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Chapter 1

Introduction

1.1 General context

Our current understanding of the four fundamental interactions relies mainly on
two theories that do not seem to have much in common: the Standard Model
and General Relativity. The first is a quantum field theory (QFT) that describes
electromagnetic, weak and strong interactions with excellent agreement with the
experimental results. To be more precise, it is a gauge theory and all the fields that
appear in its Lagrangian are associated to the well-known fundamental particles
(electrons, quarks, photons, etc.). General Relativity (GR) on the other hand is
a classical theory that provides a geometrical interpretation to all gravitational
phenomena. Gravitation is described in terms of the curvature of spacetime, whose
metric encodes the fundamental degrees of freedom of the theory. As in the case
of the Standard Model, also the theoretical predictions of GR are confirmed by
experiments and observations with extreme accuracy, with the recent obervation
of gravitational waves being perhaps one of its most striking successes.

Nevertheless, theoretical physicists are unsatisfied with this picture. The scales
at which we are able to test GR are very far from the Planck scale, at which
quantum effects are expected to become important for gravitational interactions,
and GR would stop being reliable. The idea that GR should be regarded just as an
effective theory, in the sense that it represents only the classical limit of a quantum
theory of gravity, is substantiated by several arguments. One of them is the
breakdown of GR near curvature singularities like black holes, which are expected
to be “resolved” by quantum effects. Moreover, paradoxes arise when one tries to
combine quantum mechanics and GR, showing a superficial incompatibility. For
example, one of the results of GR are the classical no-hair theorems, which state
that black hole solutions in four dimensions can be characterized by only three
parameters (mass, electric charge and angular momentum), thus suggesting they
can only have a single microstate. This is in sharp contrast with the computation
of the Bekenstein-Hawking entropy SBH ∝ A/4l2p [3, 4, 5], which implies that
black holes have a number of microstates proportional to the area of their event
horizon. Similarly, another semi-classical result by Hawking states that black holes
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evaporate by emitting thermal radiation [6]. The outcome is that all information
carried by a quantum state (which could in principle be a pure state) that falls
into a black hole is lost after the black hole has evaporated into a thermal bath
of radiation: this seems to contradict unitarity, one of the governing principles of
quantum mechanics.

Such considerations make the search for a theory of quantum gravity one of the
main goals of theoretical physics, but the task proved to be far from trivial. Any
attempt to directly quantize gravity using standard QFT techniques results in
untamable divergencies as the theory is perturbatively non-renormalizable [7, 8].
A different framework that initially gave hope for a solution of the problem is
that of Superstring Theory. As a well-defined, UV-complete quantum theory that
contains both the ingredients of gauge theories like the Standard Model and a
massless spin-2 field with the same properties of the graviton (the mediator of the
gravitational interaction in quantum gravity), Superstring Theory seemed like a
good candidate for the long-sought Theory of Everything. Although this program
has not produced yet the wished results, string theory served and serves today as
an amazing playground for the study of both gauge theories and gravity, and it
produced an extremely powerful duality: the AdS/CFT correspondence. On one
side of this duality we have string theory defined on a ten-dimensional spacetime
which is the product of five-dimensional Anti de Sitter (AdS) space and a five-
sphere. On the other side we have an SU(N) gauge theory called super Yang-Mills
theory (SYM), which is also a conformal field theory (CFT), defined on a four-
dimensional Minkowski spacetime (for reviews on the AdS/CFT correspondence,
see [9, 10]). Since superstring theory contains quantum gravity (in particular it
reduces to supergravity (SUGRA) in the low energy limit), this correspondence
is a concrete realization of the gauge/gravity duality. Also, it relates a theory
of gravity in ten dimensions, which is often referred to as the “bulk theory”, to
a QFT which can be seen as being defined on the four-dimensional boundary of
AdS5, hence, the “boundary theory”. Therefore, this correspondence is the first
precise and well-defined realization of the holographic principle, an idea already
envisioned by ’t Hooft and Susskind [11, 12].

Therefore, the gauge/gravity duality seems like the perfect framework for
addressing in a completely unitary and well-defined setup some of the above-
mentioned puzzles. More precisely, the correspondence is best understood when
superstring theory can be reliably approximated by supergravity, which corre-
sponds to suppressing all quantum and higher-derivative effects on the gravity
side. On the QFT side of the duality, this typically corresponds to taking the
limit in which the rank N of the gauge symmetry group is large and the the-
ory is strongly coupled. This regime of parameter space is notoriously hard to
study: although the N →∞ limit reduces the Feynman diagrams that contribute
to the gauge theory to just those that can be drawn on a sphere [13] (the so-
called planar diagrams), the complete sum over such diagrams which is required
to study the theory at strong coupling is not yet computable for the most inter-
esting cases. This is not the only difficulty one encounters when trying to apply
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the gauge/gravity duality: while the correspondence itself has passed many con-
vincing tests, some aspects of the dictionary between the two theories it relates
are still to be completely understood. This is also due to the general scarcity of
concrete realizations of the correspondence.

Therefore, in order to improve our understanding of the inner workings of the
gauge/gravity correspondence and exploit it to understand the deep questions
associated with both classical and quantum gravity there are two main topics
which need to be addressed:

• the development of tools for the study of strongly coupled gauge theories,

• the formulation of more tractable, yet interesting, examples of realizations
of the gauge/gravity correspondence.

The first line of research has received a great boost in recent years thanks to the
development of the powerful techniques offered by supersymmetric localization.
Localization is a method that allows to obtain exact results in supersymmetric
gauge theories by reducing the infinite-dimensional path integral of the theory to
finite integrals localized on a set of fixed points. This allows for the computation
of the partition function and of several observables for any value of the coupling
constant in a number of supersymmetric theories. The third part of this thesis
will be devoted to this approach, with particular emphasis on the computation of
Wilson loops and correlators of chiral operators in N = 2 super Yang-Mills using
localization techniques. Regarding the second line of research, which concerns the
formulation of new simple examples of the gauge/gravity duality, a lot of progress
has been made in the past few years by engineering quantum mechanical models,
usually defined in 0+1 dimensions, which are simplified versions of boundary
gauge theories. Several examples of such models have been proposed over the
years, many of which featuring non-trivial characteristics which indeed correspond
to expected properties of a putative gravitational bulk dual. They are typically
engineered in such a way that they should be simple enough to be solvable or at
least tractable in the strongly coupled regime but non-trivial enough to reproduce
the interesting physics of holography. The general properties of such models and
some explicit examples will be discussed in the second section of the thesis.

1.2 Outline of the thesis

This thesis is based on the original research work presented in:

• T. Azeyanagi, F. Ferrari, P.G., L. Leduc, and G. Valette, “More on the
New Large D Limit of Matrix Models”, Annals Phys. 393 (2018) 308 326,
arXiv:1710.07263 [hep-th] [1]

• M. Billò, F. Galvagno, P.G. and A. Lerda, “Correlators between Wilson
loop and chiral operators in N=2 conformal gauge theories”, JHEP 03, 193
(2018), arXiv:1802.09813 [hep-th] [2]
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The former concerns the study of a new large D limit developed in the study
of U(N) matrix models which also feature an additional global O(D) symmetry.
The latter focuses on the computation of one-point correlation functions of chiral
operators in presence of a 1/2-BPS Wilson loop in conformal N = 2 super Yang-
Mills theory. The thesis is organized as follows: the first part serves as a brief
review of the gauge/gravity correspondence. In the second part, after a review of
the main properties we expect to find in models of holography, several such models
are presented. Among them, we define precisely matrix-vector models, which are
then studied in detail in [1]. Finally, the third part is devoted to a review of the
localization techniques and the main results of their application, including those
contained in [2].

Part one

The aim of this part is to provide a justification to the research work this thesis
is based on by placing it in the context of the gauge/gravity correspondence.
First, an introductory section briefly reviews the current challenges one has to
face in the quest for a theory of quantum gravity and emphasizes the role of
the gauge/gravity correspondence as a suitable framework for addressing such
non-trivial questions. Moreover, we present some obstacles in the application
of the correspondence which serve as a motivation for the research carried out
by the author. Then, a chapter is devoted to a more precise definition of the
correspondence, with particular emphasis on how the boundary gauge theories
arise from D-brane constructions. Two explicit realizations of the duality which
are especially relevant to the research of the author are presented. The first one
is the case of four-dimensional N = 4 super Yang-Mills theory, which is dual to
string theory defined in AdS5 × S5. This gauge theory will appear again in Part
III, as it is instrumental in the study of the closely related N = 2 super Yang-
Mills. The second example is D0-brane quantum mechanics. As a simple, albeit
non-solvable, quantum mechanical model in 0+1 dimensions, it shares some of
the features of the models which will be presented in Part II. A brief summary
of the main ingredients that will play a role in the rest of the thesis serves as a
conclusion to Part I.

Part two

The second part is devoted to a possible approach to the scarcity of realizations of
the gauge/gravity correspondence which are solvable on both sides of the duality,
namely the construction and study of simple models of holography. In the first
chapter, we initially review the general properties one should look for in simplified
versions of the boundary gauge theories. These are properties that are connected
to specific features of gravitational bulk theories, especially those which contain
black holes. Among them, we have the quasi-normal behaviour of two-point func-
tions, a continuous energy spectrum and, in the case of extremal black holes, a
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non-vanishing entropy at zero temperature. Moreover, a non-trivial property that
has received a lot of interest in the recent literature is the chaotic behaviour of
out-of-time-order correlators (OTOC), which is treated in more detail in this sec-
tion. Then, several models are introduced with their most interesting properties.
The models are divided essentially in two classes: first the Iizuka-Polchinski and
Iizuka-Okuda-Polchinski models, which are inspired by probe brane systems. Such
systems feature both vector and matrix degrees of freedom interacting with each
other. Secondly, melonic models are introduced: the Sachdev-Ye-Kitaev model,
the Gurau-Witten model and U(N) matrix models with global O(D) symmetry.
These models are apparently very different from each other but in a suitable limit
they display the same Feynman diagram structure, which eventually leads to the
same physical properties. The second chapter of Part II is devoted to the study
of the diagrammatics of melonic models, and how it is related to the property of
bilocality. The subtleties associated with the large D limit of planar diagrams of
U(N) matrix models are developed in detail, as this serves as an introduction to
the original contributions contained in [1], where generalizations of such models
were studied, including multi-trace interactions, as well as bosonic and supersym-
metric models. Then, it is shown how the diagrammatic structure (and therefore
bilocality) of melonic models translates into their many non-trivial properties, all
of which were introduced in the first chapter. The final chapter of Part II is en-
tirely devoted to the study of quartic matrix-vector models and contains several
original results, including a computation of the free energy of the model through
a probe analysis.

Part three

The final part of the thesis focuses entirely on supersymmetric localization, which
provides useful tools for the study of gauge theories in the strongly coupled regime
and has been used to test and improve the understanding of the AdS/CFT corre-
spondence. One chapter is devoted to presenting the two supersymmetric theories
which are relevant to the author’s research: N = 4 and N = 2 super Yang-Mills
(SYM) in four dimensions. The two models are presented using the N = 1 su-
perfield formalism, and a few comments are made on the superconformal limit of
N = 2 SYM. The second chapter starts with an overview of the localization tech-
nique applied to N = 2 SYM defined on S4. It is shown how the full field theory
path integral in N = 4 and N = 2 SYM reduces to a matrix model integration,
and the differences between the two matrix models are explored. Some subtleties
associated with the computation of observables through localization are presented,
in particular those related to operator mixing, which leads to a non-trivial normal
ordering prescription in matrix model computations. Moreover, the main observ-
ables which can be computed through localization are presented: correlators of
chiral operators, Wilson loops and finally one-point functions of chiral operators
in presence of Wilson loops, whose computation is at the core of [2].
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Chapter 2

The gauge/gravity
correspondence

The gauge/gravity correspondence is a powerful tool which can be used to gain
insight on both sides of the duality. The main difficulty in this approach is that the
best understood formulations of the duality involve the strongly coupled regime
and the planar limit of the boundary gauge theory. Since the gauge/gravity
correspondence was originally formulated in the context of Dirichlet-branes (D-
branes) dynamics, it is instructive to review some of their basic properties. We will
in particular emphasize the role played by the gauge theories that live on D-branes
worldvolumes, their properties and their field content. After a general definition
of the gauge/gravity duality, we will present two of its explicit realizations that
are particularly relevant to this thesis: the case of N = 4 super Yang-Mills (SYM)
theory and the case of D0-brane quantum mechanics.

2.1 D-branes

In this section, for the sake of simplicity and in order to avoid heavy notations we
will restrict ourselves to the case of 26-dimensional bosonic string theory, keeping
in mind that the key concepts that will be addressed still apply in superstring
theory, unless explicitly specified. Most of the concepts which will be introduced
in this section can be found in the reviews [14, 15]. In this framework, the string
worldsheet is a two-dimensional surface which can be parameterized by a spatial
coordinate σ1 and by a time coordinate σ0 and which moves in 26-dimensional
Minkowski spacetime. The position of the worldsheet in this ambient spacetime is
given by XM(σ0, σ1), with M running from 0 to 25. The XM are the fundamental
degrees of freedom of bosonic string theory and their equations of motion are
derived from the Nambu-Goto action

SNG = − 1

2πα′

∫
d2σ

√
(Ẋ ·X ′)2 − (Ẋ2)(X ′2) , (2.1.1)
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where ẊM and X ′M are respectively the derivatives of XM with respect to σ0 and
σ1. The constant α′ is called the universal Regge slope and has the units of a
length squared. What distinguishes open strings from closed strings is the fact
that for the first ones one has to impose a periodicity condition on σ1, while for
the second kind the endpoints do not coincide, and one has to assign boundary
conditions to them. Let us now consider an open string and let σ1 go from 0 to
π. There are two kinds of boundary conditions one can impose on the XM which
are consistent with the equations of motion obtained from (2.1.1):

• Neumann boundary conditions: ∂σ1XM(0, σ0) = ∂σ1XM(π, σ0) = 0

• Dirichlet boundary conditions: XM |σ1=0,π = constant

Note that imposing Dirichlet boundary conditions on q = 25 − p of the 26 di-
rections breaks the original SO(1, 25) Lorentz symmetry of the theory down to
SO(q)×SO(1, p). This is how Dp-branes made their first appearance in string
theory: they are the p-dimensional hypersurfaces to which the endpoints of open
strings are attached when one imposes Dirichlet boundary conditions on them.
From now on, we will distinguish two kinds of indices associated to the coordi-
nates in the ambient spacetime: µ, ν indices will go from 0 to p and will denote the
directions in which Neumann boundary conditions are imposed, while i, j indices
will go from p + 1 to 25 and denote the directions in which Dirichlet boundary
conditions are imposed. By doing a mode expansion of the most general solu-
tion of the XM equations of motion and performing the canonical quantization
procedure we obtain, on top of the usual position and momentum operators, two
infinite sets of creation and annihilation operators obeying

[αµn, α
ν
−m] =nδn,mδ

µν

[αin, α
j
−m] =nδn,mδ

ij
(2.1.2)

which create and annihilate excitations on the string. Using these operators we
can build the spectrum of excitations of open strings attached to a Dp-brane.
Given the Fock vacuum state |k〉, which corresponds to a string with momentum
kµ and no excitations, one can act upon it with the two kinds of creation operators
αµ−m and αi−m (with m < 0) to obtain excited states. The lightest states one can
get through this procedure are:

• tachyon |k〉 M2 = −1/α′

• vector αµ−1|k〉 M2 = 0

• scalars αi−1|k〉 M2 = 0

where we also specified their mass squared. The tachyon is just an illness of 26-
dimensional bosonic string theory which is solved in ten-dimensional superstring
theory. We have two kinds of massless states: a spin-one particle, which is a
SO(1, p) vector, and a set of 25 − p states which are scalars under the SO(1, p)
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Figure 2.1: Sketchy representation of an open string attached to a stack of D-
branes with Chan-Paton factors associated to its endpoints.

Lorentz symmetry of the (p+ 1)-dimensional spacetime spanned by the Dp-brane
as the system evolves in time, which is also called the worldvolume of the D-
brane. The scalars transform in the fundamental representation of SO(25 − p),
which is now a global symmetry of the worldvolume theory. These vector and
scalar particle states we just introduced can be seen as quanta of fields and φi

and Aµ respectively. The latter acts as the gauge connection of a U(1) gauge
theory that lives on the (p+ 1)-dimensional brane worldvolume, while the former
can be associated to fluctuations of the position of the D-brane in its transverse
directions, making it a dynamical object, rather than just a static hyperplane to
which open string endpoints can be attached.

2.1.1 Chan-Paton factors

So far we have dealt with open strings attached to a single Dp-brane, but this
scenario can be easily generalized to the case of N parallel Dp-branes. Now we
can associate additional non-dynamical degrees of freedom to the endpoints of
open strings attached to the D-branes. They are called Chan-Paton factors and
take the form of indices a and b running from 1 to N , which label the branes to
which each endpoint is attached. The aforementioned scalar and vector fields will
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therefore carry two indices:

φi → (φi)ab
Aµ → (Aµ)ab

(2.1.3)

In the case of coinciding D-branes, these fields remain massless: they now trans-
form in the adjoint representation of U(N), with the vector being the gauge
connection of the U(N) gauge theory that lives on the brane worldvolume. A
schematic depiction of such a set-up is shown in Figure 2.1. As a side note, it
should be pointed out that U(N) can be written as the product SU(N)×U(1),
and it can be shown that the fields associated with the generator of the U(1)
factor decouple from the theory [16]. That is why in the following we will always
refer to the brane worldvolume gauge theories as SU(N) theories. As it will be
explained in the next section, however, in the context of the gauge/gravity corre-
spondence we are typically interested in the large N limit (or the planar limit) of
such theories, therefore for our purposes the U(N) and SU(N) symmetry groups
are interchangeable.

2.2 The correspondence

We have seen how gauge theories arise naturally in D-brane constructions, and
that D-branes are in fact dynamical objects. Let us make this statement a bit
more precise. In a similar way to how the scalar and vector fields arise from the
open string spectrum, one can show that the massless states of the closed string
spectrum are the quanta of three fields: a dilaton Φ, a graviton GMN and an
antisymmetric tensor BMN (where the M and N indices run from 0 to 25). These
objects are the same that we encounter in Einstein’s gravity and indeed they are
associated to the geometry of the ambient spacetime. The coupling between these
gravitational fields and a D-brane is proportional to the string coupling gs which
is in turn determined by the expectation value of the dilaton

gs = e〈Φ〉 .

The effect a stack of N D-branes has on the geometry of the ambient spacetime
is therefore parameterized by gsN : when its value is very small we can do per-
turbation theory around flat spacetime, but as it grows the backreaction of the
D-branes on the bulk geometry becomes no longer negligible. More precisely, in
the strong coupling limit gsN � 1, the D-branes source a black-brane geometry,
which corresponds to a specific supergravity solution. In the gsN � 1 regime,
taking a low energy limit amounts to decoupling the closed strings that propa-
gate in the bulk from the open strings attached to the branes: we are left with
a SU(N) gauge theory defined on a (p + 1)-dimensional flat spacetime. On the
other hand, taking the same low energy limit in the gsN � 1 regime amounts to
decoupling the modes that propagate in the asymptotic region of the black brane
solution, leaving us only with those that live near the horizon of the background
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geometry. So far we have described two regimes of the low energy limit of string
theory which do not seem to overlap: a weak string coupling regime described by
a SU(N) gauge theory in p + 1-dimensions and a strong string coupling regime
corresponding to string theory in the near-horizon limit of a black brane back-
ground. One can move from one regime to the other by continuously varying gsN ,
and if we assume that this continuous change of gsN commutes with taking the
low energy limit we obtain an equivalence between the two regimes, given that
the gauge theory is well-defined for all values of gsN and not only in the weak
string coupling regime. This equivalence between a SU(N) gauge theory and the
full string theory on the near-horizon region of the black brane geometry is a
formulation of the gauge/gravity correspondence. We cannot however trust the
black brane supergravity solution for all values of the string theory parameters: it
is valid only if we can neglect quantum corrections (which are parameterized by
Newton’s constant GN) and higher derivative corrections (which in string theory
are parameterized by α′). We will see in a couple of explicit examples how these
prescriptions are implemented and how they translate in terms of the rank of the
gauge group N and of its ’t Hooft coupling λ.

2.2.1 The example of N = 4 SYM

Let us give a concrete example of the duality by showing some details of the first
realization of the gauge/gravity correspondence as it was proposed by Maldacena
in [17]. The framework is that of ten-dimensional superstring theory in the pres-
ence of N coinciding D3-branes. The near-horizon region of the black 3-brane
geometry is given by the following metric

ds2 =
r2

L2
ηµνdx

µdxν +
L2

r2
dr2 + L2dΩ2

S5 ,

with L4 = 4πgsNα
′2. We recognize immediately the AdS5 metric in the first two

terms, times an S5 factor. The gauge theory living on the D3-branes worldvolume
is four-dimensional N = 4 super Yang-Mills theory with coupling constant gYM
and ’t Hooft coupling λ given by the following relation

4πgs = g2
YM =

λ

N
.

The theory can be obtained by dimensional reduction of N = 1 SYM from ten
to four dimensions. First of all it is interesting to look at the field content of the
theory. As expected from the previous considerations, the bosonic field content
consists of a four-dimensional gauge vector Aµ and six scalars φI . The latter
are precisely the aforementioned fields associated to transverse fluctuations of the
D3-branes, and they transform in the fundamental of a global SO(6) symmetry
which is the R-symmetry of N = 4 SYM. All the fermionic degrees of freedom can
be packaged into a single ten-dimensional Majorana-Weyl spinor. The resulting
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Euclidean action is

SN=4 =
1

gYM

∫
d4x tr

{
− 1

2
F 2
µν + (Dµφ

I)2 +
1

2
[φI , φJ ]2 + iΨ̄γµDµΨ

+ Ψ̄γI [φI , Ψ]

}
,

(2.2.1)

where Fµν and Dµ are the usual field strength and covariant derivative respec-
tively. The Dirac matrices (γµ, γI) form the ten-dimensional Clifford algebra. As
it was anticipated, we can only trust the supergravity solution in the limit in which
both the stringy (higher derivative) and the quantum corrections to classical grav-
ity are suppressed. This is achieved by keeping the curvature radius L large in
string length units and by taking gs to be small (since GN ∝ g2

s). Considering
that L/

√
α′ = λ1/4, this corresponds to the large N , large λ limit: the planar

and strongly coupled limit of the gauge theory. It is also important to note the
matching of symmetries between the two sides of the correspondence. The global
SO(6) R-symmetry of the gauge theory corresponds to the isometries of the S5

piece of the bulk geometry. Moreover, N = 4 super Yang-Mills theory in four di-
mensions is a conformal theory, and the conformal group of flat four-dimensional
Minkowski space is SO(4, 2), which corresponds exactly to the isometry group of
AdS5. Another important aspect of the correspondence is that finite temperature
configurations in the boundary gauge theory are dual to black hole solutions in
the bulk AdS spacetime: this will be seen in the next example.

2.2.2 The example of D0-brane quantum mechanics

Another example, which will be particularly relevant in relation to the second
part of this thesis is given by D0-brane quantum mechanics [18, 19, 20]. This is
a supersymmetric model defined in 0+1 dimensions which at finite temperature,
in the strongly coupled regime is dual to the near-horizon region of a type IIA
supergravity charged black hole solution, whose metric is

ds2

α′
= −f(r)r7/2

√
Λ

dt2 +

√
Λ

r3

(
1

f(r)r2
dr2 + dΩ2

8

)
, (2.2.2)

with

f(t) ≡ 1− r7
0

r7
, Λ ≡ 240π5λ = 240π5g2N .

The dilaton φ and radius of the horizon r0 are given by

eφ =
1

60π3N

(
Λ

r3

)7/4

, r0 =

(
7β

4π
√

Λ

)−2/5

, (2.2.3)

where β = 1/T is the inverse temperature. From the metric (2.2.2) one can read
off the effective curvature radius of the geometry, which is given by the radius of
the S8 factor:

R2
eff

α′
=

√
Λ

r3
. (2.2.4)
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By demanding that the effective radius of curvature is large in units of the string
length we obtain a constraint on the region of validity of the supergravity solution
in terms of the ’t Hooft coupling of the dual gauge theory, namely r � λ1/3. In
particular, by imposing this at the horizon r = r0 we get

1� λβ3 . (2.2.5)

However, since from (2.2.3) we get that, at the horizon

eφ ∝ 1

N
(λβ3)7/10 , (2.2.6)

we also have to impose the additional constraint λβ3 . N10/7, in order to prevent
the dilaton from getting too big at the horizon. The dual quantum mechanical
model can be obtained by dimensional reduction of super Yang-Mills from 10 to
1 dimension, which results in the following Lagrangian

L =
1

2g

[
trẊ iẊ i + 2θT θ̇ − 1

2
tr
[
X i, Xj

]2 − 2θTγi
[
θ,X i

]]
. (2.2.7)

Focusing solely on the bosonic sector, the degrees of freedom are the fields X i

which transform in the adjoint of gauge group SU(N) and in the fundamental
of a global SO(9) symmetry. This is precisely what we would have guessed from
a D0-brane construction in light of all the previous considerations. Note also
that the quartic interaction term in the Lagrangian has exactly the same form
of the one we find in (2.2.1). Inspite of the simplifications that occur when one
studies quantum mechanical models with respect to full-blown QFTs in higher
dimensions, analytical control over D0-brane quantum mechanics is still out of
reach. At the level of the numerics, instead, a lot of progress in the understanding
of its properties has been made through lattice Monte Carlo simulations [21, 22].
Finally, we will see later that several simple models of holography (e.g. IP, IOP,
and matrix-vector models) have been inspired by it in terms of field content and
kinds of interactions.

2.3 Take-home message

As it was seen from general considerations on D-brane constructions, and in two
explicit examples, SU(N) (or equivalently, for our purposes U(N)) gauge theo-
ries appear naturally in the context of holography as duals of higher-dimensional
gravitational theories, and it is natural for them to feature an additional global
SO(D) symmetry. The typical degrees of freedom that appear in such boundary
theories, are therefore D fields which transform in the adjoint representation of
SU(N) (i.e. N × N matrices) and in the fundamental representation of SO(D).
Such fields are typically coupled through quartic interaction terms of the form
shown in (2.2.1) and (2.2.7). Moreover, if one wants to stay in the regime in
which the dual supergravity solution is reliable, and therefore suppress all stringy
and quantum effects in the bulk, all computations in the boundary gauge theories
need to be carried out in the planar limit and in the strong coupling regime.
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Part II

Simple models of Holography
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Chapter 3

Simple models of Holography

3.1 General properties

We have seen that in the context of the gauge/gravity correspondence (at least
in its well-understood realizations) the theory that lives in lower dimensions is
a U(N) gauge theory. Moreover, the duality relates the planar, strongly coupled
regime of the gauge theory to classical gravity in the bulk. Therefore, if one wants
to engineer a quantum mechanical model that captures some interesting physics
and possibly helps in answering deep questions about gravity, the starting point
is already a non-trivial one: constructing a model of interacting U(N) adjoint
fields which is solvable in the large N limit and at strong coupling. In order to
keep things as simple as possible, we will restrict ourselves to 0+1 spacetime di-
mensions, i.e. to models of quantum mechanics. Moreover, what we are mostly
interested in is black hole physics, and requiring the presence of (possibly ex-
tremal) black holes in the bulk theory imposes more properties on the boundary
model. Here we review some of them:

• Continuous energy spectrum: In the presence of a black hole, any gap in the
energy spectrum gets infinitely red-shifted near the horizon, resulting in a
continuous spectrum. This property is intimately related to the information
loss at the horizon [23, 24]. Such a feature is far from trivial in compact
quantum systems, where the energy spectrum is always discrete and uni-
tarity guarantees that no information is lost. A continuous spectrum must
therefore arise in the N →∞ limit.

• Non-zero entropy at T = 0: Extremal black holes have the remarkable prop-
erty of having a large finite entropy at zero temperature, which is propor-
tional to the area of their event horizon [3, 4, 5]. Again, this is a non-trivial
property for a quantum mechanical model, which is typically in its ground
state at T = 0.

• Quasi-normal behaviour of two-point functions: The behaviour of a black
hole geometry when it is perturbed out of equilibrium is described by damped
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Figure 3.1: Typical behaviour of the thermal expectation value of the commutator-
squared versus time in a chaotic system.

oscillations called quasi-normal modes [25, 26, 27, 28]. In the dual QFT, this
phenomenon is equivalent to a thermalization process, hence the exponen-
tial decay of quasi-normal modes in the bulk must correspond to a late time
exponential decay of finite-temperature two-point functions in the boundary
theory. Standard quantum models do not exhibit such a behaviour: two-
point functions undergo Poincaré recurrences after a time proportional to
the exponential of the entropy [29]. This time scale must therefore be pushed
to infinity in the large N limit in order to achieve quasi-normal behaviour.

