OPTIMIZATION OF A DRY LOW NO_X MICROMIX COMBUSTOR FOR AN INDUSTRIAL GAS TURBINE USING HYDROGEN-RICH SYNGAS FUEL

Dissertation submitted for the degree of Doctor of Engineering Sciences and Technology

by

Jan Keinz

2018

Thesis director: Prof. P. Hendrick Thesis co-director: Prof. H. Funke

Université Libre de Bruxelles Brussels School of Engineering Aero-Thermo-Mechanics In cooperation with Aachen University of Applied Sciences Department Aerospace Technology

Abstract

Environmentally friendly and efficiently produced energy from sustainable and renewable resources is of great importance. Carbon dioxide (CO_2) and nitric oxides (NO_x) are the main emissions of air-breathing gas turbines in power plants. Gas turbines of the power generation industry are normally fueled with liquid fuels, natural gas or syngas in changing qualities. Syngas can be produced by gasification processes in IGCC power plants and consist of varying percentages of the main fractions hydrogen (H₂) and carbon monoxide (CO). CO₂ emissions can be reduced by a decrease of the CO-share and an increase of the hydrogen-share in the syngas fuel, and by using precombustion carbon capture and sequestration (CCS) technology. For low NO_x, current gas turbine combustion chamber technologies require diluents, a rather low H₂ content and modifications of the combustor hardware. A feasible solution for low NO_x hydrogen and syngas combustion in gas turbines is the Micromix principle developed at Aachen University of Applied Sciences. The goal of this doctoral thesis is the research on a Micromix combustor with increased power densities fueled with hydrogen-rich syngas with about 90% by volume hydrogen, and going up to 100% hydrogen in the fuel. Test burner experiments are used to characterize the combustion and emission properties of a multitude of key drivers. Based on this optimization with a variety of scaled model test burners, a prototype dual-fuel hydrogen/syngas Micromix combustor is designed and integrated into the annular combustion chamber of an industrial gas turbine. In the gas turbine, the performance characteristics of the prototype-combustor are investigated under real operational conditions with hydrogen-rich syngas and pure hydrogen.

Résumé

L'énergie écologique et efficiente produite à partir de ressources durables et renouvelables est d'une grande importance. Le CO₂ et les NO_x sont les principales émissions des turbines à gaz dans les centrales électriques. Les turbines à gaz de l'industrie de la production d'énergie sont normalement alimentées en combustibles liquides, gaz naturel ou gaz de synthèse (syngas) dans des conditions changeantes. Le syngas peut être produit par des procédés de gazéification dans les centrales électriques IGCC et se compose de pourcentages variables de fractions de H2 et de CO. Les émissions de CO2 peuvent être réduites par une diminution de la part du CO et une augmentation de la part d'hydrogène dans le syngas ou en utilisant la technologie de capture et de séquestration du carbone (CCS) de précombustion. Pour les NO_x faibles, les technologies actuelles de la chambre de combustion des turbines à gaz nécessitent des diluants, une faible teneur en H₂ et des modifications du matériel de la chambre de combustion. Une solution réalisable pour la combustion de syngas et d'hydrogène à faible emissions en NO_x dans les turbines à gaz est le principe de Micromix (MMX) développé à l'Université des Sciences Appliquées d'Aachen. L'objectif de cette thèse de doctorat est la recherche sur une chambre de combustion Micromix avec des densités d'énergie accrues pour de syngas riche en H₂ avec environ 90% d'hydrogène et 100% de H2. Les travaux sur les brûleurs de test sont utilisés pour caractériser les propriétés de combustion et d'émission d'une multitude de facteurs clés. Sur la base de cette optimisation, une chambre de combustion Micromix à hydrogène/syngas à hydrogène double à grande échelle est créée et intégrée dans la chambre de combustion annulaire d'une turbine à gaz industrielle et ses performances de démarrage et de changement de charge sont étudiées dans des conditions réelles de fonctionnement de turbines à gaz en syngas riche en hydrogène et hydrogène seulement.

Acknowledgement

The successful conclusion of the research about DLN Micromix syngas and hydrogen combustion and the completion of this thesis would not have been possible without the support and the assistance of many people.

First, I would like to say thank you to my supervisor Professor Patrick Hendrick for promoting this thesis and for his support during the last years. Furthermore, many thanks go to my committee chair Professor Alessandro Parente for his helpful advice especially in the field of CFD simulations. I gratefully acknowledge their support of the research cooperation between Université Libre de Bruxelles and Aachen University of Applied Sciences.

