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The mathematical relations between the regular Coul 1thunction F,i(p) and the
irregular Coulomb functions H. jE( ) and G,(p) are obt ed T, the complex plane of
the variables n and p for integer or half-integer ok hese relations, referred
to as “connection formulas”, form the basis of heory, of Coulomb wave functions,
and play an important role in many fields &2‘3 ec1ally in the quantum theory
of charged particle scattering. As a first st tﬁ'}ymmetry properties of the regular
function F,,(p) are studied, in partigular A8 he transformation ¢ — —f — 1, by
means of the modified Coulomb furm

energy 72 and the angular mo entim-/. Then, it is shown that, for integer or

p), which is entire in the dimensionless

half-integer ¢, the irregular f }'pni si,(p) and G,(p) can be expressed in terms
of the derivatives of ®, , nd\®, _,_1(p) with respect to ¢. As a consequence,
the connection formula ly ead to the description of the singular structures of

) and G,(p)-at com ple energies in their whole Riemann surface. The analysis

of the functio supplemented by novel graphical representations in the complex
plane of
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Publishihg INTRODUCTION

The Coulomb wave functions are defined as particular solutions of the Schrodinger equa-
tion in a 1/r potential. They have been introduced in the 1930s by Yost, Wheeler and
Breit! to describe the scattering of charged particles due to the Cokv}’omb repulsion. Most of

HMAbramowitz and
Cﬁblet‘Lcim and others. As

pointed out in Ref. 17, the literature about the Coulomb functions is'so broad and plentiful

the properties of these functions have been developed by Breit a

Stegun,” © and later by Seaton,®*** Thompson and Barnett,

that it is often difficult to find formulas covering generakpuroperties, such as the relations

between the regular and the irregular Coulomb functions, their analytic continuation to

complex arguments, or their singular structures Che ex plane of the energy. These

important properties are rarely given in 1"efelr%\;uﬂajooks,‘m"ul yet equivalent formulas

are given for the closely related Bessel functions o hLe—conﬂuent hypergeometric functions.

However, the Coulomb wave functigns 6‘XOR\-DleX arguments are of major interest in
various fields such as charged particle s:mg in nuclear and atomic physics, 4162025
le myﬁﬁ or the scattering of gravitational waves 228

\m\h led to recent advances in the theory of effective-

quantum defect theory,” Regge

The in-depth survey of these func

range function for charged par

The main purpose o ther 1s to determine the relations between the regular and
0

the irregular Coulomb funetions, respectively denoted as F,¢(p) and G,u(p), in an easy-to-

read fashion. Thege r tiory are generically referred to as the “connection formulas” in the
NIST Handbook*® e focus of this paper is on integer or half-integer values of the angular
momentum rbcomplex values of the variables n and p. When /¢ is an integer or a half-
integer, the cénnection formulas relate G,(p) to derivatives of F,.(p) with respect to the
anguldr mom tt(m ¢ 217 The connection formulas are of prime importance since they allow
thesuserto d)duce from any representation of F,,(p) valid for complex ¢, the corresponding
répresenfation of Gy(p). The properties of the resulting representation of G,(p) are also
"m.gerl from Fe(p).1*
N

This paper investigates the limitation of Fi,(p) and G,.(p) at complex energies due to

their singularities, and introduces regularized versions of the Coulomb functions, namely

®,¢(p) and W,,(p), that are holomorphic in energy. It is shown why these versions are more

suitable than F,4(p) and G,.(p) for the analysis and the complex continuation of Coulomb-
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Publishi:nege ted functions, especially at low energy.

On this ground, it is shown that the connection formulas directly lead to the analysis of
the singularities of G,(p) in the complex plane of the energy, as well as the construction of
its Riemann surface. The analysis is also illustrated by novel color-based representations of
the functions in the complex plane of .33 /

This paper is organized as follows. The main definitions n\o&Qons are given in
Sec. II. The important symmetry properties of Fy.(p) are s@ Sec. III, especially the

ec

transformation ¢ — —¢—1 which is discussed in Sec. 111 B hection formulas between

?Mec. IV, in addition to the

the regular and the irregular Coulomb functions are prese

—

analytic continuation, symmetries, and other little known pgoperties of G,¢(p). The results

for complex angular momentum are given in Se‘. TV A "Finally, the special case of integer
B

. ogausions are drawn in Sec. V

and half-integer values of ¢ is treated in Sec. IV &

II. COULOMB EQUATION ANQ{ ARD SOLUTIONS

_—

The Coulomb wave functions aris %lgsolving the Schrodinger equation for a spinless

particle of mass m in a stationary obential. Using the radial coordinate p = kr rescaled

by the wave number k, the Sé«\' er equation of the wave function u(p) reads

d?u [6 (+1) 2n }
W + +——1{u=0. (1)
2 2 P
The Sommerfeld parameter . quantifies the distortion of the wave function due to the
Coulomb potentg with res

instance, wh

The paraQ is commonly defined agh8-10-18:22-24
£
4 _ 1 9

where e 18.4he dimensionless energy in Rydberg units

) ) E
k 627’]2:(@]{3)2:—7 (3)
-
and a denotes the Bohr radius.

