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ABSTRACT 

It is estimated that four in five women will give birth while one in eight women will be 

diagnosed with breast cancer at some point in her lifetime. It is also known that pregnancy 

at a young age is associated with a marked decrease in the risk of breast cancer and that 

this protection is different according to breast cancer subtypes. This thesis explores the 

impact of reproductive history on breast cancer biology and provides the molecular 

characterization of breast cancer diagnosed during pregnancy. The last part investigates 

the effect of RANKL inhibition on the biology of breast cancer in young women. 

In the first study, we investigated the impact of parity and age at first pregnancy on the 

clinicopathological features, the genomic and transcriptomic landscape, and the immune 

microenvironment of 313 breast cancers. For the first time, we highlighted a link between 

reproductive history and the genomic landscape of subsequent breast cancer. We 

demonstrated that, independently of clinicopathological features, age at first birth is 

associated with specific genomic alterations that could explain the differences in risk 

reduction associated with pregnancy according to breast cancer subtypes. This study 

represents a first step toward the recognition that reproductive factors matter in order to 

fully understand breast cancer biology and advocates that reproductive history should be 

routinely collected in future studies addressing the biology of breast cancer but also of 

other female cancers. 

The second study is focused on the molecular characterization of breast cancer diagnosed 

during pregnancy (BCP). We conducted a comparative analysis of a unique cohort of 

BCP patients and non-pregnant control patients by integrating gene expression, copy 

number alterations, and whole-genome sequencing data. We showed that BCP has unique 

molecular characteristics including an enrichment of non-silent mutations, a higher 

frequency of mutations in mucin gene family and an enrichment of mismatch repair 

deficiency mutational signature. This provides important insights into the biology of BCP 

and suggests that these features may be implicated in promoting tumor progression during 

pregnancy. In addition, it provides an unprecedented resource for further understanding 

of the biology of breast cancer in young women and how pregnancy could modulate 

tumor biology. 
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In a previous study, the laboratory had reported up-regulation of RANKL in young and 

pregnant breast cancer patients. Therefore, in the last chapter, we investigated the 

biological effect of denosumab, a RANKL inhibitor, in a preoperative study including 27 

young primary breast cancer patients. We demonstrated evidence that denosumab 

induces modulation of the tumor immune microenvironment with an increased level of 

tumor-infiltrating lymphocytes. This effect was likely due to upregulation of 

inflammatory cytokines and depletion of immunosuppressive regulatory T cells within 

the tumor microenvironment. These findings suggest a role for denosumab in reshaping 

the tumor immune microenvironment of breast cancer and that its use in combination 

could improve immunotherapy efficacy.  
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RÉSUMÉ 

On estime que quatre femmes sur cinq donneront un jour naissance tandis qu’une femme 

sur huit sera diagnostiquée d’un cancer du sein au cours de sa vie. Il est également établi 

qu’une grossesse à un jeune âge est le facteur le plus fortement associé à une réduction 

du risque de cancer du sein et que cette protection est différente selon les sous-types. 

Cette thèse explore l'influence de l’histoire génésique sur la biologie du cancer du sein 

ainsi que la caractérisation moléculaire du cancer du sein durant la grossesse. Enfin, le 

troisième volet de cette thèse porte sur l’effet de l’inhibition de RANKL sur la biologie 

du cancer du sein chez les femmes jeunes. 

Dans la première étude, nous avons étudié l’effet de la parité et de l’âge de la première 

grossesse sur les caractéristiques cliniques, le profil génomique et transcriptionnel ainsi 

que le microenvironnement immunitaire de 313 cancers du sein. Pour la première fois, 

nous avons démontré un lien entre l’histoire génésique et le profil génomique du cancer 

du sein. Nous avons ainsi observé qu’indépendamment des caractéristiques cliniques, 

l’âge de la première grossesse est associé à des altérations génomiques spécifiques 

pouvant expliquer les différences de réduction du risque de cancer du sein attribué à la 

parité en fonction du sous-type moléculaire. Cette étude est une première étape dans la 

reconnaissance du fait que les variables gynéco-obstétriques sont essentielles pour mieux 

comprendre la biologie du cancer du sein. Elle recommande également que les 

antécédents gynécologiques et obstétricaux soient collectés dans les futures études visant 

à caractériser la biologie des cancers féminins. 

La seconde étude de cette thèse se concentre sur la caractérisation moléculaire des cancers 

du sein durant la grossesse (CSG). Nous avons mené une analyse comparative de patients 

atteints de CSG et de patients contrôle (atteints de cancers du sein non diagnostiqués 

durant la grossesse) en utilisant les dernières technologies de séquençage d’ADN à haut 

débit et en intégrant leur profil transcriptomique et génomique. Nous avons montré que 

les CSG ont des caractéristiques moléculaires uniques, associées à un enrichissement de 

mutations non-silencieuses, une plus grande fréquence de mutations dans les gènes 

codants pour les mucines et une signature mutationnelle propre à un défaut dans la 

machinerie de réparation de l’ADN. Ces résultats ont mis en évidence de nouveaux 

mécanismes spécifiquement impliqués dans la tumorigenèse des cancers du sein durant 
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la grossesse. De plus, cette étude constitue une nouvelle base de données unique 

permettant une meilleure compréhension de la biologie des cancers du sein chez la femme 

jeune. 

Dans une étude précédente, le laboratoire a mis en évidence que RANKL était surexprimé 

dans les cancers du sein des femmes jeunes et enceintes. C’est pourquoi, nous avons 

étudié l’effet de l’inhibition de RANKL par le denosumab dans une étude préopératoire 

incluant 27 jeunes patientes atteintes d’un cancer du sein primaire. Nous avons mis en 

évidence qu’une exposition au denosumab induit une modulation du 

microenvironnement immunitaire accompagnée d’une augmentation de l’infiltration 

lymphocytaire tumorale. L’étude du microenvironnement de ces tumeurs a montré que 

cet effet est probablement dû à une régulation positive de certaines cytokines 

inflammatoires ainsi qu’une déplétion de lymphocytes T régulateurs immunosuppressifs. 

Ces résultats suggèrent que le denosumab joue un rôle dans le remodelage du 

microenvironnement immunitaire du cancer du sein et que son utilisation combinée à 

l’immunothérapie pourrait améliorer l'efficacité de ces traitements. 
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INTRODUCTION 

1 Introduction and rationale 
Breast cancer (BC) is the most frequently diagnosed cancer and the second leading cause 

of cancer death among women worldwide. In 2018, it is estimated that 266,120 women 

will be diagnosed with BC and 40,920 women will die from this disease in the US alone 

(Siegel et al., 2018). However, from 1989 to 2015, overall BC death rates have dropped 

by 39 percent (Siegel et al., 2018). The decline in BC mortality has been attributed to 

improvements in treatment (e.g., adjuvant chemotherapy and hormonal therapy in the 

1980s, targeted therapy in the 1990s) and early detection by mammography.  

Invasive breast cancer is a heterogeneous disease with distinct subtypes, defined mainly 

by the expression of hormone receptors (HR) and human epidermal growth factor 

receptor 2 (HER2) (i.e., HR-positive, HER2-positive and triple-negative subtypes) 

assessed by immunohistochemistry (IHC) and fluorescence or dual in situ hybridization 

in routine clinical practice. HR-positive/HER2-negative subtype can be further sub-

classified into luminal A and luminal B based on PAM50 classifier, histological grade 

and proliferation markers such as Ki-67. These subtypes differ in their biology, 

prognosis, treatment strategies and pattern of metastasis. 

Several international consensus guidelines have been published on the clinical 

management of early primary breast cancer (Coates et al., 2015; Senkus et al., 2015), 

advanced breast cancer (Cardoso et al., 2017), breast cancer in young women (Paluch-

Shimon et al., 2017) and breast cancer during pregnancy (Loibl et al., 2015; Peccatori et 

al., 2013). Of note, the clinical management of breast cancer diagnosed during pregnancy 

is further detailed in section 5.3. Therapeutic options can be broadly distinguished into 

local therapies, such as surgery and radiation therapy, and systemic therapies, such as 

chemotherapy, hormone therapy, and targeted therapy. Systemic therapies can be used 

before surgery (neoadjuvant setting) to reduce tumor size and allow breast-conserving 

surgery and to assess in vivo sensitivity. Systemic therapies can be used after surgery 

(adjuvant setting), to eliminate micrometastases and reduce risks of recurrence. Prognosis 

and treatment decisions are individualized based on tumor stage, histological grade, HR 

status, and HER2 status. HR-positive BC patients benefit from endocrine therapy, and 
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HER2-positive BC patients benefit from targeted therapies such as trastuzumab and more 

recently pertuzumab and neratinib. Currently, the only systemic option for triple-negative 

subtypes remains chemotherapy (Figure 0.1). We refer the reader to the above-mentioned 

clinical guidelines for a detailed review of the current management of breast cancer. 

 

Figure 0.1 – The four molecular subtypes of breast cancer 

Breast tumors are classified into four molecular subtypes according to the expression of several receptors. 
This molecular classification is critical in clinical decision-making and therapeutic approaches. 
Abbreviations: ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor 
receptor 2. Figure adapted from http://www.pathophys.org/breast-cancer/.  

A woman's risk of breast cancer is due to a combination of factors. Women’s age is the 

main non-modifiable factor influencing breast cancer risk and explains why most breast 

cancers are found in women age 55 and older. In contrary, pregnancy is the most 

important modifiable factor influencing breast cancer risk, with late or no pregnancy 

associated with increased risk of breast cancer.  

In this thesis, we will present three studies. First, we will explore the complex relationship 

between reproductive history and breast cancer biology in a reanalysis of a publicly 

available dataset of 560 breast cancer. Next, we will present the first and unique study 

aiming to uncover the genomic alterations associated with breast cancer diagnosed during 

pregnancy. Finally, we will investigate the effect of RANKL inhibition on the biology of 

breast cancer in young women.  
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2 The role of omics technologies in reshaping our 
understanding of breast cancer biology 

Scientific research and technological advances have always been tightly linked. In this 

section, we will cover the tools that have facilitated our understanding of breast cancer 

biology. Since the apparition of microarrays that allowed the evaluation of the expression 

of thousands of genes simultaneously to the high-throughput whole genome sequencing, 

the technological advances that have been made in the “omics” field have greatly 

improved our understanding of breast cancer biology. 

2.1 Transcriptomic profiling of breast cancer and its clinical utility 

Gene expression profiling of breast cancer with DNA microarray, measuring thousands 

of transcripts simultaneously, have confirmed the existence of interpatient heterogeneity. 

Breast cancer is now seen as a group of molecularly distinct subtypes. The “intrinsic” 

molecular classification based on unsupervised hierarchical clustering of gene expression 

profiles proposes four distinct subtypes (Perou et al., 2000; Sorlie et al., 2001; Sotiriou 

et al., 2003):  

(1) Luminal-A, which are mostly HR-positive and histologically low-grade/low 

proliferative 

(2) Luminal-B, which are mostly HR-positive but may express low levels of hormone 

receptors and are often high-grade/high proliferative 

(3) HER2-enriched, which show amplification and high expression of HER2  

(4) Basal-like, which mostly correspond to HR-negative and HER2-negative tumors 

(“triple-negative breast cancer”, TNBC) 

These subgroups correspond well to pathological classification by HR and HER2 status, 

as well as on proliferation markers and histologic grade. Besides, this classification is 

associated with clinical outcome. The Basal-like and HER2-enriched subtypes are 

associated with the worse survival whereas the Luminal-A is associated with the best 

survival. Finally, the Luminal-B is associated with worse survival than Luminal-A but a 

better survival than the Basal-like and HER2-enriched (Figure 0.2). 
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Figure 0.2 – Relapse-free survival of breast cancer patients according to intrinsic molecular 
classification  

Outcome predictions according to intrinsic BC subtypes (PAM50) in a set of 710 node-negative, non-
adjuvant treated patients. Reprinted from (Parker et al., 2009). 

Gene expression profiling has led to the development of several diagnostic tests useful 

for clinical decision making. Supervised analyses have led to the development of gene 

expression signatures designed to predict survival and/or treatment response (Prat et al., 

2012; Sotiriou and Pusztai, 2009). Several methods such as PAM50 (Parker et al., 2009), 

MammaPrint (van ’t Veer et al., 2002), OncoType DX (Paik et al., 2004), Genomic Grade 

Index (Sotiriou et al., 2006) and others (Ma et al., 2008), have been shown to add 

prognostic and predictive information to standard clinicopathological features. The 

clinical utility of these assays was recently confirmed in large prospective trials (Cardoso 

et al., 2016; Sparano et al., 2015, 2018). 

2.2 The genomic revolution in breast cancer 

The technological advances, coupled with the shrinking cost of high-throughput 

sequencing, characterize the genomic revolution. In breast cancer research, this adventure 

started in 2009 when Shah et al. used whole-genome sequencing (WGS) to reveal the 

presence of heterogeneity between the mutational landscape of primary and metastasis 

pairs from a single patient (Shah et al., 2009). Ding et al. confirmed a year later the 

substantial heterogeneity in the distribution of single nucleotide variants (SNVs) and 

structural variants between metastasis and primary (Ding et al., 2010). In 2012 alone, 

seven back-to-back studies reported the genomic landscape of breast cancer and the 
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catalogue of driver mutations (Banerji et al., 2012; Curtis et al., 2012; Ellis et al., 2012; 

Nik-Zainal et al., 2012a; Shah et al., 2012; Stephens et al., 2012; TCGA, 2012). Among 

these, a landmark study from The Cancer Genome Atlas (TCGA) including 825 patients, 

provided the foundation of breast cancer genomics by integrating multiple data at the 

DNA (genome and epigenome), RNA and protein levels (TCGA, 2012). This study 

revealed that the four intrinsic breast cancer subtypes are associated with distinct genomic 

features. For example, mutations in PIK3CA, GATA3, and MAP3K1 are associated with 

the luminal-A subtype whereas TP53 mutation is present in the vast majority of the basal-

like subtype. This publicly available dataset is an important resource for our 

understanding of the disease and is extremely useful in providing a comprehensive 

overview of breast cancer biology. The same year, Curtis et al. investigated a set of more 

than 2,000 breast tumors with long-term survival data (from the Molecular Taxonomy of 

Breast Cancer International Consortium (METABRIC)) for somatic copy number 

alterations (SCNAs), single nucleotide variants and gene expression. The joint analysis 

of gene expression and SCNAs revealed that SCNAs are the dominant feature affecting 

the breast cancer transcriptome and further refined the molecular stratification of breast 

tumors (Curtis et al., 2012). This genome-driven classification identified ten subtypes, 

termed integrative clusters (IntClust), characterized by distinct genomic drivers, pattern 

of survival, and response to neoadjuvant chemotherapy demonstrating potential clinical 

utility (Ali et al., 2014a; Dawson et al., 2013). 

These studies were not only done to provide a comprehensive catalogue of driver 

mutations. For example, sequencing of samples accrued from neoadjuvant aromatase 

inhibitor clinical trials led to the identification of mechanisms underlying aromatase 

inhibitor resistance (Ellis et al., 2012). Additionally, these studies brought to our attention 

the thousands of passenger mutations buried in the cancer genome and the recognition 

that these passenger mutations were not completely random. In 2012, Nik-Zainal et al. 

presented the concept of mutational signature in a study of 21 whole breast cancer 

genomes (Nik-Zainal et al., 2012b). Passenger mutations are the result of both DNA 

damage and DNA repair mechanisms that have occurred during the course of cancer and 

leave a characteristic imprint, or mutational signature, on the cancer genome. Each 

substitution can be classified by taking into account the sequence context immediately 5’ 

and 3’ to each mutated base. As there are six classes of base substitution and 16 possible 

sequence contexts for each mutated base (A, C, G, or T at the 5’ base and A, C, G, or T 
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at the 3’ base), there are 96 possible mutated trinucleotides for each tumor. A 

mathematical approach, called non-negative matrix factorization (NMF), was used to 

extract the first five substitution signatures identified in breast cancer (Nik-Zainal et al., 

2012b). Following this discovery, a pan-cancer analysis was conducted in which this 

approach was applied across 30 cancer types and revealed the existence of 21 distinct 

substitution signatures (http://cancer.sanger.ac.uk/cosmic/signatures) (Alexandrov et al., 

2013). More recently, the same group identified twelve base substitution signatures in the 

largest breast cancer genomic dataset published so far, comprising 560 whole breast 

cancer genomes (Nik-Zainal et al., 2016). Of these twelve substitution signatures 

documented in breast cancer, signatures 1 and 5 are associated with age of diagnosis; 

signatures 2 and 13 are associated with the activity of the APOBEC cytidine deaminases; 

signatures 3 and 8 are associated with BRCA1/BRCA2 deficiency; signatures 6, 20, and 

26 are associated with DNA mismatch repair deficiency; and signatures 17, 18, and 30 

are still of unknown etiology (Nik-Zainal et al., 2016). In the first chapter, we will mine 

this publicly available dataset to explore the relationship between reproductive history 

and breast cancer biology. 

We have summarized important studies on breast cancer genomics and their main 

findings in Table 0.1. Most of these studies were performed using common breast 

cancers. However, the genome of less common cancers, such as special histological 

subtypes, metastatic, male or diagnosed during pregnancy, might be distinct from the 

general breast cancer population and further effort in these groups are warranted.  
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Table 0.1 – Studies associated with the genomic revolution in breast cancer 

Study 
BC subtypes 
and number of 
patients 

Technology and 
number of patients Main findings 

(Shah et al., 2009) ILC, ER+ WGS (1) - Substantial SNVs heterogeneity between 
metastasis and primary 

(Ding et al., 2010) TNBC only WGS (1) 
- Substantial heterogeneity in SNVs and 
structural variation between metastasis and 
primary 

(Nik-Zainal et al., 
2012b, 2012a) 

ER+ (9) 
TNBC (8) 
HER2 (4) 

WGS (21) 

- First catalogue of somatic mutations from 
breast cancer genomes 
- First identification of substitution signatures 
using NMF 

(Ellis et al., 2012) ER+ only (77) WGS (46) 
WES (31) 

- Mutational landscape of luminal BC 
- Identification of mechanisms underlying 
aromatase inhibitor resistance  

(Shah et al., 2012) TNBC only (104) 

Affymetrix SNP6.0 (106) 
RNA-seq (80) 
WES (54) 
WGS (15) 

- Interpatient heterogeneity within TNBC and 
difference in clonally  

(Banerji et al., 
2012) 

All major 
subtypes (108) 

WEG (86) 
WGS (22) 

- Identification of new recurrent mutations 
and fusion genes 

(Stephens et al., 
2012) 

ER + (79) 
ER – (21) WEG (100) - Identification of new mutations in breast 

cancer driver genes 

(TCGA, 2012) All major 
subtypes (825) 

WEG (507) 
DNA methylation (802) 
SNP arrays (773) 
mRNA microarrays (547) 
miRNA sequencing (697) 
RPPA (403) 

- Seminal study integrating multiple data at 
the DNA (genome and epigenome), RNA and 
protein levels 
- The four main breast cancer subtypes are 
associated with distinct genomic features 

(Curtis et al., 
2012) 
(METABRIC) 

All major 
subtypes 
(2000+) 

Affymetrix SNP 6.0 
(2000+) 
Microarray Illumina HT-
12 v3 (2000+) 

- Largest population-based study on breast 
cancer genomic architecture 
- Breast cancer is mainly driven by SCNAs 
- Identification of 10 new integrative 
subgroups based on SCNAs and its relation 
to gene expression 
  

(Ciriello et al., 
2015) 

IDC (490) 
ILC (127) 
Mixed (88) 

WEG (507) 
 

- First molecular portraits of invasive lobular 
breast cancer 
- Invasive lobular carcinoma (ILC) is a 
clinically and molecularly distinct disease 
- ILCs show CDH1 and PTEN loss, AKT 
activation, and mutations in TBX3 and FOXA1 

(Desmedt et al., 
2016) 

ILC of all major 
subtypes (630) 

Targeted sequencing of 
360 genes (630)  

- Confirmation of the high mutation frequency 
of CDH1  
- Identification of high-prevalence therapeutic 
targets HER2, HER3, AKT1 
- Identification of distinct genomic alterations 
according to ILC histologic subtypes 

(Pereira et al., 
2016) 
(METABRIC) 

All major 
subtypes 
(2000+) 

Targeted sequencing of 
170 genes (2433) 

- Extension of the first METABRIC study 
- Associations between PIK3CA mutations 
and reduced survival are identified in three 
subgroups of ER-positive cancer  
- Intra-tumour heterogeneity is generally 
associated with worse outcome 

(Davies et al., 
2017a; Morganella 
et al., 2016; Nik-
Zainal et al., 2016) 

All major 
subtypes (560) 

WGS (560) 
RNA-seq (260) 
DNA methylation  
miRNA 

- Identification of 12 base substitution 
signatures in breast cancer, 2 
insertion/deletion (indel) and 6 rearrangement 
signatures  
- Catalogue of 93 breast cancer driver genes 
- Development of HRDetect, a method for 
identifying BRCAness  
- Systematic characterization of mutational 
signatures revealed an association with 
APOBEC mutagenesis, DNA repair deficiency 

Abbreviations: ILC, invasive lobular carcinoma; ER, estrogen receptor; WGS, whole genome sequencing; 
NMF, non-negative matrix factorization; SNVs, single nucleotide variants; SCNAs, somatic copy number 
alterations; WEG, whole exome sequencing; IDC, invasive ductal carcinoma; TNBC, triple-negative 
breast cancer. 
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3 Beyond the cancer genome and the importance of 
the immune microenvironment of breast cancer 

In 2011, Hanahan and Weinberg updated their six well-established hallmarks of cancer 

by adding two emerging hallmarks which are "deregulating cellular energetics" and 

"avoiding immune destruction" (Hanahan and Weinberg, 2011).  

It has been observed that some tumors rewire their metabolism to promote growth, 

survival, proliferation, and long-term maintenance. The common feature of this 

metabolic switch is increased glucose uptake and fermentation of glucose to lactate. 

However, the function of this phenomenon, known as the Warburg Effect, remains 

unclear (Liberti and Locasale, 2016). 

The concept of immune surveillance of tumors proposes that cells and tissues are 

constantly monitored by the immune system. This surveillance is responsible for the 

primary defense against cancer to identify and eliminate nascent tumor cells. According 

to this logic, solid tumors that do appear have somehow managed to escape immune 

surveillance. It is hypothesized that this occurs after an intermediate phase, known as 

immunoediting, in which there is a selection of non-immunogenic tumor cell (Zitvogel 

et al., 2006) (Figure 0.3).  

 

Figure 0.3 – The concept of immune surveillance 

This figure illustrates the concept of immune surveillance in solid tumors. Tumorigenesis results from 
crosstalk between cancer cell-intrinsic effects and host immune system (cell-extrinsic) effects. Reprinted 
from (Zitvogel et al., 2006). 
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Compared to other cancers, breast cancer has not been traditionally considered as a highly 

immunogenic tumor. However, since 2010, a series of studies have evaluated the 

presence of tumor-infiltrating lymphocytes (TILs) in numerous breast cancer clinical 

trials, revealing the prognostic and predictive value of TILs as a biomarker (Denkert et 

al., 2010; Loi et al., 2013, 2014; Mahmoud et al., 2011). TILs are mononuclear immune 

cells that infiltrate tumor tissue and are commonly evaluated in hematoxylin and eosin 

(HE) stained histological slides through light microscopy. As with any biomarker, the 

utility of TILs assessment relies on the development of a standardized and reproducible 

scoring methodology. That is why, Salgado, R. et al. have published the international 

guidelines for the evaluation of TILs in breast cancer (Salgado et al., 2015). Savas et al., 

have reviewed the clinical relevance of host antitumor immunity and the role of TILs in 

breast cancer (Savas et al., 2016). Numerous studies have found that a greater number of 

TILs in the tumor stroma is associated with a better prognosis in patients with TNBC and 

HER2-positive BC (Adams et al., 2014; Ali et al., 2014b; Loi et al., 2013, 2014; Luen et 

al., 2017). A higher level of TILs is associated with response to therapy and predicts 

survival in patients treated with anthracycline-based chemotherapy and trastuzumab (Loi 

et al., 2014) and a potential benefit to immune checkpoint inhibitor (Loi et al., 2018). 

Not all breast cancers have a high presence of TILs, and this depends greatly on BC 

subtypes. The current key question is to determine how to induce TILs infiltration, for 

example in luminal breast cancer, in which TILs levels were reported to be low. Some 

evidence regarding this question will be presented in chapter 3 of this work.  
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4 The link between reproductive history and breast 
cancer 

As previously mentioned, a woman’s reproductive history is the most important 

modifiable factor influencing her risk of breast cancer. In the following section, we will 

review the current evidence on the impact of parity and age at first birth on breast cancer 

risk and prognosis. Next, we will discuss current data underlying the biological 

mechanisms putatively associated with pregnancy-induced breast cancer protection. This 

relates particularly to the first chapter of this thesis. 

4.1 The impact of parity and age at first birth on breast cancer risk 

The effect of parity and age at first birth on the risk of developing breast cancer has been 

well documented in several epidemiological studies (Kroman et al., 1997a; MacMahon 

et al., 1970; Papatestas et al., 1980; Rosenberg et al., 2004; Trichopoulos et al., 1983). 

Parity is known to have a dual effect on breast cancer risk with an increased risk from 5 

to 10 years after pregnancy followed by a strong and life-long protective effect 

(Albrektsen et al., 2005; MacMahon et al., 1970). This protective effect is strongly 

influenced by age at first birth as pregnancy-induced tumor protection is more 

pronounced if the first birth has occurred early in life. For example, women having a first 

birth before 20 years are associated with a 50 percent decreased risk of breast cancer 

compared to nulliparous. On the contrary, women having a first birth after 35 years do 

not benefit from the pregnancy-induced protection and are even associated with an 

increased risk of BC compared to nulliparous (Figure 0.4). We and others have 

documented that pregnancy-induced tumor protection is different according to breast 

cancer subtypes with parity and young age at first birth been associated with a marked 

reduction in the risk of developing HR-positive BC subtype (Ellingjord-Dale et al., 2017; 

Lambertini et al., 2016; Ritte et al., 2013; Yang et al., 2011). Of note, breastfeeding and 

multiple pregnancies also decrease breast cancer risk. Longer time of breastfeeding (at 

least one year) is associated with a lower breast cancer incidence, and each additional 

birth increases protection (Collaborative Group on Hormonal Factors in Breast Cancer, 

2002; Faupel-Badger et al., 2013; Islami et al., 2015). 
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Figure 0.4 – Effect of pregnancy and age at first birth on the risk of breast cancer 

This figure highlights lifetime risk of breast cancer according to age at first birth (colored lines) compared 
to nulliparous (straight grey line). This demonstrates that: (1) early pregnancy decreases breast cancer 
risk in the long term; (2) if the first pregnancy has occurred earlier, the breast cancer protective effect of 
pregnancy is greater; (3) pregnancy leads to a transient increase in breast cancer risk following 
parturition; and (4) pregnancy-associated increase in breast cancer risk becomes more pronounced with 
increasing age at first pregnancy. Reprinted from (Meier-Abt and Bentires-Alj, 2014). 

4.2 The impact of parity and age at first birth on breast cancer 
prognosis 

The impact of parity and age at first birth on the prognosis of BC remains unclear. Some 

reports claim no association between parity and prognosis (Bladström et al., 2003; 

Kroman et al., 1997b; Rosenberg et al., 2004), others claim that parity is associated with 

a poorer prognosis (Alsaker et al., 2013; Halmin et al., 2008; Phillips et al., 2004). These 

discrepancies may be attributed to different distributions of potential confounders such 

as race, menopausal status and intrinsic subtypes across study populations. 

In contrast, breast cancer diagnosed shortly after pregnancy has been associated with 

poorer prognosis across multiple studies (Barnett et al., 2008; Nagatsuma et al., 2013; 

Rosenberg et al., 2004; Sun et al., 2016). Schedin et al. have published several 

experiments investigating the impact of postpartum mammary changes on breast cancer 

initiation and progression (Schedin, 2006). Right after breastfeeding the fully 

differentiated gland regresses to its pre-pregnant state by an innate tissue-remodeling 

mechanism called involution (Strange et al., 1992). The scale and rapidity of this 

phenomenon is unique to the mammary gland, and shares similarities with inflammation 

and wound healing programs that are known to be pro-tumorigenic. Evidence indicates 

that involution promotes breast cancer progression and metastasis in several animal 
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models (Martinson et al., 2015). Lyons et al. found that the inhibition of the 

proinflammatory Cox-2 by ibuprofen resulted in a reduction in tumor size and metastasis 

in rodent models of postpartum breast cancer (Lyons et al., 2011, 2014). 

4.3 Biological mechanisms underlying pregnancy-induced breast 
cancer protection 

Several hypotheses, relying on both cell autonomous and non-autonomous mechanisms, 

have been proposed to explain the protection against breast cancer conferred by 

pregnancy. Similar to humans, rodents exhibit parity-induced protection against 

mammary tumorigenesis. Thus, most of the studies have been conducted on animal 

models.  

4.3.1 Cell-autonomous mechanisms 

One of the first hypothesis underlying the breast cancer protection associated with an 

early pregnancy argued that the high level of circulating hormones associated with 

pregnancy would induce differentiation of the mammary gland while decreasing the 

tumorigenic potential of breast cells (Russo et al., 1982). Gene expression studies 

comparing nulliparous and parous mammary tissue, from both rat and human, have 

observed upregulation of genes related to cell differentiation in the parous breast (Blakely 

et al., 2006; Russo et al., 2008). According to this theory, a full-term pregnancy early in 

reproductive life would induce a molecular switch in mammary stem cells leading to 

a permanent decrease in their proliferation potential and resistance to oncogenic 

transformation (Medina, 2005; Meier-Abt and Bentires-Alj, 2014). Downregulation of 

the Wnt/Notch signaling, the major pathway that maintains stemness, is thought to be 

one of the pathways responsible for this change in cell fate determination (Meier-Abt et 

al., 2013, 2014, 2015). Several animal studies have also demonstrated a role for p53 in 

linking gestational hormones and the protection against mammary tumor. It has been 

shown that expression of p53 and its downstream transcriptional target p21, were 

increased in parous and estrogen/progesterone-treated mammary epithelium in response 

to carcinogen (Sivaraman et al., 2001). In the absence of p53, the protection given by 

parity or exogenous hormones was lost (Dunphy et al., 2008; Jerry et al., 2000; Medina 

and Kittrell, 2003). 
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A second hypothesis relies on a mechanism in which pregnancy induces a decrease of 

hormone responsiveness within the mammary gland. A study, comparing ER and PR 

staining of normal breast tissue from 26 premenopausal women and 30 pregnant women, 

showed that PR expression was significantly decreased during pregnancy. They also 

compared the level of PR between 16 nulliparous and 10 parous from the premenopausal 

group and found that PR was lower in parous women (Taylor et al., 2009). Consistent 

results were observed in another study comparing normal tissue from 20 nulliparous and 

32 parous women (Asztalos et al., 2010). 

