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Pierre-Etienne LABEAU (Université libre de Bruxelles, Secretary)
Nicolas PAULY (Université libre de Bruxelles)
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support technique, l’accès aux informations et toute l’aide nécessaire pour arriver à ces
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Abstract

Proton therapy facilities, as other industrial applications using ionizing radiations, are
confronted to radioprotection problems and seek to mitigate the undesirable effects. The
aim of this thesis is to study the IBA compact proton therapy center, the Proteus®One
in this radioprotection context. The compactness of this system implies important ra-
dioprotection issues, mainly the concrete shielding activation where a model allowing to
predict and characterize the impact of secondary radiations on the system is required. Nu-
merical simulations using Monte Carlo methods are used and in particular, a benchmark
between different existing software has been carried out to validate the use of the Geant4
software in this work. The first part of this thesis focuses on the design of the structural
shielding taking into account neutron sources in the model. In particular, the concept of
neutron-equivalent source is introduced. In this framework, the quantity and the localiza-
tion of the generated nuclear waste in concrete are determined. The second part of the
work investigates the beam properties and its interactions with matter along the trans-
port beamline. After the analysis of the existing system, a new degrader, which is one of
the critical elements for the emission of secondary radiations and for the performances of
the device, is proposed. Comparisons between existing (aluminium, graphite, beryllium)
and novel (boron carbide and diamond) degrader materials are provided and evaluated
against semi-analytical models of multiple Coulomb scattering. The use of diamond with
a geometry adaptation allows beam emittance reduction and beam transmission increase.
The third part of this thesis considers a complete 3D model of the Proteus®One system.
It contributes to acquire a detailed knowledge of the beam properties inside the beamline.
This model is validated with experimental data and the assumption of neutron-equivalent
source is verified. Finally, maps of proton and neutron interactions are generated to pro-
vide a complete mapping of the secondary radiations in the system. These maps can be
used to determine dosimetric or radioprotection quantities.
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Introduction

Motivation and problem statement

The growth and increased availability for the general public of industrial and medical
systems using particle accelerators pose new challenges in term of radioprotection and
subsequent shielding activation. Indeed, facilities producing ionizing radiations are con-
fronted to radioprotection issues and seek to mitigate the undesirable effects. To limit
the exposure to such radiations, concrete shieldings are routinely used. They contribute
to a large fraction of the total cost of ownership for medical and industrial facilities. In
particular, the activated concrete of the shielding must be dealt with in accordance with
international requirements for nuclear waste management during the decommissioning of
the installation. Improving the computational methods used for the design of the shield-
ings allows to reduce the uncertainty margin and to estimate with better accuracy the
fraction of activated concrete.

In this thesis, we develop two novel methods to tackle those challenges: a method based
on neutron-equivalent sources is developed and integrated with Monte Carlo simulations
and a new approach is proposed to realize a single-pass simulation of a complete installa-
tion, considering both the accelerated beam modelling and the subsequent beam-matter
interactions leading to the activation of the shielding within a single simulation.

Those methods are specifically applied and validated for the case of compact proton-
therapy systems. Indeed, those systems reveal key challenges in this context, while at the
same time, have important economic and social impacts. Radiotherapy is largely used for
the cure of cancer (50% of patient undergoing cancer treatment are prescribed with radio-
therapy, in addition to other techniques [1]). Among those patients, 1% will be treated
with proton therapy but it is estimated that 20% of patients could benefit from received
proton therapy treatments instead of X-ray radiotherapy [2]. Those reasons explain the
rapid worldwide growth of proton therapy installations. Single-room compact proton ther-
apy installations have been developed by different manufacturers and present an additional
challenge in term of shielding design and nuclear waste management. Indeed, those in-
stallations are typically located within or next to existing hospitals or clinics. The global
footprint of the installations can be minimized using improved shielding computations. In
addition, the minimization of the generated nuclear waste is particularly important for the
decommissioning phase whose tight schedule is intended to maximize the economic value
for the care provider.

To apply the techniques and methods developed in this thesis, work has been car-
ried out in collaboration with Ion Beam Applications (IBA), the world-leader in term
of installed proton therapy solutions. In particular, the product Proteus®One, offering
a compact proton therapy installation featuring a rotating gantry has been chosen for
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our models and simulations. The collaboration with IBA allowed to validate our models
with data collected in clinically-used installations and to compare our results with existing
shielding and activation design computations performed by IBA.

Nuclear applications and shielding

Since end of Second World War, nuclear applications are constantly growing [3, 4, 5]:
energy production, food sterilization, medical applications, nuclear research, quality con-
trol, ... The diverse studies in this area continue to open new possibilities and offer new
industrial perspectives.

All these applications have in common the emission of energetic particles that may
generate health or environmental problems. In this respect, the International Atomic En-
ergy Agency (IAEA), promoting the safe, secure and peaceful use of nuclear technologies,
defines different standards to protect people against undesirable exposure to radiations:
transport of radioactive material, protection of workers, radioactive waste identification
and management, ... [6]

Every nuclear installation must be equipped with a proper shielding depending on the
application to attenuate and reduce external radiations. For most utilizations, concrete
is considered as an excellent material given its properties and its attractive price [3, 4].
Different concrete compositions exist and they all have in common a mixture of light and
heavy elements which permit a good attenuation of photons and neutrons.

The particles attenuation is done by interactions of incident particles (and their gen-
erated secondary particles) with the different elements in the material. The attenuation
of the secondary radiations through a shielding wall have been intensively investigated in
recent years by researchers [7, 8, 9, 10] focusing on the attenuation of particles through
the wall.

However, ordinary concrete contains some impurities, like europium or cobalt [11, 5]
in addition to its standard components. All these elements interact with the neutrons
through different processes and produce radionuclides with a long half-life (22Na, 152Eu,
60Co, ...). For each of these radioisotopes, different clearance levels are defined by the
IAEA to determine if concrete must be considered as a nuclear waste or not.

The government and the industries are legally obliged to budget the dismantling costs
of their installations. The quantity of nuclear waste depends on how the facilities have
been used, how many times, etc. To properly model the different reactions, the secondary
radiations and the type of produced radionuclides, the methods of Monte Carlo have
become essential.

Cancer treatment and proton therapy

The World Health Organization classifies cancer as a noncommunicable disease which is
the second cause of death worldwide. Cancer is a generic term for diseases that affect any
part of the body and result in a rapid division of abnormal cells. If these cells spread to
other organs, we speak of metastasizing which is the major cause of death from cancer.
In 2012, in Belgium, cancer causes 29.600 deaths. Lung cancer and colorectal cancer are
the most frequent with prostate cancer in men and breast cancer in women [12, 13].
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Depending on the type of cancer different treatments may be considered:

� Surgery (Mechanical treatment)

� Chemotherapy (Chemical treatment)

� Radiotherapy (Physical treatment)

� Immunotherapy (Biological treatment)

The choice of the treatment is left to the discretion of the physician but for half of the
patients, a treatment by radiotherapy is used. The treatment by radiotherapy consists
in irradiating the tumour with particles to destroy them. More specifically, the particles
transfer their energy to the electrons in the medium and these electrons interact with the
DeoxyriboNucleic Acid (DNA) of the cell. These interactions cause the death of the cells.

In function of the type of particles used for the treatment, the radiotherapy may be
subdivided in three categories:

1. Conventional radiotherapy: with electrons and photons

2. Hadrontherapy: with protons and carbon ions

3. Neutron therapy: with neutrons

These last years, the hadrontherapy has demonstrated its ability to treat some specific
cancers as the ocular or prostate tumor [14, 15]. Indeed, as the particles are charged,
it is easier to focus the beam on a specific position without irradiating healthy tissues.
We illustrate in figure 1 the deposit dose for the treatment of a Hodgkin lymphoma with
protons (on the left) and with photons (on the right) [16].

(a) protons. (b) photons.

Figure 1: A radiation treatment plans using protons (a) and photons (b). Reproduced from
[16].

We remark that the normal tissues and sensitive organs (spinal cord, breast, hearth,
lung) receive a lesser dose with a proton therapy treatment than with photons. This low
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dose reduces the risk of late irradiation and thus the risk of secondary cancer caused by
the treatment itself [17, 18]. Authors of [19] have shown different advantages of neutrons
utilization but the main disadvantage of this technique is the clinical production of the
neutron beam. We will focus our attention on the cancer treatment with proton therapy.

Different irradiation techniques exist but the most effective is pencil beam scanning
(PBS) in which a few millimeters proton beam is moved by magnetic scanning [20]. This
technique irradiates the tumor more accurately and has many advantages: improvement
of the dose distribution and reduction of the delivery time. Moreover, this technique is
particularly well adapted for the treatment of children. [21, 22]

As these treatments require hadron beam with energy up to hundreds of MeV, a
proton therapy facility is a huge and expensive installation. A lot of efforts are made by
the companies to reduce the cost and make the proton therapy accessible to everyone. In
this perspective, IBA developed in 2014 a new concept of proton therapy center which
is more compact with only one treatment room and consequently easier to finance : the
Proteus®One.

As we said above, any facility dealing with nuclear radiations requires a shielding
often made of concrete. Nevertheless, the compactness of the treatment room induce
more interaction between the secondary radiations and the concrete shielding making the
radioprotection study even more important [23].

Work structure

This thesis is divided in three parts: the quantification of nuclear waste produced in a
medical installation using neutron-equivalent sources (replacement of proton beam/target
by a punctual neutron source), the study of the degrader to reduce beam losses and finally,
the complete installation modelling taking into account the beam transport and particles
interactions.

Part 1: Activation study using neutron-equivalent sources

Chapter 1 introduces the key components required for the study of particles interactions
with matter. Monte Carlo numerical methods and software used for that purpose are also
described. We especially present MCNPX , Geant4 and Phits.

In chapter 2, the Proteus®One shielding geometry has been modelled using Geant4
to estimate the proportion of activated concrete produced after 20 years of clinical oper-
ation. After estimating the locations of neutrons production sources, we use the method
of neutron-equivalent source which is developed in this work to improve computation ef-
ficiency. This method requires a validation of the hadronic models of Geant4 with other
softwares such as MCNPX and Phits. Theses models and the results are discussed in
details. The utilization of Geant4 for activation studies is quantitatively justified. The
quantity of activated concrete for the Proteus®One shielding is evaluated with Geant4
and is compared with that obtained by IBA with MCNPX . Two possible solutions are
presented to reduce the proportions of nuclear waste. The first one consists in modifying
the composition of the shielding. The second one, which is detailed in this thesis, is a
proposition of a new degrader design to reduce the beam losses.
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Part 2: Reduction of the neutrons production by the energy degrader

To limit secondary radiations, the comprehension and the model of the source terms are
of primary importance. As the degrader is the one of major contributors to the produced
neutrons, a complete study of the degrader in the IBA system is performed and compared
to analytic models. Chapter 3 describes the Hamiltonian formalism for the transport of
charged particles in electromagnetic fields. The important notions as the phase space and
the emittance are introduced. Different beam transport software, MAD-X, Manzoni and
BDSIM, are compared and validated for the IBA beam line.

We study in chapter 4 different materials to limit the harmful effects of radiations,
by reducing the beam size and increasing the beam transmission. Comparisons between
existing (aluminium, graphite, beryllium) and novel (boron carbide and diamond) degrader
materials are provided and evaluated against semi-analytical models of multiple Coulomb
scattering. The properties of the actual IBA degrader are studied in details and more
specifically, the beam emittance. Finally, a proposal of geometry made in diamond is
developed to decrease beam losses.

Part 3: Complete Proteus®One installation simulation using BDSIM

To study the impact of these optimizations at the system level, we proceed to a complete
and detailed modelling of the proton beam dynamics in the beamline. This model allows
to precisely quantify the beam losses distribution, knowing that this one strongly depends
on the fine modelling of the degrader. In chapter 5, the complete Monte Carlo model of
the Proteus®One system is presented. This model is based on BDSIM, based on Geant4 .
BDSIM combines both the transport of the proton beam in magnetic elements as well
as the interactions between particles and matter. The model obtained is validated and
discussed in details, in particular by means of experimental measurements collected along
the beamline and at the isocenter of the Proteus®One installations currently in operation.

Finally, with this detailed knowledge of the system, we perform in chapter 6 a single-
pass shielding study. Indeed, the detailed transport of the beam makes it possible to
characterize the source terms and to determine the generation of neutrons in the same
simulation. This study ensures consistency between beam physics and neutrons generation
using the previously validated software BDSIM. This result is discussed in details and
compared with the IBA study and our results based on loss estimates coupled with our
neutron-equivalent sources method. This model also allows to generate 2D maps for the
localization of protons and neutrons interactions that can be used for the establishment
of ambient dose maps.

The conclusion summarizes the main results obtained in the different chapters and
suggests future research directions for radioprotection and shielding design.
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Chapter 1

Physics for shielding studies

Contents

1.1 General principles . . . . . . . . . . . . . . . . 15

1.1.1 Particles collision . . . . . . . . . . . . . . . . 15

1.1.2 Concept of cross section . . . . . . . . . . . . . . 16

1.2 Proton interactions . . . . . . . . . . . . . . . . 18

1.2.1 Stopping Power . . . . . . . . . . . . . . . . . 19

1.2.2 Range . . . . . . . . . . . . . . . . . . . . 21

1.2.3 Scattering Power . . . . . . . . . . . . . . . . 24

1.3 Neutron interactions . . . . . . . . . . . . . . . 26

1.3.1 Capture . . . . . . . . . . . . . . . . . . . 27

1.3.2 Elastic scattering . . . . . . . . . . . . . . . . 27

1.3.3 Inelastic . . . . . . . . . . . . . . . . . . . 28

1.4 Spallation reaction . . . . . . . . . . . . . . . . 29

1.4.1 Intranuclear cascade (INC) . . . . . . . . . . . . . 31

1.4.2 Evaporation . . . . . . . . . . . . . . . . . . 41

1.5 Monte Carlo principle . . . . . . . . . . . . . . . 42

1.5.1 Monte Carlo Software . . . . . . . . . . . . . . . 43

1.5.2 Importance sampling . . . . . . . . . . . . . . . 44

In this work, we are particularly interested in the interactions between protons and
neutrons with matter. Thus, in this chapter, we recall some prerequisites about the
different processes occurring in matter. We introduce in section 1.1, the concept of particles
collision and the cross section notion. The interaction of protons and neutrons with
matter are described in section 1.2 and in section 1.3 respectively. In section 1.4, we
detail a general reaction involving protons as well as neutrons which is called spallation.
Different models of this reaction are also described. Finally, in section 1.5, we introduce
the concept of Monte Carlo simulations which are the useful methods to treat and simulate
the interactions of a large number of particles with matter.

1.1 General principles

1.1.1 Particles collision

In 1932, the first cyclotron is built in Berkeley and in 1957, a second one is built at
CERN. The purpose of these equipments is to improve our understanding of matter. It
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allows boosting particles to high energy (GeV, TeV) before colliding together or with
stationary targets. In this thesis, we are more specially interested in the second type of
experiment which consists in irradiating a target with a particle beam. This experiment
allows observing and understand the kind of reactions inside the target as well as to study
the ejected particles. Different analytical models which have been developed recently have
been validated with these experimental results [24].

A schematic view of a collision experiment is represented in figure 1.1a. A particle beam
hits a target, different reactions occurred and secondary particles are emitted. Detectors
observe and record the results of these collisions. The type of incoming particles and the
target material influence the beam deflection, the ionization of matter and the secondary
particles emitted.

As example, figure 1.1b simulates with a Monte Carlo tool these effects on a lead
target: incident protons (in blue) are diffused when passing through matter, neutrons are
generated (in green).

Particle beam

Target

(A,Z)

Detector

Detector

θ1

θ2

(a) Schematic view [25]. (b) Monte Carlo model.

Figure 1.1: Representation of a collision experiment.

1.1.2 Concept of cross section

We consider a particle entering a target as shown in figure 1.1a. There is a certain
probability that this particle interacts with the nucleus if passing close enough. This
probability is linked to the cross section σ. It has the dimension of a surface and is
generally expressed in barn (1barn = 10−24cm2). It depends on the incident particles and
on the characteristic of the target.

The total cross section can be expressed as the sum of the partial cross-sections corre-
sponding to the different interactions. In this thesis, we focus our attention on the capture,
the elastic, the inelastic and the non-elastic reactions because they are the most important
in the energy range considered in this thesis [26, 27]. Consequently, we have:

σtot = σc + σele + σine + σnonele . (1.1)
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The figure 1.2 shows the different cross sections of a 235U target irradiated by a neutron.
From this figure, we see that the most probable effect is the fission.

Figure 1.2: Cross-sections representation for a 235U target irradiated by a thermal neutron.
Reproduced from [28].

The macroscopic cross section Σ (in cm−1) represents the probability of interaction by
unit of length in the medium. Σ is derived from σ and the atomic density (N): [29]:

Σ = N σ. (1.2)

The mean free path (in cm) of the particle is defined as the average distance between two
successive collisions and is given by:

λ =
1

Σ
. (1.3)

The cross section is related to the impact parameter b. This parameter corresponds to
the distance between the target and the incident trajectory of the incoming particle (see
figure 1.3). The relation between b and σ is given by [30].

dσ = 2π b db . (1.4)

A particle with an energy E and an impact parameter b makes a collision with a target
characterized by a cross section σ. This particle is deviated from its original trajectory
with an angle θ and an energy after collision of E′. The aim of the different physical
models is to predict the angle and the loss of energy as a function of b and σ.

b

E

E ′

σ

θ
φ

Figure 1.3: Impact parameter. Reproduced from [31].
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The differential angular cross section dσ/dΩ is defined as the ratio between dσ and the
differential solid angle dΩ which is given by:

dΩ = sin (θ) dθ dφ . (1.5)

In the next sections, the different interactions are detailed. The International Commission
on Radiation Units and Measurements (ICRU) classifies the nuclear interactions in three
categories [27]:

elastic: The term elastic denotes a reaction in which the incident projectile scatters off
the target nucleus, with the total kinetic energy being conserved (the internal state of the
target nucleus and of the projectile are unchanged by the reaction).

non-elastic: The term non-elastic is a general term referring to nuclear reactions that
are not elastic (i.e. kinetic energy is not conserved). For instance, the target nucleus may
undergo break-up, it may be excited into a higher quantum state, or a particle transfer
reaction may occur.

inelastic: The term inelastic refers to a specific type of non-elastic reaction in which the
kinetic energy is not conserved, but the final nucleus is the same as the bombarded nucleus.

The section 1.2 focuses on the proton interactions and the section 1.3 on the neu-
tron interactions. The section 1.4 treats of the non-elastic scattering σnonele, also called
spallation reaction, common to both protons and neutrons.

1.2 Proton interactions

In matter, protons interact by nuclear interactions or with the atomic nuclei through the
electromagnetic force (Coulomb interactions) [32]. These different processes are shown in
figure 1.4. The spallation reaction will be described in section 1.4

p+
p+

(a) Elastic scattering.

e−p+

p+

(b) Inelastic scattering.

p+

p+2

Evaporation products

n0
γ

(c) Nuclear non elastic reaction.

Figure 1.4: Interactions that protons may suffer in matter. Reproduced from [33].

Protons can be deflected without energy loss by the nucleus (elastic scattering) as
shown in figure 1.4a. Protons energy is lost by inelastic scattering with the electrons
(see case 1.4b) or by nuclear reactions with the nucleus (see case 1.4c). For a 240 MeV
proton beam in water, the fraction of the energy lost by spallation interactions (case 1.4c)
is about 20% [34]. This fraction of nuclear interaction will be computed in chapter 4.
The elastic and inelastic scattering are described using three mathematical notions: the
Stopping Power and the Range, for the energy losses and the Scattering Power for the
angular deviation.
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1.2.1 Stopping Power

The Stopping Power S is defined as the average loss of energy dE (MeV) of a charged
particle with kinetic energy T per unit of length dx (cm) in a medium of atomic number Z
[7, 35]. In the following, we develop equations for general ions. However, in the framework
of this thesis, we focus on protons.

S ≡ −
(
dE

dx

)
T,Z

MeV

cm
. (1.6)

We often express the Mass Stopping Power S/ρ which is S divided by the density of the
material.

S

ρ
≡ −1

ρ

(
dE

dx

)
T,Z

MeV

g/cm2 . (1.7)

As a function of the impact parameter b, described in section 1.1.2, two kinds of reaction
can occur.

If b is greater or equal to the atomic radius, charged particles mainly lose their energy
with atomic electrons (figure 1.4b), the stopping power is called electronic stopping power
Selec and is given by the Bethe-Bloch relation:(

Selec
ρ

)
=

1

ρ

4πr2
emec

2

β2
Z z2L(β) , (1.8)

where re is the classical electron radius, me the mass of the electron, c the speed of light, β
the reduced speed (v/c), z the charge of the particle (in multiples of the electron charge).
For protons, z is equal to -1. The function L(β) is the stopping number and take into
account the details of the energy losses.

L(β) = L0(β) + zL1(β) + z2L2(β) , (1.9)

where zL1(β) and z2L2(β) are the Barkas-Andersen correction and the Bloch correction
[36].

If b is � than the atomic radius, proton interacts with the atomic nucleus (hard colli-
sion) by elastic or inelastic reactions. For the elastic process, energy losses are negligible
for high energy protons but increase when particles slow down. At 1keV, it is about 30%.
Thus, even if this type of reaction is quite rare, radiations have harmful effects on solids
materials and degrade their properties. These radiation damages are especially important
for spacial applications [37, 29]. In [37], the Nuclear Mass Stopping Power is given by:(

Snucl
ρ

)
=

2πnA
(
zZe2

)2
ρ

E2

p2Mc4

[
ln

(
1

As

)]
, (1.10)

with nA, the number of atom per unit of volume, ez (projectile) and eZ (target) are the
charges of the nuclei, E and p are the total energy and the momentum of the incident
particle, M is the mass of the target and As is a screening parameter (see equation 11 in
[37]).

The mass total stopping power Stot/ρ is simply the sum of the collision mass stopping
power and the nuclear mass stopping power:

Stot
ρ

=
Selec
ρ

+
Snucl
ρ

. (1.11)
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The Mass Stopping Power is tabulated for different materials by the National Institute
of Standards and Technology (NIST). We show in figure 1.5 the nuclear and the collision

Stopping Power for water irradiated by protons. We observe that
(
Snucl
ρ

)
is quite negligible

compared to
(
Selec
ρ

)
.
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Figure 1.5: Proton Mass Stopping Power for Water. Data are taken from [38].

In figure 1.6, we show the total Stopping Power for various materials used later in this

work. We observe that for incident proton beam with an energy larger than 10MeV,
(
S
ρ

)
is similar for each material.
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Figure 1.6: Proton Mass Stopping Power for various materials. All results are quite equal
for each material for kinetic energy of the proton larger than 10 MeV.
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1.2.2 Range

As defined by Attix [36]: The range R of a charged particle of a given type and energy in
a given medium is the expectation value of the path-length that it follows until it comes
to rest (discounting thermal motion). In common usage, fluctuations of energy losses are
considered as negligible and then, the energy E of the projectile is a continuous function
of the penetration depth x. This assumption is called Continuous Slowing Down Approx-
imation (CSDA). With this approximation, the range of a charged particle with an initial
energy E0 is defined by:

RCSDA ≡
1

ρ

∫ E0

0

1(
Stot
ρ

)
(E)

dE . (1.12)

The figure 1.7 shows the range for protons in water. To treat all common tumors in the
body, which is composed by 65% of water, the protons must have a minimal energy of 40
MeV and a maximal energy around 230-250 MeV [39]. It corresponds to a range in water
between 1.4 and 32.98-35 cm.
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Figure 1.7: Range of protons in water. Data are taken from [38].

In proton therapy, it is convenient to characterize the penetration of proton respectively
to the water. The Water Equivalent Thickness (WET) is defined by [40]:

tw = tm
ρm
ρw

Sm

Sw
, (1.13)

where tw and tm (resp. ρw and ρm) are the thickness (resp. the densities) of water and
the considered material. Sw and Sm are the mean proton mass stopping power values for
the water and the material, defined by:

S =

∫
E S dE∫
E dE

. (1.14)

The figure 1.8 shows the concept of Water-Equivalent Thickness (WET). A proton with
an energy Ei goes through a slice of matter m and has an energy Ef at the exit. The
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thickness of water is calculated to have the same energy at the exit. The WET is used to
characterize the beam penetration range, especially for treatment near critical structure
[41].

Material m

Water w

Ei

Ei

Ef

Ef

tm

tw = tm (ρm/ρw) (Sm/Sw)

Figure 1.8: Schematic representation of the Water-Equivalent Thickness. Reproduced from
[40].

1.2.2.1 Bragg peak

For radiotherapy treatment, it is very important to know the relation between the depth
and the deposit dose, also called Bragg curve. If a proton with a kinetic energy E0 enters
into a medium for which the range is R, the relation between R and E0 is parameterized
using p and α [42]:

R = αEp0 . (1.15)

For protons with energy between 10 and 200 MeV, p is equal to 1.8 and α = 0.0022 [42,
43]. The remaining energy at any depth x in the medium is simply defined by:

E(x) =

(
R− x
α

)1/p

. (1.16)

If we combine equation (1.7) and (1.16) and assume that the deposit dose is proportional
to S, we obtain:

DBP (x) ∝ 1

(R− x)1−1/p
. (1.17)

This relationship shows a peak when proton is at a depth near the range. This peak is
called Bragg-Peak and is the fundamental notion in proton therapy. Figure 1.9 shows a
real Bragg curve with all effects described above.

The first part of the curve is called the build-up zone, it corresponds to establishment
of the electronic equilibrium in the detector or is due to a low energy contamination. In
the second part, interactions of protons occur with the target. The protons slow down
and lose more and more energy, the Stopping Power is increasing and the maximum of
the protons energy is lost at the end of its path (see figure 1.5). The width of this peak
is related to the energy spread of the beam but also to the range straggling of protons.
After the peak, there is no more protons interacting with the medium and thus, the dose
is decreasing up to 0.
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Figure 1.9: Representation of different effects on a Bragg peak in water. Reproduced from
[32].

1.2.2.2 Spread Out Bragg Peak

During a medical treatment, it is essential to cover the entirety of a tumour. In practice,
we use Bragg peak at different depths to create a Spread Out Bragg Peak (SOBP), which
is simply a superposition of weighted Bragg-curves with different input energies as shown
in figure 1.10.
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Figure 1.10: SOBP constituted by different weighted Bragg curves. Reproduced from [44]
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1.2.3 Scattering Power

In the previous section, we have analysed the energy losses of a proton in a medium but
when protons slow down they also scatter due to interactions with the atomic nuclei. As
seen in section 1.2, the prevalent phenomenon is the interaction between the protons and
the electrons of the atom (green curve in figure 1.5).

These collisions will produce, due to the mass difference, a small deviation of the
protons [32]. The addition of these small angles has to be considered and thus, under the
Central Limit Theorem, the angular distribution is Gaussian. In reality, this distribution
is not totally Gaussian due to the electromagnetic interactions with the atomic nucleus
which produce large angle deviation. The consequences are the apparition of tails in the
angular distribution.

For a proton beam entering a slab of matter as shown in figure 1.11, different theories
has been developed to predict the exact form of the angular distribution and the charac-
teristic width (X0) as a function of the entrance energy E and the target (thickness t and
material).

p+

Target

X0

E

t

θ

Figure 1.11: Scattering of protons in a slab. Reproduced from [32].

