α, β, z) of the Kummer function
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which is simultaneously holomorphic in the complex planes of α, β and z:18

M(α, β, z) =
1

Γ(β)
M (α, β, z) =

∞∑
n=0

(α)n
Γ(β + n)

zn

n!
. (16)

On the basis of M(α, β, z), it is useful to introduce a modified Coulomb function Φη` satis-

fying Eq. (1)

Φη`(ρ) = (2ηρ)`+1 e±iρ M(`+ 1± iη, 2`+ 2,∓2iρ) , (17)

which is holomorphic in the complex planes of the wave number k, the energy ε, and `.

Similar functions are also reported in the literature.1,14,15,25 In Refs. 8–10, Seaton denotes

Φη` as (−1)`+1f(ε, `;−r/a).

Such a function is of major interest in charged particle scattering,22–24 Regge pole the-

ory26 and quantum defect theory,9 for which analytic functions in the complex plane of the

energy are often required.10,17 In particular, the function Φη` behaves like a constant in the

neighborhood of the zero-energy point7,18:

Φη`(ρ) = x I2`+1(2x) +O(ε) as ε→ 0 , (18)

where x =
√

2ηρ =
√

2r/a and Iν(x) is the modified Bessel function of the first kind. It

should be noted that the low-energy behavior (18) is valid for both repulsive (a > 0) and

attractive (a < 0) Coulomb potentials. In the latter case, the variable x becomes imaginary

due to the square root. However, the result is still real valued because x I2`+1(2x) is an even

function of x provided ` ∈ Z.

The modified Coulomb function Φη` is related to Fη` by

Fη`(ρ) =
Cη`Γ(2`+ 2)

(2η)`+1
Φη`(ρ) . (19)

The normalization factor in Eq. (19) brings many singularities to Fη` in the complex planes

of η−1 and `, which makes Fη` less suited than Φη` for our purposes.

A. Transformations of the main variables

When the Coulomb interaction is attractive, Φη` reduces to the hydrogen-like wave func-

tion within a normalization factor. Under the transformation (a, k) 7→ (−a, ik), or in other
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words (η, ρ) 7→ (iη, iρ), the hypergeometric function in Eq. (17) can be rewritten as a gener-

alized Laguerre polynomial L(α)
n (x). Then, we have

Φiη,`(iρ) =
Γ(η − `)

Γ(η + `+ 1)
(−2ηρ)`+1 e−ρL

(2`+1)
η−`−1(2ρ) , (20)

where η is interpreted as the principal quantum number belonging to positive integers η ∈

Z>0, ` ∈ {0, 1, . . . , η − 1}, and ρ = r/(aη).

As previously mentioned, the immaterial choice of signs in Eqs. (4) and (17) is a conse-

quence of the Kummer reflection formula of the confluent hypergeometric function7,18

M(α, β, z) = ez M(β − α, β,−z) ∀α, β, z ∈ C , (21)

which remains valid in the complex planes of α, β and z as well.

Another important consequence of Eq. (21) is the relation between the repulsive and the

attractive Coulomb functions. One easily shows from Eq. (21) that the attractive Coulomb

function is found on the negative real r axis:

Φ−η,`(ρ) = Φη,`(−ρ) ∀ρ, η, ` ∈ C . (22)

This property can also be interpreted as the consequence of the invariance of the Schrödinger

equation (1) under the transformation (η, ρ) 7→ (−η,−ρ). A similar relation also exists for

the Coulomb function Fη`:
17,35

F−η,`(ρ) = − eπ(η±i`)Fη,`(ρ e∓iπ) for ± arg ρ > 0 . (23)

While Eq. (22) is valid on the complex planes of the three variables, the relation (23) suffers

from restrictions because of the normalization coefficient in the definition (19). When ` is

not an integer, the Coulomb functions Fη`(ρ) and Fη`(−ρ) display different branch cuts in

the complex ρ plane: the former lies on the negative ρ axis and the latter on the positive ρ

axis. Therefore, the principal branches of Fη`(ρ) and Fη`(−ρ) cannot be proportional within

the same factor everywhere in the complex ρ plane. The upper sign in Eq. (23) holds for

0 < arg ρ ≤ π and the lower sign for −π < arg ρ ≤ 0.
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B. Reflection of the angular momentum

The reflection formula (21) is not the only symmetry of the confluent hypergeometric

function M(α, β, z). There is another formula involving the integral parameter β,20,36 namely