3.1.1 Chaotic behaviour of correlators

In addition to the above properties, there is an additional very sharp and non-
trivial criterion which the gauge dual of a bulk theory containing a black hole
must satify: the chaotic behaviour of out-of-time-order four-point functions. This
criterion is based on a definition of chaos that we will briefly sketch. In classical
chaos, we define chaotic behaviour as extreme sensitivity of a system with respect
to changes of initial conditions. This property can be formalized as an exponential
growth of the separation of two trajectories which were initially separated by
δx(0):

δx(t) = δx(0)eκt , (3.1.1)

where κ is called the Lyapunov exponent. We can rewrite (3.1.1) making use of
the Poisson bracket

∂x(t)

∂x(0)
= {x(t), p(0)} . (3.1.2)

In the semiclassical regime we can substitute the bracket by a commutator and
take its thermal expectation value [30]. However such a quantity will in general
vanish because of phase cancellations, therefore a more appropriate quantity to
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consider is the thermal expectation value of the square of the commutator

〈[x(t), p(0)]2〉β ∼ ~2e2κt , (3.1.3)

where the factor of 2 in the exponent is due to having taken the square of the
commutator. When dealing with U(N) gauge theories, the classical limit corre-
sponds to N → ∞, therefore we can replace ~ by 1/N . Also, we can generalize
the discussion to any couple of Hermitian operators V and W obtaining

〈[V (t),W (0)]2〉β ∼
1

N2
e2κt . (3.1.4)

In holographic models, such an object typically features two distinct regimes, as
depicted in Figure 3.1. The late time saturation, also known as Ruelle behaviour,
happens at time scales of order lnN and cannot be seen in the large N limit. The
early time exponential growth instead is associated with chaos in the way we have
just defined and is a direct hint of the presence of a horizon in the bulk theory.
Intuitively, this exponential growth can be related to the exponential blueshift of
a source of fixed frequency which is thrown into the black hole [32]. According to
the asymptotic observer, this effect will be proportional to

1

M
e2πt/β , (3.1.5)

where M and β are the mass and the inverse temperature of the black hole re-
spectively. In [33] it was conjectured that this value of the Lyapunov exponent is
the maximum one, and arguments were given to show that quantum corrections
can only lower it. Therefore, if a quantum system displays an exponential growth
in observables of the kind defined in (3.1.4) with a Lyapunov exponent which
saturates the conjectured bound, this is a strong hint that the dual bulk theory
contains classical black hole solutions.

3.1.2 Models with probes

A typical analysis that has been shown to provide useful insight about both sides
of the gauge/gravity correspondence is done through the use of probe branes
[34, 35, 36, 37]. In the holographic picture, one can imagine starting from a stack
of N + 1 coinciding D-branes and separating one of them from the rest. Studying
the dynamics of this probe can give us insight on the gravitational background
induced by the remaining stack of N branes. From the point of view of the
open strings attached to the D-branes, separating the probe from the background
amounts to distinguishing three kinds of objects: those with both endpoints on the
background, those that go from the background to the probe, and those attached
only to the probe. To understand what this means in terms of the gauge theory
that lives on the brane worldvolume, let us use a zero-dimensional toy example
[38] in which the adjoint degrees of freedom are (N + 1) × (N + 1) matrices M
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Figure 3.2: Sketchy representation of a system of N background branes and one
probe, after the decomposition performed in (3.1.6).

with some action SN+1(M). Splitting the probe from the background amounts to
a distinction between various pieces that compose the M matrices:

M =

(
V a
b w̄a

wb v

)
. (3.1.6)

The interpretation of the various pieces is clear: the N×N matrix V is associated
to background-background open strings, the vectors w and w̄ to probe-background
strings, and the scalar v to probe-probe strings. The original U(N + 1) symmetry
of the model is broken down to U(N)×U(1). To understand the effect this splitting
has on the action of the model, let us consider the following explicit example:

SN+1(M) =
N + 1

λ
tr

(
1

2
M2 +

1

4
M4

)
. (3.1.7)

In terms of the new variables we get

SN+1(M)→ SN+1(V, w, w̄, v) =(N + 1)

[
1

N
SN(V ) + S1(v) + Ŝ(V, w, w̄, v)

]
,

(3.1.8)

with

Ŝ(V, w, w̄, v) =
1

λ

(
w̄w + wV 2w̄ + v2w̄w + vwV w̄ +

1

2
w̄ww̄w

)
, (3.1.9)
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which, on top of the original action for the matrix and the scalar fields, con-
tains completely new couplings involving the vectors. Now, let us introduce the
partition function of this background plus probe system

Z =

∫
DVDwDw̄Dv e−SN+1(V,w, w̄, v) . (3.1.10)

The gauge/gravity correspondence postulates that performing this path integral
should be equivalent to the path integral of the probe brane gauge theory in the
non-trivial near-horizon geometry generated by the N background branes [39]:

Z =

∫
Dv e−Sp(v, gµν , φ, ...) , (3.1.11)

where the probe action depends on all the properties of the background geometry
(metric, dilaton, and so on). If we integrate out all the background fields in
(3.1.10) we obtain an effective action for the probe brane variables, defined by

e−Seff(v) =

∫
DVDwDw̄ e−SN+1(V,w, w̄, v) , (3.1.12)

which, by comparing (3.1.10) and (3.1.11), must be equivalent to Sp. Therefore,
the effective action Seff , obtained entirely through a gauge theory computation
in flat spacetime, contains all the information on the curved bulk geometry in
the gravitational picture. The procedure we just sketched can in principle be
carried out for any gauge theory [40, 38], and has been successfully tested in
several examples in which both the gravitational and the gauge theory sides of
the correspondence are known. For example, the AdS5 × S5 geometry generated
by a stack of D3-branes can be obtained through a field theoretic computation
performed using D-instantons as probes [34].

3.2 The IP and IOP models

3.2.1 Introduction

As it was emphasized in the previous section, U(N) matrix models appear nat-
urally in the framework of string theory and holography, and in order to make
contact with classical gravity, we have to study their planar limit at strong cou-
pling. This is not always easy, as we are in general not able to resum all the
planar diagrams of a generic non-Gaussian matrix model. Also, we mentioned
that models involving vector-matrix interactions are associated with probe analy-
sis in brane constructions. This idea is what prompted Iizuka and Polchinski [41]
and Iizuka, Okuda and Polchinski [42] to study two simple models which from now
on we will refer to as IP and IOP models respectively. Their strategy was to start
from a very simple Hamiltonian: a harmonic oscillator in the adjoint of U(N) plus
one in the fundamental, coupled though a cubic and a quartic interaction. This
allows for complete planar diagram resummation.
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3.2.2 Definition of the IP model

The Iizuka-Polchinski Hamiltonian is the following:

H =
1

2
tr

(
Π2 +m2sX2

)
+Ma†ia

i +
µ

N
a†ia
†
ja
iaj + ga†iX

i
ja
j , (3.2.1)

where X and Π are N ×N matrix operators satisfying

(X i
j)
† = Xj

i (Πi
j)
† = Πj

i , (3.2.2)

and the canonical commutation relation

[X i
j,Π

k
l ] = iδilδ

k
j . (3.2.3)

The a† and a and are vector operators and satisfy the usual creation-annihilation
commutation relation

[ai, a†j] = δij . (3.2.4)

Since the coupling between the matrix and the vectors is cubic, the quartic vector
coupling is necessary to make the model stable. In the probe picture described
in the previous section, one can imagine the adjoint fields as being associated to
background-background open strings, while the a† and a respectively create and
annihilate open strings that go from the background to the probe. Since in string
theory the mass of open strings is proportional to the distance between the branes
they are attached to, the mass parameter M of the vector fields can be associated
to the distance of the probe from the background in this picture. In [41] the model
is studied in a regime corresponding to a probe at infinite distance from the black
hole, while an analysis at finite distance is carried out in [43].

3.2.3 Large M computation

The simplicity of the adjoint sector of the Hamiltonian allows for the complete
summation of the planar diagrams of the model. As it is common in probe set-
ups, all the contributions to correlators of the adjoint fields coming from the
interactions with the probes are subleading in the large N limit. Therefore, the
real-time two-point function of the adjoint fields is just the harmonic oscillator
one, which at finite temperature T = 1/β and in frequency domain is given by

K0(ω) =
i

1− e−βm

(
1

ω2 −m2 + iε
− e−βm

ω2 −m2 − iε

)
. (3.2.5)

Let us now turn to the computation of the real-time, finite temperature propagator
of the fundamentals defined in the following way

GP (t) ≡ 1

N
eiMt〈Tai(t)a†i (0)〉 , (3.2.6)

which, on the other hand, receives contributions because of the cubic vector-
matrix vertex. The choice to define it with the phase factor eiMT makes it loose
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Figure 3.3: The one-loop diagrammatic unit whose iteration generates all the
planar contributions to the vector two-point function in the IP model.

Figure 3.4: Graphical representation of the Schwinger-Dyson equation for the
two-point function of the fundamentals in the IP model.

the dependence on M in the M � T limit, which is the regime we are going
to initially focus on. It is important to point out that in this limit, the quartic
stabilizing term a†ia

†
ja
iaj plays no role and for the moment we can neglect it.

All the planar diagrams which contribute to the vector two-point function can
be obtained by iteration of the diagrammatic unit shown in Figure 3.3. The sum
over all such diagrams can be performed and packaged in the following Schwinger-
Dyson equation

GP (ω) = GP
0 (ω) + λGP

0 (ω)GP (ω)

∫ ∞
−∞

dω′

2π
GP (ω′)K0(ω − ω′) , (3.2.7)

where λ = g2N is the ’t Hooft coupling. A graphical representation of the
Schwinger-Dyson equation is depicted in Figure 3.4. The bare finite tempera-
ture fundamental two-point function GP

0 (t) is the same as the zero temperature
one because of the M � T limit:

GP
0 (ω) =

i

ω + iε
. (3.2.8)

The Schwinger-Dyson equation (3.2.7) can in general be treated only numerically,
but if one takes the m→ 0 limit while holding ν2 ≡ 2λ/[m(1− e−βm)] fixed it can
be solved analytically, yielding the following result

GP (ω) =
2i

ω +
√
ω2 − 2ν2

. (3.2.9)

It is important to notice how the presence of a branch cut in (3.2.9) implies a con-
tinuous spectrum for the fundamental fields: the interaction with the adjoint fields
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has the effect of broadening the spectral density of the fundamentals, which in
the free theory would just be a Dirac delta centered at M . The Fourier transform
of (3.2.9) can be written in terms of a Bessel function

GP (t) =

√
2

νt
J1(
√

2νt)θ(t) . (3.2.10)

3.2.4 Bose-Einstein condensation

We have shown that in the large M limit, the IP model already features some
interesting properties but, since in the probe picture it corresponds to placing
the probe at an infinite distance from the black hole, it is not the best regime
for studying the near-horizon physics or, possibly, phenomena like the crossing of
the horizon. The IP model can however be studied at finite M , both analytically
and numerically [43]. In order to obtain analytical results, we need to take the
m/T � 1 first, which amounts to “freezing” the adjoint field X. In this limit,
in fact, only its zero mode X0 contributes, while all the higher modes decouple
from the theory. The path integral which determines the partition function of the
model at finite temperature is therefore given by

Z =

∫
DX0DaDa† exp

[
− m2

2β
X2

0 −
∫ β

0

dτ
(
a†(∂τ +M)a+

g

β
a†X0a

+
µ

N
(a†a)2

)]
,

(3.2.11)

where X0 appears only quadratically and can be integrated out, leaving a bilocal
action for the probe fields

Z =

∫
DaDa† exp

{
−
∫ β

0

dτ

[
a†(∂τ +M)a+

µ

N
(a†a)2

]
+

g2

2βm2

∫ β

0

dτ1dτ2

[
(a†(τ1)a(τ2))(a†(τ2)a(τ1))

]}
.

(3.2.12)

The action contains quartic terms in the fundamental fields, but it can be made
quadratic by introducing two Hubbard-Stratonovich auxiliary fields φ and σ, the
former being a local field, while the latter being bi-local. We obtain

Z =

∫
DaDa†DσDφ exp

{
−
∫ β

0

dτ

[
a†(∂τ +M + φ)a− N

4µ
φ2

]
− 1

βm2

∫ β

0

dτ1dτ2

[
σ(τ2, τ1)(a†(τ2)a(τ1))

+
N

2λ
σ(τ1, τ2)σ(τ2, τ1)

]}
,

(3.2.13)
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where we introduced the ’t Hooft coupling λ ≡ g2N . We can finally integrate out
the fundamental fields, obtaining an effective action for the auxiliary fields:

Z =

∫
DσDφexp

(
−N

[
lnDet(∂τ +M + φ+

σ

βm2
)−

∫ β

0

dτ
φ2

4µ

+

∫ β

0

dτ1dτ2
1

2λm2
σ(τ1, τ2)σ(τ2, τ1)

])
.

(3.2.14)

Since they do not carry U(N) indices and their action is proportional to N , in the
N → ∞ limit the path integral over the auxiliary fields localizes at their saddle
point values φ∗ and σ∗ which are given by the solutions of the equations of motion
for φ and σ respectively:

φ∗ =
2µ

N

〈
a†a
〉
,

σ∗(τ) = −λGE(τ) = −λ
(
∂τ +M + φ∗ +

σ∗
βm2

)−1

,

(3.2.15)

where GE is the imaginary time, finite temperature correlator of the fundamental
fields:

GE(τ) =
1

N

〈
Ta(τ)a†(0)

〉
=

1

β

∑
Gke

−iωkτ , (3.2.16)

and the ωk = 2π/β are the usual Matsubara frequencies. We can rewrite the
saddle point equations (3.2.15) as an equation for the Matsubara coefficients Gk:

G−1
k = −iωk +M∗ −

ΛGk

β
, (3.2.17)

where we have introduced two new quantities

M∗ ≡M + φ∗ Λ ≡ λm2 . (3.2.18)

Equation (3.2.17) is a quadratic equation in the Gk and is just the mβ � 1 limit
of the imaginary-time version of the Schwinger-Dyson equation (3.2.7). It can
easily be solved for k 6= 0, giving

Gk =
2

M∗ − iωk +
√

(M∗ − iωk)2 − 4Λ
β

, (3.2.19)

which is analogous to (3.2.9), but this time for finite values of M . Now, from the
Gk one can obtain the resolvent of the model, which is an analytic function in the
upper and lower half complex plane, related to the spectral density ρ(ω) by

R(z) =

∫ +∞

−∞

ρ(ω)

z − ω
dω . (3.2.20)
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The resolvent satisfies the two relations

Gk = −R(iωk) , k 6= 0 ,

ρsmooth(ω) =
i

2π
(R(ω + iε)−R(ω − iε)) ,

(3.2.21)

where ρsmooth(ω) is the smooth part of the spectral function, which is in general
a positive (negative) function for positive (negative) values of ω. Note that, from
the first equation, the zero-mode G0 cannot be read off the resolvent. Moreover,
only the smooth part of the spectral density can be obtained from the resolvent:
this allows for the presence of a term proportional to ωδ(ω) in the full spectral
density which is not captured by the discontinuity of the resolvent across the real
axis. From (3.2.19) we can determine the expression for the resolvent:

R(z) =
1

2ΛT

[
z −M∗ −

√
(z −M+)(z −M−)

]
, (3.2.22)

where
M± = M∗ ± 2

√
ΛT . (3.2.23)

It has a branch cut on the real axis from M− to M+, from which, using (3.2.21)
we obtain

ρsmooth(ω) =
1

2πΛT

√
(M+ − ω)(ω −M−) for M− ≤ ω ≤M+ . (3.2.24)

Let us now consider the Matsubara zero mode G0, whose analysis requires more
care than the higher modes. At low temperature, when the effective coupling√

ΛT is small, we can trust the perturbative result (3.2.17) for k = 0 and write

G0 =
1

2ΛT

[
M− + 2

√
ΛT −

√
M−(M− + 4

√
ΛT )

]
= −R(0) , (3.2.25)

as T increases, however, M− decreases monotonically and reaches its minimum
M− = 0 for a critical value of the temperature Tc. This corresponds to the
branching point of (3.2.25). Now, if we further increase the temperature, G0

should be analytically continued to

G0 =
1

2ΛT

[
M− + 2

√
ΛT +

√
M−(M− + 4

√
ΛT )

]
. (3.2.26)

This means that for T > Tc the relation G0 = −R(0) no longer holds, instead we
have

G0 +R(0) = βn0 with n0 =
1

Λ

√
M−(M− + 4

√
ΛT ) , (3.2.27)

where one can show that n0 is the proportionality constant in front of the afore-
mentioned δ(ω) term in the full spectral density. Since the total number n of
fundamentals is given in terms of ρ(ω) by

n =

∫ +∞

−∞

ρ(ω)

eβω − 1
dω = n0 +

∫ +∞

−∞

ρsmooth(ω)

eβω − 1
dω , (3.2.28)
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this analytic continuation procedure can be seen as a Bose-Einstein condensation
of massless fundamentals [43]. This discussion can be carried out in an analogous
way by keeping T fixed and varying the mass parameter M . As M is decreased
below a critical value Mc, the same condensation phenomenon is observed. In the
introduction, we associated the fundamental fields to open strings attached to the
probe and the black hole, their mass M being related to the distance between the
two. It is very tempting to associate the value Mc to the position of the horizon of
the black hole. In this sense, the presence of a non-perturbative phase transition
at a critical value of the distance between the probe and the black hole seems
to suggest that even simple models like IP and IOP can be used to study the
non-trivial physics associated to the crossing of the horizon.

3.2.5 Definition of the IOP model

The Iizuka-Okuda-Polchinski (IOP) model is a close relative of the IP model. It
has the same field content, and its Hamiltonian is

H = m tr
(
A†A

)
+Ma†ia

i +
µ

N
a†ia
†
ja
iaj +

√
λ

N
a†iA

†i
j A

j
l a
l , (3.2.29)

which is written, for convenience, in terms of the adjoint creation and annihi-
lation operators, satisfying X =

(
A+ A†

)
/
√

2m. This model can be obtained
from the IP model by keeping only the most singular planar graphs in frequency
space. Although the vector-matrix coupling is of higher order, and the result-
ing Schwinger-Dyson equations for the fundamental two-point function are more
complicated, the model is more tractable analytically [42]. This is due to the
fact that the vector-matrix coupling is really a quadratic coupling in terms of the
fundamental and adjoint U(N) charges

qli = a†ia
l Qi

l = A†ij A
j
l . (3.2.30)

3.2.6 Large M computation

In order to solve the model, one can proceed along the same lines as the IP
model and take the limit for large mass of the fundamental M � T . Again, the
propagator for the adjoint fields does not receive corrections from their interactions
with the fundamentals, it is therefore just given by the harmonic oscillator one.
We define it in the following way

L0(t)δilδjk =
〈

TAij(t)A
†
kl(0)

〉
. (3.2.31)

At finite temperature, in frequency domain it gives

L0(ω) =
i

1− e−βm

(
1

ω −m+ iε
− e−βm

ω −m− iε

)
. (3.2.32)
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Figure 3.5: The first few diagrammatic units whose iteration generates all the
planar contributions to the vector two-point function in the IOP model.

Figure 3.6: Graphical representation of the Schwinger-Dyson equation for the
two-point function of the fundamentals in the IOP model.

The fundamental full and bare two-point functions are again defined by (3.2.6) and
(3.2.8) respectively. Because of the quartic coupling, the class of planar diagrams
which contributes to the fundamental two-point function is larger with respect to
the IP model. It contains all the diagrams which can be obtained by iterating
the family of structures depicted in Figure 3.5. The resulting Schwinger-Dyson
equations for GP (t) take the following form

GP (ω) =GP
0 (ω) +GP

0 (ω)GP (ω)
∞∑
n=0

Sn(ω) ,

Sn(ω) =(−ihN)n+1

∫
dω1

2π
L0(−ω1)

n∏
l=1

dωl
2π

GP (ω − ωl+1 − ω1)L0(ωl+1) .

(3.2.33)

These equations, which are depicted graphically in Figure 3.6 for n = 0, 1 and
2, look more complicated than the IP ones but are actually more tractable. The
M � T is in fact sufficient for reducing them to a solvable algebraic solution for
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GP (ω) with solution

GP (ω) =
2i

λ+ ω +
√

(ω − ω+)(ω − ω−)
, ω± = λ

1± e−βm/2

1∓ e−βm/2
(3.2.34)

where λ = hN is the ’t Hooft coupling. Similarly to the IP case, but without
having to take the small adjoint mass limit, we obtain a propagator with a branch
cut, indicating a continuous energy spectrum.

3.2.7 Concluding remarks

The computation of the thermal two-point functions of the fundamental fields
in the IP and IOP model has shown the presence of a continuous spectrum, a
physical property associated with the presence of a horizon in the bulk dual.
Through similar, though more involved, computations one can also compute the
thermal four-point functions of the fundamentals, both in the IP and IOP model.
As it was already pointed out, an exponential growth of the connected out-of-time-
order four-point function is a non-trivial criterion for determining the viability of
a model of holography. However, neither the IP nor the IOP model exhibit such
an exponential growth. Although the computation of the four-point function was
performed in [44], like the two-point one, in the M � T limit, it is unlikely that
relaxing this condition would lead to the wanted chaotic behaviour. The problem
lies most likely in the simplicity of the models, which lack self-interactions between
the adjoint fields. On the other hand, the Bose-Einstein condensation phenomenon
observed in the IP model could be a very general property of bosonic models of
interacting vectors and matrices.

3.3 Melonic models

In [45] Kitaev proposed a simplified version the Sachdev-Ye model [46], which was
originally introduced for the study of spin glass/spin fluid phase transitions. This
new model, called the Sachdev-Ye-Kitaev (SYK) model, features many interesting
properties that make it a good candidate for a simple model of holography. Since
Kitaev’s proposal, several other models with the same properties have been con-
structed: what connects them, despite evident differences in terms of field content,
symmetries, etc., is a similar Feynman diagram structure, which is dominated by
so-called melon diagrams. This class of diagrams is obtained by iterating a two-
loop structure (shown in Figure 3.7 along with an example of a vacuum diagram
constructed by iteration of said structure) and is simple enough to allow for com-
plete summation, and therefore solvability at any value of the coupling. Although
summable, this class of diagrams is non-trivial enough to result in the remark-
able properties of these models, among which we find a continuous spectrum, the
quasi-normal behaviour of thermal two point functions and the maximally chaotic
behaviour of out-of-time-order four-point functions in the strong coupling limit.
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Figure 3.7: The basic graphical unit of melonic models (left) and an example of
melon diagram (right)

In the remainder of this section will introduce three models which belong to this
class: the SYK model, the Gurau-Witten model and a matrix-vector model with
U(N)2×O(D) symmetry.

3.3.1 The Sachdev-Ye-Kitaev model

The Sachdev-Ye model [46] is model a of SU(M) spins on N sites, coupled through
a Gaussian random interaction. The model is studied by taking the N → ∞
followed by the M → ∞ limit and exhibits a spin glass phase. In [45] it was
simplified by introducing a similar model which only features the parameter N ,
and in which the spin glass order is suppressed. The resulting SYK model is a
model of N Majorana fermions χi satisfying {χi, χj} = δij, coupled through a
quartic all-to-all interaction:

H =
1

4!

N∑
i,j,k,l=1

Jijklχiχjχkχl . (3.3.1)

The couplings Jijkl are random and drawn from a Gaussian distribution with the
following properties:

J2
ijkl =

3!λ2

N3
, Jijkl = 0 , (3.3.2)

where the bar denotes the average over the Gaussian distribution. Each observable
is computed by taking the average over the disorder in the following way

〈O〉 =

∫
DJijkle

−J2
ijklN

3/12λ2

∫
DχiOe

−
∫
dtL∫

Dχie−
∫
dtL

. (3.3.3)

The presence of such a random, time-independent coupling is known in the Con-
densed Matter literature as quenched disorder. The idea behind it is that, al-
though one is typically interested in the study of one specific realization of the
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system, studying the average over all realizations is easier. Certain physical quan-
tities, called self-averaging quantities, have the property that in the N → ∞
limit their value in a typical realization of the model tends to their average value.
Therefore, if one restricts oneself to considering only self-averaging quantities in
the large N limit, studying the average over all realizations is equivalent to study-
ing a typical realization of the model [47]. The free energy F is one such quantity
and, as a consequence, all connected correlation functions.

Generalizations

The SYK model can be generalized in several ways, here we review a few of them.
A natural generalization of the SYK model is the complex SYK model [48, 49],
which makes use of complex fermions instead of Majorana fermions and is defined
by the Hamiltonian

Hcomplex =
N∑

i,j,k,l=1

Jijklχ
†
iχ
†
jχkχl +mχ†iχi . (3.3.4)

To ensure the Hermiticity of the Hamiltonian, we also have to impose the following
condition on Jijkl:

Jklij = J∗ijkl . (3.3.5)

Notice how the use of complex fermions allows for a mass term: while all the
interesting properties of SYK remain untouched, the extra parameter m allows
for a richer phase space, as it will be discussed in Chapter 5. One can also modify
the SYK Hamiltonian to allow for interaction terms involving any even number q
of fermions instead of just four [50]:

Hq =
iq/2

q!

N∑
i1i2···iq=1

Ji1i2···iqχi1χi2 · · ·χiq . (3.3.6)

where the iq/2 factor ensures Hermiticity for odd q/2. There are two interesting
limits that one can consider, which both lead to solvable models: q = 2 and
q =∞. The former can be seen as a close relative of the mβ � 1 limit of the IP
model. For q = 2, in fact, the random coupling reduces to a matrix Jij and plays
an analogous role to the zero mode of the adjoint field X in (3.2.11). However,
since the vector degrees of freedom in q = 2 SYK are fermions, the peculiar
condensation phenomenon observed in the IP model cannot occur. Moreover,
much like in the IP model, no chaotic behaviour is observed in out-of-time-ordered
four-point functions. Therefore, albeit being completely solvable, the q = 2 case
is much less interesting than its q > 2 relatives. Interestingly, also taking the
q = ∞ limit leads to simplifications. This is particularly useful when one has
to compute quantities that do not depend on q, or study the qualitative features
of the model. Finally, we briefly present a supersymmetric generalization of the
SYK model which was proposed in [51]. In its N = 1 version, it is obtained
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by constructing a Hermitian supercharge Q out of the fermions and the random
coupling:

Q = i

N∑
i,j,k=1

Jijkχiχjχk . (3.3.7)

As it is customary, the Hamiltonian is obtained by taking the square of the su-
percharge

HSUSY = Q2 . (3.3.8)

It should be noted that as it is, the model does not contain any bosonic degrees
of freedom: the superpartners of the fermions arise as non-dynamical auxiliary
fields, that are introduced in order to linearize the action of the supercharge on
the fermions.

3.3.2 The Gurau-Witten model

The SYK model, due to the quenched disorder, is not a quantum system per se,
but rather an average over an ensemble of quantum systems. This fact, combined
with the unclear interpretation of 1/N corrections, prompted the search for models
that reproduced the same interesting features of the SYK model, but without the
random coupling. The first proposal in this direction came from Witten [52], who
pointed out that one could reproduce the same diagrammatic structure of SYK
(and therefore the same properties) by using a tensor model with the following
action:

SG−W =

∫
dt

(
i

2
ψabcA ∂tψ

abc
A +

λ

N3/2
ψabc0 ψade1 ψfbe2 ψfdc3

)
. (3.3.9)

Here the ψabcA are 4 real fermionic tensors and the model has a O(N)6 symmetry.
Similar models had been introduced by Gurau and collaborators [53, 54, 55, 56, 57]
and are studied in the tensor model literature with the aim of generalizing to higher
dimensions the correspondence between matrix models and two-dimensional ge-
ometries. The factor of N−3/2 in front of the quartic coupling ensures that the
large N limit of the model is well-defined, as the coupling constant λ is held fixed.
It can be shown that the leading diagrams in the large N limit have exactly the
same structure as the SYK model, thus reproducing the same physical proper-
ties. Much like the SYK model, these tensor models can be easily generalized
to feature a q-fold interaction. In order to do so, however, one needs q distinct
tensors and the resulting model will enjoy a O(N)q(q−1)/2 symmetry. For the case
q = 4, Klebanov and Tarnopolsky [58], basing their work on ideas developed in
[59], showed that it is not necessary to have four distinct fermionic tensors in
order to reproduce the SYK diagrammatics, but just one (an uncolored model in
tensor model terminology) is enough. The resulting action is

Sunc. =

∫
dt

(
i

2
ψabc∂tψ

abc +
λ

N3/2
ψabcψadeψfbeψfdc

)
, (3.3.10)

and the model has a O(N)3 symmetry.

30



3.3.3 Quartic matrix-vector model

A close relative of the aforementioned uncolored tensor model was introduced in
[60] as a model of D U(N) matrices. Such models enjoy a U(N)2×O(D) symmetry
(or U(N)×O(D) in the case of Hermitian matrices) and it is possible to define a
non-trivial scaling of their couplings which leads to a new, well-defined large N ,
large D limit. The limit has several interesting features which will be explored in
detail in Chapter 4, while more details on the properties of this specific model,
which will be referred to as the quartic matrix-vector model, will be given in
Chapter 6. For the moment we will limit ourselves to the definition of a model
that in the large N , large D limit reproduces the diagrammatic structure of the
SYK model, using U(N) matrices as fundamental degrees of freedom. Let us
consider the following Hamiltonian:

H = ND tr

(
mψ†µψµ +

1

2
λ
√
Dψµψ

†
νψµψ

†
ν

)
, (3.3.11)

where the greek indices run from 1 to D. The ψµ and ψ†µ are complex fermionic
N ×N matrices obeying {

ψaµ b,
(
ψ†ν
)c
d

}
=

1

ND
δµνδ

a
dδ
c
b , (3.3.12)

with latin indices running from 1 to N . The trace is taken over the U(N) indices.
Note that we have defined the model’s Hamiltonian with a mass term, just like
we did for the SYK model with complex fermions defined in (3.3.4). We can
always set m = 0 to recover the properties of the SYK model with real fermions.
It should also be stressed that the

√
D factor in front of the quartic interaction

term is crucial for reproducing the melonic structure in the large N , large D limit.
As it will be explained in the following, such an interaction term would produce
subleading diagrams in the large D limit if one were to use the standard scaling
of the coupling constant. From a holographic perspective, the field content of this
model is very similar to the one we encounter in the D-brane constructions which
were presented in Chapter 2. In that context we had D scalar fields in the adjoint
of SU(N), where D parameterized the number of transverse directions to the D-
branes. Moreover, we recognize in the Hamiltonian (3.3.11) a quartic interaction
term which is also present both in N = 4 SYM theory and in D0-brane quantum
mechanics. In those explicit realizations of the gauge/gravity duality, we have
D = 6 and D = 9 respectively. The fact that we have two distinct parameters
N and D is very convenient since, from a holographic point of view, the two
symmetries they are associated to distinct physical properties. While the O(D)
symmetry should be a global symmetry of the theory, associated to the rotation
symmetry of the transverse directions, the U(N) is associated to a local symmetry
of the boundary theory, and should in principle be gauged. It is also important
to stress that in these models the large N and large D do not commute, as it will
be shown in Chapter 4. In order to obtain a well-defined limit, one needs to take
the large N limit first, and then the large D limit. In the holographic picture,
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this corresponds to taking the classical limit of bulk gravity, and then its limit
for a high number of spacetime dimensions. As it was shown by Emparan and
others [61, 62, 63], such a limit of general relativity can be taken in a meaningful
way, capturing many non-trivial features of gravity and in particular of black hole
solutions. On top of the striking similarities, in terms of field content, interactions
and symmetries, to explicit examples of boundary gauge theories, such models also
have the nice feature that their basic degrees of freedom are matrices: they can
have therefore a stringy interpretation and can be used to perform a probe analysis
along the lines of the one sketched in Section 3.1.2, in order to try and reconstruct
the properties of the gravitational bulk dual in a well-defined framework.
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Chapter 4

Diagrammatics and bilocal
structure of melonic models

4.1 SYK diagrammatics

Although the fundamental degrees of freedom of the SYK model are fermionic
U(N) vectors , its diagrammatic structure in the large N limit differs substantially
from that of standard vector models and this is what makes the model interesting
from the holographic point of view. The structural difference from the usual vector
models comes essentially from the random coupling: the fact that is averages
to zero suppresses all diagrams with an odd number of vertices and results in
the melonic structure at N → ∞. To illustrate this, we perform the first two
corrections to the bare propagator of the fermions in perturbation theory. The
fermion two-point function is defined as

G(t) =
1

N
〈Tχm(t)χm(0)〉 . (4.1.1)

In perturbation thory, the first correction it gets is given by

1

N
Jijkl〈χm(t)χm(0)χiχjχkχl(τ)〉 , (4.1.2)

Figure 4.1: The basic graphical unit of the SYK model. The solid lines are
fermions χi, the dotted line is the coupling Jijkl.
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Figure 4.2: The first few corrections to the bare two-point function in the SYK
model.