In this paper, the focus is on the analytic properties of the functions in the complex

&act to the free wave of corresponding angular momentum ¢. For

endswo zero, the radial Schrodinger equation in free space is retrieved.

planes of k£ and e. In this regard, it will be convenient to let the product np appear in place

of the radial coordinate, because, being equal to r/a, it does not depend on k or € anymore.
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Publishingln the literature,M182224 two couples of linearly independent functions are considered
as solutions of the Coulomb equation (1), namely {Fy, G,¢} and {H,,, H ,}. The former

1 as p — 0, and the

consists of the regular Coulomb function F(p), behaving like p°
irregular Coulomb function G,(p), behaving like p~“as p = 0. It can be shown that the

only solution up to a factor of the Coulomb equation (1) which is{égular at p = 0 is given

byT48

Fu(p) = Coe p™1 2 M (0 + 1+ i, 20 +2, 72iD) (4)
where M (a, 3, z) is the confluent hypergeometric functi I‘;,\a§ﬂknown as the Kummer

function of the first kind. The Kummer function is defing '?}Té‘following series represen-
tation with a = ¢+ 1 +in, f =20+ 2, and z = F2ip, 3

= (), 2" 2 a+1
M”’ﬁ’z)‘%?m‘ (L”ﬁ‘gﬁﬂsf | ®)

where (a),, = ala+1)-- (oH—n—l) = F(

is the Pochhammer symbol. The choice
of signs in the definition (4) is immateri &ae.t.o\Kummer’s reflection formula of the confluent
hypergeometric functlon T8 1t shouldeg no d that the definition (4) is supposed to hold

for complex ¢. The properties of C \b functions owing to the symmetry formulas of
the confluent hypergeometrl ctl s‘are discussed in further details in Sec. III.
In Eq. (4), the coefficient C’ rmalizes the far-field behavior of F,, to a sine wave of
unit amphtude \
) —> sinb,(p) as p— oo, (6)
where 0, is the ﬁel ase of the Coulomb wave functions™®
T
7711 (p) — 65 —nln(2p) +arg'(¢ + 1 +1in) . (7)

The norntaliZition coefficient is defined as™i44518

20/T+ 1+l (0 +1—1in)
['(20 + 2) en/? '

Che = (8)

The regular Coulomb function F,.(p) is shown in Fig. 1 in a repulsive and an attractive
field. This is the only function which vanishes at p = 0.
The definition of the irregular Coulomb function G, is less straightforward than Fj,. As

a preamble, additional Coulomb functions have to be introduced, namely the outgoing and

4


http://dx.doi.org/10.1063/1.5054368

AllP

This manuscript was accepted by J. Math, Phys. Click here to see the version of record.

Publishing (a) Repulsive field: 7 = +1 (b) Attractive field: 7 = —1

| 1L |
Gq,O(p)

Fu0(p) Gy0(p) Fy.0(p)

L | | |
| | | |
0 5 10 15 \0\\ 15 20
FIG. 1. Graphs of the standard Coulomb wave functlons nd Gpe(p) for n = 1 and £ = 0.

At the origin, G, 0(p) is equal to the finite value G,

/y C’,, 0
incoming Coulomb functions denoted H}, xlespectlvely These two functions are

defined in a similar way to Eq. (
+1+in, 20+ 2,F2ip) , (9)

but using the confluent hype unctlon of the second kind U(a, 3, 2), also known

18

as the Tricomi function®

-1 1
+Wz PM(a—B+1,2—8,2) (10)

and (10), one notices that H;z can be directly expressed as a

_¢—1, and can thus be defined in this way.}>** These considerations

as p 2 0748 The

L+ 1+in)

D:I: — 2% 20+1 11
nt (:F 1) anl—w(2£+2) ’ ( )

\ |
stuch that the far-field behavior of Hsi, is e The coefficients D;?—LE are related to each other

by complex conjugation as long as k is real. The general conjugation formulas for complex

valued k read

D,,= D}, and H,,(kr) = HZ,(kr). (12)

5


http://dx.doi.org/10.1063/1.5054368

! I P | This manuscript was accepted by J. Math. Phys. Click here to see the version of record. |

Publishifc regular Coulomb function £, can be retrieved by taking the imaginary part of H;FZ in

the following way

H(p) — Hoi(p) |

2i (13)

Fu(p) =

This definition is consistent with the expected far-field behavior (6) of F,,. Finally, the

irregular Coulomb function G,y is defined as the real part of H;r \
Hyi(p) + H,y(p) &
Grelp) = g1 \

so that G, asymptotically behaves like cos 8,, as p —, Q.

(14)

The function G, is shown along with F;, in Fig, 1 fofSE = 0. As one can see, G,
is irregular at p = 0, but it has no vertical as Etote, trary to what Fig. 1(a) might
suggest. In fact, G, tends to a positive constant @ P 20 according to the following
behavior™# \%
p~t plnp) if £=0

(15)
20+ 1)C5 O(p Y if >0

Gn[(ﬂ) = (

When ¢ = 0, the next-to-leading{o dem the series expansion of G, is exceptionally loga-
rithmic, hence the conditions'\Q

I11. SYMMETRIE@OULOMB FUNCTIONS
£

Before deriving‘the nn(;étion formulas between Coulomb wave functions, we have to dis-
cuss their sy eWth respect to their parameters. The connection formulas between
functions age baséd on the symmetries of the differential equation they satisfy. For instance,
the Schrédingér eqiation (1) shows a noticeable symmetry in the angular momentum: it is
left ufichangedwinder the transformation ¢ — —¢ — 1. Therefore, one can guess that con-
nectionformulas between Coulomb functions for ¢ and for —¢ — 1 should exist, in particular
b ween‘jhe regular and the irregular Coulomb functions.