M(α− β + 1, 2− β, z) =
zβ−1 Γ(α)

Γ(α− β + 1)
M(α, β, z) ∀β ∈ Z . (24)

This property derives from the series representation (16) under the assumption that β is an

integer. One notices that the transformations α 7→ α − β + 1 and β 7→ 2 − β involved in

Eq. (24) are equivalent to the symmetry ` 7→ −` − 1 leaving the Schrödinger equation (1)

unchanged. Therefore, it is useful to determine the equivalent relation in terms of the

Coulomb functions. For this purpose, one can define two functions with the prefactor in the

right-hand side of Eq. (24)

w±η` =
Γ(`+ 1± iη)

(±iη)2`+1 Γ(−`± iη)
. (25)

These functions are denoted as A(ε, `) by Seaton.8–10,18 For positive integer `, the two func-

tions w±η` are entire in the energy ε and both reduce to wη`, the `-order polynomial in ε given

by3,4,14,15,29,30,37

w±η` = wη` =
∏̀
j=0

(
1 +

j2

η2

)
∀` ∈ Z≥0 . (26)

These functions w±η` and wη` are equal to 1 if ε = 0 or ` = 0. The formula (26) can be

supplemented by the reflection property

w±η,−`−1 =
1

w±η,`
∀` ∈ C . (27)

It should be noted that the reflection formula (24) is also valid for half-odd-integer ` since

β = 2`+ 2 ∈ Z. In that case, the functions w±η` and wη` read

w±η` = wη` =
∏̀
j=1/2

(
1 +

j2

η2

)
∀` ∈ {1

2
, 3
2
, 5
2
, . . .} , (28)

where the index j runs through half odd integers until ` is reached: j ∈ {1
2
, 3
2
, 5
2
, . . . , `}. Most

of the relations derived in this paper allow ` to be half a odd integer (possibly negative),

although these values have no physical meaning in the framework of Coulomb scattering. For

this reason, the extension to half-integer values of ` is rarely considered in the literature.17
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The reflection formula of Φη` is obtained by multiplying both sides of Eq. (24) by

(2ηρ)`+1 e±iρ. One gets

Φη,−`−1(ρ) = wη` Φη,`(ρ) ∀` ∈ 1
2
Z , (29)

where 1
2
Z stands for the set of all half-integers: {0,±1

2
,±1,±3

2
, . . .}. This result plays a

key role in the derivation of the connection formulas for the irregular Coulomb functions in

Sec. IV.

At this point, it is crucial to understand the relationship between the symmetries of Φη`

and Fη`. With this aim, the reflection formula (29) should be rewritten in terms of the

standard Coulomb function Fη` using Eq. (19). However, this step is less easy than deriving

Eq. (29) for Φη` because the normalization coefficient Cη`, which will come into play, is a

multi-valued function of the wave number k and has no conventional principal branch in the

complex plane of k. In fact, the coefficient Cη` defined by Eq. (8) has a tangled structure

of branch cuts, as shown in Fig. 2(a), due to the square root on the gamma functions.

The branch points of Cη` are given by its poles located at ak = ±i/(n + ` + 1) ∀n ∈ Z≥0.

These points are referred to as the “Coulomb poles” because they are reminiscent of the

hydrogen-like spectrum, n being interpreted as the radial quantum number.

Depending on the definition of Cη`, different branch cut structures can be obtained. For

instance, using Euler’s reflection formula of the gamma function, we get the alternate form

of Cη`

Cη` =
(2η)`

Γ(2`+ 2)

√
2ηπ w±η`

e2ηπ − e∓2πi`
∀` ∈ C , (30)

where the choice of the upper or the lower sign is immaterial as far as the branch cuts of w+
η`

and w−η` coincide. The corresponding branch cut structure is shown in Fig. 2(b). Because

of the square root in Eq. (30), all the Coulomb poles are joined to the origin ak = 0 by a

branch cut in the right half-plane. It can be guessed from Fig. 2 that these different forms for

Cη` define the same multifunction. Indeed, we see that the branch cuts have been displaced

from Fig. 2(a) to 2(b).