4.3.2 Cell non-autonomous mechanisms 

Persistent changes in circulating hormone levels induced by pregnancy have been 

associated with breast cancer risk reduction. Prolactin, a peptide hormone involved in 

mammary development and lactation, has been associated with an increased risk of breast 

cancer through an increase in cell proliferation and inhibition of apoptosis (Clevenger et 

al., 2003). In a cross-sectional study including 2400 women, it has been proposed that the 

link between parity and breast cancer risk was mediated, at least in part, by a long-lasting 

reduction of serum prolactin levels induced by pregnancy (Eliassen et al., 2007).  

It has also been hypothesized that the pregnancy-induced protection against breast cancer 

could be related to the modification of the extracellular matrix (ECM) composition after 

pregnancy (Polyak, 2006). One study has shown that parity induces change of fibrillar 

collagen organization, in favor of a tumor-suppressive extracellular matrix (Maller et al., 

2013). 

To our knowledge, no studies have explored the link between reproductive history and 

the genomic landscape of breast cancer, a topic that will be covered in the first chapter of 

this thesis. 
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5 Breast cancer diagnosed during pregnancy 
Breast cancer diagnosed during pregnancy (BCP) is a tragic situation that taints one the 

happiest moment of a woman’s life. In the following section, we will summarize several 

aspects of this rare disease such as its epidemiology, prognosis and clinical management. 

We will review the current data on how pregnancy affects breast cancer biology. This 

relates particularly to the second chapter of this work. 

5.1 Epidemiology 

Breast cancer diagnosed during pregnancy is a rare disease with an incidence ranging 

from 2.4 to 7.3 per 100,000 pregnancies in population-based investigations (Andersson 

et al., 2009; Eibye et al., 2013; Lee et al., 2012; Stensheim et al., 2009). During the last 

few decades, the incidence of BCP has increased (Andersson et al., 2009; Eibye et al., 

2013) (Figure 0.5). As breast cancer occurrence increases with age, it is hypothesized 

that this increase is due to the general trend of delaying childbearing since the 1970s in 

developed countries. 

 

Figure 0.5 – Incidence of breast cancer during pregnancy and lactation in the last decades 

Change in the incidence of breast cancer diagnosed during pregnancy and lactation based on data 
extracted from the cancer registry and the medical birth registry of Norway. The figure shows the annual 
incidence of BCP (blue line) for the period 1967-2004, using 5 years moving averages, showed as 
proportions per year per 100,000 pregnancies. For the period 1990-2004, the incidence of BC during 
pregnancy were 4.6/100,000, which is about 1/20,000. Reprinted from (Loibl et al., 2015a). 

5.2 Prognosis 

Given the rarity of BCP, most of the studies have been focused on pregnancy-associated 

breast cancer (PABC) which can be defined as breast cancer diagnosed within one year 
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following pregnancy. So far, two meta-analyses have addressed the prognosis of PABC. 

In 2012, Azim et al. have conducted a meta-analysis on 30 studies comparing the overall 

survival (OS) and the disease-free survival (DFS) of 3,628 patients diagnosed with PABC 

and 37,100 control breast cancer patients (Azim et al., 2012a). Overall, this study reported 

an inferior OS and DFS for women diagnosed with PABC compared with controls 

(pooled HR 1.44, CI 1.27–1.63 and pooled HR 1.60, CI 1.19–2.16, for OS and DFS, 

respectively). More recently, Harman et al. have conducted a meta-analysis including 60 

case-controlled/cohort studies that confirmed the poorer prognosis associated with PABC 

(HR, 1.54; 95% CI, 1.16–2.04 and HR, 1.47; 95% CI, 1.04–2.08 respectively for OS and 

DFS) (Hartman and Eslick, 2016). However, they used a much larger definition of PABC 

that included patients diagnosed up to 5 years postpartum. Of the 60 studies included, 13 

were focused on patients diagnosed during pregnancy and included 906 BCP cases. There 

was an increased risk of death for patients diagnosed during pregnancy compared to non-

pregnant control (pooled HR 1.47, 95% CI 1.04–2.08). The unique biological 

characteristics of breast cancer during pregnancy, as well as the delay in diagnosis with 

a more advanced stage at presentation, may represent possible explanations for these 

findings. These conclusions should be nuanced as the largest international study, in terms 

of the number of BCP (311 eligible cases), showed similar prognosis between 

BCP compared with non-pregnant patients (HR, 1.19; 95% CI, 0.73–1.93 and HR, 1.34; 

95% CI, 0.93–1.91, respectively for OS and DFS) (Amant et al., 2013). This highlights 

the importance of careful management of this challenging situation in accordance with 

the available international guidelines. 

5.3  Clinical management 

International guidelines on the clinical management of BCP have been extensively 

reviewed by Loibl et al. and Peccatori et al. (Loibl et al., 2015b; Peccatori et al., 2013). 

General recommendations indicate that BCP should be treated as similar to young non-

pregnant breast cancer patients with adaptations according to gestational age and the use 

of some treatments (Figure 0.6). These patients require adequate expertise and should be 

preferably managed in a comprehensive cancer center involving a specialized 

multidisciplinary team. 

Surgery can be safely performed during all trimesters of pregnancy with similar 

indications for radical or conservative surgery (Toesca et al., 2014). If breast-conserving 
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surgery is not a reasonable option, breast reconstruction is an essential component of the 

clinical management of breast cancer patients. Of note, one study showed that immediate 

breast reconstruction after mastectomy does not seem to be associated with considerable 

morbidity to the patient or the fetus (Lohsiriwat et al., 2013). 

Sentinel lymph node biopsy involving the injection of Technetium, a relatively low 

radioactive tracer with fast clearance, appears to be safe for the fetus and should not be 

discouraged (Gentilini et al., 2004, 2010).  

Radiation therapy (RT) has teratogenic and carcinogenic effects and, if possible, should 

be postponed until after the delivery. However, if RT is done during the first half of 

gestation, the uterus is still contained in the true pelvis and the fetus would be exposed to 

a relatively low radiation dose (Van der Giessen, 1997). Hence, if the risk of delaying RT 

is too high for the patient, RT combined with appropriate abdominal shielding might be 

considered in the first trimester (Kal and Struikmans, 2005). 

Chemotherapy is contraindicated during the first trimester due to the high risk of 

congenital malformations (National Toxicology Program, 2013). However, the 

prevalence of malformations in women treated with chemotherapy after the first trimester 

is comparable to the general population. The standard combination of anthracyclines, 

cyclophosphamide, and taxanes recommended in non-pregnant breast cancer patients is 

safe after the first trimester in BCP patients either in the adjuvant or neoadjuvant setting 

(Cardonick et al., 2012; Zagouri et al., 2013). 

Endocrine therapy and anti-HER2 treatments should be avoided during pregnancy and 

postponed after delivery (Loibl et al., 2015b; Peccatori et al., 2013). Tamoxifen use in 

pregnant patients has been associated with fetal malformation such as ambiguous 

genitalia and craniofacial malformations. Trastuzumab use during pregnancy has been 

associated with increased risk of oligohydramnios with a subsequent predisposition to 

preterm labor, fetal morbidity, and mortality (Lambertini et al., 2015). 

Finally, iatrogenic preterm delivery should be avoided at all times. Amant and al. have 

shown that compared to the use of chemotherapy during pregnancy, prematurity alone is 

associated with worse cognitive outcome for the newborn (Amant et al., 2015). 
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Figure 0.6 – Therapeutic options for breast cancer according to the gestational period  

The timeline summarizes the therapeutic options for breast cancer during pregnancy. Surgery and sentinel 
lymph node biopsy are considered safe throughout all trimester of pregnancy. Chemotherapy can be used 
after the first trimester. If indicated, radiotherapy can be applied from the first until early second trimester. 
Reprinted from (Loibl et al., 2015a). 

5.4  Biology of BCP 

To understand the biology of BCP one has to understand the physiology of pregnancy. 

Indeed, the considerable biological changes that occur during pregnancy both at the 

systemic level and within the mammary gland might influence the biology of breast 

cancer. For example, the increased levels of gestational hormones, the morphological 

changes, and the immunosuppressive state associated with pregnancy could influence and 

even promote BCP. That is why one of the main research themes of the J.-C. Heuson 

Breast Cancer Translational Laboratory (BCTL) is to understand the effect of pregnancy 

on breast cancer biology. 

BCTL research project lead by Azim et al. reported the first study on the distribution of 

breast cancer subtypes in a case-control study. There was no difference in the distribution 

of the four main subtypes as assessed by IHC between BCP and control (luminal-A, 

luminal-B, HER2, TNBC) (Azim et al., 2012b). In a subsequent study, the same 

investigators performed gene expression profiling to assess the intrinsic molecular 

subtypes with the PAM50 classifier and did not find any difference as well (Azim et al., 

2014). However, they found that pregnancy impacted the breast cancer transcriptome 

with enrichment of G protein-coupled receptor pathway and the serotonin receptor 

pathway. In a first attempt of reporting the pattern of selected mutations they performed 
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genotyping of 84 hotspot SNVs, but this analysis revealed no difference between 

pregnant and non-pregnant patients. 

RANKL, a protein that appears to play a key role in breast carcinogenesis in young 

women (see section 6.2), has been shown to be more expressed in BCP than control non-

pregnant young BC patients (Azim et al., 2015a). Finally, focusing on the tumor immune 

microenvironment, TILs levels were found to be lower in BCP than in BC from non-

pregnant controls (Azim et al., 2015b). Taken together, pregnancy does appear to alter 

the biology of breast cancer and its microenvironment. 

Complementing the work of Azim et al., we will uncover the mutational landscape of 

breast cancer diagnosed during pregnancy using genome-wide copy number alterations 

profiling and whole genome sequencing in the second chapter of this thesis. 

  



 19 

6 RANKL as a potential target in breast cancer 
patients 

As previously stated, RANKL up-regulation has been associated with breast cancer in 

young and during pregnancy. In the following section, we will review some recent 

advances on the role of RANK/RANKL signaling in homeostasis and its emerging 

importance in cancer biology. This relates particularly to the last chapter of this work. 

6.1 The role of RANK/RANKL in homeostasis 

6.1.1 Bone physiology 

The receptor activator of nuclear factor-kB ligand RANKL, its receptor RANK and its 

natural decoy receptor osteoprotegerin (OPG) were first identified as key regulators of 

bone metabolism (Wada et al., 2006). Bone tissue is not in a fixed state but is constantly 

remodeled during the life. Two major cell types are involved in bone remodeling: 

osteoblasts, derived from mesenchymal stem cells, are responsible for bone formation, 

on the contrary, osteoclasts, derived from hematopoietic stem cells, are responsible for 

bone resorption (Charles and Aliprantis, 2014; Long, 2012). The balance between 

osteoblasts and osteoclasts is tightly regulated by the RANKL/RANK/OPG system to 

maintain proper bone homeostasis (Leibbrandt and Penninger, 2008). RANKL is 

expressed by osteoblasts whereas its receptor RANK is expressed at the external surface 

membrane of osteoclast precursors. Stimulation by RANKL induces osteoclast 

differentiation and subsequent bone resorption (Wada et al., 2006). As its name suggests, 

osteoprotegerin protects from bone breakdown by serving as a decoy receptor for 

RANKL, thus inhibiting osteoclast stimulation. OPG expression is regulated by estrogen. 

The natural decline of estrogen levels associated with menopause explains why 

osteoporosis is a common condition in postmenopausal women (Leibbrandt and 

Penninger, 2008). In elderly populations, osteoporosis represents a major health problem, 

and several drugs have been developed and approved for its treatment. 

Denosumab, a human monoclonal antibody against RANKL, has shown to be highly 

effective for the management of osteoporosis, but also for the prevention of skeletal-

related events (SREs) due to bone metastasis in breast and prostate cancers (Lacey et al., 

2012). Bone is the most common metastatic site in breast cancer patients and SREs 

induced by metastases cause severe morbidity and pain (Costa et al., 2008; Kennecke et 
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al., 2010). Denosumab is also approved in hormone receptor positive postmenopausal 

BC patients receiving aromatase inhibitor therapy for reducing bone loss and the risk of 

fracture. Aromatase inhibitors suppress the conversion of androgens to estrogens, 

resulting in estrogen depletion, which in turn leads to lower bone mineral density and 

increase the risk of fracture (Forbes et al., 2008). The efficacy of denosumab in reducing 

therapy-induced osteoporosis associated with aromatase inhibitors was reported in the 

ABCSG-18 trial, a large prospective, double-blind, placebo-controlled, multicenter, 

phase III study (patients in the denosumab group had a significantly delayed time to first 

clinical fracture; HR = 0.50, 95% CI 0.39–0.65, P < 0.0001) (Gnant et al., 2015). 

6.1.2 Immune system 

As reviewed by Cheng et al. and Ferrari-Lacraz et al., the role of RANK/RANKL 

signaling in the immune system is indisputable. Pre-clinically, RANK/RANKL signaling 

has been implicated in various physiological immune processes such as lymph node 

organogenesis and immune-tolerance control (Cheng and Fong, 2014; Ferrari-Lacraz and 

Ferrari, 2011). 

It has been shown that RANK and RANKL knockout mice do not develop lymph node 

and have an impaired lymphocyte development, revealing a developmental role of 

RANK/RANKL system in immune tissue (Dougall et al., 1999; Kong et al., 1999). While 

RANKL is expressed by activated T cells, it has been shown that RANK is expressed by 

myeloid cells including monocytes, macrophages and dendritic cells (DC). Activated T 

cell expresses RANKL to promote DC survival and proliferation (Anderson et al., 1997). 

Thereby, RANK/RANKL crosstalk appears to be involved in enhancing global memory 

T cell responses. 

As opposed to its positive effect on immune response, RANK/RANKL signaling is 

crucial to maintaining central and peripheral immune tolerance (Cheng and Fong, 2014; 

Ferrari-Lacraz and Ferrari, 2011). In the thymus, this pathway regulates AIRE medullary 

thymic epithelial cell maturation, a cell type involved in central immunotolerance 

(Akiyama et al., 2008). In the gastrointestinal tract, RANKL induces microfold cells (M 

cells) that contribute to the establishment of peripheral T cell tolerance to commensal 

bacteria (Knoop et al., 2009). In the pancreas, RANK/RANKL interaction is also 

involved in the regulation of anti-islet autoreactive T cells. As shown in a mouse model 
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of type 1 diabetes, RANK/RANKL blockade resulted in a reduction of regulatory T cells 

and diabetes progression (Green et al., 2002). 

6.1.3 Mammary gland development during pregnancy 

As previously stated, the mammary gland undergoes dramatic changes during pregnancy 

to prepare for lactation. RANK/RANKL signaling is crucial for the formation of a 

lactating mammary gland. It has been shown that RANK or RANKL knockout mice 

failed to form lobuloalveolar milk-secreting structures during pregnancy (Fata et al., 

2000). Progesterone, the most important pregnancy hormone, induces proliferation and 

differentiation of mammary epithelial cells into milk-secreting acini (Hennighausen and 

Robinson, 2001). Mechanistically, progesterone induces RANKL expression in luminal 

epithelial cells, which in turn induces proliferation of basal RANK expressing progenitor 

cells in a paracrine fashion (Rao et al., 2017). 

6.2 The role of RANK/RANKL in cancer  

The link between RANK/RANKL signaling and cancer has been demonstrated in three 

independent mechanisms, each relying on different cell types (cancer cell itself, immune 

cells, and bone cells), and influencing all stages of tumor progression, from initiation to 

metastasis (Figure 0.7). Given the critical importance of RANK/RANKL signaling in 

mammary gland, immunity, and bone metastasis, it has been proposed that RANKL 

inhibition could represent a therapeutic opportunity in breast cancer. The excellent safety 

profile of denosumab established in thousands of patients makes it a good candidate to 

study RANKL inhibition in breast cancer patients. 
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Figure 0.7 – The role of RANK/RANKL signaling in cancer 

The drawing illustrates the multiple effects of the RANK/RANKL signaling according to the targeted cell 
population. Activation of the RANK/RANKL pathway has been reported in three different cell populations 
(cancer cells, immune cells, and osteoclasts) influencing all stages of tumor progression from initiation to 
metastasis. Reprinted from (Gonzalez-Suarez and Sanz-Moreno, 2016). 

6.2.1 Cancer cell dependent 

As previously stated, RANK/RANKL signaling is crucial to transduce progesterone’s 

proliferative signal for mammary gland expansion during pregnancy. In 2010, two back-

to-back studies showed that RANKL inhibition slowed down tumor progression in two 

distinct progestin-driven mammary cancer models (Gonzalez-Suarez et al., 2010a; 

Schramek et al., 2010a). Schramek et al. used a progestin- and carcinogen-induced mouse 

cancer models and showed that inhibition of RANKL using RANK-Fc attenuated breast 

tumor progression. Gonzalez-Suarez et al. confirmed these results and further showed 

that RANK-Fc decreases spontaneous mammary tumorigenesis and lung metastasis in 

a transgenic tumor model (MMTV-neu mice) (Figure 0.8). Of note, administration of 

medroxyprogesterone acetate, a synthetic progestin, resulted in a 3000-fold upregulation 

of RANKL in mammary epithelial cells. Overexpression of RANK has been involved in 
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the induction of epithelial-mesenchymal transition (EMT) and stemness in normal and 

tumor cells (Palafox et al., 2012; Tsubaki et al., 2013). RANK deletion in tumor cells 

increases the tumor latency and decreases tumor initiating ability, by inducing 

differentiation and reducing survival of tumor cells (Yoldi et al., 2016). More recently it 

has been shown that RANK and RANKL are also critical regulators of BRCA1-mutation-

driven breast cancer and that anti-RANKL therapy could be an attractive preventive 

strategy for women carrying BRCA1 mutations (Nolan et al., 2016; Sigl et al., 2016b, 

2016a). 

 

 

Figure 0.8 – The anti-tumor effect of RANKL blockade in preclinical models  

a, RANKL blockade inhibits tumor progression in a mouse model of progestin-driven mammary cancer. b, 
RANKL blockade inhibits spontaneous lung metastasis in a transgenic tumor model (MMTV-neu mice). 
Reprinted from (Gonzalez-Suarez et al., 2010a; Schramek et al., 2010a). 

Although not primarily designed to study an effect on disease-free survival (DFS), two 

recent large phase III study of adjuvant denosumab in postmenopausal early breast cancer 

population revealed inconsistent DFS benefit (Coleman et al., 2018; Gnant et al., 2018). 

While analysis of the D-CARE study showed no benefit (HR = 1.04, 95%CI 0.91-1.19, 

P = 0.57), analysis of ABCSG-18 trial showed an improved DFS (HR = 0.823, 95% CI 

0.69-0.98, P = 0.026) in breast cancer patients treated with denosumab. The possible 

explanations of these discrepancies could be differences in primary endpoints, a higher-

risk population and higher dose regimen in the D-CARE study. 

6.2.2 Immune cell dependent 

Immunosuppressive regulatory T cells (Treg) play an essential role in the immunological 

tolerance and prevention of autoimmunity (Josefowicz et al., 2012). In breast cancer, it 

b 

 

a 
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has been shown that increased presence of Treg in tumor is associated with worse DFS 

and OS (Bates et al., 2006; Ohara et al., 2009). In a mice model, Tan W et al. have shown 

that pulmonary metastases were promoted by RANKL-expressing Treg. The exogenous 

administration of RANKL further enhanced metastasis, whereas inhibition of RANKL 

using RANK-Fc inhibits pulmonary metastasis (Tan et al., 2011). Clinical studies on the 

immunomodulatory potential of anti-RANKL are limited, but it is worth to mention a 

case report describing an exceptional response upon treatment to combination anti-

CTLA4 ipilimumab and denosumab in a metastatic melanoma patient (Smyth et al., 

2013) (Figure 0.9). Following this observation, the same group reported that RANKL 

blockade improved the efficacy of both anti-CTLA4 and PD1/PDL1 blockade in several 

tumor mouse models (Ahern et al., 2017, 2018a).  Because of its emerging role in 

antitumour immunity, the efficacy of denosumab in combination with immune 

checkpoint inhibitors is currently being assessed in several clinical trials including 

melanoma, non-small cell lung cancer, and breast cancer (Ahern et al., 2018b). 

 

Figure 0.9 – Pathological response to combination anti-CTLA-4 and anti-RANKL in a case report of 
metastatic melanoma 

Fluorodeoxyglucose positron emission tomography (FDG-PET) scan performed 16 weeks after the first 
dose of ipilimumab and 18 weeks after the first dose of denosumab showed a dramatic partial response. The 
patient remained free of disease progression until 48 weeks after starting ipilimumab when the patient 
developed a single cerebral metastasis that was resected. There was no evidence of any residual melanoma 
on the FDG-PET scan at the time of publication of the case report. Reprinted from (Smyth et al., 2013). 

6.2.3 Osteoclast dependent 

As previously stated, bone is the most common metastatic site in breast cancer patients, 

and bone metastases can cause severe morbidity and pain by inducing SREs (Costa et al., 
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2008; Kennecke et al., 2010). Bone metastases induce bone destruction leading to the 

release of growth factors, such as TGF-beta and insulin-like growth factors, which in turn 

have a pro-tumorigenic effect. This phenomenon, usually referred to as the ‘vicious cycle' 

of bone metastasis, rely at least in part on RANK/RANKL signaling (Figure 

0.10). Importantly, co-culture experiments revealed that breast cancer cell lines could 

stimulate RANKL expression by osteoblasts, leading to increased osteolysis (Thomas et 

al., 1999). Moreover, it has been shown that overexpression of RANK in breast cancer 

cells was sufficient to increase their metastasis potential to the bone (Blake et al., 2014). 

This evidence led to the development of the D-CARE study aiming to assess the efficacy 

of denosumab in decreasing the risk of bone metastasis in early-stage breast cancer 

patients. Disappointingly, this trial, recently presented at the 2018 ASCO annual meeting, 

did not meet its primary endpoint of bone metastasis-free survival (HR = 0.97, 95%CI 

0.82-1.14, P = 0.70). 

 

Figure 0.10 – The ‘vicious cycle’ of bone metastasis 

Schematic illustration of the role of RANK/RANKL signaling in the ‘vicious cycle' of bone metastasis. 
Tumor cells induce up-regulation of RANKL by osteoblasts. Then, RANKL stimulates osteoclasts which 
promotes bone resorption. Finally, bone resorption is accompanied by the release of growth factors that 
promote tumor cell growth. Reprinted from (von Moos and Haynes, 2013).  
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JUSTIFICATION OF THE THESIS 

Early pregnancy is one of the most effective ways of decreasing breast cancer risk, and 

many studies have attempted to investigate the underlying mechanisms behind this 

phenomenon. However, no studies have explored the link between reproductive history 

and the genomic landscape of subsequent breast cancer. This will be the topic of the first 

chapter of this thesis. 

The diagnosis of breast cancer during pregnancy (BCP) taints one the happiest moment 

of a woman's life. Due to the general trend of delaying childbirth, the incidence of BCP 

has increased during the last decades. In the second chapter, we will present the molecular 

alterations that characterize breast cancer diagnosed during pregnancy. 

Finally, in the last chapter, we will explore the biological effect of RANKL inhibition on 

breast cancer in young women through a window-of-opportunity trial. 

As previously stated, when starting this work; 

• The link between parity and age at first birth on breast cancer risk was well 

documented, and new studies shed light on the differential effect according to 

breast cancer subtypes. However, no studies have explored the link between 

reproductive history and the genomic landscape of subsequent breast cancer.  

• International guidelines were published on the clinical management of BCP but 

the genomic landscape of BCP was still unknown. 

• Only pre-clinical studies indicated a strong link between RANK/RANKL 

signaling and breast cancer. In addition, the immunomodulatory effect of 

denosumab on human breast cancers was unknown.                 

In chapter 1 of this thesis, we sought to address the following research questions to 

examine the possible associations between reproductive history and the biology of 

subsequent breast cancer; 

Main research question:  

• What is the imprint of pregnancy and age at first birth on the biology of 

subsequent breast cancer? 
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Specific research questions:  

• What is the influence of parity and age at first birth on somatic mutations, 

somatic copy number alterations, and mutational signatures? 

• What is the influence of parity and age at first birth on the breast cancer 

transcriptome including the distribution of the intrinsic molecular subtypes? 

• What is the influence of parity and age at first birth on the tumor immune 

microenvironment? 

In chapter 2, we sought to address the following research questions to better understand 

the biology of breast cancer diagnosed during pregnancy; 

Main research question:  

• What is the effect of pregnancy on the biology of breast cancer? 

Specific research questions: 

• Are there differences in the copy number alterations profiles between BCP and 

age/stage-matched breast cancer patients? 

• Are there differences in the mutational landscape between BCP and age/stage-

matched breast cancer patients? 

• Are there differences in the mutational signatures distribution between BCP and 

age/stage-matched breast cancer patients? 

In chapter 3, we sought to address the following research questions to investigate the 

effects of RANKL inhibition in primary breast cancer in young women; 

Main research question:  

• What is the effect of RANKL inhibition on the biology of breast tumors? 

Specific research questions: 

• Is a short of RANKL inhibition can induce a decrease in tumor proliferation rates 

as determined by Ki-67 IHC? 

• What is the effect of RANKL inhibition on the tumor immune 

microenvironment? 

• What is the effect of RANKL inhibition on breast cancer transcriptome? 
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CHAPTER 1: THE IMPRINT OF REPRODUCTIVE HISTORY ON 
BREAST CANCER BIOLOGY 

This research work is related to the following publication: 

Nguyen, B., Venet, D., Lambertini, M., Desmedt, C., Salgado, R., Horlings, H., 

Rothe, F., and Sotiriou, C. (2018). Imprint of parity and age at first pregnancy on the 

genomic landscape of subsequent breast cancer. 

Preprint available online at: https://doi.org/10.1101/351205  

Manuscript submitted in July 2018. 

My contribution to this study involves: 

• Conceptualization and Design 

• Methodology 

• Formal Analysis 

• Literature search and Interpretation 

• Statistical analyses 

• Visualization 

• Writing of the manuscript 

• Presentation of the results at the following meeting: 

o San Antonio Breast Cancer Symposium, December 2018, San 

Antonio, TX, US   
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1 Introduction 
The effect of parity and age at first pregnancy on the risk of developing breast cancer has 

been well documented (Kroman et al., 1997; MacMahon et al., 1970; Papatestas et al., 

1980; Rosenberg et al., 2004; Trichopoulos et al., 1983). Parity is known to have a dual 

effect on breast cancer risk with an increased risk during 5 to 10 years after pregnancy, 

followed by a strong and life-long protective effect (Albrektsen et al., 2005; MacMahon 

et al., 1970). This effect is strongly influenced by age at first pregnancy as pregnancy-

induced tumor protection is more pronounced if first pregnancy has occurred early in life. 

Recent data suggest that pregnancy-induced tumor protection is different according to 

breast cancer subtypes, with parity and young age at first pregnancy being associated 

with a marked reduction in the risk of developing luminal subtype tumors (Ellingjord-

Dale et al., 2017; Lambertini et al., 2016; Ritte et al., 2013; Yang et al., 2011). 

Several studies have attempted to investigate the mechanisms underlying this 

phenomenon (Meier-Abt and Bentires-Alj, 2014; Russo et al., 2012). However, although 

parity and age at first pregnancy are among the most known extrinsic factors that 

modulate breast cancer risk, their impact on the biology of breast cancer has never been 

explored in depth. In the present study, we used a systematic multivariate analysis to 

investigate the imprint of parity and age at first pregnancy on the pattern of somatic 

mutations, somatic copy number alterations (SCNAs), transcriptomic profiles, and tumor 

infiltrating lymphocytes (TILs) levels in a series of 313 breast cancer patients with 

available whole genome, RNA sequencing and TILs levels data. 
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2 Methods 

2.1 Data acquisition 

All analyses were performed on a publicly available dataset comprising 560 breast cancer 

patients referred to as BRCA560 (Nik-Zainal et al., 2016). Clinical data, sequencing 

coverage, and mutational load were obtained from Supplementary Tables 1-3 in that 

reference. Coding driver mutation events and the contribution of mutational signatures 

were obtained from Supplementary Tables 14 and 21 in that reference. Raw count data 

from RNA sequencing were obtained from the authors. Results from HRDetect classifier 

were obtained from Supplementary Table 4 in reference (Davies et al., 2017a). 

2.2 Patients selection 

Eligible patients from BRCA560 were those with samples collected from primary tumor 

only (patients with local recurrence or metastasis samples were excluded, N = 8) who 

had available information on parity. There were only two available HER2+ patients (both 

parous) in the transcriptomic analysis, so we preferred to exclude them from this analysis. 

For each patient, we determined the breast cancer intrinsic subtype (PAM50) using 

genefu R/Bioconductor package (Gendoo et al., 2016). Nulliparous patients were defined 

as women with breast cancer who have never given birth. Parous patients were defined 

as women with breast cancer who had at least one full term pregnancy. Early parous 

patients were defined as ≤ 25 years of age at first full-term pregnancy, while late parous 

patients were defined as > 25 years of age at first full-term pregnancy. Since the 

BRCA560 dataset is publicly available, ethics committee approval was not needed. In 

addition, neither patient informed consent nor permission to use these data were required 

to perform this analysis. 

2.3 TILs evaluation 

The percentage of TILs was independently evaluated by two pathologists (R.S. and 

H.M.H.) on hematoxylin and eosin slides using the International TILs Working Group 

2014 methodology as described before (Salgado et al., 2015). There were 242 original 

samples with evaluable TILs from 239 patients. For the three patients with two samples, 

the arithmetic averages were obtained. We obtain a final set of 231 patients with primary 

tumor only (patients with local recurrence or metastasis samples only were excluded, N 
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= 8). TILs information for patients for which evaluation from only one pathologist was 

available was discarded (N=3). 

2.4 Statistical analysis 

Except for age at diagnosis that was considered as a continuous variable and therefore 

compared using the non-parametric Mann–Whitney U test, differences in other 

clinicopathological characteristics of breast cancer between groups were analyzed using 

the χ2 test or the Fisher exact test when appropriate. All statistical tests comparing groups 

were done using the non-parametric Mann–Whitney U test and the χ2 test or the Fisher 

exact test when appropriate for continuous and categorical variables, respectively. For 

the multivariate analysis, we used a linear and logistic regression to assess the 

independent association of continuous (log transformed) and categorical variables 

respectively with – parity (nulliparous vs parous) or – age at first pregnancy (≤ 25 years 

vs. > 25 years) controlling for: age at diagnosis, pathological stage, molecular subtypes 

by IHC, histological subtypes. For WGS results, we also corrected for log-transformed 

sequence coverage of tumor and normal samples (continuous). All interaction and 

multivariate tests (Padj) were done using analysis of variance to compare the models with 

and without the extra term. Because continuous variables contain zeros, the logarithmic 

transformation was applied as follows: log10(x + 1). The Kruskal-Wallis test was used to 

test if MYC expression originates from the same population according to the genomic 

status of MYC/TP53 alterations. All correlations were measured using the non-parametric 

Spearman’s rho coefficient. All reported P-values were two-tailed. Multiple testing 

correction was done using the false discovery rate method (FDR) (Benjamini and 

Hochberg, 1995) and differences were considered significant when the FDR was < 0.05. 