\ﬁRTO\ obtain these formulas, we first have to define modified Coulomb functions that are
régular for any ¢ € C in the complex plane of the energy. This step is motivated by the
singularities of the Kummer function M (a, f,2) in the complex § plane at 8 € Z<,. As

a reminder, § equals 2¢ 4+ 2 and thus can reach negative integer values when ¢ is changed

to —¢ — 1. Therefore, we need the regularized version M(«, 3, z) of the Kummer function
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Publishiwgich is simultaneously holomorphic in the complex planes of «, 3 and 218

M(ajﬁvz):ﬁM(%@z):Z%%- (16)

n=0

On the basis of M(«, 3, 2), it is useful to introduce a modified Co?()mb function ®,, satis-
fying Eq. (1)

Y
D,(p) = (20p) ' P M(C + 1 % in, 20 1S 52) (17)

N
fﬁ)mbe , the energy €, and /.

n Refs, 8-10, Seaton denotes

which is holomorphic in the complex planes of the wa

Similar functions are also reported in the literature 4>

@, as (=1)f(e, 6, —r/a). 3

Such a function is of major interest in charg@ar icle scattering,?* ?* Regge pole the-
ory®® and quantum defect theory,? for which axtifufunctions in the complex plane of the
energy are often required.** In particulw tion ®,, behaves like a constant in the

neighborhood of the zero-energy point&
(I)nf(P) -73\??

~
(2w) +O(e) ase—0, (18)

where © = \/2np = \/2r/a a is the modified Bessel function of the first kind. It
should be noted that thedow-energy behavior (18) is valid for both repulsive (a > 0) and
attractive (a < 0) Coulomb potentials. In the latter case, the variable z becomes imaginary

due to the square rdaf. However, the result is still real valued because z I41(2x) is an even

function of x pr v\'d& %
The modified Qoulomb function @, is related to £, by

¢ Fulp) = S ). (19)

-

Theno ali;ition factor in Eq. (19) brings many singularities to Fy, in the complex planes

ofig™" afid ¢, which makes F, less suited than ®,, for our purposes.

N
X Transformations of the main variables

When the Coulomb interaction is attractive, ®,, reduces to the hydrogen-like wave func-

tion within a normalization factor. Under the transformation (a, k) — (—a,ik), or in other

7
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Publishiwgrds (1, p) = (in,ip), the hypergeometric function in Eq. (17) can be rewritten as a gener-

alized Laguerre polynomial L{®(z). Then, we have

. L(n—1¢) ¢ - 213 1
o, — T (Copp)itlemrL P (9 20
ne(1p) F(n+€+1)( np) e ( p) (20)
where 7 is interpreted as the principal quantum number belon ng)\eiltlve integers n €
Zso, L €{0,1,...,n—1}, and p = r/(an).

As previously mentioned, the immaterial choice of si E (4) and ( is a conse-

%ometrlc function™®

quence of the Kummer reflection formula of the confl ent

M(a, §,2) = € M(B — a, Z) ,2€C, (21)

D
which remains valid in the complex plane ' ﬁ and z as well.
Another important consequence of &the relation between the repulsive and the
attractive Coulomb functions. One s from Eq. (21) that the attractive Coulomb

function is found on the negati Vyl dxis

—ne =®,4(~p) Vpm,teC. (22)

/

This property can al b’e’ i}eted as the consequence of the invariance of the Schrodinger

equation (1) undef thesgrangformation (1, p) — (—n, —p). A similar relation also exists for

the Coulomb ctio/

£ Foi(p) = —e™™HOE (pe™™) for +argp>0. (23)
ﬂ

hile Fq, (2)) is valid on the complex planes of the three variables, the relation (23) suffers

fr resyictions because of the normalization coefficient in the definition (19). When ¢ is
7'!'05 an integer, the Coulomb functions F,(p) and F,,(—p) display different branch cuts in
the complex p plane: the former lies on the negative p axis and the latter on the positive p
axis. Therefore, the principal branches of F,(p) and F,;(—p) cannot be proportional within
the same factor everywhere in the complex p plane. The upper sign in Eq. (23) holds for

0 < argp < m and the lower sign for —m < argp < 0.

8
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PublishiBg Reflection of the angular momentum

The reflection formula (21) is not the only symmetry of the confluent hypergeometric

20,36

function M(«, 3, z). There is another formula involving the integral parameter [3, namely

2P 'T(a
T(a—p+1) —B+

This property derives from the series representation (16) un QX;umptlon that [ is an
integer. One notices that the transformations a — a — — 2 — 3 involved in

Eq. (24) are equivalent to the symmetry £ — —¢ — 1 leav ‘Tf&Schrodmger equation (1)

Ma-p+4+1,2-0,2) = ——+—— oz,ﬁ,z Z (24)

unchanged. Therefore, it is useful to determine t equmylent relation in terms of the

Coulomb functions. For this purpose, one can define two functions with the prefactor in the

right-hand side of Eq. (24) ‘)
RN LSS0 (25)
e W@ +in)

These functions are denoted as A(e, ¢) IS‘\‘e\afﬁm&m’m For positive integer ¢, the two func-