In order to understand the symmetry properties of the coefficient Cη`Γ(2` + 2)/(2η)`+1

relating the functions Fη` and Φη` in Eq. (19), one has to formulate Cη` so as to minimize

the length of the branch cuts. For this purpose, one defines the log-gamma function for

10
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FIG. 2. (Color online) Phase plots33 of the Coulomb normalization coefficient Cη` in the complex

plane of η−1 = ak for ` = 0 using three different definitions: (a) from Eq. (8) with the square root

of gamma functions, (b) from Eq. (30) and (c) from Eq. (32) using definition (31) of logΓ. Some

of the branch points located at ak = ±i/(n+ `+ 1) ∀n ∈ Z≥0 are marked with crosses. The point

ak = 0 is an essential singularity.

N →∞ as35,38

logΓ(z) =

[
(z +N)(ln(z +N)− 1)− 1

2
ln
z +N

2π

]
−

N−1∑
n=0

ln(z + n) . (31)

The log-gamma function is equal to ln(Γ(z)) for z ∈ R>0, but it has a single discontinuity

for z ∈ R<0 stemming from the superposition of the logarithmic branch cuts in the sum. In

this regard, the log-gamma function has a simpler branch cut structure than ln(Γ(z)). The

expression (31) originates from the recurrence formula logΓ(z + 1) = logΓ(z) + ln z and the

asymptotic Stirling expansion of the gamma function7,18 displayed between square brackets.

The latter can be supplemented by additional terms in the Stirling expansion to speed up

the convergence of the expression.

Now, using the log-gamma function, Cη` can be rewritten from Eq. (8) as35

Cη` =
2` e−ηπ/2

Γ(2`+ 2)
exp

(
logΓ(`+ 1 + iη) + logΓ(`+ 1− iη)

2

)
. (32)
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The coefficient Cη` defined by Eqs. (32) and (31) is shown in Fig. 2(c). The branch cut

structure turns out to be an alternation of branch cuts between the Coulomb poles. Indeed,

it turns out to be shorter and less tangled than in Figs. 2(a) or 2(b). Unless otherwise

stated, we will use Eq. (32) to compute Cη` for complex valued wave numbers k.

Returning to the reflection formula of Fη`, we multiply both sides of Eq. (29) by Cη`Γ(2`+

2)(2η)−`−1(wη`)
−1 and use Eq. (19) to get

Cη`Γ(2`+ 2)

(2η)`+1wη`
Φη,−`−1(ρ) = Fη,`(ρ) ∀` ∈ 1

2
Z . (33)

Now, for complex values of `, some manipulations involving the definitions (32) of Cη`

and (25) of w±η` show that the coefficient in the left hand side of Eq. (33) reduces to the

coefficient in front of Φη` in Eq. (19) with ` replaced by −`− 1. Accordingly, one finds the

following symmetry for the coefficient in front of Φη,−`−1 in Eq. (33):

Cη,`Γ(2`+ 2)

(2η)`+1w±η`
=
Cη,−`−1Γ(−2`)

(2η)−`

√
w∓η`
w±η`

∀` ∈ C . (34)

The gamma functions in
√
w∓η`/w

±
η` are supposed to be computed in the exponential form

using Eq. (31). It can be shown17 that the last factor in Eq. (34) is equivalent to the sign of

the real part of η whatever the sign over the functions w±η`:√
w∓η`
w±η`

= (±i)2`+1

√
Γ(`+ 1∓ iη)Γ(−`± iη)

Γ(`+ 1± iη)Γ(−`∓ iη)
= sgn(Re η)2`+1 ∀` ∈ 1

2
Z . (35)

Therefore, combining Eqs. (33), (34), and (35), we obtain the following reflection formula of

the regular Coulomb function also reported in Ref. 17

Fη,−`−1(ρ) = sgn(Re η)2`+1 Fη,`(ρ) ∀` ∈ 1
2
Z . (36)

As shown in Figs. 3(a) and 3(b), the functions Fη,` and Fη,−`−1 are equal in the right half-

plane (Re η > 0). However, their extension to the left half-plane (Re η < 0) is different

because the branch cuts have been rotated by 180◦ around the Coulomb poles, as depicted

by the arrows. In Fig. 3(b), one notices that the branch cuts split the complex plane in two

along the imaginary axis. The resulting discontinuity is responsible for the sign of Re η in

Eq. (36).

Considering the Riemann structure of Fη`, it is clear from Figs. 3(a), (b), and (c) that

Fη`, Fη,−`−1, and −Fη` are different branches of the same multifunction Fη` defined as:

Fη`(ρ) = {±Fη`(ρ)} ∀` ∈ 1
2
Z . (37)
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FIG. 3. (Color online) Phase plots33 of Fη`(ρ) in the complex plane of ak at ρ = 1/2 for ` = 0

using definition (32) of Cη`. Panel (a) depicts the principal branch of Fη,`, panel (b) shows Fη,−`−1,

and panel (c) is the second branch of Fη,`, namely −Fη,`. The first nontrivial zeroes are depicted

by circles.