I owe particular thanks to my co-supervisor Professor Harald Funke for initiating the research activities in the field of hydrogen and syngas fueled gas turbines and for giving me the opportunity to work in this research area. Many thanks for his academic and personal guidance.

Special thanks go to my colleagues from Aachen University of Applied Sciences: Sebastian Börner, Harald Schäfer, Uwe Rönna, Nils Beckmann and Gerhard Hahn. This thesis greatly benefited from their continuous cooperation and advice. The numerical simulations presented in this work have been supported and performed by my colleagues at B&B AGEMA GmbH: Karsten Kusterer, Anis Haj Ayed, Jens Dickhoff and Constantin Striegan. Their support is gratefully acknowledged.

Finally, special thanks and recognition go to all the students who joined the research team. Without their outstanding support, it would not have been possible to realize all the experimental and numerical testing.

Table of Contents

Abstract	I
Résumé	II
Acknowledgement	III
Table of Contents	IV
List of Figures	_ VIII
List of Tables	XI
Nomenclature	_ XII
1 Introduction	1
1.1 Motivation of the Research	1
1.2 The Micromix Combustion Principle	3
1.3 High-Hydrogen IGCC-Syngas as Gas Turbine Fuel	7
1.4 Objectives of the Doctoral Thesis	11
1.5 Combustion Emissions of High-Hydrogen Applications	13
1.5.1 Investigated Emission Species	13
1.5.1.1 Oxides of Nitrogen	13
1.5.1.2 Carbon Monoxide	16
1.5.1.3 Carbon-Dioxide	17
1.5.2 Neglected Emission Species in the Investigations	18
1.5.2.1 Water Vapor	18
1.5.2.2 Soot	19
1.6 Intermediate Conclusion	20
2 Low Emission Combustion Research	22
2.1 Introduction	22

	2.2	Premixed Low Emission Combustion	24
	2.3	Diffusion Combustion Investigations	29
	2.4	MILD/FLOX Combustion	31
	2.5	Research on High-Hydrogen Fuel-Flexibility	33
	2.6	Differentiation of the Innovative MMX Principle	36
	2.7	Intermediate Conclusion	38
3	The	Characteristics of Micromix Combustion	40
	3.1	Fundamental Parameters	40
	3.1.1	Comparison of Hydrogen and Syngas	44
	3.2	Creation of a Micromix Design	46
	3.2.1	Jet-in-Crossflow Characteristics	46
	3.2.2	2 Flame Anchoring and Stabilization	48
	3.2.;	3 Circumferential Separation of Flames	50
	3.3	Intermediate Conclusion	52
4	App	lied Methods and Approach	54
	4.1	APU GTCP 36-300 gas turbine	55
	4.2	Experimental Test Burner Applications	57
	4.3	Measurement Equipment and Data Acquisition	59
	4.4	Numerical Investigations	65
	4.5	Possible Sources of Error and Data Illustration	70
5	Ana	lysis Strategy of MMX Influencing Parameters	73
	5.1	Implementation of the AGP-Gate Design Law	75
	5.2	Adaptation to Syngas SG 90/10	76

	5.3	Dual-Fuel Approach	76
	5.4	Maximizing the Power Density	76
	5.5	Scaling and Optimization for Gas Turbine Integration	77
6	Ana	lysis of the MMX Characteristics	81
	6.1	Fuel-Parameters and Design-Point Definition	81
	6.1.	1 The Lower Heating Value of SG 90/10	81
	6.1.	2 Stoichiometric Air Requirement SAR of SG 90/10	82
	6.1.	3 Design Point Definition for MES operation	82
	6.2	Characterization of the new air-gate design law	84
	6.3	Scaling from Hydrogen to Syngas SG 90/10	92
	6.4	Dual-Fuel Approach	99
	6.5	Aerodynamic stabilization of flames	_ 105
	6.6	Maximizing the Power Density	_ 109
	6.6	1 Hydrogen Combustion	110
	6	.6.1.1 Power Density up to 9 MW/(m ² ·bar)	110
	6	.6.1.2 Power Density Variation up to 14 MW/(m^{2} ·bar)	117
	6.6	2 Syngas Combustion	118
	6.7	Recommended range of BRDR	119
	6.8	Intermediate Conclusion	_ 120
7	MN	IX Gas Turbine Integration	123
	7.1	Definition of Prototype-Combustor	123
	7.2	Dual-Fuel Assessment Pretest	125
	7.3	Ignition Limits and Combustion Stability	131
	7.4	MMX-Testing in the GTCP 36-300	136