All analyses were done in R software version 3.3.3 (available at www.r-project.org) and 

Bioconductor version 3.6. Differential expression analysis was performed with DESeq2 

v.1.14.1 R/Bioconductor package (Love et al., 2014) on raw count data. Significantly 

differentially expressed genes were selected with an FDR of < 0.1. We used gage v.2.24.0 

R/Bioconductor package (Luo et al., 2009) to identify significantly enriched pathways 

form the Kyoto Encyclopaedia of Genes and Genomes (KEGG) (Kanehisa et al., 2017) 

and biological process from Gene Ontology with the log2FoldChange from DEseq2 

results as input data.  
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3 Results 

3.1 Association between clinicopathological variables, parity, and 
age at first pregnancy 

From a publicly available dataset comprising 560 breast cancer patients (Nik-Zainal et 

al., 2016), a total of 313 with available information on parity were included. We identified 

264 (84.3%) parous and 49 (15.7%) nulliparous patients (Supplementary Figure 1.1). In 

the parous group, 153 patients (57.9%) had available information on age at first 

pregnancy (median of 25 years, range 16-46 years). Parous patients were divided into 

two groups: 82 early and 71 late parous patients by using the median age at first 

pregnancy as a cut-off value. All patients had available somatic mutations and SCNAs 

data, 182 patients (58.1%) had available transcriptomic data and 170 patients (54.3%) 

had information on TILs levels (Supplementary Figure 1.2). 

Table 1.1 summarizes the clinicopathological features of patients. Compared to parous 

patients, nulliparous patients had significantly larger tumors (tumor size > 2cm, 59.2% 

vs. 37.1%, P = 0.006), higher frequency of node involvement (40.8% vs. 27.7%; P = 

0.027) and lower frequency of triple negative disease (TNBC) (4.1% vs. 23.2%; P = 

0.001). Compared to early parous patients, late parous patients had a younger age at breast 

cancer diagnosis (median, 49 years; range, 28-81 years vs. median, 59 years; range, 34-

81 years; P = 2.58 x 10-5) and were more often premenopausal (45.3% vs. 20.9%; P = 

0.005). Late parous patients also had a lower frequency of large tumors (tumor 

pathological size > 2cm, 40.8% vs. 51.2%, P = 0.012), lower frequency of TNBC (19.7% 

vs. 39%, P = 0.026) and higher frequency of lobular histological subtype (14.5% vs. 

2.5%, P = 0.01). In parous patients, we found a negative correlation between age at first 

pregnancy and age at breast cancer diagnosis (rho = -0.25, P = 0.001, Supplementary 

Figure 1.3), this association was even stronger when restricting to ER positive patients 

(rho = -0.37, P < 0.001, Supplementary Figure 1.3b). In a linear regression analysis 

adjusted for potential cofounders including pathological stage, molecular subtypes by 

IHC and histological subtypes we found that age at first pregnancy was independently 

and negatively associated with age at diagnosis (P = 0.0004).  
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Table 1.1 – Clinicopathological features of nulliparous and parous patients 

 Nulliparous Parous P 

 

Early parous Late parous P 

N  49 264  82 71  

Age at diagnosis Median years 
(range) 54 (30-81) 55 (28-81) 0.796a 59 (34-81) 49 (28-81) 2.6x10-5 a 

Menopausal 
status 

Pre 13 (33.3%) 60 (30.3%)  14 (20.9%) 29 (45.3%)  

Post 26 (66.7%) 138 (69.7%) 0.85 53 (79.1%) 35 (54.7%) 0.0053 

Stage 

I 7 (14.9%) 41 (15.9%)  6 (7.6%) 17 (24.3%)  

II 20 (42.6%) 81 (31.4%)  33 (41.8%) 27 (38.6%)  

III 11 (23.4%) 30 (11.6%)  12 (15.2%) 10 (14.3%)  

IV 0 (0%) 1 (0.4%)  1 (1.3%) 0 (0%)  

Na 9 (19.1%) 105 (40.7%) 0.019 27 (34.2%) 16 (22.9%) 0.039 

pT 

Tx 9 (18.4%) 105 (39.8%)  27 (32.9%) 16 (22.5%)  

≤ 2cm 11 (22.4%) 61 (23.1%)  13 (15.9%) 26 (36.6%)  

> 2cm 29 (59.2%) 98 (37.1%) 0.0062 42 (51.2%) 29 (40.8%) 0.012 

pN 

Nx 11 (22.4%) 112 (42.4%)  30 (36.6%) 17 (23.9%)  

N0 18 (36.7%) 79 (29.9%)  25 (30.5%) 23 (32.4%)  

N1+ 20 (40.8%) 73 (27.7%) 0.027 27 (32.9%) 31 (43.7%) 0.2 

Grade 

1 6 (14%) 29 (12.7%)  8 (9.8%) 5 (7%)  

2 17 (39.5%) 86 (37.7%)  25 (30.5%) 35 (49.3%)  

3 20 (46.5%) 113 (49.6%) 0.93 49 (59.8%) 31 (43.7%) 0.059 

Subtype by IHC 

Lum A-like 22 (44.9%) 106 (40.3%)  29 (35.4%) 39 (54.9%)  

Lum B-like 19 (38.8%) 54 (20.5%)  20 (24.4%) 17 (23.9%)  

HER2+/HR+ 6 (12.2%) 29 (11%)  0 (0%) 0 (0%)  

HER2+/HR- 0 (0%) 13 (4.9%)  1 (1.2%) 1 (1.4%)  

TNBC 2 (4.1%) 61 (23.2%) 0.0013 32 (39%) 14 (19.7%) 0.026 

Histology 

Ductal 36 (76.6%) 203 (81.2%)  71 (88.8%) 49 (71%)  

Lobular 5 (10.6%) 23 (9.2%)  2 (2.5%) 10 (14.5%)  

Other 6 (12.8%) 24 (9.6%) 0.67 7 (8.8%) 10 (14.5%) 0.01 

Abbreviations: pT, pathological tumor size; pN, pathological nodal status; HR, hormone receptor; P, p-
value derived from the χ2 test or the Fisher exact test when appropriate (aexcept continuous variable 
derived from Mann–Whitney U test).  
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In the following sections, we investigated the imprint of parity and age at first pregnancy 

on breast cancer biology by using a systematic multivariate analysis adjusted for potential 

confounders, namely age at diagnosis, pathological stage, molecular subtypes by IHC 

and histological subtypes. 

3.2 The influence of parity and age at first pregnancy on the 
mutational landscape of breast cancer  

We first sought to investigate the imprint of parity and age at first pregnancy on somatic 

mutational load (Supplementary Data File 1: Table S1). There was no significant 

difference in the total number of substitutions (SNVs) according to parity nor age at first 

pregnancy (Padj = 0.097, Padj = 0.075, respectively, Figure 1.1a). There was no significant 

difference in the total number of insertions or deletions (Indels) according to parity (Padj 

= 0.464, Figure 1.1a). In contrary, compared to tumors from late parous patients, tumors 

from early parous patients were significantly associated with a higher Indels load (Padj = 

0.002, FDR = 0.007, Figure 1.1a). There was no significant difference between the total 

number of rearrangements according to parity nor age at first pregnancy. 

We next interrogated the influence of parity and age at first pregnancy on the frequency 

of mutations in breast cancer driver genes. Among the driver mutated genes, seven had 

at least one non-silent mutation with a frequency of > 5% across the whole cohort 

(Supplementary Data File 1: Table S2). As expected, PIK3CA and TP53 were the most 

frequently mutated genes (Figure 1.1b). None of the driver mutated genes were associated 

with parity in the multivariate analysis. However, in the parous group, early age at first 

pregnancy was independently associated with higher frequency of TP53 mutations (50% 

vs. 22.5%; Padj = 0.010; FDR = 0.046, Figure 1.1b) and lower frequency of CDH1 

mutations (1.2% vs. 12.7%; Padj = 0.013; FDR = 0.046, Figure 1.1b). Considering the 

distribution of TP53 mutations type, early parous patients had a significantly higher 

frequency of truncating mutations as compared to late parous patients (25.6% vs. 7%; 

Padj = 0.014, Supplementary Figure 1.4). Altogether, our results show that age at first 

pregnancy is associated with biological differences in the mutational landscape of 

subsequent breast tumors with early parity associated with higher Indels burden and 

higher frequency of deleterious mutations in TP53 gene. 
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3.3 The influence of parity and age at first pregnancy on somatic 
copy number alterations  

Somatic copy number alterations (SCNAs) play a major role in breast cancer biology 

(Curtis et al., 2012; TCGA, 2012). We identified five driver genes with a frequency of 

SCNAs > 5% across all patients (Supplementary Data File 1: Table S3). MYC tended to 

be more frequently amplified in parous than in nulliparous patients (18.6% vs. 4.1%; Padj 

= 0.052; FDR = 0.26, Figure 1.1b). In the parous group, MYC amplification was 

significantly more frequent in the early parous group than in the late parous group (28% 

vs. 7%; Padj = 0.008; FDR = 0.040, Figure 1.1b). When evaluating the co-occurrence of 

SCNAs and somatic mutations, we found that co-occurrence of MYC amplification and 

TP53 mutations was independently associated with age at first pregnancy, with early 

parous patients having a higher frequency of simultaneous alterations of MYC and TP53 

genes (18.3% vs. 4.2%; Padj = 0.087, Figure 1.2a and Supplementary Figure 1.4). Taken 

together, these results suggest that age at first pregnancy may also shape the somatic copy 

number alterations profiles of subsequent breast cancer. 
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Figure 1.2 – Co-occurrence of MYC amplification and TP53 mutations is associated with age at first 
pregnancy 

a, Timeline of 153 patients with available data on age at first pregnancy. Each line represents an individual 
patient from age at first pregnancy (start of the line) to age at breast cancer diagnosis (end of the line). 
Late parous patients (upper) and early parous patients (bottom) are grouped according to median age at 
first pregnancy. Grey diamond represents the median age at first pregnancy and at diagnosis in the two 
groups. Lines are colored according to TP53 mutations (green) MYC amplification (dark red) and the co-
occurrence of both (red). b, Comparison of MYC expression in early and late parous patients. Each dot 
represents an individual patient and is colored according to TP53 mutations (green) MYC amplification 
(dark red) and the co-occurrence of both (red). P-value is derived from multivariate linear regression 
analysis adjusted for potential confounders. c, MYC expression according to TP53 mutations, MYC 
amplification or the co-occurrence of both. P-value is derived from the Kruskal–Wallis test.  
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3.4 The influence of parity and age at first pregnancy on mutational 
signatures 

To have a better understanding of the mutational processes that have occurred during the 

course of cancer according to reproductive history, we examined the contribution of 

mutational substitution signatures known to occur in breast cancer (Nik-Zainal et al., 

2016) (Supplementary Data File 1: Table S4). The distribution of mutational signatures 

was similar between parous and nulliparous patients. However, in the parous group, 

signatures 2 was more prevalent in late parous patients (Padj = 0.001; FDR = 0.011, Figure 

1.1c). Of interest, two early parous patients with an exceptionally high number of Indels 

were associated with mutational processes 6 and 26, attributable to mismatch repair 

deficiency (Alexandrov et al., 2013) (Supplementary Figure 1.4). Similarly, to our 

previous findings, these results highlight that age at first pregnancy may be associated 

with specific mutational processes in subsequent breast cancer. 

3.5 The influence of parity and age at first pregnancy on BRCAness 

Here, we investigated the BRCAness status of tumors according to reproductive history. 

Since germline BRCA1/2 mutation status was not available for all samples, we used 

HRDetect score to identify BRCA1/BRCA2-deficient samples (Davies et al., 2017a). We 

did not find any significant differences in the proportion of BRCA1/BRCA2-deficient 

patients between nulliparous and parous groups (12.24% vs. 18.94%, respectively, Padj = 

0.473), nor between early and late parous group (30.49% vs. 19.71%, respectively, Padj 

= 0.386). Thus, reproductive history and age at first pregnancy do not seem to affect 

homologous recombination DNA repair capacity in subsequent breast cancer. 

3.6 Integrative analysis of the genomic alterations and the 
transcriptomic profiles associated with parity and age at first 
pregnancy 

RNA sequencing data were available for a subset of 182 patients, of which 34 were 

nulliparous (Supplementary Figure 1.2 and Supplementary Data File 1: Table S5). We 

first determined the intrinsic molecular subtypes distribution of breast cancer using the 

PAM50 classifier (Parker et al., 2009). We did not find a significant difference in the 

distribution of the PAM50 subtypes between nulliparous and parous (Figure 1.1d). In 

contrast, early parous patients had a higher proportion of basal-like subtype tumors 

(29.4% vs. 8.9%; P = 0.009, Figure 1.1d, Supplementary Data File 1: Table S5). In order 
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to identify de novo gene expression profiles that might be associated with parity and age 

at first pregnancy, we performed a multivariate differential expression analysis using 

DEseq2 (Love et al., 2014) controlling for age at diagnosis, pathological stage, molecular 

subtypes by IHC and histological subtypes. A total of 62 genes were differentially 

expressed between nulliparous and parous (Supplementary Data File 1: Table S6). 

Among these genes, three were associated with mammary development; OXTR and 

ATP2B2 were down-regulated whereas NRG3 was up-regulated in nulliparous. Pathway 

analysis using the generally applicable gene-set enrichment (GAGE) analysis (Luo et al., 

2009) revealed an enrichment of genes related to extracellular matrix (ECM) receptor 

interaction (Supplementary Data File 1: Table S7). When comparing early and late parous 

patients, 466 genes were differentially expressed, among which 305 were up-regulated 

in early parous (Supplementary Data File 1: Table S8). However, pathway analysis did 

not reveal any significant enrichment of relevant biological processes (Supplementary 

Data File 1: Table S9). 

Due to the higher frequency of MYC amplification in early parous patients, we 

determined if this would also impact MYC at the mRNA expression levels. Early parous 

patients were independently associated with an up-regulation of MYC expression (Padj = 

0.0113, Figure 1.2b). We also evaluated the expression of MYC according to TP53 

mutations and MYC amplification and found that MYC expression was the highest in 

tumors harboring concurrent TP53 mutation and MYC amplification (Figure 1.2c). 

Signature 2 and 13 have been attributed to the activity of the AID/APOBEC family of 

cytidine deaminases converting cytosine to uracil (Alexandrov et al., 2013). Thus, we 

inspected if the higher prevalence of signature 2 observed in late parous patients was 

associated with higher expression of AID/APOBEC expression. As opposed to signature 

13, which was positively correlated with all APOBEC3s family members and AID 

expression, signature 2 was not significantly associated with the expression of any of 

these deaminases (Supplementary Figure 1.5). 

3.7 The influence of parity and age at first pregnancy on tumor 
immune microenvironment 

Previous reports have hypothesized that the pregnancy-induced tumor protection could 

be attributable to an improved anti-tumor immunity (Agrawal et al., 1995; Arklie et al., 

1981; Erlebacher, 2013; Finn et al., 1995; Jungbluth et al., 2007). Therefore, we assessed 
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whether reproductive history could be associated with tumor infiltrating lymphocyte 

(TILs) level that is considered as a surrogate of tumor immunogenicity (Supplementary 

Data File 1: Table S10). We did not find any significant difference in the proportion of 

stromal TILs according to parity or according to the age at first pregnancy (Padj = 0.655; 

Padj = 0.325, respectively, Figure 1.1e). Similarly, no differences were observed when 

comparing intratumoral TILs according to parity or age at first pregnancy (Padj = 0.240; 

Padj = 0.889). Thus, reproductive history does not seem to influence breast tumor 

immunogenicity. 

3.8 Pregnancy-associated breast cancers are associated with 
increased TILs infiltration 

Pregnancy-associated breast cancer (PABC) can be defined as cases diagnosed up to 10 

years postpartum (Lyons et al., 2009). In this cohort, we identified 17 PABC patients and 

compared them with nulliparous patients. Compared to nulliparous, PABC patients had 

a younger age at diagnosis (median, 38 years; range, 28-48 years vs. median, 54 years; 

range, 30-81 years; P = 5.79 x 10-6, Supplementary Data File 1: Table S11) and higher 

frequency of TNBC (29.4% vs. 4.1%; P = 0.021, Supplementary Data File 1: Table S11). 

We did not find any significant differences in the pattern of somatic mutations, somatic 

copy number alterations (SCNAs) nor in the distribution of mutational signatures 

(Supplementary Data File 1: Table S1-S4). Nine PABC had available gene expression 

and TILs scoring. At the transcriptomic level, we found that PABC patients were 

associated with enrichment of biological processes related to immune function (Figure 

1.3a and Supplementary Data File 1: Table S12). Moreover, PABC patients had an 

increased lymphocytic infiltration both for stromal and intratumoral TILs levels (Padj = 

0.040 and Padj < 0.0001, respectively; Figure 1.3b,c). Taken together these results 

indicate that cancer occurring in the postpartum mammary gland is associated with 

increased inflammation. 
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Figure 1.3 – PABC patients are associated with higher TILs levels 

a, Results form the GAGE analysis showing the top 20 most significant biological processes enriched in 
PABC patients. b, Comparison of stromal and (c) intratumoral (right) TILs levels (%) between nulliparous 
(N) and PABC. Padj, P-values derived from multivariate linear regression analysis adjusted for potential 
confounders. 
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4 Discussion 
To our knowledge, this is the first study that explores the impact of reproductive history 

on the genomic landscape and the immune composition of subsequent breast cancer. 

While previous studies documented the risk of developing breast cancer according to 

reproductive history (Kroman et al., 1997; MacMahon et al., 1970; Papatestas et al., 

1980; Rosenberg et al., 2004; Trichopoulos et al., 1983), this analysis provides further 

insights on the differences at the pathologic, genomic, transcriptomic and immunogenic 

levels according to prior parity and age at first pregnancy. Independently of 

clinicopathological features, our findings indicate that age at first pregnancy impacts the 

genomic makeup of subsequent breast cancer. Early parous patients developed tumors 

characterized by a higher number of Indels, a lower frequency of CDH1 mutations, a 

higher frequency of TP53 mutations and MYC amplification and a lower prevalence of 

mutational signature 2, while PABC patients exhibited higher TILs infiltration. 

The higher proportion of TNBC in parous and particularly in early parous patients could 

be attributed to a differential effect of pregnancy-induced tumor protection according to 

breast cancer subtypes. We and others have shown that the pregnancy-induced tumor 

protection is different according to breast cancer subtypes with parity and young age at 

first pregnancy being associated with a marked reduction in the risk of developing 

luminal subtype (Ellingjord-Dale et al., 2017; Lambertini et al., 2016; Ritte et al., 2013; 

Yang et al., 2011). For the first time to the best of our knowledge, we have documented 

that age at first pregnancy is negatively associated with age at diagnosis irrespective of 

classical clinicopathological features. This observation, which needs to be validated in 

larger cohorts, is in line with the reported protective effect of early pregnancy on breast 

cancer risk. 

Our study reveals that age at first pregnancy has a bigger imprint on genomic alterations 

of breast cancer than parity status alone. However, the apparent lack of impact of parity 

could also be related to the relatively low number of nulliparous patients. 

At the gene level, early parous patients had a higher frequency of TP53 mutation, MYC 

amplification and a lower frequency of CDH1. Interestingly, the co-occurrence of TP53 

mutations and MYC amplification was independently associated with age at first 

pregnancy, while the proportion of truncating TP53 mutations was higher in early parous 
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patients. We observed that tumors harboring concurrent MYC amplification and TP53 

mutation had the highest MYC expression. This observation is in line with a recent 

investigation of the MYC oncogene in pan-cancer data (Leiserson et al., 2016). Previous 

reports have suggested that TP53 mutations are a common mechanism that disturbs the 

apoptotic pathway in MYC-driven tumors (Wolf et al., 2015). It has been hypothesized 

that overexpression of MYC induces TP53-dependent apoptosis, and, as a consequence, 

MYC-driven tumors often require dysregulation of the apoptotic pathway to promote 

proliferation (Hermeking and Eick, 1994). TP53 has long been recognized as a potential 

mediator of pregnancy-induced resistance to mammary carcinogenesis. It has been shown 

that p53 and its downstream transcriptional target p21 are increased in parous and 

estrogen/progesterone-treated mammary epithelium in response to carcinogen 

(Sivaraman et al., 2001). In the absence of p53, the protection given by parity or 

exogenous hormones is lost (Dunphy et al., 2008; Jerry et al., 2000; Medina and Kittrell, 

2003). We hypothesized that the higher frequency of TP53 mutation observed in breast 

cancer from early parous woman could be explained by the fact that an early pregnancy 

might protect less effectively against TP53 mutated breast cancer. In breast cancer, TP53 

mutations are highly linked to molecular subtype with a frequency of 80% in basal-like 

compared to 26% in luminal tumors (TCGA, 2012). The differential effect of parity-

induced protection according to TP53 mutational status might also explain the differential 

effect of parity-induced protection according to tumor subtypes.  

CDH1 mutations have been associated with invasive lobular breast cancer subtype 

(Desmedt et al., 2016). As the multivariate analysis was adjusted for histological 

subtypes, the lower frequency of CDH1 mutations observed in early parous patients 

cannot be explained by differences in histological subtypes. The lower level of mutational 

signature 2 seen in early parous is not explained by a difference in the expression of 

AID/APOBEC family but could be related to other factors that remained to be 

determined.  

At the mRNA level, we found that age at first pregnancy had a stronger impact on the 

transcriptome than parity status alone, indicating again that age at first pregnancy might 

be the most critical factor. In the normal tissue of parous women, the gene encoding 

oxytocin receptor (OXTR) is physiologically up-regulated during lactation and has been 

shown to remain overexpressed later in life (Peri et al., 2012; Russo et al., 2012). 
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Noteworthy, the expression of OXTR was higher in parous compared to nulliparous 

patients. However, due to the lack of functional studies, it is not clear whether this gene 

is involved in the tumorigenesis of breast cancer or simply related to physiological 

changes induced by pregnancy. The enrichment of genes related to ECM receptor 

interaction in parous patients might be related to involution, a profound physiological 

change in the mammary gland after pregnancy. Right after breastfeeding the fully 

differentiated gland regresses to its pre-pregnant state by an innate tissue-remodeling 

mechanism. Evidence indicates that involution is mediated in part by ECM-degrading 

proteinases, leading to basement-membrane degradation and subsequent apoptosis of the 

unwanted secretory epithelial cells (McDaniel et al., 2006; Schedin, 2006). The exact role 

of the enrichment of genes related to ECM in parous patients on human breast cancer 

biology has still to be determined, but involution, that shares similarities with 

inflammation and wound healing programs, has been shown to promote breast cancer 

progression and metastasis in several animal models (Lyons et al., 2011; McDaniel et al., 

2006).  

Finally, previous reports have hypothesized that the pregnancy-induced tumor protection 

could be attributable to an improved anti-tumor immunity (Agrawal et al., 1995; Arklie 

et al., 1981; Erlebacher, 2013; Finn et al., 1995; Jungbluth et al., 2007). Our analysis 

reveals no differences in TILs infiltration levels according to parity or age at first 

pregnancy. The existence of a more complex immune component related to reproductive 

history cannot be excluded, but it is not supported by our analysis. Previous reports have 

documented that the immune milieu of the postpartum mammary gland caused by 

involution could contribute to tumor promotion (Fornetti et al., 2014; Harvell et al., 2013; 

Martinson et al., 2015). We observed an increase of TILs levels in PABC patients but the 

composition of the immune infiltrate has still be determined to validate this hypothesis. 

A potential limitation of our study is the lack of data on other reproductive factors (e.g., 

breastfeeding, age at menarche and time since last pregnancy) that could also potentially 

imprint the genomic alterations of breast cancer. Indeed, breastfeeding and age at 

menarche have also been linked to breast cancer risk, but since they are often self-

reported, they are more difficult to assess reliably (Lambertini et al., 2016). Another 

limitation is the absence of HER2+ subtype in the transcriptomic analysis. 
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In conclusion, our findings highlight an unprecedented link between reproductive factors 

and the genomic landscape of subsequent breast cancer. Specifically, our analysis 

suggests that age at first pregnancy, a known breast cancer risk factor, adds a layer of 

biological complexity to subsequent breast tumors. Our results, that need to be validated 

in other studies, support that patients’ reproductive history should be routinely collected 

in future large-scale genomic studies addressing the biology of female cancers. 
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5 Supplementary Materials 

 

Supplementary Figure 1.1 – Flowchart summarizing the number of patients included in the analyses and 
the reasons for inclusion and exclusion 

 

Supplementary Figure 1.2 – Venn diagram summarizing the number of patients with available data 

A total of 313 patients (100%) had available somatic mutations and somatic copy number alterations 
(SCNAs) data (red circle) while 182 patients (58.1%) had available transcriptomic data (blue circle) and 
170 patients (54.3%) had available information on TILs (green circle). 
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Supplementary Figure 1.3 – Scatterplot showing the correlation between age at diagnosis and age at first 
pregnancy 

a, All patients. b, ER positive. c, ER negative. P; P-values are derived from the Spearman's rank 
correlation. 
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Supplementary Figure 1.4 – Genomic landscape of breast cancer according to pregnancy and age at first 
pregnancy 

a, Bar chart representing the absolute number of substitutions and indels in parous and nulliparous 
patients. b, Co-mutation plot showing genes harboring at least one non-silent mutation with a frequency 
of at least 5% across the whole cohort, and their corresponding frequencies in parous and nulliparous 
patients. c, Proportion of breast cancer substitution signatures in each sample. Signatures are colored 
according to broad biological groups: 1 and 5 are associated with clock-like processes, 2 and 13 are 
APOBEC-related, 20 and 26 are associated with mismatch- repair deficiency, 3 and 8 are associated with 
homologous-recombination deficiency. d, Bar chart representing the absolute number of substitutions and 
indels in early and late parous patients. e, Co-mutation plot showing genes harboring at least one non- 
silent mutation with a frequency of at least 5% across the whole cohort, and their corresponding 
frequencies in early and late parous patients. f, Proportion of breast cancer substitution signatures in each 
sample. Signatures are colored according to broad biological groups: 1 and 5 are associated with clock-
like processes, 2 and 13 are APOBEC-related, 20 and 26 are associated with mismatch- repair deficiency, 
3 and 8 are associated with homologous-recombination deficiency. 
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Supplementary Figure 1.5 – Correlation between AID/APOBEC3s family of cytidine deaminases 
expression and presence of mutational signature 2 and 13 

P; P-values are derived from the Spearman's rank correlation. 
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1 Introduction 
Breast cancer is the most frequently diagnosed malignancy during pregnancy (Anderson, 

1979). Its incidence is increasing given the rising trend of delayed childbearing (Loibl et 

al., 2015a). Given its rarity, few dedicated studies were performed so far; hence, our 

understanding of these tumors remains poor. The clinical management of these patients 

follows standard guidelines with only minor adaptations according to gestational age, 

maternal wishes and fetal considerations (Loibl et al., 2015a). Therefore, the molecular 

characterization of BCP goes beyond academic curiosity as it is of utmost clinical interest 

to determine if these patients should be treated similarly to non-pregnant breast cancer 

patients. In this report, we aimed to identify specific molecular alterations characterizing 

BCP by combining whole genome sequencing, copy number alteration, and gene 

expression data. 
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2 Methods 

2.1 Patients and samples 

A total of 167 patients with primary breast cancer were retrospectively included in this 

study, 54 of whom were diagnosed during pregnancy. All patients were diagnosed and 

followed up at the European Institute of Oncology (IEO, Milan, Italy) from 1996 to 2010. 

As previously described (Azim et al., 2012b), this is a case-control study, in which 

pregnant breast cancer patients and controls were matched according to age, tumor size, 

nodal status, and date of diagnosis. For the current genomic analysis, we opted to exclude 

patients who received neoadjuvant therapy to avoid potential impact of treatment on the 

obtained results. The majority were treated with anthracycline-based regimen (individual 

patients data are presented in Supplementary Data File 2: Table S1). All patients had 

available formalin-fixed paraffin-embedded (FFPE) tissue from the primary tumor 

resection, and there was only one tumor sample per patient. All control patients were 

premenopausal at the time of diagnosis. ER/PR-status were defined by ASCO-CAP. For 

the classification of Luminal A and B we used a cut-off of Ki-67 > 20% according to St 

Gallen 2015 Consensus Meetings (Coates et al., 2015). Matched normal tissues were 

collected from histologically confirmed tumor-free axillary lymph nodes or tumor-

adjacent normal tissue and there was only one normal sample per patient. FFPE tissue 

sections were deparaffinized by xylene followed by a 100% ethanol wash. DNA 

extraction was performed using the QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden, 

Germany) following the manufacturer’s recommendations. The quantity of double-

stranded DNA was evaluated using the Qubit dsDNA BR Assay Kit. For the WGS, we 

selected 18 control patients based on major clinicopathological features of the 35 BCP 

patients, namely age at diagnosis, ER status, and grade. All patients provided written 

informed consent for the use of tissue samples for research purposes as per the IEO 

institutional policies. This study was approved by the Ethics Committee of Institut Jules 

Bordet (Number 1782). The validation of the enrichment of mutations in the mucin 

family genes in BCP were done by comparing the frequency of these mutations in BCP 

patients with putatively non-pregnant patients retrieved from the TCGA dataset (TCGA, 

2012) and selected to have similar age, estrogen receptor (ER) and progesterone receptor 

(PR) distribution (N = 56) (Supplementary Table 2.1). The validation of the enrichment 

of signature 20 in BCP were done by comparing the frequency of this signature in BCP 

patients with putatively non-pregnant patients retrieved from the 560 breast cancer 
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dataset (Nik-Zainal et al., 2016) (referred to as BRCA560) and selected to have similar 

age, ER and PR distribution (N = 64). 

2.2 Transcriptomic profiling 

All samples were hybridized on Affymetrix Human Genome U219 array plates following 

the manufacturer’s protocol, as described before (Azim et al., 2014). The metagene 

signature MUCsig was calculated by taking the mean expression level of all genes present 

in the mucin family, scaled to a standard deviation of one and centered around zero. The 

publicly available murine dataset derived from the normal breast of pregnant mice (GEO 

ID: GSE8191 (Anderson et al., 2007)) was used to evaluate mucin expression in the 

normal breast during pregnancy. Ensembl database was used to convert mouse gene 

names to the human equivalent. 

2.3 Genome-wide copy number analysis 

Hematoxylin and eosin slides from the archived FFPE blocks were reviewed by a 

pathologist (G.P.) to confirm diagnosis and evaluate tumor content. Samples with tumor 

purity below 60% were macrodissected (N = 56). DNA was extracted as described above. 

A total of 80 ng of DNA was used for copy number profiling using the Affymetrix 

OncoScan® FFPE Assay Kit according to the manufacturer’s instructions. The raw 

intensity values from the scanned chips were normalized to obtain Log2 ratios, B Allele 

Frequencies (BAF) and genotyping calls (AA/AB/BB) using Affymetrix Power Tools. 

We used release NA.33 of the NetAffx library for the reference model and annotation. 

We computed the Median Absolute Pairwise Deviation (MAPD) and the Median Auto-

Correlation (MAC) from the normalized Log2 ratios as quality control metrics and used 

a threshold of 0.30 and 0.5, respectively, to flag failed arrays.  

