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Abstract

This thesis brings together three works on information complexity and quantum query com-
plexity. These different complexities have in common mathematical tools to study them, i.e.
optimization problems.

The first two works concern quantum query complexity, generalizing the important following
result: In the article [LMR+11] the authors manage to characterize quantum query complexity,
using the adversary method, a semi-definite program introduced by A. Ambainis in [Amb00].
However, this characterization is restricted to discrete time models with a bounded error. Thus
in the first work, we generalize their results to continuous time models. While the second work
is an approach, not completed, to characterize the quantum query complexity for the exact case
and for an unbounded error.

In the first work, to characterize quantum query complexity for discrete-time models, we
adapt the demonstration of the discrete-time model, by constructing a universal adiabatic quan-
tum query algorithm. The principle of this algorithm is based on the adiabatic theorem [BF28],
and on an optimal solution of the dual of the adversary method. Note that the analysis of the
running time of our adiabatic algorithm is based on a proof that does not require a gap in the
spectrum of the Hamiltonian.

In the second work, we want to characterize quantum query complexity for an unbounded
error and exact case. To this end, we start from the adversary method and improve it with
a Lagrangian mechanics approach, in which we build a Lagrangian indicating the number of
queries necessary to move in the phase space. Thus we can define the “query action”. As this
Lagrangian is expressed as a semi-definite program, its classical analysis via Euler-Lagrange
equation requires the envelope theorem, a result from mathematical economics.

The last work concerns information complexity (and communication complexity by exten-
sion) to simulate non-local correlations. More precisely, the amount of information (according
to Shannon) that two parts must share to obtain these correlations. For this purpose, we define
a new complexity, called zero information complexity IC0, via the zero communication model.
This new complexity can be expressed as an optimization problem which makes it interesting.
For CHSH correlations, we solved this optimization problem for the one-way scenario where we
retrieve a known result. In the two-way case, we find a numerical bound and solve a relaxed
form of IC0 that is a new result.
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Titre

Nouvelles bornes pour la complexité d’information et la complexité en requête quantique grâce
aux outils d’optimisation convexe.

Résumé

Cette thèse rassemble trois travaux sur la complexité d’information et sur la complexité en
requête quantique. Ces domaines d’études ont pour points communs les outils mathématiques
pour étudier ces complexités, c’est-à-dire les problèmes d’optimisation.

Les deux premiers travaux concernent le domaine de la complexité en requête quantique,
en généralisant l’important résultat suivant: dans l’article [LMR+11], leurs auteurs parviennent
à caractériser la complexité en requête quantique, à l’aide de la méthode par adversaire, un
programme semi-définie positif introduit par A. Ambainis dans [Amb00]. Cependant, cette car-
actérisation est restreinte aux modèles à temps discret, avec une erreur bornée. Ainsi, le premier
travail consiste à généraliser leur résultat aux modèles à temps continu, tandis que le second
travail est une démarche, non aboutie, pour caractériser la complexité en requête quantique dans
le cas exact et pour erreur non bornée.

Dans ce premier travail, pour caractériser la complexité en requête quantique aux modèles
à temps discret, nous adaptons la démonstration des modèles à temps discret, en construisant
un algorithme en requête adiabatique universel. Le principe de cet algorithme repose sur le
théorème adiabatique [BF28], ainsi qu’une solution optimale du dual de la méthode par adver-
saire. À noter que l’analyse du temps d’exécution de notre algorithme adiabatique est basée sur
preuve qui ne nécessite pas d’écart dans le spectre de l’Hamiltonien.

Dans le second travail, on souhaite caractériser la complexité en requête quantique pour
une erreur non bornée ou nulle. Pour cela on reprend et améliore la méthode par adversaire,
avec une approche de la mécanique lagrangienne, dans laquelle on construit un Lagrangien indi-
quant le nombre de requêtes nécessaires pour se déplacer dans l’espace des phases, ainsi on peut
définir l’“action en requête”. Or ce lagrangien s’exprime sous la forme d’un programme semi-
defini, son étude classique via les équations d’Euler-Lagrange nécessite l’utilisation du théorème
de l’enveloppe, un puissant outils d’économathématiques.

Le dernier travail, plus éloigné, concerne la complexité en information (et par extension la
complexité en communication) pour simuler des corrélations non-locales. Ou plus précisement
la quantitié d’information (selon Shannon) que doive s’échanger deux parties pour obtenir ses
corrélations. Dans ce but, nous définissons une nouvelle complexité, denommée la zero infor-
mation complexity IC0, via le modèle sans communication. Cette complexité a l’avantage de
s’exprimer sous la forme d’une optimization convexe. Pour les corrélations CHSH, on résout le
problème d’optimisation pour le cas à une seule direction où nous retrouvons un résultat connu.
Pour le scénario à deux directions, on met numériquement en évidence la validité de cette borne,
et on résout une forme relaxée de IC0 qui est un nouveau résultat.
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Chapter 1

Introduction

Computational complexity is an interesting subfield of computer science. Since a Turing machine
can simulate another one in polynomial time, polynomial classes such as P seem to belong
to Platonic idealism: independent of time, of space, of technology. Then quantum mechanics
decided to be the troublemaker. In other words, what happens if the universe and its physical
laws, seen as a computer, are more powerful than a Turing machine? Many hypothesis have been
proposed including the following,

Quantum Church–Turing thesis [KLMK07]: “A quantum Turing machine can efficiently
simulate any realistic model of computation.”

This thesis does not provide an answer to this statement, nevertheless, this hypothesis resumes
that possibilities of physical world and quantum computation are still unknown. Topics of
this work on quantum query complexity and information complexity both of which are
subfields at the intersection of quantum mechanics and computational complexity. The objective
of the former can be summarized as how quantum mechanics can improve algorithms. The latter
addresses how information complexity helps to better understand Bell’s inequalities, and hence
quantum mechanics.

A. Quantum query complexity

Query complexity is a natural lower bound of time complexity where instead of counting all
actions done by an algorithm, we count a specific action called query. The query is the action of
obtaining data from the input, typically one bit. Obviously, query complexity is limited by the
length of the input but is often tight for functions that can be easily evaluated once their input
is known.

Quantum query complexity first appears in the literature in the context of quantum al-
gorithms like Shor’s algorithm [Sho97] and Grover’s algorithm [Gro96].To better understand
quantum query complexity Q(f) of a function f , several lower bound methods have been de-
veloped such as the adversary method originally introduced by A. Ambainis [Amb00]. This
method is based on a semi-definite program where we optimize an objective value with a ma-
trix M assigning weights to pairs of inputs. Later Høyer et al. showed [HLS07] that using
negative weights also provides a lower bound, which is stronger for some functions. A series of
works [Rei09, Rei11, RS12] then led to the breakthrough result that this generalized adversary

13



14 CHAPTER 1. INTRODUCTION

method, which we will simply call adversary method, actually characterizes the quantum query
complexity of any function f with Boolean output and binary input alphabet. This is shown by
constructing a tight algorithm based on the dual of the semi-definite program corresponding to
the adversary method. Finally, Lee et al. [LMR+11] have generalized this result to the quantum
query complexity of state conversion where instead of computing a function f(x), we convert a
quantum state |ρx〉 into another quantum state |σx〉 for each input x.

All these results have been obtained in a discrete-time model where each query corresponds
to applying a unitary operator Ox, denoting the oracle operator. In this model, an algorithm
is the concatenation of input-independent unitary operators U1, U2, . . . , UT , interleaved with the
oracle operator Ox. Another natural model is the continuous-time (or Hamiltonian-based) model
where the algorithm evolves under Schrödinger’s equation and hence an algorithm is completely
described by a Hamiltonian. The oracle’s action is represented by an oracle Hamiltonian HQ(x)
and input-independent evolution is represented by a driver Hamiltonian HD(t), their sum Hx(t)
characterizes a quantum query algorithm in the continuous-time model.

Hx(t) = HD(t) +HQ(x). (1.1)

These two models are related as the oracle operator Ox can be simulated by the oracle Hamil-
tonian Hx with a finite amount of time. This fact implies that the continuous-time model is
at least as powerful as the discrete-time model. In the other direction, Cleve et al. [CGM09]
have shown that the discrete-time model can simulate the continuous-time model up to at most
a sub-logarithmic factor with a bounded error, which implies that continuous and discrete-time
models are equivalent up to a sub-logarithmic factor. Later, Lee et al. [LMR+11] improved
this result to a full equivalence of both models. They show that the fractional query model, an
intermediate model defined in [CGM09], is equivalent to the continuous-time model. Note that
this intermediate model is also lower bounded by the adversary method. Hence all these models
are characterized by this same method.

A universal adiabatic quantum query algorithm

Even though these results imply that the continuous-time quantum query complexity is char-
acterized by the adversary method, they do not provide an explicit continuous quantum query
algorithm. The one obtained from the discrete-time algorithm by replacing each unitary ora-
cle operator by the application of the Hamiltonian oracle for a constant amount of time is an
exception. The evolution of this algorithm, however, involves many discontinuities this is not
satisfying from the point of view of physics where Hamiltonians are smooth.

Thereby, the first work (Chapter 7) provides a direct proof that adversary method charac-
terizes quantum query complexity but with several additional motivations. First, our algorithm
is simple and easy to understand. Second, continuous-time models are more suitable for analysis.
We give a new continuous-time quantum query algorithm for any state conversion problem based
on an adiabatic theorem [FGGS00] where the Hamiltonian varies slowly. The soundness of the
adiabatic evolution used in our algorithm relies on a lemma from Avron and Elgart [AE99a],
which does not require the usual gap condition but only a weaker spectral condition (originally
introduced to study atoms in quantized radiation field). To the best of our knowledge, it is the
first time that such an adiabatic theorem without a gap condition is used in the context of quan-
tum computation. We also provide an original proof of the adversary method for continuous-time
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models based on Ehrenfest’s theorem. From this we conclude that the quantum query complexity
of any state conversion problem is characterized by the adversary bound.

A new lower bound: the adversary action

The quantum query complexity has been characterized for a bounded error only, excluding the
exact case and the unbounded error case. For example, we know that the adversary method is
not tight for OR function in the exact case. In order to fill these gapes, the successful adversary
method has been generalized to the multiplicative adversary method by R. Špalek [Špa08].

In the second work (Chapter 8) we introduce another generalization of the multiplicative
adversary method called the adversary action. This method is based on [BSS03], where the
authors constructed a semi-definite program that checked if a quantum state evolution is feasible
with only one query. From this semi-definite program we construct the query Lagrangian that
gives the infinitesimal number of queries for a quantum state (position) to evolve in a specific di-
rection (momentum). Hence, integrating the query Lagrangian over a path in the “phase space”
gives the amount of queries needed to follow this path with a quantum query algorithm. We
obtain the adversary action by minimizing over all paths.

The adversary method is a semi-definite problem that defines a norm on a “position space”.
The norm of the difference between the initial and the final states defines a distance. And this
distance lower bounds the query cost to travel from the initial state to the final state. The
query Lagrangian, also a semi-definite problem, also defines a norm but extended to the phase
space. Adding the “momentum” allows to obtain a more precise method where we are not only
interested by where we want to go but also how.

Afterwards we give several properties of the query Lagrangian and prove explicitly that the
action adversary subsumes both the adversary method and the multiplicative version. Finally,
we apply the Euler-Lagrange equation to the action adversary to obtain the equation for the
query Lagrangian. As our Lagrangian is a semi-definite program, we use the Envelope theorem
[Mir71], an important result of mathematical economics, to derive our semi-definite program.
More precisely, we use a recent version of this theorem [MS02] where the feasible choice is
arbitrary. Thus we add the action adversary method to the tools for studying quantum query
complexity.

B. Information complexity

The communication model introduced by A. Yao in [Yao79] is a model where two parties com-
municate to collaboratively perform a common task. From this model, the communication com-
plexity is defined as the necessary communication that must be exchanged between the two
parties, called Alice and Bob, to perform this task. In the one-way scenario where only Alice
communicates to Bob, information theory [Sha48] allows one to characterize the communica-
tion complexity. Indeed, according to the Slepian-Wolf coding theorem [SW73] and the result
of Braverman and Rao [BR11] the communication complexity is related to the compression of
Alice’s message M conditionally to Bob’s input Y ,

H(M |Y ) = H(M,Y )−H(Y ).

Nonetheless, applying information theory tools to characterize the two-way scenario is more com-
plicated, since the compression must be interactive. This is the starting point of the information



16 CHAPTER 1. INTRODUCTION

complexity model. In this model introduced in [CWY01, BYJKS04, BBCR10], two information
complexities are defined depending on Alice’s input X, Bob’s input Y and the communication
M . The internal information complexity is the information that Alice and Bob learn from each
other, i.e.

I(M ;X|Y ) + I(M ;Y |X).

The external information complexity is the information that a third party learns about Alice and
Bob’s inputs,

I(M ;XY ).

These two information complexities naturally define a lower bound on the communication com-
plexity and important compression results have been found. M. Braverman showed how to
compress a protocol with i internal information cost to a protocol with 2O(i) communication cost
[Bra12]. Barak et al. showed how to compress a protocol with i internal information cost and
c communication cost to a protocol with Õ(

√
ic) communication cost, and Õ(i) for a product

input distribution [BBCR10].

Lower bound for simulating correlations

The communication model can be generalized to study correlations where at the end of the
communication Alice and Bob generate respectively an output a and b such that we obtain a
conditional probability distribution

p(a, b|x, y),

according to their input x and y. Thus, the information complexity model allows us to study the
information cost that Alice and Bob must share to generate specific correlations. This analysis
is strongly related to Bell’s inequality [Bel64], where two quantum states are separated then
measured with outcomes a and b. In this experiment, if the observed correlations have non null
information complexity then the locality assumption is violated.

In the last work (Chapter 9) we analyze the external information complexity applied to
CHSH correlations with a new lower bound method, the zero information complexity denoted
IC0.

This method comes from the zero communication model where Alice and Bob cannot com-
municate. Instead they are independently allowed to abort the protocol to artificially raise the
success probability. The probability that Alice and Bob don’t abort is called the efficiency, and is
related to the communication cost [Mas01, BHMR03, LLR12]. Similarly, in the zero communica-
tion model we define IC0 and prove that it is a natural lower bound of the external information
complexity. As the title suggests, IC0 is an optimization program. We also derive two other
lower bound methods: IC0, a relaxed form of IC0, and IC→0 , a special case of IC0 where only
Alice can abort. These methods have a natural order,

IC0 ≤ IC0 ≤ IC→0 .

Finally, we apply these three new methods to CHSH correlations. For IC→0 we retrieve a known
result [RS09]. For the relaxed form IC0 we find a new lower bound. At last for IC0 its analytic
solution is left open and a numerical analysis is provided.

C. Structure

This thesis is divided in two parts. It starts with a brief review of general mathematical tools of
interest for quantum computation, followed by the three aforementioned works on information
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complexity and quantum query complexity.

In Chapter 2 we introduce the basic mathematics used in this thesis, mainly to agree on
notation and concepts. Chapter 3 is devoted to quantum mechanics and quantum computation,
in particular to adiabatic algorithms. Chapter 4 is dedicated to quantum query complexity while
Chapter 5 covers communication complexity, both with lower bound methods associated to those
complexities. In Chapter 6, we present convex optimization as well as important results in this
field, such as Slater’s theorem, the KKT conditions and the Envelope theorem.

In Chapter 7 we introduce our universal quantum query algorithm, implying the characteri-
zation of quantum query complexity for bounded error in the continuous-time model. Chapter
8 presents our adversary action supplemented by its properties and relations with other lower
bound methods. Finally in Chapter 9 we derive the zero information complexity and apply this
new method to CHSH correlations where we obtain new results.
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Part I

Mathematical tools for quantum
computation
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Chapter 2

Mathematical background

This chapter introduces basic but still important tools in this thesis such as linear algebra, basic
topology, analysis, convexity and set theory. Although rigorous, this chapter is not a course but
an aid to read this thesis.

Note that we only work with real or complex finite dimensional vector spaces in this thesis,
thus we don’t introduce specific properties of non-finite dimensional vector space. Some symbols,
sub-scripts and upper-scripts are sometimes omitted when no confusion is possible.

2.1 Linear algebra

N is the set of natural numbers. K describe a field. K is either the set of real numbers R, or
the set of complex numbers C. Kn is the direct product of n fields K. Mm,n(K) is the set of
m-by-n matrices with entries in K. Mn(K) is the set of n-squared matrices with entries in K.
The transpose of an m-by-n matrix A is an n-by-m matrix A> defined by A>[x, y] = A[y, x].
The conjugate transpose of an m-by-n matrix A with complex entries is an n-by-m matrix
A∗ defined by A∗[x, y] = A[y, x]. A real matrix A is symmetric if A> = A. A complex matrix
A is Hermitian if A∗ = A. The trace of an n-by-n square matrix A is the sum of all diagonal
terms, trA =

∑n
i=1Aii.

2.1.1 Hilbert space

A K-vector space is a triplet (V,+,×) where V is a set, K is a field, the vector addition
+ : V × V → V and ×V the scalar product × : K × V → V, that satisfies eight axioms. For all
u, v, w ∈ V and a, b ∈ K,

• (Associativity of +) u+ (v + w) = (u+ v) + w,

• (Commutativity of +) u+ v = v + u,

• (Identity of +) there exists an element 0 ∈ V, such as v + 0 = 0 + v = v,

• (Inverse of +) for all v ∈ V, there exists an element −v such as v + (−v) = 0,

• (Identity of ×) there exists an element 1 ∈ K, such as for all v ∈ V , 1.v = v,

• (Compatibility) a× (bv) = (ab)× v,

• (Distributivity of +) a× (u+ v) = a× u+ b× v,

21
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• (Distributivity of ×) (a+ b)× v = a× v + b× v.

An inner product space is a K-vector space with an additional structure called an inner
product

〈
· , ·
〉

: V × V → C that satisfies four axioms. For all u, v, w ∈ V and a ∈ K,

• (Conjugate)
〈
u, v
〉

=
〈
v, u
〉
,

• (Linearity)
〈
w, u+ a.v

〉
=
〈
w, u

〉
+ a.

〈
w, v

〉
,

• (Positive-definiteness)
〈
u, u

〉
is real positive,

• (Zero vector)
〈
u, u

〉
= 0 ⇔ u = 0.

Rn, Cn, Mn(R) and Mn(C) are inner product spaces with the, respectively, inner product

•
〈
u, v
〉
Rn =

∑n
i=1 uivi,

•
〈
u, v
〉
Cn =

∑n
i=1 uivi,

•
〈
U, V

〉
Mn(R)

= tr(U>V ),

•
〈
U, V

〉
Mn(C)

= tr(U∗V ).

The subscript of an inner product is omitted when there is no confusion.
A Hilbert space is a complete inner product space. (See Section 2.2 for the definition of ‘com-
plete’.)

2.1.2 Linear operator

Let V and W be two K-vector spaces. A linear map f : V → W is a function such that for all
u, v ∈ V, and a ∈ K we have

f(u+ a.v) = f(u) + a.f(v).

In the special case V = W, f is called a linear operator. Moreover for V = Kn, a linear
operator can be represented by a matrix M in Mn(K) where v 7→ Mv. An affine map φ is a
generalization represented by a matrix M and a vector w, φ(v) : v 7→Mv + w.
Let A be a linear operator on inner product space V. A is self-adjoint if for all u, v ∈ V〈

u,Av
〉

=
〈
Au, v

〉
.

For V = Rn, A is self-adjoint if and only if A> = A. For V = Cn, A is self-adjoint if and only
if A∗ = A. Let v be a vector in Kn. Its co-vector v∗ is the linear map

〈
v, ·
〉
. Let Sn(K)

be the set of self-adjoint matrices in Mn(K). A self-adjoint matrix S ∈ Sn(K) is positive
semi-definite on Mn(K), if for all vectors on v ∈ Kn〈

vv∗, S
〉
Mn(K)

≥ 0.

We define S ∈ Sn+(K) to be the set of all positive semi-definite matrices in Mn(K).
Let H be a Hilbert space a unitary operator U is an operator that preserves the inner product
for all u, v ∈ H 〈

Uu,Uv
〉
H =

〈
u, v
〉
H.
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2.1.3 Gram matrix

The Gram matrix G of a set of the vectors (vi)i∈I in an inner product space, is a self-adjoint
|I|-square matrix defined by, G[i, j] =

〈
vi, vj

〉
, also noted

G = Gram(vi : i ∈ I).

Indeed a matrix G ∈ Mn(K) is a Gram matrix if, there exists a set of the vectors in Kn where
G is their Gram matrix. Moreover Gram matrices have several properties.

Fact 2.1.1. Let M ∈Mn(C). The following properties are equivalent:

(a) M is positive semi-definite,

(b) M is a Gram matrix.

Let (vi)i and (wi)i be two sets of the vectors. These sets are unitary equivalent if there
exists a unitary operator U such that wi = Uvi. Note that from the property of a unitary
operator, two unitary equivalent sets of the vectors have the same Gram matrix. The following
fact ensures that the reciprocal is true.

Fact 2.1.2. Let (vi)i and (wi)i be two sets of the vectors in Cn with the same Gram matrix.
Therefore there exists a unitary operator U such that wi = Uvi for all i.

2.1.4 Norm, distance and fidelity

A norm on a K-vector space V is a positive function ‖ · ‖ : V → R+ that satisfies three axioms.
For all u, v ∈ V and a ∈ K,

• (Sub-additivity) ‖u+ v‖ ≤ ‖u‖+ ‖v‖,

• (Absolutely homogeneous) ‖a.u‖ = |a|.‖u‖,

• (Zero vector) if ‖u‖ = 0, then u = 0.

A vector space Kn with an inner product has a natural norm, ‖ · ‖Kn =
√〈
· , ·
〉
Kn

.

A matrix space Mn(K) has several norms. We consider two important norms. Let A and B be
n-by-n matrices

• Operator norm: ‖A‖ = maxv∈Kn
‖Av‖Kn
‖v‖Kn = maxu,v∈Kn

〈
u,Av

〉
‖u‖Kn .‖v‖Kn ,

• Trace norm: ‖A‖tr = maxB∈Mn(K)
〈A,B〉
‖B‖ .

There is a relation between these norms and the inner product for a matrix space Mn(K).

Lemma 2.1.3. Let A and B be n-by-n matrices. We have 〈A,B〉 ≤ ‖A‖tr · ‖B‖.

A vector with a norm equal to one is a unit vector. A Gram matrix obtained from a set of
unit vectors (ui)i is a unitary Gram matrix, in particular all its diagonal entries are equal to
one. A positive semi-definite matrix with a trace norm equal to one is called a density matrix
in quantum mechanics.

A distance on a K-vector space V is a positive function d(·, ·) : V × V → R+ that satisfies
three axioms. For all u, v, w ∈ V,
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• (Identity) d(u, v) = 0⇔ u = v,

• (Symmetry) d(u, v) = d(v, u),

• (Triangle inequality) d(u, v) + d(v, w) ≤ d(u,w).

From the Trace norm we can derive a distance between two positive semi-definite matrices ρ
and σ, called the total distance and defined as

D(ρ, σ) = ‖ρ− σ‖tr.

The next quantity, fidelity, is not a distance but can define a measure between two positive
semi-definite matrices ρ and σ. This measure is symmetric and defined by

F(ρ, σ) = tr
√√

ρ σ
√
ρ.

The following theorem highlights the close relation between the distance and the fidelity.

Theorem 2.1.4. [FvdG99] For any density matrices ρ, σ, we have

1−D(ρ, σ) ≤ F(ρ, σ) ≤
√

1−D2(ρ, σ).

The Hadamard product of two n-by-m matrices is defined by the entry-wise product of
these matrices, (A ◦ B)[i, j] = A[i, j] · B[i, j]. The Hadamard product has a natural property
with an inner product of a matrix space.

Lemma 2.1.5. Let A,B and C be n-by-n matrices. We have

• 〈A ◦ C,B〉Mn(R) =
〈
A,B ◦ C>

〉
Mn(R)

,

• 〈A ◦ C,B〉Mn(C) = 〈A,B ◦ C∗〉Mn(C).

Claim 2.1.6. Let A and B be two positive semi-definite matrices. A◦B is positive semi-definite.

The Hadamard product fidelity is introduced in [LR12] to characterize the output condi-
tion of quantum query problems. As the usual fidelity, the Hadamard product fidelity compares
two semi-definite positive matrices ρ and σ and is defined as

FH(ρ, σ) = min
u:‖u‖=1

F(ρ ◦ uu∗, σ ◦ uu∗). (2.1)

We similarly define the Hadamard product distance of two semi-definite positive matrices
ρ and σ as

DH(ρ, σ) = max
u:‖u‖=1

D(ρ ◦ uu∗, σ ◦ uu∗). (2.2)

Like the distance and the fidelity, the Hadamard product fidelity and the Hadamard product
distance are closely related.

Corollary 2.1.7. For any positive semi-definite matrices ρ and σ, we have

1−DH(ρ, σ) ≤ FH(ρ, σ) ≤
√

1−D2
H(ρ, σ).

Let A : V → W be a linear operator with V and W two normed vector spaces. The graph
norm ‖ · ‖A of v ∈ V is defined as ‖v‖A = ‖v‖+ ‖Av‖.
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Definition 2.1.8 (γ2 norm). Let S be a finite set and A be a |S|-square matrix. The γ2 norm
of A is defined as

γ2(A) = min
m∈N

ux,vy∈Cm

{
max
x∈S

max
{
‖ux‖2, ‖vx‖2

}∣∣∣∣∣∀x, y ∈ S, Ax,y = 〈ux, vy〉

}
,

= max
u: ‖u‖=1
v: ‖v‖=1

‖A ◦ uv∗‖tr.

Fact 2.1.9. [LR12] Let A and B be two n-square matrices and their Hadamard product A ◦B.
We have ‖A ◦B‖ ≤ γ2(A).‖B‖.

2.2 Topology

A topological space is an ordered couple (X, τ) where X is a set and τ a family of subsets of
X satisfying the following properties:

(a) the empty set ∅ and X are in τ ,

(b) for every family of subsets Oiτ , their union
⋃
iOi ∈ τ ,

(c) for every finite family of subsets (Oi)i, their intersection
⋂
iOi ∈ τ .

Every subset in τ is called an open set. A{ the complement of a set A in a topological space
X is the set of all point in X but not in A. A set is closed, if its complement is open.

Let V be a subset of X and x be in V . V is a neighborhood of x if there exists an open
set O such that x ∈ O ⊂ V . Let V be a normed vector space and r be a real number. We define
the set Br(x) as

Br(x) =
{
y ∈ V : ‖y − x‖ ≤ r

}
.

The set Br(x) is a ball with center the point x. It is a natural neighborhood of x.
The closure of a set A is defined as

cl A =
⋂

F closed
A⊂F

F.

It is the smallest closed set containing A.
The interior of a set A is defined as

int A =
⋃

O open
O⊂A

O.

It is the biggest open set inside A.
The boundary of a set A is defined as bd A = cl A \ int A or bd A = cl A ∩ cl (A{).

From the point of view of sequences, we can have a better understanding of open/closed sets.
A sequence (xn) is an ordered collection of points in a set. A point x of a topological space
(X, τ) is a limit of a sequence (xn), if for every neighborhood V of x, there exists N such
that for all n > N , xn ∈ V . A sequence (xn) is convergent if it has a limit x. A convergent
sequence (xn) with a limit x is denoted by xn → x. A topological space (X, τ) is complete if
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all convergent sequences (xn ∈ X) have their limit in X.
Let O be an open set. For each point x ∈ O there exists V a neighborhood of x such that
x ∈ V ⊂ O. In other words for all x ∈ O there exists a non trivial sequence xn → x with
xn ∈ O \ {x}. Let F be a closed set. If a sequence (xn) inside F has a limit x then x ∈ F .

Since in this thesis we are restricted to real and complex finite-dimensional spaces, we don’t
define compacity directly but we will use the following Theorem.

Theorem 2.2.1 (Heine–Borel theorem). [Sun15] Let (Rn, τ) be a topological space and S ⊂ Rn,
therefore the two following properties are equivalent:

(a) S is closed and bounded,

(b) S is compact.

If (xn) is a sequence in a compact set then we can extract a sub-sequence with a limit.

2.3 Analysis

Let f : X → Y be a function. Its domain X is dom f and its range Y is range f . A multi-
valued function or correspondence C between two sets X and Y is defined by the functions
C : X → P(Y ), where P(Y ) is the power set of Y . A selection of a correspondence C is a
function s : X → Y such that for all x ∈ X, s(x) ∈ C(x). A good example of correspondence is
the inverse image of non-injective function.

Let f : X → Y be a function and, X and Y be two topological spaces. f is continuous at
x ∈ X if for any sequence (xn) that converges to x, we have the sequence f(xn) converges to
f(x). In the case where X and Y are finite real-vector spaces, another definition of continuity is

∀ε>0, ∃δ>0, such that ∀y ∈ Rn, ‖x− y‖Rn < δ ⇒ ‖f(x)− f(y)‖Rm < ε.

A function f : Rn → Rm is differentiable at x, if there exists a linear map L : Rn → Rm such
that,

∀ε>0, ∃δ>0, such that ∀y ∈ Rn, ‖x−y‖Rn < δ ⇒ ‖f(x)−f(y)−L(x−y)‖Rm < ε‖x−y‖Rn ,

and the linear map is defined as Dxf , the derivative of f at x. If f is a differentiable linear map,
we define its gradient as ∇f = Df∗.

A function is continuous/differentiable, if it is continuous/differentiable at every point in
its domain.

A family of functions {fp(x)}p∈N is equi-differentiable at x, if each function fp is differen-
tiable at x, and

∀ε>0, ∃δ>0, such that ∀p ∈ N, ∀y ∈ Rn,
‖x− y‖Rn < δ ⇒ ‖fp(x)− fp(y)− Lp(x− y)‖Rm < ε‖x− y‖Rn .

In other words, all functions fp converge uniformly, independently of p ∈ N.
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Let I be an interval in R. A function f : I → R is absolutely continuous on I, if for all ε>0,
there exists δ>0, any sub-interval [a, b] ⊂ I which satisfies,

|a− b| < δ ⇒ |f(a)− f(b)| < ε.

For a real-valued function on a compact interval [a, b], the following properties are equivalent:

A. f is absolutely continuous,

B. there exists a Lebesgue integrable function g on [a, b], such that

f(x) = f(a) +

∫ x

a

ds g(s), ∀x ∈ [a, b],

C. f has a derivative Dxf almost everywhere and this derivative is Lebesgue integrable, i.e

f(x) = f(a) +

∫ x

a

dsDx f(s), ∀x ∈ [a, b].

Let f : X × Y → Z be a function. A saddle-point is a couple (x0, y0) ∈ X × Y such that

sup
y∈Y

f(x0, y) ≤ f(x0, y0) ≤ inf
x∈X

f(x, y0).

It is easy to check that the set of saddle-points is a product set. Note that this definition of a
saddle-point is weaker than some definitions in the literature, where f is locally convex on x and
locally concave on y at its saddle-point.

2.4 Probability theory

Let Ω be a set called the universe, and A be a subset of the power set of Ω, denoted P(A). The
pair (Ω,A) is a σ-algebra, if the following conditions are satisfied:

• A is not empty,

• A is closed under complementation,

• A is closed under countable unions.

For a σ-algebra (Ω,A), a probability distribution is a map p : A → [0, 1] such that:

• p(Ω) = 1,

• p(∪iUi) =
∑
i p(Ui), where (Ui)i are disjoint sets.

The triplet (Ω,A, p) defines a probability space.

Let (Ω1,A1) and (Ω2,A2) be two σ-algebras. A measurable function f : (Ω1,A1) →
(Ω2,A2) satisfies

∀E ∈ A2, f−1(E) ⊂ A1.
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Let (Ω1,A1, p) be a probability space and (Ω2,A2) a σ-algebra. A random variable X is a
measurable function, X : (Ω1,A1)→ (Ω2,A2). Hence X generates a probability distribution pX
on (Ω2,A2) such that

∀E ∈ A2, pX(E) = p
(
X−1(E)

)
.

Let (Xi)i∈{1...n} be random variables defines on a probability space (Ωi,Ai, pi) with probability
distribution (pXi)i∈{1...n} and n at least two. A joint probability distribution of (Xi)i∈{1...n}
is a probability distribution pX1...Xn such that,

∀i ∈ {1 . . . n} and E ∈ Ai pXi(E) = pX1...Xn(Ω1 . . .Ωi+1, E,Ωi+1 . . .Ωn).

The probability distribution pXi is called the marginal distribution of pX1...Xn .
Let X and Y be two random variables defined with probability distributions pX and pY . Let
pXY be a joint probability distribution of X,Y . The conditional probability distribution
pX|Y is defined as

∀(E,F ), pX|Y (X = E|Y = F ) =
pXY (X = E, Y = F )

pY (Y = F )
.

It is the probability to observe the event E knowing F is observed.
The product distribution pX×Y of random variables X and Y is defined as

∀(E,F ), pX×Y (X = E, Y = F ) = pX(X = E).pY (Y = F ).

A joint probability distribution pXY is independent if it can be written as the product distribu-
tion of its marginal distributions pX and pY .

Let S be a finite set. We define P(S) to be the set of all probability distributions on (S,P(S)),
and B(S) to be the set of all real functions on S. The expectation of a function f ∈ B(S) under
the distribution p ∈ P(S) is

Epf = 〈f〉p =
〈
p, f
〉

=
∑
s∈S

p(s)f(s).

A property P on a σ-algebra (Ω,A) with a measure µ is satisfied almost everywhere if,

µ
(
{ω ∈ Ω : ω does not satisfy P}

)
= 0.

Let p, q be two probability distributions on X, we define the total variation as

|p− q|TV = sup
S⊂X

∑
x∈S

∣∣p(x)− q(x)
∣∣.

2.5 Information theory

Information theory was introduced by C. Shannon in [Sha48]. This theory provides two impor-
tant theorems, the first for encoding a noiseless source and the second to encode a noisy channel.
To obtain this result, C. Shannon introduced important mathematical tools such as the entropy
and mutual information.
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In this section, S is a finite set, X,Y, Z are random variables with respective probability
distributions pX , pY , pZ in P(S), and their joint probability distributions pXY Z in P(S3). We
define pU to be the uniform probability distribution as pU (s) = 1/|S|, for all s ∈ S. The function
log is the binary logarithm (log 2 = 1), and we use the convention 0 log 0 = 0.

The entropy H(X) of a random variable X is a defined by

H(X) = −
∑
s∈S

pX(s) log pX(s).

Two properties of entropy are of interest: positivity H(X) ≥ 0 and sub-additivity H(X,Y ) ≤
H(X) + H(Y ). The entropy achieves its maximum value log |S|, for the uniform probability
distribution pU . The conditional entropy H(X|Y ) of random variables X,Y is a defined by

H(X|Y ) = −
∑
sX∈S

∑
sY ∈S

pXY (sX , sY ) log
pXY (sX , sY )

pY (sY )
,

or more simply H(X|Y ) = H(X,Y )−H(Y ), with H(X,Y ) defined to be the entropy of the joint
probability distribution pXY . Conditional entropy also satisfies similar properties, positivity
H(X|Y ) ≥ 0 and strong sub-additivity H(X|Y,Z) ≤ H(X|Y ). Conditional entropy achieves its
maximum value H(X), if X and Y are independent. The mutual information I(X : Y ) of
random variables X,Y is defined by

I(X : Y ) =
∑
sX∈S

∑
sY ∈S

pXY (sX , sY ) log
pXY (sX , sY )

pX(sX)pY (sY )
.

or more simply as

I(X : Y ) = H(X) +H(Y )−H(X,Y ) = H(X)−H(X|Y )

The mutual information is symmetric, positive I(X : Y ) ≥ 0, and bounded by H(X) and H(Y ).
The mutual information of two random variables are null, if and only if there are independent.

The Kullback-Leibler divergence of X and Y is described as

DKL(X||Y ) =
∑
s∈S

pX(s) log
pX(s)

pY (s)
.

The Kullback-Leibler divergence has the important property of being positive, i.e. DKL(X||Y ) ≥
0. Where the equality is achieved if and only if pX = pY . This is a direct consequence of the
concavity of log. In particular, we can rewrite the entropy, the conditional entropy, and the
mutual information as

(a) H(X) = log |S| −DKL(X||U),

(b) H(X|Y ) = DKL(X,Y ||Y ),

(c) I(X : Y ) = DKL(XY ||X × Y ).

Although DKL is not symmetric, we can still construct a distance on P(S), with 2d(X,Y ) =
DKL(X||Y ) +DKL(Y ||X).
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2.6 Convexity, cones and order

Let V be a vector space. An affine combination of the vectors vi is a linear combination where
all coefficients θi are reals and their sum is equal to one.

θ1v1 + θ2v2 + . . .+ θnvn, with

n∑
i=1

θi = 1.

A convex combination Ep v of the vectors vi is a linear combination where all real coefficients
pi are positive and their sum is equal to one.

Ep v =

n∑
i=1

pivi, with pi ≥ 0 and

n∑
i=1

pi = 1

For example, all convex combinations of two points is the line between these points.
A convex set C is a stable set under all convex combinations of the vectors in it, such as the
n-dimensional sphere. Note that convexity is a property stable for: intersection, scaling, element-
wise sum, direct sum and direct product.
Let S be a subset of V . The affine hull of S is the set of all affine combinations of the vectors
in S

aff S =

{∑
i

θivi : vi ∈ S, and
∑
i

θi = 1

}
.