	7.4.1	Start-Up and Acceleration	136
	7.4.2	Load Change Behavior	138
	7.4.3	NOx-Emission Behavior	141
	7.5 In	termediate Conclusion	142
8	Conclu	sions and Outlook	145
9	Refere	nces	148
Aj	ppendix_		i
1	Calcula	ations	i
	1.1 Co	onversion of Emission Units	i
	1.2 Ca	lculation of SG 90/10 Properties	i
	1.2.1	Fuel-Parameters and Design-Point Definition	i
	1.2.2	Lower Heating Value LHV of SG 90/10	ii
	1.2.3	Stoichiometric Air Requirement SAR of SG 90/10 $_$	iii
	1.3 Co	omparison of Wobbe-Indexes	iv
	1.4 De	esign Point Definition for MES operation	iv
2	Measu	rement Devices	vi
3	Publica	ations	xi

List of Figures

Figure 1: Overview of MMX research at AcUAS, highlight of thesis topic $_$	2
Figure 2: General Micromix burner set-up and flame structure	4
Figure 3: Schematic combustor integration, MMX combustor [11, 142]	5
Figure 4: NO _x -emissions of different combustion chambers fueled with Je	t A-1
and pure hydrogen in the GTCP 36-300 gas turbine [11]	6
Figure 5: Syngas gasification process diagram [12]	9
Figure 6: GT8 DLN EV multi-burner arrangement [31, 63]	_ 25
Figure 7: AEV-burner for syngas fuel [31]	_ 26
Figure 8: MT mixer single-nozzle [69]	_ 27
Figure 9: Schematic view of multi-cluster combustor [70]	_ 28
Figure 10: Siemens DLE combustion system [101, 102]	_ 35
Figure 11: Blockage-ratio design parameter definition	_ 40
Figure 12: Parameter influences and connections	_ 44
Figure 13: Characteristics of MMX flow- and injection-depth-definition $_$	_ 47
Figure 14: Vortices at sudden geometric changes [109]	_ 48
Figure 15: Flame anchoring characteristics and definition of vortices	_ 49
Figure 16: Centered and separated MMX-flame	_ 50
Figure 17: Example for an optimized s _n -scaling [100]	_ 51
Figure 18: APU GTCP 36-300 gas turbine test rig at AcUAS	_ 54
Figure 19: APU GTCP 36-300 combustion section crosscut	_ 55
Figure 20: Atmospheric combustion chamber test-rig	_ 58
Figure 21: APU GTCP 36-300 measurement parameter definitions	_ 59

Figure 22: Illustration of measurement grid, probe location [120, 143]	_ 64
Figure 23: Test burner model and boundary conditions [98]	_ 66
Figure 24: Reproducibility and accuracy shown for B4H2 test series	_ 71
Figure 25: Methodology of maximizing and optimizing power density	_ 73
Figure 26: Influence of d _{fuel} on ring design	_ 78
Figure 27: Dual-fuel MMX combustor prototype with TBC	_ 79
Figure 28: Research strategy A	_ 85
Figure 29: A-series – a) NO _x emissions and b) normalized injection depth_	_ 87
Figure 30: Separated flames of test-burner A3H2 at design point	_ 89
Figure 31: Temperature and NO distribution of A1H2 and A3H2 [122]	_ 91
Figure 32: Research strategy B	_ 93
Figure 33: NO _x - and y _n -results of B1SG, B2SG and B3SG	_ 95
Figure 34: Flame characteristics of B1SG, B2SG and B3SG at DP	_ 97
Figure 35: Fuel utilization of B1SG, B2SG and B3SG	_ 98
Figure 36: NO _x and y _n of B3SG and B3H2	100
Figure 37: Combustion temperatures of B3SG and B3H2	_101
Figure 38: Temperature- and flow-distribution of B3H2 and B3SG	102
Figure 39: Numerical results of B3SG, B3H2 and B4H2 [123]	103
Figure 40: Lateral temperature distribution of B3H2 and B3SG	104
Figure 41: Flame characteristics of B3H2 and B3SG at DP	105
Figure 42: Research strategy A-B	106
Figure 43: NO _x - and y _n -results of A3H2 and B3H2	108
Figure 44: Research strategy B-E	109

