Contents

[Int	roduction: Medical context and goal of the thesis	1
1	Con	ITEXT OF THE THESIS	3
	1.1	Importance of tissue-based biomarkers in histopathology	3
	1.2	Whole slide scanners	6
	1.3	From digital pathology to computational pathology	7
	1.4	Tissue microarrays and multiplex immunohistochemistry: contribution to computational pathology	9
2	Goa	LS OF THE PH.D. THESIS	15
	2.1	Goal 1: Automating TMA core identification	16
	2.2	Goal 2: Providing digital solutions to the inter-batch variability of immunohistochemical staining	16
	2.3	Goal 3: Compartmentalizing IHC quantification	17

	2.4	Goal 4: Analyzing multiplex IHC assays and staining colocalization	18
II	Or	riginal developments	21
3	OVE	RVIEW OF THE ORIGINAL DEVELOPMENTS	23
4	Cor	e detection and identification for automating TMA analysis	29
	4.1	ROIs in virtual TMA slides	30
	4.2	Method of automatic grid fitting on tissue micro-array images	31
	4.3	Method validation and uses	35
5	Inte	R-BATCH STAINING NORMALIZATION	37
	5.1	Causes of IHC staining variability	38
	5.2	State of the art	41
	5.3	Methods	44
	5.4	Experimental design for quantitative evaluation	52
	5.5	Results	56
	5.6	Discussion	70
6	GLA	nd segmentation to compartmentalize IHC quantification	75
	6.1	Previous work and novel contributions	76
	6.2	Methods	78

	6.3	Evaluation methodology and results
	6.4	Discussion and conclusion
7	Імас	GE REGISTRATION AND COLOCALIZATION 10
	7.1	Registration of serial TMA slides
	7.2	Colocalization measurements: from fluorescence to brightfield IHC
	7.3	Validation of colocalization measurements for IHC biomarkers
	7.4	discussion and conclusion
II	[F :	uture works and conclusions 12
8	Futi	JRE WORK 12
8	Fuтт	Using IHC biomarkers to generate supervised training sets
8		
8	8.1	Using IHC biomarkers to generate supervised training sets
8	8.1 8.2 8.3	Using IHC biomarkers to generate supervised training sets
	8.1 8.2 8.3	Using IHC biomarkers to generate supervised training sets
	8.1 8.2 8.3	Using IHC biomarkers to generate supervised training sets
	8.1 8.2 8.3 Disc	Using IHC biomarkers to generate supervised training sets

139

References