It is well-known that Molière’s theory gives a definitive solution to the problem for
thin target. We will describe the development made by Molière in 1948. We consider a
target made of different elements (Zi, Ai) with i the ith constituent of the target. The
aim of this theory is to find the θ distribution for a target thickness t with t� R (proton
range). Molière gives a characteristic multiple scattering angle θM :

θM =
1√
2

(
χc
√
B
)
. (1.18)

χc is the characteristic single scattering angle (see equation 2.23 in [32]) and B, the reduced
thickness which is the solution of:

B − ln(B) = ln

(
χ2
c

1.167χ2
a

)
. (1.19)

In this expression, χa is a cut-off angle related to the nuclear charge by the orbital electrons
(see equation 2.25 in [32]). Molière approximates the desired distribution function f (θ)
by a power series of 1/B. Using a reduced angle variable θ′ = θ/(χc

√
B):

f(θ) =
1

2πθ2
M

1

2

{
f (0)(θ′) +

f (1)(θ′)

B
+
f (2)(θ′)

B2

}
, (1.20)
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where the function fn is given by:

fn(θ′) =
1

n!

∫ ∞
0

y J0(θ′y) ey
2/4

(
y2

4
ln
y2

4

)n
dy , (1.21)

with J0, the Bessel function. f (0) is a Gaussian function:

f (0)(θ′) = 2 e−θ
′2
. (1.22)

We show in figure 1.12a results obtained by Molière. This figure also shows the com-
parison between experimental results and the results obtained from the Molière theory.
We observe that the theory and the experience are in agreement. We also show the Molière
angular distribution as a function of θ′ (see 1.12b). The dashed line is the term f (0)(θ′)
(Gaussian). Bethe and Molière give further tables for f (1) and f (2) [45]. Two remarks can
be done about this result [46]:

1. This is a weak dependence of target thickness (in B term).

2. f(θ′) for small θ′ is nearly Gaussian but not completely as we can see in the inset of
figure 1.12b.
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Figure 1.12: Representation of multiple scattering. Reproduced from [46].

For complex geometries, it is more convenient to find a differential relation dθ/dx as the
result does not depend on the step size ∆x. Therefore, it is possible to define a Scattering
Power :

T ≡ 〈dθ〉
dx

radian

cm
. (1.23)
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Integral over x for a homogeneous medium of arbitrary thickness give the θ angle in the
Gaussian region. Different descriptions of T (x) exist and are detailed in [47, 48]. In this
report, two Scattering Powers are compared. The first one is described by Farley [48] and
the second one by Gottschalk [32].

Farley
In 2004, Farley proposed a methodology to easily compute beam characteristics at the
exit of a block of matter. Considering a material with a radiation length X0, which is
the path length covered by an electron before its energy is reduced by a factor e owing to
radiation [49, 50], and a charged particle of atomic number Z with a momentum p and a
reduced speed β (v/c), the particles suffer many small-angles elastic scattering. Assuming
a Gaussian distribution, the Scattering Power TF is given by:

TF =
200Z2

X0(pβ)2
. (1.24)

Gottschalk
In 2014, a new scattering power is introduced by Gottschalk:

TdM ≡ fdM (pv, p1v1)×
(
Es
pv

)2 1

XS
. (1.25)

where pv (resp. p1v1) is the kinematic quantity in the point of interest (resp. at the
entrance of the slab). In this relation, XS is the scattering length (analogous to the
radiation length [32]), Es is fixed at 15.0 MeV and fdM is a correction factor which
represents the non-locality, e.g the fact that the energy decreases as a function of the
depth in the slab. These quantities are defined by the following relations:

1

ρXS
≡ αNr2

e

Z2

A

(
2 log10(33219(AZ)−1/3)− 1

)
, (1.26)

fdM ≡ 0.5244 + 0.1975 log10(1− (pv/p1v1)2) + 0.2320 log10(pv)−
0.0098 log10(pv) log10(1− (pv/p1v1)2) ,

(1.27)

with α, N and re are respectively: the fine structure constant, the Avogadro’s number
and the electron radius.

These two Scattering Powers will be compared to numerical simulations in chapter 4.

1.3 Neutron interactions

Figure 1.13 illustrates different processes that may occur in a target for neutrons. The
spallation process is the non-elastic reaction with high energy hadron-nucleus and is de-
scribed in section 1.4

Spallation Capture Elastic scattering Inelastic scattering

Total

(n, x) (n, γ) (n, n) (n, n′)

Figure 1.13: Summary of the different neutrons interactions. Adapted from [51].
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Figure 1.14 shows an example of the different contributions of partial cross-section
to the total cross section (see equation (1.1)). In the case of low neutron energy in an
europium target, the capture is the most important process while around 1MeV incident
energy, the elastic and inelastic cross sections have the same order of magnitude.
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Figure 1.14: Partial cross section in function of the neutron energy. Data taken from [52].

As the spallation reaction has been described in section 1.4, we explain hereafter the
other interactions: the capture, the elastic and the inelastic process [53].

1.3.1 Capture

The neutron is absorbed by the nucleus to form a heavier one. In many cases, the emission
of a gamma follows the neutron absorption (radiative capture). The radiative capture is
the main contribution to the total cross-section for neutrons with an energy below 0.5MeV
[53].

n0 +A
Z X =A+1

Z X∗ . (1.28)

n0

Target Target

γ

Figure 1.15: Radiative capture of a neutron and γ emission.

1.3.2 Elastic scattering

The elastic scattering is a collision between the neutron and the nucleus, where after
reaction, the neutron is deviated from its trajectory with a transfer of kinetic energy and
the nucleus is left in his ground state (see figure 1.16).

n0 +A
Z X = n0 +A

Z X . (1.29)
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Target
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φ
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Figure 1.16: Elastic scattering.

Using the laws of the conservation of momentum P and energy E, we have:
E0 = E1 + E2 ,
P0 = P1cos(φ) + P2cos(θ) ,
P1sin(φ) = P2sin(θ) ,

(1.30)

with E = P 2/2m and m the mass of the particle. The energy of the particle after
interaction is given by:

E1 = E0
1

(A+ 1)2

(
cos(φ) +

√
cos2(φ) +A2 − 1

)
, (1.31)

where A = M/mn is the ratio of the mass of the target to that of the neutron.

1.3.3 Inelastic

For inelastic interaction, a neutron is captured by the nucleus and then re-emitted in a
different direction than the initial neutron with a lower energy as shown in figure 1.17.
The resulting nucleus is in an excited state and therefore, it can de-excite by emission of
a gamma particle.

n0 +A
Z X = n0 +A

Z X
∗ . (1.32)

n0

n0

Target

mn, E0, P0

mn, E1, P1

M,E = 0, P = 0

Target (excited state)

M,E2, P2, Q

φ

θ

Figure 1.17: Inelastic scattering of neutron.
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Q is defined as the excess of kinetic energy of the product particles over that of the
original particles [53]. The energy of the neutron after collision is given by:

E1 =
1

(1 +A)2

(
cos2(φ)

√
E0 ±

√
E0(cos(φ) +A2 − 1) +A(1 +A)Q

)2
. (1.33)

There is a minimum energy above which the reaction is possible. This threshold is given
when cos(φ) = 0 and then (1.33) becomes [54]:

E0 = −A+ 1

A
Q . (1.34)

As example, the first excited state of the 151Eu is 150.919 keV which we observe on figure
1.14.

1.4 Spallation reaction

Spallation reaction refers to non-elastic reaction which occurs with high energy hadron-
nucleus (p+, n0, π, etc.) in MeV to GeV energy range. This reaction produces many
secondary particles, mainly neutrons. As example, figure 1.18 shows the cross section as
a function of the number of emitted neutrons for a 1.2 GeV energy proton beam incident
on a lead target [55]. We observe that for one incident proton, there is a large probability
to create 15 neutrons (maximum of the cross section).
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Figure 1.18: Neutron multiplicity cross section as function of the neutron number for a
1.2 GeV energy proton beam incident on lead. Reproduced from [55].

Unfortunately, up to now, this process is not characterized by cross section databases
and has to be modeled [24]. In 1947, Serber [56] suggested that the spallation reaction
could be separated into two stages. The first one, called the intranuclear cascade (INC), is
very fast (10−22s) and consists of a succession of interactions between the incident particle
and the nucleons of the target. High energy particles (n0, p+, π) are emitted mainly in
the direction of the incident particle during this step. The second stage, evaporation, is
slower than the INC (10−20s) and consists of an isotropic emission of low energy particles
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or by fission of the remnant nucleus. The representation of a spallation reaction is shown
in figure 1.19 [57]. The models used in this thesis are presented afterwards. As the
Pauli exclusion principle is always applied, it implies that the collision products cannot
be emitted in occupied states.

Incident
particles

(n0, p+, π)

Nucleus INC

Fission

light particles
(n0, π, µ, ...)

Evaporation
products

γ

Evaporation
process

Figure 1.19: Scheme of a spallation reaction. A light particle collides with a nucleus
producing an intranuclear cascade. This nucleus disintegrates by emission of particles
(evaporation) or by fission. Reproduced from [57].

The figure 1.20 shows the neutron yield experimentally measured for a carbon target
irradiated by a 113 MeV energy proton beam [58]. We observe that the high energy
neutrons are produced preferably in the direction of the incident particle, corresponding
to the INC. Low energy-neutrons are emitted isotropically around the target, this is due
to evaporation.
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Figure 1.20: Experimental neutron yields. Irradiation of a carbon target by 113 MeV
energy protons. Extracted data from [58].
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1.4.1 Intranuclear cascade (INC)

Hereafter, the formalism of the intranuclear cascade (INC) is discussed as well as the
condition of validity. Then, we describe the mathematical basis of the INC and the three
models of the intranuclear cascade used in this thesis are explained: Bertini [59, 60, 61],
Binary cascade (BIC) [62] and Liège model (INCL) [63, 64]. Each of them is implemented
in the software mainly used in this work: Geant4 .

1.4.1.1 Intranuclear cascade formalism

The intranuclear cascade describes the collision between a particle and a nucleus using a
semi-classical microscopic description [65]. When the initial particle enters the nucleus,
treated as a system of nucleons in a potential and a momentum, it may collide with one
of these nucleons. Different particles are generated, collide also with the intranuclear
nucleons and so on. A particle can leave the nucleus if it reaches its boundary and if its
energy is sufficient. All transmitted particles are the product of the intranuclear cascade.
Two assumptions are made to provide a mathematical formulation of the INC [65]:

1. The motion of the particles involved in the cascade follows the laws of the classical
motion.

2. Any collision is instantaneous and localized in a point.

The principle of the intranuclear cascade is to consider the dominance of independent
binary collisions [66]. This means that each collision can be considered independently. It is
assumed that the particles move on a straight line without energy loss between collisions.
This assumption is satisfied when the following condition is met [67, 64]:

λB << rs < λ ≤ d . (1.35)

Where λB is the de Broglie wavelength1, λ is the mean free path of the particle in the
nucleus (see equation (1.3)), rs is the maximal interaction distance between two nucleons
and d is the average distance between nucleons. The first inequality ensures that the
projectile see the nucleons of the target individually and legitimate the use of classical
trajectories between collisions.

The energy range validity of the INC is graphically represented in figure 1.21, showing
the mean free path of the particle comparatively to the quantities defined above. R is
fixed as the radius of a typical heavy nucleus [67]. From this figure, we deduce that the
condition is valid for a projectile with an energy higher than a few GeV . Experimentally,
INC has been validated from an energy of 40 MeV [66].

Different models exist to treat the INC as the Vlasov-Uehling-Uhlenbeck (VUU) trans-
port equations or the Quantum Molecular Dynamics (QMD). They describe both the col-
lisions between the projectile and the target as well as the time evolution of the system
before its thermalization.

1The de Broglie wavelength is defined as the ratio between the Planck constant and the relativistic
momentum of the particle: λB = h/p
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Figure 1.21: Energy range validity of the intranuclear cascade. Reproduced from [67].

1.4.1.2 Mathematical formulation of the intranuclear cascade

As the impact parameter, the position and the momentum of the nucleons in the nucleus
are chosen randomly, we use a statistical approach to describe the INC. Let us consider a
nucleus with Z protons and N neutrons. Each nucleon has a position ri and a momentum
pi.

Let us consider a dynamical system governed by a phase space distribution function
f(r,p, t) and a Hamiltonian H(r,p, t) with r, the position, p, the momentum and t, the
time. The Vlasov equation gives the time evolution of the phase space distribution in
absence of collisions [68]:

Dt(f) =
∂f

∂t
+∇rf ∇pH −∇pf ∇rH = 0 . (1.36)

If we consider an interaction between two particles, namely 1 and 2, given after the
collision particles 3 and 4, equation (1.36) must be adapted to take into account the
nucleus-nucleus collision. This is done using the Uehling-Uhlenbeck collision term which
describes the evolution of the phase-space distribution induced by the residual interaction.
We modify equation (1.36) taking into account the collision term:

DColl
t (f) =

∫
dr2 I(r1,p1, r2; t) , (1.37)

with:

I =

∫ ∫ ∫
dp2dp3dp4δ(dp1 + dp2 − dp3 − dp4)δ(ε1 + ε2 − ε3 − ε4)

(1.38)(
dσ

dΩ

)eff
NN

[
(1− f̄1)(1− f̄2)f3f4 − (1− f̄3)((1− f̄4))f1f2

]
.

εi and pi refer to the energy and the momentum of the ith particle, fi are the density
distributions and f̄i are the occupation probabilities. The nucleon-nucleon (NN) cross

32



CHAPTER 1 . PHYSICS FOR SHIELDING STUDIES

section in the nuclear medium can be deduced from the free relative energy according to:(
dσ

dΩ

)eff
NN

=

(
dσ

dΩ

)free
(1− Y (ρ)) . (1.39)

Y (ρ) is a density scaling factor, which takes into account the reduction of the cross section
for increasing density. Y (ρ) is expressed as the ratio between the square of the Brueckner
matrix G and the free scattering matrix T [68, 69]. This Brueckner matrix is a correction
of the potential and is the solution of the Bethe-Goldstone equation [70, 71]:

G = V + V
QF

E −H12
G , (1.40)

where V corresponds to the effective-interaction potential, QF is the Pauli operator for-
bidding occupied intermediate states and (E −H12) shows the influence of the mean field
between nucleons.

Considering the Hamiltonian of the form H = p2

2m +U(r,p), equation (1.37) becomes:

DColl
t (f) =

∂f

∂t
+

p

m
∇rf +∇pU∇rf −∇pf∇rU =

∫
dr2 I(r1,p1, r2; t) . (1.41)

To be valid, this equation needs to satisfy the following conditions [67]:

1. Closure approximation: the correlation between the particles in the collision term is
negligible.

2. Low gradient approximation: the potential U is a smooth function of the spatial
extension of f .

3. Independence of collisions: the particles lose memory after collision.

Bunakov et al. [72] have demonstrated that the resolution of equation (1.41) with
Monte Carlo methods correspond to the intranuclear cascade algorithm as illustrated on
figure 1.22 [61, 65, 73]. The different steps of the Monte Carlo simulation are given below.

1 The different characteristics of the primary particle are calculated.

2 An impact parameter is chosen randomly and a point on the surface of the target is
defined.

3 The particles are propagated until their remoteness is sufficient to have reaction.

This minimal distance is calculated with the relation dmin =
√

(σNN,tot/π), with
σNN,tot, the total NN reaction cross section.

4 The interaction point is determined from the mean free path.

5 We check if the particles goes out of the nucleus without undergoing collisions.

6 If the interaction point is inside the nucleus, the probability that the ith reaction
occurs is computed using the ratio σi/σtot.

7 From the type of the interactions, the characteristics of all secondary particles are
determined.

33



CHAPTER 1 . PHYSICS FOR SHIELDING STUDIES

8 If the collision is not allowed according to the Pauli principle, the reaction is pro-

hibited and the simulation returns to step 4 .

9 The energy of the particle is compared with a cut-off energy (Ecutoff). Only particles
with an energy higher than Ecutoff contribute to the INC and their characteristics

are stored in 10 and the cascade calculation starts again from step 3 .

10 The particles with an energy lower than Ecutoff are supposed to be absorbed by the
nucleus and contribute to the characteristics of the residual nucleus.

11 The calculation is carried out until all secondary particles are absorbed or leave the

nucleus. This step is made by block 10 and 11 .

12 After the intranuclear cascade, the characteristics of the residual nucleus are com-

puted and the nucleus is de-excited in a second step (see section 1.4.2).
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Figure 1.22: General algorithm of the intranuclear cascade as implemented in Geant4.
Reproduced from [61, 65].

Different approaches exist to solve this algorithm. In this thesis, we give an overview
of the Bertini, the Binary cascade (BIC) and the intranuclear cascade of Liège (INCL)
models. The major differences between models are on the approximation of the nuclear
charge distribution and on the potential.

1.4.1.3 Bertini Model

In 1963, Bertini writes his thesis about the Monte Carlo calculations on intranuclear
cascade. The purpose was to develop a realistic model to describe the different steps of
the cascade [60, 59, 61, 74]. Hereafter, we briefly summarize the different steps of the
model.
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Construction of the target We consider a target with an atomic number A and a
nuclear charge distribution of the nucleons given by a Wood-Saxon distribution:

ρ(r) =
ρ0

e(R−R0)/a + 1
, (1.42)

where ρ0 is a normalization constant, R0 = 1.07A1/3× 10−13cm and a = 0.545× 10−13cm.
In this model, this continuous distribution is approximated with three concentric spheres.
The density of each region is equal to the average value of the continuous distribution in
that region. In function of A, nuclei models are different:

1. If A = 1 (hydrogen), a simple collision is performed.

2. If 1 < A < 4, the nucleus model consists of one layer with radius of 8.0 fm.

3. If 4 < A < 11, the nucleus model consists of three concentric spheres with radii:

ri(αi) =

√
C2

1

(
1− 1

A
+ 6.4

√
− log (αi)

)
, (1.43)

with αi = {0.01, 0.3, 0.7} and C1 = 3.3836A1/3.

4. If A > 11, the nucleus is also composed of three concentric spheres with radii:

ri(αi) = C2 ∗ log

1 + e
−C1
C2

αi
− 1

+ C1 , (1.44)

with αi = {0.01, 0.3, 0.7}, C1 = 3.3836A1/3 and C2 = 1.7234

In each region, the momentum distribution of the nucleus (f(p)) follows a Fermi distribu-
tion: ∫ pFi (ri)

0
f(p)dp = Np or Nn , (1.45)

where Np (resp. Nn) is the number of protons (resp. neutrons). The Fermi momentum
pFi(ri) is given by:

pFi(ri) = ~
(

3π2ρ (ri)

2

)1/3

. (1.46)

The potential of nucleon N in the ith zone is given by:

Vi =
pFi(ri)

2

2mN
+BEN (A,Z) , (1.47)

with mN , the nucleon mass and BEN the nucleon’s binding energy.

Cross sections and cascade generation To determine the location of the interactions
in the nucleus, the total hadron-nucleon cross-sections are used. They are tabulated using
parametrizations described in [75, 76]. These parametrizations are obtained by fitting
experimental results for different targets and energies and are available in the Evaluated
Nuclear Data File (ENDF) database.

Some quantities as the path length of nucleons in the nucleus, the type of the interaction
and the multiplicity of the secondaries, in the broad sense, are determined from the local
density and the free nucleon cross-sections available in [77, 60]. The figure 1.23 shows the
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cross-section for (p, p) reaction and (p, n) reaction. The (n, n) cross section is assumed to
be equal to the (p, p) cross-sections [60].
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Figure 1.23: Proton-Proton (blue) and Neutron-Proton (red) total cross-section. Repro-
duced from [60].

Emissions angles after collisions are determined from experimental differential cross-
sections. As an example, we show in figure 1.24, the angular distribution for (π−, p) elastic
scattering [78] for (π−, p) at 350 MeV.
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Figure 1.24: Differential cross section for (π−, p) elastic scattering. Data extracted from
[78].
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Determination of the excitation energy In the Bertini model, the excitation energy
of the resulting nucleus at the end of the cascade is calculated from the expression:

E∗ = Ti − T0 − 7(n− 1) , (1.48)

where Ti is the kinetic energy of the incident particle, T0 is the sum of the kinetic energy
of the outgoing particles, n is the number of emitted particles and 7 (MeV) is the binding
energy of the most loosely bound nucleus which is assumed to be constant for all nuclei.

1.4.1.4 Binary Cascade Model

The Binary Cascade (BIC) is a model developed in 2004 and which proposes a new ap-
proach for the treatment of the intranuclear cascade [62, 79]. This model is a feature
between a classical code and a quantum molecular dynamics model (QMD). Each partic-
ipating nucleon is described as a Gaussian wave package:

φ(x, qi, pi, t) =
2

(Lπ)3/4
exp

(
−2/L(x− q(t))2 + ipi(t)x

)
, (1.49)

where x and t are the space and time coordinates, L = 2.16 fm and qi (resp.pi) describes
the position (resp. the momentum) space of the nucleon i. A complete description of
QMD is detailed by Niita et al. in [80]. During the cascade, this package is propagated in
time and space and suffers collisions with nucleons in the nuclear medium. Only primary
particles or secondary generated during the cascade (called participants) are propagated.
The collisions between participants are not considered.

Construction of the target In the BIC model, the nucleon distribution is given by a
harmonic-oscillator for light nuclei and by a Wood-Saxon distribution for target with A
> 16. We have

1. if A < 16:

ρ(r) =
(
πR2

)−3/2
exp

(
− r

2

R2

)
, (1.50)

where R2 = 0.8133 A2/3 fm2

2. For target with A > 16:

ρ(r) =
ρ0

1 + exp
(
r−R
a

) , (1.51)

with ρ0 given by:

ρ0 =
3

4πR3

(
1 +

a2π2

R2

)−1

. (1.52)

Here, a = 0.545 fm, R = r0 A
1/3 fm with r0 = 1.16

(
1− 1.16A−2/3

)
fm

The nucleon position is chosen randomly according the nuclear density ρ(r). To take the
repulsive core into account, a minimum inter-nucleon distance of 0.8fm is fixed.

The momentum pi of the nucleons is chosen randomly between 0 and the Fermi mo-
mentum pmaxF (ri). This latter one is obtained as a function of the nuclear density:

pmaxF (r) = ~c
(
3π2ρ(r)

)1/3
. (1.53)

To ensure that the vector sum of the nucleon momenta is zero, the momentum of the last
constructed nucleon is fixed to prest = −∑i=A−1

i=1 pi.
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The Hamiltonian in the BIC model is calculated from time-independent optical poten-
tials. When the beam particle is composed of protons or neutrons, the potential used is
determined by the local Fermi momentum pF (r) as:

V (r) =
p2
F (r)

2m
. (1.54)

Cross sections and cascade generation Experimental data are used in the calcula-
tion of the total, inelastic and elastic cross sections. For hadron-nucleon scattering ((p, p)
and (p, n) reactions), data are taken from the Particle Data Group for both elastic and
inelastic collisions [81].

Determination of the excitation energy At the end of the cascade, the residual
nucleus is characterized by its number of nucleons in the nucleus, its number of holes
(difference between the number of nucleons in the incident particle and the number of
nucleons in the pre-fragment), its number of excitons (nucleons captured in the residual
nucleus). The excitation energy is given by the energy of the excitons in the residual
nucleus.

1.4.1.5 Intranuclear Cascade of Liège

The Intranuclear cascade of Liège (INCL) model is the latest model introduced and it is
still under development. The version described in this thesis is version 4 [82, 83]. In [84],
an extension of the intranuclear cascade for irradiation by light nuclei is made but is out
of the scope of this work.

Construction of the target Depending on the value of the atomic number A of the
target, different distributions for the density are used [85]:

1. A ≤ 6: the distribution is Gaussian with a tabulated value for the standard deviation

which is equal to
√

3
5pF [84].

2. 6 < A ≤ 28: A modified harmonic oscillator is used:

ρ(r) =

(
1 +R0

(r
a

)2
)

exp

(
−
(r
a

)2
)
, (1.55)

where R0 = (2.745× 10−4A+ 1.063)A1/3 fm and a = 0.510 + 1.63−4A fm.

3. A > 27: the radial density is given by a Wood-Saxon distribution, up to a maximum
distance Rmax = R0 + a.

ρ(r) =
1

1 + exp
(
r−R0
a

) . (1.56)

The following relation must also be satisfied:∫ Rmax

0
ρ(r) ~dr = A . (1.57)

The momentum of the nucleon is chosen randomly in the Fermi sphere with a maximum
value of pF (equation (1.53)). Nucleons with a large momentum are expected to reach a
larger radial distance than a nucleon with a small momentum. It is thus assumed that the

38



CHAPTER 1 . PHYSICS FOR SHIELDING STUDIES

number of nucleons with a momentum between p and p + dp is the same as in a layer of
density profile ρ(R(p)) and ρ(R(p+ dp)) as shown in figure 1.25.

r

R(p)

�(r)

R(p+dp)

r-p correlations

p
F
p

n(p)

p p+dp

Figure 1.25: Illustration of the correlation between the position and the momentum. Re-
produced from [82].

This implies:

A
4πp2dp

4π
3 p

3
F

=
4π

3
R3(p)dp . (1.58)

The boundary conditions are set to R(0) = 0 and R(pF ) = Rmax, which gives:(
p

pF

)3

=
4π

3

∫ R(p)

0

dρ(r)

dr
r3dr . (1.59)

With this relation, the following algorithm is used to determine the position and the
momentum of the nucleon:

1. ~p is chosen randomly in a sphere of radius pF .

2. R(p) is computed using the relation (1.59).

3. ~r is chosen at random in a sphere of radius R(p).

In the nucleus, the mean field is described by an attractive square potential V0 for all
baryons with an extension equal to R(p). To satisfy energy conservation law, the incident
particle has an energy equal to Ti + V0 when it enters the nucleus (at r = Rmax).

Cross sections and cascade generation After the initialization of the projectile and
the target, an impact parameter of the projectile is chosen randomly in a circle of radius
Rmax. Then, particles are propagated through the medium using relativistic kinematics
and straight trajectories. A distinction is introduced between participants and spectators.
The projectile is considered as a participant. Each particle that is collided with a partici-
pant (or is created during an inelastic reaction) becomes a participant, otherwise, particles
are spectators. This distinction avoids interactions between spectators. When two parti-
cles are separated by a distance dmin, an impact parameter bmin is computed using the
relation [82]:

b2min = d2
min +

(~dmin · ~βcm)2

1− β2
cm

, (1.60)

with ~βcm, the velocity of the center of mass in the laboratory data frame. The quantity
πb2min is compared to the cross section for the energy of center of mass (

√
s) of the two

particles.
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1. πb2min > σ(
√
s), particles do not interact and propagate until the next collision.

2. πb2min < σ(
√
s), a collision happens if the Pauli principle is satisfied.

In the INCL model, the experimental cross sections are used when data are available other-
wise, different parameterisations may be used. These ones are summarized in [73]. Figure
1.26 illustrates the behaviour of the cascade, the incoming nucleon reaches the minimum
distance dmin and undergoes elastic reaction or inelastic reaction (with production of ∆
resonance). Such resonance decays in a pion and a nucleon which are transmitted through
the nuclear surface.

∆ π

dmin

Figure 1.26: Representation of the intranuclear cascade in the Liège model. Reproduced
from [82].

Transmission or reflection on the surface The INCL model introduces the concept
of reflection and transmission on the nucleus surface. If a participant reaches the nuclear
surface, a transmission probability is computed as a function of the kinetic energy Ti and
of the nuclear mean field V0 [86]:

T =
4
√
Ti(Ti − V0)

2Ti − V0 + 2
√
Ti(Ti − V0)

e−2G , (1.61)

where G is the Gamow factor. If the energy of the particle is lower than a threshold, it
is reflected. Otherwise, it is reflected on the target or transmitted with the probability
T . For transmission, its final energy is given by Tend = Ti − V0 and there is no change of
direction.