Figure 4.3: Graphical representation of the Schwinger-Dyson equations for the
SYK model. The solid circle corresponds to the one-particle irreducible self-energy
of the fermions.

but since the random couplings average to zero, it does not contribute. One can
then consider the second order contribution:

1

N

1

2
JijklJi′j′k′l′〈χm(t)χm(0)χiχjχkχl(τ1)χi′χj′χk′χl′(τ2)〉 , (4.1.3)

Taking the average over the disorder gives

1

2

3!λ2

N4
δii′δjj′δkk′δll′〈χm(t)χm(0)χiχjχkχl(τ1)χi′χj′χk′χl′(τ2)〉 . (4.1.4)

It becomes clear that in order to recover the necessary number of factors of N ,
the only allowed Wick contractions are the ones that pair three fermions of the τ1

vertex with the corresponding three fermions with primed indices in τ2 (e.g. i, j, k
paired with i′, j′, k′ respectively). The resulting diagram is the melon depicted
in Figure 4.1, where also the pairing of the vertices in shown with a dashed line.
This structure can be iterated to generate all the leading large N diagrams which
contribute to the propagator, the first few of which are illustrated in Figure 4.2.
The simple structure we showed, results in the summability of the leading large N
diagrams, and therefore allows us to write compact Schwinger-Dyson equations
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for the correlators of the model. For the two-point function defined in (4.1.1),
the result of summing over all melon diagrams can be graphically depicted as in
Figure 4.3, which is equivalent to the following Schwinger-Dyson equations

1

G(ω)
= −iω − Σ(ω), Σ(τ) = λ2 [G(τ)]3 , (4.1.5)

where Σ is the one-particle irreducible self-energy of the fermions. The same
Schwinger-Dyson equation, with slight modifications if we consider models with
a mass term in the Hamiltonian, is shared by all melonic models presented in the
previous chapter, and is at the core of many of the interesting properties they
have in common.

4.2 Large D matrix model diagrammatics

4.2.1 Models

The melonic matrix-vector model defined in Section 3.3.3 belongs to a class of
matrix field theories which can be defined in any number of spacetime dimensions
and which can be models of either bosonic or fermionic matrices. Such models
were presented and studied in [60] and the rest of the section is largely based on
it. For simplicity we will stick to 0+1 dimensions, and bosonic matrices since the
following diagrammatic considerations are not affected by the dimensionality or
the commuting/anticommuting nature of the matrices. We study Lagrangians of
the form

L = ND

(
tr
(
Ẋ†µẊµ +m2X†µXµ

)
−
∑
B

tBIB(X)

)
, (4.2.1)

where the tB are coupling constants and the IB are single-trace interaction terms
of the form

IB = tr
(
Xµ1X

†
µ2
Xµ3 · · ·X†µ2s

)
, (4.2.2)

such that the µi are contracted pairwise to ensure the O(D) symmetry of the
model. For example, the quartic vertex in (3.3.11) is one of the two possible
O(D)-symmetric, single-trace vertices, the other being

I4,1 = tr
(
XµX

†
µXνX

†
ν

)
. (4.2.3)

We will see in the next section that all the following derivations can be generalized
to multi-trace interaction terms.

4.2.2 Genus of a vertex

We can represent graphically each interaction term IB in several different ways.
Three of them, namely the colored, ribbon and stranded graph representations, are
depicted in Figure 4.4. The colored graph (c-graph) associated to an interaction
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Figure 4.4: Colored (left), ribbon (center) and stranded (right) graphs associated
to the two quartic vertices tr

(
XµX

†
µXνX

†
ν

)
(up) and tr

(
XµX

†
νXµX

†
ν

)
(down).

The two vertices have genus zero and one-half respectively.

term IB is obtained in the following way: first we associate to each X (X†) an
unfilled (filled) vertex. Then we associate indices a, b and µ to green, red and
black lines respectively: we connect the vertices with such lines, according to the
index contractions prescribed by the form of IB. It is important to notice that,
while green and red lines can only link unfilled vertices with filled ones, black lines
can connect vertices of the same kind. In other words, the red and the green lines
respect the bipartite structure of the graph, while the black ones do not. One can
easily obtain the ribbon graph (r-graph) from the colored one by choosing a cyclic
clockwise (anticlockwise) ordering of the black, red and green lines around each
unfilled (filled) vertex. The number of faces in the c-graph is determined by the
number of cycles made of lines of alternating color: this is equal to the number of
faces of the r-graph if we twist the ribbon corresponding to a black line connecting
two vertices of the same same type, as shown in Figure 4.4. We can now associate
to each interaction term a quantity g(B) called genus of the interaction B, which
is defined as the genus of the ribbon graph associated to B. Finally, the stranded
graph (s-graph) is simply obtained taking the standard fat graph for the U(N)
indices, and adding an internal line for the O(D) ones.

4.2.3 Standard scaling vs. new scaling

Taking the large N and large D limit in the standard way consists in treating
the model as a matrix model with respect to the U(N) symmetry and as a vector
model with respect to the O(D) symmetry. With a Lagrangian written as in
4.2.1, with a factor of ND in front of it, the standard scaling amounts to keeping
all the couplings tB fixed. In the melonic example (3.3.11) the standard scaling
would be obtained by removing the

√
D factor in front of the quartic coupling.

When this scaling is used the large N and large D limits commute, and only
genus zero interaction terms contribute to the leading order N2D. In particular,
all diagrams containing the interaction term (3.3.11) would be subleading. In
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the standard scaling, this family of models behaves more like vector models than
matrix models: the class of leading diagrams is too small to contain the non-
trivial physics of holographic models. The new scaling consists in keeping λB =
D−g(B)tB fixed instead of tB. This produces an enhancement of the couplings
of interaction terms with g(B) > 1 which in turn results in a larger number of
diagrams contributing at each order in the large N and large D limits. In (3.3.11),
this enhancement corresponds to the

√
D factor in front of the quartic coupling.

Since this enhancement involves only D, the expansion in powers of 1/N for each
physical quantity is the usual one. For example, for the free energy F we have

F =
∑
g∈N

Fg(D)N2−2g , (4.2.4)

where g is as usual associated to the genus of the fat graphs which contribute to
the free energy. Clearly, the coefficients Fg now depend on D and, in fact, they
can be expanded in powers of 1/

√
D in the following way

Fg =
∑
`∈N

Fg, `D
1+g−`/2 . (4.2.5)

It is clear from this expression that a Feynman diagram contributing to the free
energy can be proportional to an arbitrary power of D but, at fixed fat graph
genus g, its power of D cannot exceed D1+g. Hence, when we use the new scaling,
the large N limit must be taken before the large D limit: the two limits do not
commute.

4.2.4 Proof

We will now provide a proof for the expression (4.2.5), in the case of complex
matrices, keeping in mind that these results do not apply just to the free energy,
but can be generalized to connected correlation functions as well. Similarly to the
vertices depicted in Figure 4.4, each vacuum Feynman diagram which contributes
to the free energy can be represented both as an s-graph and as a c-graph. The s-
graph is obtained straighforwardly: the vertices in the s-graph representation are
connected with each other by propagators, represented by two lines for the U(N)
indices and one for the O(D) index which runs through it. The corresponding
c-graph representation is obtained replacing each vertex by its 3-colored c-graph
and by joining each vertex by a line of a new color (violet), representing the
propagators. An example of s-graph and c-graph representations for the same
vacuum diagram is depicted in Figure 4.5. Since propagators always connect X
with X†, the violet lines always respect the bipartite structure of the c-graph.
Now we need to introduce some terminology for the resulting 4-colored graph.
First of all, we denote colors (violet, green, red, black) by numbers (0, 1, 2, 3).
We call a face of colors (i, j), with i 6= j, a closed cycle of alternating colors i
and j. For our 4-colored graphs, the sum of the numbers of (0, 1) and (0, 2) faces
corresponds to the number of closed loops of U(N) indices, while the (0, 3) faces

37



Figure 4.5: Example of vacuum diagram in the c-graph (left) and s-graph (right)
representations.

correspond to loops of O(D) indices. Each Feynman diagram is characterized
by the following quantities in the s-graph: number of U(N) loops f , number of
O(D) loops ϕ, number of propagators p, total number of vertices v and number
of 2s-valent vertices v2s. To the c-graph, instead, we can associate the number of
(i , j)-faces Fij and the number of vertices V . All these quantities satisfy

f = F01 + F02 , ϕ = F03 , V = 2
∑
s

sv2s = 2p . (4.2.6)

Now, the N dependence of a Feynman diagram of a model defined by the La-
grangian (4.2.1) is just the usual matrix model dependence N2−2g where g is the
genus of the fat graph obtained by removing the O(D) lines from the s-graph and
is given by

g = 1 +
1

2
(p− v − f) . (4.2.7)

On the other hand the D dependence, keeping in mind that in the new scaling
each interaction vertex Ba is enhanced by a factor of Dg(Ba), is given by

D−p+v+ϕ+
∑
a g(Ba) . (4.2.8)

Matching (4.2.5) with (4.2.8) gives

` = 4− 3v + 3p− f − 2ϕ− 2
v∑
a=1

g(Ba) . (4.2.9)

Now, in order to show that ` ≥ 0, we proceed in the following way: from the
4-colored graph we remove all lines of color i, obtaining B(i) connected 3-colored
graphs which we name B

(i)
a , with 1 ≤ a ≤ B(i). Just like we did for the graphs

associated to the interaction vertices, we can associate a ribbon graph to each of
these connected components, and therefore a genus g(B

(i)
a ). We can then define

gi =
∑
a

g(B(i)
a ) . (4.2.10)

Similarly, one can remove two colors i and j from the c-graph, obtaining a set of
B(ij) connected 2-colored graphs which we name B

(ij)
a , with 1 ≤ a ≤ B(ij). In

38



terms of these quantities, ` can be rewritten in the following way

`

2
= g1 + g2 +

(
B(01) −B(0) −B(1) + 1

)
+
(
B(02) −B(0) −B(2) + 1

)
. (4.2.11)

Written in this form, it is clear that ` ≥ 0, if we are able to prove that

B(ij) −B(i) −B(j) + 1 ≥ 0 . (4.2.12)

This is actually a general property of the diagrams we encounter in our models.
Let us call B(ij) the graph which is obtained by removing both the i and the j lines
from the original graph, and which has B(ij) connected components. Since erasing
only the j lines from the orginal graph produces B(j) connected components, this
means that redrawing the j-lines in B(ij) should reduce the number of connected
components by at least B(j) − 1.

4.3 More on the new large D limit of matrix

models

This new scaling opens the door to the study of a whole new class of U(N)2×
O(D) (or U(N)× O(D) in the case of Hermitian matrices) matrix models which
was not tractable before. Since this is a completely new developement in the study
of matrix models and it has potentially interesting applications in the context of
holography, it is worth trying to get into the details of the properties of the large D
limit of the models defined in [60] and of generalizations thereof. In [1], which can
be found attached in its entirety in Appendix A, the analysis of [60] is extended
in several ways.

4.3.1 Multi-trace models

One obvious generalization consists in considering models with multi-trace inter-
actions, rather than just the single-trace ones defined in (4.2.2). Once multi-trace
interaction terms are introduced, as well as their stranded and colored graph repre-
sentations along the lines of Figure 4.4; it is necessary to introduce an appropriate
scaling in powers of N and D of the coupling constants in order to obtain a well-
defined large N , large D limit of the model. Such scalings are defined, and it is
proved that they give rise to a well-defined large N , large D limit by counting
the powers of N and D of a generic Feynman diagram contributing to the free
energy of the model. It is moreover shown what kinds of diagrams contribute to
the leading order in that limit.

4.3.2 Models with reduced symmetry

In the framework of tensor models, attempts were made to study models with
reduced symmetry [58, 65, 66]. This amounts to imposing symmetry constraints
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on the tensors, which result in a reduction of the symmetry of the model from
O(N)3 to O(N)2 or even just O(N). However, if one does not impose additional
constraints on the tensors (like a tracelessness condition), it can be shown that
their large N limit cannot be well-defined. A similar problem appears when
one tries to reduce the symmetry of matrix-vector models from U(N)2×O(D) to
U(N)× O(D) by considering Hermitian matrices. While it was shown in [60] that
the planar limit of such models admits a well-defined large D limit, a specific
class of genus one diagrams can be constructed, which is proportional to arbitrary
powers of D, thus spoiling the good behaviour of the large D limit. However,
by imposing the condition of tracelessness to the matrices, this particular class
of diagrams becomes well-behaved, leading us to conjecture that the model with
traceless Hermitian matrices admits a large D limit for each genus of the large N
expansion.

4.3.3 Correlation functions

Since all the proofs and derivations so far, both in the single-trace and multi-trace
cases, involved only Feynman diagrams contributing to the free energy, we now
focus on the N and D power counting for correlation functions. We focus on
connected 2n-point correlators and show how they have well-defined large N and
large D limit, as well as which diagrams contribute to them at leading order.

4.3.4 Model building

The diagrammatic considerations we made so far apply to a large class of matrix-
vector models, whose strongly coupled physics can in principle be accessed with
this new truncation of the planar expansion. These models can be defined in
different numbers of spacetime dimensions, they can be models of fermionic and
bosonic matrices, and there is a large variety of possible interaction terms which
can be studied in this framework. Since the fermionic model defined in (3.3.11)
leads to the same non-trivial properties as the SYK model, it is natural to ask
oneself if also bosonic models can feature such interesting properties. As it turns
out, a careful analysis for the Schwinger-Dyson equations of two bosonic models
shows that such models indeed have crucially different properties with respect
to their fermionic counterparts. A more in-depth analysis of this phenomenon
can be found in [64]. Another natural question is whether the new large D limit
is consistent with supersymmetry. Indeed, one can construct supersymmetric
matrix-vector models with two or four supercharges, but it is not obvious that
supersymmetry is preserved as one takes D to infinity. Interestingly, supersym-
metry is shown to be consistent with the new large D limit. It is also important
to stress that, unlike the supersymmetric version of SYK we defined in (3.3.7) and
(3.3.8), in matrix-vector models the supersymmetry is linearly realized.
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4.4 Bilocal structure

As it was shown in the previous section, three apparently very different classes
of models share a similar diagrammatic structure in a specific limit (N →∞ for
SYK and tensor models, N,D →∞ for O(D) matrix models 1). This ultimately
leads to them describing the same non-trivial physics, as it will be shown in the
next chapter. In this section we will see how the diagrammatic structure of such
models is related to bilocality [67] and how this property sets them apart from
vector models, whose large N behaviour has none of the properties we look for in
holographic models.

4.4.1 An instructive computation

In order to better understand the link between the melonic structure of the leading
diagrams of the aforementioned models and bilocality, we reproduce here a simple
computation that can be performed in the SYK model. If instead of performing
the average over the disorder as it was defined in (3.3.3), we treat the random
couplings Jijkl as quantum variables on the same footing as the fermions χi, the
expectation value of an operator O becomes

〈O〉 = Z−1

∫
DJijklDχiO exp

(
−J2

ijklN
3/12λ2 −

∫
dtL

)
, (4.4.1)

which is a clearly diffrent expression from (3.3.3). In the Condensed Matter liter-
ature, this way of taking the average over the random coupling is called annealed
disorder, in contrast with the quenched disorder which is featured in the SYK
model. In general, these two kinds of disorder lead to very different physics, how-
ever it can be shown that in the large N limit, if we restrict ourselves to the
computation of connected correlation functions, this way of integrating out the
random couplings is equivalent to the quenched one. Using this technique, the
partition function can be computed in the following way:

Z =

∫
DJijklDχiO exp

(
−J2

ijklN
3/12λ2 −

∫
dt

1

2
χiχ̇i − Jijklχiχjχkχl

)
,

(4.4.2)
The Jijkl appear only quadratically and can therefore be integrated out right away,
leaving us with a non-local action for the fermions.

Z =

∫
Dχi exp

(
−
∫
dt

1

2
χiχ̇i −

∫
dt1dt2

λ2

4N3
χiχjχkχl(t1)χiχjχkχl(t2)

)
.

(4.4.3)
This rewriting of the SYK model makes it appearent how its properties are so
different from an ordinary vector model: the fermions are now coupled through a

1It is important to stress that if one considers subleading diagrams, the three kinds of models
have a very different structure. In particular, the SYK model has a much simpler structure than
the other two.
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bi-local octic coupling. One can now use the standard vector model technique of
introducing auxiliary fields G̃ and Σ̃ that allow us to perform the integration over
the fermions, leaving us with

Z =

∫
DG̃DΣ̃ exp

{
N

[
log Pf(∂t − Σ̃)− 1

2

∫
dt1dt2

(
Σ̃(t1, t2)G̃(t1, t2)

− λ2

4
G̃(t1, t2)4

)]} .
(4.4.4)

Notice that since G̃ and Σ̃ do not carry U(N) indices, and there is a factor N
in front of their action, in the N → ∞ limit we can perform the path integral
by setting the two fields to their saddle point values, which we will call G and Σ
respectively. This is done by solving their equations of motion, which turn out to
be the Schwinger-Dyson equations for the two-point function and the self-energy
we derived from diagrammatic considerations at the beginning of the chapter. In
fact, varying the effective action with respect to Σ̃ and G̃ we obtain respectively

1

G(ω)
= −iω − Σ(ω) , Σ(τ) = λ2 [G(τ)]3 . (4.4.5)

It can be shown that analogous rewritings of the partition function in terms of
bilocal fields G̃ and Σ̃ can be used also for the other two classes of models which
share the same Schwinger-Dyson equations as the SYK model, even though in
those cases it cannot be straightforwardly obtained from a path integral compu-
tation as the above one. It is important to stress that if we had had a local action
for the fermions, instead of the one in (4.4.3), we would have ended up with com-
pletely different, and much less interesting, physical properties. This can be easily
shown computing the following partition function

Z =

∫
DχiDχ̄i exp

(
−
∫
dtχ̄i∂tχi +

λ2

4N3
χ̄iχ̄jχ̄kχ̄lχiχjχkχl

)
, (4.4.6)

which is just the local analogue of (4.4.3), and we used complex fermions in order
to have a non-zero interaction term. This model is easily solvable through the
introduction of an auxiliary field φ and a Lagrange multiplier L:

Z =

∫
DχiDχ̄iDφDL exp

(
−
∫
dtχ̄i∂tχi + L(χ̄iχi −Nφ) +

Nλ2

4
φ4

)
. (4.4.7)

Similarly to the non-local case, in the large N limit the auxiliary fields settle to
their saddle point values φ∗ and L∗, which satisfy the following equations

φ∗ = 1−G(0+) , L∗ = λ2φ3
∗ , (4.4.8)

with

G(t) =
1

N
〈χi(t)χ̄i(0)〉 , G(ω) =

1

−iω + L∗
. (4.4.9)
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However now the properties of the model are much more trivial with respect to the
non-local case. In the large N limit, the effect of the interaction term in (4.4.6)
is just to introduce a mass term for the fermions. The resulting effective action
is just that of a fermionic harmonic oscillator, which clearly features none of the
interesting properties (continuous spectrum, quasi-normal behaviour, chaos, etc.)
we look for in a model of holography.
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Chapter 5

Physical properties of melonic
models

5.1 Two-point functions and emergent symme-

try

We have seen that the melonic models we presented in Section 3.3 all share
the same diagrammatic structure in some appropriate limit. Since they are all
defined in 0+1 dimensions and describe fermionic variables, this results in the
zero-temperature Schwinger-Dyson equations for the two-point functions of the
fermions being the same for all three models :

1

G(ω)
= −iω − Σ(ω) , Σ(τ) = λ2 [G(τ)]3 . (5.1.1)

In the strong coupling regime λ|τ | � 1 the −iω term on the right hand side of
the first equation can be neglected, yielding

G(ω)Σ(ω) = −1 , Σ(τ) = λ2 [G(τ)]3 , (5.1.2)

and the two equations can be combined into a single integral equation

λ2

∫
dτ ′G(τ, τ ′)G(τ ′, τ ′′)3 = −δ(τ − τ ′′) . (5.1.3)

This equation is invariant under time reparameterizations in the following sense.
Given a solution of (5.1.3) G(τ) we can always construct another solution G̃(σ)
through a time reparameterization τ → σ(τ):

G̃(σ1, σ2) ≡ G(τ(σ1)− τ(σ2)) |τ ′(σ1)τ ′(σ2)|
1
4 . (5.1.4)

It can be verified, by making use of the relation∫ ∞
−∞

dτeiωτ
sgn(τ)

|τ |∆
= i21−∆

√
π

Γ
(
1− ∆

2

)
Γ
(

1
2

+ ∆
2

) |ω|1−∆sgn(ω) , (5.1.5)
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that the power-law ansatz

G(τ) =
b

|τ | 12
sgn(τ) , (5.1.6)

solves the IR Schwinger-Dyson equation (5.1.2) with b satisfying λ2b4π = 1/4.
From these considerations, we see that melonic models flow to a conformal IR
fixed point, with the fermions aquiring a scaling dimension of 1/4.

From zero to finite temperature

Obtaining the finite temperature IR propagator of the fermions from the zero
temperature one given by (5.1.6) is not trivial. In two-dimensional conformal field
theories, one can exploit the fact that there is only one analytic map from the
cylinder to the plane, namely the exponential function. However in one dimension,
as is the case for the melonic models we are considering, one has an infinite
number of analytic maps from the circle to the line. In the literature [50, 48],
however, the tangent map is chosen to obtain the finite temperature result, with
no justification regarding that choice. We propose instead that a criterion needs
to be found to obtain the correct time reparameterization which can be used
to get the finite temperature result. When we look at (5.1.4), we notice that
the new solution of the IR Schwinger-Dyson equation G̃(σ1, σ2), obtained from
another solution G(t) through a time reparameterization σ(t), is not in general
invariant under translations of the new time coordinate σ. This is however a
necessary requirement for the two-point function of a quantum mechanical model
with a time independent Hamiltonian. Such a requirement restricts the class of
admissible time reparameterizations which can be performed on a given solution
G(τ). In particular, if G(τ) is the power law ansatz (5.1.6), we have:

G̃(σ1, σ2) =
b

|τ(σ1)− τ(σ2)| 12
sgn(τ(σ1)− τ(σ2)) |τ ′(σ1)τ ′(σ2)|

1
4 . (5.1.7)

We want the new solution to be time translation invariant, therefore we impose(
d

dσ1

+
d

dσ2

)
G̃(σ1, σ2) = 0 . (5.1.8)

Combining (5.1.7) and (5.1.8) we obtain a differential equation for τ(σ):

2 (τ ′(σ1)− τ ′(σ2)) = (τ(σ1)− τ(σ2))

(
τ ′′(σ1)

τ ′(σ1)
+
τ ′′(σ2)

τ ′(σ2)

)
. (5.1.9)

We can moreover impose τ(0) = 0, since also the new solution needs to be odd.
The resulting differential equation takes the form

− 2 (τ ′)
2

+ 2aτ ′ + ττ ′′ + bττ ′ = 0 , (5.1.10)
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with a = τ ′(0) and b = τ ′′(0). We can rewrite it in terms of u(τ) ≡ σ̇(τ)−1, where
the dotted notation corresponds to taking the derivative with respect to τ . The
differential equation for u is

u̇− 2
u

τ
= −2

a

τ
− b , (5.1.11)

which is solved by u(τ) = a+ bt+ kt2, with k being an integration constant. This
results in the following expression for σ(τ):

σ(τ) =
2√

4ak − b2
arctan

(
b+ 2kτ√
4ak − b2

)
. (5.1.12)

This solution is consistent with initial conditions σ(0) = 0, σ̇(0) = 1/a and
− (σ̇(0))−3 σ̈(0) = b only if b = 0. This results in the most general form σ(τ) can
take

σ(τ) = k1 arctan (k2τ) , (5.1.13)

where k1 and k2 are arbitrary constants. By imposing time translation invariance
on the transformed correlator, we have obtained a very strict prescription on the
admissible time reparameterizations which can be performed on the power law
solution of the IR Schwinger-Dyson equation. More specifically, there is only one
map from the circle to the line which preserves time translation invariance: the
tangent map. Therefore, in order to obtain the finite temperature IR propagator,
we have to use τ(σ) = tanσπ

β
. By plugging it into (5.1.7), we obtain

Gβ(τ) = b

[
π

β|sinπτ
β
|

] 1
2

sgn(τ) . (5.1.14)

The retarded propagator is obtained from the finite temperature one through
analytic continuation to real time [50]:

Gβ,R(t) ≡ 〈ψ(t)ψ(0) + ψ(0)ψ(t)〉θ(t) = b

[
2π

β sinhπt
β

] 1
2

θ(t) . (5.1.15)

From this expression we get the exponential decay corresponding to the desired
quasi-normal behaviour, and we can read off the frequencies of the quasi-normal
modes ωn = −i2π

β
(n+ 1/4).

From the study of the fermion propagators we have showed already two striking
properties of melonic models:

• an emergent time-reparameterization symmetry which is spontaneously bro-
ken down to SL(2, R) by the power law solution (5.1.6)

• an exponential late-time decay of retarded propagators consistent with quasi-
normal behaviour
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5.2 Low temperature entropy

It is well established that extremal black holes have a finite entropy at zero tem-
perature, which is proportional to the area of the horizon. Such a property should
be shared also by the quantum theory living on the boundary of a spacetime con-
taining such black hole solutions. Since a typical quantum mechanical model is
in its ground state at T = 0, a large finite entropy can only be obtained if a large
number of states becomes indistinguishable from the ground state in the large
N limit. It can be shown that this is indeed the case for melonic models. The
easiest way to do so is by exploiting the generalization of the SYK model with a
q-fermion Hamiltonian defined in (3.3.6). As it was mentioned, in this model we
can take the q → ∞, which is well-defined as long as the following combination
of λ and q is held fixed:

J ≡ √q λ

2
q−1

2

. (5.2.1)

In this limit, many simplifications occur. In particular, the free energy of the
model can be computed as an expansion in powers of 1/q [50]:

− βF

N
=

1

2
ln 2 +

1

q2
α2 +O

(
q−3
)
. (5.2.2)

The coefficient α2 can be in turn expanded in powers of (βJ )−1, giving:

− βF

N
=

1

2
ln 2 +

1

q2

[
βJ − π2

4
+

π2

2βJ
+ · · ·

]
+O

(
q−3
)
. (5.2.3)

By comparing (5.2.3) with the low temperature expansion of the free energy

F = E0 −
S0

β
+O(β−2) , (5.2.4)

we obtain that the entropy at zero temperature is given by

S0

N
=

1

2
ln 2− 1

q2

π2

4
+O

(
q−3
)
. (5.2.5)

This result, which is consistent with finite-q results obtained with other methods
[68, 69], tells us that the SYK model has an entropy of order N at low temperature.

5.3 Four-point functions and chaos

We have already used the simple diagrammatic structure of melonic models to
compute their two-point functions, by exploiting the fact that they can be obtained
through the iteration of the so-called melons. A similar approach can be used to
compute four-point functions [70, 50]. In order to keep the number of indices to
a minimum, we will present the case of the original SYK model, bearing in mind
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Figure 5.1: The first ladder diagrams contributing to the connected piece of the
four point function of melonic models.