The conv hull of S is the set of all convex combinations of the vectors in S

conv S =

{∑
i

pivi : vi ∈ S,
∑
i

θi = 1, and ∀i, pi ≥ 0

}
.

The interior of a set depends on its topological space. For example the interior of a disk is
nonempty in R2 and empty in R3. Hence we define their interior relative to their affine hull.
The relative interior of a set S is defined by

relint S = {x ∈ S : ∃r > 0, Br(x) ∩ aff S ⊂ S}.

2.6.1 Preorder, infimum and supremum

A preorder � on a set S is a relation with these properties:

• (transitive) if x � y and y � z, then x � z,

• (reflexive) for all x ∈ S, x � x,

• (antisymmetric) if x � y and y � x, then x = y.

An order is total if for all x, y ∈ S, x � y or x � y. Let (P,≤) be a preorder and A be a subset
of P . A minimal element of A is m ∈ A such that for all a ∈ A, m ≤ a. A maximal element
of A is m ∈ A such that for all a ∈ A, a ≤ m. The minimum element of A exists if there is
a unique minimal element. The maximum element of A exists if there is a unique maximal
element. A lower bound of A is an x ∈ P such that for all a ∈ A, x ≤ a. An upper bound
of A is an x ∈ P such that for all a ∈ A, x ≥ a. The infimum of A is the maximum of all lower
bounds of A, if any exists. The supremum of A is the minimum of all upper bounds of A, if
any exists. A subset is bounded if there is a lower bound and an upper bound.
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2.6.2 Cone and generalized inequality

A generalized inequality on a vector space V is a preorder with the following additional
properties:

• (preserved under addition) if x1 � y1 and x2 � y2, then x1 + x2 � y1 + y2,

• (preserved under nonnegative scaling) if x � y and λ ≥ 0, then λx � λy,

• (preserved under limits) let (xi) and (yi) be sequences that converge to x and y, if xi � yi
for i ∈ N, then x � y.

A cone is a set in a real vector space V stable under nonnegative scaling. A proper cone K is
a cone with additional properties:

• K is closed and its interior is nonempty,

• K is convex,

• K is pointed, i.e. if x ∈ K and −x ∈ K then x = 0.

A proper cone K can define a generalized inequality:

y − x ∈ K ⇔ x �K y

Here is some examples of proper cones and its respectively inequality. The proper cone R+ of
all positive reals defines the usual order ≤ on R. The positive orthant R+

n defines the product
order ≤R+

n
on Rn. The set of positive semi-definite matrices Sn+ is a proper cone and defines the

Loewner order ≤Sn+ on Mn(K).
The subscript of ≤K can be omitted when the inner product space is well defined or unimportant.

2.6.3 Separating and supporting hyperplane theorems

Let V be a finite R-vector space. An affine hyperplan h is an affine subspace of V described
by a co-vector y and a real r such that

h = {x ∈ V : 〈y, x〉 = r}.

A hyperplane h is a supporting hyperplane of a set S if, S is completely contained in one of
the two closed half-spaces delimited by h and the intersection of S and h is nonempty.

Theorem 2.6.1 (Hyperplane separation theorem). [BV10] Let A and B be convex sets in V
such that A∩B = ∅. Then there exists a nonzero vector c ∈ V and a real λ, such that

〈
c, x
〉
≥ λ

if x ∈ A, and
〈
c, x
〉
≤ λ if x ∈ B.

This theorem implies for two separated convex sets, there exists a hyperplane separating
these sets. A corollary of this theorem is the Supporting hyperplane theorem which states that
for every point x0 in the boundary of a convex set A, there exists a supporting hyperplane for A
in the point x0.

Theorem 2.6.2 (Supporting hyperplane theorem). [BV10] Let A be a convex set in V and x0

a point in bd A. Then there exists a nonzero vector c ∈ V and a real λ, such that
〈
c, x0

〉
= λ

and if x ∈ A then
〈
c, x
〉
≥ λ.

This latter last theorem will be used in Chapter 6 to prove Slater’s Theorem.
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2.6.4 Convex and concave function

A convex/concave function is a real-valued function respecting the following Jensen’s inequal-
ity

(convex) f
(
Epvi

)
≤ Epf(vi) (2.3)

(concave) f
(
Epvi

)
≥ Epf(vi) (2.4)

Note that f is concave if and only if −f is convex. Convex functions and convex sets are deeply
related. From a convex function we can construct a family of convex sets, Cλ = {v ∈ V : f(v) ≤
λ}. On the other hand an indicator function of a convex set is a concave function.

Property 2.6.3 (First-order conditions). Let f : Rn → R be a differentiable function with
dom f convex. Then f is convex if and only if for all x, y ∈ dom f

f(y) ≥ f(x) +Dfx(x) · (y − x).

The above Property can be easily derived by looking at the epigraph of f and using the
Supporting hyperplane Theorem 2.6.2.

Property 2.6.4 (Second-order conditions). Let f : Rn → R be a double differentiable function
with dom f open. Then f is convex if and only if dom f is convex and for all x ∈ dom f

H(x) ≥Sn+ 0,

where H(x) is the Hessian matrix of f , i.e H(x)[i, j] = ∂2f
∂xi∂xj

(x).



Chapter 3

Quantum mechanics and quantum
computation

This chapter is a brief introduction to quantum mechanics and quantum computing. As stated
in Chapter 2 we work exclusively with finite dimensional Hilbert spaces and avoid dealing with
infinite dimension particularities.

3.1 Quantum mechanics

A quantum system is defined by a Hilbert space H. A quantum state is described by a unit
vector v denoted |v〉 and called “ket”. A co-vector u∗ : H → C is denoted 〈u | and called “bra”.
The evaluation of u∗ on v is called “bra-ket” with the following notation

〈u | v〉 = u∗(v) =
〈
u,v

〉
.

A physical quantityM is represented by a Hermitian linear operator M on H, such an operator
is called an observable. The measure of M can only give an eigenvalue of M . For a quantum
state |v〉, an average value 〈M〉 of an observable M is given by

〈M〉 = 〈v |M |v〉 .

Since M is a Hermitian operator acting on a finite Hilbert space, we can write it under the form

M =
∑
m

mPm, (3.1)

where m is an eigenvalue of M , and Pm is the projection on the subspace V̂m spanned by eigen-
vectors with the eigenvalue m. Consequently,

∑
mPm = Id and H = ⊕mV̂m.

The probability to observe the outcome m on the quantum state |v〉 is described by the
distribution probability p such that

∀m, p(m) = 〈v |Pm |v〉 . (3.2)

A quantum state |v(t)〉 evolves over time with two different mechanisms. The first mechanism is
the Schrödinger’s equation

d

dt
|v(t)〉 = −iH(t) |v(t)〉 , (3.3)

33
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where H(t) is an observable called “Hamiltonian”, and ~ the reduced Planck constant is fixed to
one. From the above equation of motion, the evolution is described by a unitary operator U(t′, t)
called unitary evolution such that |v(t′)〉 = U(t′, t) |v(t)〉 for all times t ≤ t′ and kets |v〉.
The second mechanism appears during a measurement. If we measure M on the quantum state
|v〉 and obtain the outcome m, then |v〉 is projected to the quantum state

|vm〉 =
1√
p(m)

Pm |v〉 .

where Pm and p(m) are defined in Equations (3.1) and (3.2).

A distribution (qk)k of quantum states |vk〉 cannot be described by a ket. Therefore we
introduce a matrix to represent a distribution of kets, defined as

ρ =
∑
k

qk |vk〉〈vk| .

The definition of the matrix above naturally implies following properties,

ρ ≥ 0 and trρ = 1. (3.4)

Since every matrix that satisfies these properties has a positive spectrum normed to one, their
spectrum can be interpreted as a distribution of kets. Therefore a density matrix is a matrix
that satisfies both conditions (3.4).
The Schrödinger’s equation can be rewritten as,

d

dt
ρ(t) = −i[H(t), ρ(t)],

where [·, ·] is the commutator defined as [A,B] = AB −BA.
Similarly for an observable M as defined in Equation (3.1), we measure m with the probability,

p(m) = tr(Pmρ),

and the density matrix ρ is projected to,

ρm =
PmρPm
p(m)

.

The distance between two quantum states |u〉 and |v〉 is defined from the norm on H,

d(|u〉 , |v〉) =
∥∥ |u〉 − |v〉∥∥.

We say that |u〉 and |v〉 are ε-distant if their distance is less than ε.

3.1.1 Adiabatic quantum theorem

The unitary evolution U(t′, t) can be easily derived by integrating Schrödinger’s equation (3.3)
when the Hamiltonian H is independent of time t.

U(t′, t) = e−i(t
′−t)H . (3.5)

Unfortunately for a time-dependent Hamiltonian the integration could become quite compli-
cated. The quantum adiabatic theorem is a method to approximate this integration when the
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Hamiltionian varies slowly in times.

The quantum adiabatic theorem, introduced by M. Born and V. Fock [BF28] and inspired
from quasi-static process in thermodynamics, approximates the unitary evolution U(t′, t) when
the Hamiltonian is continuous in time and varies slowly. In a few words, the intuition is

A quantum system with a time-dependent Hamiltonian remains in its instantaneous eigenvector
if, the Hamiltonian variation is slowly enough and there is a large gap between the

corresponding eigenvalue and the rest of the spectrum of the Hamiltonian.

Let clarify the main idea. Assume a time-dependent Hamiltonian H(t) can be written as
Equation (3.1) under its spectral form

∀t, H(t) =
∑
n

En(t)Pn(t),

with eigenvalues En(t) and projections Pn(t) both continuous in time, such that H(t)Pn(t) =
En(t)Pn(t) for each n. If functions En(t) stay distant over the time (They never cross each
other.) then a quantum state in the subspace V̂n(t) remains predominantly in the subspace
V̂n(t + t′) after a time t′. (V̂n(t) is the range of Pn(t).) The minimal distance over the time
between functions En(t) is called the gap and denoted g.

In order to formally describe adiabatic quantum computation, we define the definition of an
adiabatic process.

Definition 3.1.1. An adiabatic process on the Hilbert space H is defined by a triplet
{H(s), P (s), τ} with s ∈ [0, 1] where

(a) H(s) is a double-differentiable map from [0, 1] to the space of bounded linear Hermitian
operators on H equipped with the graph norm ‖ · ‖H(0),

(b) P (s) is a rank-one projection onto an eigenvector ofH(s) where its corresponding eigenvalue
λ(s) is continuous in s,

(c) τ ∈ R+ is the running time of the process.

The relation between the real time t ∈ [0, τ ] and the time s ∈ [0, 1] used in the above Definition
is defined by

t = sτ.

For an adiabatic process {H(s), P (s), τ} we define UA(s) to be the idealized evolution, the
unitary operator that maps the projection P (0) onto the projection P (s) for all s such that,

UA(s)P (0)U∗A(s) = P (s).

In the other hand we call the physical evolution the unitary operator Uτ (s) derived from the
Schrödinger’s equation

i
d

ds
Uτ (s) = τH(s)Uτ (s). (3.6)

Note that analytical conditions given in the above Definition 3.1.1 ensures existence and unique-
ness of Uτ (s) as defined in Equation (3.6) with the initial condition Uτ (0) = Id. [RS75].
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The quantum adiabatic theorem can now be summarized by the following statement

lim
τ→∞

Uτ (s)P (0) = UA(s)P (0). (3.7)

Since the adiabatic process gets slower with a large τ , Uτ (s)P (0) converges to UA(s)P (0) when
τ converges to infinity. Nonetheless we need to analyze the error along the adiabatic process by
looking at the norm of the difference between Uτ (s)P (0) and UA(s)P (0).

Definition 3.1.2. The error εAP (s) of an adiabatic process {H(s), P (s), τ} is defined as

εAP (s) =

∥∥∥∥[Uτ (s)− UA(s)
]
P (0)

∥∥∥∥, with εAP = εAP (1).

This definition implies that, every quantum state in the range of P (0) will be εAP -distant
from the range of P (1) after the adiabatic process.

The main question is: How slow should be the adiabatic process to ensure an adiabatic error
εAP ?

A criterion often used is the folk adiabatic condition. It requires that

τ >>

∫ 1

0

‖ ddsHτ (s)‖
g(s)2

ds, (3.8)

where the gap g(s) represents the minimal distance between the eigenvalue λ(s) and the rest of
spectrum of H(s). Unfortunately the folk adiabatic condition is only a criterion and it cannot
be used to rigorously bound the adiabatic error εAP . Rigorous conditions have been found only
recently [JRS07].

We now use the Newton’s notation: Ȧ(s) = d
dsA(s) and Ä(s) = d2

ds2A(s).

Theorem 3.1.3. [JRS07]
Let {H(s), P (s), τ} be an adiabatic process, g = mins∈[0,1] g(s) be the minimum gap, Ḣ(s) and

Ḧ(s) bounded, and ε > 0.

If τ ≥ 1

ε

[
‖Ḣ(0)‖+ ‖Ḣ(1)‖

g2
+ max
s∈[0,1]

{‖Ḧ(s)‖2

g2
+ 7
‖Ḣ(s)‖2

g3

}]
, then εAP ≤ ε.

Although the existence of a gap is required in the folk adiabatic condition (3.8) and Theorem
3.1.3, the following Lemma from J. Avron and A. Elgart [AE99a] shows that a gap is not always
a necessary condition.

Lemma 3.1.4. [AE99a]
Let {H(s), P (s), τ} be an adiabatic process, ε > 0, X(s) be a bounded operator satisfying the
commutator equation

Ṗ (s)P (s) = [H(s), X(s)], (3.9)

and Ẋ(s) bounded.

If τ ≥ 1

ε

[
‖X(0)‖+ ‖X(1)‖+ max

s∈[0,1]
‖Ẋ(s)P (s)‖

]
, then εAP ≤ ε.

This Lemma is a special case of the statement proved in [AE99a] adapted to the case of
continuous-time quantum computation. For completeness we provide a proof of Lemma 3.1.4 in
Appendix A.
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3.2 Quantum computation

The idea of quantum computation emerged at the end of 20th century when R. Feynman re-
marked that simulating a quantum system is hard, and could become quite easier if the computer
would have quantum properties [Fey82]. For a more exhaustive introduction to this subject and
to go further, I recommend the well-known “Quantum Computation and Quantum Information”
from I. Chuang and M. Nielsen [NC11]

Without being comprehensive, in a quantum computer a bit 0 or 1 is replaced by a quantum
system C2 called qubit with two levels |0〉 and |1〉. The description of a quantum algorithm is
dependent of its computational model. Two important and polynomially equivalent models are
the discrete-time model and the continuous-time model.

In the discrete-time model a quantum algorithm is a circuit constituted from quantum gates
(unitary operators acting on one or two qubits at most). In the continuous-time model the quan-
tum state evolves under the Schrödinger’s equation with a Hamiltonian formed by the addition
of locals Hamiltonians (Hamiltonian acting on one or two qubits at most).

In 2000, E. Farhi et al. [FGGS00] introduced the adiabatic quantum computation, a
special case of the continuous-time model based on the quantum adiabatic theorem. In their
article they solve instances of the satisfiability problem by constructing a final Hamiltonian Hf

depending on satisfying assignment, such that a quantum state |ψf 〉 encoding a solution of the
problem has the lowest energy. Hence the quantum adiabatic theorem would allow that the
linear interpolation H(s)

H(s) = (1− s)Hin + sHf ,

evolves the quantum state |ψin〉 with the lowest energy of Hin to the final state |ψf 〉. Hin is a
Hamiltonian with a ground state easily to construct by convenience. Of course, in this scheme
the correctness of adiabatic algorithms relies on the existence of a spectral gap. It was later
proved that the adiabatic model is polynomially equivalent to discrete-time model in term of
time complexity.[AvDK+07].

In [FGGS00] Farhi and Gutmann also give the first example of adiabatic algorithm for un-
structured search, a continuous-time analogue of Grover’s algorithm based on a simple linear
interpolation of two Hamiltonians (Later van Dam et al. [vDMV02], as well as Roland and Cerf
[RC02], independently proposed an adiabatic version of this algorithm based on a slowly varying
Hamiltonian). Algorithms were also developed in the continuous-time model for various prob-
lems such as spatial search [CG04a, CG04b, FGT14], oracle identification [Moc07], or element
distinctness [Chi09]. In a seminal paper, Farhi et al. [FGG08] proposed a quantum algorithm
for the NAND-tree based on scattering a wave incoming on the tree using a time-independent
Hamiltonian. It is precisely this algorithm that, through successive extensions, led to the tight
algorithm based on the adversary method for any function in [Rei11], but most of these exten-
sions were using the discrete-time model.
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Chapter 4

Query complexity

In this chapter and thereafter Σ is a finite set describing an alphabet, ε the blank character, and
Σ̂ = Σ ∪ {ε} the extended alphabet. X ⊂ Σn is a subset of n-length strings with n ∈ N, and
N = |X | is its size. Finally a string x is an element of X .

A describes an algorithm and with some language abuse, also as a simple input/output map:
a function for a classical algorithm and a unitary operator followed by a measurement for a
quantum algorithm.

4.0.1 Query complexity

A query algorithm A(x) is a special algorithm where the input x ∈ X is unknown at the begin-
ning of the computation, and can only be learned through a specific action called “query”. This
model of algorithm is studied to answer questions as: “Do I only need full or partial information
on the input?”, “Shall we distinguish all possible inputs?” or “Which queries are necessary?”
This model of algorithm is used to lower bound the complexity of a function, since a query is a
specific action.

A query algorithm evaluates a function f : X → Y with specific restrictions:

• the input x ∈ X is unknown at the beginning of the computation,

• each character of a string x can be known only through a function Ox called oracle defined
by

Ox : (k, b) 7→ (k, b⊕ xk), (4.1)

where k ∈ {1 . . . n}, b ∈ Σ, and ⊕ the addition modulo |Σ|.
A query is done by calling an oracle, thus we define the query cost C(A, x) to be the number
of queries used by an algorithm A on input x. The query complexity of an algorithm C(A) is
the query cost of A on its worst input. The query complexity of a function is the minimum
query cost over all query algorithms that evaluate f ,

C(f) = min
A:A(·)=f(·)

max
x∈X

C(A, x).

Obviously these definitions imply that C(f) is upper bounded by n, the length of inputs. For
example for X = Σn the exact evaluation of the identity function needs n queries.

39
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Remark. In classical computation, a query algorithm can be represented as a decision tree
[BdW02]. Indeed, the algorithm can be represented as a tree where the top is the beginning of
the algorithm, each vertex represents the choice of the query, and roots are the output. Clearly
the depth of this tree corresponds to the query cost of the algorithm. Thus, the query complexity
of a function f is the minimum depth of all decision trees computing the function f .

4.1 Quantum query complexity

A natural generalization of a query algorithm to the quantum world is to start with an arbitrary
quantum state like |0〉 and to evolve it toward a state |σx〉 depending on x, where a “good” choice
of measurement gives the desired output f(x). Of course, evolution uses unitary transformations
independent of x, and oracle Ox dependent of x.

We can generalize a little more our idea of a quantum query algorithm. Instead of evalu-
ating a function we could generate a quantum state |σx〉. Furthermore, we could convert an
input quantum state |ρx〉 to a final quantum state |σx〉. From this point of view, a quantum
query algorithm can be seen as quantum state converter which convert the quantum state |ρx〉
to |σx〉, for each x. Hence evaluating a function f is the particular case where we start with an
initial quantum state independent of x, and we end with identifiable orthonormal quantum states.

Remark. For any unitary transformation U , if a quantum query algorithm generates every state
|σx〉, then it is simple to create a quantum query algorithm to generate states U |σx〉 without
additive cost. Therefore we can represent a family {|σx〉}x by σ: the unitary Gram matrix of
the set of unit vectors |σx〉.

σ = Gram(|σx〉 : x ∈ X ).

For families of quantum states {|ρx〉}x and {|σx〉}x, we define respectively their unitary Gram
matrix to be ρ and σ. We define (ρ → σ) to be a state conversion problem, the problem to
convert for each x ∈ X , the quantum state |ρx〉 to |σx〉.

A quantum query algorithm is a unitary operator A acting on a Hilbert space HQ⊗HW ,
where HQ is the query register and HW is the workspace register. For each x, the quantum state
|ρx〉 can be decomposed into

|ρx〉 = |0〉Q ⊗ |ρx;0〉W +
∑

k∈{1...n}

|k〉Q ⊗ |ρx;k〉W , (4.2)

where {|k〉}k∈{0...n} is the canonical basis of HQ, and |ρx;k〉W is a non-normalized unit vector in
HW , constructed from the projection of |ρx〉 on |k〉. |0〉Q is a special vector of HQ that remains
unchanged after the oracle’s action. Note that a vector |k〉 represents a query, so vectors |ρx;k〉
indicate for each x which fraction of query “k”we obtain after an oracle call.

Regarding the oracle it can be implemented in two different ways: either as a unitary operator
Ox in the discrete-time model, or a Hamiltonian Hx in the continuous-time model. Also for each
model there are several possible representations of an oracle, according to maps (4.1). But as
long as two different representations can implement each other with a constant number of queries,
their query complexity differ only by a constant factor.
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4.1.1 Discrete-time model

In the discrete-time model, a quantum query algorithmA(x) is a sequence of input-independent
unitary operators Ut interleaved with oracle calls Ox. An oracle Ox is represented by a unitary
operator and acts as the classical oracle (4.1), i.e. every letter of x can be queried with one and
only one query. Hereafter we provide two possible representations for Ox, the phase-oracle Oph

x

and the register-oracle Oreg
x .

The register-oracle Oreg
x acts on HQ⊗HV = C|Σ| where HV is a well-defined Hilbert subspace

of HW ,

Oreg
x :


|k〉Q |ε〉V 7→ |k〉Q |xk〉V ∀k ∈ {1 . . . n},
|k〉Q |xk〉V 7→ |k〉Q |ε〉V ∀k ∈ {1 . . . n},
|k〉Q |l〉V 7→ |k〉Q |l〉V ∀k ∈ {1 . . . n},∀l ∈ Σ \ {xk},
|0〉Q |l〉V 7→ |0〉Q |l〉V ∀l ∈ Σ̂.

Hence, the oracle Oreg
x is an involution, and acts as identity everywhere else. In particular, the

projection |ρx;0〉 is invariable under all (Oreg
x )x.

The phase-oracle Oph
x , only defined for a binary alphabet (|Σ| = 2), is represented as a

phase-operator,

Oph
x : |k〉Q 7→ (−1)xk |k〉Q ,

with the convention x0 = 0. Note that for the register-oracle representation, HV = C =
span{|ε〉}.

To characterize the difference between two oracles Ox and Oy, we define (∆k)k to be the set
of matrices for each canonical vector |k〉 of HQ. For each k ∈ {0 . . . n}, we define

∀x, y ∈ X , ∆k[x, y] = 〈k, ε | O∗xOy|k, ε〉 .

These matrices are dependent of the representation of the oracle, for example

∆reg
k [x, y] = δ[xk, yk] and ∆ph

k [x, y] = (−1)yk−xk .

The discrete-time quantum query complexity Qdt
0 (ρ → σ) is the minimum number of

queries over all algorithms converting exactly ρ to σ. The choice of the representation of the
oracle affects the quantum query complexity Qdt

0 (ρ→ σ) but only by a constant factor at most.

4.1.2 Continuous-time model

In the continuous-time model the evolution is described by Schrödinger’s equation, so unlike the
previous model, we don’t work directly with unitary operators but with Hamiltonians. Since
a discrete-time algorithm is built with unitary operators independent of x and time-invariant
oracle, then any Hamiltonian Hx(t) of a continuous-time algorithm is the sum two parts: an un-
restricted driver Hamiltonian HD(t) independent of x and a time-invariant oracle Hamiltonian
HQ(x).

A continuous-time quantum query algorithm is described by a running time T , and
a Hamiltonian Hx(t) acting on the Hilbert space HQ ⊗HW , such that Hx(t) has the following
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form

Hx(t) = HD(t) + α(t)HQ(x), with ‖HQ(x)‖ ≤ 1 ∀x,
and α : [0, T ]→ [0, 1].

Note that the function α and the norm of the oracle Hamiltonian HQ are both upper bounded
by unity, otherwise we can obtain an arbitrary speed-up.

The representation of oracle Hamiltonian HQ can be as general as in [Bel15], but in this
thesis we restrict ourselves to the following standard representation of the Hamiltonian oracle
acting on HQ ⊗HV as

HQ(x) =
∑

k∈{1...n}
τ=±1

τ |k, τ〉〈k, τ |Q ⊗ h(xk)V . (4.3)

Where an HV is a well-defined Hilbert subspace of HW , h(l) is a Hamiltonian dependent of
l ∈ Σ, and HQ has been extended to a (2n + 1)-dimensional subspace with the canonical basis
{|0〉 , |k,±〉}k∈{1...n}. Since HQ is bounded by unity, therefore h(l) is also bounded by unity for
all l ∈ Σ. Note that we add the factor τ to allow to rapidly un-compute a query. Evidently
Hamiltonians h(l)’s must be chosen according to

Ox = e−iπHQ(x), ∀x ∈ X ,

where Ox must be a representation of the oracle. We give two representations for the oracle
Hamiltonian HQ(x).

• The register-Hamiltonian Hreg
Q (x) acts on HQ ⊗ HV where an HV = CΣ̂ is a well-

defined Hilbert subspace of HW , and

∀l ∈ Σ, h(l) =
∣∣l−〉〈l−∣∣V , where

∣∣l−〉 =
1√
2

(|ε〉 − |l〉). (4.4)

• The phase-Hamiltonian Hph
Q (x), only defined for a binary alphabet (|Σ| = 2), with

HV = C and represented as,

∀l ∈ Σ, h(l) = l. (4.5)

As the infinitesimal difference between two oracles is defined by the difference between cor-
responding oracle Hamiltonians, we define (∆̂τ

k)kτ to be the set of matrices characterizing this

difference. Each entry of the Hermitian matrix ∆̂τ
k characterizes the difference between two dif-

ferent oracle Hamiltonians on each canonical vector |k,±〉 of HQ. For each k ∈ {0 . . . n} and
τ ∈ {+1,−1},

∀x, y ∈ X , ∆̂τ
k[x, y] = i 〈k, τ, ε | HQ(y)−HQ(x)|k, τ, ε〉 .

These matrices are dependent of the representation of the oracle, for example

∆̂τ,reg
k [x, y] = 0 and ∆̂τ,ph

k [x, y] = iτ(yk − xk).

Note that for the register-Hamiltonian ∆̂τ,reg
k is null because the first order of the difference is

null. To avoid a superfluous notation we remove the superscript such that ∆̂τ
k = ∆̂τ,ph

k .



4.1. QUANTUM QUERY COMPLEXITY 43

In the Hilbert space HQ ⊗HW every quantum state |ρx〉 can be decomposed into the form

|ρx〉 = |0〉Q ⊗ |ρx;0〉W +
∑

k∈{1...n}
τ=±1

|k, τ〉Q ⊗ |ρx;kτ 〉W ,

where |ρx;kτ 〉 is the projection of |ρx〉 on |k, τ〉, therefore non necessarily normalized. In order to
simplify the form of |ρx〉, we define the set n̂ = {0} ∪

(
{+1,−1} × {1 . . . n}

)
, and we have

|ρx〉 =
∑
k̂∈n̂

∣∣∣k̂〉
Q
⊗
∣∣∣ρx;k̂

〉
W
. (4.6)

The query cost q(A) of a continuous-time quantum query algorithm A can be derived
directly from the function α(t) and the running time T ,

q(A) =
1

π

∫ T

0

dt α(t). (4.7)

The continuous-time quantum query complexity Qct
0 (ρ → σ) is the minimum query cost

over all algorithms converting exactly |ρx〉 to |σx〉, for all x ∈ X .

4.1.3 Output conditions

For scenarios where we accept errors we must distinguish two cases : coherent and non-
coherent quantum state conversion. Concretely, a computation will typically use some ex-
tra workspace and may therefore generate a state |σx, Jx〉, where |Jx〉 is the final state of the
workspace. This might not be desirable if the state generation is used as a subroutine in a larger
quantum algorithm, where we would like to use interferences between the states |σx〉 for different
x. In that case, we would like to be able to reset the state |Jx〉 to a default state, so that it
does not affect interferences. We therefore define the following output conditions (both for the
discrete- and continuous-time models)

Definition 4.1.1 (Output condition). A quantum query algorithm acting as unitary A(x) for
input x converts ρ to σ with error at most ε if

• (coherent case) ∀x ∈ X , Re(〈σx, 0 | A(x)|ρx, 0〉) ≥
√

1− ε,

• (non-coherent case) ∀x ∈ X , ∃ |Jx〉 , Re(〈σx, Jx | A(x)|ρx, 0〉) ≥
√

1− ε.

Note that a sufficient condition for Re(〈φ | ψ〉) ≥
√

1− ε is that these states are
√
ε-distant.

Moreover, the output condition for the coherent case has been shown [LR12] to be equivalent to
FH(σ, σ′) ≥

√
1− ε where σ′ is the Gram matrix of the output states |σ′x〉 = A(x) |ρx, 0〉, and

FH the Hadamard product fidelity define in 2.1. Similarly, in the non-coherent case the output
conditions can be rewritten as FH(σ ◦ J, σ′) ≥

√
1− ε, where J is the Gram matrix of any set of

unit vectors |Jx〉. This implies that bounded-error and zero-error quantum query complexities
are related as follows.

Lemma 4.1.2 ([LR12]). For any N -by-N Gram matrices ρ and σ we have

Q•ε(ρ, σ) = min
σ′

{
Q•0(ρ, σ′) : FH(σ, σ′) ≥

√
1− ε

}
, (4.8)

Qnc,•
ε (ρ, σ) = min

σ′

{
Q•0(ρ, σ′) : FH(σ ◦ J, σ′) ≥

√
1− ε, J ◦ Id = Id

}
, (4.9)

where the superscript nc denotes the non-coherent query complexity (otherwise we consider the
coherent case by default), and the superscript • is either dt or ct.
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Computing a function f is equivalent to generating the Gram matrix F [x, y] = δ[f(x), f(y)]
from the all-one Gram matrix J[x, y] = 1. In that case, it is not necessary to generate the state
coherently, but for functions we can convert a non-coherent algorithm into a coherent algorithm,
thereby we can consider the coherent case without loss of generality.

Lemma 4.1.3 ([LR12]). For any function f and associated Gram matrix F [x, y] = δ[f(x), f(y)],
we have Q•ε(f) = Qnc,•

ε (J, F ) and

Qnc,•
ε (J, F ) ≤ Q•ε(J, F ) ≤ 2Qnc,•

1−
√

1−ε(J, F ).

4.2 Gram matrix representation

In Section 4.1, we remarked that input/output quantum states can be represented by their
unitary Gram matrix ρ and σ without loss of generality.

ρ = Gram
(
|ρx〉 : x ∈ X

)
,

σ = Gram
(
|σx〉 : x ∈ X

)
.

Indeed, this representation is even more convenient to study the evolution of a quantum state
during the processing of a quantum query algorithm. More precisely, if we apply a unitary
transformation U independent of the input on a set of quantum states (ρx)x, their Gram matrix
ρ does not change,

∀x, y ∈ X
〈
Uρx, Uρy

〉
=
〈
ρx, ρy

〉
= ρ[x, y].

In contrast the discrete-time model an oracle call Ox, as dependent of x, does change ρ,

∀x, y ∈ X
〈
Oxρx,Oyρy

〉
=
〈
ρx,O∗xOyρy

〉
.

Consequently in the discrete-time model where a quantum query algorithm is a sequence of
unitary operator and oracle call, the Gram matrix representation allows to simplify analyses
of the quantum query complexity, since we only consider oracle calls.

Remark. In the continuous-time model we show in Chapter 8 that the same behavior appears,
i.e. the action of the driver Hamiltonian is canceled in the Gram matrix representation.

As remarked above, in Formula (4.2) vectors |ρx;k〉 indicate which “fraction” queries will be
implemented after an oracle call. In other words, these vectors decide of the action of the oracle
on ρ. These vectors are not fixed since we can modify them with a unitary operator independent
of x, but they are still dependent of k. So we define for each k the following Gram matrix,

∀x, y ∈ X , ρk = Gram
(
|ρx;k〉 : x ∈ X

)
, (4.10)

and from Formula (4.2), they naturally satisfy

ρ =
∑

k∈{0...n}

ρk. (4.11)

Some questions arise; Does every set of Gram matrices (σk)k satisfying Condition (4.11) rep-
resents an action of the oracle on ρ? Does there exist a unitary operator independent of x to
change the action of the oracle from (ρk)k to (σk)k?

The first answer is affirmative, from the definition of a Gram matrix in Section 2.1.3. The
second answer is also affirmative, but it requires Fact 2.1.2 where we replace vi with

∑
k∈K |k〉⊗

|ρx;k〉, and wi with
∑
k∈K |k〉 ⊗ |σx;k〉.
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Corollary 4.2.1. Let K,X be finite sets, C|K| ⊗ H be a finite Hilbert space, and |k〉k∈K be a

basis of C|K|. For (ρx;k)x;k and (σx;k)x;k two families of the vectors in H indexed by X ×K. If∑
k∈K Gram(ρx;k : x ∈ X ) =

∑
k∈K Gram(σx;k : x ∈ X ), then there exists a unitary operator U

such that, U
(∑

k∈K |k〉 ⊗ ρx;k

)
=
∑
k∈K |k〉 ⊗ σx;k, for all x ∈ X .

A main interest of the Gram matrix representation is that any discrete-time quantum query
algorithm can be interpreted as a discrete path in the space of unitary Gram matrices:

GN = {γ ∈MN (C) : γ ◦ Id = Id, and γ ≥ 0}.

Hence, instead of looking at a quantum query algorithm A that converts ρ in σ, we can consider a
discrete path ρ(t) : {0, 1

T . . .
T−1
T , 1} → GN , such that ρ(0) = ρ and ρ(T ) = σ. In the same way, a

continuous quantum query algorithm that converts ρ in σ can be interpreted as a differentiable1

path ρ(t) : [0, T ] → GN , such that ρ(0) = ρ and ρ(T ) = σ. Depending on the time model, we
either use a discrete path ρ(t) with a finite domain {0, 1

T . . .
T−1
T , 1}, to describe a discrete-time

algorithm with a running time T , or a differentiable path ρ(t) to describe a continuous-time
algorithm. Let’s denote the set of all possible discrete paths,

Γdt[ρ→ σ] =
⋃
T∈N

{
γ(t) ∈ F

(
{0, 1

T
. . .

T − 1

T
, 1}, GN

)
: γ(0) = ρ and γ(1) = σ

}
,

and the set of all possible differentiable paths,

Γct[ρ→ σ] =
⋃

T∈R+

{
γ(t) ∈ C1

(
[0, T ], GN

)
: γ(0) = ρ and γ(1) = σ

}
.

If a query algorithm can be represented by a path, unfortunately the reciprocal is not true. A
possible path in Γ•[ρ→ σ] is not necessary “feasible”, i.e. a path cannot ensure the existence of
a quantum query algorithm which generates this path.

For the purpose of distinguishing feasible paths from unfeasible paths, we use the work of
Barnum, Saks and Szegedy in [BSS03]. In this article, for a binary alphabet and the phase oracle
representation, they construct a semi-definite program (cf. Chapter 6) that accepts a path, if
and only if some conditions are satisfied. To obtain this semi-definite program, they prove that
a unitary Gram matrix ρ can evolve into another ρ+ with only one query, if and only if ρ and
ρ+ satisfy precise conditions.

Proposition 4.2.2. [BSS03] Let ρ and ρ+ be unitary Gram matrices. We can transform ρ to
ρ+ with one query of Oph

x , if and only if there exists a set of positive semi-definite matrices
(ρk)k∈{0...n} such that

ρ =
∑

k∈{0...n}

ρk and ρ+ =
∑

k∈{1...n}

ρk ◦∆ph
k , (4.12)

where for all k ∈ {1 . . . n}, ∆ph
k = (−1)xk−yk .

In the above Proposition, ρk refers to the Gram matrix of the vectors (|ρx;k〉)x as defined in
Formula (4.10). Hence, every query step described in a discrete path can be checked one by one
using Proposition 4.2.2. If a step is feasible, then a solution of the semi-definite program gives a

1As the path is generated by integration of Schrödinger’s equation, the path is differentiable according to the
Fundamental theorem of calculus.
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direction (ρk)k to implement this step, otherwise we reject the discrete path. Note that we know
this step is implementable from Corollary 4.2.1.

Consequently, in the discrete model we can consider discrete paths satisfying Conditions 4.12
instead of a sequence of unitary operators and oracles Ox. In Chapter 8, we show an equivalent
Proposition (4.2.2) in the continuous-time model using the phase-Hamiltonian as representation.

Finally, the Gram matrix representation has also drawbacks since we don’t work directly with
an algorithm, so it may be difficult to reconstruct a quantum query algorithm from a path.