Stopping time of the cascade The major difference between INCL and the other
developed models is the time dependence in the cascade. This time, tstop determines the
boundary between the intranuclear cascade and evaporation model which is described in
section 1.4.2. tstop corresponds to:

tstop = fstop t0

(
A

208

)0.16

, (1.62)

where t0 = 70fm/c and fstop = 1.
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End of the cascade and excitation energy At tstop or at the end of the cascade, the
∆ resonances are forced to decay and with the conservation law for the energy, we write:

Tlab = Kej +Wπ + Erec + E∗ + S . (1.63)

In this relation, Kej is the kinetic energy of the emitted particles, Wπ is the energy of pions,
Erec is the recoil energy of the nucleus, E∗ is the excitation energy and S is the separation
energy, i.e, the minimum energy to eject all pions and ejectiles from the nucleus in their
ground state. Erec and S are expressed as a function of the properties of the remnant
nucleus [86]:

Erec =
p̃2
rem

2mNArem
. (1.64)

S = (AT −Arem) (V0 − TF ) . (1.65)

This allows determining E∗ which is used in a second time as input in evaporation model.
All explanations about elementary collisions are described in [82].

1.4.2 Evaporation

Due to difference in time scale between the intranuclear cascade and evaporation (10−22s vs
10−20s), these processes are considered independently of each other. After the intranuclear
cascade, the nucleus can be quite excited and then, may be de-excited through different
channels in competition. In particular, emission of light particles (neutrons, protons, etc.),
γ radiation, etc. can occur. Probability of emitting each type of particles is based on the
assumption that the model reaches a statistical equilibrium after every evaporation step
and on the principle of detailed balance [83, 87, 88].

Light particle emission The purpose of evaporation theory is to evaluate the proba-
bility of the emission of a particle ν with a mass m and an energy εν . We consider an
initial nucleus characterized by an excitation energy Ui and a total angular momentum
Ji. This nucleus decays into a final nucleus (Uf , Jf ) emitting a nucleon or a light nucleus
ν with a kinetic energy εν , spin sν and orbital angular momentum l. The decay width for
this process can be calculated using [88]:

Γ (Ui, Ji;Uf , Jf , sν) =
2sν + 1k2

f

2π2
σfi(Ui, Ji)

(2Jf + 1)ρ(Uf , Jf )

(2Ji + 1)ρ(Ui, Ji)
. (1.66)

The energies Ui and Uf are related by Ui = Uf + εν +Sν +Bν , where Sν is the separation
energy and Bν the Coulomb barrier for the emitted particle. σfi(Ui, Ji) is written in term
of the transmission coefficients T as:

σfi(Ui, Ji) =
π

k2
f

2Ji + 1

(2sν + 1)(2Jf + 1)

Jf+sν∑
S=|Jf−sν |

Ji+S∑
l=|Ji−S|

T lν(εν) , (1.67)

with S = Jf + sν is the channel spin and T lν incorporates the effects of the Coulomb
and the centrifugal barrier together with the nuclear potential. By combining (1.66) and
(1.67), the average decay rate Rν of a nucleus emitting a particle ν is given by:

Rν =
Γν
~

=
1

h

ρ(Uf , Jf )

ρ(Ui, Ji)

Jf+sν∑
S=|Jf−sν |

Ji+S∑
l=|Ji−S|

T lν(εν) . (1.68)
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Partial width of light particle emission process is obtained from summing over all possi-
bilities of the angular momentum and integrating over all possible kinetic energy εν of the
emitted particle. It is thus expressed as:

Γν =
1

2πρ(Ui)

4mνR
2

~2
T 2
f ρ(Ui − Sν −Bν) , (1.69)

with R the radius of the nucleus and Tf , the temperature of the final residue which is
given by the relation [89]:

Tf =

√
Uf
c ·A . (1.70)

γ emission The partial decay width for γ emission is parametrised by:

Γγ (εγ) = 0.624 · 10−9 ·A1.6T 5MeV . (1.71)

Fission The fission decay width Γf may be calculated with:

Γf (Ui, Ji) =
1

2πρ (Ui, Ji)
Tsadρ (Ui −Bf ) . (1.72)

With Bf , the fission barrier and Tsad, the nuclear temperature at saddle.

Final probability for evaporation of the particle i is the branching ratio between the
partial width and the sum of all evaporation possibilities:

Pi =
Γi∑
i Γi

. (1.73)

1.5 Monte Carlo principle

In the previous section, we have described the different types of interactions between a
particle and matter. In practice, we need to model a very large number of particles, all
reactions are combined and the problem becomes impossible to solve analytically. This is
the reason why Monte Carlo softwares have been developed. To attack complex problems
like space computation of radiation levels in the International Space Station, shielding
studies or medical applications, utilisation of Monte Carlo methods are mandatory. These
methods were first introduced to solve the Boltzmann equation [54, 90] but with the
development of computational power, more complicated problems could be solved in a
reasonable time.

Lux and Koblinger [53] give a very comprehensive definition of a Monte Carlo sim-
ulation: In all Monte Carlo applications, a stochastic model is constructed in which the
expected value of a certain random variable is equivalent to the value of a physical quantity
to be determined.

In our application field, this is done using a pseudo random number generator which
determines the probability distribution for scattering angle, track length, etc. These par-
ticles can obviously interact with the medium and create secondary particles which are
added to the history of the incident particles. As said, the main purpose of particle
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tracking is to evaluate the mean x̄ of a certain quantity of interest (flux, number of cre-
ated isotopes, etc.). For each particle, these quantities can be computed as well as their
standard deviation (also noted σ). Then, the results of the simulation is given by:

x̄ =
1

N

N∑
n=0

xn , (1.74)

σ(x) =

√√√√ 1

N − 1

N∑
n=0

(xn − x̄)2 , (1.75)

with xn, the contribution of the nth history.

A standard criterion to evaluate the performance of a Monte Carlo simulation is the
Figure of Merit (FOM) and is defined as the inverse of the product between the variance
of the studied quantity and the time of the simulation (T ):

FOM =
1

σ2T
. (1.76)

A Monte Carlo simulation is efficient if the FOM is as large as possible. Reducing com-
puting time using energy or time cutoffs is sometimes not sufficient and thus, for some
complex problem as activation, variance reduction techniques must be applied. We can
mention the importance sampling, the exponential transformation or the forced collision
methods [54, 53]. In this work, the first one has been used and will be explained in sec-
tion 1.5.2. The performance of a Monte Carlo simulation will be also analysed after the
presentation of the Monte Carlo software.

1.5.1 Monte Carlo Software

Since 1950, many Monte Carlo softwares have been developed. In the field of shielding
studies, detector design, space applications or medical physics, we may cite Geant4, Phits
or MCNPX for example [91, 92, 93, 94, 95, 96]. In this work, version 10.03 of Geant4,
version 2.7.0 of MCNPX and version 2.82 of Phits have been used and are briefly described.
Fluka [97] is also a possibility but is not used in this thesis.

Geant4 Geant4 (GEometry ANd Tracking) code is written in C++ and developed by
the CERN and the High Energy Accelerator Research Organization from 1998. This
software simulates the passage of particles, including exotic ones, through matter. Cross
sections for different processes are taken from the existing database as ENDF [52]. The
structure of a Geant4 application defines the geometry, the type of incident particles,
the magnetic field and the physics processes of interest. Many complex geometries can
be imported through a GDML (Geometry Description Markup Language) module [98]
and the analysis of the results can be done using the ROOT framework [99]. Moreover,
users can implement their own functionalities to perform the simulation such as killing
secondary particles for example.

MCNPX MCNPX (Monte Carlo N-Particles eXtended) code has been elaborated at
Los Alamos National Laboratory 30 years ago. It uses standard evaluated nuclear data ta-
bles to transport protons and neutrons and physics models to transport neutrons, protons
and other type of particles when no tabular data are available. Nuclear data and libraries
up to 150 MeV are used [100]. This software is used in many applications and has been
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validated for many cases. The user has to write a simple ASCII file as input which makes
the program very quick when simple geometries have to be performed. A licence is needed
to use MCNPX .

Phits The Particle and Heavy-Ion Transport code System (Phits) has been developed
using the Fortran-77 code language in 2002 under the collaboration of Japan Atomic
Energy Agency (JAEA), Research Organization for Information Science and Technology
(RIST) and KEK [101]. Phits transports all particles in material over wide range of energy,
using nuclear data libraries ans reaction models. Different packages may be used for the
Stopping Power and for the angular straggling. The input file consists of an ASCII file,
as in MCNPX , which describes the model used. This software can be used freely after a
registration.

The principal aim of a radiation shielding is to protect peoples against radiations.
However, at deeper zone of the concrete, the particles population is low and equation
(1.76) could have a large variance and that implies that the Figure of Merit (FOM ) of the
simulation is low. To increase this quantity, some techniques of variance reduction must
be implemented. In the next section, we explain the concept of the importance sampling.

1.5.2 Importance sampling

In shielding application, this method is used quite often because it reduces the error over
any quantity in the deeper areas of the shielding. The shielding is divided into geometrical
cells and an importance value is given to each one (see figure 1.27). If a particle crosses
the boundary between two cells with importance Ia and Ib, the quantity f = Ib/Ia is
computed:

1. f = 1: no action, the particle continues

2. f > 1: the incident particle is replaced on average by f particles, each with a weight
(w) equal to 1/f of the original particle’s weight. This step is the splitting.

3. f < 1: the original particle is killed with a probability 1 − f (Russian roulette
technique)

I1 I2 I3 I4

I0 = 1

w

w
2

w
2

Splitting

Russian

roulette

w′ w

wX

Figure 1.27: Importance sampling.
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In figure 1.28, the importance sampling as implemented in Geant4 is illustrated. It
consists of 200 MeV neutrons crossing 1 meter of concrete (2.3 g/cm3). The total thickness
of concrete is divided in 8 cells and for each of them an importance is defined. In figure
1.28a, the importance of each cell is equal to 1 (analogue simulation). In case 1.28b, an
importance of 2n (with n the index of the cell) is assigned. We remark that at deeper areas
of the shielding and with variance reduction technique, the number of simulated neutrons
is more important. It implies that any quantity computed in case 1.28b will have a lower
error.

(a) Without importance sampling. (b) With importance sampling.

Figure 1.28: Importance sampling in Monte Carlo simulation. We observe that at deeper
area of the shielding, the number of simulated neutrons is more important which allows to
increase the FOM.

As example, we compute the neutron fluence and the simulated population in the last
cell of the shielding and we compute the FOM related to these simulations. The results
are summarized in table 1.1. We remark that the FOM and the variance (σ2) are better
when we use the importance sampling.

Quantities No importance sampling With importance sampling

Flux 15300.27 14626.16

Population (not weighted) 110.8 14199.2

σ2 644.54 82.12

Time (ms) 1393.92 7246.23

FOM 1.11E−6 1.68E−6

Table 1.1: FOM computation for two Geant4 simulations.

It is important to note that the FOM is very dependent on computer performance,
the software or the multithreading possibilities. In Geant4, some classes exist to quickly
implement the importance sampling.
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By the 1950s, particles accelerators are routinely used in nuclear physics research. Since
then, the applications have grown and are now routinely used for the medical treatment
of cancer as well. Clinical specifications require a proton energy in 40-230 MeV range
corresponding to a range in water between 1.4 and 32.98 cm.

At these energies, the interactions of protons with matter will create energetic enough
neutrons to produce radionuclides in shielding materials, like concrete. Interactions of
neutrons with concrete will produce various radionuclides such as 22Na, 54Mn or 46Sc
(produced by high energy neutrons, greater than 1MeV or 152Eu, 154Eu, 60Co, 134Cs
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(produced by low energy neutrons, lower than 1MeV) [102, 103]. These elements generate
radiations which cause dangerous health effects, environmental problems [104] and waste
management issues during the decommissioning phase.

In this chapter, we use Monte Carlo simulations to estimate the quantity of activated
concrete in the shielding of a proton therapy system after its 20 years lifetime. Based on
these simulations, we propose several ways to limit that quantity. These ones are explored
and discussed in the next chapters.

The International Atomic Energy Agency defines criteria for protection against ionizing
radiations [6]. It was created in 1957 in the context of the Cold War to accelerate and
enlarge the development of atomic energy for peaceful applications, prosperity and health
throughout the world [105].

The clearance levels, limit threshold for acceptable activity concentration, are part of
these requirements and are used to determine if an irradiated material must be considered
as a radioactive waste or not. Clearance levels are calculated so that the effective dose
to individuals is lower or equal to 10µSv per year. For materials containing a mixture of
radionuclides, the IAEA recommends to use the following criterion to identify whether the
material is a nuclear waste or not. If the left side of equation (2.1) is greater or equal to
one, the clearance level is exceeded and the material shall be considered a nuclear waste
and must be treated adequately.

n∑
i

Ai
(CL)i

≤ 1 , (2.1)

where Ai is the activity concentration (in Bq/g) of the ith radionuclide in the material,
CLi is the clearance level of the ith radionuclide and n is the number of radionuclides
species present in the material. The clearance levels are tabulated as a function of the
type of radionuclides [6].

In order to predict the activation level after operation for a given number of years,
Monte Carlo radiation transport codes (e.g MCNPX , Geant4 , Phits, ...) are used. Dif-
ferent models exist to characterize the interactions between high energy neutrons and the
nucleus. We discuss and compare these models in section 2.3.

The structure of this chapter is as follows. In section 2.1, the different equations
to determine the activity concentration are introduced. We present in section 2.2 the
algorithm developed for general activation studies. In section 2.3, we use this new method
on a simple case to compare different spallation models in Monte Carlo softwares. We
model an entire compact proton therapy system in section 2.4 and we predict the quantity
of activated concrete after 20 years of utilization and finally, we propose solutions to reduce
the quantity of activated shielding and thus the quantity of nuclear waste.

2.1 Tools for the computation of activity concentration

2.1.1 Activation of materials

The activity concentration is defined by the following equation :

A = λR , (2.2)

where λ is the radioactive decay constant and R is the reaction rate, which corresponds to
the number of created isotopes per unit of mass [54]. Two approaches may be envisaged
to compute R.
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The first one is simply counting the number of radioisotopes which are created. How-
ever, this method is not adapted when activation of trace elements (concentration in ppm1)
must be calculated because the interaction probability is very low (see equation (1.2)) and
consequently, the error and the computation time will be too large. The second approach
is more suitable for Monte Carlo simulations. The reaction rate is computed as [54] :

R = N

∫
φ(E)σ(E)dE , (2.3)

where σ is the cross section for the considered reaction in cm2, φ is the differential fluence
in MeV−1 cm−2 and N is the concentration of stable nuclides in g−1.

The radioactive constant λ is given by ln (2) /T1/2 with T1/2, the half life of the isotope.
Then, equation 2.2 may be written as :

A = λR =
ln(2)

T1/2
N

∫
φ(E)σ(E)dE . (2.4)

This equation gives the created activity concentration per incident particle. After the
irradiation, this quantity decreases with time following an exponential decay. Thus, the
resulting activity is given by:

A(t) =
ln(2)

T1/2
Rexp

(
− t ln(2)

T1/2

)
. (2.5)

To compute the reaction rate, three quantities need to be determined, from equation (2.3):

� The concentration of stable nuclides (N) which depends on the considered material.

� The neutronic fluence (φ).

� The cross-section which produces radionuclides (σ).

These notions are developed in the next three sections.

2.1.2 Concrete composition used for Monte Carlo simulation

The calculation of concrete activation requires some approximations on the composition
of the concrete. Williams et al. [106] provide a compendium of material composition for
radiation modelling. They describe the composition of different types of concrete including
the Portland concrete which is one of the most common ones. This one is also described in
the National Institute of Standards and Technology (NIST) database [38] and is available
in Geant4.

The concentration of stable nuclides of this specific concrete is detailed in table 2.1
and is used in this work. Moreover, some impurities are also present in the cement or in
the aggregates [107]. They will be taken into account given their impact on the activation.

Some of these impurities have a large capture cross section which produces radionu-
clides with a long decay time. Previous studies [107, 108, 102] revealed the presence of
europium, cobalt and caesium in concrete material.

1parts per million
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Element Mass Fraction (%)

H 1

C 0.1

O 52.91

Na 1.6

Mg 0.2

Al 3.39

Si 33.7

K 1.3

Ca 4.4

Fe 1.4

Impurities Concentration in ppm 2

Table 2.1: Composition of standard concrete used in this work [38].

The total activation is due to two dominant phenomena (see section 1.4 and 1.3). On
one hand, the spallation reactions which occur with the principal components of concrete
and on the other hand, the neutronic capture, which is caused by the impurities present
in concrete.

In this work, only the radionuclides with a half-life greater than 3 months are consid-
ered. Indeed, after exploitation of a proton therapy center, there is a period of rest before
decommissioning. During this period, the activation decreases following the natural decay.
In average, we assume that this period is three months.

Table 2.2 details the different radioisotopes that are considered in this work. The pro-
duction method, the half-life, the clearance level and the parent element are specified. The
last are the stable elements which will produce the radioactive elements after interactions
with neutrons. The radionuclides produced by spallation depend on the composition of
concrete and the parent element may not be identified clearly3. The clearance levels are
tabulated in [6] and are needed to evaluate the quantity of radioactive waste (see equation
(2.1)).

Element Production method Half life T1/2 [years] Clearance level (Bq/g) Parent element
45Ca Spallation 0.445 100 ”Concrete”
55Fe Spallation 2.744 100 ”Concrete”

54Mn Spallation 0.855 0.1 ”Concrete”
22Na Spallation 2.603 0.1 ”Concrete”
35S Spallation 0.239 100 ”Concrete”
46Sc Spallation 0.229 0.1 ”Concrete”

152Eu Capture 13.33 0.1 151Eu
154Eu Capture 8.8 0.1 153Eu
60Co Capture 5.3 0.1 59Co
134Cs Capture 2.06 0.1 133Cs

Table 2.2: Radionuclides properties considered in this thesis.

2Depending on the composition of the considered concrete. See text for precise values.
3Different elements can give the same radionuclide.

49



CHAPTER 2 . MONTE CARLO SIMULATIONS FOR THE ACTIVATION OF
CONCRETE SHIELDINGS

2.1.3 Fluence computation and path-length estimator

The International Commission on Radiological Protection (ICRP) [109] defines the fluence
(in m−2) as : the quotient of dN by dA, where dN is the number of particles incident on
a sphere of cross-sectional area dA :

φ =
dN

dA
. (2.6)

In Monte Carlo simulations, this definition is not directly applicable and it is more con-
venient to use the Path-Length estimator which is equivalent [54]. For the Path-Length
estimator, we use the definition of Lewis and Miller : The fluence is defined by the track
length (L) of a particle inside a volume divided by the volume of this cell (V ). The track
length is calculated from a summation of the step lengths (l) in the cell. Furthermore, if
a variance reduction technique is used (see chapter 1.5.2), the fluence is multiplied by the
weight of the particle. We thus have:

φ = W × L

V
= W ×

∑
l

V
. (2.7)

These two equations ((2.6) and (2.7)) are illustrated in figure 2.1. The fluence is equal
in 2.1a to the number of particles (∆N) passing through the surface (∆A) into a sphere,
while, in figure 2.1b, it corresponds to the sum of the paths of each particle (L) passing
through the sphere divided by the volume V [110].

�❆

�❱

(a) Definition of the ICRP.

�❱

(b) Path Length estimator.

Figure 2.1: Two interpretations of the fluence using the volume ∆V and the cross-
sectionnal area ∆A. The interpretation b is more useful for Monte Carlo simulations.
Reproduced from [110].

2.1.4 Cross section for radionuclides production

The last quantity to determine the reaction rate is the cross section for the production
of radionuclides. As explained in chapter 1, neutron reactions that mainly produce ra-
dioisotopes are the capture and the spallation reactions. Hereafter, we describe the cross
section for capture process and then, we discuss the spallation reaction.

2.1.4.1 Capture cross section

The capture cross-sections are tabulated for incident neutrons with kinetic energy from
10−11MeV up to 20MeV in the Evaluated Nuclear Data File (ENDF) database [52]. For
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each element that is produced by capture (152Eu, 154Eu, 60Co and 134Cs) the correspond-
ing capture cross section of the parent element is presented in figure 2.2. We see that at
low neutron energy, the capture cross section is more important. This means that the
chance to capture the neutron is greater at low energy. Moreover, the cross section for
the 151Eu is about one thousand times greater than the others increasing its chance of
interaction.
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Figure 2.2: Neutron capture cross section from the ENDF database [52].

Even if these elements are present as traces in the concrete shielding, the capture cross
sections are non negligible for energies lower than 20MeV. For energies above 20MeV,
we assume a cross section equal to 0. As the produced radionuclides are long-lived, it is
important to take into account these isotopes for activation studies.

2.1.4.2 Spallation cross section

When neutrons interact with the concrete, they may produce some radionuclides by spal-
lation. As we have seen in section 1.4, different models (Bertini, BIC and INCL) exist
to describe this particular reaction. The cross section for the production of a specific
radionuclides (σproduction) is given by [111, 26]:

σproduction(E) =
Nradionuclides(Z,A)

Nneutrons
σtot(E) , (2.8)

where Nradionuclides(Z,A) is the number of radionuclides with an atomic number Z and a
nucleon number A produced by spallation, Nneutrons is the total number of neutrons irra-
diating the concrete (input) and σtot is the total interaction cross section in the concrete.

51



CHAPTER 2 . MONTE CARLO SIMULATIONS FOR THE ACTIVATION OF
CONCRETE SHIELDINGS

These models must be compared to quantify the difference between them and thus, we
perform simulations over a simple configuration. It consists of a target of concrete which
is irradiated with neutrons at different energies. The thickness of the target is ”infinite”
to be sure that any primary neutron interacts in the medium.

First, the total cross section (σtot) is deduced from equation (1.3), where the mean free
path is computed as the mean value of the track lengths of the incident particles. The
results obtained with the different models from Geant4 as well as the data given by the
TALYS software (nuclear model code) [112] are presented in figure 2.3. We observe no
major differences between them, the three Geant4 models give the same results.
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Figure 2.3: Neutron total cross section for concrete. The results obtained with the three
Geant4 models are superposed.

Secondly, we compare the production cross section in concrete for the elements in
table 2.2 with the different theoretical models (equation (2.8)). The results are illustrated
for 22Na (Z=11, A=22) in figure 2.4. The trends for the other elements are similar and
presented in appendix A.

Starting from these results, some remarks must be made. First, we observe some
differences between the production cross section while the total cross section is the same
with the different models. We have seen in chapter 1 that the total cross section is a sum
of partial cross sections (equation (1.1)). This means that the cross sections for other
processes vary depending on the models. Second, the cross sections are only in the mb
range. However, as the atomic density is important, the numbers of produced isotopes
will be quite significant. Thirdly, the G4 BERT model underestimates the production of
22Na while the other models give equivalent results. Finally, even if the description of
the models relies on the same physics, differences are in the details of the implementation
[113]. The differences between the models have been confirmed in previous studies (see
[24] and [26]). Nevertheless, they have shown a global improvement of the reliability of
the models over the past years.

52



CHAPTER 2 . MONTE CARLO SIMULATIONS FOR THE ACTIVATION OF
CONCRETE SHIELDINGS

0 50 100 150 200 250

Incident neutron energy (MeV)

0

1

2

3

4

5

6

7

8

C
ro

ss
se

ct
io

n
(m

b
ar

n
)

TENDL-2015

G4 BERT

G4 BIC

G4 INCL

Figure 2.4: Production cross section of 22Na in concrete.

2.2 Methodology to compute the activity concentration

We present in this section the approach introduced in this thesis to study the activation
concentration in any materials and configurations. We describe in section 2.2.1 the method
neutron-equivalent source, introduced to reduce the computation time. In section 2.2.2,
we explain the algorithm developed in Geant4 to compute the activation.

2.2.1 Neutron-equivalent source method

The neutron-equivalent source is a technique to reduce the computation time in case of
low creation rate of secondary neutrons. For example, we consider a graphite target (1.7
g/cm3) irradiated by protons and we analyse the properties of neutrons emitted by this
target : multiplicity, energy, angle, etc. Figure 2.5 shows the neutron yields emitted by
this target due to a 230 MeV proton beam for different degraded energies.

This figure illustrates clearly that the major part of the computational resources are not
used to generate neutrons. Indeed, the number of created neutrons per incident proton is
low. For instance, at 130 MeV at the target exit, approximately 20 neutrons are generated
for 100 incident protons.
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Figure 2.5: Neutron emission ratio for a graphite target irradiated by a 230 MeV proton
beam.

A solution to improve the simulation efficiency and to avoid excessive computation
time is to replace the set beam-target by a point neutron source having same energy and
angle properties, θ and φ, as the set beam-target (see figure 2.6). This technique has been
already used by F. Stichelbaut in a study of secondary X-Rays generated in a beam stop
or by Medaustron for a study of the ambient dose in their facility [114, 115]. For our
particular purpose, this method will be validated in section 2.3.2.
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Figure 2.6: Replacement of the beam target by a point neutron source.

Figure 2.7 shows for example a histogram of the energy versus angle θ (in 2.7a) and
the angle φ (in 2.7b) for a set proton beam target. The proton beam has an energy of
230 MeV and the energy at the target exit correspond to 130 MeV. We note that the
distribution of θ is energy-dependent which means that we have a peak at small angles
due to the spallation processes. For each neutron energy, number of emitted neutrons is
constant whatever φ angle. This means that the high energy neutrons are emitted in the
same direction as the incident beam.
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Figure 2.7: Angle-Energy properties of emitted neutrons.

If the energy at the exit of the target increases, i.e the target is thinner, the shape of
the distribution is similar but the maximum is shifted to the value of the exit energy.

2.2.2 Geant4 class for general activation studies

We present here the algorithm developed in this thesis to evaluate the activation con-
centration which can be adapted as a function of the geometry and the material studied
(input parameters). The algorithm is the following:

1. Generate the neutron spectrum for a radiation source to determine the neutron-
equivalent source (hereafter a graphite target irradiated by protons) as in section
2.2.1.

2. Compute the cross section for the wanted effect in the studied configuration (here-
after a concrete shielding sphere) as in section 2.1.4.

3. Subdivide in cells the geometry configuration to study.

4. In each cell, implement the relation (2.4) to obtain the activation concentration.

5. In the post processing, take into account the decay of the produced radionuclides
(equation (2.5)) to obtain the final values of the activity concentration.

6. Determine with equation (2.1) if the cell needs to be considered as a radioactive
waste or not.

Step 4 is directly introduced in a C++ class based on Primitive Scorer in Geant4 and is
presented in appendix B. Before analysing the results for a Proteus®One(compact proton
therapy center) system, we validated the method on a simple case and we selected the
most appropriate model for the rest of this work.

2.3 Benchmarking of spallation models in Monte Carlo soft-
wares

Geant4 has already been validated in previous studies like the neutron emission production
and shielding studies [116]. The purpose of this section is to demonstrate that Geant4 can
also be used for activation studies. The following results have been published by the
author in [117] and are discussed in details in the next sections. The following softwares
have been compared : Geant4, Phits and MCNPX
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In this benchmark, we focus our attention on the elements produced by capture and
on the 22Na which is produced by spallation. Indeed, this one has a small clearance level
(0.1 Bq/g) and a significant half-live (2.6 years). The physical data for the considered
isotopes are summarized in Table 2.3.

Isotope Clearance level [Bq/g] T1/2 [years] λ [s−1]

152Eu 0.1 13.33 1.652e−9

154Eu 0.1 8.8 2.49e−9

60Co 0.1 5.3 4.14e−9

134Cs 0.1 2.06 1.06e−8

22Na 0.1 2.6 8.44e−9

Table 2.3: Characteristics of radionuclides studied in this benchmark.

2.3.1 Definition of the reference geometry

A simple geometry is built for the comparison of different softwares (see figure 2.8). It
consists of a cylindrical beam-stop (target) made of graphite (density of 1.7g cm−3) with a
radius equal to 16.55 cm and a length of 30 cm designed in order to stop all protons. A 230
MeV pencil proton beam irradiates the target in the z direction. A concrete (density of
2.3 g/cm3) shielding sphere surrounds the target with respectively an inner and an outer
radius of 1 m and 3 m.