This two-sheeted structure is due to the square root in the Coulomb normalization coefficient

Cη` of Eq. (30). In terms of the multifunction Fη`, the reflection formula (36) becomes:

Fη,−`−1(ρ) = Fη,`(ρ) ∀` ∈ 1
2
Z . (38)

The conclusion is that the use of the Coulomb function Fη` is limited due to its singular

structure at complex energy. Indeed, the symmetry relation (36) involves the discontinuous

coefficient sgn(Re η), in contrast to the symmetry (29) of Φη` whose coefficient wη` is entire

in energy. This is why the modified function Φη` is more suitable than Fη` for practical

applications such as the analysis of Coulomb-related functions. In particular, the connection

formula relating Fη` and Gη` and the analysis of Gη` will be more easily discussed in terms

of Φη` rather than Fη` itself.
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IV. CONNECTION FORMULAS OF COULOMB FUNCTIONS

In this section, we establish the connection formulas between the Coulomb wave functions

Fη`, Gη` and H±η` valid in repulsive and attractive electric fields. In this regard, we use the

modified Coulomb function Φη` which are regular in the complex plane of the energy. We first

discuss the general case where ` is complex in Sec. IV A. Then, we study the specialization

to the integer and half-integer values of ` in Sec. IV B. We show that the use of Φη` directly

leads to the analytic decomposition of the irregular Coulomb function Gη` which is a key

component in the effective-range theory for charged particle scattering.16,25,29

A. Complex angular momentum

As mentioned in Sec. II, the irregular Coulomb functions are based on the Tricomi function

U (α, β, z). Replacing the confluent hypergeometric functions M (α, β, z) in Eq. (10) with its

regularized version M(α, β, z) defined by Eq. (16), one gets

U (α, β, z) = Γ(β)Γ(1− β)

[
M(α, β, z)

Γ(α− β + 1)
− M(α− β + 1, 2− β, z)

zβ−1 Γ(α)

]
, (39)

which has a form directly related to the symmetry formula (24). When β = 2` + 2 is not

an integer, a suitable function linearly independent from M(α, β, z) can be z1−β M(α− β +

1, 2−β, z).7,18,20,36 However, when β tends to an integer, the property (24) breaks this linear

independence. In the latter case, the Tricomi function (39) is needed because it remains

linearly independent for ` ∈ 1
2
Z. The poles of the prefactor Γ(β)Γ(1 − β) compensate for

the cancellation of the square brackets when β reaches an integer. Multiplying Eq. (39) by

D±η` ρ
`+1 e±iρ to let appear the Coulomb functions H±η` and Φη` and using the definition (11)

of D±η`, one finds

H±η` =
(2η)`

Cη`Γ(2`+ 2)

π

sin(2π`)

[
w±η,`Φη,` − Φη,−`−1

]
∀` ∈ C . (40)

In fact, the expression (40) provides the analytic decomposition of H±η` in the complex planes

of η−1 and `, since the singularities are gathered in Cη` and w±η`. In particular, Cη` and (2η)`

are multivalued functions for complex `. A similar decomposition can be obtained for Gη`

using Eq. (14).
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The expression (40) can also be reformulated in terms of the Coulomb function Fη` as

H±η` =
(2η)2`+1

C2
η`Γ(2`+ 2)2

π

sin(2π`)

[
w±η`Fη,` −

(
w+
η`w

−
η`

)1/2
Fη,−`−1

]
. (41)

It turns out that the coefficient in front of the square brackets in Eq. (41) can be simplified

further. Using Eq. (30), we notice that the following imaginary part of w+
η` reduces to the

denominator in Eq. (41)

w+
η` − w

−
η`

2i
=
C2
η`Γ(2`+ 2)2

(2η)2`+1

sin(2π`)

π
∀` ∈ C . (42)

Therefore, the Coulomb functions H±η` can be rewritten as

H±η` =
w±η`Fη,` −

(
w+
η`w

−
η`

)1/2
Fη,−`−1

1
2i

(
w+
η` − w

−
η`

) . (43)

According to the definition (14) of Gη`, the real part of Eq. (43) gives

Gη` =
1
2

(
w+
η` + w−η`

)
Fη,` −

(
w+
η`w

−
η`

)1/2
Fη,−`−1

1
2i

(
w+
η` − w

−
η`

) . (44)

The result (44) can be easily related to Eq. (6.1) of Ref. 17 using the notation e2ixη` =

w−η`/w
+
η`. The real and imaginary parts of (w−η`/w

+
η`)

1/2 are then expressed as cosxη` and

sinxη` respectively.17 This notation highlights the analogy between Eq. (44) and the con-

nection formula between the Bessel functions Jν and Yν for ν ∈ C, as given in Refs. 18,39.