. + . c 7. .
tions w,, are entire in the energy € an \Bq]Kre uce to wyy, the f-order polynomial in € given

byi,é,ﬂ,m,l‘)_,?)ﬂ,&l \\(
2
w _n\eH (1 + #) Vi€ Zs. (26)

These functions wffg ndww,, are equal to 1 if € = 0 or £ = 0. The formula (26) can be
supplemented by t reﬁ'ect}) property

1
)\ Wi =—= WeC. (27)

L

It shofild hé noted that the reflection formula (24) is also valid for half-odd-integer ¢ since

B=A+2 € /In that case, the functions w and w,, read
3 7
. Y j2
5 w;—}:wng: H (14‘@) \V%E{%,g,g,...}, (28)
j=1/2

ere the index j runs through half odd integers until £ is reached: j € {%, %, g, ..., l}. Most
of the relations derived in this paper allow ¢ to be half a odd integer (possibly negative),
although these values have no physical meaning in the framework of Coulomb scattering. For

this reason, the extension to half-integer values of ¢ is rarely considered in the literature.t”

9
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PublishingThe reflection formula of ®,, is obtained by multiplying both sides of Eq. (24) by
(2np)“ T e, One gets

q)m—f—l(p) = Wy q)n,é(p) Vil € %Z (29>

omb functions in

where 17 stands for the set of all half-integers: {0, +3, +1,£2, \}\&lls result plays a
r C

key role in the derivation of the connection formulas for the irrég

Sec. IV

At this point, it is crucial to understand the relationship ml the symmetries of ®,,
and F,,. With this aim, the reflection formula (29 shou }hewritten in terms of the
standard Coulomb function F},, using Eq. (19). Howe r, thl‘a step is less easy than deriving
Eq. (29) for ®,, because the normalization coe Clent e, which will come into play, is a
multi-valued function of the wave number k a; N&conven’monal principal branch in the

complex plane of k. In fact, the coefficie ed by Eq. (8) has a tangled structure

of branch cuts, as shown in Fig. 2 the square root on the gamma functions.
The branch points of C,, are given s located at ak = £i/(n + {4+ 1) VYn € Z>.
These points are referred to as ulomb poles” because they are reminiscent of the

hydrogen-like spectrum, n bei ted as the radial quantum number.
Depending on the definition of '€, dlfferent branch cut structures can be obtained. For

instance, using Euler’s %0)1 formula of the gamma function, we get the alternate form

of an
2nm wﬁ
Cng % + %) \/ 2 gl VieC, (30)

where thé choice of\ghe upper or the lower sign is immaterial as far as the branch cuts of w;Z

and uf ,“coincid¢” The corresponding branch cut structure is shown in Fig. 2(b). Because
of t_l_l_g uaréroot in Eq. (30), all the Coulomb poles are joined to the origin ak = 0 by a
branch (’St in the right half-plane. It can be guessed from Fig. 2 that these different forms for
efine the same multifunction. Indeed, we see that the branch cuts have been displaced
m\Fig. 2(a) to 2(b).
In order to understand the symmetry properties of the coefficient C,,I"(2¢ + 2)/(2n)"*!
relating the functions F,, and ®,, in Eq. (19), one has to formulate Cy, so as to minimize

the length of the branch cuts. For this purpose, one defines the log-gamma function for

10
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FIG. 2. (Color online) Phase plots®* of th Cox\\mﬁ‘varmalization coefficient Cy in the complex

plane of !

= ak for ¢ = 0 using three differmlitions: (a) from Eq. (8) with the square root
of gamma functions, (b) from Eq. O&C}ﬁom Eq. (32) using definition (31) of logI'. Some
of the branch points located at gk N

ak = 0 is an essential singularity. \

0+ 1) Vn € Z>( are marked with crosses. The point

N — 0o as®™

s ’\
/ o
log%ékJ/N)(ln(z +N)—-1)— %ln ;TN] — Z In(z +n). (31)

The log-ga Qnetion is equal to In(I'(2)) for z € Ry, but it has a single discontinuity

for z € stemming from the superposition of the logarithmic branch cuts in the sum. In
this régard, tlieJog-gamma function has a simpler branch cut structure than In(I'(z)). The

eXpLes @) originates from the recurrence formula logl'(z 4+ 1) = logl'(z) + In z and the

a §ic Stirling expansion of the gamma function™# displayed between square brackets.

‘F&& er can be supplemented by additional terms in the Stirling expansion to speed up
the convergence of the expression.

Now, using the log-gamma function, Cy, can be rewritten from Eq. (8) as®

C, (32)

2t e=m/2 logl'(¢ + 1 +in) + logl'(¢ + 1 — in)
)= ——————exp :
T(20+2) 2

11
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Publishiific coefficient C,, defined by Egs. (32) and (31) is shown in Fig. 2(c). The branch cut
structure turns out to be an alternation of branch cuts between the Coulomb poles. Indeed,
it turns out to be shorter and less tangled than in Figs. 2(a) or 2(b). Unless otherwise
stated, we will use Eq. (32) to compute C,y for complex valued wave numbers k.