The sphere is divided into 20 radial slices in order to study activation along the radial
direction. Moreover, 18 equivalent regions are defined in the polar direction to study polar
activation (θ angle). This discretization gives cells where equation (2.5) is computed.

(a)

ϑ

(b)

x

y

(c)

Figure 2.8: Spherical model used to study concrete activation.

2.3.2 Validation of a neutron-equivalent source

Before analysing the results, we verify that the concept of neutron-equivalent source in-
troduced in section 2.2.1 is applicable in this case. We compute the activity concentration
of the 152Eu and the 22Na on the first slice of our spherical shielding. On figure 2.9 and
2.10, the activity concentration is computed using a proton beam/target model (in red)
and the corresponding neutron-equivalent source (in blue). For each case the relative error
is also represented.

The two models are in good agreement for the expectation of the mean values for both
kinds of sources (figure 2.9a and 2.10a), the patterns are similar however, the relative error
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is lower for the neutron-equivalent source than for the proton beam/target model (figure
2.9b and 2.10b).
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Figure 2.9: Radionuclides produced by capture (protons or neutrons source).

For the spallation case, neutrons are mainly emitted in the direction of the incident
beam. Consequently, there are only few high energy neutrons emitted backward. This
explains why the relative error is important at large angle in this case. One advantage of
the neutron-equivalent source is clearly visible in the spallation case where neutrons are
emitted in the direction of the incident beam. Indeed, very few high energies neutrons are
emitted backward in the proton beam/ target model while the neutron-equivalent source
allows to provide a much larger statistics and thus to reduce the relative error.
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Figure 2.10: Radionuclides produced by spallation (protons or neutrons).

We conclude that the neutron-equivalent source allows reducing the relative error on
the activation rate keeping the same number of primary particles (same computation time).
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Thus, we artificially increase the Figure Of Merit (FOM) (equation (1.76)).

2.3.3 Simulation results

To compute the activity concentration of isotopes, it is assumed that the target is irra-
diated without dead-time during a period of 20 years. The energy of the proton beam is
230 MeV and the beam current is constant and equal to 0.6076 nA (IBA average value).
The activity of each of the isotopes is computed during these 20 years taking into account
the radioactive decay. Finally, the quantity (2.1) is computed and plotted for the various
production methods of radionuclides: spallation in section 2.3.3.1 and capture in section
2.3.3.2. In the following, we display the obtained activity as a function of the sphere radius
for an angle θ varying between 0 and 10◦ as well as the activity as a function of the polar
angle θ for a radius in the 0-10 cm range.

2.3.3.1 Spallation Reaction

Figure 2.11 shows results for the production of 22Na obtained with the considered soft-
wares and models. MCNPX is used with the Bertini model (MCNPX BERT) and INCL
is used by default in Phits (PHITS INCL). Results obtained from MCNPX , Phits and
Geant4 (G4 BIC and G4 INCL) are in agreement. Results obtained from G4 BERT un-
derestimates the reaction rate but as shown in figure 2.4, cross section for 22Na production
for the Bertini model is lower than for the other models. Differences are also observed
between G4 BERT and MCNPX BERT. This is due to a different implementation in both
softwares. Same comments can be made considering G4 INCL and PHITS INCL. Finally,
the use of the G4 BIC gives a reaction rate larger up to a factor two than the results ob-
tained with the G4 INCL model (while cross sections for both models are equivalent, see
figure 2.4). The exact reasons for these differences are not clear and it would be interesting
to compare these results with experimental data.
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Figure 2.11: Activity concentration of 22Na divided by the clearance index (for the spal-
lation reaction) as a function of a the sphere radius for an angle between 0 and 10◦ and b
the polar angle for a radius in the 0-10 cm range.
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2.3.3.2 Neutron Capture

For the neutron capture reaction, the concentration of parent radionuclides in the concrete
(N in equation (2.3)) is of primary importance. A small variation has important impacts
on the results. As the aim of this section is to benchmark models implemented in different
softwares, we have chosen the same database as IBA. Data are taken from L. Carroll
in Predicting Long-Lived, Neutron-Induced Activation of Concrete in a Cyclotron Vault
[108] (see table 2.4). Using these concentration values, we compute the clearance level
(ΣiAi/Cli) due to neutron capture. The obtained results are shown in figure 2.12 as a
function of depth and polar angle.

Isotopes Concentration (N)

Eu-151 0.14 ppm

Eu-153 0.15 ppm

Co-59 2.5 ppm

Cs-133 1.5 ppm

Table 2.4: Concentration of radionuclides considered in the present section [108].
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Figure 2.12: Activity concentration divided by the Clearance index (for the capture reac-
tion) as a function of a the sphere radius for an angle between 0 and 10◦ and b the polar
angle for a radius in the 0-10 cm range.

Considering the same capture cross section, the only differences arise from the neutron
spectrum emitted by the target. These minor discrepancies have already been identified in
[104, 118, 7]. As example, figure 2.13 shows the differential energy spectrum of neutrons
leaving the carbon target irradiated by a 230 MeV proton beam, calculated with the three
models implemented in Geant4 and with Phits. As in this figure, the scale is logarithmic,
the differences are amplified and explain the results obtained in this section.
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Figure 2.13: Neutron Spectrum of the target obtained with Geant4 and Phits for different
models.

2.3.4 Validation and model selection

In this section, we have compared different softwares and models in order to simulate
activation concentration in a concrete shielding. This activation is due to neutrons pro-
duced by a 230 MeV proton beam irradiating a carbon target. Trace elements contribute
to activation of concrete via neutron capture phenomena while the spallation reactions
produce 22Na.

We conclude that Geant4 is suitable to study activation of the concrete shielding.
However precautions have to be taken according to the considered model for capture and
spallation in the software. Using the radiation safety principle of As Low As Reasonably
Achievable (ALARA), the use of the G4 BIC or possibly G4 INCL model is recommended
for a global activation study. The model G4 BERT underestimates the production of 22Na.

In the next section, a proton therapy center is modelled. The G4 BIC model is used in
the rest of this thesis. Indeed, in the activation context, a conservative approach must be
adopted. We can expect an overestimation of the quantity of activated concrete compared
to the results with the other spallation models.

2.4 Activation computation of a Proteus One

The Proteus®One consists of a single treatment room with a proton accelerator (S2C2) as
displayed in figure 2.14. Another product of IBA, a Proteus®Plus center with multi-rooms
is also shown in comparison.
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(a) Proteus®One center.
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(b) Proteus®Plus center.

Figure 2.14: Representation of the two IBA products. Reproduced from [119].

As we observe in this figure, a Proteus®One is quite more compact than a Proteus®Plus.
Consequently, the different radiation sources, such as the accelerator or the degrader, are
close to each other. Moreover, they are located in the same are, i.e in the vault housing
the accelerator. It means that the activation of the concrete shielding is more important
than in a Proteus®Plus. The clearance levels defined by the IAEA for nuclear waste may
thus be exceeded more quickly, involving a specific treatment for the decommissioning of
the facilities and consequently additional costs.

To analyze the concrete activation of a Proteus®One, we first describe the modelisation
of the compact proton therapy solution in section 2.4.1. Then, we present the different
sources of radiation and the workload. The results obtained with Geant4 are discussed in
section 2.4.3. Finally, we introduce in section 2.5 two methods to reduce the quantity of
nuclear waste.
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2.4.1 Geometry modelisation of the Proteus One

For the Geant4 simulation, we have subdivided the Proteus®One center into different
walls as illustrated in figure 2.15. Only principle activation sources are shown, as the
cyclotron (in yellow), the extraction quadrupole (in orange), the degrader (in green), the
collimator (in magenta) and the patient (in blue). The entire beamline has not been
modelled because in a normal case, the beam does not interact significantly with these
elements and these effects are neglected in this chapter. The dimensions of each wall are
summarized in table 2.5.

W
es

t
G

a
n

tr
y

W
es

t

E
a
st

North

Internal

BeamLine
1&2

Maze1

M
a

z
e2

X Y

Z

Figure 2.15: Model of the
Proteus®One center.

X (mm) Y (mm) Z (mm)

Beam Line 1 1000 1600 750

Beam Line 2 1000 1600 2050

Internal 3040 1600 3800

Maze 1 2100 1600 3800

Maze 2 1000 4850 3800

East 3000 10650 3800

West 2500 10650 3800

North 7340 3000 3800

Roof 12840 10650 3250

Floor 12840 10650 3000

West Gantry 2500 11400 5150

Table 2.5: Dimensions of each wall.

During a treatment, different irradiation angles are used to irradiate the tumour. IBA
has estimated that, during a year, all treatments can be classified following three orienta-
tions with this distribution [120]:

� 50% following ~1X direction

� 25% following - ~1Z direction

� 25% following ~1Z direction

Based on these percentages, we only analyse the wall in front of the patient in the treatment
room (West Gantry in figure 2.15) for which the beam is oriented in 50% of the case. If
this one is not activated, the other walls will not be either.
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In 2001, the authors of [107] have measured the concentration of stable isotopes for
neutron capture in different types of concrete and like F.Stichelbaut, we also used the
following concentration in parent elements (see table 2.6).

Isotopes Concentration (N)

Eu-151 0.5162 ppm

Eu-153 0.5637 ppm

Co-59 21.9 ppm

Cs-133 3.21 ppm

Table 2.6: Concentration of stable nuclides. Data taken from [107].

2.4.2 Description of the radiation sources

In order to perform the study of the concrete shielding activation, we will first describe
the various radiation sources considered in a Proteus®One. They correspond to the loca-
tions where the beam interacts with matter, namely inside the accelerator, the extraction
quadrupoles, the degrader, the collimator and the patient. The beam losses have been
estimated by R. Doyen and are summarized in [121]. To compute the clearance levels in
each wall, we use a pencil beam4 with different energies at the output of the degrader: 70,
86, 116, 160, 200 and 230 MeV. For these energies, the typical number of protons sent to
the patient (modelled as a 40 cm water cube), called workload, is summarized in table 2.7
[122]. These values are related to the therapeutic doses given by medical physicists.

Energy (MeV) Workload (nA·h) per year

70 65.6

86 74.056

116 89.911

160 113.65

200 128.53

230 145.48

Table 2.7: Proteus®One workload used in this work. Data taken from [122].

2.4.2.1 Accelerator

The S2C2, a super conducting proton synchrocyclotron, has been modeled using cylinders.
Figure 2.16a shows the global view of the S2C2, the model in Geant4 is shown in figure
2.16b. It consists of cylinders with different radii and made of iron. The internal cavity
allows to accelerate the protons which are extracted when they have the correct energy.

This accelerator is able to generate a proton beam with a fixed energy of 230 MeV.
As a conservative approach, we consider an extraction efficiency of 30 % [121]. The rest
of the protons is lost in the accelerator for which we assume the following distribution:

� 25% of the losses are uniformly distributed along the circumference of the S2C2 with
an energy of protons equal to 230 MeV.

� 45% of the losses occur at the extraction of the beam at 230 MeV.

4Ideal monoenergetic beam without spatial extension.
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(a) Global view. (b) Geant4 model with protons in
blue.

Figure 2.16: S2C2 representation.

2.4.2.2 Degrader

The degrader allows to change the proton beam energy. It consists of a rotating wheel
with blocks of variable thicknesses and materials as shown in figure 2.17.

Figure 2.17: Details of the energy degrader.

As function of the desired energy, different materials are used. They are summarized
in table 2.8:

Energy (MeV) Material Density (g/cm3)

Lower than 130 beryllium 1.85

130-220 graphite 1.7

Greater than 220 aluminium 2.7

Table 2.8: Materials used as function of the exit energy.

As the beam used for these simulations is a pencil beam, the degrader is modelled as
a simple block of matter with the correct thickness. It is adapted in the simulation as
function of the energy desired at the output. The table 2.9 details the dimensions and the
beam losses for each simulated energy. Note that for an energy of 230 MeV, there is no
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need to reduce the energy, the degrader is in pass-through position5.

Energy (MeV) Material Thickness (cm) Beam losses (%)

70 Beryllium 19.137 34.4

86 Beryllium 17.933 33.73

116 Beryllium 15.196 29.16

160 Graphite 10.054 17.67

200 Graphite 4.599 8.88

Table 2.9: Material and thickness of the block as function of the transmitted energy. Data
taken from [121].

The degrader will be studied in detail in chapter 4, especially the properties of the
transmitted beam.

2.4.2.3 Collimator

The collimator is a tantalum cylinder with a 10 mm diameter hole in the centre. It is
placed just after the degrader to reduce the angular divergence of the beam. Figure 2.18
shows the collimator used in the system by IBA.

Figure 2.18: Detail of the collimator made of tantalum.

The following assumption is made to simulate the activation due to the collimator.
At the exit face of the degrader, the beam has a large divergence. As the hole of the
collimator is small, it is reasonable to suppose that the center of the beam goes through
without interactions while the rest of the beam intercepts a block of tantalum (see figure
2.19). These interactions generate neutrons. Therefore, we use the concept of neutron-
equivalent source [120].

+

Figure 2.19: Model of the collimator in Geant4.

5In reality, a very small thickness of aluminium is used for a transmitted energy of 230 MeV but is
neglected in this work.
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The beam losses of the collimator are summarized in table 2.10 [121].

Energy Beam losses (%)

70 41.69

86 42.93

116 44.66

160 48.19

200 44.02

230 36.32

Table 2.10: Beam losses of the collimator in function of the transmitted energy. Data
taken from [121].

2.4.2.4 Quadrupoles

The quadrupoles are used to focus the beam extracted from the S2C2 up to the degrader.
Indeed, we will see in chapter 5 the necessity of these quadrupoles, named Q1C and Q2C.
They interact with the beam just at the exit of the accelerator (in orange in figure 2.15)
and they intercept the beam with an energy of 230 MeV. The beam losses are fixed at
4.02% (resp. 14.01%) for Q1C (resp. Q2C) [121]. We use the same principle as for the
collimator to generate the neutron spectrum.

2.4.2.5 Transmission efficiency

The workload defined in table 2.7 corresponds to the number of protons sent to the patient.
To deduce the number of protons at the exit of the S2C2, we need to divide these values by
the complete efficiency of the system, noted ε. ε is the fraction of extracted beam finally
reaching the patient. These values have been estimated in 2012 by R. Doyen [123].

Energy (MeV) ε(%)

70 0.21

86 0.27

116 0.8

160 1.82

200 4.96

230 12.07

Table 2.11: Beam losses along the CGTR in function of the transmitted energy. Data
taken from [123].

2.4.3 Activation simulation results

In this section, we make the same assumption as in section 2.3, i.e, utilization of the
Proteus®One center during 20 years without dead-time. The activity of each isotope
summarized in table 2.2 is computed during this period taking into account the radioactive
decay (see equation (2.5)).

In this section, we present the results that we have obtained with Geant4 for the
Proteus®One system. For the different walls of the system, we have computed the thick-
ness of activated concrete depending on the position. We observe that the entire depth
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needs to be considered as a nuclear waste for some walls while for others it is only the sur-
face layer in the vault. Practically, it is too complex to remove different thicknesses from
a same wall. Consequently, a constant thickness is considered in each wall corresponding
to the maximum thickness where the concrete is activated.

We observe that the most activated places are those located near the radiation sources
described in the last section especially those situated just in front of the quadrupoles, the
degrader and the collimator, separating the vault and the treatment room (figure 2.20 and
2.21). The behaviour is similar for the Beam Line1, Beam Line2 and Maze1 walls. The
walls are completely activated and must be considered as nuclear waste. The activation
of the other walls (figure 2.22 to 2.24) in the vault is mainly due to the neutronic emission
of the accelerator. The roof and the floor (figure 2.25) are impacted by all sources with a
peak situated near the degrader and the collimator.

Finally, we find that the wall in the treatment room (named West Gantry) is not
activated. It means that the activation of the rest of the treatment room is also lower
than the IAEA standards. The treatment room is therefore considered as a non-nuclear
waste.
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Figure 2.20: Quantity of activated concrete for the internal wall.
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Figure 2.21: Quantity of activated concrete for the maze wall.
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Figure 2.22: Quantity of activated concrete for the north wall.
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Figure 2.23: Quantity of activated concrete for the east wall.
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Figure 2.24: Quantity of activated concrete for the west wall.
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Figure 2.25: Quantity of activated concrete for the floor.

For each wall, the total thickness of concrete to remove is computed and results have been
detailed in table 2.12. In this table, results obtained with Geant4 are compared with those
obtained by IBA with MCNPX [122]. Over a total of 437 m3 of concrete, IBA finds a
proportion of activated concrete equal to 22% while with Geant4 , we obtain 30%.

Geant4 (mm) MCNPX (mm)

Beam Line 1 1600 1600

Beam Line 2 1600 1600

Internal 1600 1600

Maze 1 1600 1600

Maze 2 1000 500

East 600 400

West 300 200

North 500 400

Roof 700 500

Floor 800 500

West Gantry 0 0

Table 2.12: Results obtained with Geant4 and compared with those obtained by IBA with
MCNPX.

The results between Geant4 and MCNPX are in good agreement. Differences can
be explained from the discrepancies between models used in spallation computation (see
figure 2.4 in section 2.1.4.2) or, to a lesser extent, the capture process via the neutron
fluence. Figure 2.26 illustrates the areas where the activity concentration of concrete is
above the limit for nuclear waste (in red).
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Figure 2.26: Quantity of activated concrete in the Proteus®One room.

In Belgian legislation, there is a principle whereby a producer of radioactive waste
needs to pay for the treatment of this waste. At the end of the operating period, the
National Agency for Radioactive Waste and enriched Fissile Material analyzes the quantity
of activated concrete. Based on [124], the cost for the treatment of nuclear waste is several
Me. It is therefore essential to limit the generated waste. Two solutions are highlighted
and described in the next section.

2.5 Reduction of activated concrete in a Proteus One

Various approaches have been explored to reduce the quantity of radioactive waste in
industrial and medical applications [125, 126, 127, 128]. Two solutions can be investigated:
the first one is to change the composition of the concrete to limit the neutronic capture and
the second one is the improvement of the design of the elements interacting with the beam
to limit the number of emitted neutrons. The composition of concrete has been studied
in [125, 126], the conclusions of these works are summarized herebelow. The activation
contribution of each element is presented in section 2.5.2.

2.5.1 Utilisation of Low-Activation Concrete

We explain here the possibilities to reduce the activation in shielding concrete by adapting
its composition. Any concrete is composed of three major elements: cement, water and
solid aggregates, in different proportions.

In the cement or in the aggregates, we can find nuclides such as europium, cobalt or
caesium. As seen before, these elements are the parent elements of problematic radionu-
clides. Consequently, a low activation concrete needs to have a small percentage of these
elements.

In 2015, IBA and the Scientific and Technical Center for Construction have developed
two type of Low-Activation Concrete (LAC) while preserving the mechanical properties
of a standard concrete. This LAC is composed of limestone aggregates with white cement
(namely type EI) or with aluminous cement (namely type S1). The atomic composition
of these concretes is summarized in table 2.13. Values for a standard concrete are also
provided [23].
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Element Standard (%) LAC EI (%) LAC S1 (%)

H 1 0.72 0.75

C 0.1 8.91 8.72

O 52.91 47.77 49.21

Na 1.6 0.08 0.08

Mg 0.2 0.24 0.16

Al 3.39 0.27 6.77

Si 33.7 1.24 0.09

K 1.3 0.03 0.02

Ca 4.4 40.51 34.05

Fe 1.4 0.06 0.06

Eu(ppm) 1.08 0.023 0.0081

Co(ppm) 21.9 0.75 0.25

Cs(ppm) 3.21 0.052 0.010

Table 2.13: Atomic composition of standard and low-activation concretes. Data taken
from [23]

With a LAC EI concrete, the quantity of nuclear waste can be reduced to 2 m3.
Moreover, the facility does not need to be dismantled directly after the end of its operation.
IBA estimates a rest period of about 5 years to decrease the activity and therefore, the
amount of remaining nuclear waste is further reduced to 0 m3. This solution, low activation
concrete, is already in use for the new Proteus®One center all around the world.

2.5.2 Contribution of each element to activation

In the following chapters of this thesis, we focus our attention on the second solution: the
decrease of the generated neutrons. In figure 2.27, the activation concentration divided by
the clearance level is shown as function of the depth in a wall. The contribution of each
element interacting with the beam and responsible for activation is also presented.
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Figure 2.27: Contribution of the elements in the beamline to the concrete activation.
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The patient does not create any activation contrarily to the cyclotron, the degrader and
the collimator. The properties of the beam at the exit of the degrader and the collimator
are detailed in chapter 4 where a new solution is proposed. In chapter 5, we will analyse
the propagation of the extracted beam of the S2C2 inside the beamline.

2.6 Conclusion

The purpose of this chapter was to determine the proportion of activated concrete in
a compact proton therapy center, a Proteus®One. To answer this problem, we have
introduced the concept of equivalent-neutron source. This method allows increasing the
number of primary particles while keeping the same computation time which reduce the
relative error on the reaction rate. Then, we compared the different hadronic models of
Geant4 with MCNPX and Phits. This study showed that the reaction rate for isotopes
produced by neutronic capture are the same for the different models, whereas the spallation
reactions give a large difference. The Bertini model is not adapted for activation studies
because the 22Na production cross sections is underestimated. We conclude that the BIC
model, as implemented in Geant4 , can be used for activation studies in a conservative
approach. After having detailed radiation sources, we simulate the amount of activated
concrete in a Proteus®One center after 20 years of operation. We determined that 30 %
of the shielding is considered as radioactive waste which requires specific actions during
the decommissioning phase. Two solutions have been presented to minimize this quantity.
The first, studied by IBA consists of a modification of the concrete composition. It shows
that this quantity can be reduced to 0 m3 if a rest period of 5 years is considered. The
second solution, studied in this work proposes a new solution for the degrader to limit
the neutron production. The estimations of the beam losses for each radiation source will
be compared and confirmed with the results obtained using the complete model of the
Proteus®One system in chapter 6.
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As we have seen in the previous chapter, a better knowledge of the radiation source
terms is important to predict the activation level in concrete after several years of opera-
tion. Thus, to localize these production sources of secondary particles we need to model
the beam at the exit of an accelerator and its propagation along the beamline. The latter
consists of a succession of bending and quadrupole but other components may interact
locally to monitor the beam for instance.

In this chapter, we first recall in section 3.1 some notions of classical mechanics for
beam physics. We introduce, in section 3.2, the particle acceleration principle, i.e. the
transverse motion formalism of particles in an electromagnetic field. In section 3.3, we
introduce three codes developed to simulate the beam dynamics.

3.1 Elements of classical mechanics for beam physics

In this section, we recall the general concept of classical mechanics [129]. In section 3.1.1,
we derive, from the Lagrangian equations, the Hamilton equations of motion. Section
3.1.2 deals with the notion of canonical transformations and the symplectic conditions.
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3.1.1 Hamilton equations of motion

Let consider a dynamic system characterized by a Lagrangian L as defined in appendix C.

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 , (3.1)

where qi and q̇i are generalized variables and their time derivatives. We now derive, using
the Lagrangian of the system as a starting point, the Hamilton equations of motion. The
canonical momentum pi is defined as :

pi =
∂L (q, q̇, t)

∂q̇i
. (3.2)

Where q = (q1, q2, ..., qN ). The quantities (pi, qi) are conjugated canonical variables. The
transition from Lagrangian to Hamilton formulation corresponds to the use of variables
(qi, pi, t) instead of (qi, q̇i, t). The relation between H and L is of the form :

H(q, q̇, t) =
∑
i

q̇i pi − L(q, q̇, t) , (3.3)

and the differential form dH is given by :

dH =
∑
i

(
∂H

∂qi
dqi +

∂H

∂pi
dpi

)
+
∂H

∂t
dt , (3.4)

dH =
∑
i

(
q̇idpi + pidq̇i −

∂L

∂qi
dqi −

∂L

∂q̇i
dq̇i

)
− ∂L

∂t
dt . (3.5)

We insert equation (3.2) in equation (3.5) and we obtain:

dH =
∑
i

(q̇idpi − ṗidqi)−
∂L

∂t
dt . (3.6)

We compare this relation with equation (3.4) and we finally obtain the Hamilton equations
of motion:

q̇i =
∂H

∂pi
, (3.7)

ṗi = −∂H
∂qi

, (3.8)

∂L

∂t
= −∂H

∂t
. (3.9)

If we consider a system composed of many degree of freedom, equations (3.7) and (3.8)
are expressed in a more elegant form using the symplectic notation. For a system of N
degrees of freedom, we define a 2N column matrix η whose elements are given:

ηi = qi , ηi+N = pi , 1 ≤ i ≤ N . (3.10)

(3.11)

Similarly, the column matrix ∂H
∂η has elements:(

∂H

∂η

)
i

=
∂H

∂qi
,

(
∂H

∂η

)
i+N

=
∂H

∂pi
, 1 ≤ i ≤ N . (3.12)
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Finally, we define the antisymmetric matrix J as a 2N × 2N square matrix according to:

J =

(
0 IN
−IN 0

)
, (3.13)

where IN is the unit matrix of dimension N × N . With these notations, the Hamilton
equations of motion are written in a compact form:

η̇ = J
∂H

∂η
. (3.14)

3.1.2 Canonical transformation and symplectic conditions

For some problems, it may be suitable to express equations of motion in a specific system
of coordinates. Here, we introduce the concept of canonical transformation which ex-
presses the new coordinates (Q,P ) in terms of old coordinates and momenta (q, p). Only
transformations that satisfied equations of motion are allowed and therefore, there is a
function K which satisfies:

Q̇i =
∂K

∂Pi
, (3.15)

Ṗi = − ∂K
∂Qi

. (3.16)

By inspection, we notice that in these equations K corresponds to the Hamiltonian in the
new set of coordinates. If Pi, pi, Qi and qi are canonical variables, they must satisfied the
Hamilton’s principle which says that [129]: The motion of the system from time t1 to time
t2 is such that the variation of the line integral is zero:

δ

∫ t2

t1

(
PiQ̇i −K

)
= 0 , (3.17)

δ

∫ t2

t1

(piq̇i −H) = 0 . (3.18)

Both equations are equal if the integrand are connected by a relation of form:

pi q̇i −H = Pi Q̇i −K +
dF

dt
, (3.19)

with F is any function of the phase space coordinates. F is called the generating function of
the transformation. A canonical transformation changes the coordinates while preserving
the Hamilton equations of motion [129].

We will see in section 3.2.2 that we must use a generating function that expresses the
new momenta from the old coordinates. We may define a generating function F3 of the
old momenta pi, the new coordinates Qi and the time t as:

F = q p+ F3 (Q, p, t) . (3.20)

This function is inserted in equation (3.19) and we use the properties that the old and
the new coordinates are independent (q = −∂F3

∂p and P = ∂F3
∂Q ) and we obtain the relation

between H and K:

K = H +
∂F3

∂t
. (3.21)
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As in the previous section, the canonical transformation can also be expressed in terms
of symplectic formulation of Hamilton’s equations. Let us define ξ a 2N columns matrix
which contains a new set of coordinates (Qi, Pi).

ξ = ξ (η) . (3.22)

The time derivative of this equation is written as:

ξ̇ = Mη̇ , (3.23)

where M is the Jacobian matrix of the transformation, with elements Mij = ∂ξi/∂ηj .
We can show that equation of motion for any set of variables ξ transforming from the
canonical set η is given by:

ξ̇ = MJM̃
∂H

∂ξ
, (3.24)

where M̃ is the inverse matrix of M . Therefore, the transformation (3.22) is canonical
only if:

MJM̃ = J . (3.25)

This condition is called the symplectic condition for a canonical transformation, and M
is said to be symplectic if it satisfies the condition: the square of the determinant of a
symplectic matrix, and therefore the Jacobian matrix of a canonical transformation, is
equal to unity [130].

|M |2 = 1 . (3.26)

From these properties, one deduces the Liouville’s theorem which expresses that [130]:
In any system governed by a Hamiltonian, the density of system points surrounding a
particular system point in phase space must remain constant as the independent variable
evolves. It means that if the boundary of the phase space is changing, the volume of the
region is always the same because the determinant of the Jacobian matrix M is equal to
one. A region in the phase space may twist or change shape but the volume of this region
is preserved (see figure 3.1).