Figure 5.2: Graphical representation of the kernel K, acting on the two-rung
ladder diagram.

that the following results apply both to the tensor and matrix melonic models as
well. We will consider the following correlator

F (τ1, τ2, τ3, τ4) =
1

N2
〈T χi(τ1)χi(τ2)χj(τ3)χj(τ4)〉 , (5.3.1)

where summation over repeated indices is assumed. The first two contributions
to its large N expansion are

F (τ1, τ2, τ3, τ4) = G(τ12)G(τ34) +
1

N
F(τ1, τ2, τ3, τ4) + ... . (5.3.2)

The first term is just given by two disconnected dressed propagators, while the
first 1/N correction is given by the ladder diagrams depicted in Figure 5.1. If we
call Fn the ladder diagram with n rungs, we can write

F =
∑
n

Fn . (5.3.3)

Much like the O(1) contribution to the four-point function, F0 is given by a
product of disconnected dressed propagators

F0(τ1, τ2, τ3, τ4) = −G(τ13)G(τ24) +G(τ14)G(τ23) . (5.3.4)

The ladder diagrams with n > 0 can be obtained from F0 by iterating the dia-
grammatic structure depicted in Figure 5.2, in the following way

Fn+1(τ1, τ2, τ3, τ4) =

∫
dτdτ ′K(τ1, τ2, τ, τ

′)Fn(τ, τ ′, τ3, τ4) , (5.3.5)

where the kernel K is given by

K(τ1, τ2, τ3, τ4) = −3λ2G(τ13)G(τ24)G(τ34)2 . (5.3.6)

If we see the integral combination defined in (5.3.5) as a multiplication, F is given
by a geometric series, which can be summed giving

F =
1

1−K
F0 . (5.3.7)
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The problem of computing F translates into the problem of diagonalizing the
kernel K. One therefore needs to find a complete set of eigenfunctions of K which
satisfy the symmetry properties of the four-point function F . This would allow
us to write schematically

F =
∑
h

Ψh
1

1− k(h)

F0 ·Ψh

〈Ψh ·Ψh〉
, (5.3.8)

where the Ψh are functions of two time variables labelled by a number h, such
that

K ·Ψh =

∫
dτdτ ′K(τ1, τ2, τ, τ

′)Ψh(τ, τ
′) = k(h)Ψh(τ1, τ2) . (5.3.9)

In the IR limit, one can exploit the SL(2, R) invariance of the power-law ansatz.
By using the following generators of the SL(2, R) algebra:

D̂ = −τ∂τ −
1

4
P̂ = ∂τ K̂ = τ 2∂τ +

τ

2
, (5.3.10)

one can construct a Casimir operator acting on two times τ1 and τ2:

C1+2 =
(
D̂1 + D̂2

)2 − 1

2

(
K̂1 + K̂2

)(
P̂1 + P̂2

)
− 1

2

(
P̂1 + P̂2

)(
K̂1 + K̂2

)
. (5.3.11)

This Casimir commutes with the kernel K written in terms of the conformal
propagator in the following sense

C1+2K(τ1, τ2, τ3, τ4) = K(τ1, τ2, τ3, τ4)C3+4 . (5.3.12)

The eigenfunctions ofK must therefore also be eigenfunctions of C. Such functions
have the form of conformal three point functions of two fermions with a dimension
h operator:

sgn(τ1 − τ2)

|τ1 − τ0|h|τ2 − τ0|h|τ1 − τ2|
1
2
−h , (5.3.13)

and the corresponding k(h) can be computed directly, yielding

k(h) = −3

2

tanπ(h−1/2)
2

(h− 1/2)
. (5.3.14)

It turns out that the complete set of eigenfunctions respecting the symmetries of
the four-point function corresponds to a specific set of h:

h =
1

2
+ is or h = 2n , (5.3.15)

with s and n being a real number and a positive integer respectively. It can be
immediately checked that k(2) = 1, which makes the expression for the four-
point function (5.3.8) divergent. This should not come as a surprise: in order to

49



obtain the eigenvalues k(h) we used the IR form of the two-point function, which
is valid only for λτ � 0. This divergence can be dealt with by considering the
first correction to the conformal propagator, proportional to the inverse effective
coupling (βλ)−1. This produces a shift of the h = 2 eigenvalue which results
in a contribution to the four-point function proportional to βλ. In the strong
coupling limit this contribution is enhanced with respect to all the contributions
with h 6= 2, and by carefully continuing the four-point function to real time one
can check that this enhanced contribution results in an exponential growth of the
out-of-time-order four-point function, with a Lyapunov exponent which saturates
the chaos bound [50].

5.4 Phase structure of complex melonic models

It was mentioned above that the presence of the mass term in melonic models of
complex fermions leads to a richer phase space of the theory. In this section we
make this statement more precise, following the results of [64]. The Schwinger-
Dyson equation of the SYK model (or equivalently any massless melonic model)
involves the resummation of a perturbative series whose starting point is the free
fermion propagator:

Gfree(t) =
1

2
sgn(t) . (5.4.1)

The perturbative regime corresponds to the limit of very small effective coupling
βλ. It is important to stress that in such a regime, the system is not in the
Fock vacuum as it is customary in perturbation theory. Instead, in that limit the
Hamiltonian of the model vanishes and the system is in a state with entropy S =
N(1/2)ln2. In melonic models with no mass term, βλ is the only dimensionless
coupling of the theory, hence this is the only perturbative regime which can be
defined. However, as we saw in the definition of the complex fermion generalization
of the SYK model and in matrix-vector models, when the degrees of freedom
are complex fermions we can add a mass term to the model. The presence of
another parameter m allows for a second perturbative regime, corresponding to
λ/m� 1 at fixed temperature. This definition of perturbation theory might seem
more natural, since it is done around the Fock vacuum. In the second regime,
the model has qualitatively different properties with respect to the first one: it
behaves like a set of weakly coupled harmonic oscillators and therefore has zero
entropy at T = 0. Since the choice of the perturbative regime does not influence
the diagrammatic structure of the perturbative series of the model, both regimes
result in the Schwinger-Dyson equation for massive melonic models:

1

Gk

= m− iνk + Σk , Σ(t) = λ2G(t)2G(−t) . (5.4.2)

The difference between the two perturbative regimes can be understood by looking
at the finite temperature propagator for a fermionic harmonic oscillator:

Gharm(t) =
em(β−t)

eβm + 1
for 0 < t < β , (5.4.3)
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Figure 5.3: Qualitative sketch of the phase diagram of massive melonic models at
fixed λ. The plain thick line corresponds to the phase transition between the LE
and HE phases. In the region delimited by the dashed lines both the LE and the
HE solutions exist.

with Gharm(t) given by antiperiodicity for −β < t < 0. If one takes the m → 0
limit and then the T → 0 limit, the result is the free massless fermion propagator
at zero temperature, given in (5.4.1). Using this one as the starting point for the
perturbative analysis results in all the properties we reviewed above, including a
finite low temperature entropy. On the other hand, by reversing the order of the
limits one obtains the small mass limit of the zero temperature propagator for a
fermionic hamonic oscillator θ(t)e−mt. It is trivial to check that this form of the
propagator solves the zero temperature limit of the Schwinger-Dyson equations
(5.4.2), since the presence of the θ(t) factor implies Σ(t) = 0. Such a solution
clearly encodes different physics with respect to SYK-like solution, in particular
it will not feature a finite low temperature entropy. The fact that the two limits
do not commute is reflected in the presence of a line of phase transitions when
one continuously changes the mass m while keeping the temperature T fixed. Nu-
merical analysis shows that below a critical temperature Tc, the Schwinger-Dyson
equations can have two distinct solutions. The SYK-like solution corresponding
to a finite low temperature entropy exists for m < mHE(T ), the “high entropy”
(HE) phase. The solution corresponding to weakly coupled harmonic oscillators
exists for m > mLE(T ), the “low entropy” (LE) phase. In particular, we have
mLE(Tc) = mHE(Tc) and mLE(0) = 0. Since mLE(T ) ≤ mHE(T ), there is a mass
interval in which both solutions exist. Within this interval, at a specific value of m
both solutions have the same free energy, resulting in a line of phase transitions
from one phase to the other. Above the critical temperature Tc, instead, only
one solution is found and the system is in the “supercritical” phase. The phase
structure we just described is depicted in Figure 5.3.
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Chapter 6

Quartic matrix-vector models

In the context of melonic models, we mentioned that one can define a model of
matrix-vectors with U(N)2×O(D) symmetry which in the large N , large D limit
reproduces the diagrammatic structure, and therefore the physical properties, of
the SYK model. It was also stressed that such a model is particularly convenient
for the purpose of obtaining information on the gravitational bulk dual, since its
degrees of freedom are analogous to those one encounters in D-brane constructions.
In this chapter we give a more general definition of these matrix-vector models
with quartic interaction terms and we prove that the leading Feynman diagrams in
the large N , large D limit are indeed the aforementioned melons. We also perform
a probe brane analysis along the lines sketched in Section 3.1.2, obtaining a first
non-trivial check on the free energy of the model.

6.1 Definition and properties of the model

Let us consider a model of complex fermionic matrix-vectors with quartic inter-
action terms, defined in 0 + 1 dimensions. The degrees of freedom are O(D)
vectors of N × N matrices (ψµ)ab and (ψ†µ)ab = (ψaµ b)

† satisfying the canonical
anticommutation relations of fermionic creation and annihilation operators:{

ψaµb,
(
ψ†ν
)c
d

}
=

1

ND
δµνδ

a
dδ

c
b . (6.1.1)

There are two possible single-trace quartic interaction terms which are consistent
with the U(N)2×O(D) symmetry of the model1

I4,1 = tr
(
ψ†µψµψ

†
νψν
)
,

I4,2 = tr
(
ψµψ

†
νψµψ

†
ν

)
,

(6.1.2)

1Also a term of the form tr
(
ψµψ

†
µψνψ

†
ν

)
is consistent with the symmetry of the model. Its

c-graph can be obtained from the I4,1 one by exchanging the red and green lines. Since the
diagrammatic structure resulting from adding such an interaction term is essentially the same
as the one associated with I4,1 we will not consider it.
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Figure 6.1: Melonic move associated to the tr
(
XµX

†
νXµX

†
ν

)
interaction term in

the colored graph (top) and stranded graph (bottom) notations.

whose c-graph, r-graph and s-graph representations are depicted in Figure 4.4.
The interaction terms I4,1 and I4,2 have genera zero and one-half respectively,
therefore we choose the following scalings of the coupling constants in the Eu-
clidean action of the model

SN = ND

∫ β

0

dt tr

(
ψ†µψ̇µ +mψ†µψµ +

λ1

2
ψ†µψµψ

†
νψν +

√
D
λ2

2
ψµψ

†
νψµψ

†
ν

)
,

(6.1.3)
where the couplings λ1 and λ2 are held fixed when taking the large N , large D
limits. Note that for full generality, we also included a mass term for the fermions.

6.1.1 Leading diagrams for λ1 = 0

Now we would like to show which diagrams contribute to the model at leading
order in the large N , large D limit. In order to do so we adapt similar proofs
which were obtained for tensor models [59, 58] and in matrix-tensor models [60],
which have in general more complicated diagrammatics than the case we are
considering. We will further simplify things by considering a model with only
the I4,2 interaction term: it will become clear later how to include I4,1. Let us
start from considering the leading vacuum diagrams. We know that any vacuum
diagram is proportional to N2−2gD1+g−`/2, with g being the genus of the ribbon
graph. Therefore, leading diagrams correspond to g = ` = 0. Let us consider
the melonic move shown in Figure 6.1. It is clear that performing such a move
leaves the N and D counting of any diagram unchanged. The genus g of the
stranded graph does not change, resulting in the same power of N . Also, with
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Figure 6.2: Structure of a generic leading diagram.

respect to the diagram on the right, the diagram on the left gets a factor D−4 for
the propagators, a factor D3 for the vertices and a factor D for a loop of O(D)
indices: also the power of D stays the same. Now we want to prove that each
leading vacuum diagram is a melon diagram, in the sense that it is constructed
by iteration of the melonic move. In order to do so we first need to prove a couple
of intermediate results. Earlier, we defined a face of the c-graph as a closed loop
made of lines of two alternating colors i and j. We can now define its length as
the number of 0-lines it is made of. In the case of our model, since the O(D) lines
do not respect the bipartite structure of the c-graphs, (0, 3)-faces can only have
even length. Now, because of (4.2.8), a leading diagram satisfies

− p+ ϕ+
3

2
v = 1 , (6.1.4)

where we have used the fact that in our case we only have one interaction term,
with g(B) = 1/2. Moreover, we can write∑

k

ϕ2k = ϕ and
∑
k

2k ϕ2k = p , (6.1.5)

where ϕ2k is the number of (0, 3)-faces of length 2k. By combining (6.1.4) and
(6.1.5) we obtain

ϕ2 = 2 + 2
∑
k≥2

(
k

2
− 1)ϕ2k , (6.1.6)

which means that each leading diagram has at least two (0, 3)-faces of length
two. This is a crucial result because it implies that a leading diagram must have
the structure depicted in Figure 6.2, where we have also used the fact that the
diagram must be planar from the point of view of the U(N) indices. Now, we can
prove that all leading diagrams are obtained by recursively applying the melonic
move in Figure 6.1 to the vacuum graph depicted in Figure 6.3. This is done by
induction: we just need to show that any leading diagram with v vertices contains
the elementary melon depicted on the left of Figure 6.1. If that is the case, the
melonic move can be performed from left to right to obtain a leading diagram with
fewer vertices, and so on. By looking at the general structure of a leading diagram
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Figure 6.3: Leading vacuum diagram with two vertices.

with v vertices depicted in Figure 6.2 we can immediately notice that if either G1

or G2 are the bare two-point function we obtain the elementary melon. Otherwise,
since we started from a leading graph, also G1 and G2 must be leading graphs. In
fact, if that was not the case, by replacing them with the bare two-point function
we would obtain a diagram with higher powers of N and/or D. But this is not
possible, since we started with a diagram with the highest possible powers of N
and D. Now, G1 and G2 are leading graphs with a strictly smaller number of
vertices than the graph we started from. Hence, by the induction hypothesis they
must contain an elementary melon, thus proving the wanted result.

6.1.2 Including the I4,1 interaction term

As it was announced above, including the I4,1 interaction term in the action does
not change dramatically the physics in the large N , large D limit, and it can be
taken into account without having to consider the diagrammatics. Let us consider
the partition function of the model, given by

Z(m, λ1 , λ2) =

∫
DψDψ† e−SN . (6.1.7)

One can introduce an auxiliary field Φa
b and write an action ŜN which is equivalent

to the action in (6.1.3) on-shell:

ŜN = ND

∫ β

0

dt tr

(
ψ†µψ̇µ +mψ†µψµ + Φψ†µψµ −

1

2λ1

Φ2 +
√
D
λ2

2
ψµψ

†
νψµψ

†
ν

)
.

(6.1.8)
We now have

Z(m, λ1 , λ2) =

∫
DψDψ†DΦ e−ŜN . (6.1.9)

In fact, it is easy to verify that the equation of motion for the auxiliary field is
Φ = λ1ψ

†
µψµ and that by plugging it back into (6.1.8) one gets the original action

(6.1.3). This is a convenient way of rewriting the action because in the large D
limit, since Φ does not carry any O(D) index and its action is proportional to D,
the path integral over the auxiliary field does not need to be performed. Instead,
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Φ settles to its saddle point value Φ∗, given by:

Φa
∗ b = φ∗ δ

a
b = λ1Qδ

a
b , (6.1.10)

where Q is the fermion number, defined as

Q =
1

N

〈
trψ†µψµ

〉
β
. (6.1.11)

At the saddle point, the action can be rewritten as

Ŝ∗N = −N2D
β

2λ1

φ2
∗+ND

∫ β

0

dt tr

(
ψ†µψ̇µ + (m+ φ∗)ψ

†
µψµ +

√
D
λ2

2
ψµψ

†
νψµψ

†
ν

)
,

(6.1.12)
and we have again to integrate only over the fermionic fields ψ and ψ†:

Z(m, λ1 , λ2) =

∫
DψDψ† e−Ŝ∗N . (6.1.13)

Therefore in the large N , large D limit the presence I4,1 results only in the shift
of the mass m by λ1Q. In this sense, the physics of the I4,1 term is analogous to
that of the quartic term in the Gross-Neveu model in the large N limit. From this
analysis it becomes clear how crucial the

√
D factor in front of I4,2 is. Without

it, all diagrams containing such a vertex would be subleading, and only I4,1 would
contribute, leading to physical properties similar to those of vector models.

6.1.3 Two-point functions

Let us now consider the Euclidean two-point function of the fermions at finite
temperature T = 1/β. It is defined as

G(t) ≡ 1

N
〈tr Tψµ(t)ψ†µ〉β =

1

β

∑
k∈Z+1/2

Gke
−iνkt , (6.1.14)

where the νk = 2πk/β are the usual fermionic Matsubara frequencies. The Mat-
subara coefficients Gk satisfy

G−k = G∗k . (6.1.15)

As it was shown above, in the large N , large D limit, the leading diagrams con-
tributing to the two-point function at leading order are obtained by iterating the
melonic move depicted in Figure 6.1. Such diagrams can be summed, and their
sum can be packaged in the following Schwinger-Dyson equation:

1

Gk

= m∗ − iνk + Σk ,

Σk(t) = λ2
2G(t)2G(−t)2 .

(6.1.16)

In these equations we recognise a generalization of the SYK Schwinger-Dyson
equation (4.1.5) to massive complex fermions. The renormalized mass m∗ is given
by:

m∗ = m+ φ∗ = m+ λ1(1−G(0+)) . (6.1.17)
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6.1.4 Writing the free energy in terms of the Matsubara
coefficients Gk

In the SYK model, we showed that in the large N limit it is possible to write
the free energy of the model in terms of the G and Σ which solve the Schwinger-
Dyson equation. This is done through a path integral computation which relies on
the introduction of bilocal auxiliary fields. Such a straightforward computation
cannot be performed in the matrix-vector quartic model, but since it shares the
same diagrammatics with the SYK model, we expect that a similar rewriting of
the free energy in terms of G and Σ should be possible to achieve. The free energy
F of the model is obtained from the partition function through the usual formula

F (m, λ1 , λ2) = −T ln
[
Z(m, λ1 , λ2)

]
= N2DF0(m, λ1 , λ2) , (6.1.18)

where we introduced the notation F0 for the leading contribution to the free
energy in the large N , large D limit. If we turn off the interactions I4,1 and I4,2,
the partition function is just given by N2D fermionic harmonic oscillators:

Z(m, λ1 = λ2 = 0) =
(
1 + e−βm

)N2D
,

F (m, λ1 = λ2 = 0) = −N2DT ln
(
1 + e−βm

)
.

(6.1.19)

As it can be deduced from equations (6.1.12) and (6.1.13), turning on I1
4 only

amounts to shifting the mass m by φ∗ and by multiplying the partition function
by a factor exp(N2Dβ φ2

∗/2λ1). This results in the following expressions for Z and
F :

Z(m, λ1, λ2 = 0) =

[(
1 + e−β(m+φ∗)

)
eβ φ

2
∗/2λ1

]N2D

,

F (m, λ1, λ2 = 0) = −N2D

(
T ln

(
1 + e−β(m+φ∗)

)
+

φ2
∗

2λ1

)
,

(6.1.20)

where φ∗ must satisfy (6.1.10). Note that the fermion number Q is given by

Q =
1

N2D

∂F

∂m
, (6.1.21)

and if we impose φ∗ = λ1Q, it is easy to verify that

∂F

∂φ∗
=
∂Z

∂φ∗
= 0 , (6.1.22)

as it should. Now, in order to obtain the full free energy for λ2 6= 0, we first
compute

∂F

∂λ2

=
ND

3
2

2

〈
trψµψ

†
νψµψ

†
ν

〉
, (6.1.23)

and, since we the effect of I4,1 is under control, at first we focus on the case λ1 = 0.
In imaginary time, we have

ψ̇µ = [H, ψµ] . (6.1.24)
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Since we have [
trψ†νψν , ψµ

]
= − 1

ND
ψµ ,

[trψνψ
†
σψνψ

†
σ, ψµ] =

1

ND

(
2ψνψ

†
µψν −

1

D
ψµ
)
,

we get

ψ̇µ = −
(
m+

λ2

2
√
D

)
ψµ + λ2

√
Dψνψ

†
µψν . (6.1.25)

Therefore we can write

λ2

√
D
〈
tr
(
ψµψ

†
νψµ
)
(t)ψ†ν

〉
=
(
∂t +m

)
〈trψµ(t)ψ†µ〉 , (6.1.26)

where we discarded the λ2/2
√
D term in (6.1.25), which is clearly subleading in

the large D limit. For t > 0, we can finally write

(
∂t +m

)
G(t) = λ2

√
D

N

〈
tr
(
ψµψ

†
νψµ
)
(t)ψ†ν

〉
, (6.1.27)

which results in the following relation:

∂F0

∂λ2

=
1

2λ2

(
∂t +m

)
G(0+) . (6.1.28)

This is the starting point for obtaining an expression for F0 in terms of the Mat-
subara coefficients Gk. Since G(t) is discontinuous at t = 0, one cannot write
G(0+) in terms of the Gk by simply taking the definition (6.1.14) and imposing
t = 0. In fact,

∑
kGk turns out to be divergent. However one can use (6.1.15) to

define the following quantity:

G(t) +G(−t) =
2

β

∑
k∈Z+1/2

ReGke
−iνkt , (6.1.29)

which is continuous at t = 0. Using

G(0+)−G(0−) = 1 , (6.1.30)

which is just the result of the anticommutation relation of the fermions, one
obtains

G(0+) =
1

2
+

1

β

∑
k∈Z+1/2

ReGke
−iνkt . (6.1.31)

The computation of Ġ(0+) requires more care. We have

Ġ(t) = − i
β

∑
k∈Z+1/2

νkGke
−iνkt . (6.1.32)
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The reason why the sum
∑

k νkGk is divergent is that the coefficients Gk tend to
the harmonic oscillator ones for large k. This is related to the discontinuity at
t = 0, since the high frequency behaviour of the two-point function determines its
short time properties. The harmonic oscillator coefficients are given by

G
(0)
k =

1

−iνk +m
=

i

νk
+
m

ν2
k

+O
(
k−3
)
, (6.1.33)

and it is clear how this translates in the divergence of both
∑

kGk and
∑

k νkGk.
We can however introduce the function f(t), such that

f(t) =
1

β

∑
k∈Z+1/2

(
i

νk
+
m

ν2
k

)
e−iνkt . (6.1.34)

Using
1

2
sgn(t) =

1

β

∑
k∈Z+1/2

i

νk
e−iνkt , (6.1.35)

one obtains

f(t) =
1

2
sgn(t)− m

2
t sgn(t) +

mβ

4
. (6.1.36)

If we now consider the difference G(t)− f(t), we can compute the following quan-
tity:

Ġ(t)− ḟ(t) = − i
β

∑
k∈Z+1/2

νk

(
Gk −

i

νk
− m

ν2
k

)
e−iνkt , (6.1.37)

which for t→ 0+ yields an absolutely convergent sum:

Ġ(0+) +
m

2
= − i

β

∑
k∈Z+1/2

(
νkGk − i−

m

νk

)
. (6.1.38)

Since the series is now convergent, we can rearrange the terms as we want, ob-
taining:

Ġ(0+) = −m
2

+
1

β

∑
k∈Z+1/2

(
νkImGk − 1

)
. (6.1.39)

We can now plug (6.1.31) and (6.1.39) into (6.1.28) to obtain:

∂F0

∂λ2

=
1

2λ2

1

β

∑
k∈Z+1/2

(
νkImGk +mReGk − 1

)
=

1

2λ2

1

β

∑
k∈Z+1/2

(
Re

Gk

G
(0)
k

− 1

)
,

(6.1.40)

where in the last line we used the definition of the Matsubara coefficients of the
harmonic oscillator given in (6.1.33). Now we have all the ingredients to proceed
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to the construction of the full expression of F0. First of all we introduce the
following operator:

Ô(t1, t2) = δ(t1 − t2)(∂t2 +m+ φ) + Σ(t1 − t2) , (6.1.41)

which acts on antiperiodic functions. We also introduce the following notations
for operations on bilocal functions

f · g ≡
∫
dt f(t1, t)g(t, t2) ,

Tr f ≡
∫
dt f(t, t) .

(6.1.42)

In Fourier space, the operator Ô acts like a standard multiplication on Matsubara
coefficients: (

Ô · f
)
k

= (−iνk +m+ φ+ Σk)fk . (6.1.43)

As a first step in the construction of F0, we introduce a functional A of bilocal
functions Σ and G such that taking the variation ofA with respect to Σ reproduces
the first equation in (6.1.16). It is given by

A(Σ, G) = ln
Det Ô
Det Ô0

− Tr Σ ·G , (6.1.44)

where we used the operator Ô0 given by

Ô0 = δ(t1 − t2)(∂t2 +m) , (6.1.45)

to regularize the logarithm of the functional determinant of Ô. This necessity
becomes more appearent if we rewrite (6.1.44) in Fourier space:

A(Σ, G) =
∑
k

(
ln

[
1 +

Σk

−iνk +m

]
− ΣkGk

)
. (6.1.46)

Since both Σk and Gk scale like k−1 at large k, the first term in the sum would
diverge without the Det Ô0 at the denominator. It is easy to check that

δΣA(Σ, G) = 0 ⇒ G−1
k = −iνk +m+ Σk , (6.1.47)

as we wanted. Now, in order to obtain a functional whose variation with respect
to G results in the second equation in (6.1.16), we just have to introduce

S(Σ, G) = A(Σ, G) +
λ2

2

4

∫
dt1dt2G(t1, t2)2G(t2, t1)2 . (6.1.48)

We have now constructed a functional whose saddle point equations for Σ and G
reproduce the Schwinger-Dyson equations of our model. On the saddle point, we
have

∂S
∂λ2

=
λ2

2

∫
dt1dt2G(t1, t2)2G(t2, t1)2 =

1

2λ2

Tr Σ ·G , (6.1.49)
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were in the second equality we used the Schwinger-Dyson equation which holds
at the saddle point. In Fourier space:

∂S
∂λ2

=
1

2λ2

∑
k

GkΣk =
1

2λ2

∑
k

(
1−

(
m− iνk

)
Gk

)
=

1

2λ2

∑
k

(
1− Re

Gk

G
(0)
k

)
.

(6.1.50)
By comparison with (6.1.40), we get

∂S
∂λ2

= −β∂F0

∂λ2

. (6.1.51)

Therefore
F0(m, λ1 = 0, λ2) = −TS(m, λ2) + ϕ(m) , (6.1.52)

where the function ϕ is determined by evaluating both F0 and S at λ2 = 0. Since
S(m, λ2 = 0) = 0, we can use (6.1.19) to obtain

ϕ(m) = −T ln
(
1 + e−βm

)
. (6.1.53)

The generalization to λ1 6= 0 is straightforward. Using (6.1.12) and (6.1.13), we
just replace m with m∗ and subtract φ2

∗/2λ1 from F0. The complete result is:

F0(m, λ1, λ2) =− T
{∑

k

(
ln

[
1 +

Σk

−iνk +m+ φ∗

]
− ΣkGk

)
+
λ2

2

4

∫
dt1dt2G(t1, t2)2G(t2, t1)2

+ ln
(
1 + e−β(m+φ)

)
+ β

φ2
∗

2λ1

}
,

(6.1.54)

where both G, Σ and φ∗ correspond to the saddle point values. The equations
they satisfy at the saddle point are summarized below:

G−1
k = −iνk +m+ φ∗+ Σk , Σ(t) = λ2

2G(t)2G(−t) , φ∗ = λ1

(
1−G(0+)

)
.

(6.1.55)
We can use them, together with (6.1.31), (6.1.49) and (6.1.50), to obtain an
expression of F0 which involves only the Matsubara coefficients Gk.

6.2 Probe analysis

In Section 3.1.2, we sketched a procedure called probe brane analysis which can
in principle be carried out for any U(N) gauge theory and which can be used
to extract information on the properties of the gravitational bulk dual of the
boundary theory we are examining. Now that we have at our disposal matrix
models which feature non-trivial properties connected to holography, we can set
up the probe brane analysis for the matrix vector-models we defined above.
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6.2.1 Generalities

The gauge/gravity duality teaches us that in the large N limit there is a correspon-
dence between the background geometry BN generated by a stack of N D-branes
and the U(N) gauge theory that lives on their worldvolume [38, 39, 40]. In par-
ticular, the following relation between the bulk gravitational action Sg evaluated
on BN and the partition function ZN of the boundary gauge theory holds:

e−S
∗
g (N) = ZN , (6.2.1)

where the star notation corresponds to the on-shell gravitational action (i.e. the
action evaluated on BN). Now, if we consider instead a stack of N+1 D-branes, the
same consideration applies, with a slightly modified background BN+1. Therefore
we have

− lnZN+1 = S∗g (N + 1) = S∗g (N) +
∂S∗g (N)

∂N
, (6.2.2)

where to obtain the second equality we used the large N limit. However, we could
have given an alternative description of the same system, namely a probe brane
moving in the background BN generated by the other N branes. If we call S∗p
the on-shell value of the probe action in the gravitational background BN , we can
write

− lnZN+1 = S∗g (N) + S∗p . (6.2.3)

By directly comparing (6.2.2) and (6.2.3), we obtain the following non-trivial
statement

∂S∗g (N)

∂N
= S∗p . (6.2.4)

The depth of such a relation lies in the fact that while S∗g is a bulk quantity,
obtained by evaluating a gravitational action on a specific background; S∗p is a
boundary object, in the sense that it is computed by integrating over the world-
volume (or worldline in the case of probe particles) of the probe. In any U(N)
gauge theory, we can write the large N expansion of lnZN :

lnZN = −
∑
h≥0

N2−2hFh(λ) , (6.2.5)

where λ = 4πgsN is the usual ’t Hooft coupling. Hence, in the N →∞ limit we
have:

S∗g (N) = N2F0(λ) and S∗p =
∂N2F0(λ)

∂N
(6.2.6)

which, when we take into account the explicit N dependence of λ, results in the
following relation:

S∗p = N
(
2F0(λ) + λF ′0(λ)

)
. (6.2.7)

This makes the on-shell probe action an extremely interesting quantity to com-
pute: on the one hand it encodes all the information on the background geometry
the probe moves in. In particular, although as we will see it can be defined purely
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in terms of the boundary gauge theory, one should be able to reconstruct the
extra coordinates of the bulk space from its computation. On the other hand it
is related in a non-trivial way to the planar free energy of the boundary gauge
theory. How the probe brane action can be obtained entirely through a boundary
gauge theory computation can be understood in the following way. The system
composed by the stack of N background branes and the probe brane can be de-
scribed by a path integral over the worldvolume background fields Φb and the
worldvolume probe fields Φp: ∫

DΦbDΦp e
−Ab−Ap , (6.2.8)

where Ab is the low energy worldvolume action on the background branes and
Ap is the action for the probe brane fields, including their interactions with the
background fields. The gauge/gravity correspondence however states that such a
path integral should be equivalent to the following one∫

DΦp e
−Sp , (6.2.9)

where Sp in turn describes the motion of the probe brane in the curved geometry
generated by the background branes. The equivalence between the two descrip-
tions implies that Sp can be obtained by performing the path integral over the
background worldvolume fields in (6.2.8).