4.3 Lower bound methods

To the purpose of analyzing the quantum query complexity, several methods have been developed
to lower bound the quantum query complexity of a problem; function, state generation, state
conversion. In this section we introduce three main methods:

• polynomial method,

• adversary method,

• multiplicative adversary method.

4.3.1 Polynomial method

The polynomial method has been introduced in [BBC+01] for discrete-time model with a binary
alphabet to evaluate a boolean function f : X → {0, 1}. This method comes from the simple
idea that the action of an oracle Ox can be described as a polynomial of degree one, with Ox
acting as the map (4.1).

Ox
∑

k∈{1...n}
b∈{0,1}

ρk,b |k, b〉 =
∑

k∈{1...n}
b∈{0,1}

[
ρk,b(1− xk) + ρk,b⊕1xk

]
|k, b〉 .

On another side, U a unitary operator independent of x only mixes vectors ρk,b without increasing
polynomial degrees, since U is linear. Consequently, every quantum query algorithm using T
queries, outputs a quantum state |σx〉 with the following form

|σx〉 =
∑

k∈{1...n}
b∈{0,1}

Pk,b[x1 . . . xn] |k, b〉 ,

where Pk,b[x1 . . . xn] is a multi-linear polynomials with degree at most T . Let C be a strict subset
of {1 . . . n} × {0, 1}, therefore the probability to observe (k, b) ∈ C is

p[x1 . . . xn] =
∑

(k,b)∈C

∣∣Pk,b[x1 . . . xn]
∣∣2,

a multi-linear polynomial with degree at most 2T .

This result is quite powerful since, for each quantum query algorithm using T queries and
computing exactly f , there exists a multi-linear polynomial p with degree at most 2T such that,
p = f .
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Definition 4.3.1. Let f(x) be a boolean function. We denote deg(f) the minimum degree over
all polynomials p(x), such as p(x) = f(x) for all x.

We define d̃eg(f) to be the minimum degree over all polynomials p(x), such as |p(x)−f(x)| < 1/3
for all x.

Theorem 4.3.2. [BBC+01] Let f be a boolean function, therefore

1

2
deg(f) ≤ Qdt0 (f)

1

2
d̃eg(f) ≤ Qdt1/3(f).

The proof is straightforward using the principle of contradiction. If the inequality is violated,
then there exists a quantum query algorithm using T queries and computing exactly f and no
multi-linear polynomial p with degree at most 2T such that, p = f .

4.3.2 Adversary method

The adversary method, denoted Adv+, was originally introduced by A. Ambainis in [Amb00].
Later P. Høyer, T. Lee, and R. Špalek in [HLS07] improve the adversary method by adding
negative weights, now called the ‘general adversary method’ and denoted Adv±. Finally in the
article [LMR+11], the adversary method Adv± has been adapted to state conversion problem by
constructing another method, denoted Adv and called the ‘query distance’. Adv± and Adv are
distinct, but restricted to function evaluation problems they are equivalent by a factor at most 2.
A lot of adversary methods appear in the literature, but R. Špalek and M. Szegedy have proved
that they are all equivalent [ŠS05].

This method can be explained in two steps. First, for every quantum query algorithm, we
consider its path ρ(t) in the Gram space Γ[ρ → σ], and we choose a unit vector v, therefore
ρ(t) ◦ vv∗ can be interpreted as a density operator. Second, we choose an observable M such
that the change of its average value

〈M〉t =
〈
M,ρ(t) ◦ vv∗

〉
,

after an oracle call is bounded. The change of average value 〈M〉t is bounded differently depend-
ing on the model,

(discrete model)
∣∣〈M〉t+1 − 〈M〉t

∣∣ ≤ 1, (4.13)

(continuous model)

∣∣∣∣d 〈M〉tdt

∣∣∣∣ ≤ 1. (4.14)

Hence for every observable M that satisfies conditions above, we obtain by integrating the bound

|
〈
M, (σ − ρ) ◦ vv∗

〉
| = | 〈M〉T − 〈M〉0 | =

∣∣∣∣ T−1∑
t=0

〈M〉t+1 − 〈M〉t

∣∣∣∣ ≤ T,
|
〈
M, (σ − ρ) ◦ vv∗

〉
| = | 〈M〉T − 〈M〉0 | =

∣∣∣∣ ∫ T

0

dt
d 〈M〉t
dt

∣∣∣∣ ≤ T.
This bound holds for all v and M satisfying Condition (4.13) or (4.14), therefore we can maxi-
mize over v and M .
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This is the general idea, but we still need to reformulate Conditions (4.13) and (4.14) inde-
pendently of the path ρ(t). More precisely, we can show that these Conditions (4.13) and (4.14)
are respected, if M satisfies particular conditions with ∆k or ∆̂k.

Here we derive the adversary method for a binary alphabet in the discrete-time model using
the phase-oracle. From Proposition 4.2.2 and with matrices ∆ph

k = (−1)xk−yk , we show the
following Lemma.

Lemma 4.3.3. Let M be an observable, v be a unitary vector and ρ(t) be a discrete feasible
path. If

M − Id ≤M ◦∆ph
k ≤M + Id for all k ∈ {1 . . . n}, (4.15)

then, ∣∣〈M〉t+1 − 〈M〉t
∣∣ ≤ 1.

Proof. As ρ(t) is feasible, from Proposition 4.2.2 we know that for all t ∈ {0 . . . T − 1} there
exists (ρk(t))k such that

ρ(t) =
∑

k∈{0...n}

ρk(t) and ρ(t+ 1) =
∑

k∈{1...n}

ρk(t) ◦∆ph
k .

Therefore for all t ∈ {0 . . . t− 1},

〈M〉t+1 =
〈
M,ρ(t+ 1) ◦ vv∗

〉
,

=
〈
M,

∑
k∈{1...n}

ρk(t) ◦∆ph
k ◦ vv

∗〉,
=

∑
k∈{1...n}

〈
M ◦∆ph

k , ρk(t) ◦ vv∗
〉
,

≤
∑

k∈{1...n}

〈
M + Id, ρk(t) ◦ vv∗

〉
,

≤
〈
M,ρ(t) ◦ vv∗

〉
+
〈
Id, ρ(t) ◦ vv∗

〉
,

≤ 〈M〉t + 1,

the inequality comes from ρk(t) ◦ vv∗ ≥ 0 and M ◦∆ph
k ≤M + Id. Moreover, as ρk(t) ◦ vv∗ is a

density matrix, its trace is equal to one. The other inequality can be proved similarly.

Since Condition (4.13) is implied by Conditions (4.15) in Lemma 4.3.3, we define the adversary
method with and without error ε.

Definition 4.3.4 (Adversary method for discrete time). [LR12]

Adv?0(ρ→ σ) = sup
M

v:‖v‖=1

〈
M ◦ vv∗, σ − ρ

〉
,

subject to ∀ k ∈ {1 . . . n}, M − Id ≤M ◦∆?
k ≤M + Id.

Adv?ε(ρ→ σ) = inf
σ′:FH(σ,σ′)≥

√
1−ε

Adv?(ρ→ σ′),

where the superscript ? is either ph or reg.
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Remark. In the above definition the absolute value has been removed since Conditions (4.15) are
symmetric under sign change. We have provided two definitions: Advph and Advreg depending
of the representation of the oracle. Advreg is the adversary method introduced in [LMR+11], a
proof that Advreg lower bounds Qdt

0 can be found in their article. Finally, Condition (4.15) in
Definition 4.3.4 can be re-written for each k’s as,

M − Id ≤M ◦∆?
k ≤M + Id ⇐⇒

∥∥M ◦ (∆?
k − J)

∥∥ ≤ 1. (4.16)

Theorem 4.3.5. [LMR+11] Let ρ and σ be two unitary Gram matrices, and ε ∈]0, 1]. We have

Adv?0(ρ→ σ) ≤ Qdt
0 (ρ→ σ),

Adv?ε(ρ→ σ) ≤ Qdt
ε (ρ→ σ).

Surprisingly, Advreg is also a lower bound method for Qct0 .

Theorem 4.3.6. [YM11]
Let ρ and σ be two unitary Gram matrices, and ε ∈]0, 1]. We have

1

2
Advreg

0 (ρ→ σ) ≤ Qct0 (ρ→ σ),

1

2
Advreg

ε (ρ→ σ) ≤ Qctε (ρ→ σ).

In Chapter 7, we provide an original proof independent of the choice h(l)’s in Formula (4.3).

An important result for this subsection. In [LMR+11], authors show that Advreg
ε characterizes

the bounded-error quantum query complexity Qdtε (ρ→ σ).

Theorem 4.3.7. [LMR+11] Let ρ and σ be two unitary Gram matrices, and ε > 0. We have

Qdtε (ρ→ σ) = Θ

(
Advreg

ε (ρ→ σ)

ε

)
.

4.3.3 Multiplicative adversary method

The multiplicative adversary method Madvreg introduced by R. Špalek in [Špa08], subsumes both
polynomial method and adversary methods [MR13]. Although this method is less convenient to
use, it is quite powerful and allowed to prove a strong direct product theorem for quantum query
complexity [LR12].

As for the adversary method, we define three versions: Madvph, Madvreg and Madvct. Here
we only give a proof that Madvph is a lower bound of Qdt, with a binary alphabet and the
phase-oracle representation. A demonstration for Madvreg can be found in the original article
[Špa08]. Finally, as the multiplicative adversary method Madvct for a continuous-time model is
new, we only gives its definition for the moment, we will provide in Chapter 8 a demonstration
that this new method is a lower bound of Qct.

This method is based on the same idea that adversary methods, we choose a unitary vector
v and an observable M , but we chose different restrictions for 〈M〉t,

| 〈M〉t+1 | ≤ c 〈M〉t , (4.17)
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where c > 1 is a real, and M ≥ 0 such as 〈M〉t ≥ 0 for all t. From this relation we derive the
following lower bound,

1

ln c

[
ln 〈M〉T − ln 〈M〉0

]
≤ T.

As in the previous Subsection, we must express Condition 4.17 independently of ρ(t). From
Proposition 4.2.2 for a binary alphabet and using a phase-oracle representation, we can show
that

Lemma 4.3.8. Let M ≥ 0 be an observable, c > 1 be a real, v be a unitary vector and ρ(t) be a
discrete feasible path. If

c−1M ≤M ◦∆ph
k ≤ cM for all k ∈ {1 . . . n}, (4.18)

then,
〈M〉t+1 ≤ c 〈M〉t .

Proof. From Proposition 4.2.2, we know that for all t ∈ {0 . . . T − 1} there exists (ρk(t))k such
that

ρ(t) =
∑

k∈{0...n}

ρk(t) and ρ(t+ 1) =
∑

k∈{1...n}

ρk(t) ◦∆ph
k .

Then for all t ∈ {0 . . . t− 1},

〈M〉t+1 =
〈
M,ρ(t+ 1) ◦ vv∗

〉
,

=
〈
M,

∑
k∈{1...n}

ρk(t) ◦∆ph
k ◦ vv

∗〉,
=

∑
k∈{1...n}

〈
M ◦∆ph

k , ρk(t) ◦ vv∗
〉
,

≤
∑

k∈{1...n}

〈
cM, ρk(t) ◦ vv∗

〉
,

≤ c
〈
M,ρ(t) ◦ vv∗

〉
,

≤ c 〈M〉t ,

the inequality comes from ρk(t) ◦ vv∗ ≥ 0 and M ◦ ∆ph
k ≤ cM . The other inequality can be

proved similarly.

Since Condition 4.17 is satisfied by Condition 4.18 in Lemma 4.3.8, we define the multiplica-
tive adversary method with and without error ε.

Definition 4.3.9 (Multiplicative adversary method for discrete time). [LR12]

Madv?0(ρ→ σ) = sup
c>1

1

ln c
sup
M≥0
v:‖v‖=1

[
ln
〈
M ◦ vv∗, σ

〉
− ln

〈
M ◦ vv∗, ρ

〉]
,

subject to ∀ k ∈ {1 . . . n}, c−1M ≤M ◦∆?
k ≤ cM.

Madv?ε(ρ→ σ) = inf
σ′:FH(σ,σ′)≥

√
1−ε

Madv?0(ρ→ σ′),

where the superscript ? is either ph or reg.
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So from Proposition 4.2.2 and Lemma 4.3.8 we conclude that,

Theorem 4.3.10. [LR12]
Let ρ and σ be two unitary Gram matrices, and ε ∈]0, 1]. We have

Madv?0(ρ→ σ) ≤ Qdt
0 (ρ→ σ),

Madv?ε(ρ→ σ) ≤ Qdt
ε (ρ→ σ).

Remark. It is easy to see that Madv beats Adv, from Conditions (4.13) and (4.17). By choosing
c = 1 + δ with δ closed to zero, such as Tδ stays small,

〈M〉t+1

〈M〉t
≤ c = 1 + δ,

〈M〉T
〈M〉0

≤ cT ' 1 + Tδ,

ln 〈M〉T − ln 〈M〉0 . Tδ,
1

ln c

[
ln 〈M〉T − ln 〈M〉0

]
. T,

with ln c ' δ. As we can see, for c closed to one the multiplicative method acts the Adversary
method, where each multiplication by c can be approximated by adding ln c.
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Chapter 5

Communication complexity

The communication model has been introduced in ’79 by A. Yao [Yao79]. It describes a system
that computes a task distributed over several parties of the system, where each part owns re-
sources to complete this task. In the mathematics formalism, a task over n parties is represented
as a function f : X1× . . .×Xn → Z where Z and all Xi’s are finite sets. The model is simple, at
the beginning each part or player has an element xi ∈ Xi, then they start to communicate and
share information to know f(x1, . . . , xn). The number of communications needed to compute a
well-defined task is the resource we wish to estimate in this model.

In the thesis, we only work with the two party model f : X × Y → Z, called Alice and Bob
by convention. The communication between Alice and Bob is done through binary messages. To
go further, the book “Communication complexity” from Kushilevitz and Nisan [KN97] is a good
reference.

5.0.1 Communication model

In the communication model, the two players computing a function f(x, y) do not speak arbi-
trarily, but one bit after one bit, and moreover they follow a protocol.
A deterministic protocol P with domain X × Y and range Z is a binary decision tree, where
each internal node v is attached to Alice with function av : X → {0, 1} or to Bob with function
bv : Y → {0, 1}. These functions decide respectively which bit Alice or Bob sends to each other.
Finally, each leaf of P is labeled by an element in Z.

The communication cost CC(P) of a deterministic protocol P is equal to its depth denoted
|P|. A deterministic protocol Pf implements the function f , if Pf (x, y) = f(x, y) for all x, y. The
communication complexity CC(f) of a function f is the minimal depth over all deterministic
protocols that implements f

CC(f) = min
Pf

CC(Pf ).

Let µ be a probability distribution over X × Y , called input distribution, we define Pεµ,f to
be a deterministic protocol that computes correctly f on a fraction of X × Y with a measure at

53
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least 1− ε, as

Pr[Pεµ,f (x, y) = f(x, y)] =
∑
x,y

µ(x, y)δ[Pεµ,f (x, y), f(x, y)],

Pr[Pεµ,f (x, y) = f(x, y)] ≥ 1− ε.

The distributional complexity CCµε (f) of a function f is defined by

CCµε (f) = min
Pεµ,f

CC(Pεµ,f ).

A private coin randomized protocol Pε,priv with ε-error is a binary decision tree similar to
a deterministic protocol, except that its domain is X×Y ×RA×RB where RA and RB are random
variables, and different functions av : X×RA → {0, 1} and bv : Y ×RB → {0, 1}. We observe that
a private coin randomized protocol acts exactly as a deterministic protocol Pε,priv( · , · , rA, rB),
once random variables RA and RB has been fixed. A private coin randomized protocol Pε,privf

implements the function f , if for all (x, y) ∈ X × Y

Pr[Pε,privf (x, y) = f(x, y)] =
∑
rA,rB

pRA(rA)pRB (rB)δ[Pε,privf (x, y, rA, rB), f(x, y)],

Pr[Pε,privf (x, y) = f(x, y)] ≥ 1− ε.

Similarly, we define CC(Pε,priv) to be the communication cost of a private coin randomized
protocol as the worst communication cost of Pε,priv( · , · , rA, rB) over all rA, rB , likewise we
define

Rprivε (f) = min
Pε,privf

max
rA,rB

CC
(
Pε,privf ( · , · , rA, rB)

)
.

A public coin randomized protocol Pε with ε-error is a binary decision tree similar to a
deterministic protocol, except that its domain is X×Y ×Ω where Ω is random variable, different
functions av : X × Ω → {0, 1} and bv : Y × Ω → {0, 1}. A public coin randomized protocol is
like the private version, but Alice and Bob share a unique random variable Ω. A public coin
randomized protocol Pεf implements the function f , if for all (x, y) ∈ X × Y

Pr[Pεf (x, y) = f(x, y)] =
∑
ω

pΩ(ω)δ[Pεf (x, y, ω), f(x, y)], (5.1)

Pr[Pεf (x, y) = f(x, y)] ≥ 1− ε. (5.2)

The communication cost CC(Pε) of a public coin randomized protocol is the worst communica-
tion cost of Pε( · , · , ω) over all ω’s

Rε(f) = min
Pεf

max
ω

CC
(
Pεf ( · , · , ω)

)
.

From these definitions, we can directly establish relations between these complexity. Let
f : X × Y → Z be a function,

CCµε (f) ≤ Rε(f) ≤ Rprivε (f) ≤ CC(f). (5.3)

Theorem 5.0.1. (Yao’s principle)[Yao77]
Let f : X × Y → Z be a function and µ be an input distribution over X × Y . We have

Rε(f) = max
µ

CCµε (f).
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Yao’s principle allows us to lower bound Rε(f) by lower bounding CCµε (f), then maximizing
over all input distributions µ’s. We do not provide a proof, just an overview.

The proof is based on von-Neumann’s minimax theorem. A randomized protocol can be
interpreted as a two party zero-sum game, where the first player A choses an input (x, y) and the
second player B choses a deterministic protocol Pf,ω, where A wins when Pf,ω(x, y) = f(x, y)
and loses otherwise. Thus a strategy for A is an input distribution µ over X ×Y , and a strategy
for B is a probability distribution pΩ over deterministic protocols.

5.1 Lower bound methods

In this section, we show that a deterministic protocol Pf naturally induces a partition of
monochromatic rectangles on dom f .

Partition representation

A subset R ⊂ X × Y is a rectangle, if there exists X ′ ⊂ X and Y ′ ⊂ Y such that R = X ′× Y ′.
For the same rectangle R, we denote R[1] = X ′ and R[2] = Y ′. Moreover we introduce the
notation: x ∈1 R if x ∈ R[1], and y ∈2 R if y ∈ R[2]. For a function f , a subset S ⊂ domf is
f-monochromatic, if f is constant on S. If R is f -monochromatic, the notation f(R) indicates
the unique value of f on R.

Lemma 5.1.1. [Yao79]
Let f : X × Y → Z be a function. A deterministic protocol Pf induces a partition of f -
monochromatic rectangles on X × Y .

To prove Lemma 5.1.1 we use the fact that the intersection of two rectangles is still a rectangle.
Indeed for two rectangles R1 and R2 such that R1 = X1 × Y1 and R2 = X2 × Y2, we have
R1 ∩R2 = (X1 ∩X2)× (Y1 ∩ Y2).

Proof. Let v be a node in the binary decision tree Pf . We define Rv to be the set of inputs
that reach this node. For any deterministic protocol is deterministic, every input (x, y) ∈ X ×Y
reaches a unique leaf l, then (Rl)l∈L is a partition of X×Y , where L is the set of leaves. Moreover,
from the definition of Pf every Rl is f -monochromatic.
We must still show that every Rl is a rectangle, to prove it we use a recursion over the binary
tree from the root down to leaves.

• let t be the root of the decision tree, then Rt = X × Y ,

• let v be an internal node attached to a function av with the assumption that Rv is rectangle,
and v0, v1 be child-nodes of v, therefore

Rv0
= Rv ∩

({
x : av(x) = 0

}
× Y

)
,

Rv1
= Rv ∩

({
x : av(x) = 1

}
× Y

)
,

as the rectangle property is preserved under intersection, then Rv0 and Rv1 are rectangles,

• if a internal node v is attached to a function bv, we can use the same method that for av.
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This simple Lemma allows to derive a lower bound on the communication complexity. Since
a deterministic protocol induces a partition of X × Y with m rectangles, then this deterministic
protocol must use at least dlogme bits of communication to discriminate all rectangles. Let
CD(f) be the smallest f -monochromatic partition on X×Y , called the partition number. We
have

logCD(f) ≤ CC(f). (5.4)

Lemma 5.1.1 is not reciprocal. A f -monochromatic partition on X × Y does not imply the
existence of a deterministic protocol Pf that induces this partition. Hence, the lower bound
(5.4) is not tight [GPW15].

5.1.1 Discrepancy

The discrepancy is a lower bound method based on Lemma (5.1.1). Let S(f) be the set of all
f -monochromatic rectangles on domf , we define

disc(f) =
1

|dom|f max
R∈S(f)

|R|,

the size of the largest f -monochromatic rectangle divided by domf . Thus, every partition of
f -monochromatic rectangles needs at least ddisc(f)e rectangles, and using the same argument
as for (5.4), we obtain

− log disc(f) ≤ CC(f). (5.5)

This method can be adapted for Rε(f) using the Yao’s principle 5.0.1. Without giving details,
we define

discµ(f) = max
z∈Z

R∈S(f)

∣∣∣ ∑
(x,y)∈R

µ(x, y).(−1)δ[z,f(x,y)]
∣∣∣.

Where we choose a rectangle with the best trade-off between its size and its f -monochromaticity.
Then we obtain

log
(1− 2ε)

discµ(f)
≤ CCµε (f).

5.1.2 Partition bound

The partition bound prtε(f) is lower bound method for Rε(f), introduced by R. Jain and H.
Klauck in [JK10]. This method is like the lower bound (5.4) but adapted for Rε(f), and before
going further we should find an equivalent Lemma 5.1.1.

Lemma 5.1.2. Let f : X × Y → Z be a function, and SR be the set of all rectangle subsets of
X×Y . A public coin randomized protocol Pεf induces a weight ξR,z on each couple (R, z) ∈ SR×Z
satisfying:

(a) ∀R ∈ SR, ∀z ∈ Z, ξR,z ≥ 0,

(b) ∀(x, y) ∈ dom f,
∑
R∈SR:(x,y)∈R ξR,f(x,y) ≥ 1− ε,

(c) ∀(x, y) ∈ X × Y,
∑
z∈Z

∑
R∈SR:(x,y)∈R ξR,z = 1.
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Proof. A public coin randomized protocol Pεf can be seen as a distribution of deterministic proto-
cols P( · , · , ω) that we simplify by Pω. pΩ(ω) is a distribution relative to deterministic protocols
Pω. Hence, Pεf we can interpret as a distribution pΩ(ω) of partitions P (ω) of rectangles. For
each rectangle R ∈ P (ω), we associated an output z such that z = Pω(R). Then we use the
notation (R, z) ∈ P̂ (ω), where P̂ (ω) is a subset of P (ω × Z) and implies that R ∈ P (ω) and
Pω(R) outputs z.

As a protocol Pεf must satisfy Condition (5.1), we reformulate this condition under the fol-
lowing form

∀(x, y) ∈ dom f,
∑
ω∈Ω

(R,z)∈P̂ (ω):(x,y)∈R

pΩ(ω).δ[z, f(x, y)] ≥ 1− ε. (5.6)

To clarify more precisely Equation 5.6 above, we eliminate the variable ω by defining P̂ = ∪ωP̂ (ω)
and the weight λR,z as,

λR,z =
∑

ω∈Ω:(R,z)∈P̂ (ω)

pΩ(ω). (5.7)

The weight λR,z represents the probability of choosing a deterministic protocol Pω where the
rectangle R is in the partition P (ω) and output z on R. Using this notation we can reformulate
again Condition (5.6) as

∀(x, y) ∈ dom f,
∑(

R,f(x,y)
)
∈P̂ :(x,y)∈R

λR,f(x,y) ≥ 1− ε. (5.8)

Also as a public coin randomized protocol always gives an output, we can show that the following
equality is respected,

∀(x, y),
∑

(R,z)∈P̂ :(x,y)∈R

λR,z =
∑
ω∈Ω

pΩ(ω)
∑

(R,z)∈P̂ (ω):(x,y)∈R

1 = 1. (5.9)

Finally, as λR,z ≥ 0 by definition, the choice ξR,z = λR,z if (R, z) ∈ P̂ and ξR,z = 0 otherwise,
satisfies all required conditions.

Now, we define the partition bound prtε(f).

Definition 5.1.3. (Partition bound)[JK10]
The partition bound of a function f with error ε, denoted prtε(f), is defined by the linear
program

prtε(f) = min
ξR,z≥0

∑
R∈SR

∑
z∈Z

ξR,z s.t. ∀(x, y) ∈ dom f,
∑

R:(x,y)∈R

ξR,f(x,y) ≥ 1− ε,

∀(x, y) ∈ X × Y,
∑
z∈Z

∑
R:(x,y)∈R

ξR,z = 1.

Theorem 5.1.4. [JK10]
Let f : X × Y → Z be a function. We have

log prtε(f) ≤ Rε(f).
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Proof. Let Pεf be a public coin randomized protocol, therefore weights λR,z in the proof of Lemma
5.1.2 is a feasible solution of the linear program prtε(f), according to Equations (5.8) and (5.9).
Moreover, the sum of all λR,z is equal to the average size of the partition P̂ (ω),∑

(R,z)∈P̂

λR,z =
∑
ω∈Ω

pΩ(ω)
∑

(R,z)∈P̂ (ω)

1 =
∑
ω∈Ω

pΩ(ω)|P̂ (ω)| =
〈
|P̂ (ω)|

〉
pΩ

.

Since the solution λR,z is not necessary optimal,

prtε(f) ≤ 〈|P (ω)|〉pΩ
≤ max

ω
|P̂ (ω)|.

Finally we conclude,

log prtε(f) ≤ max
ω

CC(Pω) ≤ CC(Pεf ).

For the first inequality we use the argument that, at least dlog |P̂ (ω)|e bits of communication is
needed to discriminate all rectangles in P̂ (ω). The second inequality comes from the definition
of CC(Pεf ).

The partition bound prtε(f) can be also be adapted to CCµε (f),

Definition 5.1.5. (Partition bound with distribution)[KLL+12]
The partition bound with distribution of f with error ε and input distribution µ, denoted prtµε (f),
is defined by the linear program

prtµε (f) = min
ξR,z≥0

∑
R∈SR

∑
z∈Z

ξR,z subject to,

•
∑

(x,y)∈dom f

µ(x, y)
∑

R:(x,y)∈R

ξR,f(x,y) +
∑

(x,y)/∈dom f

µ(x, y)
∑
z∈Z

R:(x,y)∈R

ξR,z) ≥ 1− ε,

• ∀(x, y) ∈ X × Y,
∑
z∈Z

∑
R:(x,y)∈R

ξR,z = 1.

Although we do not provide a proof, we can observe that the error condition on each input
(x, y) has relaxed to an average error condition relative to input distribution µ, and for each
input outside of dom f Alice and Bob automatically succeed.

5.1.3 Information complexity

The communication exchanged between Alice and Bob can be represented by a transcript m:
the concatenation of bits sent. For a randomized protocol Pε, this transcript is determined by the
input (x, y) and, public and private coins Ω, then we can define a function g : X × Y ×Ω→M ,
where M is the set of all possible transcripts. Moreover, when X ×Y are random variables with
the joint probability distribution µ, the function g(x, y, ω) is measurable function that induces a
probability distribution π over M , such that

∀m, π(m) =
∑
ω∈Ω

pΩ(ω).µ
(
{(x, y) ∈ X × Y : Pε(x, y, ω) sends m}

)
.

Hence M is random variable with the distribution π. Hence, we can extend this probability
distribution to Ω×M ×X × Y , such that for all ω,m, x, y we have

π(x, y, ω,m) = µ(x, y).pΩ(ω).δ[Pε(x, y, ω) sends m]. (5.10)
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The definition of π can be generalized naturally to different protocols, as Pεµ and Pε,priv.

In Information theory, the Shannon information of a message is always shorter than its size.
Hence we can lower bound the communication complexity by a new resource, called information
complexity. We define the internal information cost by,

ICµint(π) = I(Y : M |X,Ω) + I(X : M |Y,Ω),

where the first term is the information than Alice learns from Bob’s input, once the protocol
over and the transcript known, and vice-versa for the second term.
Similarly, we define the information that a third party observing Alice and Bob learned of (x, y),
once the transcript known.

ICµext(π) = I(X,Y : M,Ω).

This is the external information cost.
The following Proposition shows that external information cost and internal information cost
have a natural order.

Proposition 5.1.6. [BR11]
Let µ be an input distribution and π be a distribution induced by a protocol Pεµ. We have

IC µ
int(π) ≤ IC µ

ext(π) ≤ CC(Pεµ),

where IC µ
int(π) and IC µ

ext(π) are equal, if µ is a product distribution over X × Y .

For a function f and a distribution µ over X × Y , we define

ICµ,ε• (f) = min
π: ∃Pεf which induces π

ICµ• (π), (5.11)

where the superscript • means either int or ext. Finally by maximization over all input distri-
butions µ’s, we define

ICε•(f) = max
µ a distribution over X×Y

ICµ,ε• (f). (5.12)

From the definition of communication cost CC(Pεµ,f ), Yao’s principle 5.0.1 and Proposition 5.1.6,
we obtain

ICµ,εint(f) ≤ ICµ,εext(f) ≤ CCµε (f),

ICεint(f) ≤ ICεext(f) ≤ Rε(f).

Information complexity and partition bound are the two main lower bound methods for com-
munication complexity, since they both subsume all norm based methods, such as the discrepancy
method [JK10]. This result has been proved by using a new communication model, called the
zero-communication model.

5.2 Zero-communication model

In the zero-communication model Alice and Bob want to compute a function f without com-
munication, but with shared randomness and aborting allowed. They both receive respectively
input x and y, then they respectively output a value a and b, or they can decide to abort by
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sending ⊥. Alice and Bob succeed to compute a function f(x, y), if f(x, y) = a = b.

For this model, we define P⊥ to be a protocol with zero-communication and shared random-
ness where Alice an Bob can abort. A protocol P⊥f outputs f(x, y) for all (x, y) when Alice

and Bob do not abort. The efficiency of a protocol P⊥, denoted eff(P⊥), is the minimum
probability that this protocol does not abort over all inputs (x, y). Of course, a good protocol
for this model has a large efficiency. Hence for a function f , we define eff(f) to be the minimum
efficiency of a zero-communication protocol with shared randomness, as

eff(f) = min
P⊥f

eff(P⊥).

The advantage of the efficiency is that it can be expressed as a linear program. We define
Z⊥ = Z ∪ {⊥} to be the extension of the output set, and FA = {f : A → Z⊥} the set of all
functions that characterizes Alice’s deterministic action. (FB similarly for Bob.)

Definition 5.2.1. (Efficiency)
The efficiency of a function f denoted eff(f) is defined by the linear program

eff(f) = max
η≥0

pfAfB≥0

η s.t. ∀(x, y) ∈ dom f,
∑

fA∈FA: fA(x)=f(x,y)
fB∈FB : fB(y)=f(x,y)

pfAfB = η, (5.13)

∀(x, y) ∈ X × Y,
∑

fA∈FA: fA(x)6=⊥
fB∈FB : fB(y)6=⊥

pfAfB = η, (5.14)

∑
fA∈FA:
fB∈FB

pfAfB = 1. (5.15)

In a similar way, the maximum efficiency of a zero-communication with private randomness
can be defined replacing the joint distribution p(fAfB) by a product distribution pA(fA).pB(fB).

We have introduced this model because the efficiency eff(f) is related to the partition bound
prt0(f) with error null, and is a natural lower bound for communication complexity CC(f)
[LLR12].

Theorem 5.2.2. [LLR12]
Let f : X × Y → Z be a function. We have

prt0(f)

|Z|
≤ eff(f)−1 ≤ prt0(f) ≤ 2CC(f).

Proof. We prove inequalities one by one.

(A)
prt0(f)

|Z| ≤ eff(f)−1.

From an optimal solution of eff(f) we construct a feasible solution of prt0(f) with an optimal
value less than |Z|eff(f)−1.
Let η and pfAfB be an optimal solution of eff(f) satisfying Conditions (5.13), (5.14) and (5.15).
Functions fA and fB provide a unique partition P (fA, fB) of X × Y , with at most (|Z| + 1)2

rectangles. Among this partition Alice and Bob agree on the same value z ∈ Z without aborting
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on at most |Z| rectangles. We define for all R ∈ SR and z ∈ Z,

ξR,z =
1

η

∑
fA,fB :R∈P (fA,fB)

fA(R[1])=z
fB(R[2])=z

pfAfB .

Where for each fA and fB , if fA(R[1]) and fB(R[2]) both output z, and R ∈ P (fA, fB) then we
add the weight pfAfB to ξR,z. The solution ξR,z satisfies both conditions of prt0(f) in Definition
(5.1.3),

• ∀(x, y) ∈ dom f,
∑

R:(x,y)∈R

ξR,f(x,y) =
1

η

∑
R:(x,y)∈R

∑
fA,fB :R∈P (fA,fB)
fA(R[1])=f(x,y)
fB(R[2])=f(x,y)

pfAfB ,

=
1

η

∑
fA,fB

fA(R[1])=f(x,y)
fB(R[2])=f(x,y)

∑
R∈P (fA,fB): (x,y)∈R

pfAfB ,

=
1

η

∑
fA,fB

fA(x)=f(x,y)
fB(y)=f(x,y)

pfAfB ,

= 1,

• ∀(x, y) ∈ X × Y,
∑
z∈Z

∑
R:(x,y)∈R

ξR,z =
1

η

∑
z∈Z

∑
R:(x,y)∈R

∑
fA,fB :R∈P (fA,fB)

fA(R[1])=z
fB(R[2])=z

pfAfB ,

=
1

η

∑
z∈Z

∑
fA,fB
fA(x)=z
fB(y)=z

pfAfB ,

=
1

η

∑
fA,fB

fA(x) 6=⊥
fB(y) 6=⊥

pfAfB ,

= 1.

Since ξR,z is a feasible solution of prt0(f), we have

prt0(f) ≤
∑
z∈Z

∑
R∈SR

ξR,z ≤
|Z|
η

∑
fA,fB

pfAfB =
|Z|
η

= |Z|eff(f)−1.

Where each weight pfAfB has been added at most Z times.

(B) eff(f)−1 ≤ prt0(f).
From an optimal solution of prt0(f) we construct a feasible solution of eff(f) with an optimal
value less than prt0(f).
Let ξR,z be an optimal solution of prt0(f) satisfying both conditions in Definition (5.1.3). We
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define functions fR,zA and fR,zB for each rectangle R and output z,

fR,zA (x) =

{
z if x ∈1 R,
⊥ otherwise,

and fR,zB (y) =

{
z if y ∈2 R,
⊥ otherwise.

We define η and pfAfB by,

1

η
=
∑
z∈Z

∑
R∈SR

ξR,z and pfAfB =

{
η.ξR,z if fA = fR,zA and fB = fR,zB ,

0 otherwise.

We show that η and pfAfB satisfy Conditions (5.13), (5.14) and (5.15),

• ∀(x, y) ∈ dom f,
∑

fA: fA(x)=f(x,y)
fB : fB(y)=f(x,y)

pfAfB = η
∑

R:(x,y)∈R

ξR,f(x,y) = η,

• ∀(x, y) ∈ X × Y,
∑

fA: fA(x)6=⊥
fB : fB(y)6=⊥

pfAfB = η
∑
z∈Z

∑
R:(x,y)∈R

ξR,z = η,

•
∑
fA,fB

pfAfB = η
∑
z∈Z

∑
R∈R

ξR,z = 1.

From the definition of η we conclude that, 1
η ≤ prt0(f).

(C) prt0(f) ≤ 2CC(f).

The proof directly comes from Theorem 5.1.4 and inequalities (5.3).

5.3 More lower bound methods

Definition 5.3.1. (Relaxed partition bound with distribution)[KLL+12]
The relaxed partition bound with distribution of f with error ε and input distribution µ, denoted
prt

µ
ε (f), is defined by the linear program

prt
µ
ε (f) = min

η≥0
pR,z≥0

1

η
subject to,

•
∑

(x,y)∈dom f

µ(x, y)
∑

R:(x,y)∈R

pR,f(x,y) +
∑

(x,y)/∈dom f

µ(x, y)
∑
z∈Z

R:(x,y)∈R

pR,z) ≥ η(1− ε),

• ∀(x, y) ∈ X × Y,
∑
z∈Z

∑
R:(x,y)∈R

pR,z ≤ η,

•
∑
z∈Z

∑
R

pR,z = 1.

Fact 5.3.2. Let µ be an input distribution, ε be an error and f be a function. We have

prt
µ
ε (f) ≤ prtµε (f)

.
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Proof. Let ξR,z be a feasible solution of prtµε (f). Then the choice

• 1

η
=
∑
R,z

ξR,z, (5.16)

• pR,z = ηξR,z, ∀R, z, (5.17)

is a feasible solution of prt
µ
ε (f).