Figure 3.1: Motion of a volume in phase space. The shape of the region is changing but
the volume is preserved. Reproduced from [129].

3.2 Fundamentals in particle beam dynamics

In this section, we present the different equations for the description of the motion of
particles in an electromagnetic field. We develop in section 3.2.1 the Hamilton equations

78



CHAPTER 3 . BEAM DYNAMICS AND BEAM TRANSPORT FORMALISM

of motion to derive the so-called Hill’s equations. In section 3.2.3, we briefly explain the
acceleration principle in a cyclotron. The betatronic equations for elements in a beam line
are described in section 3.2.4. Finally, section 3.2.5 deals with the description of particles
beams and the motion of the phase space.

3.2.1 Hamiltonian for charged particles in electromagnetic fields

Let us consider a charged particle with a velocity v inside an electromagnetic field char-
acterized by E (the electric field) and B (the induction magnetic field). The motion of
the particle is governed by the Lorentz force:

dP

dt
= F = e (E + v ×B) , (3.27)

where P = γmv is the relativistic momentum, m is the particle mass, v is the velocity,
e is the particle charge and γ is the relativistic Lorentz factor (γ = 1/

√
1− v2/c2 with c,

the speed of light). E and B are expressed as a function of the scalar and vector potential
Φ and A that are given by:

E = −∇Φ− ∂A

∂t
, (3.28)

B = ∇×A . (3.29)

We can show that the Lagrangian of the system is given by:

L = −mc2

√
1− v2

c2
− eΦ + ev ·A . (3.30)

The canonical momentum p is determined using the relation (3.2):

p =
∂L

∂v
= P + eA , (3.31)

where P is the mechanical momentum (relativistic momentum). Finally, we determine
the Hamiltonian of the system with equation (3.3):

H0 = p · v − L , (3.32)

= eΦ + c
√
m2c2 + (p− qA)2 . (3.33)

Hamilton equations of motion are thus given by:

ẋk =
dxk
dt

=
∂H0

∂pk
; ṗk =

dpk
dt

= −∂H0

∂xk
; k = x, y, z . (3.34)

3.2.2 Hamiltonian in Frenet-Serret coordinates

In accelerator physics, it is more convenient to use a curvilinear system of coordinates
whose origin follows the trajectory of the reference particle. This coordinate system is
also called the Frenet-Serret coordinates system. The reference orbit of the particle is
defined as the path of the particle having the central design momentum of the accelerator
through idealised magnets [131].
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Figure 3.2 shows the system of coordinates for the particle motion. The hat refers
to the unit vector of the system. The global Cartesian (X̂,Ŷ ,Ẑ) (resp. Frenet-Serret)
system of coordinates is shown in green (resp. in blue). In this thesis, we assume that the
Frenet-Serret system has no torsion.

Reference orbit

X̂

Ŷ

Ẑ

ŷ

x̂

r0

r

ŝ

Position of
the particlev

(a) In a circular accelerator.

ρ

r0
r

ŝ

x̂

Ẑ

X̂

ω̂

(b) In a beamline.

Figure 3.2: Global and curvilinear system of coordinates. Reproduced from [132].

The three vectors {x̂, ŝ, ŷ} form a right-handed system of unit vectors of the Frenet-
Serret system of coordinates. ŝ is tangential to the curve, x̂ is radial to the curvature of
the curve, ŷ is given by the vectorial product ŝ× x̂.

We denote by r0(s) the reference orbit, s the measured path length along the closed
orbit from a reference initial point and ρ(s) the local curvature radius. The unit vectors
are given by:

ŝ(s) =
dr0(s)

ds
, x̂(s) = −ρ(s)

dŝ(s)

ds
, ŷ(s) = x̂(s)× ŝ(s) . (3.35)

The derivation of the unit vector with respect to s is done using the Darboux vector
with h = 1/ρ[133].

dr0(s)

ds
= ŝ , (3.36)

dx̂(s)

ds
= x̂′ = ω̂ × x̂ = hs , (3.37)

dŷ(s)

ds
= ŷ′ = ω̂ × ŷ = 0 , (3.38)

dŝ(s)

ds
= ŝ′ = ω̂ × ŝ = −hx . (3.39)
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The trajectory of the particle around the reference orbit is given by:

r(s) = r0(s) + xx̂(s) + yŷ(s) . (3.40)

The Hamiltonian in equation (3.33) is given in a Cartesian coordinates system, but we
want to express it in the curvilinear coordinates system [134]. The transformation is done
using a generating function F (see equation (3.21)). As we know the new coordinates and
the old momentum, we use a generating function of the third type, F3 (see section 3.1.2)
expressing the new momentum (p) from the old coordinates (r). A solution for F3 is:

F3(p, r, t) = −p · r , (3.41)

with r given by equation (3.40). Thus, the new momentum is given by:

ps = −∂F3

∂s
= p ·

(
∂r0(s)

∂s
+
∂x̂(s)

∂s
· x+

∂ŷ(s)

∂s
· y
)
. (3.42)

As F3 has no time dependence, we have H1 = H0 (see equation (3.21)). The next step is
to replace the old momenta in H0 by the new ones:

H1 = c

√(
ps

1 + hx
− qAs

)2

+ (px − qAx)2 + (py − qAy)2 +m2
0c

2 + eΦ . (3.43)

For the beam description, it is easier to use the coordinates s as the independent variable
rather than the time t. The derivative of x (resp. px) with respect to s is given by:

x′ =
∂ps
∂x

; p′x =
∂ps
∂px

. (3.44)

If we use s as independent variable, the quantity −ps corresponds to the new Hamiltonian
H2 with the new equations of motion:

x′ =
∂H2

∂px
, p′x = −∂H2

∂x
, (3.45)

H ′1 =
∂H2

∂t
, t′ =

∂ps
∂H1

, (3.46)

where H2 is obtained by solving equation (3.43) for −ps and reads:

H2 = −ps = −(1 + hx).


√(

H1 − eΦ
c

)2

−m2
0c

2 − (px − qAx)2 − (py − qAy)2 + qAs

 .

(3.47)
This Hamiltonian is the standard Hamiltonian for beam dynamics in a Frenet-Serret sys-
tem of coordinates with s as independent variable. Different approximations are made in
order to further simplify this relation:

1. There is no acceleration of the particles, Φ = 0, and so H1 is equal to the total
energy with the relation: H2

1 ≡ E2 = c2
(
p2 +m0c

2
)
.

2. The magnetic fields are purely transverse and we have Ax = Ay = 0.

3. The particles have a small transverse momenta compared to the total momenta.
This approximation is also called the paraxial approximation: px,y � p.
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With these 3 approximations, and expanding H2 to the second order, we obtain:

H2 = −(1 + hx)

(
p

(
1−

p2
x + p2

y

2p2

)
+ q As

)
. (3.48)

A beam line is designed for a specific momentum p0 but the particles may have deviations
around this value. We inject the relative momentum deviation as:

δ =
p− p0

p0
=

∆p

p0
. (3.49)

We introduce the relative momentum deviation in (3.48) and we use the notation p̃x,y =
px,y/p0.

H̃2 = −(1 + hx)

(
1 + δ −

p̃2
x + p̃2

y

2(1 + δ)
+

q

p0
As

)
. (3.50)

The last step of this development consists in introducing a practical expression for As. It
is achieved using a multipolar expansion:

q

p0
As = −Re

( ∞∑
n=1

ian + bn
n

(x+ iy)n
)
, (3.51)

where i is the imaginary unit number, n is the order of the multipole (1 for dipole, 2
for quadrupole, ...). The coefficients bn (resp. an) are for regular multipoles (resp. skew
multipoles1).

In a typical beamline, there is no coupling and therefore no skew multipole (an = 0).
The expressions of the magnetic field in the transverse plane expanded to the third order
(sextupoles) are obtained with equation (3.29) [134]:

Bx = −∂As
∂y

= −p0

q
(b2 y + 2 b3 x y) ,

By =
∂As
∂x

= −p0

q

(
b1 + b2 x+ b3(x2 − y2)

)
.

(3.52)

Finally, we combine (3.50) in (3.51) and we obtain the expression of the Hamiltonian for
a multipolar field. We also subtract the constant terms which are irrelevant for equations
of motion.

H̃ =
p̃2
x + p̃2

y

2(1 + δ)
− b1xδ +

b21
2
x2 +

b2
2

(x2 − y2) +
b3
3

(x3 − 3xy2) + ... (3.53)

Equations of motion are now determined using H̃:

x′ =
∂H̃

∂px
=

p̃x
(1 + δ)

, p′x = −∂H̃
∂x

= b1δ − (b21 + b2)x− b3(x2 − y2) , (3.54)

y′ =
∂H̃

∂py
=

p̃y
(1 + δ)

, p′y = −∂H̃
∂y

= b2y + 2b3xy . (3.55)

1Skew multipoles refers to a regular multipole with a rotation of an angle equal to 90°/n.
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If we differentiate again these equations, we find the Generalized Hill’s equation of
motion [135]:

(1 + δ)x′′ − b1δ + (b21 + b2)x+ b3(x2 − y2) = 0 ,

(1 + δ)y′′ − b2y − 2b3xy = 0 .
(3.56)

If we consider only linear fields, (3.52) becomes [132]:

Bx =
∂By
∂x

y = Bx;y y ,

By = −B0 +
∂By
∂x

x = −B0 +Bx;y x ,

(3.57)

where B0 is the dipole field defined for the design orbit. We insert equations (3.57) in
(3.56) to obtain2:

x′′ +

(
1

ρ2
0

− Bx;y

B0ρ0

)
x =

δ

ρ0
,

y′′ +
Bx;y

B0ρ0

1

1 + δ
y = 0 .

(3.58)

If the particle has a no momentum deviation (δ = 0), equations (3.58) become the well-
known Hill equations:

x′′ +

(
1

ρ2
0

− Bx;y

B0ρ0

)
x = 0 ,

y′′ +
Bx;y

B0ρ0
y = 0 .

(3.59)

Let us consider as an example, the Hill equation (equation (3.59)) for a quadrupole, we
have ρ =∞ and if we denote the ratio Bx;y/B0ρ0 by K, we obtain :

x′′ −K x = 0 ,

y′′ +K y = 0 .
(3.60)

These equations show that the focus is only possible in one direction at the time. Therefore,
in a beamline, the gradient of the quadrupoles must be alternated to restore a global
focusing system. The system is called alternating gradient.

3.2.3 Orbit and acceleration in a cyclotron

As mentioned before, the typical maximum proton energy for medical applications must be
at least 230 MeV. Therefore, cyclotrons are typically used as proton therapy accelerator:
they can produce the required current at those energies in a reduced footprint. To reach
230 MeV, the cyclotron design must take into account the relativity of the proton and we
describe below two typical cyclotron designs. Despite the dose considerations, 70% of the
beam is still lost in the cyclotron. Therefore, a detailed understanding of accelerators are
of primary importance for radioprotection and shielding studies.

2Where we use the relation p = qBρ to further simplify the resulting expression (see section 3.2.4.2).
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The trajectory of the particle is curved using a magnetic field and the radius of the
trajectory increases with the energy. The acceleration of the particles is realized with the
electric field induced by a Radio-wave Frequency (RF). Using Newton’s second law and
the Lorentz force, the revolution frequency of the particle is given by [132]:

f =
qB

2πγm
, (3.61)

with γ, the relativistic factor which increases with time. We define by synchronous particle,
the particle which stays in synchronism with the RF turn after turn [136]. To provide a
net acceleration, the RF frequency (fRF ) must be locked to the revolution frequency frev.
There are two possibilities to maintain the synchronism between the particle and the
pulsation of the RF:

1. B depends on the radius and therefore, frev is kept constant. This is an isochronous
cyclotron.

2. B is independent of the radius, frev decreases with the radius and therefore, fRF
must decrease with the time. This is a synchrocyclotron.

Let us consider the motion of a charged particle inside a uniform magnetic field B0. If the
particle has a momentum along the z direction, the motion of the particle is helicoidal. To
avoid this effect, we may use a field gradient and a radial component to focus the beam
along the z direction. The Br component is given by [137]:

Br = −r
2

dBz(0, z)

dz
. (3.62)

Equation ∇×B = 0 implies:
∂Bz
∂r

=
∂Br
∂z

. (3.63)

The field-index (n) characterizes the change of the magnetic field as a function of the
radius and is given by:

n(r) = − r

Bz

∂Bz
∂r

. (3.64)

The vertical stability is ensured only if the field index is comprised between 0 and 1. We
remark that there is a contradiction between the vertical stability (negative gradient) and
the increase of the field with the radius (positive gradient).

The Azimuthal Varying Field (AVF) introduces an azimuthal dependence of the field
using wedge-shaped inserts at periodic azimuthal position (see figure 3.3).

Figure 3.3: Magnetic poles of an AVF cyclotron. Reproduced from [137].
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We define the flutter as the azimuthal variation of the magnetic field between hills and
valleys. If we denote by 〈B〉, the average magnetic field, the expression of the flutter is
given by:

F =

〈
B2
θ

〉
− 〈B〉2

〈B〉2
. (3.65)

The acceleration of charged particles to high energies needs high magnetic fields. Unfor-
tunately, the average field is limited to 2.5 T to avoid the iron saturation. Indeed, the
shape of the magnetic field is given by the poles. If the magnetic field is above saturation,
the iron is transparent to the magnetic field and the flutter becomes too small to provide
focusing [138]. As example, we summarize in table 3.1 several values of the flutter as a
function of the magnetic field [139].

〈B〉(T) F (%)

2.1 22.7

3.5 8.2

7 2

Table 3.1: Example of values of the flutter as a function of the average magnetic field.
Data from [139].

We can see from table 3.1 that using superconducting coils does not allow to maintain
the vertical focusing. To overcome this limitation, we can design an accelerator with
an average magnetic field decreasing with the radius and a variable RF frequency: a
synchrocylotron.

To decrease the size of the accelerator, one needs to use a strong magnetic field in the
central region and thus need to use superconducting magnets. To keep the synchronism
between the particles and the RF frequency, the latter is modulated. This modulation is
only valid for a given energy for a given time and therefore, the beam at the exit will be
pulsed. We show in figure 3.4 the two cyclotrons produced by IBA for proton therapy
solutions. The beam energy at the exit of the accelerator is fixed at 230 MeV, which
corresponds to a range of 32.95 cm in water.

✹✸✹ ✥♠

✹✺ ✥♠

✺✾ ✥♠

✻✹ ✥♠

✷✶✵ ✥♠

✽✷ ✥♠

(a) Isochronous cyclotron (C230).

✹✺✳✻ ❝♠

✸✽ ❝♠

✷✺✵ ❝♠

✶✼✹ ❝♠

(b) Synchrocyclotron (S2C2).

Figure 3.4: Schematic representation of the two IBA cyclotrons. We remark the difference
between the diameter of the C230 (434 cm) and the S2C2 (250 cm). Reproduced from [121].

The aim of this work is to evaluate the concrete shielding activation of a Proteus®One
system. The latter uses a S2C2 for beam production. We have obtained in chapter 2
that about 70% of the beam is lost before entering the beamline, i.e at high radius. The
beam extraction is made using a passive system [140] which is mainly composed of three
elements: a regenerator, an extraction channel and a gradient corrector (see figure 3.5).
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Figure 3.5: View of the S2C2 extraction system. Reproduced from [139].

At extraction these elements are used to properly separate the orbit at turn N − 1 to
the orbit at turn N . This extraction causes an important dispersion in the phase-space
and results in losses at the level of the graphite beam stop. This protection is installed
to reduce the activation of the metallic part of the extraction system. Finally, before
exiting the accelerator, the beam passes through a permanent magnet quadrupole (PMQ)
to match the beamline (not represented).

3.2.4 Betatronic equations for elements in a transport beamline

The general form of the solutions of equation (3.56) is the sum of the homogeneous solution
and the particular solution. The homogeneous equations are just given by:

x′′ +Kx(s)x = 0 , Kx(s) =
1

ρ2
− Bx;y

Bρ
,

y′′ +Ky(s)y = 0 , Ky(s) =
Bx;y

Bρ
.

(3.66)

Let z and z′ represent either the horizontal or the vertical phase-space coordinates. Equa-
tion (3.66) becomes [132]:

z′′ +Kz(s)z = 0 , (3.67)

The solution of this equation is given by:

z(s) = C(s)z(0) + S(z)z′(0) , (3.68)

z′(s) = C ′(s)z(0) + S′(z)z′(0) , (3.69)

with C(s), S(s), C ′(s) and S′(s) depending on the sign of K and summarized in table 3.2

K > 0 K < 0

C(s) cos
(√

Kl
)

cosh
(√
|K|l

)
S(s) 1√

K
sin
(√

Kl
)

1√
|K|

sinh
(
|
√
K|l
)

C’(s) −
√
K sin

(√
Kl
) √

|K| sinh
(√
|K|l

)
S’(s) cos

(√
Kl
)

cosh
(√

Kl
)

Table 3.2: Definitions of C, S, C ′ and S′ as function of the sign of K.
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It is more convenient to use a matrix formalism to describe the propagation of the
particle between s = 0 and any position s. We use the following notation:(

z(s)
z′(s)

)
= M

(
z(0)
z′(0)

)
=

(
C(s) C ′(s)
S(s) S′(s)

)(
z(0)
z′(0)

)
. (3.70)

Up to now, we have described the behaviour of a particle with a momentum p0 whose
trajectory describes a closed orbit. This closed orbit is called the design orbit and the
particle is called a synchronous particle. However, at the extraction of an accelerator, the
beam is composed of particles with momenta different from p0. Let us remember equation
(3.58) in term of x:

x′′ +

(
1

ρ2
0

− Bx;y

B0ρ0

)
x =

δ

ρ0
, (3.71)

The solution of this general equation is thus the sum of the homogeneous equation and
the particular solution:

x(s) = xβ(s) +D(s)δ , (3.72)

where xβ and D must satisfy the following relation:

x′′β +Kx(s)xβ = 0 , (3.73)

D′′ +Kx(s)D =
1

ρ
, (3.74)

where D, the dispersion function, is the solution of the inhomogeneous equation. The
physical meaning of the dispersion is that D(s)δ represents the offset of the reference
trajectory from the ideal path for particle with a relative momentum deviation δ. The
solution of the homogeneous equation for D is the same as equation (3.67). The general
solution of the dispersion function is:(

D(s)
D′(s)

)
= M(s|0)

(
D(0)
D′(0)

)
+

(
d
d′

)
. (3.75)

Where d̄ is called the two-component dispersion vector. Finally, we combine equation
(3.75) and (3.70) to obtain the final transfer matrix of an element considering the off-
momentum deviation.

M =

C(s) S(s) D(s)
C ′(s) S′(s) D′(s)

0 0 1

 . (3.76)

In this work, we mainly use drifts, sector dipoles and quadrupoles as lattice element in
the beamline. If we neglect the coupling between the horizontal and the vertical plane,
the relation between the phase space at the entrance and the exit is given by:

x1

x′1
y1

y′1
δ1

 =


Cx(s) Sx(s) 0 0 Dx(s)
C ′x(s) S′x(s) 0 0 D′x(s)

0 0 Cy(s) Sy(s) Dy(s)
0 0 C ′y(s) S′y(s) D′y(s)

0 0 0 0 1



x0

x′0
y0

y′0
δ0

 . (3.77)

We present in the following section, the transfer matrix of the most common elements in
an accelerator: drifts, sector dipoles and quadrupole.
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3.2.4.1 Drift

A drift is the most simple element, it is simply a straight line section without field. Thus,
equations (3.66) become:

x′′ = 0 , (3.78)

y′′ = 0 . (3.79)

If the drift has a length l, the 5-dimension matrix transfer is given by:

M =


1 l 0 0 0
0 1 0 0 0
0 0 1 l 0
0 0 0 1 0
0 0 0 0 1

 . (3.80)

3.2.4.2 Sector dipole

The dipoles are used to change the direction of the particles along the desired orbit. We
consider a uniform B field along the y direction, the equilibrium between the centripetal
force and the Lorentz force gives us:

q v B = m
v2

ρ
, (3.81)

p = q B ρ . (3.82)

With this relation, the bending angle is thus given by:

θ =
q

p

∫ s2

s1

B . (3.83)

To describe the behaviour of a particle in an electromagnetic field, we have introduced the
curvilinear system of coordinates. Wiedemann [141] defines the natural bending magnet
as one, where the ideal path of the particle enters and exits the normal to the magnet
pole face. We illustrate in figure 3.6 the behaviour of a dipole for particles with different
energies (Ea < E0 < Eb). For the design orbit, the particle with the correct energy (E0)
is transmitted normally to the exit face, and the particles without the correct energy are
deviated differently from the design orbit with the relation:

∆θ = δθ . (3.84)

l

θ

ρ

E0, E
a, E

b

Ea

Eb

E0

Figure 3.6: Deviation of the particles in a sector bend. Adapted from [132].
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In absence of a quadrupolar field in the dipole, we have Kx = 1
ρ2 and Ky = 0 and the

matrix transfer (3.75) for a sector bend is:

M =


cos(θ) ρ sin(θ) 0 0 ρ(1− cos(θ))
−1
ρ sin(θ) cos(θ) 0 0 sin(θ)

0 0 1 l 0
0 0 0 1 0
0 0 0 0 1

 . (3.85)

We note that the motion along the y direction corresponds to a drift.

The previous relation may be generalized in cases where the path of the particle enters
and exits the magnet at an arbitrary pole face (see figure 3.7).

l

e2e1

θ

s1 s2

ρρ

x1 x2

Figure 3.7: Definition of the pole face angle for a sector bend. Reproduced from [131].

In this case, the transfer matrix is given by [141]:
1 0 0 0 0

1
ρ tan(e1) 1 0 0 0

0 0 1 0 0
0 0 − 1

ρ tan(e1) 1 0

0 0 0 0 1

×


cos(θ) ρ sin(θ) 0 0 ρ(1− cos(θ))
− 1

ρ sin(θ) cos(θ) 0 0 sin(θ)

0 0 1 l 0
0 0 0 1 0
0 0 0 0 1

×


1 0 0 0 0
1
ρ tan(e2) 1 0 0 0

0 0 1 0 0
0 0 − 1

ρ tan(e2) 1 0

0 0 0 0 1

 .

(3.86)

In this case, both planes are impacted and depending on the values of e1 and e2, one
could design a dipole which focuses in the vertical plane.
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3.2.4.3 Quadrupole

A quadrupole is used to focus the beam along a specific direction (x or y). In figure 3.8,
we show the field and the force exerted on the beam (in red). We confirm that if we focus
along a specific direction, we defocus along the other. Thus, in a beam line, the quadrupole
are alternated. By convention, a focusing quadrupole focuses along the horizontal plane.

❋

❋

❋

❋

Figure 3.8: Induction magnetic field and force in a quadrupole. Reproduced from [142].

In a quadrupole, we have 1/ρ = 0 which implies Kx(s) = −Ky(s). With this relation,
the matrix transfer of a quadrupole with a length l is given by:

M =





cos
(√

Kl
)

1√
K

sin
(√

Kl
)

0 0 0

−
√
K sin

(√
Kl
)

cos
(√

Kl
)

0 0 0

0 0 cos
(√

Kl
)

1√
K

sin
(√

Kl
)

0

0 0 −
√
K sin

(√
Kl
)

cos
(√

Kl
)

0

0 0 0 0 1


K > 0: focusing



cosh
(√
|K|l

)
1√
|K|

sinh
(√
|K|l

)
0 0 0√

|K| sinh
(√
|K|l

)
cosh

(√
|K|l

)
0 0 0

0 0 cosh
(√
|K|l

)
1√
|K|

sinh
(√
|K|l

)
0

0 0
√
|K| sinh

(√
|K|l

)
cosh

(√
|K|l

)
0

0 0 0 0 1


K < 0: defocusing

(3.87)

For a quadrupole with K = 0, we recover the same transfer matrix as for a drift.

3.2.5 Particle beams and phase space

An accelerator or a beamline never transports one particle but many particles. In the fol-
lowing, we consider a particle beam of N particles without interactions between them (no
space charge and collective effect) and without coupling between the horizontal and verti-
cal plane. The resulting Hamiltonian of the system is the superposition of the Hamiltonian
of each particle.

Each particle is represented by a point in a six-dimensional phase space with coor-
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dinates (x, x′, y, y′, l, δ)3 The dynamical evolution of the system is represented by the
motion of the point in the phase-space. As we neglect the mutual interactions and coupling
effects between particles, the 6th dimensional phase-space can be split in 3 phase-space of
2 dimensions: horizontal (x,x′), vertical (y,y′) and longitudinal (l,δ).

In the phase space, the trajectory of a unique particle can be described by an ellipse
as shown in figure 3.9.

z′

zφ

Area = πε

tan(φ) = 2α
(γ−β)

√
εβ

√
εγ

Figure 3.9: Beam particle distribution in the phase space and definition of the emittance.
Reproduced from [132].

We denote by (z, z′) the horizontal phase space as well as the vertical phase space.
This ellipse is described by the following equation:

γz2 + 2αzz′ + βz′2 = ε , (3.88)

where α, β, γ are called the Twiss parameters which determine the orientation and the
shape of the ellipse in the phase space. ε is the beam emittance and is defined by:∫

ellipse
dzdz′ = πε . (3.89)

The beam emittance parameter ε represents the amplitude factor for an individual particle
and defines the emittance of a part of the total beam whose trajectories satisfy [141]:

γz2 + 2αzz′ + βz′2 < ε , (3.90)

To characterize the beam quality, the rms emittance is widely used [143] because it provides
a useful meaning of the beam envelope. Moreover for the specific case where the beam
is Gaussian, the emittance represents the occupied area by 68% of particles. Along the
geometric properties of the ellipse, we have also the relation:

βγ − α2 = 1 . (3.91)

The particle beams may be also described with an unknown symmetric sigma matrix σ.
Equation of a n-dimensional ellipse is given by [141]:

uTσ−1u = 1 , (3.92)

3l is the longitudinal separation from the reference particle.
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with
uT = (x, x′, y, y′, s, δ) , (3.93)

and the volume of this n-dimensional ellipse is given by:

Vn =
πn/2

Γ (1 + n/2)

√
det(σ) , (3.94)

where Γ is the Gamma-function.

Let us first consider the area in the 2 dimensional phase space (horizontal or vertical),
denoted by z and z′. In absence of momentum deviation (δ = 0), the ellipse equation
(3.92) is given by:

σ22z
2 + 2σ12zz

′ + σ11z
′2 = ε2z . (3.95)

The comparison of this relation with equation (3.88) gives us the relation between the
σ-matrix and the Twiss parameter:(

σ11 σ12

σ12 σ22

)
= ε

(
β −α
−α γ

)
. (3.96)

In 2D, the area of the ellipse is given by:

V = π
√
σ11σ22 − σ2

12 = πεz , (3.97)

which is consistent with the relation (3.91). Usually, a realistic beam is often Gaussian
and we can show that the beam matrix elements are given by:

σ11 =
〈
z2
i

〉
= εzβz ,

σ22 =
〈
z′2i
〉

= εzγz ,

σ12 =
〈
ziz
′
i

〉
= −εzαz ,

(3.98)

where i stands for the ith particle. Finally, the beam emittance is expressed as:

εz(s)
2 =

〈
z2
i

〉 〈
z′2i
〉
−
〈
ziz
′
i

〉
. (3.99)

Following [141], this relation is accepted for any arbitrary particle distribution. The beam
half-width of this beam envelope is defined by:

σz(s) = ±
√
βz(s)εz(s) . (3.100)

This relation is a function of two notions:

1. βz(s) is related to the lattice and depends on the disposition of the elements in a
lattice.