Finally, as a consequence of Eq. (40), one finds using Eqs. (27) and (34) that the Coulomb

function H±η` obeys the symmetry formula17,34,36

H±η,−`−1 =

√
w∓η`
w±η`

H±η` ∀` ∈ C , (45)

where the square root of gamma functions can be computed using the log-gamma function

from Eq. (31). In contrast to the symmetry formula (29) for Φη` which is restricted to

` ∈ 1
2
Z, the result (45) is valid for all complex values of `.

It should be noted that the result (44) can be extracted from Eq. (45) by subtracting the

equations with the upper and lower signs and solving for Gη`. However, in general, there

is no symmetry formula strictly equivalent to Eq. (45) for the functions Fη` and Gη`. The

reason is that the multiplicative function
√
w∓η`/w

±
η` is generally a complex number that

couples the components of Fη` and Gη` in H±η`, preventing Eq. (45) from splitting into two

independent symmetry formulas for Fη` and Gη`. An important exception occurs when ` is

either integer or half-integer, as shown in the following.
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B. Integer or half-integer angular momentum

Now, we consider the special case of integer or half-integer values of `. This case is not

only important for physical applications, it also requires a careful mathematical treatment

of the limit on `. The calculation of the limit is easier on Eq. (40) than on Eq. (43) because

of the known behavior of the sine function at each of its zeroes. In addition, since Φη` is

regular in `, the calculation will provide the analytic decomposition of H±η` in the special

case ` ∈ 1
2
Z. Letting ` be replaced by ` + ε for ` ∈ 1

2
Z with vanishing ε, the connection

formula (40) becomes

H±η` =
(2η)`(−1)2`

Cη`Γ(2`+ 2)
lim
ε→0

1

2ε

[
w±η,`+εΦη,`+ε − Φη,−`−ε−1

]
∀` ∈ 1

2
Z . (46)

In this limit, the square brackets in Eq. (46) can be related to derivatives with respect to `

by l’Hospital’s rule, as done in Ref. 34. In the following, these derivatives will be denoted

by the dot notation for convenience14

Φ̇η,` =
∂Φη,`

∂`
, (47)

and similarly for ẇ±η` and other functions of `. Therefore, the subtraction in Eq. (46) is

expanded at first order in ε as

w±η,`+εΦη,`+ε − Φη,−`−ε−1

= (wη` + εẇ±η`)(Φη` + εΦ̇η`)− (Φη,−`−1 − εΦ̇η,−`−1) +O(ε2) .
(48)

Remarkably, the functions ẇ±η` in Eq. (48) are closely related to another well-known function

in the framework of charged particle scattering,14–16,20,21,29,30 namely the h function defined

as8,10

h±η` =
ẇ±η`
2wη`

=
ψ(`+ 1± iη) + ψ(−`± iη)

2
− ln(±iη) , (49)

where ψ(z) is the digamma function defined as ψ(z) = Γ′(z)/Γ(z).7,18 The result (49) directly

follows from the definition (25).

The functions h±η` are more commonly defined as independent from `, i.e., removing `

in Eq. (49). The dependence in ` is generally separated from h±η` by means of the recur-

rence formula of the digamma function. Although that separation is widely encountered

in the literature,14–16,21,25 it does not lead to any subsequent simplifications in the resulting

connection formulas. This is why we prefer the definition (49) as in Refs. 8,10,29.
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FIG. 4. (Color online) Phase plots33 of the functions h±η` and gη` in the complex plane of ak for

` = 0. The functions h+η` and h−η` are shown in (a) and (b) respectively, and gη` in (c). Every

branch cut has been turned towards the negative real axis by continuation of the logarithm. The

functions are slowly varying at Re(ak) < 0 near the Coulomb poles, hence the uniform color.