6.2.2 A toy example

In order to illustrate how one can construct the probe brane action in a generic
U(N) gauge theory, we review the basic steps of such a procedure in a toy example
[38], namely the same a zero-dimensional model of (N + 1) × (N + 1) matrices
which we introduced in Section 3.1.2. Its action is

SN+1(M) = tr

(
1

2
M2 +

g2

4
M4

)
. (6.2.10)

The probe analysis is carried out by splitting the M matrices:

M =

(
V a
b w̄a

wb v

)
, (6.2.11)

which effectively amounts to distinguishing the probe field v from the background
fields V , w and w̄. This results in a rewriting of the action in terms of the new
degrees of freedom:

SN+1(M)→ SN+1(V, w, w̄, v) = SN(V ) + S1(v) + Ŝ(V, w, w̄, v) , (6.2.12)

with

Ŝ(V, w, w̄, v) = w̄w + g2

(
wV 2w̄ + v2w̄w + vwV w̄ +

1

2
w̄ww̄w

)
. (6.2.13)
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Let us now define the effective action AN for the probe field v in the following
way:

e−AN (v) =
e−S1(v)

ZN(g2)

∫
DVDwDw̄ e−SN (V )−Ŝ(V,w, w̄, v) , (6.2.14)

with

ZN(g2) =

∫
DV e−SN (V ) . (6.2.15)

We will now show that from AN we can obtain a definition of the on-shell probe
action S∗p . First of all, let us address the problem of performing the path integral
over the fundamental and adjoint variables. Although the action for the funda-
mental fields w and w̄ is not quadratic, their path integral can be performed using
a standard vector model technique. We can in fact get rid of the quartic vector
coupling in (6.2.13) by introducing an auxiliary field φ in the following way:

g2

2
w̄ww̄w → φw̄w − 1

2g2
φ2 . (6.2.16)

With the introduction of φ, the action for the fundamentals (6.2.13) becomes:

Ŝ(V, w, w̄, v, φ) = w̄w+φw̄w− 1

2g2
φ2 + g2

(
wV 2w̄+ v2w̄w+ vwV w̄

)
, (6.2.17)

and the definition for the action AN given in (6.2.14) needs to be upgraded to

e−AN (v, φ) =
e−S1(v)

ZN(g2)

∫
DVDwDw̄ e−SN (V )−Ŝ(V,w, w̄, v, φ) . (6.2.18)

This is a crucial point: in the construction of the effective action for the probe
field v, the scalar boson φ arises in a natural way. We will see in the next section
that this happens even if we start from a model which does not contain bosonic
degrees of freedom in the first place. Most importantly, since φ does not carry
U(N) indices and its action turns out to be proportional to N , in the large N
limit its quantum fluctuations are suppressed, making it a good candidate for
an emergent space coordinate. We now need to show the relation between the
effective action AN(v, φ) and the on-shell probe action S∗p we defined earlier.
From our definition of the effective action for the fields v and φ (6.2.14) we have:∫

DvDφ e−AN (v, φ) =
ZN+1(g2)

ZN(g2)
. (6.2.19)

In the large N limit, the path integrals over the scalar fields v and φ can be carried
out via a saddle point approximation. Both fields settle to their on-shell values
v∗ and φ∗ satisfying

∂AN

∂v
=
∂AN

∂φ
= 0 . (6.2.20)
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Moreover, the 1/N expansion of the right hand side of (6.2.19) gives

ln
ZN+1(g2)

ZN(g2)
= ln

ZN+1(λ)

ZN( N
N+1

λ)
= −2NF0(λ)−Nλ∂F0(λ)

∂λ
, (6.2.21)

where we used λ = (N + 1)g2 as ’t Hooft coupling and the large N expansion
of lnZN given in (6.2.5). If we now denote by Sp the leading term in the 1/N
expansion of AN :

AN = Sp +O
(
N0
)
, (6.2.22)

we can write
S∗p = N

(
2F0(λ) + λF ′0(λ)

)
, (6.2.23)

where the starred notation means that Sp is evaluated at the saddle point values
of v and φ. The consistency with (6.2.7) shows that this definition of the on-
shell probe action obtained entirely in terms of the worldvolume gauge theory
matches the on-shell action of a probe moving in the gravitational background of
N branes. There is one important subtlety we did not address in this sketch of
the construction: the gauge-fixing. In our example, before we distinguished the
probe from the N background branes, we had a U(N + 1) gauge theory. After
the separation of the probe and the rewriting of the action in terms of the new
variables, we ended up with a model with reduced symmetry U(N)×U(1). This
should not be seen as a symmetry breaking process, but rather as an equivalent
rewriting of the same model. Therefore, in order to properly define the probe
effective action, a gauge-fixing fixing procedure is needed [72]. More precisely, we
need to partially gauge fix the U(N+1) symmetry down to U(N)×U(1). However,
in the following we will focus on the computation of the on-shell probe action of
the quartic matrix-vector model in the large N , large D limit. Whatever gauge-
fixing term we might add to the action will be subleading in the large D limit
[60], therefore we can ignore this issue for the model under exam.

6.2.3 Probe analysis of the quartic matrix-vector model

We can now directly move on to the probe analysis of the quartic matrix-vector
model. The starting point is the action SN given in (6.1.3). We start from
(N + 1)× (N + 1) complex fermionic matrices Ψµ and Ψ †µ with action SN+1, and
perform the following splitting of the matrices:

Ψµ =

(
ψaµb αaµ
βµb χµ

)
and Ψ †µ =

(
ψ†aµb β†aµ
α†µb χ†µ

)
. (6.2.24)

With respect to the toy example we studied above, we notice immediately one
important difference: we have two distinct kinds of vector fields α and β. This
is related to the fact that the symmetry of our model of complex matrices is
U(N)2×O(D) = U(N)L×U(N)R×O(D): the two kinds of probes α and β trans-
form in the fundamental representation of the two distinct U(N) symmetries. The
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action, written in terms of the new variables takes the form

SN+1(Ψ) = (N + 1)

[
1

N
SN(ψ) + S1(χ) + SN,1(ψ, α, β, χ)

]
, (6.2.25)

where SN,1(ψ, α, β, χ) is given by the kinetic terms for the α and β fields, plus
different kinds of interaction terms:

SN,1(ψ, α, β, χ) =

∫
dt
(
α†µ(∂t +m)αµ + β†µ(∂t +m)βµ + interactions

)
. (6.2.26)

Since the interaction terms are many, and we will have to study them separately,
we group them in the following way:

IA =
λ1

2
α†µαµα

†
ναν ,

IB =
λ2

2

√
D
(
βµψ

†
ναµχ

†
ν + χµα

†
νψµβ

†
ν − 2α†µανχ

†
µχν + 2βµβ

†
νχµχ

†
ν

− χ†µβνψ†µαν − α†νψµβ†µχν
)

+
λ1

2

(
χ†νβnuψ

†
µαµ + α†νψνβ

†
µχµ − 2χµχ

†
νβνβ

†
µ + 2α†µαµχ

†
νχν

+ α†µψµβ
†
νχν + χ†µβµψ

†
ναν

)
,

IC =
1

2

(
λ2

√
D + λ1

)
βµβ

†
νβµβ

†
ν +

λ2

2

√
Dα†µανα

†
µαν ,

ID =
λ1

2
α†µψµψ

†
ναν ,

IE =− λ1 βνψ
†
µψµβ

†
ν ,

IF =λ2

√
D
[
βµψ

†
νψµβ

†
ν − α†µψνψ†µαν

]
.

(6.2.27)

IA-term

This interaction term is a standard quartic vector coupling of the same kind we
encountered in the toy model. Since the U(N) and O(D) indices are contracted
in the same way, the leading diagrams in the large N , large D limit are the same
as in usual U(N) vectors models. We can deal with this interaction term by
introducing an auxiliary field

λ1

2
α†µαµα

†
ναν → ϕα†µαµ −

1

2λ1

ϕ2 . (6.2.28)

This auxiliary field ϕ is analogous to the field φ we introduced in the toy example
described in the previous section. As we had announced in that context, even in
a model without bosons like the quartic matrix-vector model, we end up with a
scalar boson ϕ, which can be interpreted as an emergent bulk coordinate. In the
computation of the on-shell probe brane action, we will need to set ϕ to its saddle
point value ϕ∗, which is given by:

ϕ∗ = λ1〈α†µαµ〉 = λ1Q
(α) . (6.2.29)
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IB-terms

In this context, we are mostly interested in the computation of the effective probe
action for the auxiliary field ϕ, which is obtained by performing the path in-
tegral over the scalar fermions χ and χ†. Such an integration will produce two
kinds of contributions: a functional determinant and interaction terms of the form
(βψ†α)(α†ψβ†). The latter can be easily shown to produce subleading diagrams
in the large N limit and can be discarded. The functional determinant as well,
since it comes from the integration over a variable which does not carry U(N) in-
dices, will only contribute at order N0. In the following, we can therefore neglect
all contributions from the scalars χ and χ†, which include all the IB interaction
terms and the S1(χ) term in (6.2.25)

IC-terms

These are, like the IA-term, quartic interaction terms of the vector fields, but with
different O(D) index contractions. Any diagram containing such vertices will be
subleading in the large N , large D limit. This can be easily checked with the
standard auxiliary field technique:

λ2

2

√
Dα†µανα

†
µαν →

√
D
(
Aµνα

†
µαν −

1

2λ2

AµνAµν

)
. (6.2.30)

In the large N limit, since it does not carry U(N) indices, Aµν settles to its saddle
point value

A∗µν = λ2〈α†µαν〉 = λ2
δµν
D
〈α†µαµ〉 = λ2

δµν
D
Q(α) , (6.2.31)

where Q(α) is the fermionic number of the α fundamentals, and it is a O(1) quan-
tity. By plugging (6.2.31) back into (6.2.30) we get

1√
D

(
Q(α)α†µαµ −

1

2λ2

Q(α) 2
)
, (6.2.32)

which, because of the D−1/2 prefactor, is a subleading term in the large D limit.
An analogous reasoning can be carried out for the quartic term involving the β
fundamentals.

ID-term

This is an interaction term involving both the vectors and the matrices. If we
ignore for a moment the O(D) indices, it is analogous to the matrix-vector coupling
in the Hamiltonian of the IOP model, which was given in (3.2.29). In the large N
limit, therefore, the leading diagrams will be the same as those which contribute to
the two-point function of the fundamentals in the IOP model. Those are obtained
by iterating a family of diagrammatic units of which the first three are shown in
Figure 6.4. If we now consider the D counting, however, it is easy to verify that
the presence of any of those units makes the diagram subleading. With respect
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Figure 6.4: The leading large N graphs coming from the ID-term are obtained by
iterating diagrammatic units of this kind.

to the bare propagator, in fact, the n-th unit has: n vertices, 2n propagators, n
loops of U(N) indices and (n− 1) loops of O(D) indices. This results in a factor
D−1, meaning that in the large N , large D limit, we can discard all diagrams
containing the ID interaction vertex.

IE-term

This is again an IOP-like interaction term, but its O(D) index contractions differ
from those of the ID-term. Clearly, the N power counting is the same, and the
leading large N diagrammatic units are still those of the IOP model. However, as
it can be seen in Figure 6.5, the D power counting turns out to be different from
that of the ID-term. In fact, the n-th unit has: n vertices, 2n propagators, n loops
of U(N) indices and one loop of O(D) indices. This results in a factor of D1−n,
which means that only the first diagrammatic unit contributes at leading order.
In this sense, the contribution of the IE-term plays an analogous role to the I4,1

interaction term for the matrix fields. It is therefore convenient to deal with it
through the introduction of a Lagrange multiplier field Lab and an auxiliary field
Φa
b, in the following way:

− 2λ1βνψ
†
µψµβ

†
ν → trL

(
λ1ψ

†
µψµ − Φ

)
− βµaΦa

bβ
† b
µ . (6.2.33)

Both L and Φ do not carry O(D) indices, therefore in the large D limit we can
replace them by their saddle point values:

Φa
∗ b = λ1

δab
N

〈
trψ†µψµ

〉
= λ1δ

a
bQ

(ψ) , La∗ b = δab
Q(β)

N
, (6.2.34)
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Figure 6.5: The leading large N graphs coming from the IE-term are obtained by
iterating diagrammatic units of this kind.

where Q(β) = 〈β†µβµ〉 is the fermion number for the β fundamentals. At the saddle
point, we therefore have

Q(β)

N
trψ†µψµ − λ1Q

(ψ)Q(β) + λ1Q
(ψ)β†µβµ . (6.2.35)

Note that, since Q(β) is O(1), the mass term for the matrix fields is subleading at
large N .

IF -terms

The last terms have again the IOP structure, with O(D) index contractions which
differ from both the ID- and the IE-terms. The planar diagrams coming from this
interaction term are obtained by iterating units of the kind shown in Figure 6.6.
In terms of powers of D, one can easily verify that the n-th unit has: n vertices,
2n propagators, n loops of U(N) indices, one loop of O(D) indices if n is even,
otherwise no O(D) loops. Taking into account that the coupling is enhanced by
a factor

√
D, we obtain that the only unit which is leading in the large D limit is

the second one, whose iteration produces the well-known melon diagrams.

Final form of the action

After all the previous considerations, we can rewrite the action SN,1(ψ, α, β, χ)
by discarding all the interaction terms which lead to subleading diagrams. Also,
since our goal is testing the fundamental relation (6.2.7) for the on-shell probe
action, we can directly set all the auxiliary fields to their saddle point values and
neglect all contributions from the χ and χ† scalars. This results in the on-shell
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Figure 6.6: The leading large N graphs coming from the IF -terms are obtained
by iterating diagrammatic units of this kind.

action

S∗N,1(ψ, α, β) =

∫
dt

(
α†µ
(
∂t +m+ λ1Q

(α)
)
αµ + β†µ

(
∂t +m+ λ1Q

(ψ)
)
βµ

+ λ2

√
D
[
βµψ

†
νψµβ

†
ν − α†µψνψ†µαν

]
− λ1

2
Q(α) 2 − λ1Q

(ψ)Q(β)

)
.

(6.2.36)

It is worth noting that there is a clear difference between the actions for the
fundamentals α and β. More precisely, the α fields get a dynamically generated
mass term which is proportional to the expectation value of their own number
operator, while in the case of the β fields, the mass shift is proportional to the
number of the ψ fields. This asymmetry should not come as a surprise, and
can in fact be understood by a close examination of the action of the quartic
matrix-vector model we started from. In the c-graph representation of the two
interaction vertices contained in the action, which is depicted in Figure 4.4, one can
immediately see that, while the c-graph for the interaction term I4,2 is symmetric
under the exchange of green and red lines, the same does not hold for the c-graph of
I4,1. Since red and green lines are associated to contractions of U(N)L and U(N)R
indices respectively, we can conclude that the U(N)L and U(N)R symmetries are
not interchangeable in the quartic matrix-vector action we chose to study. Since
the vectors α and β trasform in the fundamental representations of U(N)L and
U(N)R respectively, this is reflected in an asymmetric action for the two kinds of
vector fields.
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6.2.4 Test of the fundamental relation for the on-shell
probe action

We can now move on to a first non-trivial check of the probe analysis, namely the
relation (6.2.7) between the planar free energy of the model and the on-shell probe
brane action. In order to obtain it, we use the definition (6.2.18) and perform the
path integral over the fundamental and adjoint degrees of freedom. This results
in the following expression:

e−A ∗N =
1

ZN

∫
DψDψ†DαDα†βDβ† e−(N+1)

(
1
N
SN (ψ)−S∗N,1(ψ, α, β)

)
. (6.2.37)

Now, the path integral over the fundamentals is Gaussian, and can be performed
directly, yielding

A ∗
N =

〈
Tr ln

(
∂t +m+ λ1Q

(α))− λ2

√
Dψµψ

†
ν

〉
+
〈
Tr ln

(
∂t +m+ λ1Q

(ψ)) + λ2

√
Dψ†µψν

〉
− λ1

2
Q(α)2 − λ1Q

(ψ)Q(β) .

(6.2.38)

However, the two functional determinants involve a complicated sum of correlators
of the ψ matrices. There is an easier way of computing this quantity which relies
on a similar technique to the one used in Section 6.1.4 to compute the free energy of
the model. We proceed by first defining the finite temperature two-point functions
of the vector fields:

G(α)(t) ≡
〈
Tαaµ(t)α†µa

〉
β

=
1

β

∑
k∈Z+1/2

G
(α)
k e−iνkt

G(β)(t) ≡
〈
Tβµa(t)β

†a
µ

〉
β

=
1

β

∑
k∈Z+1/2

G
(β)
k e−iνkt

(6.2.39)

In light of the action (6.2.36) and of the considerations we made on the IF -terms
of the action, we obtain the following Schwinger-Dyson equations:

1

G
(α)
k

= m+ λ1Q
(α) − iνk + Σ

(α)
k , Σ

(α)
k (t) = λ2

2G
(α)(t)G(t)G(−t) , (6.2.40)

and

1

G
(β)
k

= m+ λ1Q
(ψ) − iνk + Σ

(β)
k Σ

(β)
k (t) = λ2

2G
(β)(t)G(t)G(−t) , (6.2.41)

where G(t) is the two-point function of the ψµ matrices, which in turn satisfies
(6.1.16). These Schwinger-Dyson equations are solved by

G
(α)
k = G

(β)
k = Gk ,

Q(α) = Q(β) = Q(ψ) .
(6.2.42)
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As we did for the computation of the free energy, as a first step we turn off the
λ1 coupling. For simplicity, we also start by focusing on only one kind of probe.
The object of interest is of the form exp(−F1 + F2), with

e−F1 =

∫
DψDψ†DβDβ† exp

[
−ND

∫
dt tr

(
ψ†µ(∂t +m)ψµ +

√
D
λa
2
ψµψ

†
νψµψ

†
ν

)
+ β†µ(∂t +m)βµ +

√
Dλbβµψ

†
νψµβ

†
ν

]
(6.2.43)

and

e−F2 =

∫
DψDψ† exp

[
−ND

∫
dt tr

(
ψ†µ(∂t +m)ψµ +

√
D
λa
2
ψµψ

†
νψµψ

†
ν

)
.

(6.2.44)
Now, since in the free energy of the first model the vector fields β always give
subleading contributions with respect to the matrix fields ψ, we can write:

F1

N2D
= F (0)

1 (λa) +N−1F (1)
1 (λa, λb) +O

(
N−2

)
. (6.2.45)

Also, since removing the vector contribution from the first model yields the second
model, we can also conclude that

F (0)
1 (λa) = F (0)

2 (λa) . (6.2.46)

We therefore obtain that the leading term in the large 1/N expansion of the

difference between the two free energies is F (1)
1 (λa, λb). Its computation is carried

out by considering the derivative of F1 with respect to λb in the large N , large D
limit. We obtain:

∂F (1)
1

∂λb
=
√
D
〈
βµψ

†
νψµβ

†
ν

〉
=

1

λb

1

β

∑
k∈Z+1/2

(
Re

G
(β)
k

G
(0)
k

− 1

)
, (6.2.47)

where to obtain the second equality we carried out the same steps that led to
(6.1.40) in Section 6.1.4. Also the following steps of that derivation can be adapted
to this new case, leading to

F (1)
1 (λa, λb) =− T

{∑
k

(
ln

[
1 +

Σ
(β)
k

−iνk +m

]
− Σ

(β)
k G

(β)
k

)
+
λ2
b

2

∫
dt1dt2G

(β)(t1, t2)G(t1, t2)G(β)(t2, t1)G(t2, t1)

+ ln
(
1 + e−βm

)}
. (6.2.48)
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This result is the key ingredient for the computation of the on-shell probe brane
action. By adding an analogous contribution for the α probe, setting λa = λb = λ2

and turning on the λ1 coupling we obtain

S∗p
ND

=−
{∑

k

(
ln

[
1 +

Σ
(β)
k

−iνk +m+ λ1Q(ψ)

]
− Σ

(β)
k G

(β)
k

)

+
∑
k

(
ln

[
1 +

Σ
(α)
k

−iνk +m+ λ1Q(α)

]
− Σ

(α)
k G

(α)
k

)
+
λ2

2

2

∫
dt1dt2G

(β)(t1, t2)G(t1, t2)G(β)(t2, t1)G(t2, t1)

+
λ2

2

2

∫
dt1dt2G

(α)(t1, t2)G(t1, t2)G(α)(t2, t1)G(t2, t1)

+ ln
(
1 + e−β(m+λ1Q(ψ))

)
+ ln

(
1 + e−β(m+λ1Q(α))

)
+ λ1Q

(ψ)Q(β) +
λ1

2
Q(α)2

}
,

(6.2.49)

By using the solutions (6.2.42) of the Schwinger-Dyson equations for G(α)(t) and
G(β)(t), we can rewrite everything in the following way:

S∗p
ND

=−
{

2
∑
k

(
ln

[
1 +

Σk

−iνk +m+ λ1Q(ψ)

]
− ΣkGk

)
+ λ2

2

∫
dt1dt2G(t1, t2)2G(t2, t1)2

+ 2 ln
(
1 + e−β(m+λ1Q(ψ))

)
+

3λ1

2
Q(ψ)2

}
.

(6.2.50)

We now want to compare it with the expression for 2F0 +λ1∂λ1F0 +λ2∂λ2F0, which
can easily be obtained from (6.1.54) and gives

2F0 + λ1∂λ1F0 + λ2∂λ2F0 =−
{

2
∑
k

(
ln

[
1 +

Σk

−iνk +m+ λ1Q(ψ)

]
− ΣkGk

)
+ λ2

2

∫
dt1dt2G(t1, t2)2G(t2, t1)2

+ 2 ln
(
1 + e−β(m+λ1Q(ψ))

)
+

3λ1

2
Q(ψ)2

}
,

(6.2.51)

thus proving the fundamental relation between the on-shell probe brane effective
action and the free energy of the model. This is a first consistency check on the
probe analysis of the quartic matrix-vector model and represents a first step in
the study of the properties of its gravitational bulk dual.
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Part III

Localization in N = 2 SQCD
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Chapter 7

Models and observables

7.1 Introduction

As it was explained in Part I, the first realization of the gauge/gravity corre-
spondence featured four-dimensional N = 4 super Yang-Mills (SYM) theory on
the gauge theory side of the duality. This is a very special model: it is in fact
a superconformal theory, and by virtue of its great amount of symmetry, many
of its observables can be computed exactly, allowing for non-trivial tests of the
AdS/CFT correspondence. Different techniques allow us to perform such compu-
tations, some of which rely on integrability (see [73] for a review) while others, as
we will see, exploit localization techniques. It is a very natural step to try and
consider models with less supersymmetry: on one hand we get closer to realistic
gauge theories like QCD; on the other hand we can obtain more realizations of
the gauge/gravity correspondence. In this respect, an interesting model to study
is N = 2 SYM in four dimensions. The bulk dual of such a theory is more com-
plicated than the one we described in the N = 4 case: in general it involves
the definition of fractional D-branes on orbifolds [74, 75, 76]. Neveretheless, the
gauge/gravity correspondence is established for these models as well, and the
regime of reliability of the classical supergravity solution is well-understood. In
particular, since N = 2 SYM is not in general a conformal theory, there is an
energy scale at which the gauge coupling diverges. This phenomenon has a clear
interpretation in the bulk theory in terms of the geometric locus, the so-called
enhançon, in which probe branes become tensionless. So far we referred exclu-
sively to pure SYM theories, but it is in general possible to couple the pure SU(N)
gauge theory to fundamental matter fields. In particular, if we start from pure
N = 2 SYM with SU(N) gauge symmetry and couple it to Nf massless hyper-
multiplets in the fundamental representation of SU(N), there is a specific limit in
which the model becomes superconformal. This limit corresponds to the follow-
ing relation between the rank of the gauge group and the number of fundamental
hypermultiplets

Nf = 2N . (7.1.1)

75



In the following we will refer to this model as N = 2 superconformal QCD (SC-
QCD). The model is of great interest: the conformal symmetry can be used to
constrain many observables but, since the model has reduced supersymmetry with
respect to N = 4 SYM, observables which are protected in the latter theory re-
ceive non-trivial quantum corrections in N = 2 SCQCD. Moreover, both models
can be studied using the powerful tools offered by supersymmetric localization,
which allows us to compute several observables in both models for any value of the
coupling constant, even taking into account all instanton corrections. This chap-
ter will be devoted to a precise definition of both theories and of the observables
of interest, while in Chapter 8 we will introduce the main ideas of localization and
use them to compute several observables in N = 2 SCQCD.

7.2 N = 4 SYM and N = 2 SCQCD

In Part I, we gave a definition of the four-dimensional N = 4 SYM action which is
obtained from the N = 1 theory in ten dimensions by dimensional reduction. For
the purposes of this section, however, it is more convenient to rewrite it using the
four-dimensional N = 1 superfield formulation. In terms of N = 1 superfields,
the N = 4 vector multiplet can be seen as being composed of an N = 1 vector
multiplet V and three chiral multiplets Φ1, Φ2 and Φ3 which transform in the
adjoint representation of SU(N). The pure gauge N = 4 action is

SN=4 =
1

8g2

(∫
d4xd2θd2θ̄ tr

(
WαWα

)
+ h.c.

)
+ 2

∑
I=1,2,3

∫
d4xd2θd2θ̄ tr

(
e−2gV Φ†Ie

2gV ΦI

)
+
g
√

2

3

3∑
I,J,K=1

[∫
d4xd2θ εIJKtr

(
ΦI [ΦJ ,ΦK ]

)
+ h.c.

]
− 1

4

∫
d4xd2θd2θ̄ tr

(
D̄2V D2V

)
,

(7.2.1)

where Wα is the chiral superfield-strength of V defined by

Wα = −1

4
D̄2
(
e−2gVDαe2gV

)
, (7.2.2)

and the covariant derivatives are given by

Dα = +
∂

∂θα
+ iσµαα̇θ̄

α̇∂µ, D̄α̇ = − ∂

∂θα
− iθασµαα̇∂µ . (7.2.3)

The last term in the action is a gauge-fixing term which corresponds to the choice
of the Fermi-Feynman gauge. Let us now turn to the definition of N = 2 SU(N)
SYM coupled to Nf hypermultiplets in the fundamental representation (in short,
N = 2 SQCD). The N = 2 vector multiplet can be built in terms of N = 1
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superfields as the combination of a vector multiplet V and a chiral multiplet Φ.
The resulting action for pure N = 2 SYM is

Sgauge =
1

8g2

(∫
d4xd2θd2θ̄ tr

(
WαWα

)
+ h.c.

)
+ 2

∫
d4xd2θd2θ̄ tr

(
e−2gV Φ†e2gV Φ

)
− 1

4

∫
d4xd2θd2θ̄ tr

(
D̄2V D2V

)
.

(7.2.4)

We notice immediately that this action is contained in the N = 4 action (7.2.1) if
we use the notation Φ1 = Φ. We call the difference between the two actions SH :

SH = SN=4 − Sgauge =2
∑
I=2,3

∫
d4xd2θd2θ̄ tr

(
e−2gV Φ†Ie

2gV ΦI

)
+
g
√

2

3

3∑
I,J,K=1

[∫
d4xd2θ εIJKtr

(
ΦI [ΦJ ,ΦK ]

)
+ h.c.

]
.

(7.2.5)

We now want to couple the pure gauge N = 2 action to Nf fundamental massless
hypermultiplets. In the language of N = 1 superfields, these correspond to Nf

pairs of chiral multiplets Q and Q̃ transforming in the fundamental and antifun-
damental representations of SU(N) respectively. The complete N = 2 SQCD
action is then obtained by summing the action for the fundamental multiplets to
the pure gauge action (7.2.4):

S
(Nf )
N=2 = Sgauge + SQ , (7.2.6)

with

SQ =

Nf∑
A=1

[ ∫
d4xd2θd2θ̄

(
Q†Ae2gVQA + Q̃Ae−2gV Q̃†A

)
+

(
i
√

2g

∫
d4xd2θ Q̃AΦQA + h.c.

)]
.

(7.2.7)

We collected all the propagators we obtain from action (7.2.6) and all the cubic
vertices contained in actions (7.2.6) and (7.2.1) in Figures 7.1 and 7.2. We
chose to express the actions of both models in terms of N = 1 superfields since
we are interested in the computation of N = 2 SQCD observables, and we will
perform such computations by direct comparison with the corresponding N = 4
observables. Since from (7.2.5) and (7.2.6) we have

S
(Nf )
N=2 = SN=4 + SQ − SH , (7.2.8)

when we want to compute an N = 2 observable A which involves only the fields
contained in Sgauge, it is often convenient to write it as:

A = Â+ AQ − AH , (7.2.9)
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Figure 7.1: The superpropagators in N = 4 SYM and N = 2 SQCD in configu-
ration superspace. The following notations were used: xij = xi−xj, θij = θi− θj,
θ̄ij = θ̄i − θ̄j and ξij = iθiσθ̄j .
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Figure 7.2: The cubic interaction vertices in N = 4 SYM and N = 2 SQCD

where Â is the same observable computed in the N = 4 theory. Of the two
remaining terms, AH is the contribution given by Feynman diagrams in which Φ2

and Φ3 run in the internal lines, while AQ is given by all diagrams with Q and Q̃ in
their internal lines. This is particularly useful when computing BPS observables:
such objects are in fact protected in N = 4 SYM and their expectation values do
not receive quantum corrections. For such observables we can therefore substitute
Â with A0, namely the tree-level result. The N = 2 observables are therefore
computed just by taking

A = A0 + AQ − AH . (7.2.10)

In some of the following computations, we will be interested in observables involv-
ing chiral operators, which are in general composite operators constructed using
the adjoint complex scalar ϕ of the N = 2 vector multiplet. The scalar is the
lowest component of the chiral superfield Φ, given by

ϕ(x) = Φ(x, θ, θ̄)|θ=θ̄=0 = ϕa(x)T a , (7.2.11)

where the T a are the generators of SU(N) and a runs from 1 to (N2− 1). Equiv-
alently, one can construct anti-chiral operators starting from the conjugate scalar

ϕ̄(x) = Φ†(x, θ, θ̄)|θ=θ̄=0 = ϕ̄a(x)T a . (7.2.12)

Given a totally symmetric n-index tensor of SU(N) Rb1...bn
~n , one can associate it

to a gauge invariant chiral operator of dimension n in the following way

O~n (x) = Rb1...bn
~n ϕb1(x) · · ·ϕbn(x) . (7.2.13)
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Alternatively, O~n can be expressed as a multi-trace operator:

O~n (x) = trϕn1(x) · · · trϕnl(x) , (7.2.14)

where the vector of integers ~n = (n1, · · · , nl) satisfies

l∑
k=1

nk = n (7.2.15)

and labels the different chiral operators. By replacing ϕ’s with ϕ̄’s, the corre-
sponding anti-chiral operators are easily obtained. In the special case in which
Nf = 2N , N = 2 SQCD is a superconformal theory: the β-function of the theory
vanishes, and therefore the coupling constant g is not renormalized. In this limit,
the chiral operators become conformal primary operators called chiral primary
operators (CPOs). Their operator product expansions (OPEs) are non-singular
and this results in CPOs being endowed of a ring structure known as the chiral
ring. The scaling dimension of a CPO O~n is fixed to be n at all orders in pertur-
bation theory, and the two point function of a chiral and an anti-chiral operator
with the same scaling dimension is fixed by conformal symmetry and takes the
form 〈

O~n(x1)Ōj
~m(x2)

〉
=

A~n, ~m
(4π2x2

12)n
, (7.2.16)

where A~n, ~m depends on both g and N . As it will be shown in the following, this
quantity can be captured by localization computations.