Figure 45: Results of B3H2 and B4H2: influence on power density	_110
Figure 46: Flame characteristics of B3H2, B4H2 and B3SG	_ 111
Figure 47: Numerical results of B3H2 and B4H2	_112
Figure 48: Results of E-series with hydrogen and syngas	_115
Figure 49: Temperature distribution and flow field of E3H2	_116
Figure 50: E4 test with increased airflow-velocity	_117
Figure 51: Temperature distribution and flow field topology of E3	_118
Figure 52: Results of test burner D3	126
Figure 53: Flame characteristics of D3H2 and D3SG at over-load	_127
Figure 54: Temperature distribution, flow field topology and flame topolo	gy of
D3H2/SG	128
Figure 55: Fuel utilization of D3SG compared to B3SG and E3SG	129
Figure 56: Calculated temperature distribution of D3 (6.69 bar)	130
Figure 57: NO _x formation characteristics for pressurized conditions [28]_	_131
Figure 58: Ignition characteristics of MMX combustors	_132
Figure 59: Ignition and stability limits of dual-fuel prototype	_134
Figure 60: Ignition and stability limits of MMX combustor from [11]	_135
Figure 61: Ignition and stability limits of MMX dual-fuel prototype	_135
Figure 62: Start-up behavior using H_2 , SG 90/10 and Kerosene Jet A-1	_136
Figure 63: Load change from idle- to full-load of H ₂	_139
Figure 64: Load change from part- to full-load of SG 90/10	140
Figure 65: Comparison of resulting NO _x emissions	_141

List of Tables

Table 1: Syngas blends investigated by Todd [94]	34
Table 2: Technical data of APU GTCP 36-300	57
Table 3: Summary of test burner configurations as defined in Figure 25 $_$	74
Table 4: Summary of general fuel parameters	_ 83
Table 5: Summary of operational parameters of the APU	_ 83
Table 6: Technical data of test burner series A	_ 86
Table 7: Technical data of test burner series B	_ 94
Table 8: Technical data of test burner series E	114
Table 9: Technical data of dual fuel prototype	_125
Table 10: Molar related lower heating values at 25°C [20]	i
Table 11: Molar masses of H ₂ , CO, CH ₄ , O ₂ and air [20]	ii
Table 12: General parameters [20]	ii
Table 13: Measurement equipment at the test-burner test-rig	vi
Table 14: Measurement equipment at the gas turbine test-rig	viii
Table 15: Technical data of exhaust gas analysis system	X

Nomenclature

Abbreviations

3D	three-dimensional
AcUAS	Aachen University of Applied Sciences
ABB	Asea Brown Boveri
AEV	Advanced Environmentally-friendly V-shaped burner
AGP	air guiding panel
APU	auxiliary power unit
BBC	Brown Boveri Company
С	carbon
C_2H_6S	dimethyl sulfide
$C_2H_6S_2$	dimethyl disulfide
CCP	combined cycle plant
CCS	carbon capture and storage
CCU	carbon capture and use
CFD	computational fluid dynamics
СН	hydrocarbons
CH_4	methane
CO	carbon monoxide
CO_2	carbon dioxide
COS	carbonyl sulfide
const.	constant
CS_2	carbon sulfide
DLE	dry low emissions
DLN	dry low NO _x
DP	design point
EBU	Eddy-Break-Up
ECS	environmental control supply
EGT	exhaust gas temperature

EQHHPP	Euro-Québec-Hydro-Hydrogen-Pilot-Project
EU	European Union
EV	Environmentally-friendly V-shaped (burner)
FLOX	Flameless Oxidation
H-EBU	hybrid-EBU
H*	hydrogen radical
H_2	hydrogen
H_2O	water
H_2S	hydrogen sulfide
H_2SO_4	sulfuric acid
HO ₂	hydroperoxyl
IGCC	integrated gasification combined cycle
IGV	inlet guide vane
JICF	jet in crossflow
LHV	lower heating value
MBtu	Mega (1·10 ⁶) British Thermal Units
MES	main engine start
MILD	Moderate or Intense Low Oxygen Dilution
MMX	Micromix
MT	multi-tube
N_2	nitrogen
N_2H_3	ammonia
N_2O	nitrous oxide
NG	natural gas
NO	nitrogen monoxide
NO_2	nitrogen dioxide
NO _x	nitric oxides
0*	oxygen radical
O_2	oxygen
O_3	ozone