We used two parallel approaches involving (a) allele-specific copy number analysis using 

heterozygous SNP probes and (b) total copy number analysis using the full set of 200 K 

markers and parameters from (a) to control for the cancer cell fraction (CCF) and 

genomic mass. From the BAF and genotyping calls, only informative SNP probes 

displaying heterozygous genotype (AB) and 0.1 < BAF < 0.9 were kept for analysis at 

(a). The Log2 ratios and BAF were smoothed using the median absolute deviation and 

segmented jointly using a multitrack segmentation algorithm from the library 

copynumber (Nilsen et al., 2012) to determine common breakpoints. Estimates of CCF 
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and genomic mass were obtained using GAP (Popova et al., 2009). Samples with a CCF 

lower than 30% were further excluded. For analysis at (b), the Log2 ratios for the same 

samples analyzed at (a) were segmented by penalized least square regression as above 

and non-rounded estimates of copy numbers y were obtained as 

! =
1
$
%2

'
()*$ + 2(1 − $)/ − 2(1 − $)0 

where $ is the CCF and * is the genomic mass, both estimated at (a). c = 0.8 is a constant 

representing the compression ratio of the array and finally x is the observed Log2 ratio 

of a given segment. The copy numbers were categorized as deletions (−1) if y < ψ−0.5, 

gains (+1) if y > ψ+0.5, amplifications (+2) if y > ψ + 2.5, and copy neutral (0) otherwise. 

Unless otherwise stated, all parameter settings were kept at default values and all 

computations were done using R/Bioconductor. Segmented data were used as input for 

Genomic Identification of Significant Targets in Cancer, version 2.0 (GISTIC 2.0) 

(Mermel et al., 2011) and version 6.2 on the Broad Institute GenePattern cloud server to 

obtain somatic focal and broad CNA events. These were then parsed in R. For focal 

events, only "high-level" focal amplification events, defined as log2 ratio >0.9 were 

retained, whereas focal losses were retained with a log2 ratio >0.3 and with a Q value 

<0.25. Broad events, defined as arm-level events encompassing 98% or more of a 

chromosome arm, were computed using GISTIC as well. For gene-levels analysis, we 

also used the gene level output given by GISTIC analysis. Unless otherwise stated, all 

parameter settings were kept at default values and all computations were done using 

R/Bioconductor.   

2.4 Library preparation and whole genome sequencing 

For each of 53 patients, two samples of 1 µg genomic DNA from tumor and histologically 

normal axillary lymph nodes were whole genome sequenced at The McDonnell Genome 

Institute at Washington University (St Louis MO, USA) on an Illumina HiSeqX platform. 

Briefly, manual dual-indexed libraries were constructed with 1 ug of FFPE genomic 

DNA for the 53 tumor/normal pairs using the Accel-NGS 2S Plus Library Kit (Swift, MI, 

USA). Samples were fragmented on the Covaris LE220 instrument with 350bp target 

insert size. PCR cycle optimization was performed to prevent over-amplification of the 

libraries. The concentration of each library was determined through qPCR (Kapa 
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Biosystems, MA, USA). For the normal samples, each library was loaded on one lane of 

a HiSeqX flow cell, whereas for tumor samples, each library was loaded across two lanes 

of a HiSeqX flow cell. 2x150 paired-end sequence data were generated at a target depth 

of 30x (normal) and 60x (tumor) haploid genome coverage. All sequencing data are 

available in EGA under accession “EGAS00001002685”.  

Adapters were trimmed using Trimmomatic (Bolger et al., 2014). Paired sequence reads 

were aligned to reference human genome build hg19/GRCh37 using bwa mem (Li and 

Durbin, 2009). Marking and removal of duplicates were done using biobambam (Tischler 

and Leonard, 2014) while bases in overlapping reads from the same read pair were 

removed with BamUtil clipOverlap. Somatic mutations were called using Strelka 

(Saunders et al., 2012). Except for mutations identified in the COSMIC database (Forbes 

et al., 2017) related to breast cancer, mutations were filtered using default quality 

thresholds with a QSS_NT > 15 for SNVs and a QSI_NT> 30 for Indels. We also filtered 

out SNVs when <5 sequence reads reported a variant allele in the tumor. Variant 

annotation and effect prediction were carried out using SnpEff (v. 4.3p) (Zhang et al., 

2012) and Ensembl Variant Effect Predictor (VEP) (McLaren et al., 2016). Mutations 

with putative impact were defined as those assigned a high or moderate impact from 

SnpEff. To predict the pathogenicity of non-synonymous SNVs we also used a battery of 

in silico algorithms (SIFT, PolyPhen and ConDel) (Adzhubei et al., 2010; González-

Pérez and López-Bigas, 2011; Sim et al., 2012). 

2.5 Tumor heterogeneity 

To quantify the level of intra-tumor heterogeneity present in a sample, we used the 

MATH score as previously described (Mroz and Rocco, 2013); 

1234 =
MAD(5267)

median(5267)
 

where MAD(VAFs) is the median absolute deviation of the variant allele fractions (VAFs) 

of all the mutations (coding and noncoding) in a tumor. 
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2.6 Mutational signature 

All samples were analyzed using deconstructSigs (Rosenthal et al., 2016) to extract 

signatures based on the Wellcome Trust Sanger Institute Mutational Signature 

Framework. 

2.7 Significance of the missense mutation in mucins producing a 
serine 

Because (i) the distribution of bases is not uniform, (ii) the distribution of the different 

missense mutations is not uniform, and (iii) the distribution of bases within each mucin 

varies, we used an empirical approach to test the significance of the missense mutation 

in mucins producing a serine. First, we defined the probability of mutation at a base b (b 

in A, C, G, T) 89: 

89 =
89
:

89
;  

where 89: is the proportion of the bases b that are affected by a missense mutation in the 

whole cohort and 89
;  is the proportion of the base b in the coding bases of the whole 

genome. For each mucin, we determine Pmuc as the probability of having a mutation in 

base b in a mucin muc: 

89
<=( =

)89 ∙ 8?9
@AB/

∑ )89D ∙ 8?9D
@AB/9D

 

where 89 is the baseline probability above-mentioned and 8?9@AB is the proportion of the 

coding bases present in mucin muc. Using 89<=( we artificially generated 1000 random 

missense mutations in each mucin and calculated the proportion of altered codon 

producing a serine. For each random mutation, we first drew randomly the type of base 

mutated base on 89<=(. The resulting nucleotide was randomly chosen based on the 

observed mutations. The precise nucleotide mutated among those corresponding to the 

base mutated in the mucin was chosen randomly. If the resulting mutation did not lead to 

a missense mutation it was discarded. The number of serine obtained after 1000 random 

mutations was used to derive a probability to obtain a serine by the play of chance in each 

mucin: 8<=(EFG .  
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To estimate the probability of observing N serines in total in the mucin mutated, we again 

used a Monte-Carlo method. We simulated 105 scenarios, each with the same mucin 

mutated as in the real dataset and drawn randomly whether each mutation led to a serine, 

using 8<=(EFG .  

Finally, the empirical p-value was calculated by using the Monte-Carlo procedure (North 

et al., 2002) 

H =
(I + 1)
(J + 1)

 

where r is the number of simulations that produced at least N serines and n is the number 

simulations (source code available upon request). 

2.8 Statistical analysis and survival analysis 

Except for age and date of diagnosis that were considered as continuous variables and 

therefore compared using the non-parametric Mann–Whitney U test, differences in other 

clinicopathological characteristics between BCP and controls were analyzed using the χ2 

test or the Fisher exact test when appropriate. All statistical tests comparing BCP and 

controls were done using the non-parametric Mann–Whitney U test and the Fisher exact 

test for continuous and categorical variables, respectively. Independent association 

between continuous and binary variables with BCP vs. controls was investigated using 

linear and logistic regressions, respectively. All multivariate tests were adjusted for age 

at diagnosis, date of diagnosis, pathological stage, and molecular subtypes by IHC. All 

interaction and multivariate tests were done using analysis of variance to compare the 

models with and without the extra term. 

All correlations were measured using the non-parametric Spearman’s rho coefficient. 

Reported P-values were two-tailed, and differences were considered significant when the 

P-value was less than 0.05. When applicable, multiple testing correction was done using 

the false discovery rate method (FDR) (Benjamini and Hochberg, 1995), FDR below 0.05 

being considered significant. All analyses were done in R software version 3.3.2 

(available at www.r-project.org) and Bioconductor version 3.4. 

Survival endpoint was disease-free survival (DFS) and calculated from the date of 

surgery to any loco-regional or distant recurrence, contralateral BC, other primary tumor 
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or death from any cause, whichever occurred first. In the absence of any of the above-

mentioned events, survival was censored at the last follow-up visit or phone call with the 

patient. Survival curves were estimated using the Kaplan-Meier method and compared 

by the log-rank test. The prognostic impact of pregnancy on survival was evaluated using 

univariate and multivariate Cox proportional hazards regression models and expressed as 

hazard ratio (HR) with 95% confidence intervals (CI). Multivariate analysis was adjusted 

for standard clinical prognostic factors (age at diagnosis, date of diagnosis, pathological 

stage, and molecular subtypes by IHC).  
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3 Results 
A total of 167 patients with primary breast cancer were retrospectively included in this 

study, 54 of whom were diagnosed during pregnancy. Detailed patient characteristics 

were previously published (Azim et al., 2012b). At a median follow-up of 9 years, median 

disease-free survival (DFS) time of BCP was 9.8 years vs. 12.5 years in controls (P = 

0.041, log rank test, Supplementary Figure 2.1a). Observed 5-year overall survival (OS) 

rate was 95.5% vs. 85.1% in BCP and control, respectively; median OS time was not 

reached within the time frame of the study (Supplementary Figure 2.1b). In a 

multivariable Cox proportional hazards regression of DFS and OS, adjusted for age at 

diagnosis, date of diagnosis, pathological stage and molecular subtypes by IHC, we found 

that BCP was associated with worse DFS (multivariable hazard ratio [mHR] 1.81; 95% 

CI 1.09-3.01, P = 0.024) and OS (mHR 2.53; 95% CI 1.20-5.36, P = 0.017) (detailed 

survival data is provided in Supplementary Data File 2: Table S1). 

3.1 BCP and controls have similar somatic copy number alteration 
profiles 

We first sought to investigate whether tumors from BCP patients show distinct copy 

number alterations (CNAs) compared to tumors from matched non-pregnant breast 

cancer patients (controls). Hence, we performed genome-wide copy number alterations 

profiling on 160 formalin-fixed paraffin-embedded (FFPE) primary tumor samples from 

52 BCP patients and 108 controls. Of note, gene expression data were available for all 

patients as previously described (Azim et al., 2014). After quality control, CNA profiles 

were obtained for 125 tumor samples (78%) from 38 BCP and 87 controls. The main 

reason for exclusion was low cancer cell fraction (CCF < 30%) as estimated with the 

Genome Alteration Print algorithm (Popova et al., 2009) (Supplementary Figure 2.2). No 

differences in clinicopathological features were observed between BCP and controls 

(Supplementary Table 2.2). We found no significant differences between BCP and 

controls in terms of cancer cell fraction, ploidy, and fraction of genome altered (Figure 

2.1a-c). Moreover, no significant differences were observed between the CNA profiles 

of the two groups neither at the segment nor at the chromosome arm levels, including the 

gains of 1q and 8q and loss of 8p, reported to frequently occur in breast cancer (Mika et 

al., 1998) (Figure 2.1d). We also compared CNAs profiles by intrinsic subtypes as 
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defined by PAM50 and found no significant differences (Supplementary Figure 2.3 and 

Supplementary Data File 2: Table S2).  

We next focused our analysis on the 35 genes that were previously identified as CNA 

drivers in breast cancer (Nik-Zainal et al., 2016). As expected, MYC oncogene was the 

most frequently gained/amplified whereas TP53 tumor suppressor gene was the most 

frequently lost/deleted across the whole cohort (Figure 2.1e). Using GISTIC2.0 (Mermel 

et al., 2011), we identified 22 focal amplifications and 23 focal deletions and found no 

differences between their prevalence in the two groups (Supplementary Figure 2.4). 

Taken together, these results suggest that the CNA profiles of BCP and controls are 

similar. 
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Figure 2.1 – Summary of the genome-wide copy number analysis of 87 controls and 38 BCP tumor 
samples 

a-c, Comparison of cancer cell fraction, ploidy and fraction of genome altered between controls and BCP. 
d, Comparison of the CNA frequencies of controls (blue) and BCP (pink). e, Heatmap of 35 CNA breast 
cancer driver genes according to their alterations; controls (blue) and BCP (pink). P, p-value derived from 
the Mann-Whitney U test. 
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3.2 BCP shows a higher number of non-silent mutations 

To identify potential genomic differences between BCP patients and controls, we 

performed whole-genome sequencing (WGS) on paired DNA samples extracted from 

FFPE blocks (i.e. primary tumors and histologically normal axillary lymph nodes) in a 

subset of 53 breast cancer patients from our initial series, 35 of whom were BCP 

(Supplementary Figure 2.2 and Supplementary Table 2.2). We achieved 32X and 19X 

median haploid genome coverage for tumor and normal samples respectively, which is 

similar in range to previous studies (Nik-Zainal et al., 2016) (Supplementary Figure 2.5). 

We detected a median of 13,829 and 10,084 single nucleotide variants (SNVs) and a 

median of 21 and 26 small insertions and deletions (Indels) in BCP and controls, 

respectively, and found no difference between the two groups (Figure 2.2a and 

Supplementary Figure 2.6a-c). Moreover, there was no difference in structural variations 

(insertions, deletions, duplications) nor tumor heterogeneity as assessed by the MATH 

score (Mroz and Rocco, 2013) (Supplementary Figure 2.6d-f).  

We identified a median of 14 non-silent mutations per tumor which is comparable to 

another large-scale breast cancer cohort study (Nik-Zainal et al., 2016) (Supplementary 

Data File 2: Table S3). Interestingly, BCP had a significantly higher number of non-silent 

mutations than controls (median: 20 vs. 12, P = 0.027, Figure 2.2b and Supplementary 

Figure 2.6g-h). This observation remained consistent after correcting for potential 

confounding factors including age at diagnosis, date of diagnosis, pathological stage and 

molecular subtypes by IHC (P = 0.019, Supplementary Figure 2.6g). Compared to 

controls, BCP had also a significantly higher number of mutations previously reported in 

breast cancer in the Catalogue of Somatic Mutations in Cancer (COSMIC) database 

(Forbes et al., 2017) (P = 0.018, Supplementary Figure 2.6i). At the gene level, we 

identified 17 genes harboring at least one non-silent mutation with a frequency of at least 

5% across all patients. Of those, TP53 and PIK3CA were the most frequently mutated 

genes without any significant difference between the two groups (Figure 2.2c). 
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3.3 BCP is associated with a higher frequency of mutations in mucin 
gene family 

MUC17 was the third most mutated gene and four other mucin gene family members 

namely MUC2, MUC4, MUC12, and MUC20, were among the most frequently mutated 

genes in BCP (Figure 2.2c). Within the mucin gene family, we identified 20 missense 

mutations and one nonsense mutation in BCP compared to only two missense mutations 

in controls. Among these 20 mucin variants, 10 were present in the COSMIC database 

(Forbes et al., 2017), which was higher than expected by chance (P = 0.006, Monte-Carlo 

test, Supplementary Data File 2: Table S3). Altogether, we found a significantly higher 

number of BCP with non-silent mutations in the mucin gene family compared to controls 

(45.7% vs. 11.1% respectively, P = 0.015, Figure 2.2c). This observation remained 

consistent after correcting for classical clinicopathological features (P = 0.008). Similar 

findings were observed by comparing BCP with 56 matched controls taken from the 

TCGA dataset (45.7% vs. 23.1% respectively, P = 0.034). Acknowledging that some 

mucins (MUC4, MUC16) are known to give rise to false positive calls due to technical 

artifacts (Lawrence et al., 2013), we removed these two genes and confirmed the above-

mentioned results (37.1% vs. 5.5%, P = 0.020 and 37.1% vs. 14.3%, P = 0.020, using 

controls and TCGA controls, respectively). 

We did not find any differences in clinicopathological features or survival according to 

mucin mutational status (Supplementary Table 2.3 and Supplementary Figure 2.7). There 

were three hotspots mutations (i.e. present in two distinct patients) two in MUC17 and 

one in MUC20, and five missense mutations were clustered within 260 base pairs of 

MUC2 (Figure 2.3a). None of these mutations were in annotated protein domains. Since 

the glycosylation of mucins is known to play a major role in producing a chemical barrier 

at the epithelium of tubular organs for protection and lubrication, we interrogated whether 

these mutations could affect glycosylation acceptor sites. The mucin O-glycosylation is 

characterized by the addition of N-acetylgalactosamine (GalNAc) to the hydroxyl group 

of serine or threonine residues (Hanisch, 2001). Remarkably, 40.9% of missense 

mutations affecting mucins resulted in an amino acid change to a serine residue, which 

was significantly higher than expected by chance (P = 0.0002, Monte-Carlo test), 

suggesting mucin hyperglycosylation in BCP. We also found that the frequency of 

missense mutations resulting in a gain of serine site in mucins in the TCGA dataset was 

significantly lower compared with BCP (6.3% in TCGA vs. 40.9% in BCP, P < 0.001). 
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Since mucins expression is known to increase throughout gestation in mice (Anderson et 

al., 2007), we expected that mucins were also upregulated in BCP. We therefore derived 

a metagene signature comprising all members of the mucin gene family (called 

“MUCsig”) from the corresponding gene expression data and found higher expression of 

MUCsig in BCP than in controls (P = 0.017, Figure 2.3b-c). Altogether, these results 

show that BCP is associated with an increased expression of mucins as well as a higher 

frequency of mutations in mucin gene family that may potentially lead to mucin 

hyperglycosylation. 
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Figure 2.3 – Enrichment of mucin mutations and upregulation in BCP 

a, Lollipop plots were generated using cBioPortal Mutation Mapper. Each lollipop denotes a unique 
missense mutation for MUC2, MUC17, and MUC20 in BCP. b, MUCsig according to normal adult mouse 
mammary development (from pregnancy day 1 to involution day 2). c, Comparison of MUCsig between 
controls and BCP. P, p-value derived from the Mann-Whitney U test. 

  



 67 

3.4 BCP is enriched in mutational signature related to mismatch 
repair deficiency 

To have a better understanding of the etiology of BCP, we interrogated the contribution 

of base-substitution signatures known to occur in breast cancer (Nik-Zainal et al., 2016). 

When evaluating the proportion of each signature present in each sample, we found that 

signature 1 was more prevalent in BCP compared to controls whereas signature 5 was 

more prevalent in controls (P = 0.013, FDR = 0.053 and P = 0.01, FDR = 0.053 

respectively, Figure 2.2d). These results remained consistent after controlling for 

clinicopathological features (P = 0.002, FDR = 0.014 and P = 0.004, FDR = 0.016, 

respectively). When evaluating the presence or absence of mutational signatures we 

found that signature 20 (Sig20) was found in 13 out of 35 BCP (37.1%), as compared to 

only 2 out of 18 controls (11.1%) (P = 0.059, FDR = 0.410, Figure 2.2d). When 

controlling for clinicopathological features, this observation was significant (P = 0.004, 

FDR = 0.029). Signature 1 is known to be associated with age at diagnosis while the 

etiology of signature 5 is still unclear. Sig20, previously found in stomach and breast 

cancers, is related to DNA mismatch repair (MMR) deficiency (Alexandrov et al., 2013). 

Of interest, this signature remained significantly enriched in BCP when increasing the 

number of controls with 64 matched cases derived from the BRCA560 dataset (37.1% 

vs. 3.1%, P < 0.001). No classical clinicopathological features were associated with BCP 

Sig20-positive tumors except progesterone receptor negative status (Supplementary 

Table 2.4). We found that Sig20 frequency was strongly correlated with SNV mutational 

load (ρ = 0.56, P < 0.001, Supplementary Figure 2.8a) with Sig20-positive tumors 

harboring a median of 31,632 SNVs, as compared to 7,352 SNVs in Sig20-negative 

tumors (P < 0.001, Figure 2.4a). Next, we interrogated if Sig20 could be caused by 

alteration of genes involved in the MMR machinery either at the expression or copy 

number levels. The first step of MMR is the recognition of replication errors mediated by 

MutS homologue complexes; MSH2 and MSH6 (Jiricny, 2006). We found a significantly 

lower expression of MSH2 in patients harboring Sig20 (P = 0.047, Figure 2.4b) 

corroborated by a negative correlation between MSH2 expression and Sig20 frequency 

(ρ = -0.27, P = 0.024, Supplementary Figure 2.8b). This could be partially caused by 

CNA in MSH2 since 5 out of 15 Sig20-positive versus 1 out of 38 Sig20-negative tumors 

harbored MSH2 deletions (33.3% vs. 2.6%, P = 0.01). Finally, we interrogated the impact 

of Sig20 on survival and found that BCP Sig20-positive patients had a shorter DFS than 
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BCP Sig20-negative patients (median DFS time of 2.9 years vs. 10.2 years respectively 

P = 0.091, log-rank test, Figure 2.4c). In Sig20-positive patients the median OS was 6.72 

years while the median OS was not reached in BCP Sig20-negative patients (P = 0.009, 

log-rank test, Supplementary Figure 2.9). This was not significant in a multivariate model 

(DFS mHR 1.06; 95% CI 0.21-4.27, P = 0.31; OS mHR 0.8; 95% CI 0.12-5.07, P = 0.81, 

respectively). Overall, these results suggest that some BCP patients show a defective 

MMR due to copy number loss of MSH2. 

 

Figure 2.4 – Association of signature 20 with mutational load and clinical outcome 

a Comparison of SNV mutational load between Sig20 negative and Sig20 positive tumors. b, Comparison 
of MSH2 expression between Sig20 negative and Sig20 positive tumors. c, Kaplan-Meier plot showing the 
difference in DFS between control patients (N = 18), BCP patients with Sig20 negative tumors (N = 22) 
and BCP patients with Sig20 positive tumors (N = 13). P, p-value derived from the Mann-Whitney U test. 
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4 Discussion 
This study reveals important molecular differences characterizing BCP that may 

potentially represent a biologic explanation for their rather aggressive clinical behavior. 

First, BCP was enriched in non-silent mutations that could have potential oncogenic 

functions. Second, 45% of BCP harbored a mutation in mucin gene family in addition to 

upregulation of mucins at the mRNA level. Like in mice (Anderson et al., 2007), this 

could be due to physiological change induced by pregnancy to prepare the breast for 

lactation. Our hypothesis is that some preexisting subclones carrying mucin mutations 

could have a growth advantage under pregnancy state. Another argument in favor of this 

hypothesis is the fact that most mucin mutations resulted in an amino acid change to a 

serine residue and that some of them are in hotspot regions. It has been previously found 

that in breast cancer, alterations in mucin expression or glycosylation influence tumor 

growth, adhesion, invasion, and immune surveillance (Hollingsworth and Swanson, 

2004; Mukhopadhyay et al., 2011). The impact of missense mutations resulting in an 

amino acid change to a serine residue on the glycosylation status of mucins is unknown, 

but it is tempting to speculate that these alterations could influence their function, stability 

and secretion. More investigations are required to determine the exact effect of mucin 

mutations in BCP and in breast cancer in general, but these alterations could play a role 

in BCP biology.  

Moreover, BCP showed a higher prevalence of signatures 1 and 20 and a lower 

prevalence of signature 5. The etiology of signature 5 is not well understood (Alexandrov 

et al., 2015). The high prevalence of signature 1 cannot be explained by a difference in 

age at diagnosis or age of the blocks since similar results were found in a multivariate 

analysis after adjusting for both variables. 37.1% of BCP were associated with signature 

20 (Sig20), attributable to DNA mismatch repair deficiency. This is surprising given the 

low frequency (1-2%) of MMR deficiency recently reported in breast cancer (Davies et 

al., 2017b). Mechanistically, this could be explained in part by the deletion of MSH2, a 

key gene involved in MMR. Survival analysis showed that BCP Sig20-positive patients 

had the worst prognosis whereas BCP Sig20-negative patients had DFS comparable to 

controls. MMR deficiency and high mutational burden have been shown to predict 

clinical benefit to immune checkpoint blockade in colorectal and other types of highly 

immunogenic cancers (Le et al., 2015; Rizvi et al., 2015). To date, the role of checkpoint 
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inhibitors in the treatment of breast cancer is under intensive investigation and the results 

are still awaited (Emens, 2017). While the feasibility of investigating new agents in such 

peculiar disease is rather complex, these results could potentially open the door to identify 

high-risk BCP patients who could benefit from immunotherapy.  

A potential limitation of our study is that we used archived FFPE samples that are known 

to be challenging for WGS due to DNA degradation and induction of artefacts. Indeed, 

the higher proportion of signature 1 and 5 observed in our study could be due to C > T 

artefacts induced by formalin fixation. Nonetheless, BCP and controls were processed in 

the same way with no difference in the age of the blocks and the sequencing coverage 

reached in normal and in tumor tissues was comparable to other studies (Nik-Zainal et 

al., 2016). Another limitation of our study is the lack of epigenetic profiling analysis. As 

it is known that pregnancy induces epigenetic changes in epithelial cells to support 

mammary development (Huh et al., 2015), we can hypothesize that these modifications 

could impact breast cancer biology. Therefore, the study of such modifications in BCP is 

worth further investigation. In conclusion, we believe that our work provides important 

insights into the biology of BCP and a unique resource to study the biology of breast 

cancer in young women and how pregnancy could modulate tumor biology. 

  



 71 

5 Supplementary Materials 

5.1 Supplementary Figures 

 

 

 

Supplementary Figure 2.1 – Updated survival analysis of BCP and controls 

 
a, Kaplan-Meier plot showing the DFS probability between control and BCP. b, Kaplan-Meier plot 
showing the OS probability between control and BCP. 
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Supplementary Figure 2.2 – Flowchart summarizing the number of patients included in the analyses and 
the reasons for inclusion and exclusion  

There were 167 patients with available gene expression profiles in the original cohort. Seven patients were 
excluded because the tumor FFPE blocks were exhausted. We performed genome-wide copy number 
profiling on a total of 160 patients comprising 108 breast cancer controls and 52 breast cancers diagnosed 
during pregnancy (BCP). After quality control, a total of 125 patients were analyzed. Whole genome 
sequencing (WGS) was performed on 53 matched normal and tumor samples, 35 of which were BCP. 
*CCF, Cancer cell fraction estimated with the Genome Alteration Print algorithm. 
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Supplementary Figure 2.3 – Comparison of the CNA frequencies of controls (blue) and BCP (pink) by 
intrinsic subtypes as defined by PAM50  
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Supplementary Figure 2.4 – Genomic identification of significant targets in cancer (GISTIC) analysis 

a, GISTIC plot showing 22 amplification peaks. b, GISTIC plot showing 23 deletion peaks. 
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Supplementary Figure 2.5 – Coverage and age of the FFPE blocks 

a-b, Comparison of average coverage between BCP and controls in normal (a) and in tumor (b) P, p-value 
derived from the Mann-Whitney U test. c-d, Correlation between average coverage and the age of the 
blocks (years) in normal (c) and tumor. P, p-value derived from the non-parametric Spearman’s rho (R) 
coefficient. (d). e, Comparison of the age of the blocks between controls and BCP. ). P, p-value derived 
from the Mann-Whitney U test. 
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Supplementary Figure 2.6 – Mutational load and tumor heterogeneity 

a-i, Comparison of mutational load according to mutation types between controls and BCP. j, Comparison 
of tumor heterogeneity as assessed by the MATH score between controls and BCP. P, P-value comparing 
BCP and controls using the non-parametric Mann–Whitney U test; Padj, P-value adjusted for age at 
diagnosis, date of diagnosis, pathological stage and molecular subtypes by IHC using a linear regression. 
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Supplementary Figure 2.7 – Survival analysis of controls and BCP according to mutational status of 
mucins 

a, Kaplan-Meier plot showing the DFS probability between control and BCP WT (pink) or mutated (black) 
for mucin. b, Kaplan-Meier plot showing the OS probability between control and BCP WT (pink) or 
mutated (black) for mucin. p; log-rank p-value comparing the three groups.  
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Supplementary Figure 2.8 – Relationship between SNV mutational load and MSH2 expression with 
signature 20 (Sig20) frequency 

a, Correlation between SNV mutational load and signature 20 frequency. b, Correlation between MSH2 
expression and signature 20 frequency. 
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Supplementary Figure 2.9 – Survival analysis of BCP and controls 

Kaplan-Meier plot showing the OS probability between control and BCP with (black) or without (pink) 
signature 20. p; log-rank p-value comparing the three groups. 
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5.2 Supplementary Tables 
Supplementary Table 2.1 – Clinicopathological features of BCP and TCGA controls 

  BCP TCGA controls P 

N   35 56   
Age at diagnosis Median years (range) 36.5 (30-39) 36 (29-44) 0.957a 

Date of diagnosis Median years (range) 2007 (1995-2011) 2005 (1996-2010) 0.132a 

Tumor size 
≤ 2cm 21 (60%) 45 (80.4%)   
> 2cm 14 (40%) 11 (19.6%) 0.061 

Nodal status 
Negative 17 (48.6%) 21 (37.5%)   
Positive 18 (51.4%) 35 (62.5%) 0.41 

ER status 
Negative 13 (37.1%) 16 (28.6%)   
Positive 22 (62.9%) 40 (71.4%) 0.53 

PR status  
Negative 15 (42.9%) 16 (28.6%)   
Positive 20 (57.1%) 40 (71.4%) 0.24 

HER2 status 
Negative 29 (82.9%) 48 (85.7%)   
Positive 6 (17.1%) 8 (14.3%) 0.95 

Abbreviations: BCP, breast cancer diagnosed during pregnancy; ER, Estrogen receptor; PR, Progesterone 
receptor; P, p-value derived from the χ2 test or the Fisher exact test when appropriate (aexcept continuous 
variable derived from Mann–Whitney U test). 
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Supplementary Table 2.2 – Clinicopathological features of control and BCP patients included in the 
different analyses 

 Gene expression (N=167) 

 

CNAs (N=125) 

 

WGS (N=53) 

Control BCP P Control BCP P Control BCP P 

N 113 54  87 38  18 35  

Median DFS time (years) 12.47 9.84 0.041a 12 9.46 0.112a 14.34 9.46 0.289a 

5-year OS rate (95% CI) 
95.5% 

(91.7% - 
99.4%) 

85.1% 
(76.1% - 
95.2%) 

 
94.2% 

(89.4% - 
99.3%) 

81.4% 
(69.9% - 
94.8%) 

 
94.4% 

(84.4% - 
100%) 

82.8% 
(71.1% - 
96.3%) 

 

Age at 
diagnosis 

Median 
years 

(range) 
36 (28-47) 36 (28-47) 0.677b 36 (28-47) 36 (29-44) 0.796b 35 (30-43) 36 (29-44) 0.202b 

Date of 
diagnosis 

Median 
years 

(range) 

2005 
(1996-
2009) 

2005 
(1996-
2010) 

0.743b 
2005 

(1996-
2009) 