7.3 Supersymmetric Wilson loops

Wilson loops are typical gauge invariant observables which can be defined in gauge
theories. They were introduced by Wilson to study quark confinement [77] and
carry non-trivial physical information about the model in which they are defined.
In general a Wilson loop in the R representation of the SU(N) gauge group is
defined as the holonomy of the gauge connection Aµ(x) along a closed path C:

W (C) =
1

N
TrRPexp

{
ig

∮
C

dxµAµ(x)

}
(7.3.1)

where the trace is taken in the R representation and P denotes the path order-
ing of the integrals. The same definition can be adapted to open paths and the
resulting objects are referred to as Wilson lines. In QCD Wilson loops contain in-
formation on the potential between a quark-antiquark pair and can be used as an
order parameter in the study of the deconfinement phase transition. In supersym-
metric gauge theories, Wilson loops can be generalized to contain couplings with
the scalars of the vector multiplet, and can preserve a certain fraction of the su-
persymmetry. In N = 4 SYM, for example, one can define the Maldacena-Wilson
loop which contains the six scalars φi(x) of the N = 4 vector multiplet:

W (C) =
1

N
TrRPexp

{
g

∮
C

dτ
[
iAµ(x)ẋµ(τ) + θi(τ)|ẋ(t)|φi(x)

]}
(7.3.2)
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where θi(s) is a unit six-vector which can be associated to a point on S5. The
path C is parameterized by xµ(τ). It was shown by Maldacena [78] that such a
Wilson loop has a counterpart in the holographic dual of N = 4 SYM. Its vacuum
expectation value (VEV) is in fact computed by the area of the worldsheet of a
fundamental string in AdS5×S5. The string worldsheet describes the closed path
C at the boundary of AdS5 and lies on θi(τ) in S5. Depending on the choice of
the path, such a Wilson loop can partially or completely break supersymmetry.
In [79], Zarembo showed that for constant θi, the only path which preserves part
of N = 4 supersymmetry is the straight line. In such a case the Wilson loop
commutes with eight out of sixteen N = 4 supercharges and therefore is a 1/2-
BPS operator. As it was already mentioned, such an operator is protected from
quantum corrections in N = 4 SYM theory, and therefore its VEV corresponds
to the tree-level result

〈W (C)〉line = 1 . (7.3.3)

From the straight line Wilson loop, one can obtain the circular one through a
conformal transformation. Although N = 4 SYM is a conformal theory, due to
quantum anomalies the VEV of the circular Wilson loop is not trivial as in the
case of the straight line [80, 81]. It will in general depend on the coupling g and
on the rank of the gauge group N and, as we will see in the following, it can be
captured by a matrix model computation.

7.3.1 The circular 1/2 BPS Wilson loop in N = 2 SYM

In the rest of the thesis, we will focus on a specific kind of circular Wilson loop,
which can be defined both in N = 4 and in N = 2 SYM theory. It is a circular
loop of radius R whose path can be parameterized in the following way

xµ = R(cos τ, sin τ, 0, 0) . (7.3.4)

In the N = 2 theory we can define it in a similar way as we defined the Maldacena
loop in (7.3.2). The only difference is that, instead of the six N = 4 scalars, it
contains the two N = 2 scalars:

W (C) =
1

N
TrRPexp

{
g

∮
C

dτ
[
iAµ(x)ẋµ(τ) +RθI(τ)φI(x)

]}
, (7.3.5)

with I = 1, 2. The same object can be defined in N = 4 SYM just by taking
the definition (7.3.2) and setting four of the components of θi(τ) to zero. We also
make the choice θI(τ) = δI1 and rewrite it in terms of the chiral and anti-chiral
complex scalars ϕ and ϕ̄ by using the relations

ϕ =
1√
2

(φ1 + iφ2) and ϕ̄ =
1√
2

(φ1 − iφ2) . (7.3.6)

The resulting expression for the Wilson loop is

W (C) =
1

N
TrRPexp

{
g

∮
C

dτ

[
iAµ(x)ẋµ(τ) +

R√
2

(ϕ(x) + ϕ̄(x))

]}
. (7.3.7)
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The possibility of defining the same object in both the N = 2 and the N = 4
theories is particularly convenient because we can follow the reasoning introduced
in Section 7 and obtain perturbative results in N = 2 SQCD by taking the
correspondingN = 4 SYM result and adding the diagrammatic difference between
the Q and H contributions. Although, as it was stated before, such circular loops
in N = 4 SYM are not protected and therefore receive quantum corrections, we
will see in the following that their diagrammatic structure is much simpler than
in the N = 2 case.
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Chapter 8

Localization

8.1 Overview

The basic idea of localization can be traced back to the field of topological quan-
tum field theory [82]: it consists in reducing the infinite-dimensional path integral
of a certain theory to finite-dimensional integrals localized on a finite number of
fixed points, thus allowing for the computation of the partition function and sev-
eral other quantities of interest. In the cases of both N = 4 and N = 2 SYM
defined on S4 the path integrals reduce to matrix model integrals, but while for
the former it is a simple Gaussian model, the latter is characterized by a more
complicated action. The correspondence between the computation of certain ob-
servables in N = 4 SYM and analogous Gaussian matrix model computations had
been first suggested in [80] and [81] in the context of the computation of circu-
lar 1/2-BPS Wilson loops in flat four-dimensional spacetime. They considered a
Wilson-Maldacena loop in the fundamental representation of SU(N), defined on
a circle C of unit radius. Basing their claims on field theoretical considerations
and predictions coming from holographic computations, they conjectured that the
expectation value of W (C), was given by the following matrix model computation

〈W (C)〉 =
1

N

∫
da e−tra2

tr e
g√
2
a∫

da e−tra2 , (8.1.1)

where a is an SU(N) matrix which can be expanded in terms of the SU(N)
generators T b as abT

b, with b running from 1 to (N2−1). The integration measure
da is then given by

da ∝
N2−1∏
b=1

dab . (8.1.2)

In order to understand how one could prove that such a formula does indeed
capture the wanted observable, let us now briefly sketch the basic idea behind
supersymmetric localization [83, 84, 85, 86, 87]. Consider a theory with a set of
fields Φ and an action S[Φ]. If such a theory has a fermionic symmetry generated
by Q, we have that QS = 0 and that Q squares either to zero or to the generator
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of a bosonic symmetry of the action P . If we introduce a fermionic functional of
the fields V [Φ] such that PV = 0, we can always add a term tQV to the action
and compute the following path integral

Z(t) =

∫
DΦ e−S[Φ]−tQV [Φ] . (8.1.3)

If we can show that such an integral does not depend on t, than Z(t) is equal
to the partition function of the theory Z. Indeed, if we take its derivative with
respect to t we obtain

∂tZ(t) = −
∫
DΦQV e−S[Φ]−tQV [Φ] = −

∫
DΦQ

(
V e−S[Φ]−tQV [Φ]

)
= 0 , (8.1.4)

where in the last step we assumed the symmetry generated by Q to be non-
anomalous. The same reasoning would apply if we were to use the deformed action
in (8.1.3) to compute the expectation value of a supersymmetric observable O[Φ]
such that QO = 0. The fact that the path integral (8.1.3) is t-independent has
a crucial consequence: the partition function (or the vacuum expectation value
of O) of the undeformed theory, which corresponds to t = 0, can be computed
by taking the t → ∞ limit. This greatly simplifies the computation since, if the
bosonic part of QV is positive semi-definite, in that limit the path integral reduces
to field configurations which satisfy QV = 0, which we will denote by Φ0. Now,
in order to evaluate the path integral in the t→∞ limit, let us expand the fields
around Φ0 in the following way

Φ = Φ0 + t−1/2δΦ . (8.1.5)

This results in an expansion of the deformed action

S[Φ] + tQV [Φ] = S[Φ0] +
1

2

δ2 (QV [Φ])

δΦ2

∣∣∣∣
Φ=Φ0

δΦ2 +O
(
t−1/2

)
. (8.1.6)

In the t → ∞ limit this results in a Gaussian path integral in terms of the
fluctuations δΦ, which can therefore be integrated out, yielding a one-loop su-
perdeterminant:

Z(t) =

∫
M
DΦ0 e−S[Φ0]

(
SDet

[
δ2 (QV [Φ0])

δΦ2
0

])−1

, (8.1.7)

where the integration is now performed over M, the space of zeros of QV which
is also referred to as the localization locus. The inverse of the superdeterminant
in (8.1.7) will be denoted in the following as Z1−loop.

8.1.1 Super Yang-Mills on S4

These ideas were exploited in [83] to perform computations in N = 4 and N = 2
SYM defined on S4. In this way, both the partition function and the VEV of
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circular Wilson loops were computed by reducing the full path integral to a ma-
trix model integral, thus proving the conjectured expression (8.1.1). Defining the
theory on S4 provides a natural way of regularizing the IR divergencies, which re-
sults in a finite partition function. At the same time, it preserves supersymmetry,
allowing us to apply the localization technique. To perform the localization, the
action is deformed by tQV , where V can be schematically expressed as

V =
∑

fermions Ψ

(QΨ)†Ψ , (8.1.8)

and Q is the localizing supercharge. This choice automatically ensures a semi-
positive definite bosonic part ofQV . Localization is achieved by taking the t→∞
limit, which results in the path integral being non-zero only for field configurations
such that

QΨ = 0 (8.1.9)

for all fermions Ψ. Both for N = 4 SYM and N = 2 SQCD the condition (8.1.9)
is satisfied by setting the gauge vector Aµ to zero and setting the scalars of the
N = 2 vector multiplet to a constant value on S4:

ϕ = ϕ̄ =
a√
2
, (8.1.10)

where a is a constant SU(N) matrix. Moreover, all the bosonic fields in the N = 2
matter hypermultiplets (Nf fundamental hypermultiplets in the case of N = 2
SQCD, one adjoint hypermultiplet in the case of N = 4 SYM) are set to zero. The
path integral effectively reduces to an ordinary integral over the SU(N) matrix a.
We get the action for a by plugging the saddle point field configuration back into
the original action, and by computing the one-loop superdeterminant. In order to
obtain the field configuration (8.1.10), the assumption of smoothness over S4 was
made. If one instead takes into consideration field configurations which are not
smooth everywhere on S4, then also configurations in which the gauge vector takes
a non-zero value at the north and south pole of S4 solve the saddle point equation.
Such configurations correspond to instantons and anti-instantons localized at the
poles, and they give another contribution to the partition function. The final form
of the S4 partition function is therefore:

ZS4 =

∫
da |Zclass(ia, τ)Zone−loop(ia)Zinst(ia, τ)|2 . (8.1.11)

We have introduced the complexified gauge coupling τ defined by

τ =
θ

2π
+ i

4π

g2
(8.1.12)

and distinguished the three contributions coming from the classical action, the
one-loop superdeterminant and instantons. The first contribution is the same for
both the N = 4 and the N = 2 theories and corresponds to a Gaussian term

|Zclass(ia, g)|2 = e
− 8π2

g2
tra2

. (8.1.13)
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In N = 4 SYM both the one-loop superdeterminant and the instanton configura-
tions do not contribute [88], and the partition function is therefore computed by
a Gaussian matrix model:

ZN=4 =

∫
da e

− 8π2

g2
tra2

. (8.1.14)

Instead, in the case of N = 2 SQCD the superdeterminant is non-trivial and is
given by the following expression:

|Zone−loop(ia)|2 =
N∏

u<v=1

H(iauv)
2

N∏
u=1

H(iau)
−Nf with auv ≡ au − av

(8.1.15)
which is written in terms of the N eigenvalues of a, denoted by au. The function
H(x) is a product of Barnes G-functions:

H(x) = G(x+ 1)G(1− x) . (8.1.16)

Also the instanton contribution is non-trivial for N = 2 SQCD and it is given
by Nekrasov’s partition function [89, 90]. However, since in the following we are
going to focus on the perturbative regime of the theory, we can set it to one:

|Zinst(ia, τ)|2 = 1 . (8.1.17)

The H functions appearing in the one-loop partition function can be expanded
for small values of their arguments using

logH(x) = −(1 + γ)x2 −
∞∑
n=2

ζ(2n− 1)
x2n

n
, (8.1.18)

where ζ and γ are the Riemann zeta-function and the Euler-Mascheroni constant
respectively. Using this formula, we can rewrite the one-loop contribution as

|Zone−loop(ia)|2 = e−S(a) , (8.1.19)

with

S(a) = −2
N∑

u<v=1

logH(iauv) +Nf

N∑
u=1

log(iau) = S2(a) + S4(a) + · · · . (8.1.20)

The Sn(a) are homogeneous polynomials in a of even order n, of which we show
the first two

S2(a) =− (1 + γ)

(
N∑

u,v=1

a2
uv −Nf

N∑
u=1

a2
u

)
= −(1 + γ)(2N −Nf )tra

2 ,

S4(a) =
ζ(3)

2

(
N∑

u,v=1

a4
uv −Nf

N∑
u=1

a4
u

)
=
ζ(3)

2

[
(2N −Nf )tra

4 + 6(tra2)2

]
.

(8.1.21)
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Since in the following we will focus on N = 2 SCQCD, we directly set Nf = 2N
in the above expressions, obtaining:

S2(a) = 0 ,

S4(a) = 3ζ(3)(tra2)2 .
(8.1.22)

Rewritten in this way, the one-loop partition function appears as an infinite sum
of interaction terms which deform the Gaussian model, which can be canonically
normalized using the rescaling

a→
(
g2

8π2

) 1
2

a . (8.1.23)

After the rewriting of the one-loop term and the rescaling of a, the full partition
function becomes

ZS4 =

(
g2

8π2

)N2−1
2
∫
da e−tra2−Sint(a) , (8.1.24)

with

Sint(a) =
g2

8π2
S2(a) +

(
g2

8π2

)2

S4(a) + · · · . (8.1.25)

The g-dependent prefactor in (8.1.24) plays no role in the computation of observ-
ables. With the partition function rewritten in this way, one can put the terms
of order g2L in Sint in one-to-one correspondence with the quantum field theory
computations at L loops in perturbation theory. For this reason, the expansion
in powers of g2 of Sint in matrix model computations will also be called a loop
expansion. We can now proceed to the computation of observables in the ma-
trix model. First of all, we normalize the integration measure over SU(N) in the
following way:

da =
N2−1∏
b=1

dab√
2π

, (8.1.26)

In this way the partition function for the free Gaussian model is normalized to
one:

Z0 =

∫
da e−tra2

= 1 . (8.1.27)

With the partition function written as in (8.1.24), we can compute the VEV of
any operator f(a)

〈f(a)〉 =

∫
da e−tra2−Sint(a)f(a)∫
da e−tra2−Sint(a)

(8.1.28)

which can be expanded in powers of g2 in a natural way, if we rewrite it in terms
of VEVs in the Gaussian model:

〈f(a)〉0 =
1

Z0

∫
da e−tra2

f(a) . (8.1.29)
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In the following we will use the notation 〈 · 〉0 to denote expectation values of
operators in the Gaussian model. The VEV of f(a) in the full interacting theory
can therefore be rewritten as

〈f(a)〉 =

〈
f(a)exp(−Sint(a))

〉
0〈

exp(−Sint(a))
〉

0

. (8.1.30)

The perturbative expansion is easily obtained by making use of (8.1.25) to expand
exp(−Sint(a)) in powers of g2. Given this premise, the computation of the wanted
VEVs reduces to Gaussian matrix model calculations, which are performed in
the following way. First, it is convenient to expand the matrix a in terms of the
SU(N) generators as a = abT

b. With our choice of normalization, they satisfy

trT bT c =
δbc

2
, trT b = 0 . (8.1.31)

Moreover, the normalization we chose for Z0, results in the following Wick con-
traction

〈abac〉0 = δbc . (8.1.32)

The computation of VEVs in the interacting matrix model reduces to computing
correlators of n matrices of the following form

tn1,n2,··· =
〈
tran1tran2 · · ·

〉
0
, (8.1.33)

with
∑

p np = n. Using fusion/fission identities

tr
(
T bBT bC

)
=

1

2
trB trC − 1

2N
tr
(
BC
)
,

tr
(
T bC

)
tr
(
T bC

)
=

1

2
tr
(
BC
)
− 1

2N
trB trC ,

(8.1.34)

one can relate any such correlator to a sum of correlators of n− 2 matrices. For
example:

tn =
1

2

n−2∑
m=0

(
tm,n−m−2 −

1

N
tn−2

)
,

tn,n1 =
1

2

n−2∑
m=0

(
tm,n−m−2,n1 −

1

N
tn−2,n1

)
+
n1

2

(
tn+n1−2 −

1

N
tn−1,n1−1

)
.

(8.1.35)

Knowing the first few correlators

t0 =
〈
tr1
〉

0
= N , t1 =

〈
tra
〉

0
= 0 ,

t2 =
〈
tra2

〉
0

= trT bT b =
N2 − 1

2
,

(8.1.36)
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one can recursively construct all correlators with an arbitrary number n of matri-
ces. For example we get:

t2 =
N2 − 1

2
, t2,2 =

N4 − 1

4
, t4 =

(N2 − 1)(2N2 − 3)

4N
,

t6 =
5(N2 − 1)(N4 − 3N2 + 3)

8N2
, t3,3 =

3(N2 − 1)(N2 − 4)

8N
,

t4,2 =
(N2 − 1)(N2 + 3)(2N2 − 3)

8N
, t2,2,2 =

(N4 − 1)(N2 + 3)

8
.

(8.1.37)

8.2 Correlators of chiral operators

In this section we show how the results of localization on S4 can be used to
compute the two-point functions of chiral and anti-chiral operators in N = 2
SCQCD defined on R4. First the localization results are presented, then they are
tested against perturbative field theory computations.

8.2.1 From S4 to R4

The derivation by Pestun shows how to compute the S4 partition function and
expectation values of circular Wilson loops in N = 4 and N = 2 SYM theories,
while it is not immediate to see if more general observables can be extracted from
the localization results. Correlation functions of CPOs can be obtained in the
following way. We start by deforming the action of the model by source terms for
CPOs of the following form

∝
∫
d4xd2θd2θ̄ EτOO + h.c. , (8.2.1)

where E is the chiral density and τO is the complex coupling associated to the CPO
O [91, 92, 93, 94]. By taking the derivative of the deformed partition function
Z(τn, τ̄n̄) with respect to the couplings and making use of a supersymmetric Ward
identity [95], we obtain correlators of CPOs. For example we have

1

Z(τi, τ̄j)
∂τi∂τ̄jZ(τi, τ̄j)

∣∣∣
τi=τ̄j̄=0

=
〈
Oi(N)Ōj(S)

〉
S4 , (8.2.2)

where the two operators are evaluated at the north and south poles of S4. This
deformation of the theory in general breaks conformal invariance, unless the di-
mension of O is two, in which case it is exactly marginal. However, it preserves
supersymmetry and the localization argument can be carried out along the same
lines as the undeformed case. This allows us to compute the deformed partition
function through a matrix model calculation. Let us consider a CPO of the form
defined in (7.2.13):

O~n(x) = Ra1a2...an
~n ϕa1(x)ϕa2(x)...ϕan(x) . (8.2.3)
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We can associate to it a multi-trace operator O~n(a) in the matrix model just by
replacing ϕ(x) with a in (8.2.3). The resulting deformed S4 partition function
is obtained from the undeformed one by multiplying Zclass(ia) in (8.1.11) by the
following factor

exp
(
iτ~nO~n(a)

)
. (8.2.4)

Taking the double derivative and setting the couplings to zero as shown in (8.2.2),
amounts to computing an expectation value in the matrix model:

1

Z(τ~n, τ̄~m)
∂τ~n∂τ̄~mZ(τ~n, τ̄~m)

∣∣∣
τ~n=τ̄~m=0

=
〈
O~n(a)O~m(a)

〉
matrix model

. (8.2.5)

Since we are dealing with superconformal theories, one might naively expect cor-
relators on S4 to be trivially related to the ones computed in R4. However, there
is an important subtlety associated to going from R4 to S4: due to the conformal
anomaly, an operator O∆ of dimension ∆ on S4 has non-vanishing correlators
with operators of lower dimensions. Intuitively this can be understood by noting
that on the sphere, the presence of a dimensionful Ricci scalar R allows operators
of dimensions differing by an even integer to mix. Therefore, an operator O∆ of
dimension ∆ on R4 will in general mix with all operators with dimension ∆− 2n
when it is mapped to S4. Schematically, we can write:

OR4
∆ → O

S4

∆ + α1ROS
4

∆−2 + α2ROS
4

∆−4 + · · · , (8.2.6)

for some constants αi. The fact that on the sphere correlators between operators
of different dimensions do not vanish can be easily seen using the matrix model
expression (8.2.5). If for example we choose the two operators to be tran and tram,
their correlator at tree-level will be tn,m defined in (8.1.35), which is non-vanishing
as long as m and n are both even or both odd integers. In order to reconstruct
the flat space two-point function from the sphere one, it is therefore necessary to
disentangle each operator on the sphere from all the lower-dimensional ones it is
mixed with. In the literature [94, 96, 97, 98] this has been achieved through a
Gram-Schmidt orthogonalization procedure. Let us consider an operator O(a) of
dimension n. We can always define a basis {Op} of operators with dimensions
lower or equal to (n− 2), and the matrix of their correlators

Cpq =
〈
Op(a)Oq(a)

〉
. (8.2.7)

We can now introduce the following normal ordering prescription for operator
O(a)

: O(a) :g= O(a)−
∑
p,q

〈
O(a)Op(a)

〉
CpqOq(a) , (8.2.8)

where Cpq is the inverse of the correlator matrix Cpq. The subscript g is used to
stress the fact that, since the expectation values in equations (8.2.7) and (8.2.8)
are taken in the full interacting theory as it was defined in (8.1.30), this normal
ordering procedure results in an explicit dependence on g in the definition of the
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operator. Note that the normal-ordered operator : O(a) :g is by construction
orthogonal to all operators with dimension lower than n. This includes also the
identity, hence making its one-point function vanish. It is worth noting that this
normal ordering amounts to eliminating all self-contractions when one considers
correlators involving normal ordered operators. As a simple example, one can
consider O(a) = tra2. In this case, the basis {Op} contains only the identity, and
the result of (8.2.8) is just

: tra2 :g= tra2 −
〈
tra2

〉
. (8.2.9)

When performing perturbative checks, as we will do in the following, one has to
consider such an operator order by order in g. In our case we would have

: tra2 :g= tra2 − N2 − 1

2
+ 3ζ(3)

N4 − 1

2

(
g2

8π2

)
+O

(
g6
)
, (8.2.10)

where the term proportional to g4 comes from the S4(a) term in Sint(a), as it was
defined in (8.1.22) and (8.1.25).

8.2.2 Localization results

Now that we have the correct normal ordering prescription for the operators in the
matrix model, we turn to the computation of correlators of operators correspond-
ing to the chiral operators defined in (7.2.13). In the expression for the correlator
(7.2.16) we just substitute ϕ and ϕ̄ with a and perform the normal ordering. The
correlators we want to focus on are of the form

A~n,~m(g) ≡
〈

: O~n(a) :g : O~m(a) :g
〉

=

〈
e−Sint(a) : O~n(a) :g : O~m(a) :g

〉
0〈

e−Sint(a)
〉

0

. (8.2.11)

It should be stressed that in the computation of such a correlator, in the conformal
case Nf = 2N , the first effect of the g-dependence of the normal ordering appears
at order g6. Since we will check the localization results with standard quantum
field theory computations up to two loops, which correspond to order g4, for our
purposes we can use the g-independent normal ordering defined as

: O~n(a) :0= lim
g→0

: O~n(a) :g . (8.2.12)

Note however that in the computation of other observables, like correlators be-
tween chiral operators and Wilson loops, the g-dependence of the normal ordering
is crucial already at two loops [2]. Here we write explicitly the g-independent
normal-ordered operators we will use in the following up to dimension four:

: O(2) : = : tr a2 : = tr a2 − N2 − 1

2
,

: O(3) : = : tr a3 : = tr a3 ,

: O(2,2) : = : (tr a2)2 : = (tr a2)2 − (N2 + 1)tr a2 +
N4 − 1

4
,

: O(4) : = : tr a4 : = tr a4 − 2N2 − 3

N
tr a2 +

(N2 − 1)(2N2 − 3)

4N
.

(8.2.13)
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We can now perform the perturbative expansion ofA~n,~m(g) up to the order g4. The
tree-level term is simply given by the Gaussian model contribution. Considering
the operators are normal-ordered, we get

A~n,~m(g)

∣∣∣∣
tree−level

=
〈

: O~n(a) : : O~m(a) :
〉

0
= n!R~n b1b2···bnR

b1b2···bn
~m . (8.2.14)

At order g2, since S2(a) = 0, we have

A~n,~m(g)

∣∣∣∣
1−loop

= 0 , (8.2.15)

for any choice of the operators. The two-loop result is instead given by

A~n,~m(g)

∣∣∣∣
2−loop

= −
(
g2

8π2

)2〈
: O~n(a) : : O~m(a) : [S4(a)−

〈
S4(a)

〉
0
]

〉
0

. (8.2.16)

By plugging the explicit expressions for the operators up to dimension four given
in (8.2.13) into the tree level and two-loop formulas (8.1) and (8.2.16) we get, up
to O(g6) terms

A(2)(2)(g) =
N2 − 1

2
− 9(N4 − 1)

2
ζ(3)

(
g2

8π2

)2

,

A(3)(3)(g) =
3(N2 − 1)(N2 − 4)

8N
− 27(N2 − 1)(N2 − 4)(N2 + 3)

8N
ζ(3)

(
g2

8π2

)2

,

A(2,2)(2,2)(g) =
N4 − 1

2
− 9(N4 − 1)(N2 + 3)ζ(3)

(
g2

8π2

)2

,

A(4)(4)(g) =
(N2 − 1)(N4 − 6N2 + 18)

4N2

− 3(N2 − 1)(N6 + 2N4 − 18N2 + 81)

N2
ζ(3)

(
g2

8π2

)2

,

A(2,2)(4)(g) =
(N2 − 1)(2N2 − 3)

2N
− 9(N2 − 1)(2N2 − 3)(N2 + 3)

N
ζ(3)

(
g2

8π2

)2

.

(8.2.17)

These results, obtained through simple Gaussian matrix model computations,
will be checked against standard perturbative quantum field theory results in the
following.
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Figure 8.1: The diagram representing the tree-level correlator.

8.2.3 Perturbative checks

In order to make contact with the previous matrix model computations we will
consider two-point functions of chiral operators of the form〈

O~n(x1)Ō~m(x2)
〉

=
A~n,~m

(4π2x2
12)n

. (8.2.18)

Since the coordinate dependence of such a correlator is fixed by conformal invari-
ance, the only thing that remains to be computed is the prefactor A~n,~m, which in
turn should match the localization results. The scalars ϕ and ϕ̄ are respectively
obtained by the superfields Φ and Φ† by setting the Grassmann coordinates to
zero, therefore it is easy to obtain their bare propagator from the ΦΦ† one shown
in Figure 7.1: 〈

ϕa(x1)ϕ̄b(x2)
〉

=
δab

4π2x2
12

. (8.2.19)

From this we can immediately obtain the tree-level contribution to the correlator
(8.2.18), which is given by

〈
O~n(x1)Ō~m(x2)

〉
tree−level

=
n!R~n b1b2···bnR

b1b2···bn
~m

(4π2x2
12)n

, (8.2.20)

where the n! factor accounts for all possible Wick contractions. This tree-level
contribution is represented in Figure 8.1. One realizes immediately that the nu-
merator matches the localization result (8.2.14). Now, if we want to move to the
computation of quantum corrections it is useful to use the trick introduced in
Chapter 7. Therefore, we perform the computations in N = 2 SCQCD by taking
the N = 4 results, adding the contributions for the Nf fundamental hypermul-
tiplets Q and removing the diagrams containing the adjoint hypermultiplets H.
Since in N = 4 the correlators of chiral operators do not receive quantum correc-
tions, all we have to do is sum the Q−H contributions to the tree level result. At
one loop, the Q − H contributions correspond to the one-loop correction to the
scalar propagator depicted in Figure 8.2. It is easy to show that such a correction
is proportional to (Nf − 2N) and therefore vanishes in the conformal case. This
was to be expected, since in the conformal N = 2 theory the β-function vanishes.
The vanishing of the one-loop contribution is in perfect agreement with the lo-
calization result (8.2.15). We can now move on to the two-loop computation. At
order g4 we have three kinds of Q − H diagrams. One, depicted in Figure 8.3,
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Figure 8.2: The diagram representing the one-loop contribution to the correlator
(3.19). The label Q−H in the loop means that this is the difference between the
Q and H contributions.