Returning to the reflection formula of F},;, we multiply both side%f Eq. (29) by CpI'(20+
2)(2n) " (wye) " and use Eq. (19) to get 3

Cl(20 +2)
(277)“_1“)776

Now, for complex values of ¢, some manipulations in \:D the definitions (32) of Cyy
and (25) of wffg show that the coefficient in the left{hand side of Eq. (33) reduces to the
coeflicient in front of ®,, in Eq. (19) with ¢ replaced by/ 1 1. Accordingly, one finds the

CpD(20+2) Oy i v
_— L = J — WYWeC. 34
20 ) = (39

. . + \ . .
The gamma functions in @/wq} / w,gare supposed to be computed in the exponential form

using Eq. (31). It can be shown'%that Tast factor in Eq. (34) is equivalent to the sign of
g Eq. (31). \ q. (34) is eq g
lg\%{

O, 1 1(p) = Fpulp) VB3 (33)

following symmetry for the coefficient in front,o

+.

he functions (CATE

the real part of n whatever the si

| T in)(—L + in)
(L+1+in(—CFin)

(34), and (35), we obtain the following reflection formula of
the regular Coulgﬁnb ctiofl also reported in Ref. 17

3\%,4—1(0) = sgn(Ren)* ' F, (p) V€ LZ. (36)

As shownfin Flgs ) and 3(b), the functions £, and F, _,_; are equal in the right half-

w¥
_nf — (ii)QZ-f-l

=sgn(Ren)**' vl eiZ. (35)
w,

Therefore, combining’ Eqs. (83

plane ARe However their extension to the left half-plane (Ren < 0) is different
becau the anch cuts have been rotated by 180° around the Coulomb poles, as depicted
he a rows. In Fig. 3(b), one notices that the branch cuts split the complex plane in two
lo 1mag1nary axis. The resulting discontinuity is responsible for the sign of Ren in
d.
0n31der1ng the Riemann structure of F, it is clear from Figs. 3(a), (b), and (c) that

Fo, Iy, ——1, and —F,, are different branches of the same multifunction F,, defined as:
Fou(p) = {£F(p)} VL€ AT, (37)

12
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Im(ak)
90° 180°

OO
arg F¢(p)

-90°

—-180°

05 0 05 1-05 0 054 4=05 0 05 1
Re(ak) Re(ak)

using definition (32) of Cyy. Panel (a) pictsN?pT'ﬁlcipal branch of F), ¢, panel (b) shows F;, _,_1,

and panel (c) is the second branch ef Fnﬁamely —F}, 0. The first nontrivial zeroes are depicted

by circles. Q\

This two-sheeted struct % to the square root in the Coulomb normalization coefficient
multifunction F,y, the reflection formula (36) becomes:

Chye of Eq. (@);Q
4
I

4

The ncl)sion is that the use of the Coulomb function F,, is limited due to its singular

FIG. 3. (Color online) Phase plots® of ]@fuzomplex plane of ak at p = 1/2 for £ = 0

Fn’,gfl(p) = Fn,f(p) WS %Z . (38)

st Cturéat complex energy. Indeed, the symmetry relation (36) involves the discontinuous
?b}fﬁgent sgn(Ren), in contrast to the symmetry (29) of ®,, whose coefficient w,, is entire
ithenergy. This is why the modified function ®,, is more suitable than F;, for practical
applications such as the analysis of Coulomb-related functions. In particular, the connection
formula relating £, and G, and the analysis of G\, will be more easily discussed in terms

of ®,, rather than F, itself.
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In this section, we establish the connection formulas between the Coulomb wave functions
Fy, Gy and Hf]; valid in repulsive and attractive electric fields. In this regard, we use the
modified Coulomb function ®,, which are regular in the complex plané of the energy. We first
discuss the general case where ¢ is complex in Sec. IV A. Then, g:t r the specialization

to the integer and half-integer values of ¢ in Sec. IV B. We sho )c the use of ®,, directly

leads to the analytic decomposition of the irregular Coul mb n G,e which is a key

component in the effective-range theory for charged par le Gawrmg 20,29

A. Complex angular momentum k

L...
As mentioned in Sec. II, the irregular Co mb fimgctions are based on the Tricomi function
Ul(a, B, z). Replacing the confluent hyp rg functlons M(a, B, z) in Eq. (10) with its
regularized version M(« ) defined by , one gets

m@ﬂ M(a - f+1,2-5,2)
Ule, b,2) = T‘(w 5+1 21T (a) ’ (39)

which has a form directly relate e symmetry formula (24). When g = 2¢ + 2 is not

an integer, a suitable f Caa\inearly independent from M(a, £, 2) can be 2! M(a — 3 +

1,2, ) im0

We;yer, n 3 tends to an integer, the property (24) breaks this linear

independence. InftheYattes case, the Tricomi function (39) is needed because it remains

linearly indep uﬁM@ S %Z. The poles of the prefactor I'(8)['(1 — ) compensate for

the cancellati the square brackets when /3 reaches an integer. Multiplying Eq. (39) by

ﬁ
+ _ (277)[ T + .
ks e = Gy r3) singzrg) e Poe o] VEEC) o

I act the expression (40) provides the analytic decomposition of H in the complex planes

of ' and ¢, since the singularities are gathered in C,; and w . In particular, C, and (27)"
are multivalued functions for complex ¢. A similar decomposition can be obtained for Gy

using Eq. (14).