2005 
(1996-
2010) 

0.776b 
2005 

(1996-
2009) 

2005 
(1996-
2010) 

0.97b 

Gestational age 
at diagnosis 
(trimester) 

First  26 
(48.1%) 

  18 
(47.4%) 

  17 
(48.6%) 

 

Second  15 
(27.8%) 

  11 
(28.9%) 

  11 
(31.4%) 

 

Third  13 
(24.1%) 

  9 (23.7%)   7 (20%)  

Stage 

I 27 
(24.3%) 

14 
(26.4%) 

 19 
(22.1%) 7 (18.4%)  2 (11.1%) 7 (20%)  

II 55 
(49.5%) 

27 
(50.9%) 

 47 
(54.7%) 

21 
(55.3%) 

 12 
(66.7%) 

20 
(57.1%) 

 

III 29 
(26.1%) 

12 
(22.6%) 0.88 20 

(23.3%) 
10 

(26.3%) 0.87 4 (22.2%) 8 (22.9%) 0.79 

Tumor size 
≤ 2cm 62 

(56.9%) 
28 

(53.8%) 
 52 

(61.2%) 
24 

(63.2%) 
 12 

(66.7%) 21 (60%)  

> 2cm 47 
(43.1%) 

24 
(46.2%) 0.85 33 

(38.8%) 
14 

(36.8%) 0.99 6 (33.3%) 14 (40%) 0.86 

Nodal status 
Negative 52 (46%) 26 

(48.1%) 
 40 (46%) 18 

(47.4%) 
 8 (44.4%) 17 

(48.6%) 
 

Positive 61 (54%) 28 
(51.9%) 0.93 47 (54%) 20 

(52.6%) 1 10 
(55.6%) 

18 
(51.4%) 1 

Grade 

1 4 (3.7%) 3 (5.8%)  3 (3.5%) 3 (7.9%)  2 (11.1%) 3 (8.6%)  

2 44 
(40.4%) 

17 
(32.7%) 

 31 
(36.5%) 9 (23.7%)  4 (22.2%) 9 (25.7%)  

3 61 (56%) 32 
(61.5%) 0.56 51 (60%) 26 

(68.4%) 0.24 12 
(66.7%) 

23 
(65.7%) 1 

ER 
Positive 88 

(77.9%) 
36 

(66.7%) 
 67 (77%) 23 

(60.5%) 
 13 

(72.2%) 
22 

(62.9%) 
 

Negative 25 
(22.1%) 

18 
(33.3%) 0.17 20 (23%) 15 

(39.5%) 0.095 5 (27.8%) 13 
(37.1%) 0.71 

PR 
Positive 79 

(69.9%) 
35 

(64.8%) 
 62 

(71.3%) 
22 

(57.9%) 
 12 

(66.7%) 
20 

(57.1%) 
 

Negative 34 
(30.1%) 

19 
(35.2%) 0.63 25 

(28.7%) 
16 

(42.1%) 0.21 6 (33.3%) 15 
(42.9%) 0.71 

HER2 
Negative 91 

(80.5%) 
45 

(83.3%) 
 71 

(81.6%) 
31 

(81.6%) 
 11 

(61.1%) 
29 

(82.9%) 
 

Positive 22 
(19.5%) 9 (16.7%) 0.82 16 

(18.4%) 7 (18.4%) 1 7 (38.9%) 6 (17.1%) 0.1 

Molecular 
subtypes by 

IHC 

Lum A-like 28 
(24.8%) 

15 
(27.8%) 

 21 
(24.1%) 9 (23.7%)  3 (16.7%) 9 (25.7%)  

Lum B-like 42 
(37.2%) 

18 
(33.3%) 

 33 
(37.9%) 

12 
(31.6%) 

 5 (27.8%) 11 
(31.4%) 

 

Lum HER2 18 
(15.9%) 5 (9.3%)  13 

(14.9%) 4 (10.5%)  5 (27.8%) 3 (8.6%)  

ERneg 
HER2-like 4 (3.5%) 4 (7.4%)  3 (3.4%) 3 (7.9%)  2 (11.1%) 3 (8.6%)  

TNBC 21 
(18.6%) 

12 
(22.2%) 0.58 17 

(19.5%) 
10 

(26.3%) 0.66 3 (16.7%) 9 (25.7%) 0.45 

PAM50 

Luminal-A 40 
(35.4%) 

13 
(24.1%) 

 32 
(36.8%) 8 (21.1%)  3 (16.7%) 8 (22.9%)  

Luminal-B 23 
(20.4%) 

10 
(18.5%) 

 18 
(20.7%) 7 (18.4%)  4 (22.2%) 7 (20%)  

HER2 12 
(10.6%) 

10 
(18.5%) 

 9 (10.3%) 8 (21.1%)  5 (27.8%) 8 (22.9%)  

Basal 32 
(28.3%) 

18 
(33.3%) 

 24 
(27.6%) 

14 
(36.8%) 

 5 (27.8%) 11 
(31.4%) 

 

Normal-
like 6 (5.3%) 3 (5.6%) 0.45 4 (4.6%) 1 (2.6%) 0.25 1 (5.6%) 1 (2.9%) 0.96 

Abbreviations: CNAs, copy number alterations; WGS, whole genome sequencing; BCP, breast cancer 
diagnosed during pregnancy; ER, Estrogen receptor; PR, Progesterone receptor; IHC, 
Immunohistochemistry; P, p-value derived from χ2 test or the Fisher exact test when appropriate (aexcept 
DFS derived from the log-rank test and bcontinuous variable derived from Mann–Whitney U test). 
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Supplementary Table 2.3 – Clinicopathological features between control, BCP without mucins mutations, 
and BCP with mucins mutations 

 Control Mucin WT Control Mucin mut P 

 

BCP Mucin WT BCP Mucin mut P 

N  16 2  19 16  

Age at diagnosis Median years 
(range) 35 (30-40) 42.5 (42-43) 0.0275a 37 (30-44) 36 (29-41) 0.894a 

Stage 

I 1 (6.2%) 1 (50%)  4 (21.1%) 3 (18.8%)  

II 11 (68.8%) 1 (50%)  11 (57.9%) 9 (56.2%)  

III 4 (25%) 0 (0%) 0.25 4 (21.1%) 4 (25%) 1 

Tumor size 
≤ 2cm 11 (68.8%) 1 (50%)  11 (57.9%) 10 (62.5%)  

> 2cm 5 (31.2%) 1 (50%) 1 8 (42.1%) 6 (37.5%) 1 

Nodal status 
Negative 6 (37.5%) 2 (100%)  10 (52.6%) 7 (43.8%)  

Positive 10 (62.5%) 0 (0%) 0.18 9 (47.4%) 9 (56.2%) 0.85 

Grade 

1 1 (6.2%) 1 (50%)  2 (10.5%) 1 (6.2%)  

2 3 (18.8%) 1 (50%)  5 (26.3%) 4 (25%)  

3 12 (75%) 0 (0%) 0.098 12 (63.2%) 11 (68.8%) 1 

ER 
Positive 11 (68.8%) 2 (100%)  12 (63.2%) 10 (62.5%)  

Negative 5 (31.2%) 0 (0%) 1 7 (36.8%) 6 (37.5%) 1 

PR 
Positive 10 (62.5%) 2 (100%)  12 (63.2%) 8 (50%)  

Negative 6 (37.5%) 0 (0%) 0.53 7 (36.8%) 8 (50%) 0.66 

HER2 
Negative 9 (56.2%) 2 (100%)  17 (89.5%) 12 (75%)  

Positive 7 (43.8%) 0 (0%) 0.5 2 (10.5%) 4 (25%) 0.38 

Molecular 
subtypes 

Lum A-like 2 (12.5%) 1 (50%)  5 (26.3%) 4 (25%)  

Lum B-like 4 (25%) 1 (50%)  7 (36.8%) 4 (25%)  

Lum HER2 5 (31.2%) 0 (0%)  1 (5.3%) 2 (12.5%)  

ERneg HER2-
like 2 (12.5%) 0 (0%)  1 (5.3%) 2 (12.5%)  

TNBC 3 (18.8%) 0 (0%) 0.84 5 (26.3%) 4 (25%) 0.92 

PAM50 

Luminal-A 2 (12.5%) 1 (50%)  6 (31.6%) 2 (12.5%)  

Luminal-B 4 (25%) 0 (0%)  2 (10.5%) 5 (31.2%)  

HER2 5 (31.2%) 0 (0%)  4 (21.1%) 4 (25%)  

Basal 5 (31.2%) 0 (0%)  6 (31.6%) 5 (31.2%)  

Normal-like 0 (0%) 1 (50%) 0.039 1 (5.3%) 0 (0%) 0.42 

Abbreviations: BCP, breast cancer diagnosed during pregnancy; ER, Estrogen receptor; PR, Progesterone 
receptor; IHC, Immunohistochemistry; P, p-value derived from the χ2 test or the Fisher exact test when 
appropriate (aexcept continuous variable derived from Mann–Whitney U test). 
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Supplementary Table 2.4 – Clinicopathological features between control, BCP Sig20-negative patients, 
and BCP Sig20-positive patients 

 Control Sig20- Control Sig20+ P 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

BCP Sig20- BCP Sig20+ P 

N  16 2   22 13   

Age at diagnosis Median years (range) 35 (30-43) 34.5 (33-36) 0.887a 36 (30-44) 37 (29-41) 0.38a 

Stage 

I 1 (6.2%) 1 (50%)   5 (22.7%) 2 (15.4%)   

II 11 (68.8%) 1 (50%)   13 (59.1%) 7 (53.8%)   

III 4 (25%) 0 (0%) 0.25 4 (18.2%) 4 (30.8%) 0.71 

Tumor size 
≤ 2cm 11 (68.8%) 1 (50%)   13 (59.1%) 8 (61.5%)   

> 2cm 5 (31.2%) 1 (50%) 1 9 (40.9%) 5 (38.5%) 1 

Nodal status 
Negative 6 (37.5%) 2 (100%)   11 (50%) 6 (46.2%)   

Positive 10 (62.5%) 0 (0%) 0.18 11 (50%) 7 (53.8%) 1 

Grade 

1 2 (12.5%) 0 (0%)   2 (9.1%) 1 (7.7%)   

2 4 (25%) 0 (0%)   7 (31.8%) 2 (15.4%)   

3 10 (62.5%) 2 (100%) 1 13 (59.1%) 10 (76.9%) 0.73 

ER 
Positive 11 (68.8%) 2 (100%)   16 (72.7%) 6 (46.2%)   

Negative 5 (31.2%) 0 (0%) 1 6 (27.3%) 7 (53.8%) 0.16 

PR 
Positive 10 (62.5%) 2 (100%)   16 (72.7%) 4 (30.8%)   

Negative 6 (37.5%) 0 (0%) 0.53 6 (27.3%) 9 (69.2%) 0.038 

HER2 
Negative 11 (68.8%) 0 (0%)   20 (90.9%) 9 (69.2%)   

Positive 5 (31.2%) 2 (100%) 0.14 2 (9.1%) 4 (30.8%) 0.17 

Molecular 
subtypes 

Lum A-like 3 (18.8%) 0 (0%)   8 (36.4%) 1 (7.7%)   

Lum B-like 5 (31.2%) 0 (0%)   7 (31.8%) 4 (30.8%)   

Lum HER2 3 (18.8%) 2 (100%)   2 (9.1%) 1 (7.7%)   

ERneg HER2-like 2 (12.5%) 0 (0%)   0 (0%) 3 (23.1%)   

TNBC 3 (18.8%) 0 (0%) 0.44 5 (22.7%) 4 (30.8%) 0.091 

PAM50 

Luminal-A 3 (18.8%) 0 (0%)   7 (31.8%) 1 (7.7%)   

Luminal-B 4 (25%) 0 (0%)   5 (22.7%) 2 (15.4%)   

HER2 3 (18.8%) 2 (100%)   3 (13.6%) 5 (38.5%)   

Basal 5 (31.2%) 0 (0%)   6 (27.3%) 5 (38.5%)   

Normal-like 1 (6.2%) 0 (0%) 0.3 1 (4.5%) 0 (0%) 0.24 

Abbreviations: BCP, breast cancer diagnosed during pregnancy; ER, Estrogen receptor; PR, Progesterone 
receptor; IHC, Immunohistochemistry; P, p-value derived from the χ2 test or the Fisher exact test when 
appropriate (aexcept continuous variable derived from Mann–Whitney U test). 
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1 Introduction 
Breast cancer in young women has unique biology and poor prognosis. Previous reports 

suggest that they often express RANKL (Azim et al., 2012c, 2015a), which has shown to 

play an important role in mammary tumorigenesis and antitumor immunity control. 

Denosumab is a human monoclonal antibody against RANKL, approved for the 

management of treatment-induced bone loss in early postmenopausal breast cancer and 

prevention of skeletal morbidity associated with metastatic bone disease. Preclinical data 

have reinforced the potential value of RANKL inhibition in breast cancer prevention 

(Gonzalez-Suarez et al., 2010b; Nolan et al., 2016; Schramek et al., 2010b; Sigl et al., 

2016a) and its therapeutic potential on established tumors for its ability to reduce 

recurrence and metastasis (Yoldi et al., 2016). 

RANK/RANKL axis is involved in various immune processes, including lymph node 

development (Dougall et al., 1999) and the establishment of central and peripheral 

tolerance (Akiyama et al., 2008; Barbaroux et al., 2008; Knoop et al., 2009; Rossi et al., 

2007). RANK and RANKL are expressed in a wide variety of immune cells such as 

monocytes, macrophages, dendritic cells and activated T lymphocytes (de Groot et al., 

2018) and are involved in T regulatory-induced self-tolerance (Anderson et al., 1997; 

Biswas and Lewis, 2010; Farrell et al., 2003; Seshasayee et al., 2004). Thus, the 

RANK/RANKL pathway regulates innate and adaptive immune responses and may 

promote or suppress immune responses depending on the context. 

Tumor cells develop multiple strategies to evade immune surveillance; they create a 

microenvironment enriched in anti-inflammatory cytokines that will decrease the 

infiltration of cytotoxic T lymphocytes or natural killer cells, increase the recruitment of 

immunosuppressive cells such as T regulatory cells (Treg) or myeloid derived suppressor 

cells, and impose an anti-inflammatory profile in CD4+ cells (Th2) and macrophages 

(M2) (DeNardo and Coussens, 2007; Mantovani et al., 2007). Immune checkpoint 

inhibitors (mainly antibodies against CTLA4 and PD-1/PD-L1) have emerged as a potent 

therapy against some solid tumors such as melanoma and advanced non-small cell lung 

cancer (Hodi et al., 2010; Sgambato et al., 2016). Nevertheless, in breast cancer and other 

poorly immunogenic tumors, the efficacy of immunotherapy remains limited (Solinas et 

al., 2017). 
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Given the critical importance of RANK/RANKL signaling in the mammary gland and 

antitumor immunity, we hypothesized that denosumab would have anti-tumor efficacy in 

breast cancer. To test this, we conducted a prospective, phase IIa, single-arm, multicenter 

study to evaluate its safety and biological effects in premenopausal patients with early 

breast cancer. 
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2 Methods 

2.1 Patients 

Eligible patients were premenopausal women with histologically confirmed, newly 

diagnosed, operable primary invasive carcinoma of the breast who had not undergone 

previous treatment for invasive breast cancer or being considered for neoadjuvant 

therapy. Other key eligibility criteria included tumor size > 1.5 cm, any nodal status, and 

known estrogen receptor (ER), progesterone receptor (PR), human epidermal growth 

factor receptor 2 (HER2) status. Key exclusion criteria included bilateral invasive tumors, 

current or previous osteonecrosis or osteomyelitis of the jaw, and known hypersensitivity 

to denosumab. Evaluation of conventional breast cancer markers including ER, PR, 

HER2 and Ki-67 was performed centrally at Institut Jules Bordet (IJB). ER/PR-status 

were defined by ASCO-CAP guidelines. Breast cancer subtypes were defined according 

to St Gallen 2015 Consensus Meetings (Coates et al., 2015) using immunohistochemical 

surrogates as follows: Luminal A, ER and/or PR(+), HER2(–), Ki-67 < 20%; Luminal B, 

ER and/or PR(+), HER2(–), Ki-67 ≥ 20; Basal, ER, PR and HER2(–), irrespective of Ki-

67 score; and HER2, HER2(+), irrespective of ER, PR or Ki-67. 

2.2 Study design 

This was a prospective, single arm, multi-center, open-label, phase IIa trial (D-BEYOND, 

NCT01864798). This study was approved by the Ethics Committee of Institut Jules 

Bordet (N°: 2064) and all patients provided written informed consent form. D-BEYOND 

was a preoperative "window-of-opportunity" study in which all patients received two 

injections of denosumab 120mg subcutaneously administered one week apart (minimum 

of 7 days to a maximum of 12 days) prior to surgical intervention. Surgery had to be 

performed within 10-21 days after the first dose of denosumab. Post-study treatment was 

at the discretion of the investigator. Snap-frozen tumor tissues embedded in optimal 

cutting temperature and formalin-fixed paraffin embedded (FFPE) tumor tissues were 

collected at baseline (pre-treatment) and at surgery (post-treatment).  

Serious adverse events (AEs) and non-serious AEs were collected from the day of signed 

informed consent until one month after the last administration of study drug except for 

the project-specific AEs for which the reporting was extended to 3 months after the last 

dose of denosumab. Safety data were evaluated using the National Cancer Institute 
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Common Terminology Criteria for Adverse Events (NCI-CTCAE v 4.0). Adverse effects 

were coded with the use of the Medical Dictionary for Regulatory Activities (version 

20.1). 

The primary study endpoint was geometric mean decrease in the percentage of Ki-67-

positive cells assessed by IHC. Keys secondary endpoints included absolute Ki-67 

responders (defined as <2.7% Ki-67 IHC staining in the post-treatment tumor tissue), 

decrease in serum C-terminal telopeptide (CTX) levels measured by ELISA, change in 

IHC expression of RANK/RANKL and change in tumor infiltrating lymphocytes (TIL) 

percentage assessed on hematoxylin and eosin (HE) slides. Because the primary endpoint 

was a change in the percentage of Ki-67 positive cell after treatment, paired samples of 

breast tumor tissue at baseline and at surgery were required. 

2.3 ELISA 

Serum concentrations of sRANKL (the soluble homotrimeric form of RANKL) was 

centrally assessed at IJB in triplicate, using an enzyme-linked immunosorbent assay 

(ELISA) according to the manufacturer's instructions (Biomedica, Austria). Serum CTX 

levels were routinely evaluated locally in each center by ELISA. 

2.4 Immunohistochemistry staining  

Tissue sections (4 µm) from formalin-fixed paraffin embedded (FFPE) tissues of primary 

breast tissue were used for RANK and RANKL evaluation. For each patient, an 

hematoxylin and eosin-stained slide along with representative slides of the primary tumor 

were shipped to NeoGenomics Laboratories (California, USA) for immunohistochemical 

staining of RANK (N-1H8) and RANKL (M366) as described previously (Pfitzner et al., 

2014; Wood et al., 2013), blinded to clinical information. For each epitope, the staining 

score for tumor cells and adjacent normal epithelial cells was recorded separately. The 

percentage of immunostaining and the staining intensity (0, negative; 1+, weak; 2+, 

moderate; and 3+, strong) were recorded. An H-score was calculated using the following 

formula: 

4 − 7KLIM	 = (%	LP	KMQQ7	LP	RM$S	TJUMJ7TU!	 × 1)

+ (%	LP	KMQQ7	LP	WLXMI$UM	TJUMJ7TU!	 × 2)

+	(%	LP	KMQQ7	LP	7UILJY	TJUMJ7TU!	 × 3)	 
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The maximum H-score would be 300, corresponding to 100% of cells with strong 

intensity.  

Serial FFPE tissue sections (4 µm) were immunohistochemically stained for CD3/CD20, 

CD4/CD8 and FOXP3/CD4 double staining on a Ventana Benchmark XT automated 

staining instrument (Ventana Medical Systems) as described previously (Buisseret et al., 

2017). The antibodies used for dual IHC are detailed in Supplementary Data File 3: Table 

S8. 

For multiplex IHC (mIHC), FFPE tissue sections (4 µm) were processed manually. 

Briefly, slides were heated at 37°C overnight, then deparaffinized and fixed in neutral-

buffered 10% formalin. Slides were labeled for CD4 (helper T cells), CD8 (cytotoxic T 

cells), CD20 (B cells), FOXP3 (regulatory T cells), CD68 (macrophages), pan-

cytokeratin (cancer cells), and DAPI (all nuclei) using a serial same-species fluorescence-

labeling approach that employs tyramide signal amplification and microwave-based 

antigen-retrieval and antibody stripping according to the manufacturer's instructions 

(Opal Multiplex IHC, Perkin Elmer). Samples were visualized on a Zeiss LSM 710 

confocal microscope equipped with PMT spectral 34-Channel QUASAR (Carl Zeiss). A 

single pathologist (R.S.) reviewed all IHC slides. 

2.5 Pathological assessment 

For both FFPE and frozen tumor tissue, evaluation of tumor cellularity was assessed by 

a single pathologist (R.S.) on hematoxylin and eosin stained tissue sections. For patients 

with multiple samples, the sample with the highest tumor content was chosen. The 

percentage of TILs was independently evaluated by two trained pathologists (R.S. and 

G.V.D.E.) who were blinded to the clinical and experimental data on HE slides using the 

International TILs Working Group 2014 methodology, as described before (Salgado et 

al., 2015).  

2.6 RNA Extraction and sequencing 

RNA was extracted from frozen tumor tissue using the AllPrep DNA/RNA Mini kit 

(Qiagen, Germany) according to the manufacturer's instructions. RNA quality was 

assessed using a Bioanalyzer 2100 (Agilent technologies, US). Indexed cDNA libraries 

were obtained using the TruSeq Stranded Total RNA Kit (Illumina, US) following 
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manufacturer recommendation. The multiplexed libraries were loaded on a NovaSeq 

6000 (Illumina, US) using an S2 flow cell and sequences were produced using a 200 

Cycle Kit (Illumina, US). Read pairs were trimmed using Trimmomatic (Bolger et al., 

2014). Alignment was performed using STAR (Dobin et al., 2013). The number of reads 

mapping to each gene was then assessed with the R statistical software with the 

Rsamtools package. Fragments per kilobase of transcript per million mapped reads 

(FPKM) was defined as the number of fragments (1 or both members of a read pair) 

mapping a gene per kilobase of transcript per million mapped reads, using the most 

common gene isoform as the transcript. 

2.7 Bioinformatics analysis 

Because it has been shown that the gene expression profiles of tissues taken at biopsy 

and surgery are impacted by difference of tissue handling procedures (López-Knowles et 

al., 2016), we used a publically available dataset from the no-treatment arm of The 

PeriOperative Endocrine Therapy - Individualizing Care (POETIC) study to filter-out 

differentially expressed genes. In that study, there were a total of 57 pairs of samples 

from untreated patients taken at diagnosis and surgery (GEO ID: GSE73235 (López-

Knowles et al., 2016)). We filter out 3270/21931 (14.9%) genes that were differentially 

expressed between diagnosis and surgery by using a strict cut off of raw p-value of less 

than 0.05 using the non-parametric Mann–Whitney U test. Differential expression 

analysis was performed with DESeq2 v.1.14.1 R/Bioconductor package (Love et al., 

2014) on raw count data. Significantly differentially expressed genes were selected with 

a qval of < 0.05 and an absolute log2 fold change of > 0.5. We used GAGE v.2.24.0 

R/Bioconductor package (Luo et al., 2009) to identify significantly enriched biological 

process from the Gene Ontology (GO) database. Cytolytic activity was determined as the 

geometric mean expression of GZMA and PRF1 as expressed in transcripts per million 

(TPM), as previously described (Rooney et al., 2015). To further refine subsets of 

immune cells that were present in each sample, CIBERSORT software was used 

(Newman et al., 2015). RPKM expression data were uploaded on 

https://cibersort.stanford.edu and CIBERSORT was run using LM22 as a reference 

matrix and, as recommended for RNA-seq data, quantile normalization was disabled. All 

other parameters were set to default. Output files were downloaded as tab-delimited text 

files, and immune cell subsets that were not present in at least 10 samples were discarded. 
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2.8 Statistical analysis 

For the sample size estimation, we used data from a previous preoperative study (Bedard 

et al., 2011; Miller et al., 2009) to estimate the expected variability in the change in Ki-

67 value. In that study, the geometric mean decreases in Ki-67 values after 14 days of 

letrozole alone was given by 29% (95% CI 22%-38%) among 51 patients diagnosed with 

estrogen receptor-positive breast cancer. The observed standard deviation was 0.98. In 

order to estimate a mean decrease in Ki-67 assessed by IHC with a 95% confidence 

interval with a width of 0.66, a total of 34 evaluable patients were needed. All statistical 

tests comparing pre- and post-treatment pairs value were done using the sign test or the 

paired Student's t-test. All IHC value were logged transformed, and because variables 

contain zeros, the logarithmic transformation was applied as follows: log10(x + 1). For 

the comparison between non-responders and responders, non-parametric Mann–Whitney 

U test and the Fisher exact test was used for continuous and categorical variables, 

respectively. All correlations were measured using the non-parametric Spearman’s rho 

coefficient. All reported P-values were two-tailed. All analyses were done in R software 

version 3.3.3 (available at www.r-project.org) and Bioconductor version 3.6. There was 

no correction for multiple testing for exploratory analyses, except for the gene expression 

analysis for which the false discovery rate (FDR) was used.  
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3 Results 

3.1 Patient characteristics and safety 

A total of 27 out of 34 patients initially planned were enrolled in the study between 

October 2013 and July 2016 (the study was discontinued due to poor recruitment). All 

patients received two doses of denosumab 120 mg subcutaneously one week apart 

followed by surgery, and all were included in the safety analysis. The median time 

interval between the first administration of denosumab and surgery was 13 days (range: 

9-21 days). No serious adverse events were reported. All non-serious adverse events are 

summarized in Table S1 (Supplementary Data File 3), the most frequent was arthralgia 

(4/27, 14.8%). One patient was excluded because it has a ductal carcinoma in situ and 

two patients were excluded because of lack of available tumor tissue. Table 3.1 

summarizes the clinicopathological features of the remaining 24 patients. In brief, the 

median age at diagnosis was 45 years (range 35-51 years), tumors of 19 patients were 

hormone receptor positive (79.2%), 4 were HER2 positive (16.7%), and one was triple 

negative (4.2%). 

Table 3.1 – Clinicopathological features of the 24 evaluable patients 

N 
 

24 

Interval surgery-Dmab Median days (range) 13 (9-21) 
Age Median years (range) 44 (35-51) 
Size 
 

≤ 2cm 13 (54.2%) 
> 2cm 11 (45.8%) 

Nodal status 
 

Negative 20 (83.3%) 
Positive 4 (16.7%) 

Histologic grade 
 

Low/Intermediate 16 (66.7%) 
High 8 (33.3%) 

Molecular subtypes 
 
 
 

LumA 14 (58.3%) 
LumB 5 (20.8%) 
HER2 4 (16.7%) 
TNBC 1 (4.2%) 

3.2 Denosumab activity and its effects on breast cancer 

To confirm adequate target inhibition by denosumab, we measured the serum 

concentrations of sRANKL, the direct target of denosumab and CTX, a bone resorption 

marker considered as a surrogate marker for denosumab activity. After treatment, serum 

levels of sRANKL and CTX decreased in all patients evaluated (P < 0.001, Figure 

3.1a,b). 
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The primary endpoint of this study was a decrease in tumor proliferation, as assessed by 

the percentage of Ki-67 positive cells, between baseline and two weeks of treatment. 

There was no significant reduction in the percentage of Ki-67 positive cells after a short 

course of denosumab (geometric mean [GM] change from baseline; 1.07, 95% CI 0.87–

1.33; P = 0.485, Figure 3.1c) and no absolute Ki-67 responders were identified. We also 

interrogated the effect of denosumab on the expression level of RANKL and RANK by 

immunohistochemistry (IHC) and found no significant change (P = 0.891 and P = 0.061, 

respectively, Figure 3.1d,e).  

Collectively, these data confirm that short course of denosumab was associated with an 

effective systemic RANKL inhibition. However, this intervention was not associated 

with a reduction of tumor proliferation as assessed by Ki-67 staining or change in 

RANK/RANKL protein expression. 

 

Figure 3.1 – Biological effect of denosumab in breast cancer 

a-b, Change from baseline in serum levels of sRANKL (N=23) and CTX (N = 17). P, p-value derived from 
the sign test. c, Change from baseline in the percentage of Ki-67 positive cell (N = 24). P, p-value derived 
from the paired Student’s t-test. d-e, Change from baseline of RANKL (N = 23) and RANK H-score (N = 
24). P, p-value derived from the paired Student’s t-test. Lines are color-coded according to increase (red), 
decrease (blue) and no change (black) from baseline. 
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respectively, Figure 3.2a and Supplementary Figure 3.1). We identified 11/24 patients 

(45.8%) associated with an immunomodulatory response, defined as patients showing a 

≥ 10 percentage points increase in stromal TILs. We next interrogated the expression of 

multiple immune markers by IHC from 23 available pairs of pre- and post-treatment 

tumor FFPE tissue (Figure 3.2b-e and Supplementary Figure 3.1). The remaining patient 

was excluded due to tissue exhaustion. Denosumab was associated with a significant 

increased percentage of CD3- and CD20-positive cells, which are T and B cell markers, 

respectively (GM change from baseline; 1.68, 95% CI 1.18–2.40; P = 0.006 and 1.62, 

95% CI 1.09–2.40; P = 0.019, respectively, Figure 3.2b,c). Next, we evaluated the 

proportion of CD8 positive cytotoxic T cells and found a significant increase after 

treatment (GM change from baseline; 1.59, 95% CI 1.14–2.21; P = 0.008, Figure 3.2d). 

On the contrary, we found a significant decreased level of FOXP3/CD4 double positive 

regulatory T cells (GM change from baseline; 0.63, 95% CI 0.49–0.83; P = 0.002, Figure 

3.2e). We also interrogated the percentage of CD68-positive cells, a macrophage marker, 

but did not find any significant difference from baseline (GM change from baseline; 1.50, 

95% CI 0.91–2.46; P = 0.11, Supplementary Figure 3.1). A potential mechanism of 

action of denosumab responsible for the observed increased level of TILs could be the 

enhancement of TILs proliferation. However, we did not find any significant change in 

the percentage of Ki-67 positive TILs (Figure 3.2f). The immunomodulatory response 

associated with denosumab of a representative patient is shown in Supplementary Figure 

3.2. To illustrate these findings, multiplex IHC (mIHC) was also performed on the top 

four tumors associated with the highest immunomodulatory response (Supplementary 

Figure 3.3). 
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Figure 3.2 – The immunomodulatory role of denosumab in breast cancer 

a-g, Barplot showing the change (post- minus pre-treatment values) of the measured immune parameters 
for each patient. For each measured parameter, the corresponding ladder plot is displayed on the right-
hand side. Lines are color-coded according to increase (red), decrease (blue) and no change (black) from 
baseline. Patients are ranked from low to high degree of increase in stromal TILs level and corresponding 
tumor characteristics at baseline are shown above. Patients positive for RANK and RANKL were defined 
as having a H-score > 0. Geometric mean changes values, 95% CI are shown above each barplot. P, p-
value derived from the paired Student’s t-test. 
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To further investigate the biological effect of denosumab in breast cancer, we performed 

RNA sequencing on RNA extracted from matched fresh frozen tissues from 22 available 

pairs of pre- and post-treatment samples. The two remaining patients were excluded due 

to lack of tumor samples at baseline. We identified 379 differentially expressed genes 

between pre- and post-treatment (Supplementary Data File 3: Table S2). Gene ontology 

enrichment analysis revealed enrichment of genes related to immune cell migration and 

cytokine-mediated signaling pathways, including the well-known CD8 T cell attractant 

CXCL10 (Dufour et al., 2002) (Figure 3.3a and Supplementary Data File 3: Table S3). 