Indeed, we can derive the relaxed partition bound with distribution from the partition bound
with both substitution (5.16), (5.17), and by “relaxing” the equality condition to an inequality
condition. Note that pR,z can be interpreted as a probability distribution over SR × Z.

Definition 5.3.3. (Relaxed partition bound)[KLL+12]
The relaxed partition bound of f with error ε, denoted prtε(f), is defined by the linear program

prtε(f) = min
η≥0

pR,z≥0

1

η
s.t. ∀(x, y) ∈ dom f,

∑
R:(x,y)∈R

pR,f(x,y) ≥ η(1− ε),

∀(x, y) ∈ X × Y,
∑
z∈Z

∑
R:(x,y)∈R

pR,z ≤ η,

∑
z∈Z

∑
R

pR,z = 1.

The relaxed partition bound with error prtε(f) is directly related to the relaxed partition
bound with distribution prt

µ
ε (f).

Fact 5.3.4. [KLL+12]
prtε(f) = max

µ a distribution over X×Y
prt

µ
ε (f).

The relaxed partition bound with error, as indicated by its name, is weaker than the partition
bound with error.

Fact 5.3.5. [KLL+12] Let f be a function and ε an error. We have

prtε(f) ≤ prtε(f),

with equality when ε is null.

Finally, we show an important theorem that links the relaxed partition bound with informa-
tion complexity.

Theorem 5.3.6. [KLL+12]
Let f : X×Y → Z be a function, ε and δ be two errors, and µ an input distribution. Then there
exists a positive constant C such that

IC µ,ε
int(f) ≥ δ2

C
.
(

log prt µε+3δ(f)− log |Z|
)
− δ. (5.18)

Hence, the above Theorem implies the relaxed partition bound prt(f) is subsumed by the
information complexity ICint(f). Moreover, from this Theorem the relaxed partition can be
used to lower bound the information complexity. However, in Inequality (5.18) if negative terms
log |Z| or δ are too large and prt(f) too small, then the lower bound from Theorem 5.3.6 will
not be relevant.
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5.4 Simulation model

A way to generalize previous models introduced in this chapter, is to replace the function f(x, y)
by a conditional distribution p(a, b|x, y), such that for an external observer, Alice and Bob receive
separately x and y, then output respectively a and b according to p(a, b|x, y). In this model Alice
and Bob share randomness and communication is allowed.

We define P to be the set of all conditional distributions
(
p(a, b|x, y)

)
x,y,a,b

with (x, y, a, b) ∈
X × Y ×A×B, where p( · , · |x, y) is a probability distribution over A×B for each input (x, y).
We simply denoted by p an element of P.

The special case of computing a function f is represented by,

∀x, y, a, b, pf (a, b|x, y) =

{
1 if f(x, y) = a = b,
0 otherwise.

A deterministic distribution p in P is determined by two functions fA : X → A and
fB : Y → B such that

∀x, y, a, b, p(a, b|x, y) = δ[a = fA(x)].δ[b = fB(y)].

We denote Ldet the set of all deterministic distributions. A private randomness distribution
p in P is described by random variables RA and RB , and sets of functions {fA : X ×RA → A},
{fB : Y ×RB → B} such that for all x, y, a, b,

p(a, b|x, y) =
∑

rA∈RA

pRA(rA)δ[a = fA(x, rA)] ·
∑

rB∈RB

pRB (rB)δ[b = fB(x, rB)]. (5.19)

We define Lpriv to be the set of all private randomness distributions. A local distribution p
in P is determined by random variable Ω, and two functions fA : X × Ω→ A, fB : Y × Ω→ B
such that

for all x, y, a, b, p(a, b|x, y) =
∑
ω∈Ω

pΩ(ω)δ[a = fA(x, ω)].δ[b = fB(y, ω)].

We denote L the set of all local distributions. Note that P is the convex hull of all deterministic
distributions. So we have Ldet ⊂ Lpriv ⊂ L ⊂ P. We define ‖ · ‖TV to be a distance between
two conditional distributions as,∥∥p− q

∥∥
TV

= max
x,y

∣∣p(a, b|x, y)− q(a, b|x, y)
∣∣
TV
,

where | · |TV is the total variance.

A protocol Pp simulates p, if for each input (x, y) Alice and Bob output (a, b) with probability
p(a, b|x, y). So the communication cost for p is defined by

R0(p) = min
Pp

CC(Pp),

Rε(p) = min
q∈P:‖p,q‖TV ≤ε

R0(q).

For a input distribution µ, the internal/external information cost for p is defined by

ICµ• (p) = min
π: ∃Pp which induces π

ICµ• (π),

IC•(p) = max
µ a distribution over X×Y

ICµ• (p),
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Zero communication case

The zero communication model can be also extended to the simulation model. In this model
Alice and Bob cannot communicate but they can abort (⊥). As sets A and B have been extended
to A ∪ {⊥} and B ∪ {⊥}, respectively, we define equivalently sets P⊥, L⊥det and L⊥. Obviously
their relations are preserved,

L⊥det ⊂ L⊥priv ⊂ L⊥ ⊂ P⊥.

The efficiency defined in Definition 5.2.1 can be adapted to the simulation model.

Definition 5.4.1. [LLR12]

eff(p) = max
η≥0
ql≥0

η subject to,

•
∑
l∈Ldet

ql · l(a, b|x, y) = η . p(a, b|x, y), ∀x, y, a, b ∈ X × Y ×A×B,

•
∑
l∈Ldet

ql = 1.

5.5 One-way model

Finally, we end this chapter by introducing the one-way model. This model is a special case
where only one player communicates (We choose Alice by convention.) More precisely, a one-
way protocol P→ is a binary decision tree where each decision at a vertex v is made by a function
av. As the definition of communication cost CC can be applied to one-way protocols without need
to generalize, we automatically obtain definition for CC→(f), CCµ,→ε (f), Rpriv,→ε (f), R→ε (f),
R→ε (p), eff→(f) and eff→(p). Except for information cost ICµ• (π), therefore we similarly define

ICµ,→(π) = I(X : M,Ω),

where µ is an input distribution on X×Y , and π the distribution over the transcript set induced
by the marginal distribution µX .
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Chapter 6

Convex optimization

In this chapter, we do a brief introduction to the theory of convex optimization. We define
optimization problems and give some important tools of this field like: the dualization method,
Lagrangian, and Slater’s condition. These tools will be used in Chapter 9. We also show im-
portant results as the Karush-Kuhn-Tucker conditions and the Envelope theorem. These results
will mainly be used in Chapter 8.

Although orignal, this chapter has been written with the help of the book [BV10] of S. Boyd
and L. Vandenberghe. If you wish to learn about optimization theory, I strongly recommend this
book.

6.1 Optimization problems

Intuitively, an optimization problem is a problem where we are not only looking for a solution,
but for the best solution. A point x of Rn is a solution or a feasible point, if it satisfies some
well-defined conditions. The set of all solutions C, called feasible set, is a subset of Rn. To
compare each solution we use a function mapping C on a total ordered set, mostly the real line
R, this function is called the objective function f .
An optimization problem can be represented under its minimization or maximization form:

inf
x∈C

f(x) or sup
x∈C
−f(x).

In this thesis, we choose to represent optimization problems under its minimization form.

For the moment the set of feasible points C is arbitrary. A set C too difficult to identify could
make the problem harder, for example the set R \Q. Therefore, we restrict to a set C described
by a finite number of inequality and equality constraints.
Inequality constraints are represented by inequality functions gi : Rn → R for i ∈ {1, . . . , p}.
Equality constraints are represented by equality functions hj : Rn → R for j ∈ {1, . . . , q}. We
summarize respectively these constraints by the inequality vector g(x) and the equality vector
h(x).
The domain D of an optimization problem is defined by domains of the objective function and

67
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all constraints functions,

D = dom f

p⋂
i=1

dom gi

q⋂
j=1

domhj .

As equality and inequality functions have a definition, we define the feasible set to be,

C =

{
x ∈ D

∣∣∣∣ g(x) ≤ 0, and h(x) = 0

}
.

Finally, we rewrite an optimization problem under its most known form

inf
x∈D

f(x) subject to ∀i ∈ {1, . . . , p}, gi(x) ≤ 0,

∀j ∈ {1, . . . , q}, hj(x) = 0.
(6.1)

If there is no solution that satisfied all constraints (C is empty), then the optimization problem
is called unfeasible. If there exists a sequence xn ∈ C such that f(xn)→ −∞, then the optimiza-
tion problem is called unbounded. Otherwise the optimization problem has a well-defined value
p∗, called optimal value, and defined as,

p? = inf
{
f(x) : x ∈ C

}
.

By convention, p? takes the value +∞ if the optimization problem is unfeasible, and the value
−∞ if it is unbounded.
An optimal point x? is a feasible point with f(x?) = p?. The set of all optimal points is defined
as,

X? =
{
x ∈ C : p? = f(x)

}
.

Remark. If C is bounded, closed and non-empty then X? is non-empty.

6.2 Category of optimization problems

Optimization problems can be sorted in several categories. Some category have useful properties,
to solve them. Here we introduce several categories of optimization problems from the general
form (6.1) described at the beginning of this chapter,

inf
x∈D

f(x) subject to ∀i ∈ {1, . . . , p}, gi(x) ≤ 0,

∀j ∈ {1, . . . , q}, hj(x) = 0.
(6.2)

6.2.0.1 Linear program

A linear program is an optimization problem where all functions f , gi and hj are affine.
Linear programs are well-known problems. There exists several algorithms to solve linear pro-
grams. The most famous is the Simplex algorithm [GA11] by G. Dantzig that is notably efficient
in practice.

6.2.0.2 Quadratic program

A quadratic program is an optimization problem where the objective function f and all constraint
functions gi, hj are quadratic forms.
For a positive quadratic form the ellipsoid method solves the problem efficiently [Kha80], other-
wise it can be NP-hard.
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6.2.0.3 Convex optimization problem

A convex optimization problem is an optimization problem where functions f and gi are convex,
and functions hj are affine.
Further in this chapter, we will show that these problems have interesting properties. For exam-
ple, every locally optimal point is a global optimal point and the set X? is convex. Moreover,
the strong duality is easy to prove with the Slater’s conditions.

6.2.0.4 Generalized optimization problem

The objective function f and equality functions hj are linear forms like for a linear program,
except that inequality constraints are generalized. Let K be a proper cone inside Rn. We can
replace the order ≤ on R by a generalized order ≤K , and inequality functions are now defined
as gi : Rn → V .
Note that all proofs in this chapter stay valid for these generalized optimization problems.

6.2.0.5 Semi-definite program

A semi-definite program is an example of generalized optimization problem where the usual order
on R is replaced by the Loewner order ≤Sn+ .

inf
x∈Mn(K)

f(x) subject to ∀i, gi(x) ≤S+ 0,

∀j, hj(x) = 0.

In other words, a semi-definite program is a linear program with the Loewner generalized order.
In quantum computation complexity, we often study problems under this form. Especially in
this thesis where lower bound methods, as the Adversary method, are semi-definite programs.

6.3 Lagrangian and duality

From an optimization problem written under Form (6.1) we can construct its Lagrangian

L(x,λ,µ) = f(x) +
〈
λ,g(x)

〉
+
〈
µ,h(x)

〉
,

= f(x) +

p∑
i=1

λigi(x) +

p∑
j=1

µjhj(x),
(6.3)

where vectors λ ∈ Rp and µ ∈ Rq are named dual vectors or dual variables, and a couple (λ,µ) is
called a dual point. Real numbers λi and µj are called Lagrange multipliers. Note that L(x,λ,µ)
is an affine function in (λ,µ) for x ∈ D.

The following property helps to understand the utility of the Lagrangian.

Property 6.3.1.

x ∈ C ⇔ ∀ λ ∈ Rp+, µ ∈ Rq,
∑
i

λigi(x) +
∑
j

µjhj(x) ≤ 0. (6.4)

Proof. If x ∈ C then g(x) ≤ 0 and h(x) = 0. Since λ ≥ 0 and µ then
〈
λ,g(x)

〉
≤ 0 and〈

µ,h(x)
〉

= 0. In the opposite direction, if x /∈ C then at least one of (in)equalities constraints
are violated, such that there exists i0 or j0 where gi0(x) > 0 or hj0(x) 6= 0. Then it suffices to
take λi = δi,i0 or µj = hj(x)δj,j0 .
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A direct result of the above Property is a lower bound for the objective function.

∀x ∈ C,λ ∈ Rp+,µ ∈ Rq, L(x,λ,µ) ≤ f(x), (6.5)

This inequality is tight by choosing the dual point (0, 0).

Property 6.3.1 shows how Lagrange multipliers λi and µj can be seen as “penalties”, when
x diverges from C. Indeed for x /∈ C, we can choose (λ,µ) such that L(x,λ,µ) becomes as large
as we wish. Therefore, by maximizing over all “penalties”(λ,µ), any point x outside C become
unfeasible:

sup
λ≥0
µ

L(x,λ,µ) =

{
f(x) if x ∈ C,
+∞ otherwise.

From this simple observation, the form (6.1) can be written under two news forms. A min-max
form,

inf
x∈D

sup
λ≥0
µ

L(x,λ,µ) = inf
x∈D

f(x) s.t. x ∈ C. (6.6)

And a minimization form where x? is an optimal point,

sup
λ≥0
µ

L(x?,λ,µ) = f(x?) = p?. (6.7)

6.4 Lagrange dual function

A Lagrangian is strongly related to its optimization problem, by definition. From the Lagrangian
L(x,λ,µ) we introduce the Lagrange dual function, a function related to an optimization prob-
lem, but independent of x.

Definition 6.4.1 (Lagrange dual function).

d(λ,µ) = inf
x∈D

L(x,λ,µ). (6.8)

The Lagrange dual function lower bounds the optimal value p?, when λ ≥ 0.

Property 6.4.2. For all λ ∈ Rp+ and µ ∈ Rq, d(λ,µ) ≤ p?.

Proof. The proof is quick.

d(λ,µ) = inf
x∈D

L(x,λ,µ) ≤ inf
x∈C

L(x,λ,µ) ≤ inf
x∈C

f(x) = p?.

The first inequality holds because C ⊆ D. The second inequality is implied by the result (6.5).

The above Property 6.4.2 highlights that d(λ,µ) defines a lower bound for p? when λ ≥ 0.
Finally, by maximizing over Lagrange multipliers we construct another optimization problem,
called the Lagrange dual problem.

Definition 6.4.3 (Lagrange dual problem).

sup
λ,µ

d(λ,µ) subject to λ ≥ 0. (6.9)
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Remark. In this thesis, this maximization form is referred as the dual form or the dual problem.
And the initial optimization problem is now called, in opposition, the primal form or the primal
problem. In other literature, we can find the opposite convention: the primal form refers to the
maximization form and vice-versa. The choice is not important but we have to make one.

Similarly to the primal form, we define the dual optimal value d? as,

d? = sup
{
d(λ,µ) : λ ∈ Rp+, µ ∈ Rq

}
.

We define (λ?,µ?) to be a dual point that maximizes the dual form, such that d(λ?,µ?) = d?,
also called optimum Lagrange multipliers or dual optimal point (λ?,µ?).

An important consequence of Property 6.4.2 is, d? ≤ p?. This property is called weak duality.

Definition 6.4.4 (Weak duality).

d? ≤ p?. (6.10)

The weak duality implies a direct order relation between the primal and dual problem:

(a) If the primal problem is unbounded (p? < −∞), then the dual problem is unfeasible.

(b) If the dual problem is unbounded (d? > +∞), then the primal problem is unfeasible.

Another way to understand the weak duality is to express an optimization under its min-max
form (6.6), and its Lagrange dual function under its max-min form, composed from (6.8) and
(6.9).

sup
λ≥0
µ

inf
x∈D

L(x,λ,µ) ≤ inf
x∈D

sup
λ≥0
µ

L(x,λ,µ). (6.11)

The above inequality is the trivial part of the Minimax theorem [Von28]. The equality holds
when the Lagrangian L has a saddle-point.

6.5 Strong duality

From the weak duality the Lagrange dual function is a lower bound of its optimization problem.
But if the weak duality is tight, these two optimization problem are equal.

Definition 6.5.1 (Strong duality). An optimization problem satisfies the strong duality if

d? = p?. (6.12)

If an optimization problem satisfies the strong duality then:

(a) The primal problem is unbounded, if and only if the dual problem is unfeasible.

(b) The dual problem is unbounded, if and only if the primal problem is unfeasible.

Assume there exists a primal optimal point x? and a dual optimal point (λ?,µ?). From
Definition 6.4.3 and Equation (6.5), we have

d(λ?,µ?) = inf
x∈D

L(x,λ?,µ?) ≤ L(x?,λ?,µ?) ≤ f(x?), (6.13)
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where the first inequality comes from the choice x = x?. Therefore, the strong duality can also
be represented with this equation,

f(x?) = d(λ?,µ?).

If the strong duality holds then the inequality (6.13) becomes an equality. Moreover, if a dual
optimal point (λ?,µ?) exists, then the primal problem can be expressed by a minimization of
L( · ,λ?,µ?) over D, instead of minimizing the objective function f over C.

If the strong duality holds and both primal and dual optimal points exists, then (x?,λ?,µ?)
is a saddle-point of the Lagrangian L(x,λ,µ).

Property 6.5.2. Let x? be an optimal primal point and (λ?,µ?) be an optimal dual point.
Assume that the strong duality is valid. Then for all x ∈ D, λ ∈ Rp+, µ ∈ Rq,

L(x?,λ,µ) ≤ L(x?,λ?,µ?) ≤ L(x,λ?,µ?). (6.14)

Moreover L(x?,λ?,µ?) is equal to the optimal value p? and d?.

Proof. The first inequality comes from Equation (6.7). The second inequality comes from In-
equality (6.13). Finally, we know that x? minimizes L(x,λ?,µ?) over D when the strong duality
holds.

The above Property implies important properties on optimal primal point x? and optimal
dual point (λ?,µ?).

Corollary 6.5.3 (Complementary slackness). Let x? be an optimal primal point and (λ?,µ?)
be an optimal dual point. Assume that the strong duality is valid. Then

∀ i ∈ {1 . . . p}, λ?i = 0 or gi(x
?) = 0.

Proof. From Property 6.5.2 we know,

p? − L(x?,λ?,µ?) = 0, such that,
〈
g(x?),λ?

〉
+
〈
h(x?),µ?

〉
= 0.

Since x? is a feasible point, h(x?) is null and g(x?) is non positive. As λ? ≥ 0, each term gi(x
?)λi

is non positive. However, their sum is null then each product term in the sum
〈
λ?,g(x?)

〉
is

null.

6.6 KKT conditions

Hereafter, we assume that functions f , gi and hj are differentiable with open domains.

In the previous Section we have proved that the strong duality implies that a optimization
problem can be written under a minimization form over D for objective function the Lagrangian
L(x,λ?,µ?), where (λ?,µ?) are dual optimal point. Therefore, a point x is optimal only if the
derivative of L at x is null.

Dfx(x?) +
〈
λ?, Dxg(x?)

〉
+
〈
µ?, Dxh(x?)

〉
= 0. (6.15)

The above Equation is a necessary condition for a point x to be optimal, but not sufficient.
Adding several conditions such as Conditions in Corollary 6.5.3, we obtain the Karush-Kuhn-
Tucker conditions.
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Definition 6.6.1 (KKT conditions).

gi(x
?) ≤ 0 ∀ i = {1, . . . , p} (6.16)

hj(x
?) = 0 ∀ j = {1, . . . , q} (6.17)

λ?i ≥ 0 ∀ i = {1, . . . , p} (6.18)

λ?i gi(x
?) = 0 ∀ i = {1, . . . , p} (6.19)

Df(x?) +
〈
λ?, Dg(x?)

〉
+
〈
µ?, Dh(x?)

〉
= 0 (6.20)

If an optimization problem satisfies the strong duality and has a saddle-point (x?,λ?,µ?),
then this optimization problem satisfies the KKT conditions. However, the KKT conditions are
not sufficient. Indeed, let x0 ∈ C be a local minimum of the objective function f , then the triplet
(x0, 0) satisfies the KKT conditions.

In the next Section we restrict to particular optimization problems where the KKT conditions
are necessary and sufficient; convex optimization problems.

6.7 Convex optimization problems

A raw and exhaustive method to solve an optimization problem is to:

(1) find all local optima, solution of the equation, Df(x) = 0,

(2) eliminate solutions that are not local minimal or feasible,

(3) take the global minimum among all remaining solutions.

From this method, we understand that the presence of several local optima complicates greatly
an optimization problem. Considering an convex optimization problem eludes this problem.

Definition 6.7.1 (Convex optimization problem). A convex optimization problem is a particular
optimization problem, where:

• the objective function f is convex,

• for all i = {1, . . . , p}, inequality functions gi are convex,

• for all j = {1, . . . , q}, equality functions gi are affine.

From this definition several properties arise.

Property 6.7.2. The domain D and the feasible set C are convex.

Proof. Since all functions f , g and h are convex, their domain too, then D.
For C, let x0, x1 ∈ C, λ ∈ [0, 1], and xλ = (1 − λ)x0 + λx1. Using convexity of g(x), g(xλ) ≤
(1− λ)g(x0) + λg(x1) ≤ 0. And h(xλ) = (1− λ)h(x0) + λh(x1) = 0.

Property 6.7.3. For all λ ≥ 0 and µ, the Lagrangian L is convex.

Proof. As λi is positive, then λigi stays a convex function. For all µj ∈ R, the function µjhj
stays affine f. We conclude knowing that a sum of convex functions is a convex function.

We define precisely a locally optimal point of an optimization problem.
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Definition 6.7.4. Let x0 be a point in C and R a positive real. A point x0 is a locally optimal
point of an optimization problem (6.2), if there exists R where x0 is an optimal point of the
optimization problem,

inf
x∈D

f(x) subject to ∀i ∈ {1, . . . , p}, gi(x) ≤ 0,

∀j ∈ {1, . . . , q}, hj(x) = 0,

‖x− x0‖ ≤ R.

(6.21)

Property 6.7.5. Any locally optimal point of a convex optimal problem is a globally optimal
point.

Proof. We prove by contradiction.
Let x0 and x1 be two locally optimal points with f(x0) > f(x1). Since x0 is a locally optimal
point, then there exists a neighborhood R > 0 where for all y ∈ B(x0, R), f(y) ≥ f(x0). From
Property 6.7.2, the convex combination xλ = (1− λ)x0 + λx1 is also in C, for all λ ∈ [0, 1]. We
choose λ̄ such that xλ̄ ∈ B(x0, R), then

f(xλ̄) ≤ (1− λ̄)f(x0) + λ̄f(x1) < f(x0).

Since xλ̄ is in neighborhood of x0, contradiction.

This is an important property of convex optimization problems. Therefore, if the objective
functions f is differentiable with an open domain, every solution of Df(x) = 0 is an optimal point.

Another important property of convex optimization problems, is that the KKT conditions
6.6.1 are now sufficient when the strong duality holds.

Property 6.7.6. Let be a convex optimization problem where the objective function and con-
straint functions are differentiable with open domains, and the strong duality holds. Then every
triplet (x,λ,µ) that satisfies the KKT conditions is an optimal primal-dual point.

Proof. Let (x̄, λ̄, µ̄) be a solution of the KKT conditions. From Conditions (6.16), (6.17), (6.18)
in Definition 6.6.1, x̄ and (λ̄, µ̄) are respectively feasible primal and dual points. Since the strong
duality holds, we have

d(λ̄, µ̄) ≤ d? = p? ≤ f(x̄).

As λ̄ ≥ 0, the Lagrangian L(x, λ̄, µ̄) is convex in x ∈ D, and Condition (6.20) implies than x̄
minimizes the Lagrangian on D. Then,

d(λ̄, µ̄) = inf
x∈D

L(x, λ̄, µ̄),

= L(x̄, λ̄, µ̄),

= f(x̄) +
〈
λ̄,g(x̄)

〉
+
〈
µ̄,h(x̄)

〉
,

= f(x̄),

where the two last terms are null from Conditions (6.17) and (6.19).

Another important result for convex optimization problems is the Slater’s condition. This
condition allows to easily check the strong duality of a convex optimization problem.

Definition 6.7.7 (Slater’s condition). Let D be the domain of an optimization problem. Slater’s
condition is satisfied, if there exists x ∈ relintD, a strictly feasible point, such that g(x) < 0 and
h(x) = 0.
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Theorem 6.7.8 (Slater’s theorem). [Sla14] For a convex optimization problem, if Slater’s con-
dition is satisfied then the strong duality too.

The proof is in Appendix B.

6.8 Envelope theorem

An optimization problem gives the “best” value of an objective function evaluated over feasible
point. But what happens if the objective function or the feasible set dependent on a parameter
t? How will p? evolve on s? continuously? deferentially? And if the late question is true, can
we find an expression of its derivative? An example that appears on mathematical economics, is
when the market fixes prices that restrained feasible actions, but prices can later change. The
Envelope theorem answers these questions.

The Enveloppe theorem has been introduced by R.B. Mirrlees [Mir71], but nowadays there
exists several Envelope theorems in mathematical literature. In this Section the Envelope theo-
rem presented is a recent result of P. Milgrom and I. Segal [MS02]. A main difference from the
original theorem is that there is only one condition on domain sets, relieving the first theorem.
The other difference is: We don’t study the variation of the minimization of an objective func-
tion, p?, but the variation of the min-max of its Lagrangian, which is equivalent if the strong
duality is valid.

Let A and B be two non-empty sets. We define F : A×B× [0, 1]→ R to be a function, such
that for almost all t ∈ [0, 1], F (a, b, t) has a saddle-point (a?, b?) in A × B. In other words, for
almost all t ∈ [0, 1],

∀ a ∈ A, b ∈ B, F (a?, b, t) ≤ F (a?, b?, t) ≤ F (a, b?, t).

From previous Sections, A and B is interpreted, respectively, as D and Rp+ × Rq. The function
F is interpreted as the Lagrangian of an optimization problem where the strong duality holds,
such that

p?(t) = inf
a∈A

sup
b∈B

F (a, b, t) = sup
b∈B

inf
a∈A

F (a, b, t).

Note that for each t ∈ [0, 1], the set of all saddle-points is the product set A?(t) × B?(t)
defined as

A?(t) =
{
a ∈ A

∣∣ sup
b∈B

F (a, b, t) = p?(t)
}
,

B?(t) =
{
b ∈ B

∣∣ inf
a∈A

F (a, b, t) = p?(t)
}
.

Theorem 6.8.1 (Envelope theorem). [MS02]
Let A and B be two non-empty sets and F : A× B × [0, 1]→ R be a function. Assume that:

(1) for almost all t ∈ [0, 1], A?(t)× B?(t) is non-empty,

(2) for all a ∈ A, b ∈ B, F (a, b, t) is absolutely continuous in t,

(3) for all (a, b) ∈ A×B, and almost all t ∈ [0, 1], there exists an integrable function c : [0, 1]→ R
that bounds |Dt F (a, b, t)| ≤ c(t).

Then p?(t) is absolutely continuous.
In addition assume that:
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(4) A and B are topological spaces satisfying the second axiom of countability1,

(5) Dt F (a, b, t) is continuous in each of a ∈ A and b ∈ B,

(6) the family
(
F (a, b, t)

)
(a,b)∈A×B is equi-differentiable in t.

Then for any selection
(
a?(t), b?(t)

)
∈ A?(t)× B?(t),

p?(t) = p?(0) +

∫ t

0

dsDsF
(
a?(s), b?(s), s

)
.

The proof is in the appendix C.

1A topological space satisfies the second axiom of countability if it has a countable base.
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Chapter 7

A universal adiabatic quantum
query algorithm

The adversary method Advreg defined in Chapter 4 (Definition 4.3.4) is a method for lower
bounding the quantum query complexity Qdt

ε . In their article [LMR+11], T. Lee et al. have
constructed a quantum query algorithm with a query cost linear in Advreg and a bounded
error. This implies that Advreg characterizes the bounded-error quantum query complexity Qdt

ε

(Theorem 4.3.7).

Theorem. Let ρ and σ be two unitary Gram matrices, and ε > 0. Then

Qdtε (ρ→ σ) = Θ

(
Advreg

ε (ρ→ σ)

ε

)
.

As Advreg also lower bounds the quantum query complexity Qct
ε [YM11], a corollary of this

Theorem is that Advreg also characterizes the bounded-error quantum query complexity Qct
ε for

the continuous time model. Since an algorithm in the discrete time model can easily be converted
to the continuous time model by replacing each unitary operator by a Hamiltonian. But this
conversion not very satisfying from the point of view of physics, where a reasonable Hamiltonian
is smooth. Hence, a first motivation is to construct a continuous query algorithm more adapted
to the continuous time model. Moreover, we directly prove the characterization of Qct

ε .
The algorithm constructed in [LMR+11] is well-defined and simple, since it is constructed

from the “phase-detection” procedure. However, its evolution is difficult to describe. Another
motivation is with a clearer evolution to better understand the original algorithm, as the error
grows.

First, we provide an original proof that Advreg lower bounds Qct
0 based on the described

method as in Subsection 4.3.2; i.e. we introduce an observable M , a unit vector v, and analyze
the average value 〈M〉t over time. To do this last step, we use the well known Ehrenfest’s theorem
[Ehr]

d 〈M〉t
dt

= −i 〈[M,H(t)]〉t +

〈
∂M

∂t

〉
t

.

Secondly, we introduce a universal adiabatic quantum query algorithm, denoted by Adia-
Convert, based on the Adiabatic theorem [BF28] of M. Born and V. Fock. The Hamiltonian

79
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of this algorithm is constructed with optimal vectors of the dual form of Advreg. We bound
the adiabatic error with Lemma 3.1.3 showing that a query cost linear in Advreg is sufficient to
obtain a bounded error. We recall the definition of Adv± and give its dual from.

Advreg(ρ→ σ) = sup
M

v:‖v‖=1

〈
M ◦ vv∗, σ − ρ

〉
, (7.1)

subject to ∀ k ∈ {1 . . . n}, M − Id ≤M ◦∆reg
k ≤M + Id. (7.2)

Advreg(ρ→ σ) = inf
m∈N

ux,k,vy,k∈Cm
max

{
max
x∈X

∑
k

‖ux,k‖2,max
y∈X

∑
k

‖vy,k‖2
}
, (7.3)

subject to ∀x, y ∈ X , (σ − ρ)[x, y] =
∑
k

〈ux,k,vy,k〉 .∆reg
k [x, y]. (7.4)

Combining these two results leads to the following theorem.

Theorem 7.0.1. [LMR+11, YM11] Let ρ and σ be two unitary Gram matrices, and ε > 0.
Then

Qctε (ρ→ σ) = Θ

(
Advreg

ε (ρ→ σ)

ε

)
.

7.1 Adversary lower bound in the continuous-time model

In this section we give a direct proof that the adversary method Advreg is a lower bound for Qct
0 ,

the zero-error quantum query complexity in the continuous-time model.

Theorem 7.1.1. [YM11] Let ρ and σ be two unitary Gram matrices, and ε ∈]0, 1]. Then,

Qct
0 (ρ→ σ) ≥ 1

2
Advreg

0 (ρ→ σ),

Qct
ε (ρ→ σ) ≥ 1

2
Advreg

ε (ρ→ σ).

Proof. Let |ρx(t)〉 be the state of the algorithm on input x at time t ∈ [0, T ], and ρ(t) be the
unitary Gram matrix of those states. Let M be an N -by-N Hermitian matrix and v be a
N -dimensional unit vector. We consider the following superposition of states:

|ρ̂t〉 =
∑
x

vx |x〉I |ρx(t)〉A with trA |ρ̂t〉〈ρ̂t | = ρ(t) ◦ vv∗,

where HA is the actual register of the algorithm, while HI is a (virtual) input register that has
been introduced for the sake of analysis.

Since each state |ρx(t)〉 evolves under the Hamiltonian Hx(t) as defined by Equation (4.3),
the state |ρ̂t〉 evolves under the following global Hamiltonian

H(t) =
∑
x

|x〉〈x| ⊗Hx(t). (7.5)
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Similar to Subsection 4.3.2, we consider an observable M , a unit vector v and the average value
〈M〉t, defined as

〈M〉t = 〈M,ρ(t) ◦ vv∗〉 ,
= trI [M(ρ(t) ◦ vv∗)] ,
= 〈ρ̂t |M ⊗ IdA |ρ̂t〉 ,
≡ 〈M ⊗ IdA〉|ρ̂(t)〉 .

From Ehrenfest’s theorem [Ehr], this average value evolves as

d 〈M〉t
dt

= −i 〈[M ⊗ IdA, H(t)]〉|ρ̂(t)〉 +

〈
∂M ⊗ IdA

∂t

〉
|ρ̂(t)〉

,

where the second term is zero since M ⊗ IdA is time-independent. Therefore, we have

d 〈M〉t
dt

= −i 〈[M ⊗ IdA, H(t)]〉|ρ̂(t)〉 ,

= −i
∑
x,y

vxv
∗
yM [y, x] 〈ρy(t) |Hx(t)−Hy(t) |ρx(t)〉 ,

= −iα(t)
∑
x,y

vxv
∗
yM [y, x]

∑
k:xk 6=yk

〈ρy(t) | |k〉〈k| ⊗ [h(xk)− h(yk)] |ρx(t)〉 ,

= −iα(t)
∑
k

∑
x,y

(1− δ[xk, yk])vxv
∗
yM [y, x]ρ̂k(t)[x, y],

= iα(t)
∑
k

〈
M ◦ (∆ph

k − J), ρ̂k(t) ◦ vv∗
〉
,

where we define for each k, the matrix

ρ̂k(t)[x, y] = 〈ρy(t) | |k〉〈k| ⊗ [h(xk)− h(yk)]|ρx(t)〉 .

The matrices ρ̂k are different from matrices ρk introduced in Subsection 4.3.2 In particular they
are not necessarily positive semi-definite, and hence we cannot use the Conditions in Definition
4.3.4 to complete the proof. Instead, we use the γ2 norm and its properties.
Knowing that |α(t)| ≤ 1, we bound the variation of the average value by∣∣∣∣d 〈M〉tdt

∣∣∣∣ ≤
∣∣∣∣∣∑
k

〈
M ◦ (∆ph

k − J), ρ̂k(t) ◦ vv∗
〉∣∣∣∣∣

≤
∑
k

‖M ◦ (∆ph
k − J)‖.‖ρ̂k(t) ◦ vv∗‖tr,

≤
∑
k

‖M ◦ (∆ph
k − J)‖.γ2

(
ρ̂k(t)

)
,

≤ max
k
‖M ◦ (∆ph

k − J)‖ ·
[∑

k

γ2

(
ρ̂k(t)

)]
,

where we use Lemma 2.1.3 to deduce the second equality, and Fact 2.1.9 for the third equality.

Now, we show that
∑
k γ2

(
ρ̂k(t)

)
≤ 2. First, as

(
|k〉〈k|

)
k

is a set of orthogonal projectors

defined from the orthogonal basis (|k〉)k, we have
∑
k γ2

(
ρ̂k(t)

)
= γ2

(∑
k ρ̂k(t)

)
.



82 CHAPTER 7. A UNIVERSAL ADIABATIC QUANTUM QUERY ALGORITHM

Using the minimization form in Definition 2.1.8, we show that there exists {ux,wx}x∈X such
that

∑
k ρ̂k(t)[x, y] = 〈ux, wy〉 and maxx

{
max{‖wx‖2, ‖ux‖2}

}
≤ 2.

ux = −HQ(x) |ρx(t)〉 |0〉+ |ρx(t)〉 |1〉 ,
wx = |ρx(t)〉 |0〉+HQ(x) |ρx(t)〉 |1〉 .

Then, we have 〈ux,wy〉 =
∑
k ρk(t)[x, y], and the upper bound on the norms of these vectors

follows from conditions ‖h(l)‖ ≤ 1 for all l ∈ Σ, which imply ‖HQ(x)‖ ≤ 1 for all x. Since∑
k γ2

(
ρk(t)

)
≤ 2, the last bound is reduced to∣∣∣∣d 〈M〉tdt

∣∣∣∣ ≤ 2 max
k

∥∥M ◦ (∆ph
k − J)

∥∥.
Moreover, for a zero-error algorithm we also have∣∣ 〈M ◦ (σ − ρ),vv∗〉

∣∣ =
∣∣ 〈M〉T − 〈M〉0 ∣∣,

=

∣∣∣∣∣
∫ T

0

d 〈M〉t

∣∣∣∣∣ ,
≤ T sup

t∈[0,T ]

∣∣∣∣d 〈M〉tdt

∣∣∣∣ ,
≤ 2T max

k
‖M ◦ (∆ph

k − J)‖.

As remarked, Equivalence (4.16) implies that conditions of the maximization form of Advreg

(Definition 4.3.4) are equivalent to ∥∥M ◦ (∆ph
k − J)

∥∥ ≤ 1.

Finally, by maximization over observables M and unit vectors v, we obtain the lower bound,

T ≥ 1

2
Advreg(ρ→ σ).

7.2 Adiabatic quantum query algorithm

In this section, we build an adiabatic quantum query algorithm, denoted by AdiaConvert(ρ, σ, ε),
for solving the quantum state conversion problem (ρ→ σ), with an error ε and a running time,

T = O
(Advreg(ρ→ σ)

ε

)
.