2. εz(s) is related to the beam properties and does not change in a lattice if there are
no interactions.

If the beam has a momentum distribution (δ 6= 0), characterized by a dispersion function
D(s), the beam size for Gaussian beams is thereby [141]:

σz(s) = ±
√
βz(s)εz(s) +D2(s)σ2

δ , (3.101)
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3.3 Beam transport and modeling codes

Equations of motions are generally not analytically solvable. Therefore, computers codes
are necessary in accelerator physics to study the dynamics of the beam along a beamline
or inside an accelerator. In this section, we present three softwares used in this thesis:
MAD-X, Manzoni and BDSIM [144, 131, 145]. These codes have been interfaced in a
single Python library developed by C.Hernalsteens: Georges [146].

These softwares contain a description of the main elements that form a beamline such
as drifts, bending magnets and quadrupoles. MAD-X implements the Twiss formalism
and allows to calculate both the Twiss parameters and the Σ matrix along a beamline.
This description of Twiss, is particularly useful for the design and optimization of optics
(beam size, divergence, dispersion, ... ).

Nevertheless for our studies which is particularly interested in detailed beam proper-
ties (size, divergence, emittance) and beam losses, a more detailed description is needed.
Therefore, we want a complete tracking of the beam in which each particle is propagated
individually in the beamline and where the properties of the beam are statistical prop-
erties calculated over the whole distribution. Although MAD-X allows the tracking of a
large number of particles, large-scale tracking is relatively expensive in computation time.
Thus for our studies and also to allow an optimization of the beamline, we participated
in the development of a new tracking code: Manzoni.

In the context of a complete study of the shielding activation, it is necessary to take
into account the interactions between particles and the environment, which is not possible
in MAD-X or Manzoni. BDSIM has been developed to answer this problem. This software
considers the transport of particles in a beamline while being able to model, using Geant4 ,
the interactions between particles and matter.

Each of these softwares is described below.

MAD-X

MAD-X is the most common software used in the field of beam accelerator. It has been
developed at CERN for the preliminaries studies of the design of the Large Hadron Collider
(LHC) and it is used for accelerators design and for testing beam behaviour. An impor-
tant library, called PTC (Polymorphic Tracking Code) has been integrated in MAD-X,
especially to describe all elements symplecticly [147]. In the following, we called MAD-X,
the software MAD-X using the PTC library.

Any element is defined by a block and described with a model which computes the
motion of particles in an electromagnetic field, also called integrator. Knowing the particle
phase-space coordinates at the entrance of the frame, MAD-X computes a relation f ,
generally non-linear, which is determined by the integration of the Hamiltonian (3.47)
and gives the beam phase coordinates at the exit of the block:

zin −→ zout = f(zin) (3.102)

Then, the blocks are putted together in a global frame, as shown in figure 3.10. From the
position of the element in the global frame, MAD-X determines geometric transformations
that connect the exit frame of the ith element to the entrance frame of the i+ 1th element
in the local frame.
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Figure 3.10: Representation of the global frame. Reproduced from [148].

The reduction of the beam energy due to an energy degrader is not implemented in
MAD-X and to describe this behaviour, we need to use Manzoni or BDSIM.

Manzoni

Manzoni allows the tracking of a large number of particles through a beamline and imple-
ments all the elements commonly used in beamline proton therapy.

Thus Manzoni implements efficient methods for matrix multiplication but with fewer
elements (only dipoles, drifts and quads) than MAD-X, essentially at the magnetic level.
Moreover, we will see in chapter 4 that propagation of protons inside matter can be
described by analytical models. Therefore, the formalism of Fermi-Eyges, based on the
scattering power, has been implemented to include a simplified description of the degrader.
In addition, based on fit over Monte Carlo data, the transmission of the degrader can be
evaluated for an optimization of the beamline.

BDSIM

BDSIM is currently in development at the CERN and at the Royal Holloway university
of London (RHUL). It is a C++ program which uses GEANT4 toolkit to model the
propagation of the beam inside a beamline and simulate the interactions between the
beam and the accelerator components [145].

The input file consists of a file with the placement of the different elements following
the position in the beamline (along the curvilinear coordinates s). Then, BDSIM provides
classes to transform the curvilinear coordinates into global coordinates. The field of each
magnetic element is expressed in the global coordinates and is computed using the strength
of each element (see equations (3.87) and figure 3.8 for a quadrupole).

The motion of the particle in an electromagnetic field is computed using the Geant4
default integrator: a 4th Runge-Kutta integrator. However, for some elements, there
exist analytical solutions to the motion (see section 3.2.4) and these solutions are directly
implemented to improve the efficiency of the simulation. This tracking is called thick-lens
tracking.
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The secondary particles that may be generated during the propagation of the beam
can not be treated with the thick lens tracking and for these specific particles, a 4th Runge-
Kutta integrator is also used. Other integrators may be used for the resolution of equation
of the motion but for these cases, we refer the readers to the manual.

The field outside the magnet is generated using a multipolar field which does not take
into account the permeability of the iron. The field is described using current source along
the curvilinear coordinates. The location of each wire and the field are given by:

ci =

[
x
y

]
i

=

[
0

radiuspole

] [
cos (θi) − sin (θi)
sin (θi) cos (θi)

]
(3.103)

θi =

{
i 2π

npoles

}
for i = 0, ..., npoles (3.104)

B(r) =

i=npoles∑
i=1

(−1)i
r − ci
‖r − ci‖

(3.105)

As example, we show in figure 3.11 the field in the yoke of a dipole and a quadrupole.
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(a) Dipole.
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(b) Quadrupole.

Figure 3.11: Field inside the yoke. Reproduced from [142].

As BDSIM built an entire Geant4 model, it is possible to simulate the interactions
between particles and matter. We can therefore, simulate the beam losses along the
beamline and determine the type of generated secondary particles which is not possible
with Manzoni and MAD-X.

Georges: A python library as interface for our studies

The aim of this library is to unify the description and computation of particle accelerator
beamlines for different softwares (Manzoni, MAD-X and BDSIM) in a unique Python
library. A clear separation between the beamline data, the beamline computations and the
computation context is achieved. Beamline data are immutable, the context (e.g. external
parameters such as the energy, momentum offset, initial beam, etc.) is immutable and
always passed explicitely as a parameter and the computational facilities are implemented
following a modular and chainable functional approach, unifying the above mentioned
aspects.

Beamlines are loaded, converted (if necessary) and then transformed using functions
split in packages (one package per beam physics code, e.g. MAD-X or BDSIM).
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Support tools are also provided, especially plotting capabilities for various optics com-
putation (beam envelope, dispersion, etc.).

«interface» 
Name

Georges: modular Python library for seamless beam dynamics simulations with multiple
physics backends 

Beamline

Beam 

IBA-Optics 

Data repository 

Plotting  madx / PTC

bdsim

g4beamline

cosy infinity

<<Interface>> 
track

+ track(beam, Beamline) 

<<Interface>> 
twiss

+ twiss(beam, Beamline) 

Physics 

Manzoni 
Georges' own physics

tracking code (kick code) 

<<Interface>> 
optim

+ ga(objectives, Beamline)

 + de(objectives, Beamline)

 + scipy.optimize ...

Fermi 
Georges' implementation
of Fermi-Eyges transport

theory 

madx / PTC

+ madx: Process

+ track
+ twiss
+ survey
+ sectormap
+ ptc_knobs

g4beamline

+ g4bl: Process

...

bdsim

+ bdsim: Process

+ pybdsim
  ...

Figure 3.12: Georges interface.

We present in table 3.3, an example of a beamline input file for georges. Each element
in this table is described by:

� Its name.

� Its physical properties: position, length, aperture.

� Its magnetic properties: type (dipole, quadrupole, ...) and depending on the type,
the bending angle, the pole face angle or the strength of the quadrupole (K1).

This file is then used to form a model of the beamline and can be used independently with
Manzoni, MAD-X or BDSIM.
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In figure 3.13, we illustrate the beamline generated by Georges based on the elements
in table 3.3. The quadrupoles are illustrated in blue, the dipoles in red and the collimators
in yellow. The aperture of the elements in each plane has also been taken into account.
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Figure 3.13: Drawings of the beamline generated using Georges.
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4.1 Objectives

Cyclotron-based proton therapy installations often rely on a degrader system to modulate
the beam energy from the cyclotron output energy to the energy necessary during the
clinical treatment. However, the degrader also induces a growth in the beam transverse
phase space and an increase of the energy spread. Both effects will negatively impact the
transmission in the extraction beamline and through the gantry. They increase the beam
losses, leading to shielding and building activation, and impact the beam properties at
the isocenter (patient). The transverse properties of the beam are indeed crucial for a
detailed understanding of installations in operation and for the design of future systems,
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in particular with Pencil Beam Scanning (PBS) treatment modes where a small spot size
at the isocenter is favored as well as other beam properties with tight tolerances [22].
Similarly, a precise knowledge of the beam loss pattern is important for the design of the
shielding surrounding the installation, in particular for compact systems. Indeed, as we
have seen in chapter 2, the degrader is one of the major contributors to the activation of
concrete in a Proteus®One.

The actual degrader used at IBA consists of a rotating wheel with different blocks in
different materials: beryllium, graphite and aluminium. We will see through this chapter
that a performant material for energy degrader is characterized by a low atomic weight and
a high density. Although beryllium appears to be an excellent material, it is toxic1 and
a major neutron emitter [149]. Graphite is a possible solution but is difficult to machine
with tight tolerances at small thicknesses. It is for this reason that aluminium is used for
small dimensions. Boron carbide and diamond are two excellent candidates for an energy
degrader but due to their high density, they are also relatively difficult to manufacture.

During a medical treatment, especially in PBS mode, it is necessary to quickly mod-
ulate the beam energy while keeping a high beam transmission [150]. Various current
studies focus on the improvement of the energy degrader [151, 152, 153]. Recently, IBA
and the Paul Scherrer Institute have developed independently a new design for an energy
degrader based on a multi-wedge scheme (see figure 4.1).

Figure 4.1: Degrader installed at Paul Scherrer Institute. Reproduced from [152].

This shape has been modelled by Liang et al. in 2018 in Geant4 with a high-density
graphite (ρ = 1.95g/cm3) [150]. They have shown that this design may increase the beam
transmission and the energy modulation. However, an initial gap is necessary to avoid
heat radiation. In this thesis, we propose a new design based on insertable cylinders with
different thicknesses (called lollipops), made of diamond (see section 4.5).

Before analysing the performance of the real degrader, we compare the different mate-
rials in a synthetic geometry, i.e a semi-infinite block. The aim of this chapter is to predict
with Monte Carlo simulations the properties of the beam at the exit of a block of matter
as shown in figure 4.2. We evaluate the transmitted energy E, the scattering angle θ, the
beam size, the emittance and the transmission at the exit of this slab of matter. The slab
is irradiated by a proton beam with an energy E0 and is characterized by a thickness t, a
density ρ and a Stopping Power S/ρ.

1The exposition to Beryllium may cause Chronic Beryllium Disease (CBD) and lung complications.
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Figure 4.2: Model for comparison of different materials.

The thickness t is a function of the input energy (E0), the energy at the exit (E), and
the Range in the material (R) as defined in section 1.2.2:

t = R(E0)− R(E) . (4.1)

For this chapter, the initial energy is fixed to 228.15 MeV which is the energy at the exit
of the IBA accelerator. In table D.1 (see appendix), we summarized the thicknesses of the
slab for different materials as function of the transmitted energy. They are graphically
presented in figure 4.3.
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Figure 4.3: Degrader length as a function of the transmitted energy.

As the mass total stopping power S/ρ is almost equal for different materials down to
MeV (see figure 1.6), materials with a similar density will have the same energy losses by
unit of length and thus the same thickness. This is why the graphite block (ρ = 1.7 g/cm3)
and the beryllium block (ρ = 1.85 g/cm3), as well as the the aluminium block (ρ = 2.7
g/cm3) and the boron carbide block (ρ = 2.52 g/cm3) have similar dimensions. Due to
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the high density of diamond (ρ = 3.5 g/cm3), the required thickness is smaller than other
materials and we would expect the scattering angle and the emittance improvements.

We structure this chapter as follows. We present the tools and methods for the com-
putation of the beam characteristics in section 4.2. In section 4.3, a complete comparison
between materials is made for an ideal case to select the material with the best properties.
In section 4.4, the real design of the IBA degrader is considered to understand the current
properties and identify possible improvements. Finally, in section 4.5, performances of a
new type of degrader made of diamond is studied.

4.2 Tools and methods

In section 4.2.1, we introduce the formalism of Fermi-Eyges for beam propagation in
matter. Used with the scattering power of protons, the beam spreading angle and the
beam size at the exit of a slab will be computed. A comparison between two Geant4 physic
lists is performed in section 4.2.2 and a method to recover the Gaussian core of the angular
distribution is developed in section 4.2.3. Differences between these analytical models and
Monte Carlo simulations are also explained in section 4.2.4. All results obtained in this
section are integrated in Manzoni code for further studies about an optimization of the
beamline. These results have been presented during the IPAC conference in 2018 [154]

4.2.1 The Fermi-Eyges transport formalism

In 1948, Eyges generalized Fermi’s theory to describe the evolution of spatial and angular
distribution of particles going through matter [155]. The purpose of this theory is to
compute the phase-space distribution and the related quantities at any depth z in the
material. We suppose a pencil beam, i.e a punctual beam without spatial and angle
extension, at the entrance of the slab and we denote by x (resp. θ) the transverse direction
(resp. the scattering angle). In [155], Eyges showed that the probability of finding the
proton at some z with x in dx and θ in dθ can be expressed as:

P (x, θ) dx dθ =
1

2π
√
B
e−

1
2
A0x

2−2A1xθ+A2θ
2

B dxdθ , (4.2)

where the An are expressed as the moments of the scattering power T as defined in section
1.2.3 and are written as:

A0(z) ≡
∫ z

0
T (u)du , (4.3)

A1(z) ≡
∫ z

0
(z − u)T (u)du , (4.4)

A2(z) ≡
∫ z

0
(z − u)2T (u)du , (4.5)

B is given by: B(z) ≡ A0A2 −A2
1 . (4.6)

The distribution of x (resp. θ) is obtained by integration of (4.2) over θ (resp. x). These
two integrations could be related to the angular distribution and spatial distribution where
the symbol 〈〉 corresponds to the variance.

A0 =
〈
θ2
〉
, (4.7)

A2 =
〈
x2
〉
, (4.8)

A1 = 〈xθ〉 . (4.9)
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The scattering power is thus the key quantity to compute the distribution of the scattering
angle (θ) at the exit of the slab. The contour in the phase space is obtained when equation
(4.2) equals e−1/2. We find thus equation of an ellipse as defined in section 3.2.5:

A0x
2 − 2A1xθ +A2θ

2 = B (4.10)

The extrema of this ellipse are:

θ̂ = ±
√
A0 =

〈
θ2
〉1/2

at x = ±A1/
√
A0 (4.11)

x̂ = ±
√
A2 =

〈
x2
〉1/2

at θ = ±A1/
√
A2 (4.12)

We can show that the area of the ellipse is given by π
√
B and thus, the emittance of the

beam after going through a slab of matter is given by:

εmat =
√
B . (4.13)

In this chapter, we consider a pencil beam as input and the scattering power of Farley
and Gottschalk, introduced in section 1.2.3, to determine the beam properties (A0, A1,
A2, B) at the exit of any material. The formalism of Fermi-Eyges has been implemented
in Manzoni to provide the properties of the beam after a slab of matter.

4.2.2 Difference between hadronic models and electromagnetic models
in Geant4 simulations

In this section, the Monte Carlo simulations are performed with Geant4 with the
QGSP BIC HP physics list (called hadronic in the rest of this thesis) for a complete
description of the interactions and the PENELOPE model (called electromagnetic and
referenced as Geant4 EM) for the electromagnetic process (without nuclear interactions).

To have a correct statistic, we use 106 primary particles. By default, in this section,
we specify the output energy of the beam at 70 MeV and we use beryllium as material.
Other cases may be treated similarly.

We have explained in chapter 1 that protons interact with matter through electro-
magnetic interactions (energy losses and Coulomb scattering) or by nuclear reactions. A
major effect of nuclear interactions is to create heavier tails in the phase space projected
distributions than the Multiple Coulomb scattering (MCS) for which this effect is absent.

In the post processing, we distinguish the primary and secondary particles produced by
inelastic nuclear interactions. We illustrate in figure 4.4a, the energy spectrum of particles
at the exit of the block and in figure 4.4b, the angular distribution is shown. The total
spectrum is the blue curve, the contribution of primaries (resp. secondary) are represented
in red (resp. green).
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(b) Angular distribution.

Figure 4.4: Energy spectrum and angular distribution for beryllium degrading from 228.15
MeV to 70 MeV. The contribution of primaries is in red and the secondaries is in green.

We note that two orders of magnitude separate the primaries and secondaries in the
peaked region (median value) in the energy spectrum and in the angular distribution.
Moreover, the contribution of the nuclear interactions is clearly visible on these figures
(green curves) and corresponds to 35% of the total spectrum (blue curve). This proportion
is in agreement with the results obtained by [34] (see chapter 1). In the rest of this thesis,
except when explicitly specified, the contribution of secondary protons is always discarded.
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4.2.3 The optimal Gaussian cuts method

In order to compare Geant4 simulations with the analytical models, we need to separate
the nuclear halo contribution from the Gaussian core. The particles which suffered large
angular deviation, due to elastic and nuclear reactions, will be removed. Moreover, statis-
tical variations appear at large angles due to the low probability to obtain these outputs in
the Monte Carlo simulations. These values must also be eliminated to obtain the primary
beam transmitted in the beamline.

The scattering angles θx and θy at the exit of the target are assumed to be constant, the
particles move along the radial axis. As there is no preferential direction in the material,
there cannot be a radial asymmetry in the output beam. This means that the angular
distributions should follow the same Gaussian distribution along θx and θy.

To determine the Gaussian distribution of the angular spectrum, we use the properties
of the chi-square distribution. A chi-square distribution of k degrees of freedom corre-
sponds to the sum of the squares of k normally distributed independent variables. In our
case we have k = 2. We defined the reduced transverse momentum θ̃ as:

θ̃ =

(
θx − θ̄x
σθx

)2

+

(
θy − θ̄y
σθy

)2

, (4.14)

where θ̄i is the mean value and σθi is the standard deviation of the corresponding distri-
bution. When θx and θy are normally distributed, we have a χ2 distribution.

The variance for a χ2 distribution is equal to σ2 = 2k. This implies that the standard
deviation equal to 2 when θx and θy follow a Gaussian distribution. The values at large
angles will be progressively cut until they reach the expected standard deviation. The
remaining curves correspond to the central section of the beam where the proton angles
are normally distributed. The successive cuts are illustrated in figure 4.5 with ξ the cut
value corresponding to the percentage of protons eliminated starting with those at the
extremities. We found that 14% of the protons need to be removed to obtain the expected
χ2 distribution, represented in black.

0 1 2 3 4 5 6

Reduced transverse momentum (a.u)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

co
u

nt
s

(u
.a

)

ξ = 0

ξ = 0.01

ξ = 0.05

ξ = 0.1

ξ = 0.14

χ2

Figure 4.5: Reduced χ2 distribution for different cut values.
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The angular distributions in function of θx and θy are shown in figure 4.6 for different
cut values. The original distributions with ξ = 0 in cyan are not Gaussian at larger
angles due to the halo contribution of the single scattering effects. We remark also slight
differences in these distributions between the two graphics due to statistical variations.
Progressively, cut after cut, the distributions tend to a Gaussian distribution.

Physically, the nuclear reactions with an important angle are progressively removed to
obtain the central part of the beam. The angular distribution due to the electromagnetic
physic list implemented in Geant4 EM for elastic and inelastic scattering is also shown
in black. The difference between our results in orange and this curve corresponds to the
elastic effects. However, this difference is minimal. Indeed, the additional cut between the
two curves is equal to 0,85%.
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Figure 4.6: Reduced angular distribution for different cut values.

In figure 4.7, we observe the effects of our algorithm on the energy spectrum. For
each value of the cut, we show the corresponding energy spectrum of protons. We observe
that our method also gives the same energy distribution as the electromagnetic physic list
(represented in black). With this algorithm, we are now able to characterize the Gaussian
core of the beam which is then propagated in the beamline.
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Figure 4.7: Energy spectrum for different cut values.

As the hadronic interactions and the single scattering depend on the materials and
the thickness of the blocks, the algorithm must be applied for each transmitted energy
and for each studied material. We present in figure 4.8 the value of ξ as a function of the
transmitted energy for the common materials used as energy degrader in proton therapy.
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Figure 4.8: Cuts values for different materials studied in this chapter.

The greater transmitted energy, the minder there are nuclear reactions and therefore,
lower is the cut. Based on these data, we decided to apply a linear regression on these
results to determine a possible the between ξ and transmitted energy (E). For each
material, a linear regression of type ξ = aE + b is applied, where a and b are functions of
the atomic weight (Z) (see figure 4.9).
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Figure 4.9: Values of a and b as a function of the atomic number Z.

These results lead us to propose the following regression law to determine the quantile
as a function of the transmitted energy and the material:

ξ (Z,E) = (0.005Z − 0.09) E − (1.07Z − 23.17) (4.15)

This law is valuable for transmitted energy between 70 and 220 MeV.

With this law, we are able to recover the Gaussian core of the distribution for any
material and we can compute the beam Σ matrix (equation (3.96)) which serves as input
for beam transport code like MAD-X or Manzoni. We now compare the Monte Carlo
results with the analytical models of Gottschalk and Farley.

4.2.4 Comparison between Monte Carlo results and semi-analytical mod-
els

Geant4 and Phits are compared to the analytical models of Gottschalk (also called differ-
ential Molière) and Farley which have been introduced in section 1.2.3 (equations (1.24)
and (1.25)) and for which we have the following scattering powers:

TdM = fdM (p1v1, pv)

(
Es
pv

)2 1

XS
(4.16)

TF =
200Z2

X0(pβ)2
(4.17)

In this section, the results obtained for beryllium based on Geant4 and the hadronic model
(with applied cuts), on Geant4 with the electromagnetic model and Phits (Data courtesy
of F.Stichelbaut) are compared with the Gottschalk and Farley analytical models.
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We successively compare the standard deviation of the beam size, the beam divergence
and the emittance for different transmitted energy. The results for each quantities are
summarized in figure 4.10.
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Figure 4.10: Beam parameters for beryllium as a function of the transmitted energy. Dif-
ferent analytical and numerical models are compared.

Geant4 with the electromagnetic processes and the differential Molière model proposed
by Gottschalk are in excellent agreement.

We obtain similar results with the hadronic model (with cuts), the differences arise
from the fact that our algorithm removes also the tails due to the single scattering (large
angles).

The Farley model uses an approximation which is close to the Fermi-Rossi approxima-
tion known to be less accurate than the differential Molière model [47]. The overestimation
obtained with Phits is probably due to another cut methodology.

In the rest of this chapter, we use the Geant4 with the hadronic model and we compute
the cuts to be closer to the analytical results obtained using the scattering power as
modelled by Gottschalk.

4.3 Comparison of materials for degrader using synthetic
geometry

In this section, we successively simulate the beam properties for each material and thick-
ness (t) summarized in table D.1. We compare the transmission, the energy spread and
the emittance. For each quantity, the secondary protons are removed and the cuts as
explained in the last section, are applied to keep the useful part of the beam.

4.3.1 Transmission

The transmission represents the number of protons crossing the material which finally
reach the patient. The losses are due to nuclear reactions that occur in the material. As
we have seen in chapter 2, these reactions generate problems of radiation protections. The
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objectives is to maximise the efficiency of the system and thereby to limit the activation
of the shielding.

The transmission for each material is shown in figure 4.11 as a function of the trans-
mitted energy (in 4.11a) and as a function of the thickness of the target (in 4.11b), the
lines are a guide for the eyes.
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Figure 4.11: Degrader transmission for protons as a function of the energy (a) and the
thickness of the target (b). Materials are compared without transverse cuts.

In this case, we obtain the same transmission as the one defined in table 2.9. If we
apply our algorithm to the data, we multiply the transmission (without cut) by the value
of cuts for each material and we obtain the following transmission (see figure 4.12) as
function of the thickness of the beam core.
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Figure 4.12: Degrader transmission for protons as a function of the thickness of the target.
Materials are compared and transverse cuts are applied.
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We apply a linear regression of the type W = at+ b to these data (represented by the
dashed lines in figure 4.12). The values of a and b for the linear regression between the
transmission and the thickness are summarized in table 4.1 for the different materials.

Material a b

Aluminium -0.22 95.99

Beryllium -0.21 96.16

Graphite -0.18 96.60

Boron carbide -0.27 96.83

Diamond -0.38 97.07

Table 4.1: Values of a and b as a function of the material.

These values can be directly implemented in Manzoni to compute the beam transmis-
sion from the accelerator up to the isocenter (patient) for different energies.

We observe that diamond indeed improves the transmission for a given energy com-
pared to beryllium. However, it is important to specify that if we change the design of the
energy degrader, the transmission efficiency must be evaluated globally up to the isocen-
ter because some other elements as slits or quadrupoles are present in the beam line and
interact also with the beam.

4.3.2 Energy spread

As we have explained, after going through a slab of matter, the transmitted beam has a
distribution in energy (see figure 4.4a). This spectrum is an important consideration in
proton therapy because the deposit dose in the tumor is a direct function of the energy
spread [156]. In function of the energy, particles will be stopped more or less deeply. This
distribution is quantified using the energy spread which is the standard deviation of the
spectrum. The energy spread for protons is shown in figure 4.13. From these results, we
conclude that there are no major differences between materials.
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Figure 4.13: Energy spread for protons as a function of the transmitted energy.
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4.3.3 Emittance

When comparing different degrader solutions of various lengths, it is key to consider a
transverse beam transport invariant such as the emittance. Indeed, if we represent the
beam size (figure 4.14a) and the scattering angle at the exit of the slab (figure 4.14b),
we can not conclude which material is the most effective. In the first case, the beryllium
seems to be better as it has a lower scattering angle but in the second case, the diamond
has a lower beam size. Thus it is not possible, with only these informations, to choose the
correct material, we need to consider the emittance for the comparison.
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(b) Scattering angle.

Figure 4.14: Scattering angle and beam size as a function of the transmitted energy for
each material.

As the emittance is directly related to the beam size and the beam divergence (see
equation (3.97)), it must be as low as possible to avoid interactions with the different
elements in the beamline. The emittance of each material is presented in figure 4.15.

The differences in emittance decrease as function of the output energy. In particular,
the behaviours of aluminium, graphite and beryllium follow the expected order: the emit-
tance increase is minimized by a high material density and by a low atomic number Z.
This explains why beryllium is a material of choice and why it is used in the IBA degrader
at low energy. We find the same behaviour between the boron carbide and the graphite
as described in [152].

Based on these results, we propose to use diamond as new material for the degrader.
Diamond will be integrated to a new degrader design that will be described in section
4.5. We first analyse the degrader used currently at IBA with the collimator considering
a pencil beam to characterize the emittance variations with this section.
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Figure 4.15: Emittance comparison for aluminium, beryllium, graphite, boron carbide and
diamond as a function of the output energy.