At this point, it is important to note that the functions h±η` are singular in the complex

plane of the wave number k contrary to the Coulomb function Φη`. They exhibit the Coulomb

poles accumulating to the origin in addition to a logarithmic branch cut from ak = 0 to

infinity, as shown in Figs. 4(a) and 4(b). These functions h±η` play an important role in the

theory of the effective-range function in charged particle scattering.4,13,16,21,25

Using the reflection formula (29) and the functions h±η` from Eq. (49), the result (48)

reduces at first order in ε to

w±η,`+εΦη,`+ε − Φη,−`−ε−1 = ε
[
wη`Φ̇η` + Φ̇η,−`−1 + 2wη`h

±
η`Φη`

]
+O(ε2) . (50)

Additional simplifications come from the remaining normalization factor in Eq. (46).

From Eq. (30), it can be expressed as

(2η)`(−1)2`

Cη`Γ(2`+ 2)
=

e2π(η+i`) − 1

π wη`

Cη`Γ(2`+ 2)

(2η)`+1
. (51)

The idea behind this expression is the appearance of the coefficient between Fη` and Φη` in

Eq. (19). Therefore, from Eqs. (46), (50), and (51), the irregular Coulomb functions H±η`
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can be rewritten

H±η` =
e2π(η+i`) − 1

π wη`

Cη`Γ(2`+ 2)

(2η)`+1

[
wη`
2

Φ̇η,` +
1

2
Φ̇η,−`−1 + wη`h

±
η`Φη`

]
. (52)

Since the derivatives Φ̇η,` and Φ̇η,−`−1 are the only functions linearly independent from Φη`

in Eq. (52), it is useful to define another irregular solution of the Schrödinger equation (1)

Ψη`(ρ) =
wη`
2

Φ̇η,`(ρ) +
1

2
Φ̇η,−`−1(ρ) ∀` ∈ 1

2
Z . (53)

The function Ψη` has the noticeable property of being holomorphic in the complex plane of

the wave number k or the energy ε, especially in the neighborhood of ε = 0.14,20 It is worth

noting that Ψη` is solely defined for integer or half-integer `, and has no generalization

to complex-valued `. Indeed, the function Ψη` is not expected to satisfy the Schrödinger

equation (1) for ` ∈ C \ 1
2
Z.

The relation (53) can be looked upon as the generalization to the Coulomb functions of

the connection formulas between Bessel functions. In fact, using Eqs. (18), (53), and 10.27.5

of Ref. 18, one immediately gets the limiting behavior:

Ψη`(ρ) = 2xK2`+1(2x) +O(ε) as ε→ 0 , (54)

where x =
√

2r/a and Kν(x) is the modified Bessel function of the second kind. It should

be noted that the irregular Coulomb functions H±η` and Gη` also tend to be proportional to

2xK2`+1(2x) as ε
>−→ 0,18 because the functions h±η` in Eq. (52) are asymptotic to zero as

ε
>−→ 0. However, this limit only holds for ε > 0, since h±η` display an essential singularity at

ε = 0, as shown in Fig. 4.

The appearance of derivatives with respect to ` in Eq. (53) is specific to the Coulomb

potential. When the Coulomb interaction vanishes (η = 0), Fη` and Gη` reduce to spherical

Bessel functions. In this special case, these functions are directly related to each other by

the transformation ` 7→ −`− 1 without derivative with respect to `:18

G0,`(ρ) = (−1)`F0,−`−1(ρ) ∀` ∈ Z . (55)

On the basis of Ψη`, one defines a last irregular Coulomb function Iη` similarly to Eq. (19):

Iη`(ρ) =
Cη`Γ(2`+ 2)

(2η)`+1
Ψη`(ρ) . (56)
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This function is real for ρ > 0 and satisfies the Schrödinger equation (1). The function Iη` is

the same as in Ref. 29, and has the advantage of being on an equal footing with Fη` regarding

the k dependence. Indeed, both Fη` and Iη` behave as Cη`k
`+1 in the neighborhood of k = 0.

Therefore, they are not holomorphic in k or ε. In this regard, the newly introduced functions

Φη` and Ψη` form a couple of independent solutions that are holomorphic in k and ε. The

Wronskian with respect to the radial coordinate 2r/a reads

W2r/a[Ψη`,Φη`] = 1 for a−1 6= 0 , (57)

where Wx[f, g] = f∂xg− g∂xf . This result also confirms that Ψη` is holomorphic in k and ε.