Together with Theorem 4.3.6, this results implies that the adversary method Advreg
ε characterizes

the quantum query complexity in the continuous-time model for a bounded error (Theorem 7.0.1).

Description of AdiaConvert The algorithm acts on a Hilbert space,

H = HO ⊕HQ ⊗HV ⊗HW ,

where HO is the input/output register, HQ the query register, HW the workspace register and
HV receives the oracle’s answer. Without loss of generality, we can make the initial and target
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states orthogonal by adding an ancilla qubit: state |0〉 for |ρx〉 and |1〉 for |σx〉. We define a
smooth path from |ρx〉 |0〉 to |σx〉 |1〉:∣∣φ+

x (s)
〉
O = cos θ(s) |0, ρx〉O + sin θ(s) |1, σx〉O ,

with θ(s) = π
2 s and s ∈ [0, 1]. Moreover we define an orthogonal vector to this path,∣∣φ−x (s)

〉
O =− sin θ(s) |0, ρx〉O + cos θ(s) |1, σx〉O ,

with the relation |φ−x (s)〉 = 2
π∂s |φ

+
x (s)〉.

From the dual form of Advreg (7.3), let
(
|ux,k〉 , |vx,k〉

)
(x,k)

be an optimal solution of the dual

of Advreg(ρ → σ), and Advreg its optimal value, . We use those states to define the following
non-normalized vectors:∣∣Ψ+

x (s, ε)
〉

=
∣∣φ+
x (s)

〉
O +

ε√
Advreg

∑
k

|k〉Q
∣∣x+
k

〉
V |ux,k〉W ,

∣∣Ψ−x (s, ε)
〉

=
∣∣φ−x (s)

〉
O + ξ(s)

√
Advreg

ε

∑
k

|k〉Q
∣∣x−k 〉V |vx,k〉W ,

where
∣∣x±k 〉 is defined as (4.4), and ξ(s) = 2 cos θ(s) sin θ(s). Note that we have

〈
x−k
∣∣ y+

k

〉
=

1
2

(
1− δ[xk, yk]

)
. Also we define |ψ±x (s, ε)〉 to be the normalized version of |Ψ±x (s)〉.

The Hamiltonian of the algorithm is described by its driver Hamiltonian and oracle Hamil-
tonian. The driver Hamiltonian is the projection Λ(s, ε) on the vector subspace V (s, ε) defined
as

V (s, ε) = span
{ ∣∣Ψ−x (s, ε)

〉
: x ∈ X

}
.

The oracle Hamiltonian is defined by

Πx =
∑

k∈{1...n}

|k〉〈k|Q ⊗ |x−k 〉〈x
−
k |V ⊗ IdW ,

where we note that the condition ‖Πx‖ ≤ 1 is respected.

AdiaConvert(ρ, σ, ε)

1 Prepare the state |0, ρx〉.

2 If Advreg < ε/2, do nothing.

3 Otherwise apply the Hamiltonian Hx(s, ε) = Λ(s, ε)−Πx,
where s = t/T and T = 15Advreg

ε , from t = 0 to t = T .

The action of the algorithm is simple. First, if Advreg < ε/2, then we claim that ρ and σ are
close enough and satisfy the coherent output condition given in Definition 4.1.1.

Proposition 7.2.1. Let ρ and σ be two unitary Gram matrices. Then,

DH(ρ, σ) ≤ Advreg(ρ→ σ).
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Proof. Since the trace distance may be rewritten as

D(ρ′, σ′) = max
M :‖M‖≤1

1

2
〈M, (ρ′ − σ′)〉 ,

we can reformulate the Hadamard product distance (2.2) as

DH(ρ, σ) = max
M :‖M‖≤1/2
u:‖u‖=1

〈M, (ρ− σ) ◦ uu∗〉 = max
M :‖M‖≤1/2

‖M ◦ (ρ− σ)‖.

We observe that this form is similar to Advreg in Definition 4.3.4, except for the constraints
on M . We conclude the proof by showing that conditions on M are weaker for Advreg, i.e. if
‖M‖ ≤ 1/2, then ‖M ◦ (J−∆reg

k )‖ ≤ 1 for all k ∈ {1 . . . n}.

For each k ∈ {1 . . . n}, we have

‖M ◦ (J−∆reg
k )‖ ≤ ‖M‖+ ‖M ◦∆reg

k ‖ ≤
(

1 + γ2(∆reg
k )
)
‖M‖,

where the inequalities follows from the triangle inequality and Fact 2.1.9, respectively. We
finally upper bound γ2(∆reg

k ) using the minimization form in Definition 2.1.8 with an appropriate
choice. For each k, we choose ux = vx = exk , with (ei)i a canonical basis. We thus have,
〈ux,vy〉 = ∆reg

k [x, y] = δ[xk, yk], which entails γ2(∆k) ≤ 1.

Using Proposition 7.2.1 and first inequality in Corollary 2.1.7, we conclude that
Advreg < ε/2 implies that FH(ρ, σ) > 1− ε/2 >

√
1− ε.

If we reach step 3, in order to convert the initial state |0, ρx〉 into a state close enough to the
target state |1, σx〉, we consider the state |ψ+

x (s, ε)〉 which is ε-distant to the state |φ+
x (s)〉 inter-

polating between the initial and target state. We use the adiabatic process {Hx(s, ε), Px(s, ε), T}
with failure ε, where Px(s, ε) is the rank-one orthogonal projection on the state |ψ+

x (s, ε)〉. The
correctness of the adiabatic evolution is based on Lemma 3.1.4, where the solution of Equation
(3.9) follows from Item 5 in the next Proposition 7.2.2. Then the final state is 3ε-distant from
the target state, since the algorithm incurs error ε at the initial state, during the adiabatic pro-
cess, and at the target state. This implies that we solve the quantum state generation problem
with error at most 9ε2, and in turn that

Qct
9ε2(ρ→ σ) ≤ 15

Advreg(ρ→ σ)

ε2
.

The proof of Theorem 7.0.1 is the consequence of the existence of the optimal quantum query
algorithm, i.e. AdiaConvert. As the number of queries involved is given by the time scale T ,
the demonstration relies on the derivation of an adiabatic bound linear in Advreg.

In order to prove Theorem 7.0.1, we first derive several useful properties of the algorithm
AdiaConvert.

Proposition 7.2.2. For all s ∈ [0, 1], ε > 0 and for all x ∈ X . We have

1) Nx(ε)
def
= ‖ |Ψ+

x (s, ε)〉 ‖ ≤ 1 + ε2/2,

2) |φ+
x (s)〉 and |ψ+

x (s, ε)〉 are ε-distant,

3) Λ(s, ε) |ψ+
x (s, ε)〉 = 0,
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4) |ψ+
x (s, ε)〉 is an eigenvector of Hx(s, ε) with eigenvalue λx(s, ε) = 0,

5) 〈ψ+
x (s, ε) |

(
∂s |ψ+

x (s, ε)〉
)

= 0,

6) ∂s |Ψ+
x (s, ε)〉 = π

2Hx(s, ε) |Ψ−x (s, ε)〉 ,

7) ‖ |Ψ−x (s, ε)〉 ‖2 ≤ 1 +
(
Adv?/ε

)2
.

Remark. Item 5 is the key property that prevents the instantaneous state |ψ+
x (s, ε)〉 from

leaking to degenerate subspaces with the same eigenvalue.

Proof. 1) By Definition 7.3, we have
∑
i ‖ |ux,i〉 ‖2 ≤ Advreg, then,

N2
x(ε) =

∥∥∥ ∣∣Ψ+
x (s, ε)

〉 ∥∥∥2

= 1 +
ε2

Advreg

∑
i

∥∥∥ |ux,i〉∥∥∥2

≤ 1 + ε2.

Then Item 1 follows from the inequality
√

1 + δ ≤ 1 + δ/2, for δ ∈ [0, 1].

2) The scalar product of these vectors gives〈
ψ+
x (s, ε)

∣∣ φ+
x (s)

〉
=

1

Nx(ε)

〈
Ψ+
x (s, ε)

∣∣ φ+
x (s)

〉
=

1

Nx(ε)
≥ 1− ε2/2.

Since this scalar product is real, we have∥∥∣∣φ+
x (s)

〉
−
∣∣ψ+
x (s, ε)

〉∥∥2
= 2− 2

〈
ψ+
x (s, ε)

∣∣ φ+
x (s)

〉
≤ ε2.

3) As Λ(s, ε) is the projection on subspace V (s, ε) = span{|Ψ−x (s, ε)〉 : x ∈ X}. Then, it
suffices to show that for all x, y ∈ X ,

〈
Ψ+
x (s, ε)

∣∣ Ψ−y (s, ε)
〉

= 0. By definition of |Ψ+
x (s, ε)〉 and

|Ψ−x (s, ε)〉, we have〈
Ψ+
x (s, ε)

∣∣ Ψ−y (s, ε)
〉

= − cos θ(s) sin θ(s)
[
ρ[x, y]− σ[x, y]−

∑
k:xk 6=yk

〈ux,k | vy,k〉
]
.

The right hand side is then zero due to properties of
{
|ux,k〉 , |vx,k〉

}
(x,k)

in Definition 7.4.

4) From Item 3 we already know that Λ(s, ε) |ψ+
x (s, ε)〉 = 0. Then,

Πy

∣∣ψ+
x (s, ε)

〉
∝
∑
k

(
1− δ[xk, yk]

) ∣∣k, x+
k , ux,k

〉
,

which is null for x = y.

5) The property follows from

∂s
∣∣ψ+
x (s, ε)

〉
=

1

Nx(ε)
∂s
∣∣Ψ+

x (s, ε)
〉

=
π

2Nx(ε)

∣∣φ−x (s)
〉

and the fact that, 〈
ψ+
x (s, ε)

∣∣ φ−x (s)
〉
∝
〈
φ+
x (s)

∣∣ φ−x (s)
〉

= 0.
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6)

∂s
∣∣Ψ+

x (s, ε)
〉

=
π

2

∣∣φ−x (s)
〉
,

=
π

2

(
Id−Πx

) ∣∣Ψ−x (s, ε)
〉
,

=
π

2

[(
Λ(s, ε)−Πx

)
+
(
Id− Λ(s, ε)

)] ∣∣Ψ−x (s, ε)
〉
,

=
π

2
Hx(s, ε)

∣∣Ψ−x (s, ε)
〉
.

In the second line, Πx acts as the identity on
∣∣k, x−k 〉. In the third line, the second term is zero

by definition of Λ(s, ε).

7) Similarly to the proof of Item 1 all vectors |vx,k〉 have their norm bounded by Advreg,
then we obtain ∥∥∥ ∣∣Ψ−x (s, ε)

〉 ∥∥∥2

= 1 + ξ2(s)
Adv?

ε2

∑
i

∥∥∥ |vx,i〉∥∥∥2

≤ 1 +

(
Adv?

ε

)2

,

since ξ(s) = 2 sin
(
θ(s)

)
cos
(
θ(s)

)
= sin

(
2θ(s)

)
.

Proof of Theorem 7.0.1.

We denote Advreg = Advreg(ρ→ σ). We show that AdiaConvert solves the quantum state
conversion in time T = 15Adv?

ε2 with error at most 9ε2. Let us first consider the case where
Advreg < ε/2. Then, Proposition 7.2.1 implies DH(ρ, σ) < ε/2, and Corollary 2.1.7 concludes
that FH(ρ, σ) > 1− ε/2 >

√
1− ε, so that the coherent output condition is already satisfied by

the unitary Gram matrix ρ.

We now assume that Adv? ≥ ε/2. Before we go any further, we must justify that the triplet
{Hx(s, ε), Px(s, ε), T} is an adiabatic process as defined in Definition 3.1.1. First by definition,
the state |ψ±x (s, ε)〉 is smooth on s. It follows that Hx(s, ε) and Px(s, ε) are also smooth on s.
Moreover, by Item 4 of Proposition 7.2.2, |ψ+

x (s, ε)〉 is an eigenstate of Hx(s, ε) with a constant
eigenvalue λx(s, ε) = 0.

In order to bound the error of the adiabatic process εAP with Lemma 3.1.4, we define an
operator Xx(s, ε) to be a solution of Equation (3.9), with Xx(s, ε) and Ẋx(s, ε)Px(s, ε) both
bounded.

∀x ∈ X , Xx(s, ε) =
π

2Nx(ε)

∣∣Ψ−x (s, ε)
〉〈
ψ+
x (s, ε)

∣∣ .
Items 4 and 6 of Proposition 7.2.2 imply that,

[Hx(s, ε), Xx(s, ε)] = Hx(s, ε)Xx(s, ε) = Ṗx(s, ε)Px(s, ε).

To obtain εAP we derive a bound for Xx(s, ε) and Ẋx(s, ε)Px(s, ε).
• First, we have

‖Xx(s, ε)‖2 =
[ π

2Nx(ε)

]2∥∥∥ ∣∣Ψ−x (s, ε)
〉 ∥∥∥2

.
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From Item 7 of Proposition 7.2.2 and the fact that Adv? ≥ ε/2, we obtain

∥∥ ∣∣Ψ−x (s, ε)
〉 ∥∥2 ≤ 1 +

(
Adv?

ε

)2

≤ 5

(
Adv?

ε

)2

,

knowing that Nx(ε) ≥ 1 we obtain the bound : ‖Xx(s, ε)‖ ≤ π
√

5
2

Adv?

ε .

• Secondly, to bound ‖Ẋx(s, ε)Px(s, ε)‖ we derive Xx(s, ε)

Ẋx(s, ε) =
π

2Nx(ε)
∂s
( ∣∣Ψ−x (s, ε)

〉)〈
ψ+
x (s, ε)

∣∣+
π2

4Nx(ε)

∣∣Ψ−x (s, ε)
〉〈
φ−x (s)

∣∣ .
After adding Px(s, ε) on the right side, the second term disappears following Item 5 of Propo-
sition 7.2.2, and we have

‖Ẋx(s, ε)Px(s, ε)‖2 =
[ π

2Nx(ε)

]2∥∥∥∂s ∣∣Ψ−x (s, ε)
〉 ∥∥∥2

≤
[π

2

]2(π2

4
+ π2 cos2(πs)

Adv?

ε2

∑
k

‖ |vx,k〉 ‖2
)

≤
[π

2

]2
π2
(1

4
+

Adv?2

ε2

)
≤
[π

2

]2
2π2 Adv?2

ε2
.

Thereby we have all the required conditions to use Lemma 3.1.4 for the adiabatic process
{Hx(s, ε), Px(s, ε), T}, which ensures that εAP ≤ ε, if

T ≥ 15Adv?

ε2
≥ 1

ε

[Adv?

ε

(
π
√

5 +
π2

√
2

)]
.

Let |σ̃x〉 be the output state. Since the initial state |0, ρx〉 and the target state |1, σx〉 are ε-
distant from |ψ+

x (0, ε)〉 and |ψ+
x (1, ε)〉 (Item 2 of Proposition 7.2.2) and the adiabatic process

introduces an additional error of εAB ≤ ε, the output state |σ̃x〉 and the target state |1, σx〉 are
3ε-distant, which implies that Re(〈σ̃x | 1, σx〉) ≥

√
1− 9ε2. Therefore, we obtain

Qct
9ε2(ρ, σ) ≤ 15

Adv?

ε2
,

which implies the theorem by setting ε′ = 9ε2.
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Chapter 8

A new lower bound for Qct

Throughout this Chapter we use the notation introduced in Chapter 4, in particular the Gram
matrix representation from Section 4.2. We only work in the continuous-time model with a binary
alphabet1, together with the phase-Hamiltonian oracle representation with ∆̂τ

k. We also switch

frequently between notation, k̂ and (k, τ).

The adversary method introduced in Section 4.3.2 characterizes the bounded-error quantum
query complexity Qε for discrete et continuous time models (Theorems 4.3.7 and 7.0.1), but
it left open its characterization for the unbounded-error and the zero-error cases. The charac-
terization of Q0 would be useful, since Lemma 4.1.2 characterizes Qε for any ε in term of Q0

(including unbounded error) using the Hadamard product distance (2.2). This characterization
will be useful in domains such as cryptography where one might want to prove hardness results
even for very low success probabilities.
Also, the characterization of Qε for the unbounded-error case could allow to demonstrate compo-
sition theorems as strong direct product theorem. For example, a function composed of k other
functions with non-zero error may have its error depending on k.

A good candidate to characterize the quantum query complexity is the multiplicative adver-
sary method (Definition 4.3.9), since this method subsumes the polynomial method (Subsection
4.3.1) and the adversary method Advreg [MR13]. Moreover, the multiplicative adversary method
inherently satisfies a strong direct product theorem [LR12].

The main idea is to define a lower bound method powerful enough to characterize Qε. The
method is called Adversary action, Sadv, and it is a generalization of the adversary method.
However, this method is too complicated to be used in practice. Then, we hope to simplify Sadv
to Madvct without loss of generality.

First, we introduce an adapted version of Proposition 4.2.2 to the continuous time model, that
allows to check if a differentiable path γ ∈ ΓN is feasible or not. From this new Proposition 8.1.1,
we adapt adversary methods Advdt and Madvdt to the continuous time model by construction
new adversary methods Advct and Madvct, introduced earlier in Definitions 8.2.1 and 8.2.4.
Then we prove that these new methods lower bound the quantum query complexity Qct0 . We
also prove that Madvct subsumes Advct.

1This choice is not a restriction. It only make the analysis simple.
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After, we construct our new adversary method Sadv, the adversary action. This method
relies on the query Lagrangian L based on a semi-definite program that derive from the adapted
version of Proposition 4.2.2. We prove several properties of L such as strong duality and optimal
points existence. As the adversary action is constructed as a physical action, we use the Euler-
Lagrange equation to derive conditions on a locally optimal path. Finally, we show that Sadv
naturally subsumes Advct and Madvct.

We also construct a new adversary method Sadv called the adversary action. This method
relies on the query Lagrangian L based on Proposition 8.1.1. Thereafter, we use these properties,
we establish several conditions that a locally optimal solution of Sadv must satisfy. Finally, we
show that Sadv naturally subsumes Advct and Madvct.

8.1 Feasible differentiable paths

We recall several notations introduced in Section 4.1.2.A quantum query algorithm A is described
by,

Hx(t) = HD(t) + α(t)HQ(x), with ‖HQ(x)‖ ≤ 1∀x,
and α : [0, T ]→ [0, 1].

and a time-dependent quantum state |γx(t)〉 is defined as

|γx(t)〉 =
∑

(k,τ)∈n̂

|k〉Q ⊗ |γx;kτ (t)〉W .

In Section 4.2, we have introduced the Gram matrix representation and the set of possible
differentiable paths as

Γct[ρ→ σ] =
⋃

T∈R+

{
γ(t) ∈ C1

(
[0, T ], GN

)
: γ(0) = ρ and γ(1) = σ

}
.

In order to simplify the notation, we discard the running time T with the substitution Ĥx(s) =
T ·Hx(T · s). We also define β(s) to be equal to α(s)/π such that a query can be implemented
with a unit of time. Hence the Hamiltonian of the algorithm becomes

Ĥx(s) = T ·HD(s · T ) + πβ(s)HQ(x), with ‖HQ(x)‖ ≤ 1∀x,
and β(s) = T · α(s · T )/π.

Hence, the query cost of an algorithm A defined by Equation 4.7 becomes

q(A) =

∫ 1

0

ds β(s). (8.1)

From the definition of β(s), the running time is now defined by

T =
1

π
sup
s∈[0,1]

|β(s)|.

And the definition of Γct is simplified by

Γct[ρ→ σ] =
{
γ(t) ∈ C1

(
[0, 1], GN

)
: γ(0) = ρ and γ(1) = σ

}
.
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Proposition 8.1.1. Let ρ be unitary Gram matrix, δ be a Hermitian matrix and β0 a positive
real. Then, we can transform infinitesimally ρ to ρ+ δ with an infinitesimal query of the Hamil-
tonian β0H

ph
Q , if and only if there exists a set of positive semi-definite matrices (γk̂)k̂∈n̂, such

that

ρ =
∑
k̂∈n̂

γk̂ and δ = β0

∑
k∈{0···n}
τ∈{+1,−1}

γτk ◦ ∆̂τ
k, (8.2)

where for all (k, τ) ∈ n̂, ∆̂τ
k = iτ(yk − xk) and γk̂ = γτk for k̂ = {k, τ}.

Proof. The path ρ(s) is generated by a quantum query algorithm defined by Hx(s) with the

oracle Hamiltonian Hph
Q (x) as defined in 4.5, and s ∈ [0, 1]. We must prove that the derivative

of ρ(s) evolving under Hx(s) is equal to dρ.

d

ds
ρ[x, y](s) =

d

ds

(
〈ρx(s) | ρy(s)〉

)
,

= i 〈ρx(s) |Hx(s)−Hy(s) |ρy(s)〉 ,

= iβ(s) 〈ρx(s) |Hph
Q (x)−Hph

Q (y) |ρy(s)〉 ,

= iβ(s)
∑

k∈{0...n}
τ=±

τ 〈k, τ, ρx;kτ (s) |h(xk)− h(yk) |k, τ, ρy;kτ (s)〉 ,

= iβ(s)
∑

k∈{0...n}
τ=±

τ
[
xk − yk

]
〈ρx;kτ (s) | ρy;kτ (s)〉 ,

= β(s)
∑

k∈{0...n}
τ=±

∆̂τ
k[x, y].ρkτ [x, y](s),

where |ρy;kτ (s)〉 is defined by (4.6), and ρkτ = Gram
(
|ρx;kτ 〉 : x ∈ X

)
. In other words,

d

ds
ρ(s) = β(s)

∑
k∈n̂

ρk(s) ◦ ∆̂k. (8.3)

The other direction comes from Corollary 4.2.1.

Hence, a possible differentiable path γ is feasible, if for each s ∈ [0, 1] there exists (γk̂) and
β0(s) that satisfy conditions in Proposition 8.1.1. Moreover, the query cost q(γ) and the running
time T (γ) of this path is defined as,

q(γ) =

∫ 1

0

ds β0(s),

T (γ) = sup
s∈[0,1]

β0(s).

Remark. Is every feasible path γ ∈ Γct[ρ → σ] is associated to a quantum query algorithm?
This is an open question. However, from a feasible path we can construct a family of discrete-
time quantum query algorithm (An)n with increasing precision.
For a nonnegative integer n, we can convert a differentiable path γ to a discrete path where
the interval [0, 1] has been splitting into n equal subintervals ([mn ,

m+1
n ])i. Then for all m ∈
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{0 . . . n−1}, we can convert γ(mn ) to γ(m+1
n ), with error, by implementing the oracle Hamiltonian

Ĥx(mn ) with a fraction β0(mn )/n. For all x ∈ X and m ∈ {0 . . . n− 1}, we obtain∣∣∣γ+
x

(m
n

)〉
= e−

i
nβ0(mn )HQ(x)

∣∣∣γx(m
n

)〉
.

Then, between each oracle call we use the driver Hamiltonian to transport
∣∣γ+
x (mn )

〉
as close as

possible to
∣∣γx(m+1

n )
〉
, for all x ∈ X . Hence, although a feasible path γ may not be converted to

a continuous-time quantum query algorithm, we can construct a sequence of query algorithms
(An)n with error going to zero and query cost going to q(γ) when n goes to infinity.

8.2 Adversary methods

In this Section, we define new Adversary methods Advct and Madvct, adapted version of Advdt

and Madvdt for Qdt. We prove that these new methods lower bound Qdt using Proposition 8.1.1.
Finally, we prove that Advdt and Madvdt respectively subsume Advct and Madvct.

8.2.1 Adversary method Advct

The following definition of Advct is constructed with the same reasoning that Advdt, except that
we use the phase-Hamiltonian with ∆̂τ

k[x, y] = iτπ(xk − yk).

Definition 8.2.1 (Adversary method for continuous time).

Advct
0 (ρ→ σ) = sup

M
v:‖v‖=1

〈
M ◦ vv∗, σ − ρ

〉
,

subject to ∀ k ∈ {0 . . . n}, τ ∈ {+1,−1} −Id ≤M ◦ ∆̂τ
k ≤ Id.

Note that the above definition of Advct
0 is similar to Advdt

0 , only the conditions change.

Theorem 8.2.2. Let ρ and σ be two unitary Gram matrices. Then,

Advct0 (ρ→ σ) ≤ Qct0 (ρ→ σ).

The proof is a consequence of the following Lemma.

Lemma 8.2.3. Let M be an observable, v be a unitary vector and ρ(t) be a feasible differentiable
path. We define 〈M〉t = 〈M,ρ(t) ◦ vv∗〉. If

− Id ≤M ◦ ∆̂τ
k ≤ +Id, for all k ∈ {0 . . . n}, τ ∈ {+1,−1}, (8.4)

then, ∣∣∣∣d 〈M〉tdt

∣∣∣∣ ≤ 1.

Proof. As ρ(t) is feasible, from Proposition 8.1.1 we know that for all s ∈ [0, 1] there exists(
γk̂(s)

)
k̂

and β0(s), such that

ρ(s) =
∑
k̂∈n̂

γk̂(s) and
dρ

ds
(s) = β0(s)

∑
k∈{0···n}
τ∈{+1,−1}

γτk (s) ◦ ∆̂τ
k. (8.5)
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Therefore for all t ∈ [0, T ],

d 〈M〉t
dt

=
1

T

d 〈M〉s
ds

,

=
1

T

〈
M,

dρ

ds
(s) ◦ vv∗

〉
,

=
〈
M,β0(s)

∑
k∈{0···n}
τ∈{+1,−1}

γτk (s) ◦ ∆̂τ
k ◦ vv∗

〉
,

=
β0(s)

T

∑
k∈{0···n}
τ∈{+1,−1}

〈
M ◦ ∆̂τ

k, γ
τ
k (s) ◦ vv∗

〉
,

≤ β0(s)

T

∑
k∈{0···n}
τ∈{+1,−1}

〈
Id, γτk (s) ◦ vv∗

〉
,

≤ β0(s)

T

〈
Id, ρ(s) ◦ vv∗

〉
,

≤ β0(s)

T
,

≤ 1,

the first inequality uses the fact that γτk (s) ◦ vv∗ ≥ 0 and M ◦ ∆̂τ
k ≤ +Id. The last inequality

comes from T = sups |β0(s)|.
Using the other inequality M ◦ ∆̂τ

k ≥ −Id, we can prove similarly that

d 〈M〉t
dt

≥ −1.

8.2.2 Multiplicative adversary method Madvct

The following definition of Madvct is constructed with the same reasoning that Madvdt, except
that we use the phase-Hamiltonian with ∆̂τ

k[x, y] = iτπ(xk − yk).

Definition 8.2.4 (Multiplicative adversary method for continuous time).

Madvct
0 (ρ→ σ) = sup

b>0

1

b
sup
M≥0
v:‖v‖=1

[
ln
〈
M ◦ vv∗, σ

〉
− ln

〈
M ◦ vv∗, ρ

〉]
,

subject to ∀ k ∈ {1 . . . n},∀τ ∈ {+,−}, −bM ≤M ◦ ∆̂τ
k ≤ bM.

Note that the above definition of Madvct
0 is similar to Madvdt

0 , only the conditions change.

Theorem 8.2.5. Let ρ and σ be two unitary Gram matrices. Then

Madvct
0 (ρ→ σ) ≤ Qct

0 (ρ→ σ).

The proof is a consequence of the following Lemma.
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Lemma 8.2.6. Let M ≥ 0 be an observable, b be a strictly positive real, v be a unitary vector
and ρ(t) be a feasible differentiable path. We define 〈M〉t = 〈M,ρ(t) ◦ vv∗〉. If

− bM ≤M ◦ ∆̂τ
k ≤ bM, for all k ∈ {0 . . . n}, τ ∈ {+1,−1}, (8.6)

then, ∣∣∣∣d 〈M〉tdt

∣∣∣∣ ≤ b 〈M〉t
Proof. As ρ(t) is feasible, from Proposition 8.1.1 we know that for all s ∈ [0, 1] there exists(
γk̂(s)

)
k̂

and β0(s), such that

ρ(s) =
∑
k̂∈n̂

γk̂(s) and
dρ

ds
(s) = β0(s)

∑
k∈{0···n}
τ∈{+1,−1}

γτk (s) ◦ ∆̂τ
k. (8.7)

Therefore all t ∈ [0, T ],

d 〈M〉t
dt

=
1

T

d 〈M〉s
ds

,

=
1

T

〈
M,ρ(s) ◦ vv∗

〉
,

=
1

T

〈
M,β0(s)

∑
k∈{0···n}
τ∈{+1,−1}

γτk (s) ◦ ∆̂τ
k ◦ vv∗

〉
,

=
β0(s)

T

∑
k∈{0···n}
τ∈{+1,−1}

〈
M ◦ ∆̂τ

k, γ
τ
k (s) ◦ vv∗

〉
,

≤ β0(s)

T

∑
k∈{0···n}
τ∈{+1,−1}

〈
bM, γτk (s) ◦ vv∗

〉
,

≤ bβ0(s)

T

〈
M,ρ(s) ◦ vv∗

〉
,

≤ bβ0(s)

T
〈M〉s ,

≤ b 〈M〉t ,

the first inequality uses the fact that γτk (s) ◦ vv∗ ≥ 0 and M ◦ ∆̂τ
k ≤ bM . The last inequality

comes from T = sups |β0(s)|.
Using the other inequality M ◦ ∆̂τ

k ≥ −bM , we can prove similarly that

d 〈M〉t
dt

≥ −b 〈M〉t .

8.2.3 Relation between adversary methods

A quantum algorithm in continuous-time model can simulate a quantum algorithm in discrete-
time model, but the opposite is not straightforward. Thus, this is not surprising to have a relation
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between adversary methods for discrete-time and continuous-time. The following theorem gives
two relations for Adv and Madv. We recall that, for all x, y ∈ X

∆ph
k [x, y] = (−1)yk−xk , and ∆̂τ

k[x, y] = iτ(yk − xk).

Theorem 8.2.7. Let ρ and σ be two unitary Gram matrices, and an error ε. Then

1

π
Advct

ε (ρ→ σ) ≤ Advph
ε (ρ→ σ),

1

π
Madvct

ε (ρ→ σ) ≤ Madvph
ε (ρ→ σ).

The demonstration of Theorem 8.2.7 is simple, we just show that the conditions of Advct

and Madvct are stronger than Advph and Madvph, respectively. We prove this assertion with
the following lemma.

Lemma 8.2.8. For any Hermitian matrix M , b ∈ R+, k ∈ {0 . . . n}, and τ ∈ {+1,−1},

(a) −Id ≤M ◦ ∆̂τ
k ≤ Id ⇒ M − πId ≤M ◦∆ph

k ≤M + πId,

(b) −bM ≤M ◦ ∆̂τ
k ≤ bM ⇒ e−bπM ≤M ◦∆ph

k ≤ ebπM

Proof. As inequalities are invariant under the sign of τ ,

− Id ≤M ◦ ∆̂+1
k ≤ Id ⇐⇒ −Id ≤M ◦ ∆̂−1

k ≤ Id,
− bM ≤M ◦ ∆̂+1

k ≤ bM ⇐⇒ −bM ≤M ◦ ∆̂−1
k ≤ bM,

then we only prove the lemma for τ = +1.
Let define for s ∈ [0, 1],

∆k(s) = esπ∆̂+1
k ,

So that,

∆k(0) = J,

∆k(1) = ∆ph
k ,

∂s∆k(s) = π∆̂+1
k ◦∆k(s).

Note that ∆k(s) is the unitary Gram matrix: Gram(esπxk : x ∈ X ), then ∆k(s) ≥ 0.
Let ρ be a density matrix, we define 〈M〉s = 〈ρ,M ◦∆k(s)〉 .

(a) M ◦ ∆̂+1
k ≤ Id ⇒ M ◦∆ph

k ≤M + πId

∂s 〈M〉s = π
〈
ρ,M ◦ ∆̂+1

k ◦∆k(s)
〉
,

= π
〈
ρ ◦∆k(s),M ◦ ∆̂+1

k

〉
,

≤ π 〈ρ ◦∆k(s), Id〉 ,
≤ π 〈ρ, Id〉 ,

where ρ ◦∆k(s) ≥ 0 from Claim 2.1.6. By integration this inequality over [0, 1] we have,

〈M〉1 − 〈M〉0 ≤ π 〈ρ, Id〉 ,
〈ρ,M ◦ (∆k − J)〉 ≤ π 〈ρ, Id〉 ,

〈ρ,M ◦∆k〉 ≤ π 〈ρ,M + Id〉 .
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Since this inequality holds for all density matrices ρ, we have

M ◦∆k ≤M + πId.

The other inequality is proved similarly.

(b) M ◦ ∆̂+1
k ≤ bM ⇒ M ◦∆ph

k ≤ ebπM

∂s 〈M〉s = π
〈
ρ,M ◦ ∆̂+1

k ◦∆k(s)
〉

= π
〈
ρ ◦∆k(s),M ◦ ∆̂+1

k

〉
≤ π 〈ρ ◦∆k(s), bM〉
≤ πb 〈M〉s .

Dividing by 〈M〉s, then integrating over [0, 1], we have

ln 〈M〉1 − ln 〈M〉0 ≤ πb,
〈ρ,M ◦∆k〉 ≤ ebπ 〈ρ,M ◦ J〉 ,
〈ρ,M ◦∆k〉 ≤ ebπ

〈
ρ, ebπM

〉
.

Since, this inequality holds for all density matrices ρ, we have

M ◦∆k ≤ ebπM.

The other inequality is proved similarly.

8.3 Adversary action Sadv

In this Section we define Sadv to be the adversary action, a lower bound method for Qct
0 . This

method is based on a semi-definite program L called the query Lagrangian. Once Sadv defined,
we show that Sadv lower bounds Qct

0 . We then prove several useful properties of L as strong
duality. Afterwards we show several conditions that an optimal locally path γ of Sadv must
satisfy. Finally, we prove that Sadv subsumes both Madvct

0 and Advct
0 .

8.3.1 Definition of Sadv

In this Subsection we describe a new lower bound for the quantum query complexity of state
conversion in continuous time Qct0 (ρ → σ): the adversary action Sadv. This new method relies
on Proposition 8.1.1. In this proposition we have described a semi-definite program that checks
the feasibility of the evolution of a differentiable path γ ∈ Γct for a position s ∈ [0, 1]. From this
semi-definite program, we define another semi-definite program L that still checks feasibility of
γ on s ∈ [0, 1], but also outputs the minimum β. We recall that the parameter β in Proposition
8.1.1 represents the infinitesimal number of queries.

Hence, for γ ∈ GN and η ∈ TγGN , the tangent space of GN , L outputs the infinitesimal
minimal number of queries to go in direction η from the position γ. L has the same conditions
that Proposition 8.1.1 and we minimize over β.
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Definition 8.3.1. The query Lagrangian L is a semi-definite program with two parameters
γ ∈ SN+ and η ∈ SN , defined as

L(γ, η) = inf
q∈R

γ±k ∈S
N
+

γ0∈SN+

q s.t. qγ = γ0 +
∑

k∈{1...n}

γ+
k + γ−k , (8.8)

η =
∑

k∈{1...n}

(
γ+
k − γ

−
k

)
◦ ∆̂k. (8.9)

We have changed some notation: β becomes q, ∆̂+1
k becomes ∆̂k. We use the fact that

∆̂+1
k = −∆̂−1

k and ∆̂0 = 0. We have also change the position of q in Equality constraints without
loss of generality.

Since L defines a scalar field on GN ×TγGN , we define the integration of a differentiable path
γ from ρ to σ as

L[γ] =

∫ σ

ρ

dsL
(
γ(s), γ̇(s)

)
,

where we use the Newton’s notation, γ̇(s) = dγ
ds (s). From Formula 8.1, L[γ] gives the number of

queries needed to follows the differentiable path γ. Note that L[γ] is a functional defined on Γct.
Hence, we define Sadv(ρ→ γ1) by minimizing over all differentiable paths in Γct[ρ→ σ].

Definition 8.3.2. Let ρ and σ be two unitary Gram matrices. The adversary action Sadv is
defined as

Sadv(ρ→ σ) = inf
γ∈Γct[ρ→σ]

∫
γ

dsL
(
γ(s), γ̇(s)

)
.

We introduce two notations to simplify it. For γ ∈ C1
(
[0, 1], GN

)
Lγ(s) = L

(
γ(s), γ̇(s)

)
,

Sadv[γ] =

∫
γ

dsLγ(s).

Now that the adversary action Sadv has been defined, we prove that Sadv is a lower bound
method for Qct0 (ρ→ σ). To simplify the proof we use the following lemma.

Lemma 8.3.3. Let A be a continuous-time quantum query algorithm with the following Hamil-
tonian,

Ĥx(s) = HD(s) + πβ(s)HQ(x) where s ∈ [0, 1] and ‖HQ‖ ≤ 1.

If A converts ρ to σ through the differentiable path γ(s), then for all s ∈ [0, 1], we have

Lγ(s) ≤ β(s),

Sadv[γ] ≤ q(γ).

Since Sadv is defined as a minimization over all γ in Γct[ρ→ σ], we can conclude.