Figure 8.3: A two-loop subdiagram containing the one-loop correction to the
gauge coupling that vanishes in the superconformal theory with Nf = 2N .

contains the one-loop correction to the three-point coupling. Analogously to the
one-loop correction to the propagator, this diagram is proportional to (Nf − 2N)
and does not contribute in the conformal theory. The other two, on the other
hand, do not vanish. We have a two-loop correction to the propagator, depicted
in Figure 8.4, and a two-loop effective quartic vertex which is shown in Figure
8.5. Hence, the sum of these two contributions gives the two-loop piece of the
two-point function:

〈
O~n(x1)Ō~m(x2)

〉
2−loop

=
A~n,~m

∣∣
2−loop

(4π2x2
12)n

. (8.2.21)

Let us start by computing the first contribution. From Figure 7.1 we see that the
propagators of the superfields running in the internal lines have the same form for
both the Q- and the H-diagrams, therefore the difference between the two must

Figure 8.4: The irreducible two-loop correction to the scalar propagator. The left
diagram describes the loop of the fundamental superfields Q and Q̃, while the
right one accounts for the loop of the adjoint hypermultiplet H.
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Figure 8.5: The two-loop diagrams that can contribute to the two-point function
(3.19). The left diagram refers to the contribution of the fundamental hypermul-
tiplets while the right diagram refers to the adjoint hypermultiplet H.

come entirely from combinatorial and colour factors. We therefore factorize the
Q−H contribution in the following way

− 8g4W2(x12)Cab
2 , (8.2.22)

where the prefactor −8g4 comes from the vertices, and Cab
2 is obtained from the

Feynman rules given in Figure 7.2. It therefore takes the form

Cab
2 = NtrT aT cT bT c − fad4d1f cd1d2f bd2d3f cd3d4

=
N2 + 1

2
δab .

(8.2.23)

The W2(x12) contains all the dependence on the coordinates and it is obtained by
integrating over the superspace variables of the internal lines. This integration
is performed in [98] and can be expressed as a particular limit of the Usyukina-
Davydychev function Φ(2) [105]. It yields

W2(x12) = − 3ζ(3)(
16π2

)2

1(
4π2x2

12

) . (8.2.24)

We proceed in a similar way by writing the contribution due to the diagrams in
Figure 8.5 in the following form

2g4W4(x12)Ca1a2b1b2
4 . (8.2.25)

The color factor Ca1a2b1b2
4 is again obtained from the Feynman rules and gives

Ca1a2b1b2
4 = NtrT a1T b1T a2T b2 − fa1d4d1f b1d1d2fa2d2d3f b2d3d4

= −
(
δa1b1δa2b2 + δa1a2δb1b2 + δa1b2δa2b1

)
.

(8.2.26)

Analogously to the previous case, also for the two-loop effective quartic vertex
the superspace integral on the internal lines reduces to a limit of the Usyukina-
Davydychev function Φ(2) and gives the following result:

W4(x12) =
6ζ(3)(
16π2

)2

1(
4π2x2

12

)2 . (8.2.27)
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We can now combine the two contributions for specific choices of the operators,
obtaining:

A(2)(2)

∣∣
2−loop

=− 9(N4 − 1)

2
ζ(3)

(
g2

8π2

)2

,

A(3)(3)

∣∣
2−loop

=− 27(N2 − 1)(N2 − 4)(N2 + 3)

8N
ζ(3)

(
g2

8π2

)2

,

A(2,2)(2,2)

∣∣
2−loop

=− 9(N4 − 1)(N2 + 3)ζ(3)

(
g2

8π2

)2

,

A(4)(4)

∣∣
2−loop

=− 3(N2 − 1)(N6 + 2N4 − 18N2 + 81)

N2
ζ(3)

(
g2

8π2

)2

,

A(2,2)(4)

∣∣
2−loop

=− 9(N2 − 1)(2N2 − 3)(N2 + 3)

N
ζ(3)

(
g2

8π2

)2

.

(8.2.28)

These results, checked against the localization results (8.2.17), show again perfect
agreement.

8.3 1/2-BPS circular Wilson loops

As it was mentioned above, the first observables computed through supersymmet-
ric localization techniques were circular 1/2-BPS Wilson loops in N = 2 SYM. In
N = 4 SYM, the fact that the VEV of such Wilson loops could be captured by
a Gaussian matrix model had been conjectured before the rigorous proof through
localization by Pestun [80, 81]. The conjecture was motivated by holographic com-
putations [78, 99, 100, 101], and confirmed by perturbative field theory results,
which we review in the following.

8.3.1 Localization results in N = 4 SYM and their inter-
pretation

Using the localization prescription (8.1.10), we obtain that in N = 4 SYM the
VEV of the Maldacena-Wilson loop defined in (7.3.2) is obtained through the
following matrix model computation

〈W (C)〉 =
1

N

∫
da e−tra2

tr e
g√
2
a∫

da e−tra2 =
1

N

〈
tr e

g√
2
a〉

0
. (8.3.1)
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Figure 8.6: An example of rainbow diagram contributing to the expectation value
of the Maldacena-Wilson loop. The thick line represents the Wilson loop, while
the thin straight and wiggly lines represent the scalar and gluon propagators
respectively.

By expanding the exponential we obtain

〈W (C)〉 =
1

N

∞∑
k=0

gk

2
k
2 k!

〈
trak

〉
0

=
1

N

∞∑
k=0

gk

2
k
2 k!

tk . (8.3.2)

This series can be computed with the orthogonal polynomial technique [81] and
yields the following result

〈W (C)〉 = 1 + g2N
2 − 1

8N
+ g4 (N2 − 1)(2N2 − 3)

384N2
+ · · ·

=
1

N
L1
N−1

(
− g2

4

)
exp
[g2

8

(
1− 1

N

)]
,

(8.3.3)

where Lmn is the generalized Laguerre polynomial of degree n. In the large N
limit, we have

〈W (C)〉planar = 1 +
λ

8
+

λ2

192
+ · · ·

=
2√
λ
I1(
√
λ) ,

(8.3.4)

where we have introduced the ’t Hooft coupling λ = g2N and In is the modified
Bessel function of the first kind. In the strong coupling limit we have

〈W (C)〉planar =
e
√
λ

(π/2)1/2λ3/4
, (8.3.5)

which matches the AdS/CFT prediction [100, 101]:

〈W (C)〉AdS/CFT ∼ e
√
λ . (8.3.6)

This result can be captured by a perturbative field theory computation, which
corresponds to the sum over all the planar diagrams with no internal vertices
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Figure 8.7: Any planar rainbow diagram with n+ 1 internal lines can be uniquely
decomposed in a subdiagram with k internal lines and one with n − k internal
lines, separated by one internal line. The thick line represents the Wilson loop,
while the thin line is an internal propagator.

[80]. Such diagrams are referred to as rainbow diagrams in the literature and an
example is depicted in Figure 8.6. Let us start by considering the second term in
the Taylor expansion of the Wilson loop:

g2

N

∫ 2π

0

dτ1

∫ τ1

0

dτ2 tr
[〈
ϕ(x1)ϕ̄(x2)

〉
−
〈
(Aµ(x1)ẋµ(τ1)Aν(x2)ẋν(τ2)

〉]
. (8.3.7)

By substituting the propagators for the gauge vector and the scalars, and taking
the trace over the colour indices, we obtain:

g2(N2 − 1)

8π2N

∫ 2π

0

dτ1

∫ τ1

0

dτ2
1− ẋ(τ1) · ẋ(τ2)

|x(τ1)− x(τ2)|2
=
g2(N2 − 1)

8N
, (8.3.8)

where in the last step we used the fact that, by using the parameterization of
the circle defined in (7.3.4), we obtain a constant integrand. First of all, we
notice immediately that this result is consistent with the expression obtained from
localization (8.3.3). Secondly, it is easy to convince ourselves that if we restrict
ourselves to diagrams with no internal vertices, we will always encounter integrals
of the kind we obtained in (8.3.8). At the planar level, there is a straightforward
way of performing the sum over all such diagrams. First of all, because of the
above considerations, we realize that at te 2n-th order in perturbation theory the
contribution coming from planar rainbow diagrams will be of the form(

λ/4
)n

(2n)!
χn , (8.3.9)

where χn is the number of planar rainbow diagrams with n propagators. The
counting can be done by exploiting the fact that each diagram of this kind always
admits a unique decomposition like the one depicted in Figure 8.7. In terms of
χn this implies

χn+1 =
n∑
k=0

χn−kχk . (8.3.10)

We can now introduce the function f(z) such that

f(z) =
∞∑
n=0

χnz
n . (8.3.11)
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The recursion relation (8.3.10) results in

zf 2(z) = f(z)− 1 , (8.3.12)

which is solved by

f(z) =
1−
√

1− 4z

2z
=
∞∑
n=0

(2n)!

(n+ 1)!n!
zn . (8.3.13)

The sign of the square root is imposed by the condition χ0 = 1. Therefore,
we obtain that the total contribution to the Wilson loop due to planar rainbow
diagrams is given by

〈W (C)〉rainbow =
∞∑
n=0

(λ/4)n

(n+ 1)!n!
=

2√
λ
I1(λ) (8.3.14)

By comparison with (8.3.4), we see that the localization result is matched by the
rainbow diagram contribution: this means that all diagrams with internal vertices
must cancel.

8.3.2 Localization results in N = 2 SCQCD and their in-
terpretation

In N = 2 SCQCD, as one might expect, things get more complicated, both at
the level of the localization results and at the level of perturbative computations.
However, since the results in N = 4 SYM are well established, we can consider
the same Wilson loop in both theories and compute the difference between the
two results, both in the matrix model and in quantum field theory. The Wilson
loop we will consider is the circular 1/2-BPS Wilson loop defined in (7.3.7). In
the perturbative expansion of the localization results, the first term that appears
in the difference between N = 2 and N = 4 is at order g6:

〈
W (C)

〉
N=2
−
〈
W (C)

〉
N=4

= − g6(
8π2
)2

1

4

〈
tra2[S4(a)−

〈
S4(a)

〉
0
]
〉

0

= −g6 3ζ(3)(
8π2
)2

N4 − 1

8N
+O(g8) .

(8.3.15)

In [102], a perturbative quantum field theory test of this contribution was per-
formed. We start by realizing that two particular classes of diagrams always cancel
in the difference between N = 2 and N = 4. We call these classes tree-type dia-
grams and one-loop corrected tree-type diagrams, and an example for both types
is depicted in Figure 8.8. Tree-type diagrams are diagrams which do not contain
any internal loop. These diagrams always vanish in the difference between the
two theories because the fields which appear in the definition of the Wilson loop

99



Figure 8.8: An example of tree-type diagram (left) and of one-loop corrected tree-
type diagram (right).The internal lines can be both scalar or gluon propagators.
Both types of diagrams cancel in the difference between N = 2 and N = 4.

Figure 8.9: The diagram which accounts for the order g6 contribution predicted
by localization.

are the same both for N = 2 and N = 4. From tree-type diagrams we can con-
struct one-loop corrected tree-type diagrams, by performing a one-loop correction
on any of the propagators of the diagrams. As it was explained in the computa-
tion of the difference between the one-loop correction to the scalar propagator in
N = 4 SYM and the one in N = 2 SCQCD is proportional to (Nf − 2N) and
therefore vanishes. The same can be said about the one-loop correction to the
gluon propagator. Since only diagrams belonging to these two classes contribute
to the Wilson loop up to order g4, we can conclude that the first contribution to
the difference between the two theories must appear at higher orders. At order g6,
we already know from our previous considerations a kind of diagram which can
produce the ζ(3) factor predicted by localization. It is the two-loop correction
to the internal scalar or gluon propagator depicted in Figure 8.9. We already
encountered this diagram topology in Section 8.2.3, and from equations (8.2.22),
(8.2.23) and (8.2.24) we can conclude that performing this correction to the scalar
propagator amounts to multiplying the bare propagator by the following factor:

W2 = −g4 3ζ(3)(
8π2
)2 (N2 + 1) . (8.3.16)

By supersymmetry, the same applies to the two-loop correction to the gluon prop-
agator. Therefore the total contribution due to the diagram in Figure 8.9 can be
obtained by taking the O(g2) contribution to the N = 4 Wilson loop which was
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obtained in (8.3.8), and multiplying it by W2. The result is

− g6 3ζ(3)(
8π2
)2

N4 − 1

8N
, (8.3.17)

which means that the localization result is captured by this diagram alone. In
fact, it can be showed that all other diagrams at order g6 either belong to the tree-
type and one-loop corrected tree-type categories, or give no contribution because
of symmetry considerations.

8.4 Correlators between Wilson loop and chiral

operators in N = 2 conformal gauge theories

This section contains a summary of the original results of [2], which can be found
attached in Appendix B. The paper focuses on the computation of one-point
functions of chiral operators in the presence of a 1/2-BPS Wilson loop in N = 2
superconformal SQCD. On one hand, the computation is carried out by generaliz-
ing the localization formulas used for the VEV of Wilson loops and for correlators
of chiral operators to the observables of interest. On the other hand, the localiza-
tion results are checked against direct perturbative QFT computations performed
up to two loops. In the large N limit, a class of Feynman diagrams whose am-
plitude is proportional to ζ(3) is identified and given an interpretation in light of
the localization computations.

8.4.1 Wilson loop and its correlators with chiral operators

The 1/2-BPS circular wilson loop of radius R that will be considered in the paper
is defined as

W (C) =
1

N
trPexp

{
g

∮
C

dτ

[
iAµ(x)ẋµ(τ) +

R√
2

(
ϕ(x) + ϕ̄(x)

)]}
(8.4.1)

Using known results in conformal field theories with defects, the correlator between
the Wilson loop and a chiral operator O−→n of order n is cast in the form

〈W (C)O~n(x)〉 =
A~n

(2π ‖x‖C)n
(8.4.2)

where

‖x‖C =

√
(R2 − x2)2 + 4L2R2

R
(8.4.3)

contains all the dependence on the position of the operator. Since the functional
dependence on x is entirely fixed by conformal symmetry, the only quantity that
remains to be computed is A~n, which is captured by the localization results.
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8.4.2 The matrix model approach

The main result of localization is that the observable of interest can be computed
using the same matrix model used for the correlators of chiral operators defined
in (8.1.24). In this matrix model, the operator corresponding to the Wilson loop
is

W(a) =
1

N
tr exp

(
g√
2
a

)
(8.4.4)

while the chiral operators have to undergo the same g-dependent normal ordering
procedure which was outlined in the case of correlators of chiral operators. It is
important to stress that, while in all previous examples considered in the litera-
ture the g-dependence in the normal ordering did not play any role, in our case
it is actually crucial in order to match the field theory results. Using the afore-
mentioned matrix model technology, correlators of the Wilson loop and normal
ordered chiral operators of the form〈

W(a)Ô~n(a)
〉

(8.4.5)

can be evaluated. The results are shown for the N = 4 and superconformal N = 2
theories, both at finite N and in the planar limit.

8.4.3 Perturbative checks in field theory

The localization results are checked against field theory computations in N = 2
SCQCD defined on R4. This is done, following a strategy already exploited in
[98] and [102], by direct evaluation of the Feynman diagrams that appear in the
difference between the N = 2 and N = 4 theories. At finite N , this difference is
computed up to two loops in perturbation theory and for operators of order n ≤ 4.
All the results match perfectly the corresponding matrix model computations. At
large N , a special class of diagrams containing a particular two-loop structure
is identified. These diagrams, which can appear at arbitrarily high orders in
perturbation theory, are always proportional to ζ(3). Analogously to rainbow
diagrams in the N = 4 theory, their complete resummation can be performed and
can be matched with the ζ(3)-proportional term obtained in the large N limit of
the matrix model, yielding another direct check of the localization results.
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In this paper, we extend the recent analysis of the new largeD limit
of matrix models to the cases where the action contains arbitrary
multi-trace interaction terms as well as to arbitrary correlation
functions.Wediscuss both the cases of complex andHermitianma-
trices, with U(N)2×O(D) and U(N)×O(D) symmetries respectively.
In the latter case, the new large D limit is consistent for planar
diagrams; at higher genera, it crucially requires the tracelessness
condition. For similar reasons, the large N limit of tensor models
with reduced symmetries is typically inconsistent already at lead-
ing order without the tracelessness condition. We also further dis-
cuss some interesting properties of purely bosonic models pointed
out recently and explain that the standard argument predicting a
non-trivial IR behavior in fermionic models à la SYK does not work
for bosonic models. Finally, we explain that the new large D scaling
is consistent with linearly realized supersymmetry.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction and summary

In a series of recent developments, interesting toymodels for quantumblack holes have been built
and studied. The first class of models is based on large N fermionic systems with quenched disorder
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and was proposed by Kitaev [1], building on previous studies in the condensed matter literature by
Sachdev, Ye and others [2]. The second class of models is based on large N tensor theories and were
first proposed by Witten in [3], building on the tensor model technology developed by Gurau and
collaborators [4]. There is a rapidly growing literature on this subject, see e.g. [5–7]. These models
are able to capture very non-trivial properties of black holes, including the quasi-normal behavior
and chaos [8]. The advantage of the tensor models over models with quenched disorder is that they
are genuine quantum theories at finite N; in particular, there is no need to limit the investigations to
self-averaging quantities.

Both models with quenched disorder and tensors remain, however, rather exotic. String theory,
via the open/closed string duality, singles out unambiguously matrix models in the ’t Hooft’s large N
limit as being the favored candidates to describe quantum black holes. Matrix models are ubiquitous
in string theory simply because the two indices of the matrices are the Chan-Paton factors associated
with the two end points of open strings. It is very difficult to find a similar interpretation for tensors
of rank three or higher.

The models originating from D-brane constructions always involve several bosonic matrices Xµ,
1 ≤ µ ≤ D, which describe motion transverse to the brane worldvolume. The index µ naturally
transforms in the fundamental representation of O(D), which is the rotation group in the directions
orthogonal to the branes. The full symmetry is usually U(N)×O(D), the U(N) part being gauged. These
models must be studied in the planar N → ∞ limit and superficially seem to be much more difficult
to solve than models with quenched disorder or tensors.

Recently, itwas shown in [9] that the above-mentioned largeN , O(D)-invariantmatrixmodels have
a new large D limit which is both analytically tractable and captures the essential physics associated
with the sum over planar diagrams. The limit is ‘‘new’’ in the sense that it does not coincide with the
well-known large D limit of O(D)-invariant vector models because, crucially, the large D scaling of
some coupling constants is enhanced.1 This implies that many more Feynman diagrams contribute
at large D than what one would find in a vector model and the result yields the expected continuous
spectrumof states and chaotic behavior. As explained in [9], the new largeD limit could also be related
to the large space–time dimension limit of general relativity studied in [11].

The consistency of the new large D limit is ensured by remarkable and unexpected constraints the
genus of a Feynman diagram puts on the highest possible power of D the diagram can be proportional
to. The technology involved to prove some of these results is directly imported from the tensor model
literature [12], which may not be surprising since our matrices are objects with three indices Xa

µ b.
However, there are important differences, both conceptual and technical, with the tensor models.
The fact that the matrix indices a, b on the one hand and µ on the other hand transform with respect
to different groups is conceptually fundamental, since the group associated with the matrix indices
must always be gauged in string theory. Moreover, the large D expansion does not coincide with the
large N expansion of tensor models, because it is made at fixed genus. In particular, the large N and
large D limits do not commute, the large N limit must always be taken first.

The purpose of the present note is to complement the analysis of [9], both at the technical level
and on the possible applications of the models. First, we generalize the discussion to arbitrary multi-
trace interaction terms and to arbitrary multiply-connected interaction bubbles.2 Multi-trace terms
have been shown to be important in holographic contexts [13], but the analogue of this useful
generalization does not seem to have been studied before in the context of tensor models. The results
we obtain also play a role in the new large N and large D limits for general matrix–tensor models
studied in [14].3 We also discuss the general structure of the large N and large D expansions of
arbitrary correlation functions. We emphasize the special features of models with reduced symmetry
U(N) × O(D) instead of U(N)2 × O(D). The large D limit remains well-defined for planar diagrams.
However, without any further constraint on thematrices, it is inconsistent at higher genera; similarly,
models involving symmetrized tensors, proposed recently in the literature [15,16], do not have a

1 For the use of the standard large D limit with no enhancement in the context of matrix models, see for example [10].
2 See below for definitions.
3 The results of the present note relevant for [14] were obtained before the development of the general theory presented

in [14].
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consistent large N limit. Interestingly, when the tracelessness condition is added on the matrices
and/or the tensors, the basic obstructions to the existence of the limits are waived. Finally, we
emphasize that our results apply to a very wide and interesting class of matrix theories in space–
time dimensions 0 ≤ d ≤ 3. In particular, the new large D scaling of coupling constants is consistent
with ordinary linearly realized supersymmetry.We also explain some crucial differences between the
well-studied fermionic models à la SYK and bosonic models, giving more details on some properties
first pointed out in [17].

2. Definition of the models

Our models are O(D)-invariant matrix theories. The basic variables are complex or Hermitian
matrices Xµ transforming in the fundamental representation of O(D). When we deal explicitly with
complex matrices, we always assume that the models are also invariant under a U(N)L × U(N)R
symmetry acting as Xµ ↦→ ULXµU−1

R . In the purely Hermitian case, this symmetry is reduced down to a
single U(N) factor and thematrices transform in the adjoint representation. Thematrices Xµmay carry
additional ‘‘flavor’’ labels, may be bosonic or fermionic and may live in various number of space–time
dimensions. This additional information is irrelevant for our purposes.

For many applications, it is important to gauge the U(N) symmetries of the models, whereas the
O(D) symmetry is ungauged. The explicit gauging can be straightforwardly performed and does not
change our discussion in any non-trivial way, so we shall not mention it any further in the following.
Note that, in the leading large N and large D approximations, the gauging is altogether irrelevant.

Our results can be straightforwardly generalized to other types of symmetries and matrix ensem-
bles. For example, a special case of our analysis corresponds tomodels invariant under U(D) instead of
O(D); similar methods can be applied to models of real matrices with orthogonal or symplectic gauge
symmetries and O(D) vector symmetry, etc. A completely general formalism is described in [14].

The Lagrangian of the models are of the form

L = ND
(
Kinetic Term −

∑
a

N1−t(Ba)τaIBa (X)
)
. (2.1)

The kinetic term is tr XµDX†
µ for some wave operator D that does not act on the U(N) or O(D) indices.

The IBa (X) are O(D) invariant t(Ba)-trace interaction terms, labeled by Ba, with associated ’t Hooft’s
coupling constants τa. They can be written as

IBa (X) =

t(Ba)∏
i=1

tr
(
Xµ1,iX

†
µ2,i

· · · Xµ2ri−1,iX
†
µ2ri,i

)
, (2.2)

where the O(D) indices are contracted pairwise and summed over. In particular, the degree of an
interaction vertex, which is the number of matrices X and X† entering in (2.2), is always even. Note
that the models studied in [9] correspond to single-trace interactions t(Ba) = 1.

3. Vertices and graphs

As in [9], we use two graphical representations for each interaction vertex Ba: the standard
stranded fat graph representation and the three-colored bubble graph representation. We shall often
denote by Ba either the interaction term itself or the associated three-colored graph. Our detailed
conventions are exactly the same as in [9] and we shall not repeat them here. Simply note that the
colors (green, red, black) are also denoted by (1, 2, 3). To any interaction vertex Ba, we assign: the
number of connected components c(Ba) of the bubble; the number of traces t(Ba), which is also the
number of (12)-faces of the associated bubble, t(Ba) = F12(Ba) and the genus g(Ba) of the interaction,
given by Euler’s formula in terms of the total number of faces F (Ba) = F12(Ba)+ F13(Ba)+ F23(Ba) and
vertices V (Ba) of the bubble, 2c(Ba)−2g(Ba) = F (Ba)− 1

2V (Ba). A typical interaction term is depicted
in Fig. 1. When an interaction vertex has several connected components, as it is the case in the figure,
we insert it in a dashed rectangular box to emphasize the fact that it represents a unique Feynman
diagram vertex.
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Fig. 1. Fat graph and colored graph for the interaction vertex tr XµX†
ν tr XµX†

ρ XνX
†
ρ tr XσX†

σ , with c = 2, t = 3 and g = 1/2.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Similar to the interaction vertices, the Feynman diagrams can also be represented either by a
stranded graph or by a four-colored graph. The colored Feynman graphs are obtained by representing
the propagators as lines of a new color, say violet (or 0). In the case of complex matrix models, the fat
graph propagators are oriented, say from X† to X and this implies that the violet lines of the colored
graph respect the bipartite structure of the graph (i.e. they join vertices of different types). In the case
of Hermitianmatrices, the fat graph propagators are no longer oriented and thus in general, the violet
lines of the colored graph do not respect the bipartite structure. However, as explained in [9], if the
fat graph is planar, then it is always possible to assume that they do respect the bipartite structure.4
This is a crucial property that allows one to extend the results obtained in the complex case to the
planar Hermitian case.

4. The large N and large D limits

To define the large N and large D limits of our models, we introduce new couplings λa, related to
the couplings τa appearing in the Lagrangian (2.1) by

τa = Dt(Ba)−c(Ba)+g(Ba)λa , (4.1)

and we decide to keep λa fixed. The large N limit defined this way is the usual ’t Hooft’s limit, suitably
generalized to the case of multi-trace interactions; note in particular that both τa and λa are fixed at
large N but finite D. The large D limit has the enhancement factor Dg(Ba) with respect to the standard
vectormodel largeD scaling, as in [9], together with a new additional factorDt(Ba)−c(Ba) that takes into
account both themulti-trace structure and the fact that the interaction bubbles may be disconnected.
In this section, we show that the free energy has well-defined large N and large D limits with the
scalings (4.1). This result extends to correlation functions, whose study is postponed to Section 5.

Let us consider an arbitrary vacuum Feynman diagram. We denote by p, v, f and ϕ the number
of propagators, vertices, U(N) and O(D) faces, respectively. With the Lagrangian (2.1) and the scaling
(4.1), the amplitude of the diagram is proportional to

N−p+2v−
∑

a t(Ba)+fD−p+v+
∑

a(t(Ba)−c(Ba)+g(Ba))+ϕ = N2−hD1+ h
2 −

ℓ
2 , (4.2)

where we introduced the parameters h and ℓ defined by

h = 2 + p − 2v +

∑
a

t(Ba) − f , (4.3)

ℓ

2
= 2 +

3
2
p − 2v −

1
2

∑
a

t(Ba) +

∑
a

c(Ba) −

∑
a

g(Ba) −
1
2
f − ϕ . (4.4)

4 The argument in [9] applies without change to the more general case of multi-trace interactions considered here and thus
will not be repeated.
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4.1. Counting the power of N

To study the power of N of a given Feynman diagram B, we consider the matrix model fat graph
obtained by removing the O(D) lines in the stranded representation. In the colored representation, it
amounts to studying the three-bubble B(3) obtained by removing the edges of color 3. Since we deal
with multi-trace interactions, the resulting fat graph may be disconnected. Indeed, each multi-trace
vertex effectively leads to t(Ba) single-trace vertices in the fat graph.We denote by ṽ the total number
of effective single-trace vertices so that ṽ =

∑
at(Ba). Besides, the number of connected components

of the fat graph is the same as the number of connected components B(3) of the three-bubble B(3). The
genus g of the fat graph5 is then given by the usual Euler’s formula

2B(3)
− 2g = −p + f + ṽ = −p + f +

∑
a

t(Ba) . (4.5)

We can obtain a similar relation by studying the corresponding three-bubble B(3), whose genus is
given by the relation

2B(3)
− 2g(B(3)) = −

1
2
V (B(3)) + F (B(3))

= −
1
2
V (B) + F01(B) + F02(B) + F12(B) .

(4.6)

By using the following identities that connect the quantities characterizing B in the stranded and
colored representations,

2p = V (B) , f = F01(B) + F02(B) ,
∑
a

t(Ba) = F12(B) , (4.7)

it is straightforward to check that the genera of the fat graph and the colored graph coincide,

g = g(B(3)) . (4.8)

Using the above formulas, we can rewrite h in (4.3) as
h
2

= g +

∑
a

(
t(Ba) − 1

)
− B(3)

+ 1 , (4.9)

which importantly shows that h is non-negative since it is given by the sum of two non-negative
terms,

g ≥ 0 , 1 +

∑
a

(
t(Ba) − 1

)
− B(3)

≥ 0 . (4.10)

The second inequality comes from the fact that each t(Ba)-trace interaction vertex can increase the
number of connected components of the fat graph by t(Ba)−1 atmost. The non-negativity of h ensures
that the large N limit à la ’t Hooft of models with multi-trace interactions is well-defined. For single-
trace interactions, t(Ba) = 1 and B(3)

= 1 so that h = 2g as usual.

4.2. Counting the power of D

By generalizing the proof for the single-trace models found in [9], we want to express ℓ given in
(4.4) as the sum of non-negative terms. The Euler’s formula (4.6) for the three-bubble B(3) generalizes
straightforwardly to the three other three-bubbles B(0), B(1) and B(2). We write them in a unified way
as

2B(i)
− 2g(B(i)) = −

1
2
V (B) +

∑
j<k
j,k̸=i

Fjk(B) , (4.11)

5 We always implicitly define the genus of a multiply-connected graph as the sum of the genus of each connected
component.
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where i = {0, 1, 2, 3} and B(i) is the number of connected components of the three-bubble B(i). By
summing these equations for i = 0, 1, 2 and using the following identities that complement the ones
in (4.7),

ϕ = F03(B) ,
∑
a

c(Ba) = B(0) ,
∑
a

g(Ba) = g(B(0)) , (4.12)

one obtains the following relation

g(B(1)) + g(B(2)) +
(
B(01)

− B(1)
− B(0)

+ B
)
+

(
B(02)

− B(2)
− B(0)

+ B
)

= 2B +
3
2
p −

1
2

∑
a

t(Ba) −

∑
a

c(Ba) −

∑
a

g(Ba) −
1
2
f − ϕ , (4.13)

where B in the number of effective connected components of B and B(01)
= F23(B), B(02)

= F13(B).
Comparing (4.13) with (4.4), we get

ℓ

2
= g(B(1)) + g(B(2)) +

(
B(01)

− B(1)
− B(0)

+ B
)
+

(
B(02)

− B(2)
− B(0)

+ B
)

+ 2
(
1 +

∑
a

(
c(Ba) − 1

)
− B

)
. (4.14)

The first two terms on the right hand side aremanifestly non-negative. The third and fourth terms are
also non-negative using the connectivity inequality

B(ij)
− B(i)

− B(j)
+ B ≥ 0 , (4.15)

which is proven in [9] for the case B = 1, the case B > 0 being a straightforward generalization (see
also the discussion in [14]). Finally, the last term is also non-negative,

1 +

∑
a

(
c(Ba) − 1

)
− B ≥ 0 , (4.16)

because each interaction vertex with c(Ba) connected components increases the number of effective
connected components of B by c(Ba)− 1 at most (Eq. (4.16) can also be viewed as a consequence of a
connectivity inequality of the form (4.15), see [14]).