4.4 Realistic simulation of the IBA degrader and collimator

In this section, the actual IBA energy degrader, illustrated in figure 4.16a, is studied. In
function of the required energy, the material of the block is different:

� Beryllium for transmitted energy lower than 120 MeV

� Graphite for transmitted energy between 120 and 220 MeV

� Aluminium for transmitted energy higher than 220 MeV

This real and complex geometry is directly imported in Geant4 for a better represen-
tation of the reality. The real design is coming from a Computer-Aided Design (CAD)
software (figure 4.16b) and the resulting file is converted to a GDML (Geometry Descrip-
tion Markup Language) format [98]. The main advantage of this format is that we can
take into account all the details of the geometry, specify the material of each element and
directly import this model in Geant4 .

The Geant4 model of the degrader is shown in figure 4.16c where the beryllium is
represented in purple, the graphite in gray and the aluminium in cyan. The collimator is
also represented in yellow. It consists of a tantalum cylinder with a 10 mm diameter hole
in the centre. It is used to remove particles with a large angle/position before entering
the beamline.
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(a) Picture of the degrader. (b) CAD model. (c) Geant4 model.

Figure 4.16: Representations of the IBA degrader system. From the real design (in a),
simplified with a CAD software (in b) and model in Geant4 (in c).

We first perform a simulation to determine the relation between the rotation angle of
the degrader and the transmitted energy. A pencil beam is used. The energy spectrum
and the corresponding range at the exit of the degrader for a given angle of the wheel
are represented in figure 4.17a. A Gaussian fit is made over the histogram of this energy
spectrum and the energy for a specific rotation angle corresponds to the mean value of
the Gaussian distribution. The entire calibration is represented in figure 4.17b. The
discontinuities result from the change of the blocks used for the energy degradation. We
also compare our calibration made by Geant4 with the real calibration of a Proteus®One
system (figure 4.17b in red). Both calibrations are in excellent agreement.
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Figure 4.17: Wheel calibration obtained by simulation.
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4.4.1 Beam properties at the exit of the degrader

In this section, we analyse the energy spectrum and the emittance at the exit of a synthetic
geometry and at the exit of the IBA degrader.

4.4.1.1 Energy spectrum

In this section, we compare the differences between the energy spectrum at the output
of the synthetic geometry and at the exit of the real geometry of the degrader for two
transmitted energy, namely 70 MeV (beryllium) and 160 MeV (graphite).

The results for the energy spectrum are presented in figure 4.18. For both cases, we
observe that protons at high energies are still present in the energy spectrum of the real
geometry. This effect is due to the specific geometry of the degrader where protons can
leave through the lateral sides (see figure 4.16c)
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Figure 4.18: Energy spectrum of protons at the exit of the degrader for the synthetic
geometry (in blue) and for the IBA degrader (in red).

In figure 4.19, we show the energy as a function of the horizontal and vertical position
for the synthetic geometry (figure 4.19a) and for the real IBA degrader (figure 4.19b).
This corresponds to the transverse plane at the exit of the degrader. The color scale
represents the mean energy of the beam shifted from the average energy at the output of
the degrader.

The dark circle represents the opening of the collimator. We notice that the energy
spectrum is uniform in case (a) while for the IBA degrader, we observe that the transmitted
energy is dependent on the geometry of the block. The protons leaving the degrader by
the lateral sides have higher energy and correspond to the red area in figure 4.16c.
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Figure 4.19: 2D energy spectrum as function of the horizontal and vertical positions for
the synthetic geometry (a) and the real geometry (b) of the degrader. The opening of the
collimator is represented by the dark circle.

4.4.1.2 Emittance

We perform simulations to evaluate the emittance to compare the results with the synthetic
geometry. We also applied to the exact geometry of the degrader, the cuts obtained in
section 4.2.3. The results are shown in figure 4.20.
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Figure 4.20: Beam emittance at the exit of the degrader. Comparison with semi-infinite
blocks is also shown. Data with and without optimal Gaussian cuts are compared.

The difference between horizontal and vertical plane may be attributed to the asym-
metric geometry of the block of the IBA degrader. Indeed, this effect disappears when
cuts are applied. We also note the step in emittance at 120 MeV due to the change of
material on the degrader wheel. When the cuts are applied, the emittance for the exact
geometry matches well the ideal geometry.
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4.4.2 Beam properties after the passage in the circular collimator

As said above, the collimator removes particles with a large angle before entering the
beamline. However, interactions between beam and matter may occur also in the colli-
mator. In this section, the effects of the collimator on the energy spectrum and on the
emittance are studied.

4.4.2.1 Energy spectrum

In figure 4.21, we show the energy spectrum of primary protons for two transmitted
energies at the entrance (in blue) and at the exit (in red) of the collimator. We observe
that the high energy particles have been disappeared but a tail appears at low energy.
This tail is due to interactions of protons inside the collimator. Indeed, if we adapt the
collimator as an absorbing element (called ideal collimator in the rest of this section), we
obtain the green curve which is symmetric around the desired energy.
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Figure 4.21: Energy spectrum of protons before the collimator (in blue), behind the colli-
mator (in red) and behind an ideal collimator without interactions (in green).

The proportion of protons interacting in the collimator is shown in figure 4.22. The
proportion of interactions is greater at low transmitted energy because the emittance
at the exit of the degrader is important. We observe a gap at the transition between
beryllium and graphite. The material change allows reducing the number of interactions
in the collimator.

In practice, these low energy protons will be removed by bending magnets (see section
3.2.4.2) present in the beamline. However, they contribute to losses of the system and
generate radioprotection issues.
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Figure 4.22: Proportion of low energy protons generated inside the collimator as a function
of the transmitted energy.

4.4.2.2 Emittance

We now analyse the effect of the collimator over the beam emittance. We present in figure
4.23, the emittance before the collimator (blue and red curve), the emittance behind the
collimator (in magenta and green) and behind the ideal collimator (in cyan and orange).
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Figure 4.23: Emittance before and behind the collimator. The emittance behind an ideal
one is also shown.

Three main conclusions can be deduced from these results:

1. The collimator symmetrizes the emittance in both planes (superposition of the curves
in the transversal plane).
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2. The real collimator induces an increase of the emittance compared to an ideal colli-
mator.

3. For transmitted energies higher than 120 MeV, which correspond to the graphite
blocks, the emittances are lower at the entrance than at the output of the collimator.
The differences are explained by the interactions occurring in the collimator.

The emittance at the exit of the collimator is composed of particles having a large
energy distribution (see figure 4.21). However, before reaching the patient, the beam goes
into an energy selection system to keep only protons with the correct energy. Therefore,
there will be losses along the beamline and the beam emittance that will finally reach the
patient is represented by the yellow curve (in figure 4.23)

4.5 Study and performance reach for a diamond-based de-
grader

An energy degrader for medical facilities needs to have several specifications, the most
important are [157]:

1. Material

2. Speed, especially for PBS treatment mode

3. Accuracy of positioning

4. Minimum energy to be reached

5. Transversal size of the beam at the exit of the degrader

We observed in the previous sections that the diamond has excellent properties for beam
emittance minimization and transmission. Therefore, we propose a new degrader design
based on insertable cylinders, also called lollipops. We investigate a realistic geometry for
a diamond degrader made of discrete range shifting lollipops. The minimum thickness is
computed in order to have a range variation of 0.1 g/cm2 for the transmitted beam. To
ensure reaching energies between 70 and 230 MeV, we use 9 cylinders whose thickness and
the induced range reduction (∆R) for an input beam of 230 MeV are summarized in table
4.2:

Lollipops Thickness (mm) ∆R
L0 64 20.34

L1 32 10.38

L2 16 5.42

L3 8 2.93

L4 4 1.52

L5 2 0.76

L6 1 0.38

L7 0.5 0.19

L8 0.25 0.09

Table 4.2: Thicknesses of the different lollipops.

Due to the delta range for L0 and L1, these two blocks are never placed together. To
increase the compactness of the device, a maximal distance between two inserted blocks is
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fixed at 0.1mm. In figure 4.24, we illustrate three configurations of the system to obtain a
transmitted range of 5.0 g/cm2 (using 4 blocks), 5.1 g/cm2 (using 6 blocks) and 2.5 g/cm2

with all blocks inserted (except L1).

5.0 g/cm2

5.1 g/cm2

2.5 g/cm2

Figure 4.24: New energy degrader design based on diamond lollipops system.

Figure 4.25 represents the emittance computed using the new degrader design and these
results are compared with a semi-infinite block of diamond (magenta line) and beryllium
(dashed black line). The green line represents the emittance obtained with the IBA de-
grader (rotating wheel). The cuts determined in the previous section are applied to allow
a comparison of the Gaussian core only.
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Figure 4.25: Emittance values obtained for the ideal and lollipop degrader models.

Depending on the position of the lollipops, the emittance is lower or equal to that
obtained with a block of beryllium. For low transmitted energy, the majority of lollipops
is inserted and the same behaviour as a diamond block is recovered. Indeed, the impact of
the air gaps (distance between two inserted lollipops) is negligible. A disadvantage of this
design is that the emittance jumps as function of the transmitted energy (mainly at 80
MeV). Indeed, the absence of some blocks implies a large amount of air between blocks.
In this zone, the beam divergence is exacerbated causing the emittance jumps.
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However, it is important to precise that this design is the first step of more complex
studies. This kind of degrader has to be modelled in a real beamline with an optimization
of the different magnetic elements. Finally, a study about the cost-benefit of this design
must be done to evaluate more precisely its strengths and weaknesses.

4.6 Conclusion

In this chapter, we have introduced the analytical formalism to compute the rms beam
properties at the exit of a slab using the scattering power. The contribution of the nuclear
reactions to the energy and the angular spectrum have been compared to the electro-
magnetic process. We have developed a new method, based on cuts along the transverse
momentum to quantify the nuclear losses and the halo effect from nuclear scattering. We
proposed the following equation to compute the cuts as a function of the transmitted
energy and the atomic number of the target:

ξ (Z,E) = (0.005Z − 0.09) E − (1.07Z − 23.17) (4.18)

Based on these cuts, we are able to recover the Gaussian core of the distribution which
is used as input for beam transport codes as Manzoni. Finally, the results obtained with
Monte Carlo simulations have been compared with the analytical models of Farley and
Gottschalk. The model proposed by Gottschalk is consistent with the results obtained with
Geant4 with an electromagnetic physics list. The Farley model uses an approximation
which is less accurate than the Gottschalk model.

Different materials used in proton therapy have been compared in order to evalu-
ate their performances. We have shown that the key notion to select a material is the
emittance. The results obtained for diamond are particularly interesting, we observe a
30% reduction in emittance for the lowest energies compared to beryllium in a synthetic
geometry.

The IBA degrader and collimator have been modelled in Geant4 . The degrader consists
of a rotating wheel composed of beryllium, graphite and aluminium blocks. Compared to
a synthetic geometry, an asymmetry in the energy spectrum appears since higher energy
protons leave the degrader through the lateral sides. The collimator is a tantalum cylinder
with a hole in the centre. It symmetrizes the beam emittance in the transversal plane
but produces low energy protons which decrease the efficiency of the system. We have
determined that the collimator has an efficiency of about 80% for a transmitted energy of
70 MeV.

A new degrader design has been proposed to improve the beam transmission and
minimize the beam emittance. It is based on insertable diamond cylinders and allows quick
changes of the transmitted energy. We observe an improvement in the beam properties
compared to the actual degrader. However, emittance jumps are observed due to the air
gaps in the design.
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Complete installation simulation
using BDSIM
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Modelisation of the transport
beamline
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In chapter 3, we introduced the different equations useful for the determination of the
beam propagation in a beamline as well as three softwares implementing these equations:
Manzoni, MAD-X and BDSIM. The properties of the IBA degrader were studied in chapter
4 using a pencil beam. We have especially discussed the increasing emittance after the
degrader and the collimator.

In this chapter, we develop a complete Monte-Carlo model of the Proteus®One with
BDSIM (see figure 5.1). This model combines both the transport of the proton beam in
magnetic elements as well as the interactions between particles and matter.

Figure 5.1: Complete model of the Proteus®One beam transport line made with BDSIM.
The propagation of the proton beam is shown in blue. The secondary particles are not
shown.
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In section 5.1, we introduce the different elements constituting the Proteus®One sys-
tem and the model obtained is validated and discussed in detail in section 5.2. In par-
ticular, we compare our simulations with experimental measurements collected along the
beamline and at the isocenter of Proteus®One installations currently in operation in Royal
Oak (USA) and Newport (UK).

5.1 Beam transport model for the Proteus One system

The Proteus®One layout is shown in figure 5.2, it is divided in three main parts:

1. The accelerator (S2C2) which produces the beam at a specific energy, namely 228.15MeV.

2. The extraction, which propagates the beam extracted from the accelerator up to the
energy degrader.

3. The gantry, i.e the beamline from the degrader up to the isocenter which is called
Compact Gantry (CGTR) (in blue in figure 5.2).

S2C2 extraction
beam line

Degrader and collimator
Momentum  

slits

Compact gantry (CGTR)

Isocenter

Figure 5.2: Layout of a Proteus®One. Reproduced from [119].

A gantry is a transport beamline which rotates around the isocenter. It is composed
of different elements such as a mechanical support, magnets, beam diagnostics and other
technical infrastructure [158]. As we have seen in section 3.2.4, dipoles and quadrupoles
are used to bend or to focus the beam. The beam optics (beam size, divergence, dispersion,
... ) of the gantry must be designed for any transmitted energy and rotation angle to
ensure a correct treatment of the tumor. Therefore, the following requirements must be
satisfied at the isocenter [159, 160]:

� Small and constant spot size at the tumor.

� Dispersion equal to 0 at the isocenter to minimize the beam size and suppress the
energy-position dependence (see equation (3.100)).

� Independence of the beam optics in the gantry with the rotation angle.

The two first requirements are satisfied if we have:

1. Double waist at the degrader level to minimize the emittance at the entrance of the
beamline (see section 5.1.3).
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2. Maximal dispersion at the momentum slits to suppress the particles without the
correct energies (see section 5.2).

The independence of the beam optics, is more complex to satisfy because it implies to have
equal emittances in both planes [159]. However, as we will see in section 5.1.1, emittances
(horizontal and vertical) at the exit of the accelerator are not equal. Therefore, for each
proton therapy center, currents of quadrupoles in the gantry are adjusted as a function of
the rotation angle. By convention, the zero degree rotation angle corresponds to the beam
aligned along the vertical axis and points toward the floor (as represented in figure 5.2).

The design optic functions, namely βx, βy andDx (see section 3.2.4), of the Proteus®One
system are shown in figure 5.3. The requirements explained above are clearly visible on
this figure: the double waist on the degrader, a small spot size at the isocenter and the
dispersion function (in green) equal to zero at the isocenter.
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Figure 5.3: Design function of the Proteus®One system. Data courtesy of IBA.

We also notice that the envelope of the beam is important before the degrader (in Q1C
and Q2C) resulting in interactions in the quadrupoles, as already mentioned in section
2.4.2.

The interactions with the different elements in the beamline induce losses. To precisely
quantify the effect of these interactions on the beam, we have developed a complete Monte
Carlo model of the Proteus®One system using BDSIM to take into account the beam
propagation in the magnetic elements. Each element of the system is described in the
following sections.

5.1.1 Properties of the beam at the output of the accelerator

The particle accelerator of a Proteus®One system consists of a supra-conducting synchro-
cyclotron (usual abbreviation S2C2). The extraction of the beam out of an accelerator is
a complex process. W. Kleeven et al. [161, 162] have made an entire OPERA3D model
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of the S2C2 (see figure 5.4) and have simulated with Advanced Orbits Code (AOC) the
particle distribution at the exit of the accelerator. All results presented in this section are
courtesy of IBA.

Figure 5.4: Model of the S2C2 and the extraction beamline in Opera 3D. Reproduced from
[163]

OPERA3D is a software developed for the resolution of partial differential equations
for the electromagnetic field calculations [164]. This software provides 3D maps of the
electric and magnetic field. These maps are an input file for AOC software.

This software has been developed by IBA and tracks particles along a circular orbit
under the combined action of magnetic and electric fields. A 5th order Rung-Kutta in-
tegrator is used to resolve equations of motion (equation (3.27)) from the ion source up
to the extraction point. The beam losses are also computed in order to determine the
efficiency of the accelerator.

Finally, after the extraction of the beam, different output files are available: the Twiss
parameters of the beam, the locations of the losses, the RMS properties of the beam
and the characteristics (position, momentum, energy) of each particle. To have correct
statistics for the beam interacting with the elements of the beamline, an algorithm has
been developed to resample this distribution [165]. The emittance, as defined in section
3.2.5, of the S2C2 beam is shown for each plane in figure 5.5.
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Figure 5.5: Emittances of the beam in both planes. The projection over each axis is also
shown. Data courtesy of IBA.

At the exit of the S2C2, the beam has a small energy deviation around the nominal
energy. This deviation is characterized by the momentum deviation (δ). In figure 5.6, we
show the distribution of the relative momentum deviation and the Gaussian fit over this
distribution [166].
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Figure 5.6: Distribution of the momentum deviation at the exit of the S2C2. Data extracted
from [166]

The standard deviation of this distribution is about 0.02%, which represents an energy
deviation of 150 keV. Table 5.1 summarizes the properties of the extracted beam (the bar
stands for the mean value).
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Extracted beam (S2C2)

x̄ (mm) 0.02

σx (mm) 9.5

ȳ (mm) -0.064

σy (mm) 3.88

x̄p (mrad) 0.034

σxp (mrad) 3.55

ȳp (mrad) 0.03

σyp (mrad) 1.57

σE (keV) 150

Table 5.1: Properties of the extracted beam.

This beam will serve as an input for the beam transport codes as Manzoni, MAD-X
or BDSIM.

5.1.2 Description of the Proteus®One elements

In this section, the sequence of elements constituting the beamline is described. We show
in figure 5.7 the schematic representation of the extraction (figure 5.7a) and the CGTR
(figure 5.7b). The component characteristics are summarized in table 5.2. ST and ISO
mean respectively the beginning of the beamline and the isocenter. The focus plane for
quadrupoles and the pole face angle for bending magnet (e1 and e2) are also specified.
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Figure 5.7: Schematic representations of the extraction (a) and the CGTR (b) of a
Proteus®One.
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Element Type Length (mm) Focusing plane e1 (rad) e2 (rad)

Extraction
PMQ Quadrupole 206 Horizontal – –
Q1C Quadrupole 290 Vertical – –
Q2C Quadrupole 490 Horizontal – –

Q1G Quadrupole 297 Vertical – –
C

o
m

p
a
ct

G
a
n
tr

y Q2G Quadrupole 297 Horizontal – –
B1G Sector dipole 1050 – 0.3142 0.3142
Q3G Quadrupole 290 Horizontal – –
Q4G Quadrupole 290 Vertical – –
Q5G Quadrupole 490 Horizontal – –
Q6G Quadrupole 290 Vertical – –
Q7G Quadrupole 290 Horizontal – –
B2G Sector dipole 1830 – -0.175 -0.262
B3G Sector dipole 1680 – 0 0

Table 5.2: Properties of magnetic elements in the beamline.

5.1.3 Minimization of the emittance after the degrader

To minimize the losses in the beamline, the emittance at the exit of the energy degrader
(P1E) must be as low as possible. We consider a degrader with a thickness t. Over that
thickness t and in absence of interaction, the sigma matrix of the beam after the drift is
given by [48]:

Σbeam(t) =

(
1 t
0 1

)(
σ11 σ12

σ12 σ22

)(
1 0
t 1

)
=

(
σ11 + 2tσ12 + t2σ22 σ12 + tσ22

σ12 + tσ22 σ22

)
(5.1)

The Σ matrix of an energy degrader is given by equation (4.7):

Σdeg =

(
A0 A1

A1 A2

)
(5.2)

The Σ matrix at the exit of the degrader is the sum of the Σ matrix of the beam and the
Σ matrix of degrader.

Σ = Σbeam + Σdeg (5.3)

The emittance at the exit of the degrader is given by the determinant of this matrix.
When computing equations (5.1) and (5.2) and calculating the determinant of the resulting
matrix, we obtain the emittance:

ε2 = ε2beam + ε2deg +
(
A0σ22 +A2

(
σ11 + 2tσ12 + t2σ22

)
− 2A1 (σ12 + tσ22)

)
(5.4)

The two first terms, εbeam and εdeg, depend on the input beam and the degrader, they are
thus constant. As our objective is to minimize equation (5.4), we derive each term and we
obtain:

A2dσ11 +A0dσ22 − 2A1dσ12 = 0 . (5.5)

Furthermore, the emittance of the beam is constant and therefore, if we derive equation
(3.99), we can write:

σ22dσ11 + σ11dσ22 − 2σ12dσ12 = 0 . (5.6)

From these equations, we obtain:

σ11

σ12
=
A0

A1
(5.7)

σ22

σ12
=
A2

A1
(5.8)
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Figure 5.8: Beam envelope along the extraction part of the Proteus®One system.

Finally, the optimum input beam matrix (which minimizes the emittance) is given by :

Σoptim
beam =

ε0
εdeg

(
A0 A1

A1 A2

)
(5.9)

If we transpose this matrix through a distance −d to obtain an upright ellipse (σ12 = 0),
we find that the beam must be focused in a distance d = A1/A2 before the end of the
degrader to minimize the emittance at the exit of the degrader. This is why before entering
the degrader (P1E), the beam is focused as we show in figure 5.8 (results obtained with
our model). The lines represent the beam envelope at 1σ (rms standard deviation) and
the degraded color corresponds respectively to 2 and 3 σ.
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5.1.4 Propagation of the extracted beam in the beamline

In this section, we consider the propagation of the extracted beam in the beamline without
degrader (in pass through position) with MAD-X, Manzoni and BDSIM. We compute the
evolution of the beam size along the beamline. The results are shown in figure 5.9.
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Figure 5.9: Beam envelope inside a Proteus®One for Manzoni, MAD-X and BDSIM.

We notice that all softwares give the same envelope along the beamline in both planes.
The differences that we observe with BDSIM are essentially due to the low energy protons
generated inside the collimator because they are lost after the first bending magnet (B1G).
The dispersion function is computed using MAD-X and is shown in figure 5.10.
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Figure 5.10: Dispersion function along the beamline.

The dispersion has the expected behaviour, namely, it is equal to zero at the isocenter
and maximum at the level of the momentum slits. In the rest of this thesis, we use BDSIM
to provide a complete Monte Carlo model of the Proteus®One system.

5.2 Experimental validation of the Monte Carlo Proteus
One model.

In this section, we validate the Proteus®One model developed previously by comparison
with experimental data. To ensure correct properties of the beam reaching the patient,
different Beam Profile Monitors (BPMs) placed along the beamline are used (P1E, P1G,
P2G, P3G). Each one consists of an assembly of horizontal and vertical electric wires as we
can observe in figure 5.11. When the proton beam interacts with the BPMs, it produces
an electric signal proportional to the number of protons passing through the detector.

Figure 5.11: Technical drawing of a Beam Profile Monitor (BPM). Courtesy of IBA.
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Along the beamline, five BPM (in green in figure 5.12) are available to monitor the
beam. Four slits as well as the collimator (in orange in figure 5.12) control the spatial and
energetic extension of the beam.
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Figure 5.12: Position of the different BPM along the beamline. The quadrupoles are
illustrated in red and the dipoles in blue.

Unlike the degrader, the slits do not interact with the entire beam but remove its halo.
Two types of slits are used to control the behaviour of the beam:

1. Divergence slits (SL1E, SL1G, SL2G): These slits are positioned at locations where
the beam size is important. Therefore, by inspecting figures 5.9a and 5.9b, we find
these slits between quadrupoles Q1C and Q2C (SL1E for horizontal plane) and before
the entrance of the bending magnet B1G (SL1G and SL2G for both planes).

2. Momentum slits (SL3G): We have seen in section 3.2.4.2 that the momentum spread
of the beam induces a dependence between the bending angle and the energy of
the particle. The momentum slits are used to remove protons with an incorrect
energy. To maximize the effectiveness of the momentum slits, they are placed where
the beam size is small and the dispersion function is maximum, e.g after Q7G (see
figure 5.10).

The slits opening is a function of the energy at the isocenter and for each slit in the
beamline, the relation between the aperture and the transmitted energy is shown in figure
5.13.
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Figure 5.13: Opening of the slits as a function of the energy at the isocenter.
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The experimental data have been taken in Proteus®One systems currently in opera-
tion. Two sets of data are available, the first one is a measurement on the BPMs for 6
different energies (70, 112, 148.5, 180, 200 and 226 MeV) and for 7 gantry rotation angles
(0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦). The second set of data is a measurement of the
beamline efficiency.

BPM measurements

We present in this section, the results in P1G, P2G and P3G (see figure 5.12) for 112, 180
and 226 MeV and a gantry rotation of 0◦. The results are similar for the other energies
and rotation angles. For each BPM, the beam profile along the horizontal and the vertical
directions is measured. The obtained results are presented in figure 5.14 for the horizontal
plane and in figure 5.15 for the vertical plane. The red line corresponds to the experimental
data and the blue line to the results obtained with our model.
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We observe an excellent agreement between our model and the experimental values.
Table 5.3 summarizes the values of the experimental standard deviation as well as the one
obtained with BDSIM.

BPM Energy (MeV) σx (exp.) σx (BDSIM) σy (exp.) σy (BDSIM)

P1G 226 10.55 9.69 5.68 7.41

P1G 200 11.22 10.89 7.83 9.03

P1G 180 11.26 10.96 8.54 9.48

P1G 148.5 11.24 10.98 9.05 9.89

P1G 112 11.15 10.94 9.56 9.97

P1G 70 11.14 11.02 9.15 9.51

P2G 226 3.68 4.99 4.62 7.018

P2G 200 5.69 6.27 5.33 7.39

P2G 180 6.02 6.32 5.99 7.69

P2G 148.5 6.47 6.18 7.26 8.06

P2G 112 7.44 5.87 9.12 8.43

P2G 70 9.83 5.79 9.46 8.49

P3G 226 5.29 2.67 4.28 5.22

P3G 200 8.46 6.62 5.19 6.42

P3G 180 9.89 8.18 6.28 7.11

P3G 148.5 10.90 9.32 7.43 7.36

P3G 112 11.38 10.26 7.86 7.38

P3G 70 11.57 10.85 7.92 7.22

Table 5.3: Experimental values of the standard deviation and results obtained with BDSIM.

For each BPM and each gantry rotation angle, we compute the relative error over the
standard deviation:

η =
σexp − σbdsim

σexp
(5.10)

We show in figure 5.16, the histogram of η for the measurements along the horizontal
plane and the vertical plane.
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Figure 5.16: Histogram of the relative error for η.
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Even though the number of experimental data is important, the histogram has a poor
statistic. The average difference between sigma values is 6% for the horizontal plane and
1.2% for the vertical plane which is a relatively small error. Consequently, we consider
that our model is valid. However, to obtain better statistics, experiments and simulations
should be performed by varying the strength of quadrupoles to have a variation of the
beam size in each BPM.

Beamline efficiency

For this second set of data, we compare the transmission of the beamline at the isocenter.
In figure 5.17, we compare the beamline efficiency measured experimentally with our model
results. We note that our model slightly underestimates the total transmission but shows
a trend analogous to experimental results.
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Figure 5.17: Comparison between the experimental efficiency and the efficiency computed
with BDSIM for the beamline transmission.

5.3 Conclusion

In this chapter, we have developed a Monte Carlo model of a Proteus®One system. We
first detailed the various components of this system. We also introduced the requirements
for a medical gantry and we explained the importance of the double waist on the energy
degrader to minimize the emittance. The beam size in the beamline has been computed
using Manzoni, MAD-X and BDSIM and show similar results for the three softwares.

Finally, the obtained model was validated by comparison with experimental data,
namely with measurements at the BPM and measurements of beamline transmission. This
comparison showed that the developed model is suitable to characterize the properties of
the beam at any location of the beamline. It is also possible to determine the types of
secondary particles generated during interactions between protons and components of the
beamline, especially the degrader, the slits, the quadrupoles and the dipoles.