Theorem 8.3.4. For any N ∈ N, and ρ, σ ∈ GN ,

Sadv(ρ→ σ) ≤ Qct0 (ρ→ σ).
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Proof of Lemma 8.3.3. Formula 8.3 implies that the algorithm A provide a feasible solution of
Lγ(s) for all s ∈ [0, 1] with the objective value β(s), then Lγ(s) ≤ β(s). By integrating over γ
we obtain Sadv[γ] ≤ q(γ).
Corollary 8.3.4 is obtained by minimizing over Γct[ρ→ σ].

Remark. 1. The query Lagrangian L(γ, η) can be interpreted as a Lagrangian in the phase
space GN × TGN , where TGN is the tangent bundle of GN and “query” has replaced “action”.
Sadv[γ] is the necessary number of queries to follow the path γ and by minimizing over all paths
in Γ[ρ→ σ], we obtain Sadv(ρ→ σ).

Remark. 2. From Remark at the end of Section 8.1. We can conjecture that Sadv is tight for
Qct0 .

8.3.2 Query Lagrangian and its properties

We begin this Subsection by providing a more practical form for the query Lagrangian L. Af-
terwards we also dualize it to obtain the Lagrange dual problem Ld. We denote D the domain
of L and Λ the domain of Ld(γ, η).

Thereafter, to prove important properties of L we show that, if L is feasible then there ex-
ists an optimal solution, likewise for Ld. From this proposition, we can prove these important
properties: L is a norm and satisfies the strong duality if L is feasible. In order to prove this
proposition we demonstrate that for each (γ, η) where L(γ, η) is feasible then we can restrict D,
the feasible set of L, to a compact set D̂γ,η without loss of generality, likewise for Ld.

We refine Definition 8.3.1 of L(γ, η). In Equality constraint (8.8) as γ, γ0 and
(
γ+
k , γ

−
k

)
k

are
semi-definite positive matrices then q is necessarily non-negative. Afterwards we remove γ0 by
replacing Equality constraint (8.8) by an inequality constraint.

Definition. (Primal form of L)
The query Lagrangian L is a semi-definite program with two parameters γ ∈ SN+ and η ∈ SN ,
defined as

L(γ, η) = inf
q∈R+

γ±k ∈S
N
+

q s.t. qγ ≥
∑

k∈{1...n}

γ+
k + γ−k , (8.10)

η =
∑

k∈{1...n}

(
γ+
k − γ

−
k

)
◦ ∆̂k. (8.11)

Claim 8.3.5. (Dual form of L)
The dual form of L, denoted Ld, is a semi-definite program with two parameters γ ∈ SN+ and
η ∈ SN , defined as

Ld(γ, η) = sup
U∈SN
V∈SN+

〈
U , η

〉
s.t. ∀k ∈ {1 . . . n}, −V ≤ U ◦ ∆̂k ≤ V, (8.12)

〈
V, γ

〉
≤ 1. (8.13)

Proof. We construct L(γ, η, q, γ±k ,V,U) the Lagrange dual function of L(γ, η) from Equation
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(6.3) we have,

L(γ, η, q, γ±k ,V,U) = q +
〈
V,

∑
k∈{1...n}

(
γ+
k + γ−k

)
− qγ

〉
+
〈
U , η −

∑
k∈{1...n}

(
γ+
k − γ

−
k

)
◦ ∆̂k

〉
,

=
〈
U , η

〉
+ q(1−

〈
V, γ

〉
) +

∑
k∈{1...n}

〈
γ+
k ,V − U ◦ ∆̂k

〉
+

∑
k∈{1...n}

〈
γ−k ,V + U ◦ ∆̂k

〉
.

From Definition 6.4.1, the Lagrange dual function is

d(γ, η,V,U) = inf
q∈R+

γ±k ∈S
N
+

L(γ, η, q, γ±k ,V,U),

=

{ 〈
U , η

〉
if
〈
V, γ

〉
≤ 1 and ∀k ∈ {1 . . . n}, −V ≤ U ◦ ∆̂k ≤ V,

−∞ otherwise.

Finally the Lagrange dual problem is derived from Definition 6.4.3,

Ld(γ, η) = sup
V∈SN+
U∈SN

d(γ, η,V,U).

By a slight abuse of notation, L(γ, η) describes a semi-definite program and its optimal value
q?(γ, η). Similarly for Ld(γ, η) and its dual optimal value d?(γ, η).

Remark. • From the dual form Ld, we can observe that the optimal value q? is necessarily
positive. For each feasible solution (U ,V) of Ld(γ, η) then (−U ,V) is also feasible. This
fact implies that Ld(γ, η) ≥ 0, as well for L(γ, η) by weak duality.

• γ0 can be interpreted as a query that does not provide any data.

• From (8.10), if q? is the optimal value of the primal form L, then there exists a feasible
solution for each value q′ > q.

• From the dual form Ld, since V ≥ 0 and γ ≥ 0 the second constraint (8.13) is lower bounded
by 0.

In the next Proposition 8.3.6 we show that if L(γ, η) and Ld(γ, η) are feasible, then their
respective domains D and Λ can be restricted to compact domains D̂γ,η and Λ̂γ,η without loss
of generality.

Proposition 8.3.6. Let γ ∈ SN+ and η ∈ SN .

• If L(γ, η) is feasible, then there exists a compact set D̂γ,η ⊂ D such that

L(γ, η) = min
(q,γ±k )∈D̂γ,η

q s.t. qγ ≥
∑

k∈{1...n}

γ+
k + γ−k ,

η =
∑

k∈{1...n}

(
γ+
k − γ

−
k

)
◦ ∆̂k.
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• If Ld(γ, η) is feasible, then there exists a compact set Λ̂γ,η ⊂ Λ such that

Ld(γ, η) = max
(V,U)∈Λ̂γ,η

〈
U , η

〉
s.t. ∀k ∈ {1 . . . n}, −V ≤ U ◦ ∆̂k ≤ V,〈

V, γ
〉
≤ 1.

Corollary 8.3.7. Let γ ∈ SN+ and η ∈ SN . L(γ, η) is feasible if and only if X?(γ, η) is non-
empty. Ld(γ, η) is feasible if and only if Y ?(γ, η) is non-empty.

The proof of Proposition 8.3.6 uses the following lemma. From Inequality constraint (8.11),
we observe that matrices (∆̂k)k induces a restriction on η. Indeed if (∆̂k)k are nulls then L( · , η)
is unfeasible for η 6= 0. The following lemma generalizes this idea.

Lemma 8.3.8. Let γ ∈ SN+ and η ∈ SN . If supp(η) * ∆ then L(γ, η) is unfeasible, and Ld(γ, η)

is unbounded, where ∆ = ∪k∈{1...n} supp(∆̂k).

Proof. Proof by contradiction.
Let (x, y) be in supp(η) \∆, λ be a real number and (ex)x∈X the standard basis.
Since η and (∆̂k)k are in Sn, then (y, x) is also in supp(η) \∆. Therefore

V = 0 and U = λ
(
η[x, y]e∗xey + η̄[x, y]e∗yex

)
,

is a feasible solution of Ld(γ, η) since U ◦ ∆̂k is a null matrix for all k ∈ {1 . . . n}. Moreover its
value is

〈U , η〉 = 2λ|η[x, y]|2.

Since η[x, y] is not null, then Ld(γ, η) is unbounded. L(γ, η) is unfeasible by weak duality.

Proof of Proposition 8.3.6. Let be γ ∈ SN+ and η ∈ SN .

(Primal form) If L(γ, η) is feasible, then there exists a sequence of feasible points (qr, γ
±
k,r)r∈N

satisfying constraints of L(γ, η). As L(γ, η) is finite, qr converge to q0 with q0 = L(γ, η).
From Inequality constraint (8.10), each γ±k,r ≥ 0 is upper bounded by qrγ ≥ γ±k,r. Therefore, for

each k there exists a sub-sequential of (γ±k,r)r with the limit in the compact set{
M ∈ SN : 0 ≤M ≤ q0γ

}
.

(Dual form) If Ld(γ, η) is feasible, then there exists a sequence of feasible dual points (Vr,Ur)r∈N
satisfying constraints (8.12), (8.13) of Ld(γ, η). Assume that γ ≥ 0 is full rank, then the second
inequality constraint

〈
Vr, γ

〉
≤ 1 implies that (Vr)r is in the compact set

{
M ∈ SN : 0 ≤M ≤ 1

N
γ−1

}
.

From first inequality constraints and the fact that Vr is upper bounded, we have for each r and
k ∈ {1 . . . n}

− 1

N
γ−1 ≤ Ur ◦ ∆̂k ≤

1

N
γ−1.
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While Ur ◦ ∆̂k is bounded for all k ∈ {1 . . . n}, this is not sufficient to imply that Ur is bounded
because it may exist free variables eliminated by (∆̂k)k. Instead, we can nullify free variables of
Ur using Lemma 8.3.8. Let define 1∆ ∈MN ({0, 1})

1∆[x, y] =

{
1 if ∃k ∈ {1 . . . n}, ∆̂k[x, y] 6= 0,
0 otherwise.

From (Ur)r we construct the sequence (Ur ◦ 1∆)r bounded for all r. The new sequence satisfies
first constraint (8.12) since ∆̂k = 1∆ ◦ ∆̂k for all k ∈ {1 . . . n} and with the objective value
limr

〈
Ur ◦1∆, η

〉
. Using the contrapositive of Lemma 8.3.8, as Ld(γ, η) is finite then supp(η) ⊆ ∆,

in other words η ◦ 1∆ = η.
If γ ≥ 0 is not full rank, then there exists free variables in Vr non restricted by

〈
Vr, γ

〉
≤ 1, but

those free variables don’t appear in Ur otherwise Ld would be unbounded, then we can set these
free-variables to zero.

From Corollary 8.3.7 we can prove that L satisfies strong duality if L is feasible. We also show
that L, the Lagrange dual function introduced in the proof of Claim 8.3.5, has a saddle-point if
L feasible.

Proposition 8.3.9. For all γ ∈ SN+ and η ∈ SN . If L(γ, η) is feasible. then L(γ, η) satisfies

the strong duality. Moreover, there exists an optimal point (q?, γ±,?k ) and a dual optimal point
(U?,V?) such that L, the Lagrangian of L(γ, η), has a saddle-point

∀q, γ±k ,V,U , L(γ, η, q?, γ±,?k ,V,U) ≤ L(γ, η, q?, γ±,?k ,V?,U?) ≤ L(γ, η, q, γ±k ,V
?,U?).

Proof. (Strong duality) From Corollary 8.3.7 if L(γ, η) is feasible there exists an optimal so-
lution

(
q?, γ±,?k

)
. Therefore, for s > q, the feasible solution

(
s, γ±,?k

)
is a strictly feasible

solution, hence the Slater’s condition is satisfied.

(Optimal point) Existence of a dual optimal point (U?,V?) comes from Corollary 8.3.7.

(Saddle point) Directly from Property 6.5.2.

We conclude that L(γ, η) satisfies all conditions to be a norm in η for all γ semi-definite
positive.

Proposition 8.3.10. For all γ ∈ SN+ and η ∈ SN , we have

(a) (positive) L(γ, η) ≥ 0,

(b) (absolutely homogeneous) for all λ ∈ R, L(γ, λη) = |λ|.L(γ, η),

(c) (triangle inequality) L(γ, η1 + η2) ≤ L(γ, η1) + L(γ, η2),

(d) (zero matrix) L(γ, η) = 0 ⇔ η = 0.

Corollary 8.3.11. For all γ ∈ SN+ , L( γ , ·) is a norm in SN .

Proof of Proposition 8.3.10. (a) The point (0, 0) is always feasible for the dual form and its
value is 0. By weak duality L is always positive.
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(b) Let λ be a strictly positive real and
(
q, γ±k

)
be an optimal point of L(γ, λη). Then(

λq, λ−1γ±k
)

is a feasible point of L(γ, η). Moreover, by reciprocity this is also an op-
timal point.
Let

(
q, γ±k

)
be an optimal point of L(γ, η), then

(
q, γ∓k

)
is a feasible point of L(γ,−η).

Moreover, by reciprocity this is also an optimal point.
For L(γ, 0), the optimal value is reached by the optimal point (0, 0).

(c) Let
(
q1, γ

±
k,1

)
and

(
q2, γ

±
k,2

)
respective optimal points of L(γ, η1) and L(γ, η2). Then

(
q1 +

q2, γ
±
k,1 + γ±k,2

)
is a feasible point of L(γ, η1 + η2).

(d) If L(γ, η) = 0, the first constraint of the primal form implies that all γ±k are null matrices,
hence η = 0. Reciprocally, if η = 0, the optimal value is 0 reached by (0, 0).

8.3.3 Necessary conditions on Sadv

Let ρ and σ be in GN . We define γ? to be a double-differentiable path in Γct[ρ → σ] that is a
local minimal of Sadv(ρ → σ) For all s ∈ [0, 1], we associate to the path γ? an optimal point
selection of Lγ?(s) defined as,

(
q?(s), γ±,?k (s),U?(s),V?(s)

)
.

In this subsection, we derive from the Euler-Lagrange theorem the necessary conditions that
must satisfy a local minimal γ? of Sadv(ρ→ σ). More precisely, these conditions are on the opti-
mal point selection

(
q?(s), γ±,?k (s),U?(s),V?(s)

)
that describes Lγ?(s). Note that (U?(s),V?(s))

describes Lγ?(s) almost everywhere since, if Sadv(ρ → σ) is finite then Lγ?(s) is integrable on
[0, 1]. Hence, Proposition 8.3.9 implies that the strong duality holds almost everywhere.

At first, we use the KKT conditions 6.6.1, Complementary slackness from Corollary 6.5.3 and
Strong duality 6.7.8. Latter we use the Euler-Lagrange equation D.0.2 on Sadv(ρ→ σ) to obtain
another condition on (U?(s),V?(s)). Since we must derive Lγ? we apply the Envelope theorem
6.8.1 to prove the existence of derivatives of Lγ? almost everywhere on [0, 1].

From Proposition 6.7.6, we know that the KKT conditions hold for almost all s ∈ [0, 1] since
the objective function and inequality constraints of Lγ?(s) are differentiable, and the duality
holds almost everywhere, likewise the Complementary slackness Corollary 6.5.3. Moreover, the
KKT conditions are sufficient since L is a semi-definite program, thus a convex optimization
problem.

Fact 8.3.12. Let
(
q?(s), γ±,?k (s),U?(s),V?(s)

)
be an optimal point selection of Lγ? . Therefore
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for almost all s ∈ [0, 1]

• γ̇?(s) =
∑

k∈{1...n}

(
γ+,?
k (s)− γ−,?k (s)

)
◦ ∆̂k (8.14)

• q?(s)γ?(s) ≥
∑

k∈{1...n}

(
γ+,?
k (s) + γ−,?k (s)

)
(8.15)

• 〈V?(s), γ?(s)〉 = 1 (8.16)

• V?(s)∓ U?(s) ◦ ∆̂k ≥ 0 ∀k ∈ {1 . . . n} (8.17)

•
〈
γ±,?k (s),V?(s)∓ U?(s) ◦ ∆̂k

〉
= 0 ∀k ∈ {1 . . . n} (8.18)

•

〈
V?(s), q?(s)γ?(s)−

∑
k∈{1...n}

(
γ+,?
k (s) + γ−,?k (s)

)〉
= 0 (8.19)

• 〈U?(s), γ̇?(s)〉 = q?(s) (8.20)

Proof. (8.14) and (8.15) are conditions of the primal form L. (8.16) and (8.17) are conditions of
the primal form Ld where (8.16) is now tight from the KKT conditions. (8.18) and (8.19) are
from the Complementary slackness. (8.20) is from the strong duality.

The following Envelope theorem proves that Lγ? is differentiable almost everywhere on [0, 1],
in other words Lγ? is absolutely continuous. Then, we apply the Euler-Lagrange equation.
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Theorem 8.3.13. Let ρ and σ be in GN , γ? be a double differentiable path in Γ[ρ→ σ] that is a
locally optimal path of Sadv(ρ→ σ) with L[γ?] finite, and U?(s) and V?(s) be a dual optimal point
selection of Lγ?(s) for almost all s ∈ [0, 1]. Then the function Lγ?(s) is absolutely continuous
on [0, 1], and for almost all s ∈ [0, 1], we have

Lγ?(1) = Lγ?(0) +

∫ 1

0

ds
[
− q?(s)

〈
V?(s), dγ

?

ds
(s)
〉

+
〈
U(s)?,

d2γ?

ds2
(s)
〉]
,

where q?(s) = Lγ?(s) = 〈U?(s), γ̇?(s)〉.

Proof. Since L[γ?] is finite then Lγ?(s) is finite for almost all s. From Proposition 8.3.9, we have

Lγ?(s) = min
(q,γ±k )∈D̂γ?(s),γ̇?(s)

max
(V,U)∈Λ̂γ?(s),γ̇?(s)

L(γ?(s), γ̇?(s), q, γ±k ,V,U).

Where the Lagrangian is defined as,

L(γ?(s), γ̇?(s), q, γ±k ,V,U) =
〈
U , γ̇?(s)

〉
+ q
(
1−

〈
V, γ?(s)

〉)
+

∑
k∈{1...n}

〈
γ+
k ,V − U ◦ ∆̂k

〉
+

∑
k∈{1...n}

〈
γ−k ,V + U ◦ ∆̂k

〉
.

First, we prove that Lγ?(s) is absolutely continuous on [0, 1] using the Enveloppe theorem 6.8.1.
To make this we show that the Lagrangian satisfies all six conditions (1)-(6) from the Envelope
theorem.

(1) Since Lγ?(s) is finite for almost all s, Proposition 8.3.9 implies that the existence of
optimal primal/dual solution for almost all s .

(2) The Langragian is is absolutely continuous in s for all U , V, q and γ±k .

(5) The derivative of the Lagrange has the following form

Ds L(γ?(s), γ̇?(s), q, γ±k ,V,U) =
〈
U , d

2γ?

ds2
(s)
〉
− q
〈
V, dγ

?

ds
(s)
〉
.

As γ? is double differentiable then L is differentiable in s ∈ [0, 1] for all U , V, q and γ±k . Hence,
Ds L is continuous in s ∈ [0, 1], and then absolutely continuous.

(3) From the point (5), we observe that |Ds L| increased absolutely linearly in U , V or q.
Since Proposition 8.3.6 shows that D and Λ can restricted to compact sets D̂ and Λ̂ without loss
of generality, we define

D̂ =
⋃

s∈[0.1]

D̂γ?(s),γ̇?(s) and Λ̂ =
⋃

s∈[0.1]

Λ̂γ?(s),γ̇?(s),

where D̂γ,η and Λ̂γ,η are described in the proof of Proposition 8.3.6. Hence, |Ds L| can be
bounded for almost all s.
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(6) From point (2), the Lagrangian L is differentiable in s ∈ [0, 1] for all U , V, q and γ±k
in D × Λ. if we restrict the domain of the Lagrangian to D̂γ,η × Λ̂γ,η, then its family is equi-
differentiable.

(4) D × Λ satisfies the axiom of countability, since they are included in Rn.

Now we conclude by derivation the Lagrangian in γ and dγ
ds .

dL(s)

ds
=
〈 ∂L(s)

∂γ?(s)
,
dγ?(s)

ds

〉
+
〈 ∂L(s)

∂γ̇?(s)
,
d2γ?(s)

ds2

〉
,

where L(s) abbreviates L(γ?(s), γ̇?(s), q, γ±k ,V,U).

∂L(s)

∂γ?(s)
=
(
U?(s)

)∗
∂L(s)

∂γ̇?(s)
= −q?(s)

(
V?(s)

)∗
.

Now, we can use the Euler-Lagrange equation on the Lagrangian, since the Enveloppe theorem
ensures that the Lagrangian is differentiable almost everywhere when Sadv is finite.

Theorem 8.3.14. Let ρ and σ be in GN , γ? be a double differentiable path in Γ[ρ→ σ] that is
a locally optimal path of Sadv(ρ → σ) with L[γ?] finite, and U?(s) and V?(s) be a dual optimal
point selection of Lγ?(s) for almost all s ∈ [0, 1]. Then, the following equation is satisfied for
almost all s ∈ [0, 1]

V?(s) = −
d
dsU

?(s)〈
U?(s), dγ?ds (s)

〉 .
Proof. This is just a simple application of the Euler-Lagrange equation D.0.2,

∂L

∂γ?
− d

ds

∂L

∂γ̇?
= 0,

with the fact that q?(s) = 〈U?(s), γ̇?(s)〉 for almost all s.

8.3.4 Relation with Advct and Madvct

To complete this Chapter, we show that the adversary action Sadv upper bounds Advct and
Madvct.

Theorem 8.3.15. Let ρ and σ be two unitary Gram matrices. Therefore

Advct
0 (ρ→ σ) ≤ Sadv(ρ→ σ),

Madvct
0 (ρ→ σ) ≤ Sadv(ρ→ σ).

To make the proof more convenient, we include several reminders.

Definition. (Adversary action)

Sadv(ρ→ σ) = inf
γ∈Γct[ρ→σ]

∫
γ

dsL
(
γ(s),

d

ds
γ(s)

)
,
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where the query Lagrangian Ld is defined as,

Ld(γ, η) = sup
U∈SN
V∈SN+

〈U , η〉 subject to ∀k ∈ {1 . . . n}, −V ≤ U ◦ ∆̂k ≤ V,

〈V, γ〉 ≤ 1.

Definition (Adversary method for continuous time).

Advct
0 (ρ→ σ) = sup

M
v:‖v‖=1

〈M ◦ vv∗, σ − ρ〉 ,

subject to ∀ k ∈ {0 . . . n}, τ = ± −Id ≤M ◦ ∆̂τ
k ≤ Id.

Proof for Advct
0 ≤ Sadv. Let γ be a path in Γct[ρ→ σ], M a Hermitian matrix and v be a unit

vector. For each s ∈ [0, 1], we choose

U(s) = M ◦ vv∗, and V(s) = Id ◦ vv∗,

as feasible solution of L
(
γ(s), ddsγ(s)

)
, since 〈γ(s),V(s)〉 ≤ 1. Hence,

inf
γ∈Γct[ρ→σ]

∫
γ

dsL
(
γ(s),

d

ds
γ(s)

)
= inf
γ∈Γct[ρ→σ]

∫
γ

ds sup
U∈SN

〈
U , d
ds
γ(s)

〉
,

≥ inf
γ∈Γct[ρ→σ]

sup
U∈SN

∫
γ

ds

〈
U , d
ds
γ(s)

〉
,

≥ inf
γ∈Γct[ρ→σ]

sup
U∈SN

〈U , σ − ρ〉 ,

≥ sup
U∈SN

〈U , σ − ρ〉 ,

≥ sup
M

v:‖v‖=1

〈M ◦ vv∗, σ − ρ〉 ,

where the minimization over Γct disappears after the integration. Note that conditions are weaker
since

−Id ≤M ◦ ∆̂+1
k ≤ Id, =⇒ −Id ◦ vv∗ ≤M ◦ ∆̂k ◦ vv∗ ≤ Id ◦ vv∗,

where we use Claim 2.1.6 and the fact that vv∗ ≥ 0.

Definition (Multiplicative adversary method for continuous time).

Madvct
0 (ρ→ σ) = sup

b>0

1

b
sup
M≥0
v:‖v‖=1

[
ln
〈
M ◦ vv∗, σ

〉
− ln

〈
M ◦ vv∗, ρ

〉]
,

subject to ∀ k ∈ {1 . . . n},∀τ ∈ {+,−}, −bM ≤M ◦ ∆̂τ
k ≤ bM.

Proof for Madvct
0 ≤ Sadv. Let γ be a path in Γct[ρ → σ], M a Hermitian matrix, v be a unit

vector and b be a strictly positive real. For each s ∈ [0, 1], we chose

U(s) =
M ◦ vv∗

b 〈M ◦ vv∗, γ(s)〉
, and V(s) =

M ◦ vv∗

〈M ◦ vv∗, γ(s)〉
,
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as feasible solution of L
(
γ(s), ddsγ(s)

)
, since 〈γ(s),V(s)〉 = 1. Hence,

inf
γ∈Γct[ρ→σ]

∫
γ

dsL
(
γ(s),

d

ds
γ(s)

)
= inf
γ∈Γct[ρ→σ]

∫
γ

ds sup
U∈SN

〈
U , d
ds
γ(s)

〉
,

≥ inf
γ∈Γct[ρ→σ]

sup
U∈SN

∫
γ

ds

〈
U , d
ds
γ(s)

〉
,

≥ inf
γ∈Γct[ρ→σ]

sup
b>0

1

b
sup
M≥0
v:‖v‖=1

∫
γ

ds

〈
M ◦ vv∗, ddsγ(s)

〉
〈M ◦ vv∗, γ(s)〉

,

≥ inf
γ∈Γct[ρ→σ]

sup
b>0

1

b
sup
M≥0
v:‖v‖=1

[
ln 〈M ◦ vv∗, γ(1)〉 − ln 〈M ◦ vv∗, γ(0)〉

]
,

≥ sup
b>0

1

b
sup
M≥0
v:‖v‖=1

[
ln 〈M ◦ vv∗, γ(1)〉 − ln 〈M ◦ vv∗, γ(0)〉

]
,

where the minimization over Γct disappears after the integration. Note that conditions are weaker
since

−Id ≤M ◦ ∆̂+1
k ≤ Id, =⇒ −Id ◦ vv∗ ≤M ◦ ∆̂k ◦ vv∗ ≤ Id ◦ vv∗,

where we use Claim 2.1.6 and the fact that vv∗ ≥ 0.
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Chapter 9

Lower bound for Information
complexity

Throughout this chapter, we use the notation introduced in Chapters 3 and 5. We add the su-
perscript ⊥ for a set S, such that S⊥ = S ∪ {⊥}, similarly we add the subscript π to entropy
Hπ and information Iπ, to specify which probability distribution π is used for the entropy or the
information.

The communication complexity of a function f could be a complicated quantity to deter-
mine. Several lower bound methods have been constructed such as the discrepancy, the partition
bound, the efficiency and the external information complexity presented in Section 5.1. The last
one is particularly interesting, since it lower bounds the communication complexity, but it can
also be interpreted as the amount of information that Alice and Bob reveal about their inputs via
the transcript used in the protocol. This quantity is also interesting in scenarios where multiple
copies of the problem are solved in parallel since [BR11] have shown that amortized communi-
cation complexity is equal to internal information complexity

The external information could also be quite complicated to evaluate, since we must minimize
over all distribution π from Formula (5.11). Hence, a first motivation was to provide a simple
method to characterize ICext. In the first part of this chapter, we introduce a new method IC0,
called Zero information complexity, which lower bounds ICext, and by extension the communica-
tion complexity. IC0 is an optimization problem expressed a minimal form, therefore any feasible
point of this optimization problem provides a lower bound.

The new method IC0 can be applied to the simulation model. In the second part of this
chapter, we provide an application of IC0 to CHSH correlations pχ, for several reasons.

Definition 9.0.1. (CHSH correlations)
For χ ∈ [0, 1], a, b ∈ {−1,+1} and x, y ∈ {0, 1}. We define

∀a, b, x, y, pχ(a, b|x, y) =
1 + χab(−1)xy

4
.

For χ = 0, pχ is uniform, and for χ = 1, Alice and Bob evaluate the AND function,

x ∧ y = a⊕ b.

109



110 CHAPTER 9. LOWER BOUND FOR INFORMATION COMPLEXITY

Therefore, χ represents the noise. For χ ≤ 0.5, pχ can be simulated using shared randomness
but no communication. For χ less than

√
2/2, pχ can also be simulated without communication

with the additional help of entanglement. Indeed, pχ for χ =
√

2/2 corresponds to the quantum
correlations obtained in a Bell experiment testing the violation of the CHSH inequality which
results from performing projective measurements on a Bell pair. Otherwise, Alice and Bob need
to communicate to simulate pχ.

They are several motivations in the choice of the CHSH correlations. A first motivation is to
provide a better grasp on quantum non locality. Indeed, the violation of a Bell’s inequality is just
the value of an affine function whereas the communication and information complexities of pχ
have a clear operational interpretation: this is the amount of communication that Alice and Bob
need to use to simulate quantum non locality using a classical model (in a one-shot or amortized
scenario, respectively). As such the information complexity can be interpreted as the amount
of information shared between two entangled quantum systems. Another motivation is that the
simulation pχ is equivalent to evaluating the AND function on x and y, which can be used as a
primitive to compute any other function. A lower bound for the information complexity of this
primitive might therefore be used as a starting point to prove lower bounds for other functions.

First, we define the zero information cost IC0. The efficiency eff is defined from the communi-
cation cost CC in the zero communication model, and similarly IC0 is defined from the external
information cost in the same model. Next, we dualize IC0 to obtain an optimization form under
a more useful minimization form. In third Section we simplify IC0 for the special case where the
input distribution is a product distribution. In fourth Section we define IC→0 , a particular case
of IC0, in the one-way scenario where Bob cannot abort. In fifth Section we define IC0, a relaxed
form of IC0, where we remove an equality constraint of the optimization program IC0.

Finally, in last Section we apply our new methods IC→0 (pχ) and IC0(pχ) on CHSH correlations.
For IC0, we only provide a numerical analysis.

9.1 Zero information complexity IC0

In Section 5.4, we have introduced the simulation model, as well as zero communication protocols
P⊥ with private and public coins, for simulating a conditional distribution p ∈ P. A zero
communication protocol P⊥p that simulates p, satisfies for all a ∈ A, b ∈ B, x ∈ X, y ∈ Y ,∑

l⊥ω∈L⊥priv

pΩ(ω)l⊥ω (a, b|x, y) = ηp(a, b|x, y), (9.1)

where η is the efficiency of the protocol, denoted eff(p), and pΩ, a distribution over L⊥priv that
represents the strategy of Alice and Bob.

Also, for an input distribution µ over X × Y , and public coin Ω, we can induce π0 the
probability distribution over Ω×X × Y ×A⊥ ×B⊥, such that

∀x, y, a, b, π0(ω, a, b, x, y) = pΩ(ω).l⊥ω (a, b|x, y).µ(x, y), (9.2)

Therefore from this distribution π0, we define the zero information cost ICµ0 by

ICµ0 (π0) = Iπ0(X,Y : Ω|A 6= ⊥, B 6= ⊥).
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The definition of the zero information complexity follows naturally.

ICµ0 (p) = min
π: ∃Pp which induces π

ICµ0 (π),

IC0(p) = max
µ a distribution over X×Y

ICµ0 (p).

As observed in (9.1), a zero communication protocol P⊥p can be completely characterized by
the distribution pΩ(ω), now denoted π0(ω), and its efficiency η. Using this representation, we
can provide a better definition of IC0 depending of the distribution π0 and the efficiency η.

Definition 9.1.1. (Zero information complexity)
Let µ be an input distribution, The zero information complexity ICµ0 is an convex optimiza-
tion program, defined as

ICµ0 (p) = inf
η≥0

π0(ω)≥0

Iπ0(X,Y : Ω|A 6= ⊥, B 6= ⊥) subject to,

•
∑

lω∈L⊥priv

π0(ω)l⊥ω (a, b|x, y) = ηp(a, b|x, y), ∀a ∈ A, ∀b ∈ B, ∀(x, y) ∈ supp(µ).

We introduce the notation ηωxy, the efficiency of the private randomness distribution lω on
the input (x, y), such that

ηωxy =
∑

a∈A⊥: a 6=⊥
b∈B⊥: b 6=⊥

lω(a, b|x, y), (9.3)

as well as

ηω =
〈
ηωxy
〉
µ

=
∑
x,y

µ(x, y).ηωxy. (9.4)

From Equation (9.1), the average value
〈
ηωxy
〉
π0(ω)

is equal to η,〈
ηωxy
〉
π0(ω)

=
∑
ω

π0(ω)ηωxy =
∑

a∈A⊥: a 6=⊥
b∈B⊥: b 6=⊥

∑
ω

π0(ω)lω(a, b|x, y) =
∑
a∈A
b∈B

ηp(a, b|x, y) = η.

As indicated in Equation (5.19), a private randomness distribution is written as a product two
private randomness distributions, denoted lAω and lBω , so we define ηωx and ηωy as

ηωxy =
∑

a∈A⊥: a 6=⊥
b∈B⊥: b 6=⊥

lω(a, b|x, y) =
∑

a∈A⊥: a 6=⊥

lAω (a|x) .
∑

b∈B⊥: b6=⊥

lBω (b|y) = ηωx .η
ω
y .

In the following Proposition, we prove that the zero information complexity ICµ0 (p) is a lower
bound of the external information complexity ICµ,0ext(p) with error null, therefore by extension of
CC(p) .

Proposition 9.1.2. Let p be a conditional distribution and µ be an input distribution.
If there exists a deterministic protocol Pp with a communication cost c, then there exists a zero
communication protocol P⊥p with efficiency 2−c.
Moreover, if there exists a deterministic protocol Pp with an information cost IC µ

ext(π), then
there exists a zero communication protocol P⊥p with a zero information cost IC µ

0 (π0).
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Corollary 9.1.3. Let p be a conditional distribution. Then

− log eff(p) ≤ CC(p) and IC0(p) ≤ IC0
ext(p).

Proof. From Lemma 5.1.1, every deterministic protocol Pp induces a partition P , such that
|P | ≤ 2c. We enlarge this partition to a partition P+, such that |P+| = 2c, by separating one
f -monochromatic rectangle into two f -monochromatic rectangles, as many times as necessary.
From this partition we can create a zero communication protocol P⊥p .

1. With the public coin, Alice and Bob choose uniformly a rectangle R in P+,

2. If x ∈1 R, Alice outputs f(R), otherwise Alice outputs ⊥,

3. If y ∈2 R, Bob outputs f(R), otherwise Bob outputs ⊥.

In this zero communication protocol, Alice and Bob succeed if they choose the good rectangle.
As they choose uniformly, the efficiency is η = 2−c.
For an input distribution µ, the deterministic protocol Pp induces

π(R, x, y) = µ(x, y).δ[(x, y) ∈ R], ∀(x, y) ∈ X × Y, ∀R ∈ P+.

π is the distribution defined in (5.10), except that a transcript m is characterized by a rectangle
R, and Ω absent since the protocol is deterministic. We also have π0 induces by P⊥p , such that

π0(R, a, b, x, y) = π0(R).µ(x, y).l⊥R(a, b|x, y), ∀(x, y) ∈ X × Y, ∀R ∈ P+,∀l⊥R ∈ L⊥priv,

where R replaces Ω, since we choose the rectangle randomly to the distribution Ω, π0(R) = η,
and

l⊥R(a, b|x, y) = lA,⊥R (a|x).lB,⊥R (b|y),

with,

lA,⊥R (a′|x) =

 1 if x ∈1 R and a′ = a,
1 if x /∈1 R and a′ = ⊥,
0 otherwise.

and, lB,⊥R (b′|x) =

 1 if y ∈2 R and b′ = b,
1 if y /∈2 R and b′ = ⊥,
0 otherwise.

where R a is (a, b)-monochromatic rectangle. Moreover, from Equation (9.1), we have

π0(a 6= ⊥, b 6= ⊥) =
∑
a∈A
b∈B

∑
x,y

∑
R∈P+

π0(R, a, b, x, y),

=
∑
a∈A
b∈B

∑
x,y

∑
R∈P+

π0(R).µ(x, y).l⊥R(a, b|x, y),

=
∑
a∈A
b∈B

∑
x,y

µ(x, y).ηp(a, b|x, y),

= η.

We obtain,

π0(R, x, y|a 6= ⊥, b 6= ⊥) =
π0(R, a, b, x, y)

π0(a 6= ⊥, b 6= ⊥)
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Now, we have the expression of π0(R, x, y|a 6= ⊥, b 6= ⊥) and π(R, x, y), we calculate

ICµext(π) = Iπ(R : X,Y ),

= Hπ(R)−Hπ(R|X,Y ),

= Hπ(R).

ICµ0 (π̂0) = Iπ0
(R : X,Y |A 6= ⊥, B 6= ⊥),

= Hπ0
(R|A 6= ⊥, B 6= ⊥)−Hπ0

(R|X,Y,A 6= ⊥, B 6= ⊥),

= Hπ0
(R|A 6= ⊥, B 6= ⊥),

where each second term of the second line is null, since R is determined when the input is known
and Alice and Bob don’t abort. We conclude that these quantities are equal, since

π0(R|a 6= ⊥, b 6= ⊥) =
1

η
π0(R, a 6= ⊥, b 6= ⊥),

=
1

η

∑
a∈A
b∈B

∑
x,y

π0(R, a, b, x, y),

=
1

η

∑
a∈A
b∈B

∑
x,y

π0(R).µ(x, y).l⊥R(a, b|x, y),

=
∑
a∈A
b∈B

∑
x,y

µ(x, y).l⊥R(a, b|x, y),

=
∑

(x,y)∈R

µ(x, y),

= π(R).

9.2 Dualization of IC0

This section is completely dedicated to dualize the minimization form of Definition 9.1.1, to
obtain

Theorem 9.2.1. (Zero information complexity)

ICµ0 (p) = sup
Babxy

∑
abxy

Babxyµ(x, y)p(a, b|x, y) subject to,

• ∀l ∈ Ldet,
∑
abxy

ν(x, y)Babxyl(a, b|x, y) ≤ D(ν||µ),

• ∀x ∈ X,∀y ∈ Y,∀ηx, ηy ∈ [0, 1], ν(x, y) =
ηxηy∑

x′,y′ η
′
xη
′
yµ(x′, y′)

µ(x, y).