At last, using Eq. (52) and the relations (19) and (56), one obtains the result29

H±η`(ρ) =
e2π(η+i`) − 1

π

[
1

wη`
Iη`(ρ) + h±η`Fη`(ρ)

]
∀` ∈ 1

2
Z . (58)

Interestingly, the result (58) explicitly provides the analytic structure of the standard ir-

regular Coulomb functions in the complex k plane. Indeed, except from the normalization

coefficient Cη` of Fη` and Iη`, all the singularities ofH±η` in k are gathered in the ρ-independent

functions e2ηπ, (wη`)
−1, and h±η`.

Furthermore, the irregular Coulomb function Gη` exhibits a similar decomposition to

Eq. (58). The definition (14) of Gη` leads to the appearance of the function14,16,20,21

gη` =
h+η` + h−η`

2
=
ψ(`+ 1 + iη) + ψ(`+ 1− iη)

2
− ln η , (59)

that is real for η > 0. As shown in Fig. 4(c), the function gη` displays the Coulomb poles

from both h+η` and h−η` in addition to the logarithmic branch cut. In Eq. (59), the branch

cuts of h±η` — located on the imaginary axis of ak due to the principal value of the complex

logarithm — have been turned towards the negative real axis. The functions h±η` and gη`

also satisfy the reflection formulas

h±η,−`−1 = h±η,` and gη,−`−1 = gη,` ∀` ∈ C . (60)

Stemming from Eq. (27), these properties are useful in calculations involving the transfor-

mation ` 7→ −`− 1.

Finally, the analytic decomposition of Gη` reads

Gη`(ρ) =
e2π(η+i`) − 1

π

[
1

wη`
Iη`(ρ) + gη`Fη`(ρ)

]
∀` ∈ 1

2
Z . (61)
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This last expression has important consequences in the effective-range theory of charged

particle scattering.29

The decomposition (61) remains valid for complex valued η and ρ except on the branch

cut discontinuities of Fη`, Iη` and gη`. Furthermore, Eq. (61) allows us to determine the

analytic continuation of the function Gη` in the complex plane of the wave number k and

then of ρ. Since the function gη` shown in Eq. (59) is proportional to ln ρ, it is defined up to

a multiple of 2πi. As a consequence of Eq. (61), the transformation ρ 7→ ρ e2πin for ` ∈ 1
2
Z

leads to the novel continuation:

Gη`(ρ e2πin) = e2πin`
[
Gη`(ρ) + 2in

(
e2π(η+i`) − 1

)
Fη`(ρ)

]
∀n ∈ Z . (62)

Therefore, the corresponding multifunction Gη` is given by

Gη`(ρ) =
{
±Gη`(ρ)± 2in

(
e2π(η+i`) − 1

)
Fη`(ρ), n ∈ Z

}
. (63)

Both upper and lower signs in Eq. 63 have to be included due to the two sheets of the

normalization factor Cη` in Iη` and Fη`.

The connection formula (53) between the modified Coulomb functions Φη` and Ψη` can

be used to relate the standard functions Fη`, H
±
η` and Gη` between them. For this purpose,

one has to calculate the derivatives Φ̇η,` and Φ̇η,−`−1 in the right hand side of Eq. (53). We

have shown using relation (19) that Φ̇η` can be written as

Φ̇η` =
(2η)`+1

Cη`Γ(2`+ 2)

[
Ḟη` − gη`Fη`

]
. (64)

The function gη` comes from the logarithmic derivative with respect to ` of the coefficient

in front of the square brackets. The function Φ̇η,−`−1 can be obtained from Eq. (64) using

the reflection formulas (34), (36) and (60)

Φ̇η,−`−1 =
(2η)`+1wη`
Cη`Γ(2`+ 2)

[
sgn(Re η)2`+1Ḟη,−`−1 − gη`Fη`

]
∀` ∈ 1

2
Z . (65)

After some simplifications, the modified Coulomb function Iη` from Eq. (56) reads

Iη` =
wη`
2

[
Ḟη` + sgn(Re η)2`+1Ḟη,−`−1 − 2gη`Fη`

]
. (66)

The irregular Coulomb functions H±η` directly follow from the connection formula (58)

H±η` =
e2π(η+i`) − 1

2π

[
Ḟη` + sgn(Re η)2`+1Ḟη,−`−1

]
± iFη` ∀` ∈ 1

2
Z . (67)
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To get the last term in Eq. (67) out of the square brackets, we have used the property

h±η` = gη` ±
iπ

e2π(η+i`) − 1
∀` ∈ 1

2
Z . (68)

Finally, the Coulomb function Gη` can be calculated from Eq. (67) by means of the defini-

tion (14)

Gη` =
e2π(η+i`) − 1

2π

[
Ḟη` + sgn(Re η)2`+1Ḟη,−`−1

]
∀` ∈ 1

2
Z . (69)

This result is consistent with equation (6.3) of Ref. 17.