OH*	hydroxyl radical
OH-PLIF	hydroxyl planar laser-induced fluorescence
PD_n	normalized power density
ppm	parts per million
r	Arrhenius-formulation
RANS	Reynolds-averaged Navier-Stokes equation
rpm	revolutions per minute
R-SH	mercaptans
SAR	stoichiometric air requirement
SG	syngas
SG 90/10	customized SG-mixture for testing
SO_2	sulfur dioxide
SO_3	sulfur trioxide
TBC	thermal barrier coating
TCD	thermal conductivity detector
UHC	unburned hydrocarbons
ULB	Université Libre de Bruxelles
VECB	Versatile Engine Control Box
VOC	volatile organic compounds

Greek Notations

α	alpha – constant	[-]
β	beta – constant	[-]
γ	gamma – constant	[-]
Δ	delta – difference	[-]
$\eta_{\rm A}$	eta - combustion efficiency	[-]
κ	kappa - isentropic exponent	[-]
λ	lambda – air fuel equivalence ratio	[-]

λ_{DP}	air fuel equivalence ratio at design point	[-]
Φ	phi – fuel air equivalence ratio	[-]
$\Phi_{ ext{DP}}$	fuel air equivalence ratio at design point	[-]
Ψ_{CO}	psi – substance amount of CO	[ppm]
$\Psi_{\rm H2}$	psi – substance amount of hydrogen	[ppm]
Ψ_{j}	psi – substance amount of component j	[ppm]
Ψ_{NO}	psi – substance amount of NO	[ppm]
Ψ_{NO2}	$psi - substance amount of NO_2$	[ppm]
Ψ_{NOx}	psi – substance amount of NO _x	[ppm]
ρair	rho – density of air	$\left[\frac{kg}{m^3}\right]$
ρfuel	rho – density of fuel	$\left[\frac{kg}{m^3}\right]$
θ	theta – air load factor	$\left[\frac{(bar \cdot m)^{1.75} \cdot s}{kg}\right]$

Latin Notations

Aref	reference area	[m ²]
ALF	air load factor	$\left[\frac{(bar \cdot m)^{1.75} \cdot s}{kg}\right]$
b _{ref}	reference width	[m]
BR	blockage ratio	[-]
BR _{AGP}	blockage ratio of air guiding panel	[-]
BR _{Seg}	blockage ratio of burner segment	[-]
BRDR	blockage ratio dimension ratio	[-]
c	velocity	$\left[\frac{m}{s}\right]$
Cair	air velocity	$\left[\frac{m}{s}\right]$
Cfuel	fuel velocity	$\left[\frac{m}{s}\right]$
cp	specific heat capacity	$\left[\frac{kJ}{kg\cdot K}\right]$

CO	carbon monoxide	$\left[\frac{mg}{m^3}\right]$, [ppm]
CO_2	carbon dioxide	$\left[\frac{mg}{m^3}\right]$, [ppm]
dfuel	injector nozzle diameter	[m]
dagp	inner dimensions of air guiding panel	[m]
DAGP	outer dimensions of air guiding panel	[m]
d_{Seg}	inner dimensions of burner segment	[m]
Dseg	outer dimensions of burner segment	[m]
EGT	exhaust gas temperature	[K]
EI	emissions index	$\left[\frac{mg}{m^3}\right]$
gco	mass related share of carbon monoxide	[-]
$g_{\rm H2}$	mass related share of hydrogen	[-]
Ho	relative ambient air humidity	[%]
H_2	hydrogen	$\left[\frac{mg}{m^3}\right]$,[ppm]
h _{gate}	height of air gate	[m]
h _{ref}	reference height	[m]
J	momentum ratio	[-]
J_{DP}	momentum ratio at design point	[-]
\mathbf{J}_{max}	maximum momentum ratio	[-]
LHV	lower heating value	$\left[\frac{MJ}{kg}\right], \left[\frac{MJ}{m^3}\right]$
'n	mass flow	$\left[\frac{kg}{s}\right]$
ṁ _{air}	mass flow of air	$\left[\frac{kg}{s}\right]$
ṁсо	mass flow of carbon monoxide	$\left[\frac{kg}{s}\right]$
m fuel	mass flow of fuel	$\left[\frac{kg}{s}\right]$
ṁ _{Н2}	mass flow of hydrogen	$\left[\frac{kg}{s}\right]$
<i>m</i> _{Kerosene}	mass flow of kerosene (Jet A-1)	$\left[\frac{kg}{s}\right]$
М	molar mass	$\left[\frac{kg}{kmol} \right]$