Proof. Starting from Definition 9.1.1, we define λω = π̂0

η , the first constraint then becomes∑
lω∈L⊥priv

λωl
⊥
ω (a, b|x, y) = p(a, b|x, y).
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From the second constraint, the joint distribution probability π0 is defined as

π0(ω, a, b, x, y) = π̂0(ω).l⊥ω (a, b|x, y).µ(x, y).

From this distribution we can obtain,

π0(a 6= ⊥, b 6= ⊥, x, y) =
∑
ω

∑
a∈A
b∈B

π0(ω, a, b, x, y) =
∑
ω

π̂0(ω).ηωxy.µ(x, y) = η.µ(x, y),

π0(a 6= ⊥, b 6= ⊥) =
∑
x,y

η.µ(x, y) = η,

π0(x, y|a 6= ⊥, b 6= ⊥) =
π0(a 6= ⊥, b 6= ⊥, x, y)

π0(a 6= ⊥, b 6= ⊥)
= µ(x, y),

π0(ω, x, y|a 6= ⊥, b 6= ⊥) =
π0(ω, a 6= ⊥, b 6= ⊥, x, y)

π0(a 6= ⊥, b 6= ⊥)
=
π̂0(ω).ηωxy.µ(x, y)

η
= λω.η

ω
xy.µ(x, y),

π0(ω|a 6= ⊥, b 6= ⊥) =
∑
x,y

λω.η
ω
xy.µ(x, y) = λω.η

ω,

We use the last three equations to calculate Iπ0(X,Y : Ω|A 6= ⊥, B 6= ⊥),

Iπ0
(X,Y : Ω|A 6= ⊥, B 6= ⊥)

=
∑
x,y,ω

π0(ω, x, y|a 6= ⊥, b 6= ⊥) log
π0(ω, x, y|a 6= ⊥, b 6= ⊥)

π0(ω|a 6= ⊥, b 6= ⊥).π0(x, y|a 6= ⊥, b 6= ⊥)
,

=
∑
x,y,ω

λω.η
ω
xy.µ(x, y) log

ηωxy
ηω

.

Then, the initial Definition 9.1.1 of ICµ0 becomes

ICµ0 (p) = inf
λω≥0

∑
x,y,ω

λω.η
ω
xy.µ(x, y) log

ηωxy
ηω

subject to,

•
∑
ω

λωl
⊥
ω (a, b|x, y) = p(a, b|x, y), ∀a ∈ A, ∀b ∈ B, ∀(x, y) ∈ supp(µ),∀l⊥ω ∈ L⊥priv.

Note that the zero information method is now a linear program. Hence, let’s check the strong
duality with the Slater’s condition (Definition 6.7.7) by looking for a strictly feasible. Since there

is no inequality constraints, we must only find a strictly feasible (λ̂ω)ω such that λ̂ω < λω for all
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ω where λω 6= 0. Which is trivial.

ICµ0 (p) = inf
λω≥0

sup
Babxy

∑
x,y,ω

λω.η
ω
xy.µ(x, y) log

ηωxy
ηω

+
∑
a,b,x,y

µ(x, y).Babxy

[
p(a, b|x, y)−

∑
ω

λωl
⊥
ω (a, b|x, y)

]
,

ICµ0 (p) = sup
Babxy

inf
λω≥0

∑
a,b,x,y

µ(x, y)Babxyp(a, b|x, y)

+
∑
x,y,ω

λω.µ(x, y)
[
ηωxy log

ηωxy
ηω
−
∑
ω

Babxy.l
⊥
ω (a, b|x, y)

]
,

ICµ0 (p) = sup
Babxy

∑
a,b,x,y

µ(x, y)Babxyp(a, b|x, y) subject to,

•
∑
x,y

µ(x, y).Babxy.l
⊥
ω (a, b|x, y) ≤

∑
x,y

µ(x, y).ηωxy log
ηωxy
ηω

, ∀a ∈ A, ∀b ∈ B, ∀l⊥ω ∈ L⊥priv.

To make equations clearer, we replace ηωxy by ηlxy since there is an equivalence between the
variable ω and a conditional distribution l .
Note that only the condition of the dual form of ICµ0 must be satisfied for all private coin
randomized protocols l⊥ ∈ L⊥priv without abort. Therefore, we can restrict each protocol l⊥ ∈
L⊥priv to l∗ ∈ Lpriv with,

l∗(a, b|x, y) =

{
1
ηlxy

l⊥(a, b|x, y) if ηlxy 6= 0,
1

|A||B| otherwise.

Then, the only condition of the dual form of ICµ0 becomes∑
x,y

µ(x, y).Babxy.l
⊥(a, b|x, y) ≤

∑
x,y

µ(x, y).ηlxy log
ηlxy
ηl

∀l⊥ ∈ L⊥priv,

∑
x,y

µ(x, y).Babxy.η
l
xy.l
∗(a, b|x, y) ≤

∑
x,y

µ(x, y).ηlxy log
ηlxy
ηl

∀l⊥ ∈ L⊥priv,

∑
x,y

µl(x, y).Babxy.l
∗(a, b|x, y) ≤

∑
x,y

µl(x, y). log
µl(x, y)

µ(x, y)
∀l⊥ ∈ L⊥priv,∑

x,y

µl(x, y).Babxy.l
∗(a, b|x, y) ≤ D(µl||µ) ∀l⊥ ∈ L⊥priv,

where we define µl(x, y) = µ(x, y)
ηlxη

l
y

ηl
. Note that from Equation (9.4), µl is still a probability

distribution over X × Y .
As every protocol with abort l⊥ ∈ L⊥priv, can be constructed from a protocol l ∈ Lpriv without

abort and coefficients (ηlx)x for Alice and (ηly)y for Bob. Then we decompose a protocol in

l ∈ L⊥priv in a protocol l ∈ Lpriv and coefficients ηlx’s and ηly’s, both independent. Then∑
x,y

ν(x, y).Babxy.l(a, b|x, y) ≤ D(ν||µ) ∀l ∈ Lpriv,

ηxηy∑
x′,y′ ηx′ηy′µ(x′, y′)

µ(x, y) = ν(x, y) ∀x ∈ X,∀y ∈ Y,∀ηx, ηy ∈ [0, 1].
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Finally, as the left term of the constraint is linear in l ∈ Lpriv, a private randomness distribution,
then this is sufficient to only consider deterministic distributions, since Ldet ⊂ Lpriv ⊂ conv Ldet.

9.3 IC0 with a product input distribution

Let µ be a input product distribution with µ(x, y) = µxµy. Then

ν(x, y) = µ(x, y).
ηxy∑

x′,y′ ηx′y′µ
′
xµ
′
y

,

= µxµy
ηxηy∑

x′,y′ µx′µy′ηx′ηy′
,

=
µxηx∑
x′ µx′ηx′

µyηy∑
y′ µy′ηy′

,

= νxνy.

Hence, in the dual form of the zero information complexity 9.2.1, the last condition can be
separated into two conditions.

Corollary 9.3.1. (Zero information complexity for product input distribution)

ICµ0 (p) = sup
Babxy

∑
a,b,x,y

Babxyµxµyp(a, b|x, y) subject to,

•
∑
a,b,x,y

νxνyBabxyl(a, b|x, y) ≤ D(νx||µx) +D(νy||µy), ∀l ∈ Ldet,

• νx =
µxηx∑
x′ µx′ηx′

, ∀ηx ∈ [0, 1],∀x ∈ X,

• νy =
µxηy∑
y′ µy′ηy′

, ∀ηy ∈ [0, 1],∀y ∈ Y.

We can observe in the above corollary that νx and νy are not restricted anymore. I.e. for
all distributions µx ∈ P

(
supp(µx)

)
, there exits (ηx)x that satisfies the condition in the corollary.

Same for µy. Hence, we can simplify again the zero information complexity.

Theorem 9.3.2. (Zero information complexity for product input distribution)

ICµ0 (p) = sup
Babxy,B0

∑
a,b,x,y

Babxyµxµyp(a, b|x, y)−B0 subject to,

• inf
νx∈P(Xµ))
νy∈P(Yµ)

[
D(νx||µx) +D(νy||µy)−

∑
a,b,x,y

νxνyBabxyl(a, b|x, y)
]
≥ −B0, ∀l ∈ Ldet

where Xµ = supp(µx) and Yµ = supp(µy).

Proof. We simply change the variable Babxy to Babxy−B0. After we substitute ηx’s to νx, which
is possible only if µx is not null. Similarly for µy.

Now, we introduce a lemma which we will be useful to simplify optimization program.
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Lemma 9.3.3. [SSL17]
Let q be a probability distribution in P(S), f be a function in B(S) and

〈
p, f
〉

be the expectation
of f under the distribution p. Then, the optimization problem,

min
p∈P(S)

DKL(p||q)−
〈
p, f
〉
,

has for optimal value, − log
〈
q, 2f

〉
, achieved by the unique optimal probability distribution

p̂(s) =
q(s)2f(s)〈
q, 2f

〉 .

The next proof was not the first, but it is original.

Proof. This proof uses tools of convex optimization. Since DKL(p||q) is convex in p, the Slater’s
condition holds.

T (q, f) = min
∀s, p(s)≥0

DKL(p||q)−
〈
p, f
〉
, such that

∑
s∈S

p(s) = 1,

T (q, f) = min
∀s, p(s)≥0

max
λ∈R

∑
s

p(s) log
p(s)

q(s)
−
∑
s∈S

p(s)f(s) + λ
(
1−

∑
s∈S

p(s)
)
,

T (q, f) = max
λ∈R

{
λ+

∑
s∈S

min
p(s)≥0

(
p(s)

[
log

p(s)

q(s)
− f(s)− λ

])}
,

as the term between parentheses is strictly convex on p(s), we can derive optimal points p?(s) =
e−1q(s)2f(s)+λ, with e the base of natural logarithm. Thus we obtain,

T (q, f) = max
λ∈R

{
λ− 2λ

e ln 2

∑
s∈S

q(s)2f(s)

}
.

Since the function between accolades is concave on λ, we can derive the optimal point λ? =
log e〈

q,2f
〉 . Inserting λ? in T (q, f) and p?(s), we obtain

T (q, f) = − log
〈
q, 2f

〉
and p?(s) =

q(s)2f(s)〈
q, 2f

〉 .

Moreover, the unique condition in Theorem 9.3.2 can be expressed under the minimization
of νx or νy.

Lemma 9.3.4. The optimal value of the minimization problem

inf
νx≥0
νy≥0

D(νx||µx) +D(νy||µy)−
∑
a,b,x,y

νxνyBabxyl(a, b|x, y)

= inf
νy≥0

D(νy||µy)− log

[∑
x

µx2
∑
a,b,y νyBabxyl(a,b|x,y)

]
,

= inf
νx≥0

D(νx||µx)− log

[∑
y

µy2
∑
a,b,x νxBabxyl(a,b|x,y)

]
,
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where optimal points are respectively,

ν?x(νy) =
µx2

∑
a,b,y νyBabxyl(a,b|x,y)∑

x µx2
∑
a,b,y νyBabxyl(a,b|x,y)

,

ν?y (νx) =
µy2

∑
a,b,x νxBabxyl(a,b|x,y)∑

y µy2
∑
a,b,x νxBabxyl(a,b|x,y)

.

Proof. The proof is a direct consequence of Lemma 9.3.3.

9.4 Relaxed information cost IC0

In this Section, we provide IC
µ

0 a relaxed version of ICµ0 , such that for all input distributions µ,

IC
µ

0 ≤ ICµ0 .

Theorem 9.4.1. (Relaxed zero information complexity)

IC
µ

0 (p) = sup
Babxy
B0

∑
a,b,x,y

Babxyµ(x, y)p(a, b|x, y)−B0 subject to,

∑
x,y

µ(x, y)2
∑
a,b Babxyl(a,b|x,y) ≤ 2B0 , ∀l ∈ Ldet.

This bound is derived from Claim 9.4.2, that proves an information cost equivalence between
a zero communication protocol with efficiency η and a zero communication protocol with full
efficiency (η = 1) with restrictions.

Claim 9.4.2. Let p be a conditional probability distribution and µ an input distribution. There
exists a zero communication protocol for p with efficiency η and distribution π0 with ICµ0 (π0) = i,
if and only if, there exists a zero communication protocol for p with full efficiency (η = 1), a
joint distribution π(ω, x, y) with ICµ(π) = i, and functions u : X × Ω → R+, v : Y × Ω → R+

such that,

∀a ∈ A, ∀b ∈ B, ∀(x, y) ∈ supp(µ),
∑

lω∈Lpriv

π(ω|x, y)lω(a, b|x, y) = p(a, b|x, y),

∀ω ∈ Ω, ∀(x, y) ∈ supp(µ), π(ω|x, y) = u(x, ω).v(y, ω),

ICµ(π) = i.

With this equivalence in term of information complexity, we rewrite Definition 9.1.1.

Corollary 9.4.3. (Zero information complexity)

ICµ0 (p) = inf
π(ω,x,y)≥0
u(x,ω)≥0
v(y,ω)≥0

Iπ(X,Y : Ω) subject to,

•
∑

lω∈Lpriv

π(ω, x, y)lω(a, b|x, y) = µ(x, y)p(a, b|x, y),
∀ω ∈ Ω,∀x ∈ X,∀y ∈ Y,
∀a ∈ A, ∀b ∈ B,

• π(ω|x, y) = u(x, ω).v(y, ω), ∀ω ∈ Ω,∀(x, y) ∈ supp(µ),

• π(ω, x, y) = π(ω|x, y).µ(x, y), ∀ω ∈ Ω,∀x ∈ X,∀y ∈ Y.
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Proof of Claim 9.4.2. ⇒
For a zero communication protocol with efficiency η and distribution π0 with ICµ0 (π0) = i, such
that ∑

l⊥ω∈L⊥priv

pΩ(ω)l⊥ω (a, b|x, y) = ηp(a, b|x, y).

We define the joint distribution π(ω, x, y) as

π(ω, x, y) = π(ω|x, y)µ(x, y),

π(ω|x, y) = π0(ω|x, y, a 6= ⊥, b 6= ⊥).

This definition directly implies IC0(π0) =IC(π). Moreover, we have

π(ω|x, y) = π0(ω|x, y, a 6= ⊥, b 6= ⊥),

=
1

η

∑
a∈A
b∈B

π0(ω, a, b|x, y),

=
1

η

∑
a∈A
b∈B

π0(ω)l⊥ω (a, b|x, y),

=
1

η
π0(ω)ηωxy,

=
1

η
π0(ω)ηωx .η

ω
y ,

then we can choose u(x, ω) = ηωx

√
π0(ω)
η and v(y, ω) = ηωy

√
π0(ω)
η .

Furthermore, for each l⊥ω ∈ L⊥priv we define its not aborting version lω ∈ Lpriv, as

lω(a|x) =

{
1
ηωx
lA,⊥ω (a|x) if ηωx 6= 0,

1
|A| otherwise,

and lω(b|y) =

{
1
ηωy
lB,⊥ω (b|y) if ηωy 6= 0,

1
|B| otherwise,

where l⊥ω = lA,⊥ω .lB,⊥ω and lω = lAω .l
B
ω . Finally, we obtain∑

lω∈Lpriv

π(ω|x, y)lω(a, b|x, y) =
1

η

∑
lω∈Lpriv

π0(ω).ηωx .η
ω
y .l

A
ω (a|x).lBω (b|y),

=
1

η

∑
lω∈L⊥priv

π0(ω).lA,⊥ω (a|x).lB,⊥ω (b|y),

= p(a, b|x, y).

⇐
For a zero communication protocol with full efficiency, a joint distribution π(ω, x, y) with ICµ(π) =
i and lω ∈ Lpriv, and functions u : X × Ω→ R+, v : Y × Ω→ R+.
We set π0(ω) to be uniform distribution over Ω, π0(ω) = 1

|Ω| , and private randomness protocol

with abort l⊥ω ∈ L⊥priv such that l⊥ω = lA,⊥ω .lB,⊥ω ,

lA,⊥ω (a|x) =

{
u(x,ω)
U lAω (a|x) if a 6= ⊥,
1− u(x,ω)

U if a = ⊥,
and lB,⊥ω (b|y) =

{
v(y,ω)
V lBω (b|y) if b 6= ⊥,
1− v(y,ω)

V if b = ⊥,
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where U = max(x,ω) u(x, ω) and V = max(y,ω) v(y, ω). Therefore we obtain,

∑
l⊥ω∈L⊥priv

π0(ω)l⊥ω (a, b|x, y) =
1

|Ω|
∑

lω∈Lpriv

u(x, ω)

U

v(y, ω)

V
lAω (a|x).lBω (b|y),

=
1

|Ω|UV
∑

lω∈Lpriv

π(ω|x, y)lω(a, b, x, y),

=
1

|Ω|UV
p(a, b|x, y),

where the efficiency is η = 1
|Ω|UV . To conclude, we show that IC0(π0) =IC(π),

π0(ω|x, y, a 6= ⊥, b 6= ⊥) =
1

η

∑
a∈A
b∈B

π0(ω, a, b|x, y)

=
1

η

∑
a∈A
b∈B

π0(ω)l⊥ω (ω, a, b|x, y),

=
1

η|Ω|
∑
a∈A
b∈B

u(x, ω)

U
lAω (a|x).

v(y, ω)

V
lBω (b|y),

=
1

η|Ω|UV
∑
a∈A
b∈B

π(ω|x, y)lω(a, b|x, y),

= π(ω|x, y).

From this version of IC0, we give a relaxed version IC0 by removing the second constraint in
9.4.3, that is

π(ω, x, y) = u(x, ω)v(y, ω).µ(x, y) ∀x, y, ω.

Definition 9.4.4. (Relaxed zero information complexity)

IC
µ

0 (p) = inf
π(ω,x,y)≥0

Iπ(X,Y : Ω) subject to,

•
∑

lω∈Lpriv

π(ω, x, y)lω(a, b|x, y) = µ(x, y)p(a, b|x, y),
∀ω ∈ Ω,∀x ∈ X,∀y ∈ Y,
∀a ∈ A, ∀b ∈ B,

• π(ω, x, y) = π(ω|x, y).µ(x, y), ∀ω ∈ Ω,∀(x, y) ∈ supp(µ).

Obviously, we trivially have the relation IC
µ

0 ≤ ICµ0 for all input distributions. Now, we

reformulate IC
µ

0 in a more practical form.

Proof of Theorem 9.4.1. First, we use the notation πω(ω) = π(ω) and πxyω = π(ω|x, y) to rewrite
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Iπ(X,Y : Ω) as,

Iπ(X,Y : Ω) =
∑
x,y,ω

π(ω, x, y) log
π(ω, x, y)

π(ω)µ(x, y)
,

=
∑
x,y,ω

µ(x, y)π(ω|x, y) log
π(ω|x, y)

π(ω)
,

=
∑
x,y

µ(x, y)D(πxyω |πω).

Now, we make π(ω|x, y) and π(ω) independent by adding a constraint, then the linear program
becomes,

IC
µ

0 (p) = inf
πxyω (ω)≥0
πω(ω)≥0

∑
x,y

µ(x, y)D(πxyω |πω) subject to,

•
∑

lω∈Lpriv

µ(x, y)πxyω (ω)lω(a, b|x, y) = µ(x, y)p(a, b|x, y),
∀ω ∈ Ω,∀x ∈ X,∀y ∈ Y,
∀a ∈ A, ∀b ∈ B,

• πω(ω) =
∑
x,y

πxyω (ω).µ(x, y), ∀ω ∈ Ω,∀x ∈ X,∀y ∈ Y.

Now, we dualize,

IC
µ

0 (p) = inf
πxyω (ω)≥0
πω(ω)≥0

sup
Babxy
λω

∑
x,y

µ(x, y)D(πxyω |πω)

+
∑
a,b,x,y

Babxyµ(x, y)

[
p(a, b|x, y)−

∑
lω∈Lpriv

πxyω (ω)lω(a, b|x, y)

]
−
∑
ω

λω

[∑
x,y

πxyω (ω).µ(x, y)− πω(ω)

]
,

IC
µ

0 (p) = inf
πω(ω)≥0

sup
Babxy
λω

inf
πxyω (ω)≥0

∑
x,y,ω

µ(x, y)πxyω (ω)

[
log

πxyω
πω
−
∑
a,b

Babxylω(a, b|x, y)−
∑
ω

λω

]

+
∑
a,b,x,y

Babxyµ(x, y) p(a, b|x, y) +
∑
ω

λωπω(ω).

The swap between inf and sup is allowed, because the Lagrangian is convex in Babxy, λω and
πxyω , then there is a strong duality from Slater Theorem 6.7.8. Using Lemma 9.3.3 on µ(x, y)πxyω ,
we obtain

IC
µ

0 (p) = inf
πω(ω)≥0

sup
Babxy
λω

− log

[ ∑
ω,x,y

µ(x, y)πω(ω)2λω+
∑
a,b Babxylω(a,b|x,y)

]

+
∑
a,b,x,y

Babxyµ(x, y) p(a, b|x, y) +
∑
ω

λωπω(ω),

IC
µ

0 (p) = sup
Babxy

∑
a,b,x,y

Babxyµ(x, y) p(a, b|x, y)

+ inf
πω(ω)≥0

sup
λω

[∑
ω

λωπω(ω) − log
∑
ω,x,y

µ(x, y)πω(ω)2λω+
∑
a,b Babxylω(a,b|x,y)

]
,
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Here again, the swap between inf and sup is allowed, because the Lagrangian is concave in Babxy
and πω, then there is a strong duality from Slater Theorem 6.7.8. To maximization the last term
over λω, we introduce the notation

D(ω) =
∑
x,y

µ(x, y)2
∑
a,b Babxylω(a,b|x,y) and C(λ) =

∑
ω

πω(ω)D(ω)2λω ,

where λ is a vector over Ω. Thus, the maximization becomes,

sup
λω

f(πω) = sup
λω

[
〈λ, πω〉 − logC(λ)

]
.

Note that the objective function f(πω) is strictly concave, since

df(πω)

dλω
= πω −

πω(ω)D(ω)2λω

C(λ)
,

d2f(πω)

dλ2
ω

= − ln 2
πω(ω)D(ω)2λω

C(λ)2

[
C(λ)− πω(ω)D(ω)2λω

]
,

where all terms πω(ω)D(ω)2λω are positive and from the definition of C(λ). As, f(πω) is strictly
concave, its maximum value is,

sup
λω

f(πω) = −
∑
ω

πω(ω) logD(ω),

with maximum attained for λ?ω = log C(λ)
D(ω) .

So, our optimization problem becomes

IC
µ

0 (p) = sup
Babxy

∑
a,b,x,y

Babxyµ(x, y) p(a, b|x, y)

+ inf
πω(ω)≥0

[
− log

∑
ω,x,y

µ(x, y)πω(ω)2
∑
a,b Babxylω(a,b|x,y)

]
,

IC
µ

0 (p) = sup
Babxy
B0

∑
a,b,x,y

Babxyµ(x, y) p(a, b|x, y)−B0 subject to,

• −B0 ≤ inf
πω(ω)≥0

[
− log

∑
ω,x,y

µ(x, y)πω(ω)2
∑
a,b Babxylω(a,b|x,y)

]
,

IC
µ

0 (p) = sup
Babxy
B0

∑
a,b,x,y

Babxyµ(x, y) p(a, b|x, y)−B0 subject to,

• sup
πω(ω)≥0

[∑
ω

πω(ω)
∑
x,y

µ(x, y)2
∑
a,b Babxylω(a,b|x,y)

]
≤ 2B0 .

As the restriction is linear in πω, the maximization over πω can be replaced, without loss of
generality, by

IC
µ

0 (p) = sup
Babxy
B0

∑
a,b,x,y

Babxyµ(x, y) p(a, b|x, y)−B0 subject to,

•
∑
x,y

µ(x, y)2
∑
a,b Babxyl(a,b|x,y) ≤ 2B0 for all l ∈ Lpriv.
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Finally, as a private randomness protocol is a convex combination of deterministic protocols,
and the exponential function is convex, then Jensen’s inequality 2.3 implies that the maximum
is attained for a deterministic protocol.

9.5 IC→0 in the one-way model

In the one-way model, only one players (Alice) communicates and aborts, so we define a zero
information complexity IC→0 only depending of variables X,A,Ω.

Definition 9.5.1. (One-way zero information complexity)

ICµ,→0 (p) = inf
η≥0

π̂0(ω)≥0

Iπ0(X : Ω|A 6= ⊥) subject to,

•
∑

lω∈L⊥,→priv

π̂0(ω)lω(a, b|x, y) = ηp(a, b|x, y), ∀a ∈ A⊥, ∀b ∈ B⊥, ∀(x, y) ∈ supp(µ),

• π0(ω, a, b, x, y) = π̂0(ω).l⊥,→ω (a, b|x, y).µ(x, y), ∀ω,∀a ∈ A⊥,∀b ∈ B⊥,∀x ∈ X,∀y ∈ Y.

Since, only Alice aborts ηlx = ηlxy and ηly = 1, for all l ∈ L⊥,→priv . We also define,

η̂l =
∑
x∈X

µ(x).ηlx and µ̂l(x) = µ(x)
ηlx
η̂l
. (9.5)

As in the previous Section, we dualize ICµ,→0 to obtain a linear program.

Theorem 9.5.2. (Zero information complexity)

ICµ,→0 (p) = sup
Babxy

∑
a,b,x,y

Babxyµ(x, y)p(a, b|x, y) subject to,

•
∑
a,b,x,y

νxµ(y|x)Babxyl(a, b|x, y) ≤ D(νx||µ), ∀l ∈ L→det,

• νx =
ηx∑′

x ηx′µ(x′)
µ(x), ∀ηx ∈ [0, 1],∀x ∈ X.

Proof. This proof is a special case of the proof of Theorem 9.2.1.
Starting from Definition 9.1.1, we define λω = π̂0

η , then the first constraint becomes

∑
lω∈L⊥,→priv

λωlω(a, b|x, y) = p(a, b|x, y).

From the second constraint, the joint distribution probability π0 is defined as

π0(ω, a, b, x, y) = π̂0(ω).l⊥,→ω (a, b|x, y).µ(x, y).
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From this distribution we can obtain,

π0(a 6= ⊥, x) =
∑
ω

∑
b

∑
a∈A
b∈B⊥

π0(ω, a, b, x, y) =
∑
ω

π̂0(ω).ηωx .µ(x) = η.µ(x),

π0(a 6= ⊥) =
∑
x,y

η.µ(x, y) = η,

π0(x|a 6= ⊥) =
π0(a 6= ⊥, x)

π0(a 6= ⊥)
= µ(x),

π0(ω, x|a 6= ⊥) =
π0(ω, a 6= ⊥, x)

π0(a 6= ⊥, )
=
π̂0(ω).ηωx .µ(x)

η
= λω.η

ω
x .µ(x),

π0(ω|a 6= ⊥) =
∑
x

λω.η
ω
x .µ(x) = λω.η̂

ω,

We use the last three equations to calculate Iπ0
(X,Y : Ω|A 6= ⊥),

Iπ0(X,Y : Ω|A 6= ⊥)

=
∑
x,ω

π0(ω, x|a 6= ⊥) log
π0(ω, x|a 6= ⊥)

π0(ω|a 6= ⊥).π0(x|a 6= ⊥)
,

=
∑
x,ω

λω.η
ω
x .µ(x, y) log

ηωx
η̂ω
.

Therefore the initial Definition 9.1.1 of ICµ0 becomes,

ICµ,→0 (p) = inf
λω≥0

∑
x,ω

λω.η
ω
x .µ(x) log

ηωx
η̂ω

subject to,

•
∑
ω

λωl
⊥
ω (a, b|x, y) = p(a, b|x, y), ∀a ∈ A, ∀b ∈ B, ∀(x, y) ∈ supp(µ),∀l⊥ω ∈ L

⊥,→
priv .

Note that the one-way zero information method is now a linear program. Hence, let’s check
the strong duality with the Slater’s condition (Definition 6.7.7) by looking for a strictly feasible.

Since there is no inequality constraints, we must only find a strictly feasible (λ̂ω)ω such that

λ̂ω < λω for all ω where λω 6= 0. Which is trivial.

ICµ,→0 (p) = inf
λω≥0

sup
Babxy

∑
x,ω

λω.η
ω
x .µ(x) log

ηωx
η̂ω

+
∑
a,b,x,y

µ(x, y).Babxy

[
p(a, b|x, y)−

∑
ω

λωl
⊥
ω (a, b|x, y)

]
,

ICµ0 (p) = sup
Babxy

inf
λω≥0

∑
a,b,x,y

µ(x, y)Babxyp(a, b|x, y)

+
∑
x,y,ω

λω.µ(x)
[
ηωx log

ηωx
η̂ω
− µ(y|x).

∑
ω

Babxy.l
⊥
ω (a, b|x, y)

]
,

ICµ0 (p) = sup
Babxy

∑
a,b,x,y

µ(x, y)Babxyp(a, b|x, y) subject to,

•
∑
x,y

µ(x, y).Babxy.l
⊥
ω (a, b|x, y) ≤

∑
x

µ(x).ηωx log
ηωx
η̂ω
, ∀a ∈ A, ∀b ∈ B, ∀l⊥ω ∈ L

⊥,→
priv .
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Remark. After the dualization, the variable ω is not useful. Henceforth, we remove it and use
the notation ηlxy instead of ηωxy.

Note that only the condition of the dual form of ICµ0 must be satisfied for all private coin

randomized protocols l⊥,→ ∈ L⊥,→priv without abort. Therefore we can restrict each protocol

l⊥,→ ∈ L⊥,→priv to l∗,→ ∈ L→priv with,

l∗,→(a, b|x, y) =

{
1
ηlx
l⊥,→(a, b|x, y) if ηlx 6= 0,

1
|A||B| otherwise.

Then, the only condition of the dual form of ICµ0 becomes∑
x,y

µ(x, y).Babxy.l
⊥,→(a, b|x, y) ≤

∑
x,y

µ(x).ηlx log
ηlx
η̂l

∀l⊥ ∈ L⊥priv,

∑
x,y

µ(x, y).Babxy.η
l
x.l
∗,→(a, b|x, y) ≤

∑
x

µ(x).ηlx log
ηlx
η̂l

∀l⊥ ∈ L⊥priv,

∑
x,y

µ(y|x)µ̂l(x).Babxy.l
∗,→(a, b|x, y) ≤

∑
x

µl(x). log
µ̂l(x)

µ(x)
∀l⊥ ∈ L⊥priv,∑

x,y

µ(y|x)µ̂l(x).Babxy.l
∗,→(a, b|x, y) ≤ D(µ̂l||µx) ∀l⊥ ∈ L⊥priv,

where we define µ̂l(x) = µ(x)
ηlx
η̂l

. Note that from Equation (9.5), µ̂l is still a probability distribu-

tion over X. Moreover, as every protocol with abort l⊥ ∈ L⊥,→priv can be construct from a protocol

l ∈ L→priv with abort (ηlx)x, then we can consider ηlx’s independent of l ∈ L⊥,→priv , such that,∑
x,y

ν(x)µ(y|x).Babxy.l(a, b|x, y) ≤ D(ν||µ) ∀l ∈ L→priv,

ηx∑
x′ ηx′µ(x′)

µ(x) = ν(x) ∀x ∈ X,∀ηx ∈ [0, 1].

Finally, as the left term of the constraint is linear in l ∈ L→priv, a private randomness dis-
tribution, then this is sufficient to consider deterministic distributions, since L→det ⊂ L→priv ⊂
conv L→det.

To anticipate the future application, by giving to ICµ,→0 a more practical form,

Theorem 9.5.3. (Zero information complexity for one-way model)

ICµ,→0 (p) = sup
Babxy,B0

∑
a,b,x,y

Babxyµ(x, y)p(a, b|x, y)−B0 subject to,

•
∑
x

µ(x)2
∑
a,b,y µ(y|x)Babxyl(a,b|x,y) ≤ 2B0 , ∀l ∈ L→det.

Proof. Changing the variable Babxy to Babxy −B0, and substituting ηx’s to νx, which is possible
only if µx is not null. We obtain,

ICµ,→0 (p) = sup
Babxy,B0

∑
a,b,x,y

Babxyµ(x, y)p(a, b|x, y)−B0 subject to,

• inf
νx∈P(Xµ)

[
D(νx||µx)−

∑
a,b,x,y

νxµ(y|x)Babxyl(a, b|x, y)
]
≥ −B0, ∀l ∈ L→det,
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where Xµ = supp(µx). Using Lemma 9.3.3 on the condition, we obtain

inf
νx≥0

[
D(νx||µx)−

∑
a,b,x,y

νxµ(y|x)Babxyl(a, b|x, y)
]

= − log
∑
x

µ(x)2
∑
a,b,y µ(y|x)Babxyl(a,b|x,y),

which concludes the proof.

9.6 Application

In this section, we apply the three different versions of the zero information cost, defined pre-
viously, to CHSH correlations pχ. Originally, CHSH is a game where Alice and Bob receive
respectively an input x and y among {0, 1}, then they output a and b among {+1,−1} according
to

(−1)xy = a.b for all a, b, x, y.

CHSH correlations pχ is a generalization where we simulate the CHSH game for χ = 1, and
progressively adding noise when χ goes to zero. Indeed, these correlations can be simulated

without communication for χ = 0.5, and with one bit for χ = 1. For χ−
√

2
2 , pχ corresponds to

quantum correlations obtained from projective measurement on a Bell pair. We recall that for
χ ∈ [0, 1], a, b ∈ {−1,+1} and x, y ∈ {0, 1},

pχ(a, b|x, y) =
1 + χab(−1)xy

4
.

To calculate IC0, we don’t maximize over all input distributions µ, instead we choose the
uniform distribution πu over X × Y . Thus

ICπu0 ≤ IC0.

Likewise, for each application we use coefficients Babxy with B a real, such that

Babxy = B.ab.(−1)xy ∀x, y ∈ {0, 1},∀a, b ∈ {+1,−1}. (9.6)

Therefore,

∑
a,b∈{+1,−1}
x,y∈{0,1}

Babxyµ(x, y)pχ(a, b|x, y) =
1

4

∑
a,b∈{+1,−1}
x,y∈{0,1}

B.ab.(−1)xy
1 + χab(−1)xy

4
, (9.7)

=
1

16

∑
a,b∈{+1,−1}
x,y∈{0,1}

Bχ, (9.8)

= Bχ. (9.9)

Note that all deterministic strategies for Alice and Bob are characterized by functions

fA : {0, 1} → {+1,−1}, and fB : {0, 1} → {+1,−1},

then there exists only 16 different deterministic strategies for Alice and Bob. For a conditional



9.6. APPLICATION 127

distribution l ∈ L, we define several average values, such that

〈Ax〉 =
∑
a∈A

a l(a|x),

〈By〉 =
∑
b∈B

b l(b|y),

〈AxBy〉 =
∑
a∈A
b∈B

ab l(a, b|x, y),

with 〈AxBy〉 = 〈Ax〉 〈By〉, if l ∈ Lpriv. Moreover for l ∈ Ldet, 〈Ax〉 = fA(x) and 〈By〉 = fB(y).

9.6.1 IC→
0 for CHSH correlations

In a previous article [RS09] Szegedy and Roland have shown that

IC→0 (pχ) ≥ 1−H(χ), ∀χ ∈ [0.5, 1].

In this Subsection we find this lower bound.

We recall the optimization form of ICµ,→0 (p).

ICµ,→0 (p) = sup
Babxy,B0

∑
a,b,x,y

Babxyµ(x, y)p(a, b|x, y)−B0 subject to,

•
∑
x

µ(x)2
∑
a,b,y µ(y|x)Babxyl(a,b|x,y) ≤ 2B0 , ∀l ∈ L→det.

Theorem 9.6.1. [RS09] For χ ∈ [0.5, 1],

IC→0 (pχ) ≥ ICπu,→0 (pχ) ≥ 1−H(χ).

Proof. From Equation 9.9, we already know that the objective value is, Bχ−B0. Let characterize
the condition for all l ∈ Ldet.∑

x

µ(x)2
∑
a,b,y µ(y|x)Babxyl(a,b|x,y) =

1

2

∑
x

2
B
2

∑
a,b,y(−1)xyab.l(a,b|x,y),

=
1

2

∑
x

2
B
2

∑
y(−1)xy〈AxBy〉,

=
1

2
2
B
2 〈A0〉

(
〈B0〉+〈B1〉

)
+

1

2
2
B
2 〈A1〉

(
〈B0〉−〈B1〉

)
.

As 〈By〉 ∈ {+1,−1}, at least on term disappear, and by symmetry we only have two different
conditions,

1 + 2B

2
≤ 2B0 or

1 + 2−B

2
≤ 2B0 .

As B is real these conditions are equivalent, then we choose the first condition and we restraint
B to R+. Thus, we obtain the following optimization program,

ICπu,→0 (pχ) ≥ sup
B≥0
B0

Bχ−B0 subject to,
1 + 2B

2
≤ 2B0 ,

ICπu,→0 (pχ) ≥ sup
B≥0

Bχ− log
1 + 2B

2
,
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since we want B0 as small as possible.
We show the objective function, denoted g(B), is strictly concave,

dg(B)

dB
= χ− 1

1 + 2−B
,

d2g(B)

dB2
= −ln 2

2−B

(1 + 2−B)2
,

where the maximum is,

B? = log
χ

1− χ
.