14
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Publishing' "he expression (@) can also be reformulated in terms of the Coulomb function F), as

Hi _ (277)%“ T
" G2 (20 4 2)? sin(2nl)

A\ 1/2
[wﬁFn,g— (w:,rzwne) Fn’_g_1i| ) (41)

It turns out that the coefficient in front of the square brackets in Eq. (41) can be simplified
further. Using Eq. (30), we notice that the following imaginary I?ft of w;re reduces to the
denominator in Eq. (41)

wh —wy,  CRT(20+2)? sin(270) 63 (12)
2i B (2m)26+1 T k\
Therefore, the Coulomb functions H, ;@ can be rewritten ‘)..._‘_‘

wi B — (wh w)(;;’
sz _ net'n,t nl " nl 77’*51
- — .
! 2i (w;—@ wnﬂ)\
According to the definition (14) of Gy, the r p.art O’E)lq. (43) gives
42 pe 29

_ _\1/2
G y _ % (/LU;;_Z _'_ wnf)\% ( Ewnf) anfgfl (44)
e = - :
%@w nf)
The result (44) can be easily related b&\(&l) of Ref. 17 using the notation e?"7 =

w;e/w&. The real and imaginagy pa oﬁﬁwgz/w;})l/ * are then expressed as cosz,; and
sin 2, respectively.!” This nogation, ltighlights the analogy between Eq. (44) and the con-

nection formula between the Be\lhmctions J, and Y, for v € C, as given in Refs. 18,39.

cof Eq. (40), one finds using Egs. (27) and (34) that the Coulomb
all,3_4;,3ﬁ

Finally, as a consequ

function H 3} obeys tlie iy etry formul

4 w
/\ HE, = w—’fH,ﬁ Ve, (45)
né

where the sq e)oot of gamma functions can be computed using the log-gamma function
from Eq&(31). In“contrast to the symmetry formula (29) for ®,, which is restricted to
( € 37, the result (45) is valid for all complex values of £.

Itshould be noted that the result (44) can be extracted from Eq. (45) by subtracting the

e ation§ with the upper and lower signs and solving for G,,. However, in general, there

%}0 \Symmetry formula strictly equivalent to Eq. (45) for the functions F,, and G,;. The
son is that the multiplicative function w/wj; /wz} is generally a complex number that
couples the components of F,, and G, in Hsz, preventing Eq. (45) from splitting into two
independent symmetry formulas for F,, and G,,. An important exception occurs when ¢ is

either integer or half-integer, as shown in the following.

15
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PublishiBg Integer or half-integer angular momentum

Now, we consider the special case of integer or half-integer values of ¢. This case is not
only important for physical applications, it also requires a careful mathematical treatment
of the limit on ¢. The calculation of the limit is easier on Eq. (40 an on Eq. (43) because
\glon since @, is
11 of H_, in the special

ing ¢, the connection

of the known behavior of the sine function at each of its zeroes.

regular in ¢, the calculation will provide the analytic decom
case [ € %Z. Letting ¢ be replaced by ¢ + ¢ for ¢ € %Z withsani

formula (40) becomes

N C e ) A 1
B = G T+ ) mae Moy yal Vielz, (46)

—~—

In this limit, the square brackets in Eq. (46) can re‘l-aed to derivatives with respect to ¢
_ ! -
by I’'Hospital’s rule, as done in Ref. 34. In%wing, these derivatives will be denoted

by the dot notation for convenience*

/

/

. 0D,
Ny ST
and similarly for wz} and ot GFW of £. Therefore, the subtraction in Eq. (46) is
expanded at first order in ¢ as \

(47)

Remarkably, th W o0 0 Eq. (48) are closely related to another well-known function
f cha

in the frame or ged particle scattering, 4 16-20:212930 namely the h function defined

K/ hjz _ 211;:,; vl +1+ 17])2—|— (=0 +1in) ~ In(in) (19)

;the digamma function defined as 1(z) = I"(z)/I'(z).%® The result (49) directly
follows Ff))m the definition (25).

xfﬂe unctions hrﬁ are more commonly defined as independent from ¢, i.e., removing ¢
imJq. (49). The dependence in ¢ is generally separated from hfg by means of the recur-
rence formula of the digamma function. Although that separation is widely encountered

14-16,21,25

in the literature, it does not lead to any subsequent simplifications in the resulting

connection formulas. This is why we prefer the definition (49) as in Refs. 8,10,29.

16
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0° 90° 180°
phase

Im(ak)

-90°

—-180°

05 0 05 1-05 0 054 4-=05 0 05 1
Re(ak) Re(ak) - Re(ak)

FIG. 4. (Color online) Phase plots®® of the @&hﬁ and gy in the complex plane of ak for
¢ = 0. The functions h;&, and h,, are showm and (b) respectively, and g,¢ in (c). Every

branch cut has been turned towardxhe egative real axis by continuation of the logarithm. The
a

functions are slowly varying at Re( \ ar the Coulomb poles, hence the uniform color.

N

At this point, it is important tosgote that the functions hfé are singular in the complex

plane of the wave num contyary to the Coulomb function ®,,. They exhibit the Coulomb

poles accumulatiﬁ 0 @e 0

Q‘ 4’(&) and 4(b). These functions hffé play an important role in the
ti

igin in addition to a logarithmic branch cut from ak = 0 to

infinity, as show

theory of the 21,25

ﬂ’E) ve-range function in charged particle scattering #1316

Using the reflection formula (29) and the functions hffg from Eq. (49), the result (48)
reduces at 's,t order in € to
ﬁ
W, Bire — By ooy = [y + By_py + 2wngh,§q>ng] +0O(). (50)

ﬁ
(@gnaﬂ simplifications come from the remaining normalization factor in Eq. (46).
D)

q. (30), it can be expressed as

(2p)(=1)* _ 0 —1 Cyl'(20+2) (51)
Col(204+2)  Twy (2n)t+t
The idea behind this expression is the appearance of the coefficient between F,, and ®,, in