n _{fuel}	number of fuel injector nozzles	[-]
N_2	nitrogen	[%]
NO	nitrogen monoxide	$\left[\frac{mg}{m^3}\right]$, [ppm]
NO_2	nitrogen dioxide	$\left[\frac{mg}{m^3}\right]$, [ppm]
NO _x	nitric oxides	$\left[\frac{mg}{m^3}\right]$, [ppm]
O_2	oxygen	[%]
po	ambient pressure	[bar]
p1	pressure at air inlet	[bar]
p ₂	pressure at compressor inlet	[bar]
\mathbf{p}_3	combustor inlet pressure	[bar]
p_5	pressure after last turbine stage	[bar]
Pfuel	fuel pressure	[bar]
poil	oil pressure	[bar]
pref	reference pressure	[bar]
p _{st}	static pressure	[bar]
PD _n	normalized power density	$\left[\frac{MJ}{m^2 \cdot bar}\right]$
Q	heat flow rate	$\left[\frac{MJ}{s}\right]$
$\dot{Q}_{\rm H2}$	heat flow rate of hydrogen	$\left[\frac{MJ}{s}\right]$
QKerosene	heat flow rate of kerosene (Jet A-1)	$\left[\frac{MJ}{s}\right]$
Qsg	heat flow rate of syngas (SG 90/10)	$\left[\frac{MJ}{s}\right]$
r	radius	[m]
Rair	specific gas constant of air	$\left[\frac{J}{kg\cdot K}\right], \left[\frac{J}{kmol\cdot K}\right]$
R _{fuel}	specific gas constant of fuel	$\left[\frac{J}{kg\cdot K}\right], \left[\frac{J}{kmol\cdot K}\right]$
R _M	general gas constant	$\left[\frac{J}{kg\cdot K}\right], \left[\frac{J}{kmol\cdot K}\right]$
Re	Reynolds Number	[-]
s	distance between injector nozzles	[m]

Sn	normalized distance between injectors	[-]
SAR	stoichiometric air requirement	[-]
Т	temperature	[K]
To	ambient temperature	[K]
T_1	temperature at air inlet	[K]
T ₃	combustor inlet temperature	[K]
T_4	combustor outlet temperature	[K]
T_{amb}	ambient temperature	[K]
T _{fuel}	fuel temperature	[K]
Tref	reference temperature	[K]
Tt	total temperature	[K]
WI	Wobbe Index	$\left[\frac{MJ}{kg}\right], \left[\frac{MJ}{m^3}\right]$
WIi	inferior Wobbe Index	$\left[\frac{MJ}{kg}\right], \left[\frac{MJ}{m^3}\right]$
у	injection depth of fuel jet in air cross-flow	[m]
Ycrit	critical injection depth	[m]
Ydp	injection depth at design point	[m]
Ymax	maximum injection depth	[m]
y n	normalized injection depth	[m]
(Δp/p)	pressure loss	[-]

<u>Note:</u> emissions are usually given in [ppm] or $\left[\frac{mg}{m^3}\right]$. The conversion calculations between those units are given in the appendix. To allow the comparison of data from mentioned publications that usually use [ppm], the emission measurements in this thesis are given in [ppm] or [%]. For selected points of interest, the corresponding value in $\left[\frac{mg}{m^3}\right]$ is added in the text.

Subscripts

0	ambient conditions
1	station 1 of the gas turbine: air inlet
2	station 2 of the gas turbine: compressor inlet
3	station 3 of the gas turbine: combustor inlet
4	station 4 of the gas turbine: combustor outlet
5	station 5 of the gas turbine: turbine outlet
ad	adiabatic
AGP	air guiding panel
air	air related parameters in general
amb	ambient conditions
APU	related to auxiliary power unit
CO	carbon monoxide related parameters in general
crit	critical
DP	design point
dyn	dynamic
ECS	related to ECS-mode
eff	effective
FMU	fuel metering unit
fuel	fuel related parameters in general
gate	parameters related to the air gate in an air guiding panel
H_2	hydrogen related parameters in general
i	inferior
j	general numerical index
Kerosene	kerosene (Jet A-1) related parameters in general
kg	mass related
max	maximum
MES	related to MES-mode
min	minimum
MMX	related to Micromix in general

n	normalized
NO	nitric oxide related parameters in general
NO2	nitrogen dioxide related parameters in general
NO _x	nitrogen oxides related parameters in general
oil	oil
ref	reference
Seg	related to the MMX burner segment
SG	syngas related parameters in general
st	static
t	total
Test-Rig	related to atmospheric test rig