Therefore, we conclude

ICπu,→0 (pχ) ≥ 1 + χB? − log
(
1 + 2B

?)
,

= 1 + χ log
χ

1− χ
− log

(
1 +

χ

1− χ
)
,

= 1 + χ log
χ

1− χ
− log

(
1 +

χ

1− χ
)
,

= 1−H(χ).

Finally, since there exists a protocol for pχ with information cost 1 − H(χ) (Theorem 11 in
[RS09]), then this bound is tight.

9.6.2 IC0 for CHSH correlations

We recall the optimization form of IC
µ

0 (p).

IC
µ

0 (p) = sup
Babxy
B0

∑
a,b,x,y

Babxyµ(x, y)p(a, b|x, y)−B0 subject to,

∑
x,y

µ(x, y)2
∑
a,b Babxyl(a,b|x,y) ≤ 2B0 , ∀l ∈ Ldet.

Theorem 9.6.2. For χ ∈ [0.5, 1]. We have

IC0(pχ) ≥ IC
πu
0 (pχ) = 1 +

1 + χ

2
log

1 + χ

3
+

1− χ
2

log(1− χ).

The above theorem provides a lower bound of approximately 0.046 bits of information com-
plexity of p√2/2, which is a new result. To prove this theorem we use the following fact

Fact 9.6.3. For a, b ∈ {+1,−1} fixed, (−1)xyab = 1 for exactly one or three couples of (x, y).

Proof. From Equation 9.9, we already know that the objective value is, Bχ − B0. Let us char-
acterize the condition for all l ∈ Ldet.∑

x,y

µ(x, y)2
∑
a,b Babxyl(a,b|x,y) =

1

4

∑
x,y

2B(−1)xy
∑
a,b ab.l(a,b|x,y),

=
1

4

∑
x,y

2B(−1)xy〈AxBy〉.
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Using Fact 9.6.3, we only have two different conditions,

3.2B + 2−B

4
≤ 2B0 or

3.2−B + 2B

4
≤ 2B0 .

Note that the two inequalities are symmetric under the sign change of B. So we can choose a
inequality and the sign of B without loss of generality. Then we restrict B to be a nonnegative
real, and the left inequality since it is the hardest for B nonnegative. Hence, we obtain the
following optimization program,

IC
πu
0 (pχ) = sup

B≥0
B0

Bχ−B0 subject to,
3.2B + 2−B

4
≤ 2B0 ,

IC
πu
0 (pχ) = sup

B≥0
Bχ− log

3.2B + 2−B

4
,

since we want B0 as small as possible.
We show that the objective function, denoted g(B), is strictly concave,

dg(B)

dB
= χ− 3.2B − 2−B

3.2B + 2−B
,

d2g(B)

dB2
= − ln 2

(3.2B + 2−B)2
,

where the maximum is,

B? =
1

2
log
(1

3

[1 + χ

1− χ

])
.

Finally, we conclude

IC
πu
0 (pχ) = 2 + χB? − log

(
3.2B

?

− 2−B
?)
,

= 2 +
χ

2
log
(1

3

[1 + χ

1− χ

])
− log

(
3

√
1

3

1 + χ

1− χ
+

√
3

1− χ
1 + χ

)
,

= 2− χ+ 1

2
log 3 +

χ

2
log
[1 + χ

1− χ

]
− log

2√
(1− χ)(1 + χ)

,

= 1− χ+ 1

2
log 3 +

χ

2
log
[1 + χ

1− χ

]
+

1

2
log(1− χ) +

1

2
log(1 + χ),

= 1− χ+ 1

2
log 3 +

1 + χ

2
log(1 + χ) +

1− χ
2

log(1− χ),

= 1 +
1 + χ

2
log

1 + χ

3
+

1− χ
2

log(1− χ).

9.6.3 IC0 for CHSH correlations

From Theorem 9.3.2 and Lemma 9.3.4, we know

ICµ0 (p) = sup
Babxy,B0

∑
a,b,x,y

Babxyµxµyp(a, b|x, y)−B0, subject to,

inf
νx≥0

D(νx||µx)− log

[∑
y

µy2
∑
a,b,x νxBabxyl(a,b|x,y)

]
≥ −B0, ∀l ∈ Ldet.
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Unfortunately, the derivation of ICπu0 (pχ) involves a optimization problem that stays un-
solved, therefore we have done a numerical analysis (Figure 9.6.3).

In Figure 9.6.3, we observe that the order between all three zero information methods is
respected.

IC
πu
0 (pχ) ≤ ICπu0 (pχ) ≤ IC→0 (pχ).

Since IC0 is a relaxation of IC0. And IC→0 is above IC0, as the one-way model is a restriction of
the communication model.

We observe that the curves for IC→0 (pχ) and IC
πu
0 (pχ) converges for χ going to one. From

this numerical evidence we conjecture that

ICπu0 (pχ) ≥ 1−H(χ)−O
(
H(χ)2

)
.

Figure 9.1: Lower bounds obtain from IC→0 (pχ) (red curve), ICπu0 (pχ) (black curve) and IC
πu
0 (pχ)

(blue curve) for CHSH correlations pχ with Babxy as defined in (9.6) and an uniform input
distribution.



Conclusion

This thesis mainly focuses on studying information complexity and quantum query complex-
ity via convex optimization tools. Indeed, optimization problems naturally arise while studying
these complexities, and tools such as the Envelope theorem 6.8.1 or the recent Lemma 9.3.3 allow
to progress in these subfields of computational complexity.

Firstly in Chapter 7.2, the main result is our universal adiabatic quantum query algorithm.
Although Theorem [LMR+11] was already proved, this algorithm provides a direct proof, as well
as a simple description as an adiabatic process. Also, we have provided an original proof that
Advreg

0 is a lower bound of Qct
0 (Theorem 7.1.1).

To go further, some functions only have a discrete quantum algorithm, our universal quantum
query algorithm allows to construct continuous quantum an algorithm for these functions.

In Chapter 8, we have enlarged our understanding of how a set of quantum states evolves
while querying an oracle. From this knowledge we have constructed a new norm, the query
Lagrangian Ld(γ, γ̇), a semi-definite program that defines the infinitesimal number of query for
an infinitesimal motion from γ to γ + δγ̇ for δ infinitesimal. Thus, we define our new method,
the adversary action Sadv, a minimization program over all possible paths. Afterwards, from
KKT conditions 6.6.1, Euler-Lagrange equation D.0.2 and Envelope theorem 6.8.1, we derive
necessary conditions for optimal points U and V of Sadv. Also, we have shown that this new
method subsumes both the adversary method and the multiplicative method.

Thus, we have provided a refined method to better characterize the quantum query complex-
ity in the exact case or in the unbounded error case.

In the last Chapter 9, we have two important results. Firstly, we have constructed a new
method IC0 to lower bound the external information complexity. Secondly, we have successfully
applied these methods to CHSH correlations. For IC→0 , we retrieve the known result of [RS09],
the relaxed form IC0 provides a new lower bound of 0.046 bits for the quantum correlations
pχ with χ =

√
2/2 in the two-way case. For IC0, we provide numerical evidence that this new

method is a good lower bound, while its analytic solution is left open.

To go further, we have good hope to solve the conjecture on ICπu0 for CHSH correlations.
Finally, as IC0 is a new method we can apply it to other correlations such as those appearing in
the EPR-Bohm experiment1.

1Correlations obtained from all projective measurements on a Bell pair.
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Appendix A

Adiabatic theorem without a gap
condition

In this Appendix we give an adapted version of the proof of Lemma A.0.1 in [AE99a]. We derive
an upper bound on the error εAP caused by the adiabatic process without a gap condition. We
use the same notations as in Subsection 3.1.1 in Chapter 3.

Lemma A.0.1. [AE99a]
Let {H(s),P (s), τ} be an adiabatic process, ε > 0, and X(s) be an operator satisfying the com-
mutator equation

Ṗ (s)P (s) = [H(s), X(s)], (A.1)

and both X(s) and Ẋ(s) bounded.

If τ ≥ 1

ε

[
‖X(0)‖+ ‖X(1)‖+ max

s∈[0,1]
‖Ẋ(s)P (s)‖

]
, then εAP ≤ ε.

Proof of Lemma A.0.1 In order to bound the quantity εAP , we would like to describe
an idealized adiabatic evolution UA(s) that transports the projector P (0) to P (s), such that
UA(s)P (0) = P (s)UA(s). To achieve this, we use a technique given by [Kat50] (later improved
in [AE99b]), and define HA(s) as the adiabatic Hamiltonian

HA(s) = λ(s)Id+
i

τ
[Ṗ (s), P (s)], (A.2)

where [ · , · ] is the commutator. We define UA(s) to be the solution of the Schrödinger’s equation
for this Hamiltonian, that is,

i∂sUA(s) = τHA(s)UA(s), (A.3)

with the initial condition UA(0) = Id. The existence and uniqueness of UA(s) follows from the
analytical properties in Definition 3.1.1. Moreover we show that UA(s) has the desired property.

Lemma A.0.2. [Kat50] (Intertwining property)

UA(s)P (0) = P (s)UA(s). (A.4)

The proof of this property uses the following Fact.
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Fact A.0.3. For any orthogonal projector P we have P = P 2, so that Ṗ = ṖP + PṖ and
PṖP = 0 .

Proof of Lemma A.0.2. Since UA(s) is the solution of the differential equation i∂sY (s) = τHA(s)Y (s)
with Y (0) = Id, then every other solution of this equation has the form Y (s) = UA(s)Y (0). All
we need to do is prove that P (s)UA(s) is also a solution. Indeed, this implies that P (s)UA(s) =
UA(s)Y (0), and by setting s = 0 we obtain P (0) = Y (0). Using Fact A.0.3, we have

i∂s
(
P (s)UA(s)

)
= iṖ (s)UA(s) + P (s)τHA(s)UA(s)

= iṖ (s)UA(s) + τλ(s)P (s)UA(s) + iP (s)[Ṗ (s), P (s)]UA(s)

= τλ(s)P (s)UA(s) + i
(
Ṗ (s)− P (s)Ṗ (s)

)
UA(s)

= τλ(s)P (s)UA(s) + iṖ (s)P (s)UA(s)

=
(
τλ(s)Id+ i[Ṗ (s), P (s)]

)
P (s)UA(s)

= τHA(s)P (s)UA(s)

In the third and fifth lines we use PṖP = 0. In the fourth line we use Ṗ − PṖ = ṖP .

In order to prove Lemma A.0.1, we need two more claims.

Note that εAP (s) can be rewritten as ‖
(
Ω(s)− Id

)
P (0)‖, where Ω(s) = U∗τ (s)UA(s).

Claim A.0.4. Ω̇(s)P (0) = U∗τ (s)Ṗ (s)UA(s)P (0)

Proof. Using (3.6) and (A.2), we obtain

Ω̇(s) = U∗τ (s)
[
iτ
(
H(s)− λ(s)Id

)
+ [Ṗ (s), P (s)]

]
UA(s).

The claim follows from the intertwining property (Lemma A.0.2), Fact A.0.3 and
H(s)P (s) = λ(s)P (s).

Claim A.0.5. Let Φ(s) = e−iτλ(s)Id and VA(s) = Φ∗(s)UA(s). Then VA(s) satisfies the inter-
twining property (A.4), that is, VA(s)P (0) = P (s)VA(s), as well as the Schrödinger’s equation
V̇A(s) = [Ṗ (s), P (s)]VA(s).

Proof. The fact that VA(s) satisfies the intertwining property is immediate since UA(s) sat-
isfies this property and Φ(s), being proportional to the identity, commutes with any opera-
tor. The fact that it satisfies the Schrödinger’s equation follows from the fact that Φ(s) sat-
isfies iΦ̇(s) = τλ(s)Φ(s), UA(s) satisfies iU̇A(s) = τHA(s)UA(s), and both terms of HA(s) =
λ(s)Id+ i

τ [Ṗ (s), P (s)] commute.
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Let X(s) an operator solution of Ṗ (s)P (s) = [H(s), X(s)], then

(
Ω(s)− Id

)
P (0) =

∫ s

0

Ω̇(s′)ds′P (0)

=

∫ s

0

U∗τ (s′)Ṗ (s′)UA(s′)ds′P (0)

=

∫ s

0

U∗τ (s′)Φ(s′)Ṗ (s′)VA(s′)ds′P (0)

=

∫ s

0

U∗τ (s′)Φ(s′)[H(s′), X(s′)]VA(s′)ds′P (0)

=

∫ s

0

U∗τ (s′)Φ(s′)
(
H(s′)− λ(s′)

)
X(s′)VA(s′)ds′P (0)

=
1

iτ

∫ s

0

∂s′ [U
∗
τ (s′)Φ(s′)]X(s′)VA(s′)ds′P (0)

=
1

iτ

[
U∗τ (s′)Φ(s′)X(s′)VA(s′)

]s
0
P (0)− 1

iτ

∫ s

0

U∗τ (s′)Φ(s′)∂s′ [X(s′)VA(s′)]ds′P (0)

=
1

iτ

[
U∗τ (s′)X(s′)UA(s′)

]s
0
P (0)− 1

iτ

∫ s

0

U∗τ (s′)
(
Ẋ(s′) +X(s′)Ṗ (s′)

)
UA(s′)ds′P (0)

We explain line by line:

(1→ 2) We use Claim A.0.4.

(2→ 3) We rearrange the expression using UA(s) = Φ(s)VA(s) and the fact that Φ(s) commutes
with any operator.

(3→ 4) We use the intertwining property for VA(s) (Claim A.0.5) and Equation (A.1).

(6→ 7) We integrate by parts.

The third term in the last line is null, because X(s) = X(s)P (s) and the intertwining property
(Lemma A.0.2) yields the expression PṖP , which is zero by Fact A.0.3. Using the triangle
inequality, the fact that a norm is preserved by unitary operations and can only decrease under
projections, we finally have

εAP (s) = ‖
(
Ω(s)− Id

)
P (0)‖

≤ 1

τ

[
‖X(0)‖+ ‖X(s)‖+ s sup

s′∈[0,s]

‖Ẋ(s′)P (s′)‖
]

This conclude the proof. �
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Appendix B

Slater’s theorem

Theorem B.0.1. [Sla14] For a convex optimization problem, if Slater’s condition holds, then
strong duality holds.

Let’s summarize the demonstration.

In the first part [1], we construct a map of the domain D to a set A in the vector space R×Rp×Rq.
In this new representation, a Lagrangian can be written as an inner product, and the Lagrange
dual function d(λ, µ) represents a hyperplane supporting the set A. Especially, we show that A
is convex, and an optimal point is mapped in bdA.
In the second part [2], we use the supporting hyperplane theorem to show than there exists a hy-
perplane supporting an optimal point in bdA, and we assume we can interpret this hyperplane
as a Lagrangian.
Finally in [3] we use the Slater’s condition to get rid-of the previous assumption.

Before to start we make several assumptions.
We can assume that p? is finite. Indeed the convex optimization problem is not unfeasible since
Slater’s condition is satisfied, there exists xS a strictly feasible point. Moreover if the problem
is unbounded, then the weak duality directly implies the strong duality.
As equality functions hj are affine, we define H ∈Mq,n(R) and k ∈ Rq such that h(x) = Hx−k.
We assume without loss of generality that rankH = q, and intD is non-empty (by choosing
Rn = aff D).

[1] Let’s define G ⊂ R× Rp × Rq,

G =
{(
f(x), g1(x), . . . , gp(x), h1(x), . . . , hq(x)

)∣∣x ∈ D},
then from G we define A,

A = G +
(
R+ × Rp+ × {0}q

)
,

where the addition is entry-wise by entry-wise. The relation between D and A is straightforward.
For each (t,u,v) ∈ A, there exists x ∈ D, such that f(x) ≤ t, g(x) ≤ u and h(x) = v.
In the other direction, for each x ∈ D, every point (t,u,v) satisfying f(x) ≤ t, g(x) ≤ u and
h(x) = v, is in A.

In the vector space R×Rp×Rq, the Lagrangian can be represented as an inner product between
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a vector (1,λ,µ) and a vector in G,

L(x,λ,µ) = f(x) +
〈
λ,g(x)

〉
+
〈
µ,h(x)

〉
,

=

〈(
1,λ,µ

)
,
(
f(x),g(x),h(x)

)〉
.

Likewise the Lagrange dual function in Definition (6.4.1), the minimization overD can be replaced
by the minimization over G, and even extended over A if λ ≥ 0.

d(λ,µ) = inf
x∈D

L(x,λ,µ),

= inf
x∈D

〈(
1,λ,µ

)
,
(
f(x),g(x),h(x)

)〉
,

= inf
(t,u,v)∈G

〈(
1,λ,µ

)
,
(
t,u,v

)〉
,

= inf
(t,u,v)∈A

〈(
1,λ,µ

)
,
(
t,u,v

)〉
.

The last equality comes from the definition of A, since for all (t,u,v) ∈ A with λ ≥ 0, there
exists x ∈ D, L(x,λ,µ) ≤

〈(
1,λ,µ

)
,
(
t,u,v

)〉
.

Together with Property 6.4.2, this implies,

ifλ ≥ 0 , then p? ≥ inf
(t,u,v)∈A

〈(
1,λ,µ

)
,
(
t,u,v

)〉
.

The proof of the convexity of A is straightforward. Let (t0,u0,v0) and (t1,u1,v1) ∈ A, then
there exists respectively x0 and x1 in D with the following properties: f(x0) ≤ t0, g(x0) ≤ u0,
h(x0) = v0, and f(x1) ≤ t1, g(x1) ≤ u1, h(x1) = v1, Let α ∈ [0, 1], then each α-convex com-
bination of x0 and x1 implies that the α-convex combination of (t0,u0,v0) and (t1,u1,v1) is inA.

Now we show that (p?, 0, 0) is in bdA. There exists a sequence xn of feasible points such
that f(xn) → p?, then there exists the sequence (f(xn), 0, 0) ∈ A. Then (p?, 0, 0) is in clA. So
those s < p?, (s, 0, 0) /∈ A otherwise there exists a feasible point x, with f(x) < p?. Therefore
(p?, 0, 0) is also in clAC .

[2] Since A is convex and (p?, 0, 0) ∈ clA, the supporting hyperplane theorem 2.6.1 implies
the existence of a supporting hyperplane (ν̂, λ̂, µ̂) 6= 0, such that

for all (t,u,v) ∈ A,
〈(
ν̂, λ̂, µ̂

)
,
(
t,u,v

)〉
≥
〈(
ν̂, λ̂, µ̂

)
,
(
p?, 0, 0

)〉
, (B.1)

ν̂t+
〈
λ̂,u

〉
+
〈
µ̂,v

〉
≥ ν̂p?. (B.2)

From the definition of A, t and u can be as large as possible, then this inequality implies that
ν̂ ≥ 0 and λ̂ ≥ 0, otherwise the lower bound can be violated.

Assume that ν̂ > 0, and let’s minimize the above lower bound over A, we obtain

inf
(t,u,v)∈A

t+
〈
λ̂/ν̂, u

〉
+
〈
µ̂/ν̂, v

〉
≥ p?. (B.3)
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As λ ≥ 0, Equation (B) implies d(λ̂/ν̂, µ̂/ν̂) = p?; the strong duality.

[3] Assume that ν̂ = 0, then the inequality (6.19) becomes

for allx ∈ D,
〈
λ̂, g(x)

〉
+
〈
µ, Hx− k

〉
≥ 0.

Since Slater’s condition implies the existence of a strictly feasible point xS , with g(xS) < 0 and
HxS − k = 0. Therefore λ̂ = 0, otherwise the above inequality is violated by xS .

Afterwards the inequality becomes,

for allx ∈ D,
〈
µ̂, Hx− k

〉
≥ 0.

From the definition of a strictly feasible point HxS − k is null. Since xS ∈ intD there exists a
point xV in a neighborhood of xS , such that

〈
µ̂, HxV − k

〉
< 0, unless µ̂TH = 0. However at

the beginning we have assumed rankH = q. Contradiction.
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Appendix C

Envelope theorem

Let A and B be two non-empty sets. We define F : A × B × [0, 1] → R to be a function, such
that for almost all t ∈ [0, 1], F (a, b, t) has a saddle-point (a?, b?) in A × B. In other words, for
almost all t ∈ [0, 1],

∀ a ∈ A, b ∈ B, F (a?, b, t) ≤ F (a?, b?, t) ≤ F (a, b?, t).

The function F is interpreted as the Lagrangian of an optimization problem where the strong
duality holds, such that

p?(t) = inf
a∈A

sup
b∈B

F (a, b, t) = sup
b∈B

inf
a∈A

F (a, b, t).

Note that for each t ∈ [0, 1], the set of all saddle-points is the product set A?(t) × B?(t)
defined as

A?(t) =
{
a ∈ A

∣∣ sup
b∈B

F (a, b, t) = p?(t)
}
,

B?(t) =
{
b ∈ B

∣∣ inf
a∈A

F (a, b, t) = p?(t)
}
.

Theorem C.0.1 (Envelope theorem). [MS02] Assume that:

(1) for almost all t ∈ [0, 1], A?(t)× B?(t) is non-empty,

(2) for all a ∈ A, b ∈ B, F (a, b, t) is absolutely continuous in t,

(3) there exists c : [0, 1]→ R, an integrable function that bounds |Dt F (a, b, t)| ≤ c(t),
for all (a, b) ∈ A× B, and almost all t ∈ [0, 1].

Then p?(t) is absolutely continuous. Assume, in addition, that:

(4) A and B are topological spaces satisfying the second axiom of countability,

(5) Dt F (a, b, t) is continuous in each of a ∈ A and b ∈ B,

(6) the family {F (a, b, t)}(a,b) is equi-differentiable in t, for all (a, b) ∈ A× B.

Then for any selection
(
a?(t), b?(t)

)
∈ A?(t)× B?(t),

p?(t) = p?(0) +

∫ t

0

dsDtF
(
a?(s), b?(s), s

)
.
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First we demonstrate that p?(t) is absolutely continuous.
Let t0, t1 ∈ [0, 1] with t0 < t1, if F (·, ·, t0) and F (·, ·, t1) have respectively saddle points (a0, b0)
and (a1, b1) then

F (a1, b0, t1)− F (a1, b0, t0) ≤ p?(t1)− p?(t0) ≤ F (a0, b1, t1)− F (a0, b1, t0).

Consequently for almost all t0 < t1,

|p?(t1)− p?(t0)| ≤ sup
a∈A
b∈B

∣∣F (a, b, t1)− F (a, b, t0)
∣∣.

From Assumptions (2) and (3), we have

sup
a∈A
b∈B

∣∣F (a, b, t1)− F (a, b, t0)
∣∣ = sup

a∈A
b∈B

∣∣∣∣∫ t1

t0

dsDt F
(
a, t, s

)∣∣∣∣ ,
≤ sup
a∈A
b∈B

∫ t1

t0

ds
∣∣Dt F

(
a, t, s

)∣∣ ,
≤
∫ t1

t0

ds c(s),

≤ sup
I:|I|=t1−t0

∫
I

ds c(s).

(C.1)

Since c(t) is an integrable function the last term is bounded independently of any subinterval of
size t1 − t0, implying that p?(t) is absolutely continuous.

Now to prove the second part, if p?(t) is differentiable at t0, we must show that Dt p
?(t0) =

Dt F
(
a0, b0, t0

)
, with (a0, b0) ∈ A?(t0)× B?(t0).

Consider a saddle-point selection (a?t , b
?
t ), and its graph G = {(t, a?t , b?t ) : t ∈ [0, 1]} ⊂ [0, 1]×A×

B. Since the product topological space [0, 1]×A× B satisfies the second axiom of countability,
by Assumption (4), then the set of isolated points of G is at most countable. Hence the set of
S of points t ∈ [0, 1], such that (t, a?t , b

?
t ) is not isolated in G, has full measure on [0, 1].

For any point t0 ∈ S, (a?t0 , b
?
t0) = (a0, b0) is not isolated. Then there exists a sequence

{(tk, ak, bk)}∞k=1 ⊂ G, such that (tk, ak, bk) → (t0, a0, b0), as k → ∞ and tk 6= t0. Moreover
we can choose the sequence, such that t0 < tk for all k.
By the definition of a saddle-point, we have

F (ak, b0, tk)− F (ak, b0, t0)

tk − t0
≤ p?(tk)− p?(t0)

tk − t0
≤ F (a0, bk, tk)− F (a0, bk, t0)

tk − t0
.

From Assumption (6) the family {F (a, b, t)}(a,b) is equi-differentiable in t for all (a, b) ∈ A× B,
then we have

Dt F (ak, b0, t0) +
o(tk − t0)

tk − t0
≤ p?(tk)− p?(tk)

tk − t0
≤ Dt F (a0, bk, t0) +

o(tk − t0)

tk − t0
.

As k goes to ∞, by the continuity of Dt F (a, b, t) for each of a ∈ A and b ∈ B, both bounds
converge to Dt F (a0, b0, t0). Hence we have Dt p

?(t0) = Dt F
(
a0, b0, t0

)
. Since this result holds

for each t0 ∈ S with full measure in [0, 1], this concludes the proof.



Appendix D

Euler-Lagrange equation

In this Appendix, we introduce the Euler-Lagrange equation used in the field of Calculus of
variations field. For a functional S, this equation allows to derive necessary conditions that
a local optimal function x satisfied. In the proof of the Euler-Lagrange equation, we use the
Fundamental lemma of calculus of variations. Here we introduce a vectorial version of this
lemma, more suitable to our needs.

Lemma D.0.1 (Fundamental lemma of calculus of variations (vectorial version)). Let U be an
open of RN , E be a pre-hilbertian space and E′ its topological dual space. If a locally continuous
function f : U → E satisfies the equality,∫

U

〈f, h〉 = 0, for all compactly supported smooth functions h : U → E,

then f is identically null almost everywhere.

Proof. Proof by contradiction.
Let x0 ∈ U such that f(x0) 6= 0 then there exists y ∈ E′ with 〈f(x0), y〉 > 0. As f is locally
continuous there exists R, δ > 0 such that

〈f(x), y〉 ≥ δ for x ∈ BR(x0).

We choose the compactly supported smooth function h(x) = ρ(‖x− x0‖)y where

ρ(r) =

{
e
− 1
R2−r2 if r < R,
0 if r ≥ R.

Therefore, ∫
U

〈f, h〉 =

∫
U

dx 〈f(x), h(x)〉 ≥ δ
∫
BR(x0)

dxρ(‖x− x0‖) > 0.

Let [a, b] be a real interval, E be a pre-hilbertian space and U1, U2 be two open sets of E.
We define L a continuously differentiable function called Lagrangian as

L : [a, b]× U1 × U2 → R : (t,x,u) 7→ L(t,x,u),

where x is a differentiable function x : [a, b]→ U1 such that ẋ ∈ U2 for all t ∈ [a, b].
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Theorem D.0.2 (Euler-Lagrange equation). Let S be a functional defined for all functions x
such that,

S[x] =

∫ b

a

dtL
(
x(t), ẋ(t), t

)
.

Then the Euler-Lagrange equation given by,

∂L

∂x
− d

dt

∂L

∂ẋ
= 0,

is a necessary condition for L to be a local optimal of S.

Proof. Let x be a local optimal of S. We define xε(t) = x(t) + εh(t) where h : [a, b]→ U1 with
h(a) = h(b) = 0. As x is a local optimal we have

0 =
dS[x]

dε
,

=

∫ b

a

dt
dL

dε

(
x(t), ẋ(t), t

)
,

=

∫ b

a

dt

[
h(t)

∂L

∂x

(
x(t), ẋ(t), t

)
+ ḣ(t)

∂L

∂ẋ

(
x(t), ẋ(t), t

)]
,

= h(b)
∂L

∂ẋ

∣∣∣∣
t=b

− h(a)
∂L

∂ẋ

∣∣∣∣
t=a

+

∫ b

a

dth

(
∂L

∂x
− d

dt

∂L

∂ẋ

)
,

=

∫ b

a

dth

(
∂L

∂x
− d

dt

∂L

∂ẋ

)
.

We have integrated by parts and used the fact that h(a) = h(b) = 0. We conclude using the
Fundamental lemma of calculus of variations.
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complexity of state conversion. In Proc. - Annu. IEEE Symp. Found. Comput.
Sci. FOCS, pages 344–353, 2011. arXiv:1011.3020, doi:10.1109/FOCS.2011.75.
[(document), 1, 1, 4.3.2, 4.3.2, 4.3.5, 4.3.2, 4.3.7, 7, 7.0.1, 9.6.3]

http://arxiv.org/abs/9712042v2
http://dx.doi.org/10.1109/18.761271
http://dx.doi.org/10.1007/978-1-4419-6281-2_13
http://dx.doi.org/10.1109/FOCS.2015.70
http://dx.doi.org/10.1145/237814.237866
http://arxiv.org/abs/0611054v2
http://dx.doi.org/10.1145/1250790.1250867
http://dx.doi.org/10.1145/1250790.1250867
http://arxiv.org/abs/0910.4266v2
http://dx.doi.org/10.1109/CCC.2010.31
http://dx.doi.org/10.1063/1.2798382
http://dx.doi.org/10.1143/JPSJ.5.435
http://dx.doi.org/10.1016/0041-5553(80)90061-0
http://dx.doi.org/10.1016/0041-5553(80)90061-0
http://arxiv.org/abs/1204.1505v2
http://dx.doi.org/10.1109/FOCS.2012.68
http://dx.doi.org/10.1007/978-94-007-0080-2_10
http://arxiv.org/abs/1203.4155v1
http://arxiv.org/abs/1203.4155v1
http://dx.doi.org/doi.org/10.1007/978-3-642-31594-7_52
http://arxiv.org/abs/1011.3020
http://dx.doi.org/10.1109/FOCS.2011.75


152 BIBLIOGRAPHY

[LR12] T. Lee and J. Roland. A Strong Direct Product Theorem for Quantum Query
Complexity. In 2012 IEEE 27th Conf. Comput. Complex., pages 236–246. IEEE,
2012. arXiv:1104.4468, doi:10.1109/CCC.2012.17. [2.1.4, 2.1.9, 4.1.3, 4.1.2, 4.1.3, 4.3.4,

4.3.3, 4.3.9, 4.3.10, 8]

[Mas01] S. Massar. Non locality, closing the detection loophole and communication complex-
ity. Phys. Rev. A, 65(3):032121, 2001. arXiv:0109008, doi:10.1103/PhysRevA.
65.032121. [1]

[Mir71] J.A. Mirrlees. An Exploration in the Theory of Optimum Income Taxation. Rev.
Econ. Stud., 38:175–208, 1971. doi:10.2307/2296779. [1, 6.8]

[Moc07] C. Mochon. Hamiltonian oracles. Phys. Rev. A, 75(4):042313, 2007. arXiv:0602032,
doi:10.1103/PhysRevA.75.042313. [3.2]

[MR13] L. Magnin and J. Roland. Explicit relation between all lower bound techniques
for quantum query complexity. Int. J. Quantum Inf., 2013. arXiv:1209.2713v2,
doi:10.1142/S0219749913500597. [4.3.3, 8]

[MS02] P. Milgrom and I. Segal. Envelope Theorems for Arbitrary Choice Sets. Economet-
rica, 70(2):583–601, 2002. doi:10.1111/1468-0262.00296. [1, 6.8, 6.8.1, C.0.1]

[NC11] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, New York, NY, USA, 10th
edition, 2011. [3.2]

[RC02] J. Roland and N.J. Cerf. Quantum search by local adiabatic evolution. Phys. Rev.
A, 2002. arXiv:0107015v1, doi:10.1103/PhysRevA.65.042308. [3.2]

[Rei09] B.W. Reichardt. Span Programs and Quantum Query Complexity: The General
Adversary Bound Is Nearly Tight for Every Boolean Function. In Found. Comput.
Sci. 2009. FOCS’, pages 544–551. IEEE, 2009. arXiv:0904.2759, doi:10.1109/
FOCS.2009.55. [1]

[Rei11] B.W. Reichardt. Reflections for quantum query algorithms. In Proceedings of the
Twenty-second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’11,
pages 560–569. Society for Industrial and Applied Mathematics, 2011. [1, 3.2]

[RS75] M. Reed and B. Simon. Methods of modern mathematical physics. 2. Fourier anal-
ysis, self-adjointness. 1975. doi:B978-0-12-585001-8.X5001-6. [3.1.1]

[RS09] J. Roland and M. Szegedy. Amortized Communication Complexity of Dis-
tributions. In Autom. Lang. Program., pages 738–749. 2009. doi:10.1007/

978-3-642-02927-1_61. [1, 9.6.1, 9.6.1, 9.6.3]

[RS12] B.W. Reichardt and R. Spalek. Span-program-based quantum algorithm for eval-
uating formulas. Theory Comput., 8(13):291–319, 2012. arXiv:0710.2630, doi:
10.4086/toc.2012.v008a013. [1]

[Sha48] C.E. Shannon. A Mathematical Theory of Communication. Bell Syst. Tech. J.,
27:623–656, 1948. [1, 2.5]

[Sho97] P.W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM J. Comput., 26(5):1484–1509, 1997.
arXiv:9508027v2, doi:10.1137/S0097539795293172. [1]

http://arxiv.org/abs/1104.4468
http://dx.doi.org/10.1109/CCC.2012.17
http://arxiv.org/abs/0109008
http://dx.doi.org/10.1103/PhysRevA.65.032121
http://dx.doi.org/10.1103/PhysRevA.65.032121
http://dx.doi.org/10.2307/2296779
http://arxiv.org/abs/0602032
http://dx.doi.org/10.1103/PhysRevA.75.042313
http://arxiv.org/abs/1209.2713v2
http://dx.doi.org/10.1142/S0219749913500597
http://dx.doi.org/10.1111/1468-0262.00296
http://arxiv.org/abs/0107015v1
http://dx.doi.org/10.1103/PhysRevA.65.042308
http://arxiv.org/abs/0904.2759
http://dx.doi.org/10.1109/FOCS.2009.55
http://dx.doi.org/10.1109/FOCS.2009.55
http://dx.doi.org/B978-0-12-585001-8.X5001-6
http://dx.doi.org/10.1007/978-3-642-02927-1_61
http://dx.doi.org/10.1007/978-3-642-02927-1_61
http://arxiv.org/abs/0710.2630
http://dx.doi.org/10.4086/toc.2012.v008a013
http://dx.doi.org/10.4086/toc.2012.v008a013
http://arxiv.org/abs/9508027v2
http://dx.doi.org/10.1137/S0097539795293172


BIBLIOGRAPHY 153

[Sla14] M. Slater. Lagrange multipliers revisited. In Traces Emerg. Nonlinear Program.,
pages 293–306. 2014. doi:10.1007/978-3-0348-0439-4_14. [6.7.8, B.0.1]
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Notation

Important sets

R Real number.
Rn Real vector of length n.
R+ Positive real number.
Rn+ Positive real vector of lenght n.
C Complex number.
Cn Complex vector of length n.
K R or C.
Mn,m(R) n-by-m matrices with entries in K.
Mn(R) n-by-n matrices with entries in K.
Sn Hermitian n-by-n matrices.
Sn+ Positive semi-definite n-by-n matrices.
F (A,B) Function space.
C0(A,B) Continuous function space.
Ck(A,B) Continuously k-differentiable function space.
∅ The empty set.

Set theory

|A| Cardinal of set A.

A{ The complement of setA
A ∩B Intersection of sets A,B.
A ∪B Union of sets A,B.
P(A) Power set of set A.
A \B The relative complement of B in A.

Probability

〈X〉p Average value of random vector X.

D(·, ·) The total distance.
F(·, ·) The fidelity.
| · |TV The total variance.
P(S) Set of all probability distributions on S.
B(S) Set of all real functions on S.
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Linear algebra

Id Identity matrixreal line.
J Matrix with all entries equal to one.
(ei)i Canonic basis vectors .
δ[a, b] Kronecker delta.
XT Transpose of matrix X.
X∗ Conjugate transpose of matrix X.
trX Trace of matrix X.
rank X Rank of matrix X.
‖ · ‖ A norm.
‖ · ‖tr The trace norm.
d(·, ·) A distance.
X ◦ Y The Hadamard product.
V ⊕W The direct sum between vector spaces V and W.
V ⊗W The tensor product between vector spaces V and W.

Topology

Br(x) Closed ball of radius r and center x.
cl A Closure of set A.
int A Interior of set A.
relint A Relative interior of set A.
bd A Boundary of set A.
aff A Affine hull of set A.
conv A Convex hull of set A.

Analysis

f : A→ B A function with domain include in A and range include in B.
f : A→ P(B) A multi-valued function with domain ⊂ A and range ⊂ B.
dom f Domain of function f.
rg f Range of function f.
Df Derivative of function f.
∇f Gradient of function f.

Convex and order

x ≤ y Inequality between reals x and y.
x ≤ y Composen-twise inequality between vectors x and y.
X ≤ Y Loewner order between matrices X and Y.
x ≤K y Generalized inequality between x and y relative to proper cone K.
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