Pathway analysis using the generally applicable gene-set enrichment (GAGE) analysis 

revealed an enrichment of genes related to numerous immune processes (Figure 3.3b and 

Supplementary Data File 3: Table S4). 

To further explore the impact of denosumab on the immune cell landscape of breast 

cancer, we used CIBERSORT (Newman et al., 2015), a deconvolution method to infer 

immune cell content from gene expression data. Consistent with the IHC results, 

CIBERSORT analysis confirmed a significant increase in CD8+ cytotoxic T cells, naïve 

B cells and memory CD4 T cells together with a decrease in regulatory T cells. A decrease 

in the proportion of Macrophages “M0” and neutrophils was also observed 

(Supplementary Figure 3.4). 

In order to assess T cell activity, we measured the cytolytic activity score, which 

measures the mRNA levels of granzyme A (GZMA) and perforin (PRF1), two genes 

upregulated upon CD8+ T cell activation (Rooney et al., 2015), but we did not find a 

significant change between pre- and post-treatment tumors (GM change from baseline; 

1.07, 95% CI 0.71–1.62; P = 0.732, Figure 3.2g). 

Taken together, these results indicate that short course of denosumab induces 

immunomodulation of the tumor microenvironment with an increased level of TILs, B, 

T, and cytotoxic T cells. This effect does not appear to be due to an enhancement of TILs 

proliferation but rather due to upregulation of inflammatory cytokines, regulatory T 

depletion and a subsequent influx of immune cells. 
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Figure 3.3 – RNA-seq analysis of pre- and post-treatment samples 

a, Log2FC of the differentially expressed genes annotated to “GO:0019221 cytokine-mediated signaling 
pathway”. b, Top 20 significantly enriched pathways between pre- and post-treatment samples. 
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lymphocyte activation, including FOXP3, CD28, IL7R, BANK1, RAC2 and IFNG, all up-

regulated in pre-treated tumors from responsive patients (Supplementary Data File 3: 

Table S7 and, Figure 3.4d). Altogether, these data indicate that higher serum sRANKL 

concentration, the presence of regulatory T cells and higher FOXP3 mRNA expression 

at baseline could predict the immunomodulatory response induced by denosumab in 

breast cancer.  
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Figure 3.4 – Potential predictive biomarkers at baseline associated with an immunomodulatory response 

a, Comparison of baseline serum levels of CTX between non-responsive (N=12) vs. responsive (N=7). P, 
p-value derived from the Mann–Whitney U test. b, Comparison of baseline serum levels of sRANKL 
between non-responsive (N=13) vs. responsive (N=11) P, p-value derived from the Mann–Whitney U test. 
c, Comparison of baseline percentage of regulatory T cell as inferred by CIBERSORT between non-
responsive (N=11) vs. responsive (N=11). P, p-value derived from the Mann–Whitney U test. d, 
Comparison of baseline expression level of FOXP3 (normalized counts) between non-responsive (N=11) 
vs. responsive (N=11). P, p-value from DEseq2. 
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4 Discussion 
Based on preclinical evidence supporting the importance of RANK/RANKL signaling in 

mammary tumors, we have assessed the biological effects of short-term single agent 

denosumab treatment in premenopausal patients with early breast cancer. Denosumab 

was well-tolerated overall but did not meet the primary efficacy endpoint with no 

decrease in the percentage of Ki-67 positive cells in this premenopausal early breast 

cancer population. 

As expected, denosumab treatment was associated with a marked decrease in serum 

levels of sRANKL and CTX, demonstrating adequate target inhibition. However, a short 

course of denosumab had no apparent effect on the protein level of RANK/RANKL in 

the tumor tissue. 

RANK/RANKL have been implicated in various physiological immune processes such 

as lymph node organogenesis and immune-tolerance control (Cheng and Fong, 2014; 

Ferrari-Lacraz and Ferrari, 2011). To investigate the role of RANKL inhibition on the 

tumor immune microenvironment, we explored the effect of denosumab on the immune 

infiltrate. The prognostic and predictive value of TILs has been demonstrated in 

numerous studies, especially in HER2 and triple-negative breast cancer (Salgado and Loi, 

2018; Savas et al., 2016). However, not all breast cancer has a high presence of TILs. 

The identification of a therapy that can convert immune cold tumors into hot ones without 

adding toxicity is considered as a “holy grail” in the field. This question is particularly 

relevant for luminal breast cancer in which TILs levels were reported to be low. 

Strikingly, we found that short course of denosumab was associated with 

immunomodulation of the breast tumor microenvironment with an increased level of 

TILs, B, T and cytotoxic T cells and depletion of regulatory T cells. We also measured 

Ki-67-positive TILs and found no change after treatment. RNA-seq data obtained from 

matched pairs of frozen tumor tissue confirmed these results and differential gene 

expression analysis showed that denosumab induced upregulation of inflammatory 

cytokines. Thus, we hypothesized that the observed increased levels of TILs could be due 

to an influx of immune cells from the circulation. However, as there was no evidence of 

increased cytolytic activity, an important question that remains is whether these immune 

cells have the ability to recognize tumor cells and initiate an appropriate antitumor 

response.  
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Exploratory analysis of potential baseline biomarkers associated with the tumor 

immunomodulatory response revealed that the presence of regulatory T cells and higher 

FOXP3 expression were associated with a response, which further supports that the influx 

of TILs might also be mediated in part by depletion of regulatory T cells. High serum 

sRANKL concentration was also associated with response and could represent a practical 

approach to identify patients likely to benefit from the immunomodulation associated 

with denosumab in future clinical studies. More functional studies are still required to 

conclude that the immunomodulatory response associated with RANKL-inhibition is 

mediated through a tumor cell-dependent, immune cell-dependent or through a more 

complex mechanism involving both tumor and stromal cells interplay. 

In light of our results, it would be worth to reassess the clinical outcome of the two recent 

large phase III trials of adjuvant denosumab in postmenopausal early breast cancer, 

namely the D-CARE study which reported negative results and the ABCSG-18 trial 

which showed DFS improvement as secondary endpoint (Coleman et al., 2018; Gnant et 

al., 2018).  

Clinical studies of the immunomodulatory potential of anti-RANKL are limited, but it is 

worth to mention a case report describing an exceptional response upon treatment to 

combination anti-CTLA4 ipilimumab and denosumab in a metastatic melanoma patient 

(Smyth et al., 2013). Following this observation, the same group reported that RANKL 

blockade improved the efficacy of both anti-CTLA4 and PD1/PDL1 blockade in several 

tumor mouse models (Ahern et al., 2017, 2018a). The combinatorial effect of anti-

RANKL and immune checkpoint inhibitors will be investigated in the CHARLI trial 

(NCT03161756), a phase I/II study examining the effect of denosumab in combination 

with nivolumab (an anti-PD1) with or without ipilimumab in metastatic melanoma 

patients. 

Our study has some limitations, such as the small sample size and the lack of a control 

group. The number of TNBC and HER2-positive cases in our study was too small to 

perform subgroup analysis. Moreover, our study included only premenopausal patients, 

a question that remains is whether the immunomodulatory response associated with 

RANKL inhibition could also be effective in postmenopausal patients. This will be tested 

in the randomized PERIDENO trial (NCT03532087) in which the effect of denosumab 
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on the systemic and local immune environment will be determined in postmenopausal 

patients with early breast cancer. 

In conclusion, this is the first study on the effect of RANKL-inhibition on breast cancer 

biology in the preoperative setting. We have been able to demonstrate that a median of 

13 days of denosumab treatment is associated with an immunomodulatory effect on 

breast tumor microenvironment. This work encourages further research on the 

immunomodulatory potential of RANKL inhibition. To have an effective antitumor 

immunity response, tumor cells and tumor antigens have to be recognized by immune 

cells. Despite the fact that our study did not demonstrate evidence of cytolytic activity, 

we believe that this could be due to the very short timing, inherent of preoperative 

window-of-opportunity trials or that anti-RANKL might simply induce an influx of non-

effective immune cells. In the latter case, an interesting starting point could be to explore 

the synergistic effect of denosumab with drug inducing neoantigens or immune 

checkpoints inhibitors.  
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5 Supplementary Materials 

 

Supplementary Figure 3.1 – The immunomodulatory role of denosumab in breast cancer at the 
intratumoral level 

a, Change from baseline in the percentage of intratumoral TILs (N = 24). b-f, Change from baseline in the 
percentage of intratumoral CD3-positive, intratumoral CD20-positive, intratumoral FOXP3/CD4 double 
positive, stromal CD68-positive and intratumoral CD68-positive cells (N = 23). Geometric mean changes 
and 95% CI values are shown above each ladder plot and significant changes are indicated with “*”. P, 
p-value derived from the paired Student’s t-test. Lines are color-coded according to increase (red), 
decrease (blue) and no change (black) from baseline. 
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Supplementary Figure 3.2 – Representative micrographs of pre- and post-treatment tumor sections from 
one patient (DBY003) 

Corresponding stainings are shown on the left-hand side. Scale bar indicates 100 µm. 
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Supplementary Figure 3.3 – Representative micrographs of multiplex IHC of pre- and post-treatment 
tumor sections from the top four patients associated with the highest immunomodulatory response 

Corresponding stainings are shown on the upper right corner. Scale bar indicates 100 µm. 
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Supplementary Figure 3.4 – Comparison of 16 immune cell fractions, as inferred by CIBERSORT, 
between pre- and post-treatment tumor samples 

Geometric mean changes and 95% CI values are shown above each ladder plot and significant changes 
are indicated with “*” (N = 22). P, p-value derived from the paired Student’s t-test. Lines are color-coded 
according to increase (red), decrease (blue) and no change (black) from baseline. 
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CONCLUDING REMARKS AND PERSPECTIVES 

Since long, epidemiological studies have established a link between women’s 

reproductive history and the risk of developing breast cancer. However, to date, there 

were no studies addressing the association between reproductive history and the genomic 

alterations of breast tumors. The advent of next-generation sequencing and other "omics" 

tools, coupled with the public availability of the data generated, have allowed us to carry 

out the first study of this thesis. The main aim of this research was to explore the 

association of parity status and age at first pregnancy with clinical, biological and 

molecular characteristics of subsequent breast cancer. In addition to the publicly available 

data already present in the BRCA560 dataset (Nik-Zainal et al., 2016) (e.i., 

clinicopathological features, WGS, RNAseq data), we also evaluated the level of tumor-

infiltrating lymphocytes (TILs) using international guidelines.  

At the clinical level, we found a higher proportion of triple-negative breast cancer 

(TNBC) in parous and particularly in early parous patients. This could be attributed to a 

differential effect of pregnancy-induced tumor protection according to breast cancer 

subtypes that we and others have shown (Lambertini et al., 2016; Ellingjord-Dale et al., 

2017; Ritte et al., 2013; Yang et al., 2011). We also documented that, irrespective of 

clinicopathological features, age at first pregnancy is negatively associated with age at 

breast cancer diagnosis. This observation, which needs to be validated in larger cohorts, 

is in line with the reported reduced risk of breast cancer associated with early pregnancy. 

Previous reports have hypothesized that tumor protection associated with early parity 

could be attributable to an improved antitumor immunity (Agrawal et al., 1995; Arklie et 

al., 1981; Erlebacher, 2013; Finn et al., 1995; Jungbluth et al., 2007). Neither parity status 

nor age at first birth was associated with tumor-infiltrating lymphocytes. However, an 

increased level of tumor-infiltrating lymphocytes was observed in tumors diagnosed 

shortly after pregnancy. At the genomic level, we demonstrated that age at first birth, but 

not parity status was associated with the genomic landscape of subsequent breast cancer. 

However, because there was a relatively small number of nulliparous patients, we cannot 

definitively conclude that parous and nulliparous patients have no difference in their 

genomic makeup. Early parous patients developed tumors characterized by a higher 

number of Indels, a lower frequency of CDH1 mutations, a higher frequency of TP53 

mutations and MYC amplification, and a lower prevalence of mutational signature 2. The 
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higher frequency of TP53 mutations observed in early parous patients is of particular 

relevance given the known role of TP53 in mediating the pregnancy-induced resistance 

to breast cancer. This finding may explain the differential effect of parity-induced 

protection according to tumor subtypes. Indeed, the beneficial effect of early pregnancy 

on breast cancer risk might be less effective against TP53 mutated progenitor cells that 

are more prone to give rise to TNBC.   

The lack of data on other reproductive factors such as age at menarche, time since last 

pregnancy and breastfeeding, precluded the possibility of conducting an extensive 

analysis of the complete reproductive history on the biology of breast cancer. 

Nonetheless, we hope that this study represents a first step toward the recognition that 

reproductive variables matter in order to understand the biology of female cancers fully. 

Of course, this study needs to be validated in others large-scale genomic studies of breast 

cancer. However, publicly available genomic studies, such as TCGA, usually lack 

reproductive history data. Therefore, this study advocates that reproductive history 

should be routinely collected in future studies addressing the biology of breast cancer but 

also of other female cancers. Indeed, the association between reproductive history and 

the risk of gynecological cancers such as ovarian (Hankinson et al., 1995; La Vecchia et 

al., 1993) and endometrial cancers (Titus-Ernstoff et al., 2001) have been established 

since long. Therefore, this work may open the door to further understand the link between 

reproductive history and the genomic landscape of other female cancers. 

Complementing works of Azim et al. (Azim et al., 2012b, 2014, 2015a, 2015b), the 

second study of this thesis concludes one central research theme of the J.-C. Heuson 

Breast Cancer Translational Laboratory. Because we hypothesized that pregnancy could 

impact breast cancer biology, we characterized a unique cohort of patients with breast 

cancer diagnosed during pregnancy (BCP) and age/stage-matched non-pregnant control 

by performing whole-genome sequencing and copy number alteration profiling. 

In this study, we identified important molecular differences characterizing BCP that may 

potentially represent a biologic explanation for their rather aggressive clinical behavior. 

Genome-wide copy number alteration profiling shown no striking difference between 

BCP and controls. However, multiple themes emerged from the whole-genome 

sequencing analysis. First, BCP was enriched in non-silent mutations that could have 

important oncogenic functions. Second, BCP was associated with a higher frequency of 
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mutation in mucin gene family. Particularly, the gain of serine residues, in addition to 

upregulation of mucins at the mRNA level, tempted us to speculate that BCP could be 

associated with mucins hyperglycosylation. Of course, the exact biological relevance of 

mucin mutations in breast cancer is still unknown and should be explored in future 

functional studies. Finally, analysis of breast cancer mutational signatures revealed that 

BCP were enriched in a process related to DNA mismatch repair deficiency. This is of 

particular clinical relevance as this feature has been shown to predict clinical benefit from 

immune checkpoint blockade in other types of cancers (Le et al., 2015; Rizvi et al., 2015). 

This study had some technical considerations to take into account. Due to the rarity of 

this disease, we used archived FFPE samples that are known to be challenging for WGS 

due to DNA degradation and induction of artifacts. Nonetheless, BCP and controls were 

processed together without difference in the age of the samples or the sequencing 

coverage. Thus, an ideal validation study would be to carry out the same analysis on 

samples collected from fresh frozen tissues. As it is known that pregnancy induces 

epigenetic changes in epithelial cells to support mammary development (Huh et al., 

2015), DNA methylation profiling could represent an attractive approach for future 

studies on the impact of pregnancy on breast cancer biology. We believe that this study 

represents a unique opportunity and provides new data to study the impact of pregnancy 

on breast cancer biology. The massive amount of sequencing data generated by this 

project is publicly available. It is our hope and expectation that this study might be 

considered as a useful resource aiming to shed new light on the biology of BCP and on 

the biology of breast cancer in young women in general.  

In the last chapter of this thesis, we attempted to translate some biological insights gained 

by previous studies into improving the clinical management of breast cancer diagnosed 

in young women. Independently of classical clinicopathological features, it has been 

shown that young age is associated with worse prognosis and that breast tumor of young 

women might be considered as a unique biological entity. Previous work of Azim at al. 

and others have found that RANKL expression was associated with young age at breast 

cancer diagnosis. Given the preclinical evidence on the role of RANKL in mammary 

tumorigenesis and antitumor immunity, we initiated a preoperative window-of-

opportunity trial evaluating the effect of RANKL inhibition by denosumab in young 

premenopausal breast cancer patients. 
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We found that denosumab was well-tolerated overall but did not meet its primary efficacy 

endpoint, with no decrease in the percentage of Ki-67 positive tumor cells. However, this 

intervention was associated with a tumor microenvironment response with an increased 

level of TILs, B, T and cytotoxic T cells and depletion of regulatory T cells. RNAseq 

analysis revealed that denosumab induces upregulation of inflammatory cytokines within 

the tumor. Thus, we hypothesized that the increased levels of TILs could be due to an 

influx of immune cells from the circulation. The study of potential biomarkers at baseline 

revealed that the presence of regulatory T cells and higher FOXP3 expression was 

associated with an immunomodulatory response which supports that the influx of TILs 

might also be mediated by depletion of regulatory T cells. 

The relatively small sample size precluded the possibility to perform subgroup analysis 

according to breast cancer subtypes. Moreover, this study included only premenopausal 

patients, a question that remains is whether the immunomodulatory response associated 

with denosumab could also be effective in postmenopausal patients. The lack of a control 

group is a second limitation that should be taken into consideration. To date, this is the 

first study on the effect of RANKL inhibition on breast cancer biology in the preoperative 

setting. Even if this study did not meet its primary endpoint, many new biological insights 

on the effect of a short course of denosumab on breast tumors have been gathered. The 

tumor immune microenvironment response is encouraging and is in line with previous 

preclinical observations. 

In conclusion, it is our belief and hope that the different research projects conducted 

throughout this thesis represent a step forward toward a better understanding of the 

complex interplay between women's reproductive life and breast cancer biology. Breast 

cancer mortality has been decreased in the last decades, but this disease still represents a 

major health concern. Much remains to be learned to understand the disease fully but 

understanding its molecular pathology is a key element toward ultimately improving 

patients' lives. Finally, as the famous quote by Benjamin Franklin goes – "An ounce of 

prevention is worth a pound of cure", the in-depth study of natural mechanisms associated 

with breast cancer prevention, such as early pregnancy, could also open new avenues for 

contributing to the fight against cancer.  
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Breast cancer diagnosed during pregnancy is associated with
enrichment of non-silent mutations, mismatch repair deficiency
signature and mucin mutations
Bastien Nguyen 1, David Venet1, Hatem A. Azim Jr 1,2, David Brown 1,3, Christine Desmedt1, Matteo Lambertini 1, Samira Majjaj1,
Giancarlo Pruneri4, Fedro Peccatori5, Martine Piccart1, Françoise Rothé1 and Christos Sotiriou1

Breast cancer diagnosed during pregnancy (BCP) is a rare and highly challenging disease. To investigate the impact of pregnancy
on the biology of breast cancer, we conducted a comparative analysis of a cohort of BCP patients and non-pregnant control
patients by integrating gene expression, copy number alterations and whole genome sequencing data. We showed that BCP
exhibit unique molecular characteristics including an enrichment of non-silent mutations, a higher frequency of mutations in mucin
gene family and an enrichment of mismatch repair deficiency mutational signature. This provides important insights into the
biology of BCP and suggests that these features may be implicated in promoting tumor progression during pregnancy. In addition,
it provides an unprecedented resource for further understanding the biology of breast cancer in young women and how pregnancy
could modulate tumor biology.

npj Breast Cancer �(2018)�4:23� ; doi:10.1038/s41523-018-0077-3

INTRODUCTION
Breast cancer is the most frequently diagnosed malignancy during
pregnancy.1 Its incidence is increasing given the rising trend of
delayed childbearing.2 Given its rarity, few dedicated studies were
performed so far; hence, our understanding of these tumors
remains poor. The clinical management of these patients follows
standard guidelines with only minor adaptations according to
gestational age, maternal wishes and fetal considerations.2

Therefore, the molecular characterization of BCP goes beyond
academic curiosity as it is of utmost clinical interest to determine if
these patients should be treated similarly to non-pregnant breast
cancer patients. In this report, we aimed to identify specific
molecular alterations characterizing BCP by combining whole
genome sequencing, copy number alteration and gene expression
data.

RESULTS
A total of 167 patients with primary breast cancer were
retrospectively included in this study, 54 of whom were diagnosed
during pregnancy. Detailed patient characteristics were previously
published.3 At a median follow-up of 9 years, median disease-free
survival (DFS) time of BCP was 9.8 years vs. 12.5 years in controls
(P= 0.041, log rank test, Supplementary Fig. S1a). Observed 5-year
overall survival (OS) rate was 95.5% vs. 85.1% in BCP and control,
respectively; median OS time was not reached within the time
frame of the study (Supplementary Fig. S1b). In a multivariable
Cox proportional hazards regression of DFS and OS, adjusted for

age at diagnosis, date of diagnosis, pathological stage and
molecular subtypes by IHC, we found that BCP was associated
with worse DFS (multivariable hazard ratio [mHR] 1.81; 95% CI
1.09–3.01, P= 0.024) and OS (mHR 2.53; 95% CI 1.20–5.36, P=
0.017) (detailed survival data is provided in Supplementary Table
S1).

BCP and controls have similar somatic copy number alteration
profiles
We first sought to investigate whether tumors from BCP patients
show distinct copy number alterations (CNAs) compared to
tumors from matched non-pregnant breast cancer patients
(controls). Hence, we performed genome-wide copy number
alterations profiling on 160 formalin-fixed paraffin-embedded
(FFPE) primary tumor samples from 52 BCP patients and 108
controls. Of note, gene expression data were available for all
patients as previously described.4 After quality control, CNA
profiles were obtained for 125 tumor samples (78%) from 38 BCP
and 87 controls. The main reason for exclusion was low cancer cell
fraction (CCF < 30%) as estimated with the Genome Alteration
Print algorithm5 (Supplementary Fig. S2). No differences in
clinicopathological features were observed between BCP and
controls (Supplementary Table S2). We found no significant
differences between BCP and controls in terms of cancer cell
fraction, ploidy, and fraction of genome altered (Fig. 1a-c).
Moreover, no significant differences were observed between the
CNA profiles of the two groups neither at the segment nor at the
chromosome arm levels, including the gains of 1q and 8q and loss
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of 8p, reported to frequently occur in breast cancer6 (Fig. 1d). We
also compared CNAs profiles by intrinsic subtypes as defined by
PAM50 and found no significant differences (Supplementary Fig.
S3 and Supplementary Table S3).
We next focused our analysis on the 35 genes that were

previously identified as CNA drivers in breast cancer.7 As expected,
MYC oncogene was the most frequently gained/amplified whereas
TP53 tumor suppressor gene was the most frequently lost/deleted
across the whole cohort (Fig. 1e). Using GISTIC2.0,8 we identified
22 focal amplifications and 23 focal deletions and found no
differences between their prevalence in the two groups

(Supplementary Fig. S4). Taken together, these results suggest
that the CNA profiles of BCP and controls are similar.

BCP shows a higher number of non-silent mutations
To identify potential genomic differences between BCP patients
and controls, we performed whole genome sequencing (WGS) on
paired DNA samples extracted from FFPE blocks (i.e., primary
tumors and histologically normal axillary lymph nodes) in a subset
of 53 breast cancer patients from our initial series, 35 of whom
were BCP (Supplementary Fig. S2 and Supplementary Table S2).
We achieved 32X and 19X median haploid genome coverage for
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tumor and normal samples respectively, which is similar in range
to previous studies7 (Supplementary Fig. S5). We detected a
median of 13,829 and 10,084 single nucleotide variants (SNVs) and
a median of 21 and 26 small insertions and deletions (Indels) in
BCP and controls, respectively, and found no difference between
the two groups (Fig. 2a and Supplementary Fig. S6a-c). Moreover,
there was no difference in structural variations (insertions,
deletions, duplications) nor tumor heterogeneity as assessed by
the MATH score9 (Supplementary Fig. S6d-f).
We identified a median of 14 non-silent mutations per tumor

which is comparable to another large-scale breast cancer cohort
study7 (Supplementary Table S4). Interestingly, BCP had a
significantly higher number of non-silent mutations than controls
(median: 20 vs. 12, P= 0.027, Fig. 2b and Supplementary Fig. S6g-
h). This observation remained consistent after correcting for
potential confounding factors including age at diagnosis, date of
diagnosis, pathological stage and molecular subtypes by IHC (P=
0.019, Fig. S6g). Compared to controls, BCP had also a significantly
higher number of mutations previously reported in breast cancer
in the Catalog of Somatic Mutations in Cancer (COSMIC)
database10 (P= 0.018, Supplementary Fig. S6i). At the gene level,
we identified 17 genes harboring at least one non-silent mutation
with a frequency of at least 5% across all patients. Of those, TP53
and PIK3CA were the most frequently mutated genes without any
significant difference between the two groups (Fig. 2c).

BCP is associated with a higher frequency of mutations in mucin
gene family
MUC17 was the third most mutated gene and four other mucin
gene family members namely MUC2, MUC4, MUC12, and MUC20 ,
were among the most frequently mutated genes in BCP (Fig. 2c).

Within the mucin gene family, we identified 20 missense
mutations and one nonsense mutation in BCP compared to only
two missense mutations in controls. Among these 20 mucin
variants, 10 were present in the COSMIC database,10 which was
higher than expected by chance (P= 0.006, Monte-Carlo test,
Supplementary Table S4). Altogether, we found a significantly
higher number of BCP with non-silent mutations in the mucin
gene family compared to controls (45.7 vs. 11.1% respectively, P=
0.015, Fig. 2c). This observation remained consistent after
correcting for classical clinicopathological features (P= 0.008).
Similar findings were observed by comparing BCP with 56
matched controls taken from the TCGA dataset (45.7 vs. 23.1%
respectively, P= 0.034). Acknowledging that some mucins (MUC4,
MUC16 ) are known to give rise to false positive calls due to
technical artifacts,11 we removed these two genes and confirmed
the above-mentioned results (37.1 vs. 5.5%, P= 0.020 and 37.1 vs.
14.3%, P= 0.020, using controls and TCGA controls, respectively).
We did not find any differences in clinicopathological features

or survival according to mucin mutational status (Supplementary
Table S5 and Supplementary Fig. S7). There were three hotspots
mutations (i.e., present in two distinct patients) two in MUC17 and
one in MUC20 , and five missense mutations were clustered within
260 base pairs of MUC2 (Fig. 3a). None of these mutations were in
annotated protein domains. Since the glycosylation of mucins is
known to play a major role in producing a chemical barrier at the
epithelium of tubular organs for protection and lubrication, we
interrogated whether these mutations could affect glycosylation
acceptor sites. The mucin O-glycosylation is characterized by the
addition of N-acetylgalactosamine (GalNAc) to the hydroxyl group
of serine or threonine residues.12 Remarkably, 40.9% of missense
mutations affecting mucins resulted in an amino acid change to a
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serine residue, which was significantly higher than expected by
chance (P= 0.0002, Monte-Carlo test), suggesting mucin hyper-
glycosylation in BCP. We also found that the frequency of
missense mutations resulting in a gain of serine site in mucins
in the TCGA dataset was significantly lower compared with BCP
(6.3% in TCGA vs. 40.9% in BCP, P < 0.001). Since mucins
expression is known to increase throughout gestation in mice,13

we expected that mucins were also upregulated in BCP. We
therefore derived a metagene signature comprising all members
of the mucin gene family (called “MUCsig”) from the correspond-
ing gene expression data and found higher expression of MUCsig
in BCP than in controls (P= 0.017, Fig. 3b-c). Altogether, these
results show that BCP is associated with an increased expression
of mucins as well as a higher frequency of mutations in mucin
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gene family that may potentially lead to mucin
hyperglycosylation.

BCP is enriched in mutational signature related to mismatch repair
deficiency
To have a better understanding of the etiology of BCP, we
interrogated the contribution of base-substitution signatures
known to occur in breast cancer.7 When evaluating the proportion
of each signature present in each sample, we found that signature
1 was more prevalent in BCP compared to controls whereas
signature 5 was more prevalent in controls (P= 0.013, FDR= 0.053
and P= 0.01, FDR= 0.053, respectively, Fig. 2d). These results
remained consistent after controlling for clinicopathological
features (P= 0.002, FDR= 0.014 and P= 0.004, FDR= 0.016,
respectively). When evaluating the presence or absence of
mutational signatures we found that signature 20 (Sig20) was
found in 13 out of 35 BCP (37.1%), as compared to only 2 out of 18
controls (11.1%) (P= 0.059, FDR= 0.410, Fig. 2d). When control-
ling for clinicopathological features, this observation was sig-
nificant (P= 0.004, FDR= 0.029). Signature 1 is known to be
associated with age at diagnosis while the etiology of signature 5
is still unclear. Sig20, previously found in stomach and breast
cancers, is related to DNA mismatch repair (MMR) deficiency.14 Of
interest, this signature remained significantly enriched in BCP
when increasing the number of controls with 64 matched cases
derived from the BRCA560 dataset (37.1 vs. 3.1%, P < 0.001). No
classical clinicopathological features were associated with BCP
Sig20-positive tumors except progesterone receptor negative
status (Supplementary Table S6). We found that Sig20 frequency
was strongly correlated with SNV mutational load (ρ= 0.56, P <
0.001, Supplementary Fig. S8a) with Sig20-positive tumors
harboring a median of 31,632 SNVs, as compared to 7,352 SNVs
in Sig20-negative tumors (P < 0.001, Fig. 4a). Next, we interrogated
if Sig20 could be caused by alteration of genes involved in the
MMR machinery either at the expression or copy number levels.
The first step of MMR is the recognition of replication errors
mediated by MutS homolog complexes; MSH2 and MSH6 .15 We
found a significantly lower expression of MSH2 in patients
harboring Sig20 (P= 0.047, Fig. 4b) corroborated by a negative
correlation between MSH2 expression and Sig20 frequency (ρ=
−0.27, P= 0.024, Supplementary Fig. S8b). This could be partially
caused by CNA in MSH2 since 5 out of 15 Sig20-positive versus 1
out of 38 Sig20-negative tumors harbored MSH2 deletions (33.3 vs.
2.6%, P= 0.01). Finally, we interrogated the impact of Sig20 on
survival and found that BCP Sig20-positive patients had a shorter

DFS than BCP Sig20-negative patients (median DFS time of 2.9
years vs. 10.2 years respectively P= 0.091, log rank test, Fig. 4c). In
Sig20-positive patients the median OS was 6.72 years while the
median OS was not reached in BCP Sig20-negative patients (P=
0.009, log rank test, Supplementary Fig. S9). This was not
significant in a multivariate model (DFS mHR 1.06; 95% CI
0.21–4.27, P= 0.31; OS mHR 0.8; 95% CI 0.12–5.07, P= 0.81,
respectively). Overall, these results suggest that some BCP patients
show a defective MMR due to copy number loss of MSH2.