It should be noted that the sign appearing in front of Ḟη,−`−1 can be formally omitted

using the multifunction Ḟη`, as discussed Sec. III. However, unlike Fη`, the multifunctions

Ḟη,` and Ḟη,−`−1 display infinitely many Riemann sheets due to the logarithm stemming

from the derivative of ρ`+1 with respect to ` in the definition (4).

The connection formula (69) allows us to determine the action of the transformation

` 7→ −`− 1 on the irregular Coulomb function:

Gη,−`−1(ρ) = sgn(Re η)2`+1Gη`(ρ) ∀` ∈ 1
2
Z . (70)

This result can also be obtained from Eq. (45) using the property (35). The similarity of

Eq. (70) with the reflection formula (36) for Fη` follows from the two-sheeted structure of

Cη` in Ḟη,` and Ḟη,−`−1.

V. CONCLUSIONS

In this paper, the connection formulas between the regular and the irregular Coulomb

functions have been established in full generality for either complex or half-integer values of

`. For this purpose, we have first discussed the symmetry properties of Fη` based on those

of the confluent hypergeometric function M(α, β, z), especially under the transformation

` 7→ −` − 1. We have shown in Eq. (36) that this transformation leaves Fη` unchanged

except for a sign which can be interpreted as the consequence of the two Riemann sheets in

the normalization coefficient Cη`, namely ±Cη`, as explained at the end of subsection III B.

A modified Coulomb function Φη` satisfying the Coulomb equation (1) has been intro-

duced at Eq. (17). Being holomorphic in the wave number k, the energy ε, and `, this func-

tion Φη` is more convenient than Fη` to study the analytic properties of Coulomb-related

functions in the complex planes of k or ε.
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When coming to the irregular Coulomb functions H±η` and Gη`, two different cases have

been considered:

1. On the one hand, when ` is not a half-integer, H±η` and Gη` are a linear combination

of Φη,` and Φη,−`−1, as shown in Eq. (40), because of the definition (10) of the Tricomi

function U (α, β, z).

2. On the other hand, the limit ` → 1
2
Z can be evaluated from l’Hospital’s rule, hence

the appearance of the derivatives of Φη,` and Φη,−`−1 with respect to `. The newly

introduced modified Coulomb function Ψη` containing these derivatives is defined by

Eq. (53). The functions {Φη`,Ψη`} form a couple of linearly independent solutions to

Eq. (1) for ` ∈ 1
2
Z, that are holomorphic in k and ε.

Concerning the non-holomorphic functions H±η` and Gη`, the connection formulas (58)

and (61)—also obtained in Ref. 29—provide all their singular structures in the complex

planes of k and ε. Most of these singularities are described by the ρ-independent functions

h±η` and gη`, which play an important role in scattering theory of charged particles.4,13,16,21,25,29

In addition, the connection formulas have led us to the analytic continuation (62) of Gη` for

` ∈ 1
2
Z as well as the corresponding multifunction (63).

Finally, we have directly related H±η` and Gη` to the derivatives of Fη` with respect to

` in Eqs. (67) and (69). A consequence of these relations is Eq. (70), showing that Gη` is

unchanged under the transformation ` 7→ −` − 1, except for a sign which turns out to be

the same as between Fη,` and Fη,−`−1.

In the future, we plan to use the connection formulas to derive novel representations of

H±η` and Gη` based on those of Φη`. In particular, integral representations and expansions in

series of Bessel functions, which are useful to describe the low-energy scattering of charged

particles.
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17A. Dzieciol, S. Yngve, and P. O. Fröman, J. Math. Phys. 40, 6145 (1999).

18F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of

Mathematical Functions , 1st ed. (NIST, New York, 2010).

19NIST, Digital Library of Mathematical Functions (2010), release 1.0.18 of 2018-03-27.

20E. Lambert, Helv. Phys. Acta 42, 667 (1969).
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