Eq. (19). Therefore, from Eqgs. (46), (50), and (51), the irregular Coulomb functions H;'z

17
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Publishieegh be rewritten

e+l — 1 ¢, (20 + 2) {w,ﬂ
2

1.
P hE Pl - 52
T Wy (2n)+1 9 n,—t—1 1+ Wyehy, } (52)

Since the derivatives <i>777g and (137,,_[_1 are the only functions linea? independent from ®,,

in Eq. (52), it is useful to define another irregular solution of the
V..
Wy

War(p) = 2y ) + 501 (0) WY \ (53)

The function W,, has the noticeable property of being h Qr.p\c in the complex plane of
the wave number k or the energy e, especially in theQifi od of € = 01%20 Tt is worth

noting that W,, is solely defined for integer or

odinger equation (1)

¢, and has no generalization

to complex-valued ¢. Indeed, the function W t’)(pected to satisfy the Schrodinger

equation (1) for £ € C\ 3Z.
The relation (53) can be looked upon Nxeuerahzation to the Coulomb functions of

the connection formulas between Bessel fmctions: In fact, using Egs. (18), (53), and 10.27.5
of Ref. 18, one immediately gets the \)'D{ ehavior:

W %1(2‘%) +0O(e) ase—0, (54)

where 2 = \/2r/a and ("h%the modified Bessel function of the second kind. It should

be noted that the irr gula Coulomb functions H + and G qe also tend to be proportional to

20 Kopi1(22) as ?cause the functions h; 2 in Eq. (52) are asymptotic to zero as
=) However hml only holds for € > 0, since h , display an essential singularity at
e =0, as sh 1

n

anceof derivatives with respect to ¢ in Eq. (53) is specific to the Coulomb
potentials he Coulomb interaction vanishes (n = 0), F,, and G, reduce to spherical
Bessel nct1 ns. In this special case, these functions are directly related to each other by

ﬁ
tranﬁormamon ¢ — —( — 1 without derivative with respect to ¢:'%

lY\ Goulp) = (=1)'For1(p) VIEL. (55)

On the basis of ¥,,, one defines a last irregular Coulomb function I,; similarly to Eq. (19):

Lu(p) = %wp) . (56)

18


http://dx.doi.org/10.1063/1.5054368

! I P | This manuscript was accepted by J. Math. Phys. Click here to see the version of record. |

Publishiﬁgis function is real for p > 0 and satisfies the Schrodinger equation (l) The function I, is
the same as in Ref. 29, and has the advantage of being on an equal footing with £}, regarding
the k dependence. Indeed, both F,, and I, behave as C’ngk”l in the neighborhood of k = 0.
Therefore, they are not holomorphic in k& or €. In this regard, the newly introduced functions
®,, and ¥,, form a couple of independent solutions that are holo‘p(orphic in k£ and €. The
Wronskian with respect to the radial coordinate 2r/a reads 3

Worja[Wye, ] =1 for a™" # b\ (57)

where W, [f, g] = f0,9 — g0, f. This result also confirms that/W;is holomorphic in k and e.
-~
At last, using Eq. (52) and the relations (19) and {(56), ose btains the result®®

N 6271'(77+M) -1 1 C 2 .
Hir) = | i Ay )| vee sz, (58)
A

Interestingly, the result (58) explicitly proﬁﬂ analytic structure of the standard ir-
regular Coulomb functions in the complex lanie: Indeed, except from the normalization
coefficient C, of F; and I, all the S'HN of H 2@ in k are gathered in the p-independent
functions ", (w,,) ", and h@. &:\

Furthermore, the irregular Cm nction G,y exhibits a similar decomposition to
Eq. (58). The definition (14) %@ds to the appearance of the function!*1%-2%:21

» C+1+in) +9(0+1—i

that is real for ? . KS s}rown in Fig. 4(c), the function g,, displays the Coulomb poles
from both h, a d\b,\im ddition to the logarithmic branch cut. In Eq. (59), the branch

cuts of hffe @t\ej on the imaginary axis of ak due to the principal value of the complex
— hav

logarith een turned towards the negative real axis. The functions hfé and g,
also sdtisty t flection formulas
o hi_g_l = hif and g, _¢-1 =gy VeC. (60)

-St%m ing from Eq. (27), these properties are useful in calculations involving the transfor-

tion £ s —0 — 1.

inally, the analytic decomposition of G, reads

e27r(77+i€) -1 1

Ghe(p) = — 7 lw. ne(p) + gueFue(p) | VL € 5Z]. (61)
n
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AllP

Publishiﬁgis last expression has important consequences in the effective-range theory of charged
particle scattering.??

The decomposition (61) remains valid for complex valued 1 and p except on the branch
cut discontinuities of Fy, I, and g,. Furthermore, Eq. (61) allows us to determine the
analytic continuation of the function G, in the complex plane of4he wave number k& and
then of p. Since the function g,, shown in Eq. (59) is proportio In'py it is defined up to
a multiple of 27i. As a consequence of Eq. (61), the transfo ma L‘ﬁ p— pe™ for { € %Z

leads to the novel continuation:

Ge(pe®™™) = ™ [Ge(p) + 2in (e (s 1) VneZ. (62)

5

-,

Therefore, the corresponding multifunction Gn( given

')

Ge(p) = {£Gulp) * 2in (") L-}) Fyu(p), n€Z} . (63)

Both upper and lower signs in Eq. 6 }K e included due to the two sheets of the

normalization factor C, in Ing and

The connection formula ( modlﬁed Coulomb functions ®,, and ¥,, can
be used to relate the standar fun s H and G, between them. For this purpose,
one has to calculate the derlvat e and <I>77 _¢—1 in the right hand side of Eq. (53). We

have shown using relati that <I),]g can be written as

y (2,’7)8+1 .
/’7 CpeD(20 +2) [F’?