DISCUSSION
This study reveals important molecular differences characterizing
BCP that may potentially represent a biologic explanation for their
rather aggressive clinical behavior. First, BCP was enriched in non-
silent mutations that could have potential oncogenic functiond.
Second, 45% of BCP harbored a mutation in mucin gene family in
addition to an upregulation of mucins at the mRNA level. Like in
mice,13 this could be due to physiological change induced by
pregnancy to prepare the breast for lactation. Our hypothesis is
that some preexisting subclones carrying mucin mutations could
have a growth advantage under pregnancy state. Another
argument in favor of this hypothesis is the fact that most mucin
mutations resulted in an amino acid change to a serine residue
and that some of them are in hotspot regions. It has been
previously found that in breast cancer, alterations in mucin
expression or glycosylation influence tumor growth, adhesion,
invasion, and immune surveillance.16,17 The impact of missense
mutations resulting in an amino acid change to a serine residue on
the glycosylation status of mucins is unknown, but it is tempting
to speculate that these alterations could influence their function,
stability and secretion. More investigations are required to
determine the exact effect of mucin mutations in BCP and in
breast cancer in general, but these alterations could play a role in
BCP biology.
Moreover, BCP showed a higher prevalence of signatures 1 and

20 and a lower prevalence of signature 5. The etiology of signature
5 is not well understood.18 The high prevalence of signature 1
cannot be explained by a difference in age at diagnosis or age of
the blocks since similar results were found in a multivariate
analysis after adjusting for both variables. 37.1% of BCP were
associated with signature 20 (Sig20), attributable to DNA
mismatch repair deficiency. This is surprising given the low
frequency (1–2%) of MMR deficiency recently reported in breast
cancer.19 Mechanistically, this could be explained in part by the
deletion of MSH2, a key gene involved in MMR. Survival analysis
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showed that BCP Sig20-positive patients had the worst prognosis
whereas BCP Sig20-negative patients had DFS comparable to
controls. MMR deficiency and high mutational burden have been
shown to predict clinical benefit to immune checkpoint blockade
in colorectal and other types of highly immunogenic cancers.20,21

To date, the role of checkpoint inhibitors in the treatment of
breast cancer is under intensive investigation and the results are
still awaited.22 While the feasibility of investigating new agents in
such peculiar disease is rather complex, these results could
potentially open the door to identify high-risk BCP patients who
could benefit from immunotherapy.
A potential limitation of our study is that we used archived FFPE

samples that are known to be challenging for WGS due to DNA
degradation and induction of artefacts. Indeed, the higher
proportion of signature 1 and 5 observed in our study could be
due to C > T artefacts induced by formalin fixation. Nonetheless,
BCP and controls were processed in the same way with no
difference in the age of the blocks and the sequencing coverage
reached in normal and in tumor tissues was comparable to other
studies.7 Another limitation of our study is the lack of epigenetic
profiling analysis. As it is known that pregnancy induce epigenetic
changes in epithelial cells to support mammary development,23

we can hypothesize that these modifications could impact breast
cancer biology. Therefore, the study of such modifications in BCP
is worthy further investigation. In conclusion, we believe that our
work provides important insights into the biology of BCP and a
unique resource to study the biology of breast cancer in young
women and how pregnancy could modulate tumor biology.

METHODS
Patients and samples
A total of 167 patients with primary breast cancer were retrospectively
included in this study, 54 of whom were diagnosed during pregnancy. All
patients were diagnosed and followed up at the European Institute of
Oncology (IEO, Milan, Italy) from 1996 to 2010. As previously described,3

this is a case-control study, in which pregnant breast cancer patients and
controls were matched according to age, tumor size, nodal status, and date
of diagnosis. For the current genomic analysis, we opted to exclude
patients who received neoadjuvant therapy to avoid potential impact of
treatment on the obtained results. The majority were treated with
anthracycline-based regimen (individual patients data are presented in
Supplementary Table S1). All patients had available FFPE tissue from the
primary tumor resection and there was only one tumor sample per patient.
All control patients were pre-menopausal at time of diagnosis. ER/PR-status
were defined by ASCO-CAP. For the classification of Luminal A and B we
used a cut-off of Ki67 > 20% according to the St Gallen 2015 Consensus
Meetings.24 Matched normal tissues were collected from histologically
confirmed tumor-free axillary lymph nodes or tumor-adjacent normal
tissue and there was only one normal sample per patient. FFPE tissue
sections were deparaffinized by xylene followed by a 100% ethanol wash.
DNA extraction was performed using the QIAamp DNA FFPE Tissue Kit
(Qiagen, Hilden, Germany) following the manufacturer’s recommendations.
The quantity of double-stranded DNA was evaluated using the Qubit
dsDNA BR Assay Kit. For the WGS, we selected 18 control patients based on
major clinicopathological features of the 35 BCP patients, namely age at
diagnosis, ER status, and grade. All patients provided written informed
consent for the use of tissue samples for research purposes as per the IEO
institutional policies. This study was approved by the Ethics Committee of
Institut Jules Bordet (Number 1782). The validation of the enrichment of
mutations in the mucin family genes in BCP were done by comparing the
frequency of these mutations in BCP patients with putatively non-pregnant
patients retrieved from the TCGA dataset25 and selected to have similar
age, estrogen receptor (ER) and progesterone receptor (PR) distribution (N
= 56) (Supplementary Table S7). The validation of the enrichment of
signature 20 in BCP were done by comparing the frequency of this
signature in BCP patients with putatively non-pregnant patients retrieved
from the 560 breast cancer dataset7 (referred to as BRCA560) and selected
to have similar age, ER and PR distribution (N= 64).

Transcriptomic profiling
All samples were hybridized on Affymetrix Human Genome U219 array
plates following the manufacturer’s protocol, as described before.4 The
metagene signature MUCsig was calculated by taking the mean expression
level of all genes present in the mucin family, scaled to a standard
deviation of one and centered around zero. The publicly available murine
data set derived from normal breast of pregnant mice (GEO ID: GSE819113)
was used to evaluate mucin expression in the normal breast during
pregnancy. Ensembl database was used to convert mouse gene names to
the human equivalent.

Genome-wide copy number analysis
Hematoxylin and eosin slides from the archived FFPE blocks were reviewed
by a pathologist (G.P.) to confirm diagnosis and evaluate tumor content.
Samples with tumor purity below 60% were macrodissected (N= 56). DNA
was extracted as described above. A total of 80 ng of DNA was used for
copy number profiling using the Affymetrix OncoScan® FFPE Assay Kit
according to the manufacturer’s instructions. The raw intensity values from
the scanned chips were normalized to obtain Log2 ratios, B allele
frequencies and genotyping calls (AA/AB/BB) using Affymetrix Power Tools.
We used release NA.33 of the NetAffx library for the reference model and
annotation. We computed the median absolute pairwise deviation and the
median auto-correlation from the normalized log2 ratios as quality control
metrics and used a threshold of 0.30 and 0.5, respectively, to flag failed
arrays. Further details are provided in the Supplementary Methods.

Library preparation and whole genome sequencing
For each of 53 patients, two samples of 1μg genomic DNA from tumor and
histologically normal axillary lymph nodes were whole genome sequenced
at The McDonnell Genome Institute at Washington University (St Louis MO,
USA) on an Illumina HiSeqX platform. Briefly, manual dual indexed libraries
were constructed with 1μg of FFPE genomic DNA for the 53 tumor/normal
pairs using the Accel-NGS 2S Plus Library Kit (Swift, MI, USA). Samples were
fragmented on the Covaris LE220 instrument with 350bp target insert size.
PCR cycle optimization was performed to prevent over-amplification of the
libraries. The concentration of each library was determined through qPCR
(Kapa Biosystems, MA, USA). For the normal samples, each library was
loaded on one lane of a HiSeqX flow cell, whereas for tumor samples, each
library was loaded across two lanes of a HiSeqX flow cell. 2×150 paired-end
sequence data were generated at a target depth of 30×(normal) and 60
(tumor) haploid genome coverage. All sequencing data are available in
EGA under accession “EGAS00001002685”. Further details are provided in
the Supplementary Methods.

Tumor heterogeneity
To quantify the level of intra-tumor heterogeneity present in a sample, we
used the MATH score as previously described9;

MATH ¼ MAD VAFsð Þ
median VAFsð Þ

where MAD(VAFs) is the median absolute deviation of the variant allele
fractions (VAFs) of all the mutations (coding and noncoding) in a tumor.

Mutational signature
All samples were analyzed using deconstructSigs26 to extract signatures
based on the Wellcome Trust Sanger Institute Mutational Signature
Framework.

Statistical analysis and survival analysis
Except for age and date of diagnosis that were considered as continuous
variables and therefore compared using the non-parametric
Mann–Whitney U test, differences in other clinicopathological character-
istics between BCP and controls were analyzed using the χ2 test or the
Fisher exact test when appropriate. All statistical tests comparing BCP and
controls were done using the non-parametric Mann–Whitney U test and
the Fisher exact test for continuous and categorical variables, respectively.
Independent association between continuous and binary variables with
BCP vs. controls was investigated using linear and logistic regressions,
respectively. All multivariate tests were adjusted for age at diagnosis, date
of diagnosis, pathological stage, and molecular subtypes by IHC. All
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interaction and multivariate tests were done using analysis of variance to
compare the models with and without the extra term.
All correlations were measured using the non-parametric Spearman’s

rho coefficient. Reported P-values were two-tailed, and differences were
considered significant when the P-value was less than 0.05. When
applicable, multiple testing correction was done using the false discovery
rate method (FDR),27 FDR below 0.05 being considered significant. All
analyses were done in R software version 3.3.2 (available at www.r-project.
org) and Bioconductor version 3.4.
Survival endpoint was DFS and calculated from the date of surgery to

any loco-regional or distant recurrence, contralateral BC, other primary
tumor or death from any cause, whichever occurred first. In the absence of
any of the above-mentioned events, survival was censored at the last
follow-up visit or phone call with the patient. Survival curves were
estimated using the Kaplan–Meier method and compared by the log-rank
test. The prognostic impact of pregnancy on survival was evaluated using
univariate and multivariate Cox proportional hazards regression models
and expressed as hazard ratio (HR) with 95% CI. Multivariate analysis was
adjusted for standard clinical prognostic factors (age at diagnosis, date of
diagnosis, pathological stage, and molecular subtypes by IHC). Further
details are provided in the Supplementary Methods.

Data availability
Raw gene expression data, together with patients’ characteristics, are
publicly available on GEO http://www.ncbi.nlm.nih.gov/geo/, under
accession number GSE53031. Sequencing data have been deposited at
the European Genome-Phenome Archive (http://www.ebi.ac.uk/ega/),
under accession number EGAS00001002685.
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Abstract

Background: Age at breast cancer diagnosis is a known prognostic factor. Previously, several groups including ours
have shown that young age at diagnosis is associated with higher prevalence of basal-like tumors and aggressive
tumor phenotypes. Yet the impact of age at diagnosis on the genomic landscape of breast cancer remains unclear.
In this study, we examined the pattern of somatic mutations, chromosomal copy number variations (CNVs) and
transcriptomic profiles in young and elderly breast cancer patients.

Methods: Analyses were performed on The Cancer Genome Atlas (TCGA) dataset. Patients with metastatic disease
at diagnosis, classified as normal-like by PAM50 or had missing clinical information were excluded. Young patients
were defined as ≤45 years of age, while elderly patients were those ≥70 years of age at breast cancer diagnosis.
The remaining patients were classified as “intermediate”. We evaluated the association between age at diagnosis
and somatic mutations, CNV and gene expression in a logistic regression model adjusting for tumor size, nodal
status, histology and breast cancer subtype. All analyses were corrected for multiple testing using the
Benjamini–Hochberg approach.

Results: In this study, 125, 486 and 169 patients were ≤45, 46–69 and ≥70 years of age, respectively. Older patients had
more somatic mutations (n = 44 versus 35 versus 31; P = 0.0009) and more CNVs, especially in ductal tumors (P = 0.02).
Eleven mutations were independently associated with age at diagnosis, of which only GATA3 was associated with
young age (15.2 % versus 8.2 % versus 9 %; P = 0.003). Only two CNV events were independently associated with age,
with more chr18p losses in older patients and more chr6q27 deletions in younger ones. Younger age at diagnosis was
associated with higher expression of gene signatures related to proliferation, stem cell features and endocrine resistance.

Conclusions: Age adds a layer of biological complexity beyond breast cancer molecular subtypes, classic
pathological and clinical variables, worthy of further consideration in future drug development as we seek to
refine therapeutic strategies in the era of personalized medicine.

Keywords: Age, Breast cancer biology, Breast cancer in the elderly, Breast cancer in young patients, GATA3, Gene
expression, Mutations

Background
Young age at breast cancer diagnosis is a known poor
prognostic factor [1, 2]. Previous studies have indicated
higher prevalence of poorly differentiated, estrogen recep-
tor (ER)-negative and human epidermal growth factor re-
ceptor 2 (HER2)-positive tumors in women diagnosed at a
young age [3, 4]. Further genomic characterization has re-
vealed enrichment with basal-like tumors [5, 6]. While
these observations could well explain the poorer outcome

of young breast cancer patients compared to their older
counterparts, younger age remains an independent poor
determinant of long-term outcome [5]. This underscores
the need to further refine our understanding of the impact
of age on cancer biology, which could have relevant impli-
cations on patient management.
On the other hand, few data are available with respect

to the biological features of tumors arising in the elderly.
Currently, around 30–35 % of breast cancer patients
are over 70 years of age at the time of diagnosis and
this is expected to increase in the coming years [7].
While these patients appear to develop relatively more
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“indolent” tumors characterized by high endocrine recep-
tor expression [8], the late onset of these tumors may also
suggest accumulation of several genomic aberrations over
time, due to the stochastic nature of DNA damage in
eukaryotic cells during the replication process. Ac-
knowledging that morbidities other than cancer itself
often contribute to mortality of older patients [9], it
is very important to refine our understanding of the
biology of these tumors in an attempt to optimize
their management.
Previously, our group and others have published on

the differences at the transcriptomic level according to
age at diagnosis, investigating selected genes or pathways
[5, 6, 10]. However, we lack studies that evaluate the dif-
ferences at the DNA level. In the current study,we in-
vestigated for the first time the differences in somatic
mutations and copy number variations (CNVs) between
young and older breast cancer patients. In addition, we
evaluated the expression of thousands of relevant genomic
signatures at the RNA level.

Methods
Eligible patients
All analyses were performed on The Cancer Genome
Atlas (TCGA) publicly available dataset. Eligible patients
were those with non-metastatic disease who had complete
information on age at breast cancer diagnosis, tumor hist-
ology, tumor size and lymph node status. For each patient,
we determined the breast cancer molecular subtype using
PAM50 [11]. PAM50 classes were determined from the
TCGA RNA-Seq gene expression data using the genefu
package of the R/Bioconductor statistical package. Sam-
ples of patients classified as normal-like were excluded, as
they often represent an artifact due to limited tumor cellu-
larity and a large background of normal breast cells in the
sample [12].
Young patients were defined as ≤45 years of age, while

elderly patients were defined as those ≥70 years of age at
breast cancer diagnosis. The remaining patients were
classified as “intermediate”. Since the TCGA dataset is
publicly available, ethics committee approval was not
needed. In addition, neither patient informed consent
nor permission to use this data was required to perform
this analysis.

Genomic analysis
We evaluated three parameters: 1) somatic mutations
using exome sequencing; 2) somatic CNV; and 3) tran-
scriptomic profiles. We downloaded the data from the
TCGA online repository in February 2015.
In the current analysis, all somatic mutations were

considered apart from those referred to as “silent”
mutations. Somatic CNV was evaluated using array com-
parative genomic hybridization (CGH) data, available as

pre-processed, publicly available information and not vali-
dated by any other methodology. Segmented data were
used as input for Genomic Identification of Significant
Targets in Cancer, version 2.0 (GISTIC 2.0) and version
6.2 on the Broad Institute GenePattern cloud server to ob-
tain somatic focal and broad CNV events [13]. These were
then parsed in R. For focal events, only “high-level” focal
amplification events, defined as log2 ratio >0.9 were
retained, whereas focal losses were retained with log2
ratio >0.3 and with a Q value <0.25. Broad events,
defined as arm-level events encompassing 98 % or
more of a chromosome arm, were computed using
GISTIC as well.
For transcriptomic profiling, we used the RNA se-

quencing data to evaluate differences in transcriptomic
profiles according to age. Data were downloaded from
the TCGA online repository and RNA-Seq absolute ex-
pression values were log2 transformed before performing
the analyses.

Statistical analyses
The association between age groups, that is, young
(≤45 years), intermediate (46–49 years) and elderly pa-
tients (≥70 years), with clinicopathological characteristics
was evaluated using Pearson’s chi-squared test. The
Kruskal–Wallis test was used to compare the number of
mutations and CNVs according to age group. For muta-
tions that were represented in at least 5 % in any age
group, we evaluated their independent association
with age at diagnosis (as a continuous variable) in a
logistic regression model adjusting for tumor size (≤2 cm
versus >2 cm), nodal status (negative versus positive),
tumor histology (ductal versus lobular) and breast cancer
subtype (luminal-A versus luminal-B versus HER2 versus
basal). A similar model was used to evaluate the inde-
pendent association between age, CNV and gene expres-
sion using the Molecular Signatures Database (MSigDB;
PMID: 16199517). All analyses were corrected for multiple
testing using the Benjamini–Hochberg approach [14].

Results
A total of 780 patients from the TCGA dataset where
included, of whom 125, 486 and 169 were ≤45, 46–69
and ≥70 years of age, respectively. Transcriptomic
data was available for all patients, while 722 (92.5 %)
and 713 (91.4 %) had available somatic mutation and
CNV data, respectively.
Table 1 summarizes the main characteristics of patients.

As expected, young patients had less lobular cancer (7 %
versus 24 % versus 29 %; P <0.001), fewer node-negative
tumors (38 % versus 49 % versus 49 %; P = 0.05) and a
trend of more basal-like tumors (20 % versus 18 % versus
14 %; P = 0.16).
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Somatic mutations according to age
We found a significant association between age at diag-
nosis and the prevalence of somatic mutations. Median
number of somatic mutations in the young group was
31, compared to 35 and 44 in the intermediate and older
patient groups, respectively (P value = 0.0009). Figure 1
shows the four most prevalent somatic mutations in the
different age groups. PIK3CA and TP53 were the most
common somatic mutations, constituting around 50–
60 % of all mutations across the different age groups.
The striking difference between the three age groups
was for GATA3, which was the third most common
somatic mutation in young patients, constituting 15.2 %,
while TTN mutation was the third most frequent muta-
tion in the intermediate (15.1 %) and older patient
groups (29 %).

To evaluate the independent effect of age on the
prevalence of somatic mutations, we performed a logistic
regression analysis adjusted for tumor size, nodal status,
histology and breast cancer molecular subtype. We
found 11 mutations to be independently associated with
age at diagnosis (Table 2). All were associated with older
age at diagnosis, except GATA3, which was independ-
ently associated with breast cancer arising in young
women (15.2 % versus 8.2 % versus 9 %; P = 0.003, false
discovery rate (FDR) = 0.033).

Somatic CNV events according to age
We evaluated the prevalence of CNV events according
to age. We found a tendency of higher focal and broad
CNV in older patients (mean = 15), compared to 13.9
and 13.5 in the intermediate and younger age groups, re-
spectively (P = 0.2). The differences were more apparent
when restricting the analysis to patients with ductal car-
cinoma (mean CNV in older patients = 16.4 versus 14.9 in
intermediate versus 13.8 in young patients; P = 0.05). In a
logistic regression model, we found 13 CNV events to be
independently associated with age (Fig. 2, Additional
file 1). However, upon adjusting for multiple testing, only
two CNV events maintained a P value <0.05: chr18p loss
and chr6q27 deletion; the former was associated with tu-
mors diagnosed in older patients, while the latter was
more common in younger patients.

Gene expression differences according to age
We evaluated the association between age at diagnosis and
the expression of 10,296 gene expression signatures. In a
logistic regression model adjusted for tumor size, nodal
status, histology and breast cancer molecular subtype, we
found around 1,200 gene signatures to be independently
associated with age at diagnosis (FDR <0.05), mainly in
younger patients (Additional file 2). The main themes that
emerged from this analysis are summarized in Table 3 and
indicated higher expression of signatures related to prolif-
eration, stem cell and endocrine resistance in tumors aris-
ing at young age.

Table 1 Main characteristics of patients
Characteristic The Cancer Genome Atlas (N = 780)

≤45 years
of age

46–69 years
of age

≥70 years
of age

P value

Number 125 486 169

Tumor size

≤2 cm 30 (24 %) 135 (28 %) 43 (26 %) 0.64

>2 cm 95 (76 %) 351 (72 %) 126 (74 %)

Nodal status

Negative 47 (38 %) 241 (49 %) 83 (49 %) 0.05

Positive 78 (62 %) 245 (51 %) 86 (51 %)

Histology

Ductal 116 (93 %) 371 (76 %) 121 (71 %) <0.001

Lobular 9 (7 %) 95 (24 %) 48 (29 %)

PAM50 subtype

Luminal-A 44 (35 %) 200 (41 %) 70 (41 %) 0.16

Luminal-B 41 (33 %) 140 (29 %) 64 (38 %)

HER2 15 (12 %) 57 (12 %) 12 (7 %)

Basal 25 (20 %) 89 (18 %) 23 (14 %)

Fig. 1 Prevalence of somatic mutations according to age
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Discussion
This is the first analysis to explore the prevalence of
somatic mutations and CNV according to age. Our find-
ings indicate that age is associated with unique biological
features at the DNA level, independent of tumor stage,
histology and breast cancer molecular subtype. In

addition, age at diagnosis appears to impact the tumor
transcriptome confirming previous observations, but
also highlighting novel findings. While previous studies
provide ample information on the differences at the
pathological level according to age [2, 15], this study
provides further insights on differences at the genomic

Table 2 The independent association between age at diagnosis and somatic mutations
Young age Intermediate age Older age Logistic model FDR

(≤45 years, n = 118) (46–69 years, n = 449) (≥70 years, n = 155) (P value)a

Mutations independently associated with young age at diagnosis

GATA3 18 (15.2 %) 37 (8.2 %) 14 (9 %) 0.003 0.033

Mutations independently associated with older age at diagnosis

TTN 16 (13.5 %) 68 (15.1 %) 45 (29 %) 0.0003 0.01

KMT2D 1 (0.8 %) 9 (2 %) 9 (5.8 %) 0.0003 0.01

CSPP1 0 3 (0.6 %) 8 (5.1 %) 0.0002 0.01

FOXA1 1 (0.8 %) 6 (1.3 %) 9 (5.8 %) 0.0009 0.013

XIST 0 6 (1.3 %) 9 (5.8 %) 0.0008 0.013

KMT2C 4 (3.3 %) 26 (5.7 %) 18 (11.6 %) 0.002 0.027

SYNE2 3 (2.5 %) 16 (3.5 %) 13 (8.3 %) 0.005 0.033

SPEN 2 (1.6 %) 13 (2.8 %) 12 (7.7 %) 0.005 0.033

USP34 1 (0.8 %) 12 (2.6 %) 9 (5.8 %) 0.004 0.033

ANK2 0 11 (2.4 %) 9 (5.8 %) 0.007 0.043
aAnalysis adjusted for age, tumor size, nodal status, histology and breast cancer subtype. Only mutations with a minimum prevalence of 5 % in at least one age
group is included. FDR, false discovery rate

Fig. 2 Copy number variation (CNV) events that are significantly different according to age (P <0.05 in the adjusted logistic regression model).
Green represents younger patients (≤45 years), blue represents intermediate (46–69 years) and red represents elderly patients (≥70 years). The Y
access shows the percentage and indicates the direction of CNV gain (above 0) or loss (below 0). *Aberrations that show a false discovery rate
(FDR) <0.05

Azim et al. BMC Medicine  (2015) 13:266 Page 4 of 7



level as well. This is also in line with previous studies
that showed changes in the normal breast at both the
genomic and epigenetic level between young and older
women, including changes in genes that are known to be
relevant in breast carcinogenesis [16, 17]. Such evidence
may suggest the need to explore treatment strategies in
patients diagnosed at extremes of age based on their
unique molecular makeup.
Different themes emerged from our analysis. First,

older patients have more mutations and CNV events.
This is likely a reflection of more genomic errors accu-
mulated in the DNA as women age. We found that
several somatic mutations were independently associated
with older age at diagnosis. Of particular relevance, the
high prevalence of KMT2D mutations. Since this gene
was recently shown to be involved in tumor proliferation
and cell migration [18], we speculate that KMT2D muta-
tions may alter breast cancer behavior. Another finding
is the high prevalence of FOXA1 mutations. The latter is
required for ER-alpha as a cofactor for chromatin bind-
ing and constitutes a major proliferative and survival
pathway for luminal-A tumors [19], which are common
in older patients [20]. Nevertheless, it is yet to be deter-
mined whether these mutations and/or others represent
key driver mutations of tumors arising in older patients
and the optimal way of targeting them.
On the other hand, GATA3 mutation was the main

somatic event that characterized tumors arising at a
younger age, which could have relevant clinical implica-
tions. GATA3 is an essential component of the ER

complex and its mutations are likely to affect ER-
regulated transcriptional activity [21, 22]. GATA3 dir-
ectly upregulates ER-alpha and other proto-oncogenes
suggesting that it may promote tumorigenesis in luminal
cancer [23]. Preclinical data indicate that mutations in
GATA3 also affect ER binding to DNA [22, 24], modu-
late response of breast cancer cells to estrogen signaling
[25], could promote tumor growth [21, 26] and could be
associated with endocrine resistance [25]. This is of ex-
treme relevance, since the poor prognosis associated
with younger age at diagnosis has been mainly observed
in patients with ER-positive breast cancers [3, 5]. We
could speculate that the higher prevalence of GATA3
mutations in these patients may render these patients
more resistant to endocrine therapy. Our transcriptomic
analyses also highlights the high expression of endocrine
resistance signatures in younger patients, thus suggest-
ing that endocrine resistance is an important hallmark
of tumors arising in young women, worthy of further ex-
ploration. Of note, previous preclinical studies have
shown that GATA expression (not mutation) results in
reversal of the epithelial-mesenchymal transition (EMT)
and induction of differentiation in basal-like tumors
[27, 28]. Therefore, it is the loss of GATA3 expres-
sion that was suggested to contribute to the aggres-
siveness of basal-like tumors. Using our dataset, we
found that GATA3 expression is higher in patients
with GATA3 mutation (data not shown). These mutations
were mostly exclusive in patients with ER-positive breast
cancer. Thus, based on our findings, we cannot assume
that the higher rate of GATA3 mutations observed in
younger patients is linked to the known increased inci-
dence of basal-like tumors in these patients.
CNVs are genomic events that are regarded as highly

biologically relevant in breast cancer [29] and we found
two events, more chr18p losses and chr6q27 deletions,
to be independently associated with age at diagnosis.
chr18p loss was more common in older patients and
previous data indicated that it is associated with higher
risk of recurrence [30]. Of note, chr18 also harbors
SMAD4, which is a known tumor suppressor gene and
has been shown to be associated with poor prognosis in
several tumor types when lost [31–33]. On the other
hand, very little is known on its significance in breast
cancer. A previous study showed that chromosome 6 is
frequently rearranged in breast cancer, particularly at
three regions, including 6q27 [34]. In addition, chr6q27
deletion appears to be more prevalent in tumors with
aggressive features [34]. This may suggest that this re-
gion could harbor relevant tumor suppressor genes that
may contribute to the aggressive nature of tumors aris-
ing in younger patients.
Another key point emerging from our study is the ex-

istence of relevant gene expression differences according

Table 3 Selected gene expression signatures that are highly
expressed in young breast cancer patients
Signature Logistic

regressionb
FDR

Endocrine resistance

Creighton_Endocrine_Therapy_Resistancea 1.03E-18 1.07E-14

Massarweh_Tamaxifen_Resistance 1.79E-14 1.84-10

Masri_resistance_to Tamoxifen_And_
Aromatase_Inhibitor

7.58E-09 7.66E-05

Proliferation

Regulation of cell cycle 1.43E-11 1.47E-07

Regulation of Mitotic_Cell_Cycle 8.43E-10 8.59E-06

Stem cell

Lim_Mammary_Stem_Cell 3.62E-08 0.0003

PID_Notch_Pathway 1.52E-11 1.56E-07

Benporath_SOX2_Targets 1.58E-10 1.62E-06

Galie_Tumor_Stemness_Genes 1.62E-07 0.001

Notch_Signaling_Pathway 1.00E_06 0.009

Nguyen_Notch_Targets_Up 1.12E-06 0.01
aMore than one signature; bmodel adjusted for tumor size, nodal status, tumor
histology and breast cancer subtype. FDR, false discovery rate
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to age. Previously, we showed that tumors arising in young
women are enriched with stem cell-related genes [5]. In
addition, Pirone et al. have shown that pathways impli-
cated in maintaining stem cell dynamics, Wnt/β-catenin
and ephrin receptor signaling [35, 36] were differentially
expressed in the normal breast between young and older
women [16]. The current analysis corroborates this associ-
ation and suggests that targeting the stem cell component
is a strategy that deserves exploration in young breast can-
cer patients. Currently, there are several drugs in develop-
ment, such as Notch inhibitors that are known to target
the stem cell compartment [37]. Of note, in the current
analysis, we found high expression of signatures related to
Notch signaling pathways (Table 3) in young breast cancer
patients, which may suggest the potential relevance of ex-
ploring such strategies in younger patients.
We recently initiated a preoperative window trial

evaluating the role of targeting RANKL, a known stem
cell regulator [38] and in which we have previously
shown to be highly expressed in tumors arising at a young
age [5, 39]. In this trial (D-BEYOND; NCT01864798), all
patients are premenopausal and receive the anti-RANKL
monoclonal antibody denosumab before surgery. The
aim is to evaluate the impact of RANKL inhibition on
several biological processes, including proliferation,
stem cell markers, immune-related markers, and many
others. The trial has recruited >50 % of its target accrual
and represents a proof of concept that could open the
door for designing future trials in women diagnosed at
extremes of age, based on a better understanding of the
biology of their tumors.