Therefore, it is possible to conduct complete radiation protection studies, especially
by generating ambient dose maps, or as we will see in the next chapter, to calculate the
activation of concrete shielding.
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Chapter 6

BDSIM model for the activation
of a Proteus One system
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In this last chapter, we use the model described in chapter 5 to first validate the
neutron-equivalent source approximation (see section 2.2.1) and second to compare the
results for the production of 152Eu and 22Na between this complete model and the sim-
plified model discussed in chapter 2, hereinafter referred to as Geant4 . Therefore, we
add to the beamline described in the previous chapter, the different shielding walls (see
section 2.4.1). Finally, we present 2D maps with the locations of the proton and neutron
interactions. The final model of the Proteus®One system is shown in figure 6.1. The
different elements used to guide and modulate the beam are in red and black. The pa-
tient is represented in blue. The accelerator is not modelled but the characteristics of the
extracted beam (see section 5.1.1) are used as input.

East wall

Internal wall

Beamline 1 wall

North wall

Figure 6.1: BDSIM model of the Proteus®One.
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6.1 Validation of the neutron-equivalent source method

In chapter 2, we have assumed that protons were lost in some specific locations. In this
section, we will compare these results with our model. We show, in figure 6.2, the beam
losses and the transmission obtained along the beam line for a transmitted energy of 70
and 230MeV. The different elements refer to the dipoles (B), the quadrupoles (Q), the
slits (SL), the degrader (P1E) and the BPMs (P). More details can be found in chapter 5.
The major contributors to the activation are the extraction quadrupoles (Q1C and Q2C),
the degrader (P1E) and the collimator (COL).
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Figure 6.2: Beam losses along the beam line. The green curve shows the beamline trans-
mission. The pink bars illustrate the loss locations.

We observe that the locations where the majority of the beam is lost correspond to
the predictions made in section 2.4.2.

In table 6.1, we summarize the beam losses at different locations for different energies:
the extraction quadrupoles (Q1C and Q2C), the degrader and the collimator. The values
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between Geant4 and BDSIM are compared for each element. The beamline efficiency is
also specified for both models.

Energy (MeV) Beam losses (%) Efficiency (%)

Q1C Q2C Degrader Collimator

Geant4 BDSIM Geant4 BDSIM Geant4 BDSIM Geant4 BDSIM Geant4 BDSIM

70 4.02 9.98 14.01 17.06 34.4 39.77 41.69 18.97 0.21 0.39

86 4.08 9.98 14.04 16.98 33.73 37.26 42.93 18.86 0.27 0.49

116 4.07 9.98 14.07 17.203 29.16 31.86 44.66 18.46 0.8 0.95

160 4.07 9.99 13.98 17.06 17.67 19.35 48.19 19.79 1.82 1.86

200 4.05 9.99 14.02 17.03 8.88 10.9 44.02 17.71 4.96 4.68

228.15 4.04 9.98 13.99 17.07 0 1.4 36.32 16.60 12.07 11.7

Table 6.1: Beam loss comparison for different transmitted energies between the estimation
of chapter 2.4.2 ( Geant4) and the complete model (BDSIM).

Except for the first quadrupole (Q1C) and the collimator, the results are in excellent
agreement. Therefore, we can expect to obtain the same results as those presented in
section 2.4.2, but with a different amplitude. We suspect that the beam emittance at the
exit of the S2C2 and the beamline optics are different between both models which implies
beam loss variations. Indeed, the values used in chapter 2 were obtained from estimation
before knowing the extracted beam properties [121].

We also note that a significant part of the beam is lost in the drift between Q1C and
SL1E (about 30%) but the thickness of the pipe is too small (3mm) to generate secondary
neutrons and therefore do not contribute to the activation of the shielding. Indeed, the
neutron production cross section of 230 MeV proton in iron is equal to 1.94 barn [52],
which corresponds to a mean-free path (distance between two interactions) equal to 6
cm. However, it can be interesting to limit these losses in order to increase the total
transmission efficiency.

6.2 Evaluation of the concrete shielding activation of a Pro-
teus One using BDSIM

In this section, we use BDSIM in a single-pass simulation to evaluate the concrete shielding
activation as we have done in chapter 2. The accelerator is not modelled with BDSIM but
all other radiation sources are taken into account.

The geometry of the wall is discretised in cubes (see figure 6.3). The cells are defined
by a unique number called below Cell Id. In each cell, we compute the relation for the
reaction rate per proton (see equation (2.3)).

1 2 3 4

5 6 7 8

9 10 11 12

Figure 6.3: Position of detectors in the wall.
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We show, in figure 6.4, 6.5, 6.6 and 6.7, the reaction rate per proton for 22Na and
152Eu for different shielding walls with BDSIM (in blue) and Geant4 (in red). These
results are obtained for a transmitted energy of 160 MeV. The trend is similar for the
other energies. The horizontal axis corresponds to the Cell Id inside the wall.

As expected, we find the same trend for the reaction rate but with a different amplitude
which is mainly explained by the fact that the collimator losses are lower with the complete
model than with the neutron-equivalent method (see table 6.1). The discontinuities are
due to the change of layer for the cubes inside the wall.
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Figure 6.4: Results for the beamline1 wall
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Figure 6.5: Results for the internal wall
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Figure 6.6: Results for the north wall
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Figure 6.7: Results for the east wall

Results obtained for the north wall for the 22Na must be put into perspective. In-
deed, the 22Na is created by high energy neutrons, which as we saw in chapter 1, are
emitted mainly in the direction of the incident beam. As the north wall is located in the
opposite direction to the beam propagation, the obtained results are essentially statistical
fluctuations.

In figure 6.8, we show the histogram of the ratio between the reaction rates obtained
with Geant4 and BDSIM for each radionuclide.
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Figure 6.8: Histogram of the ratio of the reaction rate for both radionuclides. The dashed
line is a log-normal fit over the data.

The behaviour of these curves corresponds to a log-normal distribution, represented
by the black dashed lines. From this distribution, we compute the mode of, which repre-
sents the global maximum of the distribution. We find a value of 14% for the 22Na and
40% for the 152Eu. The value for both radionuclides is different due to the production
method: spallation for 22Na and neutronic capture for 152Eu. These values of the mode
are explained by the fact that the losses are different between Geant4 and BDSIM.

Based on the results presented in this section, we confirm that the concept of a neutron-
equivalent source presented in chapter 2 is valid. Indeed, we succeed in reproducing with
the BDSIM model the results obtained with this concept. The greatest advantage of the
BDSIM model is that we can take into account all the specifications of the beam and the
real geometry of elements in the beamline.

In the next section, we present 2D maps of proton and neutron locations of interactions
for further studies.

6.3 Neutron and proton maps in a Proteus One system

We use our model to irradiate the patient with a 160 MeV proton beam and we consider
106 protons as input beam. In figure 6.9, we illustrate the locations of proton interactions
in a Proteus®One system. We use a color scale from yellow (few interactions) to red/dark
(many interactions). We obviously have many interactions close to the quadrupoles, the
degrader and the collimator. We notice few losses in the beam pipe and we observe the
Bragg peak inside the patient (see zoom in figure 6.9).
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Figure 6.9: Locations of proton interactions. A lot of interactions is represented in red/-
dark and few interactions in yellow.

In figure 6.10, we represent the 2D map for neutron interactions. The lighter colors
represent the areas with a high number of interactions. This is an illustration of our
concept of neutron-equivalent sources. The light places correspond to the location of the
extraction quadrupoles, the degrader and the collimator. We also observe that the most
irradiated walls are in the direction of the beam (see table 2.12).

Figure 6.10: Locations of neutron interactions. A lot of interactions are represented in
light green and a few interactions in black.

Finally, figures 6.9 and 6.10 are superimposed to obtain figure 6.11. This representation
can be used to accurately determine the most irradiated areas and generate ambient
dose maps. Moreover, we can use this figure to determinate the appropriate location for
experimental measurements.
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Figure 6.11: Locations of neutron and proton interactions.

6.4 Conclusion

The first section of this chapter constituted a validation of the neutron-equivalent sources
introduced in chapter 2. We have shown that the locations of the losses and the beamline
efficiency are consistent with those estimated previously. However, the amplitude of the
losses are different for the collimator. Indeed, we have also shown that a non-negligible
quantity of protons are lost in the drift between Q1C and Q2C (about 30%).

The concept of equivalent-neutron source being validated, we have evaluated the pro-
duction of 22Na and 152Eu in the concrete shielding using the BDSIM model in a single-
pass simulation. We have shown that the results obtained with the two models (Geant4
and BDSIM) have the same trend, the differences being mainly explained by the losses
in the collimator. There is no high energy neutrons incident on the north wall, which
explains that 22Na production is underestimated. The ratio between the reaction rate
obtained with Geant4 and BDSIM for each radionuclide can be described by a log-normal
distribution with a mode of 40% for 152Eu and 14% for 22Na.

Finally, we have presented maps with the locations of proton and neutron interactions.
These maps are useful to characterize the type of secondary radiations in the system or
to determine the best locations for measurements of the ambient dose.
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Proton therapy is increasingly used for cancer treatment. In the future, up to 20% of cancer
patients could benefit from this efficient technique. The use of pencil beam scanning, a few
millimeters thick beam with a high degree of precision limiting the exposure of healthy
tissues, has shown encouraging clinical benefits. Therefore, the number of sites under
construction is increasing. These new centers need an adequate concrete shielding to limit
exposure of the surrounding people to the secondary radiations. A portion of this shielding
will be activated and should be treated as a nuclear waste. Computational methods and
Monte Carlo codes are essential to accurately estimate the impacts of the radiations on
the system.

The aim of this thesis was threefold: first to quantitatively estimate the proportion of
radioactive concrete created when operating a proton therapy center, second to investigate
new possibilities to improve the system and last to develop a complete Monte Carlo model
of the IBA compact proton therapy system (Proteus®One) taking into account the beam
transport and its interactions with matter.

The interactions which produce radionuclides, resulting in the activation of the shield-
ing, are the spallation reaction and the neutronic capture. The spallation induces the
emission of high energy neutrons in the direction of the incident beam and the isotropic
emission of low energy neutrons which will be captured in the shielding. High energy neu-
trons interact with the concrete by spallation. This chain reaction ends when all secondary
particles are absorbed. Furthermore, during elastic and inelastic reactions, protons lose
their energy and are deviated degrading the emittance of the beam. These phenomena
are characterized by the Stopping and the Scattering Power. All these interactions are
implemented in Monte Carlo software used in this work to determine the properties of the
system.

To evaluate the quantity of nuclear wastes, the equivalent-neutron source method
has been introduced to replace the proton beam/target model by a punctual neutron
source with the same characteristics. This reduces the relative error on the activation rate
while keeping the same computation time. The hadronic models of Geant4 (Bertini, BIC
and INCL) are validated for activation studies and compared with MCNPX and Phits.
The results obtained for the neutronic capture are in good agreement for all softwares.
We show that for the spallation reactions, the BIC model gives the largest values of
activity concentration while Bertini underestimates the production of radionuclides due
to its low cross section isotope production. To be conservative, the BIC model is used
in this thesis. We model the Proteus®One system with Geant4 . The major radiation
sources in the beamline, i.e the accelerator, the degrader, the collimator, the extraction
quadrupoles and the patient, are replaced by neutron-equivalent sources. We obtain that
30% of the concrete shielding is activated after 20 years of operation. The treatment
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room is not activated at all contrarily to the vault where a part of each wall has to
be removed. This corresponds approximately to 130 m3 of nuclear waste, a significant
quantity to manage during the decommissioning of the treatment center. This value is
slightly higher than the value estimated by IBA, mainly due to the selected hadronic model
which tends to overestimate the activity concentration. Two solutions are highlighted to
reduce this quantity in the future: the utilization of concrete without impurities (low
activation concrete) and the adaptation of the degrader design, which causes the majority
of the losses. This modification implies a complete study of the beamline optics.

In this work, we focus our attention on the second solution. We propose a new degrader
design with insertable diamond cylinders allowing rapid variations of the beam energy
and giving better emittance and transmission properties. A complete study of the IBA
degrader, made of wedge shaped slabs of materials wrapped around a rotating wheel, has
been performed to determine the emittance as a function of the transmitted energy. The
performances of different materials (beryllium, graphite, aluminium, boron carbide and
diamond) as energy degrader have been evaluated with Geant4 . The diamond improves
the performance of a 30% decrease in emittance at low energy compared to beryllium.
To obtain these results, a method to restore the Gaussian distribution of the beam, i.e
separate the nuclear halo contribution from the core, is introduced to compare results
obtained with Geant4 and analytical models (Gottschalk and Farley).

As the degrader has an impact on the beam emittance, the beamline optics will be also
impacted. Therefore a Monte Carlo model of the Proteus®One has been developed. The
development of a single-pass simulation considering both the beam transport and the beam
matter interactions allows the study of the complete Proteus®One center at the system
level. The beam propagation along the beamline is performed using electromagnetic fields.
The different elements present in the system (drifts, dipoles and quadrupoles) guide the
beam to the patient. The impact of each of these elements is described by a transfer
matrix in the beam transport and modelling codes. The codes MAD-X, Manzoni and
BDSIM are compared in this thesis and give similar results. This 3D model contributes to
the knowledge of the beam properties and losses inside the beamline. It is validated with
experimental data and the concept of neutron-equivalent source is verified. The results
show that the agreement is excellent, the overestimation of the losses is highlighted by the
fact that BDSIM shows an activation lower than the results taking into account source
terms, for the same current of protons. This model is also able to generate 2D maps
showing the location of the proton and neutron interactions. These maps are essential to
determine the type of radiations in the system and can be used to optimally position a
detector or compute ambient dose maps. The capability of BDSIM for low energy machines
have been demonstrated and can be used for many medical applications [167].

Among all possible future developments, the two main important ones are: the experi-
mental validation of the diamond degrader and the shielding of superconducting magnets.

The performance of the diamond degrader has been shown but to ensure a medical
utilization further feasibility studies must be performed. An experimental device should
be developed to validate the predictions of chapter 4.

In order to make the proton therapy more affordable to a greater number of patients,
it is necessary to reduce the cost of the gantry [168, 169]. A potential solution is the use of
superconducting magnets. Indeed, they allow a size reduction due to a lower bend radius
(higher magnetic field) and a weight reduction. However, protection systems are required
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to avoid quenching, i.e a transition of the whole superconducting coil towards a normal
conducting state due to temperature increase caused by particles losses [170]. For each
magnet, the quenching limit, i.e the maximum amount of energy which can be deposited
locally in the superconducting magnet has to be determined. Therefore, after designing
and optimizing the beamline with Manzoni, the gantry can be modelled using BDSIM.
This model allows to determine the locations of the interactions inside the magnet and
some protections can be placed at the correct position.
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[165] K. André, C. Hernalsteens, and R. Tesse. Beam dynamics studies for the IBA
compact gantry: end-to-end cyclotron to isocenter simulations. Tech. rep. 69582.
Ion Beam Applications, 2018.

[166] J. van de Walle et al. “The S2C2: From source to extraction”. In: Proceedings of
Cyclotrons. 2016.

[167] W. Shields, S. Boogert, and L. Nevay. “Hadron Therapy Machine Simulations using
BDSIM”. In: Proceedings of the 9th International Particle Accelerator Conference.
2018. doi: 10.18429/jacow-ipac2018-mopml061.

[168] A. Gerbershagen et al. “A novel beam optics concept in a particle therapy gantry
utilizing the advantages of superconducting magnets”. In: Zeitschrift für Medizinis-
che Physik 26.3 (2016), pp. 224 –237. doi: 10.1016/j.zemedi.2016.03.006.

[169] S. Sanfilippo et al. “Conceptual design of superconducting combined-function mag-
nets for the next generation of beam cancer therapy gantry”. In: RuPAC. 2016,
pp. 139–141.

[170] M. Sapinski. “Quench Limits”. In: Proceedings of Chamonix 2012 workshop on LHC
Performance. 2012, pp. 121–127.

160

https://doi.org/10.1103/physrev.74.1534
https://doi.org/10.1118/1.3132422
https://doi.org/10.1142/s0217751x14410024
https://doi.org/10.1142/s0217751x14410024
https://doi.org/10.1109/pac.1997.750699
https://doi.org/10.1088/1361-6560/aa7124
https://doi.org/10.18429/jacow-ipac2018-mopml061
https://doi.org/10.1016/j.zemedi.2016.03.006


Part IV

Appendix

161



Appendix A

Cross section production in
concrete

In this appendix, we present the cross section production of radionuclides summarized in
table 2.2. The cross section is shown for each model: G4 BERT, G4 BIC and G4 INCL.
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Figure A.1: Cross section production of 35S
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Figure A.2: Cross section production of 45Ca
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Figure A.3: Cross section production of 46Sc
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Figure A.4: Cross section production of 54Mn
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Figure A.5: Cross section production of 55Fe
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Appendix B

PSIsotopeProduction

1 #inc lude ” PSIsotopeProduction . hh”
#inc lude ”G4SystemOfUnits . hh”

3 #inc lude ”G4Track . hh”
#inc lude ”G4VSolid . hh”

5 #inc lude ”G4VPhysicalVolume . hh”
#inc lude ”G4VPVParameterisation . hh”

7 #inc lude ”G4UnitsTable . hh”
#inc lude ”Data . hh”

9 // Load one time tab l e f o r each cpu
G4ThreadLocal G4bool PSIsotopeProduction : : fLoadSpa l la t ionTable = f a l s e ;

11 PSIsotopeProduction : : PSIsotopeProduction ( G4String name , G4String i sotope , G4String modele , G4int
depth )

: G4VPrimitiveScorer (name , depth ) ,HCID(−1) ,EvtMap(0) , weighted ( true )
13 {

/// Load c r o s s s e c t i o n tab l e
15 G4cout << ” PSIsotopeProduction : : LoadTable ( ) ” << G4endl ;

f l a g i s o t o p e = 1 ;
17 char spa l l a t i onF i l ename [ 5 0 0 ] ;

i f ( i s o t ope == ”Eu151” ) // Capture
19 {

CrsTable = Data : : Ins tance ( )−>LoadTable ( ” CrossSect ion / CrossSect ion Eu151 . txt ” ) ;
21 }

e l s e i f ( i s o t ope == ”Na22” ) // S p a l l a t i o n
23 {

s p r i n t f ( spa l l a t i onFi l ename , ” CrossSect ion / Spa l l a t i onCro s sSe c t i on Conc r e t e %s . txt ” , modele .
c s t r ( ) ) ;

25 CrsTable = Data : : Ins tance ( )−>LoadTable ( spa l l a t i onF i l ename ) ;
f l a g i s o t o p e = 1 ;

27 }
e l s e

29 {
G4String msg = ”Pas d ’ i s o t ope ”+ i so t ope ;

31 G4Exception ( ” PSIsotopeProduction : : PSIsotopeProduction ( ) ” , ”” , FatalException , msg) ;
}

33 E min = CrsTable [ 0 ] [ 0 ] *MeV;
E max = CrsTable [ CrsTable . s i z e ( ) −1] [0 ]*MeV;

35 }
PSIsotopeProduction : : ˜ PSIsotopeProduction ( )

37 {}
/// Process the hit , get the energy , the f l u e n c e and compute cross−s e c t i o n

39 G4bool PSIsotopeProduction : : Proces sHi t s ( G4Step* aStep , G4TouchableHistory *)
{

41 G4double stepLength = aStep−>GetStepLength ( ) ;
G4double c r s p roduc t i on ;

43 G4double ProdRate = 0 . ;

45 // Fluence
i f ( stepLength == 0 . ) re turn FALSE;

47
G4int idx = ( ( G4TouchableHistory *) ( aStep−>GetPreStepPoint ( )−>GetTouchable ( ) ) )−>
GetReplicaNumber ( indexDepth ) ;

49 G4double cubicVolume = ComputeVolume( aStep , idx ) ;
G4double Cel lFlux = ( stepLength / cubicVolume ) *cm2 ;

51 i f ( weighted ) Cel lFlux *= aStep−>GetPreStepPoint ( )−>GetWeight ( ) ;

53 /// Cross s e c t i o n
G4double energy = ( aStep−>GetPreStepPoint ( )−>GetKineticEnergy ( ) ) /MeV;

55 i f ( energy >= E min && energy <= E max)
{

57 c r s p roduc t i on = ( GetInterpCrossSect ion ( energy ) ) *1e−24; // barn −> cm2
}

59 e l s e
{

61 c r s p roduc t i on = 0 . ;
}

63 ProdRate = cr s p roduc t i on *Cel lFlux ;
G4int index = GetIndex ( aStep ) ;

65 EvtMap−>add ( index , ProdRate ) ;
r e turn TRUE;

67 }
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69 void PSIsotopeProduction : : I n i t i a l i z e ( G4HCofThisEvent* HCE)
{

71 EvtMap = new G4THitsMap<G4double>(detector−>GetName ( ) ,GetName ( ) ) ;
i f ( HCID < 0 ) HCID = GetCol lect ionID (0) ;

73 HCE−>AddHitsCol lect ion (HCID, EvtMap) ;
}

75 void PSIsotopeProduction : : EndOfEvent ( G4HCofThisEvent *)
{ ;}

77 void PSIsotopeProduction : : c l e a r ( )
{ EvtMap−>c l e a r ( ) ;}

79 G4double PSIsotopeProduction : : ComputeVolume( G4Step* aStep , G4int idx )
{

81 G4VPhysicalVolume* physVol = aStep−>GetPreStepPoint ( )−>GetPhysicalVolume ( ) ;
G4VPVParameterisation* physParam = physVol−>GetParameter i sat ion ( ) ;

83 G4VSolid* s o l i d = 0 ;
i f ( physParam )

85 {
// f o r parameter ized volume

87 i f ( idx<0)
{

89 G4ExceptionDescr ipt ion ED;
ED << ” I n c o r r e c t r e p l i c a number −−− GetReplicaNumber : ” << idx << G4endl ;

91 G4Exception ( ”G4PSCellFlux : : ComputeVolume” , ”DetPS0001” , JustWarning ,ED) ;
}

93 s o l i d = physParam−>ComputeSolid ( idx , physVol ) ;
s o l i d−>ComputeDimensions ( physParam , idx , physVol ) ;

95 }
e l s e

97 {
// f o r ord inary volume

99 s o l i d = physVol−>GetLogicalVolume ( )−>GetSol id ( ) ;
}

101 return so l i d−>GetCubicVolume ( ) ;
}

103 G4double PSIsotopeProduction : : Get InterpCrossSect ion ( G4double E x )
{

105 /// Linear i n t e r p o l a t i o n between e n e r g i e s
i n t f l a g = 0 ;

107 whi le ( CrsTable [ f l a g ] [ 0 ] < E x )
{

109 f l a g ++;
}

111 double E a = CrsTable [ f l ag − 1 ] [ 0 ] ;
double E b = CrsTable [ f l a g ] [ 0 ] ;

113 double Crs a = CrsTable [ f l ag −1] [ f l a g i s o t o p e ] ;
double Crs b = CrsTable [ f l a g ] [ f l a g i s o t o p e ] ;

115 double Crs x ;
double pente = ( Crs b−Crs a ) /( E b−E a ) ;

117 Crs x = pente *( E x−E a )+Crs a ;
re turn Crs x ;

119 }

PSIsotopeProduction.cc
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Appendix C

D’Alembert principle and
Lagrangian equations

We consider a particle with a vector velocity v with a radius r from some given origin.

v =
dr

dt
. (C.1)

We define the linear momentum p as the product of the particle mass m and its velocity.

p = mv . (C.2)

The particle may suffer different external forces of various types, e.g gravitational or
electrodynamics. We note F (t), the total force, as the vector sum of the force exerted on
the particle. The mechanics of the particle is entirely described by Newton’s second law
of motion :

F (t) =
dp

dt
= ṗ . (C.3)

This relation can be generalized for a system with many particles and the total force can
be decomposed into an external force F (e) and an internal force F due to other particles
in the system. Equation (C.3) for the ith particle is to be written :∑

j

Fji + F e
i = ṗi , (C.4)

where Fji is the internal force on the ith particle due to the jth particle (we have obviously
Fii = 0). The system motion is always limited and it is necessary to take into account the
constraints which can be of different forms. However, if the condition of constraints has
the form:

f(r1, r2, rN , t) = 0 , (C.5)

the constraints are said to be holonomic. Unfortunately, due to these constraints, the
coordinates ri are no longer independent. This problem is solved by introducing the gen-
eralized coordinates. In Cartesian coordinates, a system of N particles has 3N independent
degrees of freedom. In the case of holonomic constraints, expressed in k equation of the
form (C.5), we can eliminate k of the 3N equations to obtain 3N − k independent coor-
dinates qi. Therefore, the transformation equations that express the old coordinates ri as
a function of the new ones are of the form :

ri = ri (q1, q2, ..., q3N−k, t) . (C.6)
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If the system is in an equilibrium state, there is no total force exerted on the ith particle

(F
(t)
i = 0). Therefore, any infinitesimal displacement δri of the system gives a virtual

work equal to 0. ∑
i

F
(t)
i δri = 0 . (C.7)

We combine equation (C.3) and (C.7) to write a condition involving the general motion
of the system. ∑

i

(
F

(t)
i − pi

)
δri = 0 . (C.8)

The force F
(t)
i may be decomposed into an applied force F

(a)
i and a force of constraints

fi. Equation (C.8) becomes :∑
i

(
F

(a)
i − pi

)
δri +

∑
i

fi δri = 0 . (C.9)

For a system without sliding friction, which is the case in this thesis, the second term of
equation (C.9) vanishes. We have thus a condition for the equilibrium of a system, also
called D’Alembert Principle : ∑

i

(
F

(a)
i − pi

)
δri = 0 . (C.10)

Unfortunately, this equation is not useful to furnish equations of motion for the system.
To resolve this difficulty, we use the generalized coordinates introduced in equation (C.6)
to differentiate equations of motion. If we assume n independent coordinates, equation
(C.10) is written as1: ∑

i

Fi δri =
∑
j,i

Fi
∂ri
∂qj

∂qj =
∑
j

Qj∂qj , (C.11)

∑
i

pi δri =
∑
i

mi r̈i
∂ri
∂qj

∂qj , (C.12)

where Qj is called the generalized force. If we note T , the system kinetic energy, we can
show that the D’Alembert principle is of the form :∑

j

[{
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj

}
−Qj

]
δqj = 0 . (C.13)

As the variable q is independent, the only possibilities to satisfy equation (C.13) is to have
n equations of the form:

d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
= Qj . (C.14)

If the forces are derivable from a scalar potential function, we have Fi = −∇iV and
introducing the Lagrangian of the system L = T −V , we obtain the Lagrangian equations
of the system

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= 0 . (C.15)

1For the rest of this section, we removed the superscript (a)
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Appendix D

Thickness of the materials as
function of the transmitted energy

Energy (MeV) Thickness (mm)

Aluminium Graphite Beryllium Boron Carbide Diamond

70 134.24 186.63 188.39 135.22 91.17

80 128.98 179.38 181.08 129.72 87.67

90 123.19 171.4 173.04 124.00 83.84

100 116.91 162.73 164.29 117.65 79.62

110 110.18 153.42 159.9 110.81 75.13

120 103.02 143.5 144.89 103.74 70.18

130 95.38 132.91 134.19 96.11 65.01

140 87.33 121.75 122.92 87.94 59.57

150 78.86 109.99 111.05 79.48 53.81

160 70.00 97.66 98.59 70.54 47.77

170 60.76 84.80 85.61 61.25 41.5

180 51.13 71.39 72.07 51.49 34.92

190 41.16 57.49 58.03 41.41 28.06

200 30.84 43.08 43.49 31.03 21.03

210 20.18 28.2 28.46 20.32 13.76

220 9.2 12.8 13.0 9.27 6.28

Table D.1: Thickness of different slab as function of the transmitted energy
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