The function (%e{from the logarithmic derivative with respect to ¢ of the coefficient

/ 0 gnZFnZi| . (64)

in front of ghewggfiare brackets. The function @, ,_; can be obtained from Eq. (64) using
the refle on/form as (34), (36) and (60)

lenﬂ 2041 7 1
%n 1 = ZF(% 9 [sgn(Re > E, 1 — gnang] L{ASEV/S (65)
"

After so e simplifications, the modified Coulomb function I, from Eq. (56) reads

NI

The irregular Coulomb functions H, nig directly follow from the connection formula (58)

’LUng

Iy =— 5

[Fnz +sgn(Ren)* ) o — 2977an4 : (66)

H, =

e 2w E

627'((77"'%) —1 . PYIREE . 1
C—— [F+ sen(Ren)* ™y | £iFy Ve Lz, (67)
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Publishifig zet the last term in Eq. (67) out of the square brackets, we have used the property
im

+ _
hop = Gne e2r(ntit) _ |

Vielz. (68)

Finally, the Coulomb function G, can be calculated from Eq. (67) by means of the defini-

tion (14)
e2r(n+if) _ 1 .
G = BN a— [Fne +sgn(Ren)* ™ F, . 1(”5& : (69)
This result is consistent with equation (6.3) of Ref. 17. \

It should be noted that the sign appearing in front éf @g 1 can be formally omitted
using the multifunction an, as discussed Sec. III. Hgwever, 1hke F,;, the multifunctions

FM and F77 _¢_1 display infinitely many RlemaEn sheets d }e to the logarithm stemming

ﬁ-njtlon

The connection formula (69) allows us ‘\rnh-ne the action of the transformation

from the derivative of p*™! with respect to £ in t

¢+ —{ — 1 on the irregular Coulomb fun

G- Gulp) VL€ lZ' (70)
This result can also be obtalned 45 ) using the property (35). The similarity of
Eq. (70) with the reﬂectlon for F,; follows from the two-sheeted structure of

Cng in Fmg and Fm_g 1-

V. CONCLUSIONS

4

In this pa; Nnec‘cion formulas between the regular and the irregular Coulomb
functions hav 'Qn established in full generality for either complex or half-integer values of
(. For t pose we have first discussed the symmetry properties of F}; based on those
of th 53‘nﬂue hypergeometrlc function M(a, B, 2), especially under the transformation
14 1 We have shown in Eq. (36) that this transformation leaves F;, unchanged

ept f a sign which can be interpreted as the consequence of the two Riemann sheets in

Kﬁﬁnormahzatlon coefficient ¢, namely £, as explained at the end of subsection IIIB.

A modified Coulomb function ®,, satisfying the Coulomb equation (1) has been intro-

duced at Eq. (17). Being holomorphic in the wave number k, the energy €, and ¢, this func-
tion ®,, is more convenient than F,, to study the analytic properties of Coulomb-related

functions in the complex planes of k or e.
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Publishin g'When coming to the irregular Coulomb functions Hniz and Gy, two different cases have

been considered:

1. On the one hand, when ¢ is not a half-integer, H;—z and G,y are a linear combination

of ®,, and ®, _,_;, as shown in Eq. (40), because of the deﬁ?lion (10) of the Tricomi

function U(a, S, z). 3\

2. On the other hand, the limit ¢ — %Z can be evaluatediyfromy]’Hospital’s rule, hence
the appearance of the derivatives of ®, , and ®, g_I)vith spect to £. The newly
introduced modified Coulomb function W,, contamingsthese derivatives is defined by
Eq. (53). The functions {®,., ¥,,} form a couple of liﬁearly independent solutions to
Eq. (1) for ¢ € 1Z, that are holomorphic i kﬂand.)e.

| -
%d Gy, the connection formulas (58)
11

Concerning the non-holomorphic functio%b\a

and (61)—also obtained in Ref. 29— OK eir singular structures in the complex
R

planes of k and e. Most of these singu are described by the p-independent functions

4,13,16,21,25,29

hffg and g,¢, which play an importg\ro if1 scattering theory of charged particles.

In addition, the connection fopmul ve'led us to the analytic continuation (62) of G, for
{ € 17 as well as the correspondi Itifunction (63).
Finally, we have dir tﬁl\eixted H i@ and G, to the derivatives of I}, with respect to

"
¢ in Eqgs. (67) and onsequence of these relations is Eq. (70), showing that Gy is

N

unchanged unde%he ansﬁﬂrmation {— —f — 1, except for a sign which turns out to be
the same as b twew and F, _o_;.
In the futuwe, ave plan to use the connection formulas to derive novel representations of

H;; and &, based on those of ®,,. In particular, integral representations and expansions in

series@f‘iss élctions, which are useful to describe the low-energy scattering of charged
1

partic )
)
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