Conclusion
In conclusion, the present work shows that tumors aris-
ing at different ages are biologically distinct, not only at
the protein level, as previously shown, but also at the
RNA and DNA levels. This includes aberrations in rele-
vant cancer-related genes. While current treatment
decision-making is mainly based on tumor stage and
breast cancer subtype, our analysis suggests that age
adds a layer of biological complexity, worthy of investigat-
ing tailored therapeutic strategies in specific age groups.
This could further result in refining therapeutic strategies
as we embark on an era of personalized medicine.
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a b s t r a c t

Background: Breast cancer is composed of distinct subtypes defined mainly based on the expression of
hormone receptors (HR) and HER2. For years, reproductive factors were shown to impact breast cancer
risk but it is unclear whether this differs according to tumor subtype. In this meta-analysis we evaluated
the association between parity, age at first birth, breastfeeding and the risk of developing breast cancer
according to tumor subtype.
Methods: PubMed and Embase were searched to identify epidemiological studies that evaluated the
impact of parity and/or age at first birth and/or breastfeeding on breast cancer risk with available infor-
mation on HR and HER2. Tumor subtypes were defined as: luminal (HR-positive, HER2-negative or HER2-
positive), HER2 (HR-negative, HER2-positive) and triple-negative (HR-negative, HER2-negative).
Summary risk estimates (pooled OR [pOR]) and 95% confidence intervals (CI) were calculated using ran-
dom effects models. The MOOSE guidelines were applied.
Results: This meta-analysis evaluated 15 studies, including 21,941 breast cancer patients and 864,177
controls. Parity was associated with a 25% reduced risk of developing luminal subtype (pOR 0.75; 95%
CI, 0.70–0.81; p < 0.0001). Advanced age at first birth was associated with an increased risk of developing
luminal subtype (pOR 1.15; 95% CI, 1.00–1.32; p = 0.05). Ever breastfeeding was associated with a
reduced risk of developing both luminal (pOR 0.77; 95% CI, 0.66–0.88; p = 0.003) and triple-negative
(pOR 0.79, 95% CI, 0.66–0.94; p = 0.01) subtypes.
Conclusions: The reproductive behaviors impact the risk of developing breast cancer but this varies
according to subtype.

! 2016 Elsevier Ltd. All rights reserved.

Introduction

Breast cancer is the most frequent tumor in women with an
estimated 1.67 million new cases diagnosed worldwide in 2012
[1]. For a decade or more, it has been recognized that breast cancer
is a heterogeneous disease with distinct tumor subtypes defined

mainly based on the expression of hormone receptors (HR) and
HER2 (i.e. luminal, HER2 and triple-negative subtypes) [2]. These
subtypes differ in their biology, prognosis, treatment strategies
and pattern of metastasis.

Several studies have indicated a clear relationship between the
risk of developing breast cancer and the pattern of reproductive
behaviors like pregnancy and breastfeeding [3–5]. Yet to date, it
is unclear whether the different reproductive factors predispose
or protect against certain subtype of breast cancer over the other.
A prior meta-analysis showed that parity and young age at first
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birth protects against the risk of developing HR-positive breast
cancer, while breastfeeding decreases the risk of both HR-
positive and HR-negative tumors [6]. However, the studies
included in the meta-analysis lacked information on HER2 expres-
sion, hence it was not possible to assess the association between
these reproductive factors and the risk of developing the different
breast cancer subtypes.

Recently, several epidemiological studies tried to address this
question evaluating the impact of reproductive behaviors on tumor
subtypes defined by HR and HER2 expression, yet with conflicting
results [7]. In this meta-analysis we evaluated the impact of parity,
age at first birth, breastfeeding on the risk of developing breast
cancer according to tumor subtype. Reaching solid conclusions in
this regard is rather important as it could have important implica-
tions on understanding disease etiology and suggest potential pre-
ventive strategies.

Methods

A systematic review and meta-analysis was performed and con-
ducted according to the Meta-analysis Of Observational Studies in
Epidemiology (MOOSE) guidelines [8].

Study objectives

The primary objective was to evaluate the association between
reproductive factors (parity, age at first birth and breastfeeding)
and the risk of developing breast cancer according to tumor sub-
type. The different subtypes of breast cancer were defined based
on the expression of HR and HER2 as follows: luminal (HR-
positive, HER2-negative or HER2-positive), HER2 (HR-negative,
HER2-positive) and triple-negative (HR-negative, HER2 negative).

Subgroup analyses were performed to evaluate the impact of
year of study publication, type of estimate (from publication or
from crude data), location (United States of America [USA], Europe
or Asia), type of study (case–control study, population-based case–
control study, prospective cohort study), and cut-off for age at first
birth (20 years, 25 years or 30 years).

Data sources and search strategy

A literature search using PubMed and Embase was performed
with no date restriction up to October 31st, 2014 using the follow-
ing keywords: ‘‘breast cancer”, ‘‘risk factors”, ‘‘parity”, ‘‘age at first
birth”, ‘‘breastfeeding”, ‘‘estrogen receptor”, ‘‘progesterone recep-
tor”, ‘‘HER2” and ‘‘tumor subtype”. Boolean operators were used
to combine specific keywords for each database and free text
terms. According to study protocol, one reviewer (D.U.) designed
and set up the effective combination of search terms and discussed
with other two reviewers (M.L. and L.L.). The titles and abstracts of
the identified studies were independently evaluated by two
reviewers (M.L. and L.L.) and consensus was reached by discussion
with L.S. and H.A.A. Jr. Cross-referencing from relevant studies and
review articles on the topic was conducted to confirm retrieval of
all possible pertinent studies.

Selection of the articles

Eligible studies had to fulfill the following criteria: (a) epidemi-
ological studies (cohort studies or case–control studies) that eval-
uated the associations of parity and/or age at first birth and/or
breastfeeding with the risk of developing breast cancer; (b) avail-
able information on HR status (estrogen receptor and progesterone
receptor) and HER2 status; (c) English-language published studies;
(d) the odds ratio (OR) for risk of developing breast cancer had to

be reported or could be computed from the data reported in the
manuscript.

Studies excluded from the analysis were those with the follow-
ing characteristics: (a) epidemiological studies other than cohort
studies or case–control studies (e.g. case–case studies, case series,
etc) that evaluated the associations of parity and/or age at first
birth and/or breastfeeding with the risk of developing breast can-
cer; (b) epidemiological studies (cohort studies and case–control
studies) that evaluated the associations of parity and/or age at first
birth and/or breastfeeding with the risk of developing breast can-
cer without information on tumor subtypes; (c) epidemiological
studies (cohort studies and case–control studies) that evaluated
the associations of reproductive factors other than parity, age at
first birth, or breastfeeding (e.g. menarche and menopause, treat-
ment of infertility, use of oral contraceptives) with the risk of
developing breast cancer; (d) ongoing studies and studies which
were only presented at conferences and not fully published nor
available online at the time of the literature search.

For each eligible study, the following data were collected inde-
pendently by two authors (M.L. and L.L.): first author, year of pub-
lication, study design, sample size and source of study subjects,
mean age of the subjects, source of information on HR and HER2,
type of reproductive factors evaluated (parity and/or age at first
birth and/or breastfeeding), adjustments for potential confounders
in data analysis, number of study subject and number of breast
cancer cases for each tumor subtype.

Statistical analysis

Study-specific estimates of OR of breast cancer subtype (lumi-
nal, HER2 and triple-negative) and the 95% confidence intervals
(CI) for parity (parous versus nulliparous), age at first birth
(advanced age group versus youngest age group) and breastfeeding
(ever versus never) were extracted or calculated from each eligible
study.

The OR for parity was calculated as the odds of parous women
who developed breast cancer divided by the odds of nulliparous
women who developed breast cancer. An OR < 1 indicates parous
yielded lower probability of developing breast cancer according
to tumor subtype.

The OR for age at first birth was calculated as the odds of
women at advanced age who developed breast cancer divided by
the odds of women at youngest age who developed breast cancer.
An OR < 1 indicates advanced age yielded lower probability of
developing breast cancer according to tumor subtype.

The OR for breastfeeding was calculated as the odds of ever
breastfeeding women who developed breast cancer divided by
the odds of never breastfeeding women who developed breast can-
cer. An OR < 1 indicates ever breastfeeding yielded lower probabil-
ity of developing breast cancer according to tumor subtype.

For each point estimate, 95% CI were computed.
The association between reproductive factors and risk of breast

cancer according to tumor subtype was computed as pooled OR
(pOR) with 95% CI. The pOR was considered statistically significant
if the 95% CIs did not include 1.0. The pOR was estimated by pool-
ing the study-specific estimates by the Der Simonian & Laird’s ran-
dom effect models [9] fitted using SAS (proc Mixed) with
maximum likelihood estimate. These models provided estimates
adjusted for the potential correlation within studies as well as
the heterogeneity between studies.

The homogeneity of the effect across studies was assessed by
using the large sample test based on the Cochrane’s Q statistics,
which is approximately distributed as a I2 statistics. A p value
<0.10 was used to indicate lack of homogeneity among effects. I2

statistics was also provided to quantify the percentage of total vari-
ation across studies that were attributable to heterogeneity rather
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than to chance [10]. The method of Macaskill et al. was used for
assessing publication bias [11]. It consists of a funnel-plot regres-
sion of the log OR on the sample size, weighted by the inverse of
the pooled variance.

To search for potential source of heterogeneity, subgroup anal-
yses have been performed. We considered only study characteris-
tics (country, type of study, year of publication, type of estimate)
because the papers included in the present meta-analysis did not
provide sufficient subgroup analysis and/or interaction tests based
on patient’s characteristics to be pooled together.

To assess whether the pooled OR estimates were stable or
strongly dependent on one or few of the studies included in the
meta-analysis, sensitivity analyses were conducted by iteratively
recalculating the pOR estimates after exclusion of the largest stud-
ies [12,13].

All reported p values were two-sided. All statistical analyses
were performed by using Microsoft Excel and SAS software Version
9.2 for Windows (SAS Institute, Cary, NC). The generation of
forest plot was performed using the R software (http://cran.
r-project.org/).

Results

A total of 4615 entries were returned with the search strategy
and 2 potentially eligible studies were retrieved from the screened
papers. After applying eligibility criteria, a total of 15 studies were
deemed eligible and were included in the meta-analysis (Fig. 1)
[12–26]. Three were prospective cohort studies [12,13,26], 10 were
case–control studies [14,16–24], and 2 were pooled analyses (one
from 2 cohort studies and 2 population-based case–control studies
[25] the other were from 2 population-based case–control studies
[15]). A total of 21,941 breast cancer patients (17,307 luminal,
1073 HER2 and 3561 triple-negative) and 864,177 controls (i.e.
women who did not develop breast cancer) were included
(Table 1).

Ten studies evaluated all the reproductive factors (parity, age at
first birth and breastfeeding) [13,15–23], while 3 evaluated parity
and age at first birth only [12,14,26], 1 study evaluated parity and
breastfeeding [25], and 1 study evaluated age at first birth only
[24] (Table 1).

Parity

A total of 14 studies evaluated the association between parity
and the risk of developing breast cancer according to tumor sub-
type [12–23,25,26]. Parous women were those with one or more
pregnancies, nulliparous those without pregnancies.

Twelve studies including 863,656 women assessed the risk
of luminal breast cancer subtype (Supplementary Table A.1)
[12–17,19–23,26]. A highly significant reduction in the risk of
developing luminal breast cancer subtype (pOR 0.75; 95% CI,
0.70–0.81; p < 0.0001) was observed in parous women, although
with significant heterogeneity (I2 = 46.2%, Pheterogeneity = 0.04)
(Fig. 2A).

Eleven studies including 697,884 women assessed the risk of
HER2 breast cancer subtype (Supplementary Table A.2) [12,14–1
7,19–23,26]. No difference in the risk of developing HER2 breast
cancer subtype (pOR 0.90; 95% CI, 0.69–1.16; p = 0.36; I2 = 33.2%,
Pheterogeneity = 0.13) was observed between parous and nulliparous
women (Fig. 2B).

Fourteen studies including 865,725 women assessed the risk of
triple-negative breast cancer subtype (Supplementary Table A.3)
[12–23,25,26]. No difference in the risk of developing triple-
negative breast cancer subtype (pOR 1.01; 95% CI, 0.87–1.17;
p = 0.89; I2 = 30.3%, Pheterogeneity = 0.13) was observed between
parous and nulliparous women (Fig. 2C).

The sensitivity analysis performed by excluding the largest
studies [12,13] provided similar results (Supplementary Table A.4).

The subgroup analyses did not show any significance difference
in the risk of developing the different breast cancer subtypes
according to type of estimate, location or type of study (Supple-
mentary Table A.4).

Age at first birth

A total of 14 studies evaluated the association between age at
first birth and the risk of developing breast cancer according to
tumor subtype [12–24,26]. Most studies defined young age at first
birth as 624 years and advanced age at first birth as >24 years.

Twelve studies including 676,386 women assessed the risk of
luminal breast cancer subtype (Supplementary Table A.5) [12–
17,19–23,26]. A significant increase in the risk of developing lumi-
nal breast cancer subtype (pOR 1.15; 95% CI, 1.00–1.32; p = 0.05)
was observed in the advanced age group, although with significant
heterogeneity (I2 = 86.9%, Pheterogeneity < 0.001) (Fig. 3A).

Eleven studies including 545,216 women assessed the risk of
HER2 breast cancer subtype (Supplementary Table A.6) [12,14–1
7,19–23,26]. No difference in the risk of developing HER2 breast
cancer subtype (pOR 0.91; 95% CI, 0.72–1.16; p = 0.41; I2 = 64.3%,
Pheterogeneity = 0.002) was observed between women in the
advanced and youngest groups (Fig. 3B).

Fourteen studies including 667,156 women assessed the risk of
triple-negative breast cancer subtype (Supplementary Table A.7)
[12–24,26]. No difference in the risk of developing triple-negative
breast cancer subtype (pOR 0.94; 95% CI, 0.80–1.11; p = 0.45;
I2 = 64.5%, Pheterogeneity < 0.001) was observed between women in
the advanced and youngest groups (Fig. 3C).

The sensitivity analysis performed by excluding the largest
studies [12,13] provided similar results (Supplementary Table A.8).

Subgroup analysis indicated that the increased risk of develop-
ing HER2 breast cancer subtype seemed to be positively correlated
to the increased of age at first birth. In the study in which ‘‘ad-
vanced age” was defined as subjects ‘‘>30 years” [12], their risk
of developing breast cancer was significantly higher than women
who were <30 at first birth (OR 1.83; 95% CI, 1.31–2.56). This
increasing trend of the risk was statistically significant (p = 0.02)
(Supplementary Table A.8).

Breastfeeding

A total of 11 studies evaluated the association between breast-
feeding and the risk of developing breast cancer according to
tumor subtype [13,15–23,25]. Women were divided between those
who ever breastfed regardless of its duration, and those who never
breastfed.

Nine studies including 169,870 women assessed the risk of
luminal breast cancer subtype (Supplementary Table A.9) [13,
15–17,19–23]. A highly significant reduction in the risk of develop-
ing luminal breast cancer subtype (pOR 0.77; 95% CI, 0.66–0.88;
p = 0.003) was observed in women who ever breastfed, although
with significant heterogeneity (I2 = 79.1, Pheterogeneity < 0.001)
(Fig. 4A).

Eight studies including 14,266 women assessed the risk of HER2
breast cancer subtype (Supplementary Table A.10) [15–17,19–23].
No significant difference in the risk of developing HER2 breast can-
cer subtype (pOR 0.78; 95% CI, 0.59–1.03; p = 0.07; I2 = 45.6%,
Pheterogeneity = 0.07) was observed between women who ever or
never breastfed (Fig. 4B).

Eleven studies including 176,340 women assessed the risk of
triple-negative breast cancer subtype (Supplementary Table A.11)
[13,15–23,25]. A significant reduction in the risk of developing
triple-negative breast cancer subtype (pOR 0.79; 95% CI,
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0.66–0.94; p = 0.01) was observed in women who ever breastfed,
although with significant heterogeneity (I2 = 65.1%, Pheterogeneity =
0.001) (Fig. 4C).

The sensitivity analysis performed by excluding the largest
studies [12,13] provided similar results (Supplementary
Table A.12).

The subgroup analysis showed that risk of breastfeeding
seemed to be estimated differently depending on the type of the
study. The protective effect shown for women who breastfed,
appeared to be higher within the case–control studies than
prospective cohort studies. The difference shown between sub-
groups was not statistically significant for HER2 breast cancer sub-
type (p = 0.06), while it was statistically significant for luminal
breast cancer (p = 0.03) and triple-negative breast cancer
(p = 0.015) subtypes (Supplementary Table A.12). Of note, only
two case–control studies were performed and both were con-
ducted in Asia while all the other studies were conducted in the
US. Hence, it is possible that the results obtained are partly
confounded by the location of the trials (Supplementary
Table A.12).

Discussion

Data from recent epidemiological studies suggested possible
differential effects of reproductive risk factors on the risk of devel-
oping breast cancer according to HR status [6,27,28]. However, no
solid conclusions were made partly because HER2 status was not
considered in a large fraction of these studies. To our knowledge,
this is the first meta-analysis aiming to evaluate the association
between parity, age at first birth, breastfeeding, and the risk of
developing breast cancer according to tumor subtype. Differently
from prior studies, our meta-analysis defined breast cancer sub-
types based on the expression of both HR and HER2 status, which
remains highly relevant for nowadays practice.

In the present study, a 25% reduction in the risk of developing
luminal breast cancer subtype was observed in parous women.
Advanced age at first birth showed to be associated with a 15%
increase in the risk of developing luminal breast cancer subtype.
Importantly, ever breastfeeding was associated with a reduced risk
of developing both luminal and triple-negative breast cancer sub-
types. However, our results were associated with significant

Fig. 1. The flow chart summarizing the process for the identification of the eligible studies. Abbreviations, ER, estrogen receptor; PR, progesterone receptor.
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Table 1
Main characteristics of the study included in the meta-analysis.

Author Year Type of Study Location Age Source of information
on HR and HER2

Adjustment for potential confounders in data
analysis

Categories for
age at first
birth (years)

Ambrosone et al.
[24]

2014 Case–control USA 20–75 Abstracted from
pathology reports

Age, site, education, age at menarche, age at
menopause, history of BBD, family history of
breast cancer, HRT use, and country of origin

<20, 20–24,
25–29, P30

Palmer et al. [25] 2014 Pooled data from2
prospective cohort
study and 2
population-based
case–control studies

USA 21–69 Abstracted from
pathology reports and
cancer registry records

Age in five-year categories, study, geographic
region, period, family history of breast cancer,
age at menarche, oral contraceptive use, BMI,
years of education, alcohol consumption, and
cigarette smoking

NA

Horn et al. [26] 2014 Prospective cohort Norway 40–58 IHC on TMAs
constructed form
original specimens

Age, birth cohort, age at first birth, number of
births, age at menarche, parity and duration of
breastfeeding, and socioeconomical status

<25, P25

Li et al. [23] 2013 Population based
case–control

USA 20–44 Abstracted from
pathology reports and
cancer registry records

Age at first live birth, number of live births,
age, race/ethnicity, education, annual
household income, first-degree family history
of breast cancer, BMI, and duration of
contraceptive use

<20, 20–24,
25–29, 30–
34, P35

Islam et al. [22] 2012 Case–control Japan 20–79 Original pathology
reports

Age, smoking habit, BMI, drinking habit, daily
physical activity of any intensity, and family
history of breast cancer

<25, 25–29,
P30

Phipps et al. [12] 2011 Prospective cohort USA 40–84 Abstracted from
pathology reports

Race, family history of breast cancer in first-
degree female relative, and personal history of
BBD

<30, P30

Phipps et al. [13] 2011 Prospective cohort USA 50–79 Abstracted from
pathology reports

Age, study arm, race, educational level, family
history of breast cancer in first-degree
relatives, BMI, HT use, smoking history, and
history of mammography use during study

<20, 20–29,
P30

Gaudet et al. [21] 2011 Population based
case–control

USA 20–56 Central review of
original tumor blocks

Age at reference, study site, menopausal
status, age at menarche, parity, age at first
birth, duration of breastfeeding, BMI, use of
oral contraceptives, history of BBD, and family
history of first-degree relatives with breast
cancer

<20, 20–22,
23–24, >25

Xing et al. [20] 2010 Case–control China 30–72 Original pathology
reports

None 624, 25–29,
P30

Ma et al. [19] 2010 Population based
case–control

USA <80 Central review of
original tumor blocks

Race, family history of breast cancer in a first
degree relative, age at menarche, HRT use,
BMI, number of full-term pregnancies, age at
first full-term pregnancy, and duration of
breastfeeding

619, 20–24,
25–29, P30

Trivers et al. [17] 2009 Population based
case–control

USA 20–54 Central review of
original tumor blocks

Race, age, education, socio-economic status,
insurance, smoking status, alcohol
consumption, age at menarche, parity, age at
first birth, recency of birth, breastfeeding,
physical activity, BMI, and waist-to–hips ratio

<18, P18

Millikan et al. [16] 2008 Population based
case–control

USA 20–74 Central review of
original tumor blocks

Family history, reproductive history, measures
of body size, weight gain, physical activity,
environmental exposures, HT use, and
socioeconomic status (education and family
income)

<26, P26

Phipps et al. [15] 2008 Pooled data from 2
population-based
case–control studies

USA 55–79 Abstracted from cancer
registry, central review
for a restricted sample

Education level, smoking status, alcohol
consumption, family history of breast cancer
in first-degree relatives, age at first live birth,
breastfeeding history, type of menopause, HT
use, and age at menopause

<20, 20–24,
25–29, P30

Dolle et al. [18] 2009 Population based
case–control

USA 21–45 Central review of
original tumor blocks

Age, race, education, annual income, family
history of breast cancer, BMI, smoking history,
alcohol consumption, age at menarche,
number of live births, age at first birth,
lactation history, and oral contraceptive use

<20, 20–29,
P30

Yang et al. [14] 2007 Population based
case–control

Poland 20–74 Abstracted from
clinical reports and
independent
evaluation by the
study pathologist

Age, study site, education level, age at
menarche, age at menopause, menopausal
status, number of full-term births, age at first
full-term birth, current/recent oral HRT use
among postmenopausal women, previous
breast disease, mammographic screening,
family history of breast cancer among first-
degree relatives, and BMI

Reported as
per 5-year
increase

Abbreviations: USA, United States of America; HR, hormone receptors; BBD, benign breast disease; HRT, hormone replacement therapy; BMI, body mass index; IHC,
immunohistochemistry; TMA, tissue microarray; HT, hormone therapy; NA, not applicable.
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Fig. 2. Parity and risk of breast cancer subtypes. (A) Risk of luminal breast cancer; no publication bias, Macaskill test p value = 0.06. (B) Risk of HER2 positive breast cancer
subtype; no publication bias, Macaskill test p value = 0.77. (C) Risk of triple-negative breast cancer subtype; no publication bias, Macaskill test p value = 0.99. ⁄Mixed effect
model: estimates adjusted for the correlation within studies and heterogeneity between studies. Abbreviations: OR, odds ratio; CI, confidence intervals.
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heterogeneity. On evaluating the impact of parity, all studies
except one [22] showed a reduced risk of luminal breast cancer
for parous women. In this case–control Japanese study, parity
showed overall no effect on the risk of developing luminal breast
cancer but there was a trend toward a reduced risk for women
with 3 or more live births as compared to nulliparous women
[22]. Similarly, the majority of the studies included in the present
meta-analysis showed that advanced age at first birth is associated
with an increased risk of luminal breast cancer, except one study
[20]. This case–control study conducted in China showed an
inverse association with overall reduced risk of luminal breast can-
cer for women with advanced age at first birth: however, this effect
was mainly restricted to women who developed luminal B subtype
(HR-positive, HER2-positive) with no impact for those with lumi-
nal A subtype (HR-positive, HER2-negative). Thus, heterogeneity
seemed to be largely driven by one study in both these analysis,
which were outliers and both conducted in Asian populations. On
the other hand, the heterogeneity observed in the breastfeeding
analysis could be explained by the different definition of ‘‘ever”
breastfeeding across the evaluated studies, which was relatively
broad ranging from less than 2 weeks to more than 12 months.

The results of our meta-analysis suggest a possible explanation
on the different incidence of breast cancer subtypes across differ-
ent regions worldwide. Overall, luminal subtype accounts for the
majority of all breast cancers, with HER2-positive and triple-
negative breast cancer subtypes representing less than 30% of all
breast tumors [29]. However, African-American women have the
lowest proportion of luminal breast cancer subtype and the largest
proportion of triple-negative breast cancer subtype compared with
women of other ethnicities [29]. The higher parity [30] and lower
prevalence of lactation [31] in African-American women as

compared to white women might represent a contributor to the
racial disparity in the incidence of luminal and triple-negative
breast cancer subtypes.

The important role of partly modifiable reproductive factors on
the risk of developing the different breast cancer subtypes might
have important clinical implications. Any lifestyle modification
that could minimize cancer risk would have a major impact on
public health due to the high incidence of breast cancer. Particu-
larly, any action that might reduce the risk of triple-negative
tumors, the breast cancer subtype associated with the worst prog-
nosis, would be even more impactful [28]. A modification in child-
bearing habit, specifically breastfeeding, might represent a
practical way to potentially reduce the risk of breast cancer overall,
but also of the most aggressive subtype (i.e. triple-negative breast
cancer). Breastfeeding is associated with known benefits for both
children and women; it is estimated that the scaling up of breast-
feeding to a near universal level could prevent more than 20,000
annual deaths from breast cancer [32]. Supportive measures at
many levels (e.g. political support and financial investment) are
needed to protect, promote, and support breastfeeding [33]. As
outlined in the Healthy People 2020 initiative, a progress toward
meeting breastfeeding goals should be pursued particularly among
African women, a group that lags in this process [34].

The findings from the present meta-analysis suggest also a pos-
sible etiologic heterogeneity among breast cancer subtypes,
reflecting possible different mechanisms of carcinogenesis. As
already shown decades ago, pregnancy has a dual effect on the risk
of developing breast cancer, with transient increased risk after
childbirth but reduced in later years [35]. In women with two or
more pregnancies, the short-term adverse effect might be masked
by the long-term protection given by the first pregnancy [35].

Fig. 2 (continued)
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Fig. 3. Age at first birth and risk of breast cancer subtypes. (A) Risk of luminal breast cancer subtype; no publication bias, Macaskill test p value = 0.22. (B) Risk of HER2
positive breast cancer subtype; publication bias, Macaskill test p value = 0.008. (C) Risk of triple-negative breast cancer subtype; no publication bias, Macaskill test p
value = 0.27. ⁄Mixed effect model: estimates adjusted for the correlation within studies and heterogeneity between studies. Abbreviations: OR, odds ratio; CI, confidence
intervals.
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Specifically, pregnancy at a young age leads to a strong and life-
long protective effect against the risk of developing breast cancer
[36]. The protective effect of parity and young age at first birth
against luminal breast cancer but not against HR-negative sub-
types (i.e. HER2 and triple-negative breast cancer) suggests that
the risk might be influenced predominantly through hormonal
mechanisms involving sex hormones. Systemic hormonal changes
taking place during pregnancy, particularly in ovarian steroids (i.e.
estrogens and progesterone), seem to be major determinants in
protecting against mammary cancer [37]. Alterations in systemic
hormone levels are generally associated with local cellular pro-
cesses of the mammary gland that include changes in organ differ-
entiation, hormone responsiveness, proapoptotic pathways,
extracellular stroma and mammary stem cell fate [38]. Particularly,
a decreased activity of the mammary stem/progenitor cell-related
signaling pathway upon pregnancy, renders these cells less prolif-
erative and susceptible to oncogenic transformation [39]. Two
recent gene-expression analyses showed unique gene expression
patterns in human breast after pregnancy with differential expres-
sion of apoptosis-related genes and genes related to cell cycle and
cell signaling: this suggests that pregnancy may induce a protec-
tive signature against the risk of developing breast cancer
[40,41]. Parity, and specifically pregnancy at a young age, showed
to be associated with a decrease in the proportion of HR-positive
cells and pronounced changes in gene expression (i.e. downregula-
tion of Wnt and transforming growth factor b [TGFb] signaling)
leading to a decreased proliferation potential in stem/progenitor
cells that showed also to persist into advanced age [42]. Moreover,
parous women showed to have a reduction in the number of hor-
mone responsive p27+ stem cells with consequent induction of
quiescence in mammary hormone-responsive progenitors
regulated by the TGFb signaling [43].

On the other hand, breastfeeding appeared to be protective
against the risk of developing both luminal breast cancer and
triple-negative breast cancer subtypes providing further evidence
for possible etiologic heterogeneity in breast tumors. The reduced
risk of developing luminal breast cancer subtype in women who
ever breastfed suggests the influence of hormonal mechanisms
involving sex hormones also for breastfeeding characterized by a
shorter exposure to endogenous sex hormones which are reduced
during lactation-induced amenorrhea [44]. In the presence of
exposure to estrogens, HR-positive progenitor cells produce para-
crine signals that stimulate the proliferation of neighboring popu-
lations of HR-negative cells [45], suggesting also a possible
influence on the risk of developing triple-negative breast cancer
subtype. Furthermore, breastfeeding is associated with a perma-
nent alteration in the molecular histology of the breast, character-
ized by involution of terminal duct lobular units: this is a process
known to be associated with a reduced breast cancer risk [46].
Specifically, the lack of involution showed to be associated with
risk of developing basal-like (i.e. mainly HR-negative) breast can-
cers [47]. A molecular ‘‘involution signature” regulated by STAT3
signaling seems to be the key mediator of the involution process
occurring in the mammary gland during breastfeeding [48].

Some limitations of the present meta-analysis should be
acknowledged. This is a meta-analysis of epidemiological studies
(cohort studies and case–control studies) with intrinsic method-
ological limits. All data extracted are not based on individual
patient data but were retrieved from published available articles,
thus it was not possible to investigate the impact of other impor-
tant factors (i.e. race/ethnicity, number of children, different ages
at first birth, duration of breastfeeding) on the findings of the pre-
sent meta-analysis. Tumor subtype was defined in the studies
included in the present analysis based on the expression of HR

Fig. 3 (continued)
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Fig. 4. Breastfeeding and risk of breast cancer subtypes. (A) Risk of luminal breast cancer subtype according to breastfeeding; no publication bias, Macaskill test p value
= 0.05. (B) Risk of HER2 positive breast cancer subtype; no publication bias, Macaskill test p value = 0.70. (C) Risk of triple-negative breast cancer subtype; no publication bias,
Macaskill test p value = 0.27. ⁄Mixed effect model: estimates adjusted for the correlation within studies and heterogeneity between studies. Abbreviations: OR, odds ratio; CI,
confidence intervals.
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and HER2 instead of gene-expression analyses: hence, the molecu-
lar subtype of breast cancer was not available. In addition, for the
HER2 breast cancer subtype, most of the studies included HER2-
positive patients with HR-positive disease in the luminal breast
cancer subtype and thus the association among risk factors and
HER2-positive/HR-positive breast cancer could not be evaluated.
However, these limitations should not significantly influence the
overall interpretation of our results especially in light of the rigor-
ous methodology that we applied.

In conclusion, the association between breast cancer risk and
parity, age at first birth and breastfeeding varies according to
breast cancer subtype. The information from our meta-analysis
could partially explain the different incidence of breast cancer sub-
types across different regions worldwide and potentially open the
door to further study the biological effects of modifiable reproduc-
tive behaviors on breast cancer initiation. In addition, our findings
could potentially be useful in a more personalized breast cancer
risk counseling.
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