In conclusion, we have shown that ℓ is a non-negative integer. This proves that the large D
expansion is well-defined at any fixed power of N . In the case of single-trace interactions only, we
have that c(Ba) = 1 and B = 1 so that the expression (4.14) for ℓmatches the one found in [9].

4.3. Form of the expansions and leading order graphs

The large N expansion of the free energy reads

F =

∑
h∈N

FhN2−h , (4.17)

where the Fh are N-independent coefficients. Each Fh is itself expanded at large D in powers of 1/
√
D

as

Fh =

∑
ℓ∈N

Fh,ℓD1+ h
2 −

ℓ
2 , (4.18)

with D-independent coefficients Fh,ℓ. In particular, we see that the highest possible power of D for
diagrams of given h is bounded above by 1+ h/2. It is this crucial property that makes the limit exist.
However, if diagrams of arbitrary h are considered, there is no such upper bound. This implies that
the limit N → ∞ must always be taken first and then the D → ∞ limit next, at each order in the
1/N expansion. The non-commutativity of the two limits is a central property of the new large D limit
introduced in [9].
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Fig. 2. Melonic moves for the tr XµX†
ν XµX

†
ν and tr XµX†

ν XρX
†
µXνX

†
ρ interactions.

Fig. 3. Moves increasing the genus by one unit at fixed ℓ for the tr XµX†
ν XµX

†
ν and tr XµX†

ν XρX
†
µXνX

†
ρ interactions.

Fig. 4. Stranded graph and colored graph for the interaction vertex tr XρX†
ρ tr XµX†

ν XµX
†
ν discussed in themain text, with c = 2,

t = 2 and g = 1/2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Leading order graphs, called generalized melons in [14], must have h = 0 and ℓ = 0. These
conditions require in particular the planarity of the three-colored graphs B(1), B(2) and B(3). Typically,
they can be built by applying an arbitrary number of so-called melonic moves, which amounts to
replacing internal lines by a more complicated structure, starting from the one-loop ring vacuum
graph. Examples ofmelonicmoves for the interactions trXµX†

ν XµX
†
ν and trXµX†

ν XρX
†
µXνX

†
ρ are depicted

on Fig. 2. We let the reader check explicitly that these moves do not change the powers of N and D
(i.e. the values of h and ℓ).

Leading order graphs at fixed genus g > 0, on the other hand, are planar only with respect to
the colors 0, 1, 3 and 0, 2, 3. For single-trace interactions they are proportional to D1+g . Families of
leading graphs at fixed genus can be obtained, for example, using the moves depicted on Fig. 3 an
arbitrary number of times. It is easy to check that these moves increase the genus by one unit but
leave ℓ unchanged. One can of course also use the moves of Fig. 2 to generate more leading graphs at
fixed g .

To illustrate the case of a multi-trace interaction, consider the interaction vertex depicted in Fig. 4.
The leading order graphs h = ℓ = 0must bemaximally disconnected and each connected component
must be a leading order graph for the model involving the effective single-trace interactions tr XρX†

ρ
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Fig. 5. Structure of the leading order vacuum graphs for the multi-trace model with interaction vertex tr XρX†
ρ tr XµX†

ν XµX
†
ν .

G is the leading two-point function.

Fig. 6. Diagrammatic representation of the Schwinger–Dyson equation (4.19).

and tr XµX†
ν XµX

†
ν . We can then straightforwardly apply the results of [12]. The leading vacuum graphs

have the structure depicted in Fig. 5, the two-point function being determined by the Schwinger–
Dyson equation with the self-energy given by Fig. 6 or, equivalently, in terms of the equation (in the
quantum mechanical case)

Σ(t − t ′) = (−1)σ2λ2δ(t − t ′)
∫

dt1 G2(t1)G2(−t1)G(0)

+ (−1)σ4λ2 G2(t − t ′)G(−t + t ′)G2(0) . (4.19)

In this equation, Σ is the self-energy and σ = 0 or 1 depending on whether we are dealing with
complex fermions or bosons.
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Fig. 7. Example of graphs at genus one in theHermitianmodels (or real symmetricmodels) that are proportional to an arbitrarily
high power of D.

4.4. On cases with reduced symmetry

Up to now, we have focused on models with U(N)2 × O(D) symmetry. The fact that a symmetry
group is associated with each individual index is crucial in the standard tensor model technology, for
which D = N . An interesting question is whether non-trivial and consistent large N and large D limits
exist in models with reduced symmetry.

The first rigorous argument showing that this is the case was given in [9], where the example
of Hermitian matrices was studied. For Hermitian matrices, the symmetry group is reduced from
U(N)2 × O(D) down to U(N) × O(D) and all the usual tools based on colored graphs superficially
seem to break down. But the argument in [9], which generalizes straightforwardly to the multi-trace
interactions considered in the present paper, showed that the large D limit is still well-defined for the
sum over planar diagrams. The same argument would also work for real symmetric or antisymmetric
matrices, again at the planar level.

However, it is not difficult to prove that the large D limit for general Hermitian matrices does not
exist for diagrams of genera g ≥ 1 (which also invalidates the tensor large N = D limit). Indeed, for
any g ≥ 1, one can construct diagrams which are proportional to an arbitrarily high power of D. For
example, consider the genus one graphs depicted in Fig. 7, with interaction vertices tr XµXνXµXν . Note
that these graphs are allowed in theHermitian case but are forbidden in the complex case, because the
self-contractions of the vertices would violate the orientation of the propagators. It is straightforward
to check that the graph containing q interaction vertices is proportional to D1+q/2. There is thus no
upper bound for the power of D. The graphs of Fig. 7 can be straightforwardly generalized by using
the melonic move depicted on the left of Fig. 2. In particular, we can build in this way a large class of
graphs with no self-contractions on the vertices6 that make the large D limit inconsistent. It is also
very easy to build similar graphs at any genus, by inserting the basic structure of the genus one graph
in a larger graph.

Another closely related example is the O(N)3-symmetric Carrozza–Tanasa model, or the similar
O(N)2 × O(D)-symmetric model of real matrices with an interaction term tr XµXT

ν XµX
T
ν . In the fat

graph representation, the XX and XXT propagators are twisted and untwisted ribbons respectively.
The graphs of Fig. 7 are thus not allowed. There are similar allowed graphs, represented in the left
inset of Fig. 8, but these are never greater than N2 and are thus harmless in the large N = D limit. On
the other hand, if one breaks the O(N)2 × O(D) symmetry down to O(N) × O(D) by imposing that the
matrices Xµ are symmetric, or down to O(N) by imposing the complete symmetry between the three
indices in the tensor case N = D, as was suggested in [15], then the XX and XXT propagators can both
be either twisted or untwisted. The graphs of Fig. 7 are then allowed, together with the more general
graphs depicted on the right inset of Fig. 8. These are proportional to N1+q/2 for any q, showing that
the large N limit of such models does not exist.

6 If only graphs with self-contractions were harmful, it would be easy to get rid of them in some cases, for example by using
a normal-ordered interaction at zero temperature, or dimensional regularization in massless models in space–time dimension
d ≥ 2.
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Fig. 8. Graphs for the real rank three tensor models studied in [15]. Left inset: graphs allowed in the O(N)3 Carrozza–Tanasa
model, which are at most proportional to N2 . The graph with q interaction vertices must have q mod 2 twisted ‘‘horizontal’’
ribbons, whereas all the self-contractions comewith twisted ribbons. Right inset: similar graphs allowedwhen the symmetry is
broken down to O(N)2 or O(N) by imposing a symmetry constraint on the tensor; these graphs are proportional to an arbitrarily
high power of N and the large N limit does not exist for these models.

A common feature of all the ‘‘bad’’ graphs mentioned above, including their most general versions
obtained by applying the melonic moves of Fig. 2 on the internal edges an arbitrary number of times,
is that they all contain so-called singular edges. A singular edge is defined [18] to be an edge in the
graph which is traversed twice by the same face. In other words, in the ribbon representation, the
two borders of the ribbon associated with a singular edge belong to the same face. A simple and
elegant way to eliminate all such graphs is to impose a tracelessness condition on the matrices, since
singular edges are automatically associatedwith the contraction of two indices of the samematrix (or
tensor). This yields the natural conjecture that traceless symmetric or Hermitian models could have
well-defined large D limits at all genera. Support for this conjecture is given in the recent work [16],
which constructs and checks numerically a large class of graphs in the symmetrized Carrozza–Tanasa
model.7 It is unknownwhether this conjecturewill turn out to be true in full generality, for all types of
interaction terms,whichwould suggest that a general conceptual proof, in the spirit of [9,14], could be
devised, orwhether it will work only for some very specificmodels. For example, a detailed discussion
of an interesting bipartite model can be found in [19]. This model is very special because the bipartite
structure actually implies that the tracelessness condition is not needed.

5. On correlation functions

5.1. General remarks

Based on the results derived in Section 4 for the free energy, we can analyze some properties of
the large N and large D expansions of correlation functions in our models.

Let us consider correlation functions of general multi-trace operators. These operators may be
included in the Lagrangian (2.1) as interaction terms IBa . They can be obtained in the usual way by
taking the derivative of the free energy with respect to the associated coupling constant λa, taking
into account the scalings in the Lagrangian (2.1) and in (4.1),

N2−t(Ba)D1+t(Ba)−c(Ba)+g(Ba)⟨IBa⟩ =
∂F
∂λa

· (5.1)

The expansions (4.17) and (4.18) for the free energy thus yield

⟨IBa⟩ ∼
1

N2−t(Ba)D1+t(Ba)−c(Ba)+g(Ba)

∑
h∈N, ℓ∈N

N2−hD1+ h
2 −

ℓ
2 . (5.2)

Let us consider a multiply-connected interaction term IB = IB1 IB2 . . . IBc , with c(B) = c > 1,
t(Bi) = ti, c(Bi) = 1 and g(Bi) = gi for i = 1, . . . , c. By definition, we have t(B) =

∑
iti and

7 We would like to thank Igor Klebanov for a fruitful exchange about this point. The harmful graphs of Figs. 7 and 8 that
we communicated to the authors of [16] made them realize that the consistency of the large N limit required, and might be
achieved by, the tracelessness condition.
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Fig. 9. Example of a Feynman graph with two external legs, in the stranded and colored representations. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

g(B) =
∑

igi. The expectation value ⟨IB⟩ is given by (5.2). Moreover,

N2c−t(B)Dt(B)+g(B)
⟨IB1⟩⟨IB2⟩ . . . ⟨IBc ⟩ =

∂F
∂λ1

∂F
∂λ2

· · ·
∂F
∂λc

, (5.3)

which is consistent with factorization at leading order,

⟨IB⟩ = ⟨IB1⟩⟨IB2⟩ . . . ⟨IBc ⟩ ∼ N t(B)Dc−t(B)−g(B) . (5.4)

On the other hand, the connected correlation function is given by

N2c−t(B)Dt(B)+g(B)
⟨IB⟩c =

∂cF
∂λ1 . . . ∂λc

, (5.5)

yielding at leading order

⟨IB⟩c ∼ N2−2c+t(B)D1−t(B)−g(B) . (5.6)

Of course, the graphs contributing to ⟨IB⟩c cannot be maximally disconnected and the connected
expectation value is thus suppressed compared to ⟨IB⟩ at leading order.

5.2. Connected 2n-point correlation functions

In this section, we examine the large N and large D expansions of the connected 2n-point
correlation functions of the form⟨

(Xµ1 )
α1
β1
(X†
µ2

)α2β2 . . . (Xµ2n−1 )
α2n−1
β2n−1

(X†
µ2n

)α2nβ2n

⟩
c
. (5.7)

The Feynmangraphs that contribute to these correlation functions have 2n external legs. In the colored
graph representation, the external legs correspond to ‘‘external’’ vertices of valency one, to which
only a line of color 0 is attached. The external vertices are, as usual, unfilled or filled depending on
whether they correspond to X or X†. An example is depicted on Fig. 9. We denote by Vext = 2n the
number of external vertices in the colored graph, by Vint the number of standard internal vertices and
by V = Vext + Vint the total number of vertices.

The amplitude for a Feynman diagram with 2n external legs is obtained from the Lagrangian (2.1)
and the scalings (4.1) and is proportional to

N−p+2v−
∑

a t(Ba)+fD−p+v+
∑

a(t(Ba)−c(Ba)+g(Ba))+ϕ = N2−2n−h′

D1− 3
2 n+

h′
2 −

ℓ′

2 , (5.8)

where we have defined the parameters h′ and ℓ′ as

h′
= 2 + p − 2v +

∑
a

t(Ba) − f − 2n , (5.9)
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ℓ′

2
= 2 +

3
2
p − 2v −

1
2

∑
a

t(Ba) +

∑
a

c(Ba) −

∑
a

g(Ba) −
1
2
f − ϕ −

5
2
n . (5.10)

These definitions are convenient because, as we shall prove, h′
≥ 0 and ℓ′

≥ 0. The formulas (5.9) and
(5.10) are of course very similar to (4.3) and (4.4), with additional contributions depending on n.

5.2.1. Counting the power of N
We follow the same strategy as in Section 4.1: we remove the O(D) lines in the stranded repre-

sentation and we consider the resulting matrix model fat graph. The difference is that the fat graph is
now dual to a surface with boundaries because of the external insertion points. The relevant Euler’s
formula is

2B(3)
− 2g − b = −p + ṽ + 2n + f = −p +

∑
a

t(Ba) + 2n + f , (5.11)

where g is the genus of the fat graph, b its number of boundaries and ṽ =
∑

at(Ba) its number of
internal effective single-trace vertices. Note that using the relations (4.7), which are still valid here,
together with

2E(B(3)) = 3Vint(B) + Vext(B) = 3Vint(B) + 2n , (5.12)

where E(B(3)) is the number of edges of B(3), a similar Euler’s formula can be written for the colored
graph,

2B(3)
− 2g(B(3)) − b(B(3)) = F (B(3)) − E(B(3)) + V (B(3))

= −
1
2
Vint(B) +

1
2
Vext(B) + F01(B) + F02(B) + F12(B)

= 2B(3)
− 2g − b .

(5.13)

Finally, (5.9) together with (5.11) yields

h′

2
= g +

b
2

+

∑
a

(
t(Ba) − 1

)
− B(3)

+ 1 , (5.14)

generalizing (4.9) and showing that h′
≥ 0 in all cases, with actually h′

≥ 1 as soon as n ̸= 0 since
then, b ≥ 1. As a result, we get a well-defined large N expansion, the leading graphs with respect to N
corresponding as usual to maximally disconnected planar graphs with a single boundary component.

5.2.2. Counting the power of D
Following Section 4.2, we consider B(1) and B(2), which are open three-colored graphs just like B(3),

so that the corresponding Euler’s formulas read

2B(i)
− 2g(B(i)) − b(B(i)) = −

1
2
Vint(B) +

1
2
Vext(B) +

∑
j<k
j,k̸=i

Fjk(B) . (5.15)

On the other hand, the three-bubble B(0) remains a closed colored graph, with a standard Euler’s
formula. Summing these three Euler’s identities and using (4.12), we can rewrite ℓ′ in (5.10) as

ℓ′

2
= g(B(1)) + g(B(2)) +

1
2

(
b(B(1)) + b(B(2))

)
+

(
B(01)

− B(1)
− B(0)

+ B
)

+
(
B(02)

− B(2)
− B(0)

+ B
)
+ 2

(
1 +

∑
a

(
c(Ba) − 1

)
− B

)
. (5.16)

As soon as n ̸= 0, b(B(i)) ≥ 1 for i = 1, 2 and thus we get ℓ′
≥ 2.
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The above results show that the connected 2n-point correlation functions (5.7) have well-defined
large N and large D expansions of the form∑

h′∈N≥1, ℓ′∈N≥2

N2−2n−h′

D1− 3
2 n+

h′
2 −

ℓ′

2 . (5.17)

The leading order contribution is proportional to N1−2nD
1
2 −

3
2 n, which corresponds to h′

= 1 and
ℓ′

= 2.
Let us finally note that the correlation functions of U(N)2 or U(N)2 × O(D) invariant operators can

be obtained from (5.7) by contracting the free indices. This amounts to sewing together the external
legs of the Feynman graphs. We let the reader rederive Eq. (5.6) in this way, starting from (5.17).

6. Model building

The class of matrix–tensor models that can be built using the above ideas is very large and their
strongly coupled physics is likely to display a wide variety of interesting new effects. On top of the
SYK-like behavior [1], which is associated with a non-trivial IR limit and a macroscopic degeneracy
of the ground state, it was recently discovered in [17] that many other phenomena can occur and
that the phase diagrams of the models can have a rich structure. Clearly, only the surface of this
subject has been scratched and many examples, in various dimensions, remain to be studied. The
aim of the present section is to provide a brief overview, emphasizing a few models that we find
particularly interesting. In particular, we provide more details on some of the results for bosonic
models announced in [17]. We also explain that our new large D limit, with the scaling (4.1), is
compatible with linearly realized supersymmetry. The detailed study of the physics and the phase
diagrams of supersymmetric models in various dimensions is an outstanding research avenue for the
future.

6.1. Unstable bosonic models

6.1.1. Simple models
The simplest purely bosonic and non-trivial quantummechanical model one can study is based on

the Lagrangian

L = ND tr
(1
2
ẊµẊµ −

m2

2
XµXµ −

λ3

4

√
DXµXνXµXν

)
, (6.1)

where the matrices Xµ are Hermitian. There are obvious generalizations is any number of space–time
dimension d ≤ 4 (for d > 4, the model is not renormalizable). This model is solvable because the
leading order graphs can be fully classified following [9,12]. A very similar model, which has exactly
the same physics at leading order, is based on real matrices Xµab and a potential proportional to
tr XµXT

ν XµX
T
ν . When N = D, this coincides with a special case of the Carrozza–Tanasa model [12]

and is also discussed in [15,20].
At leading N → ∞ and D → ∞ order, the solution of the model is governed by the finite

temperature T = 1/β Euclidean two-point function

G(t) =
1
N

⟨
tr TXµ(t)Xµ

⟩
β
, (6.2)

which can be expanded in terms of Fourier–Matsubara modes as

G(t) =
1
β

∑
k∈Z

Gke−iνkt . (6.3)

The Matsubara frequencies are defined by

νk = 2πkT . (6.4)
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The structure of the dominating generalized melonic graphs implies the following Schwinger–Dyson
equations,

1
Gk

= ν2k + m2
+Σk (6.5)

Σ(t) = −λ6G(t)3 . (6.6)

The self-energy Σ(t) is expanded in Fourier series with coefficients Σk in a way similar to (6.3). At
zero temperature, (6.3) and (6.5) are replaced by

G(t) =
1
2π

∫
+∞

−∞

G̃(ω)e−iωt dω (6.7)

and
1

G̃(ω)
= ω2

+ m2
+ Σ̃(ω) . (6.8)

6.1.2. Why the naive analysis is wrong
The Eqs. (6.5) and (6.6) look very similar to the Schwinger–Dyson equations governing the solution

of fermionic models, like the original SYK model [1]. Naively, one may thus expect that the resulting
physics would be very similar, but this turns out to be erroneous [17].

To understand in a simple way where the problem comes from, let us consider the casem = 0 and
let us try to perform the usual analysis of the IR limit of Eqs. (6.8) and (6.6) at zero temperature,

1

G̃(ω)
= Σ̃(ω) , Σ(t) = −λ6G(t)3 . (6.9)

Using naively the Fourier transform formula∫
+∞

−∞

eiωt

|t|2∆
dt =

2Γ (1 − 2∆)
|ω|

1−2∆ sin(π∆) (6.10)

and seeking power-law solutions to (6.9), G(t) = b/|t|2∆ andΣ(t) = b′/|t|2∆
′

, we get

∆′
= 1 −∆ ,

1
4bb′

= Γ (1 − 2∆)Γ (1 − 2∆′) sin(π∆) sin(π∆′) (6.11)

from the first equation in (6.9) and

∆′
= 3∆ , b′

= −λ6b3 (6.12)

from the second equation in (6.9). This yields

∆ =
1
4
, ∆′

=
3
4
, b =

1
(4πλ6)1/4

(6.13)

and produce the following ‘‘solution’’,

G(t) =
1

(4πλ6)1/4
1

√
|t|
, G̃(ω) =

( π
λ6

) 1
4 1
√

|ω|
,

Σ(t) = −λ6
1

(4πλ6)3/4
1

|t|
3
2
, Σ̃(ω) =

(λ6
π

) 1
4 √

|ω| .

(6.14)

However, this result is inconsistent. On the one hand, it predicts G̃(ω) > 0 and Σ̃(ω) > 0, whereas
the Fourier transform of the second equation in (6.9),

Σ̃(ω) = −
λ6

4π2

∫
G̃(ω1)G̃(ω2)G̃(ω − ω1 − ω2) dω1dω2 , (6.15)
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clearly shows that G̃(ω) > 0 implies that Σ̃(ω) < 0. There is no way (6.14) could be a meaningful
solution of (6.9).

Themistake comes from the fact that the above reasoning, albeit standard in the literature, involves
formal manipulations of divergent integrals. The Fourier transform formula (6.10)makes sense only if
∆ > 0 to avoid IR divergences and∆ < 1/2 to avoid UV divergences. The analysis however assumes
that one can use (6.10) to compute the Fourier transforms of bothG andΣ; this is clearly incompatible
with the first equation in (6.11), since∆ < 1/2 implies that∆′

= 1 −∆ > 1/2.8
One may think that the difficulty comes from the use of the IR limit of the exact Schwinger–Dyson

equation (6.8), but this is not the case. It is easy to see that the full set of Eqs. (6.5) cannot have
consistent solutions when m → 0. The argument uses unitarity. It is straightforward to show, using
the spectral decomposition of the two-point function (6.2), that the Fourier coefficientsGk must be real
and strictly positive. Butwhenm → 0, (6.5) implies thatΣ0 > 0 too. One then obtains a contradiction
with (6.6), which shows thatΣ0 is a sum of strictly negative terms.

Let us note that the above conclusions are not restricted to the case of quantum mechanics.
The discussion can indeed be straightforwardly generalized to the case of higher dimensional field
theories, of the type considered for example in [20].

6.1.3. The physics
The physics associated with the above phenomenon is explained in [17] and the reader is invited

to look into this reference for detailed explanations; see also [21]. Let us simply very briefly recall the
main points here. The difference between bosonic models like (6.1) and SYK-like fermionic models
is twofold. First, unlike in the fermionic cases, the large temperature limit of bosonic models is not
weakly coupled in general. For instance, the model (6.1) at m = 0 is always strongly coupled, even
when the dimensionless ‘‘coupling’’ βλ is very small. An SYK-like high temperature perturbation
theory thus simply does not exist for bosonic models. Second, models like (6.1) are unstable. The
leading large N and large D limits still make sense, but only as long as the effective dimensionless
coupling is not too strong. The particular point T = 0, m → 0 in parameter space discussed in
Section 6.1.2 belongs to a larger strongly coupled region where the Eqs. (6.5) and (6.6) do not have a
solution, see Fig. 5 in Ref. [17].

6.2. Stable bosonic models

One can easily build stable purely bosonic models, for which the large N and large D limits are
still dominated by generalized melonic diagrams and can thus be exactly solved. These models are
interesting for several reasons. For example, one would like to investigate whether the absence of a
non-trivial IR limit for the model (6.1) is due to its instability or to other qualitative differences with
the fermionic models, such as the absence of a high temperature perturbation theory à la SYK.

A simple Lagrangian with Hermitian matrices and a stable potential is

L = ND tr
(1
2
ẊµẊµ −

m2

2
XµXµ −

λ4

2
DXρXµXρXσXµXσ

)
. (6.16)

The scaling with D of the interaction term is according to (4.1). The potential is manifestly positive,
since it can be rewritten as (1/2) tr AµAµ where

Aµ =
√
Dλ2XρXµXρ (6.17)

is Hermitian. The leading Feynman graphs can be easily classified by introducing an auxiliary field Fµ
and noting that (6.16) is equivalent to

L = ND tr
(1
2
ẊµẊµ −

m2

2
XµXµ +

1
2
FµFµ − λ2

√
D FµXνXµXν

)
. (6.18)

8 This problem does not occur, e.g., in the usual SYK model, because G andΣ are then odd functions of time and the Fourier
transforms involve the integrals of |t|−2∆ sin(ωt) and |t|−2∆′

sin(ωt), which are not UV divergent.
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The interaction tr FµXνXµXν is of the same general form as in (6.1). Moreover, the scaling with D that
results from going from (6.16) to (6.18) is nicely consistent with (4.1). This is a general fact whose
generalization has nice consequences in supersymmetric models, as we will explain below. We can
thus use the results of [9,12] to get the leading graphs. Introducing the Euclidean two-point functions
GX (t), GF (t) and the associated self-energies and Fourier transforms, the Schwinger–Dyson equations
read, in obvious notations,

1
GX,k

= ν2k + m2
+ΣX,k ,

1
GF ,k

= −1 +ΣF ,k , (6.19)

ΣX (t) = −3λ4GX (t)2GF (t) , ΣF (t) = −λ4GX (t)3 . (6.20)

Note that the Fourier coefficients GA,k for the two-point function of the operator Aµ defined in (6.17)
are simply given by GA,k = GF ,k + 1.

We can proceed to analyze (6.19) and (6.20) in the usual way. A naive solution of the IR limit of the
equationswith non-trivial scaling dimensions 1/6 and 1/2 associatedwith the two-point functionsGX
and GA can be found straightforwardly. However, a careful analysis shows that this solution actually
does not exist, that is to say, it is not the IR limit of a solution to the full set of Eqs. (6.19) and
(6.20) [17,21]. This result is surprising. At least whenm → 0, it would have been natural to guess that
the model (6.16) could develop a non-trivial IR behavior, with a non-zero zero temperature entropy,
etc.; prettymuch in the sameway as the fermionic SYK-likemodels do. The fact that it does not shows
that there is an important qualitative difference between purely fermionic and purely bosonicmodels,
even when the bosonic models are stable and dominated by the same type of generalized melonic diagrams
as the fermionic models. To the best of our knowledge, no purely bosonic model with SYK behavior has
been found up to now.

6.3. Supersymmetric models

Supersymmetric theories are extremely natural to look at, in particular if one wishes to devise
models with a gravitational dual. Up to now, most studies have focused on models with quenched
disorder and/or a non-linear realization of supersymmetry where all fundamental degrees of freedom
are fermions, see e.g. [6]. Here we point out that our matrix–tensor models have standard linearly
realized supersymmetric versions with two or four supercharges.9

There is onepossible obstruction to buildmodelswith linearly realized supersymmetry: supersym-
metry relates several interaction terms together and this is not obviously consistent with the large D
scaling (4.1). Our simple goal in the present subsection is to display explicitly how supersymmetry
acts on the bubble representing the interaction terms and check that this action is consistent with the
scaling (4.1). Note that another way to understand the consistency of supersymmetry with (4.1) is to
use a supergraph formulation of the Feynman rules.

We focus onN = 2 supersymmetric matrix quantummechanics for concreteness. The caseN = 4
and higher space–time dimensions are very similar. The N = 2 models contain traceless Hermitian
bosonicmatrices Xµ and complex fermionicmatricesψµ transforming in the adjoint representation of
U(N). The real superpotential can be written in parallel with the interaction terms in the Lagrangian,
see Eqs. (2.1) and (2.2), in the form

W (X) =

∑
a

N1−t(Ba)τaIBa (X) . (6.21)

The bubbles Ba encode the term IBa (X) in the usual way. The superpotential yields two types of
interaction terms in the Lagrangian.

The terms coupling the fermions and the bosons read

L1 = −ND ψ̄µαβ
∂2W

∂Xµαβ∂Xνγ δ
ψν

γ
δ = −ND

∑
a

N1−t(Ba)τaIBa (X, ψ, ψ̄) , (6.22)

9 See also [15] for linearly realized supersymmetrization of an SYK-like tensor model.
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Fig. 10. Construction of the bubble associated with the potential term (6.24) (right inset) from the bubble associated with the
superpotential (6.21) (left inset) in the caseW (X) = τ tr XµXνXµXν , as described below Eq. (6.26).

where

IBa (X, ψ, ψ̄) = ψ̄µ
α
β

∂2IBa

∂Xµαβ∂Xνγ δ
ψν

γ
δ . (6.23)

Each term in IBa is obtained from IBa by substituting two matrices Xµ and Xν byψµ and ψ̄ν . They are
thus all labeled by the same bubble Ba and in particular, the coupling constants τa must scale as in
(4.1) at large N and large D.

The potential term contributes as

L2 = −
1
2
ND

∂W
∂Xµαβ

∂W
∂Xµβα

= −
1
2
ND

∑
a,b

N2−t(Ba)−t(Bb)τabIab(X) , (6.24)

where

τab = τaτb (6.25)

and

Iab(X) =
∂IBa

∂Xµαβ

∂IBb

∂Xµβα
· (6.26)

The interaction terms appearing in Iab are described by many different bubbles, which we denote
collectively by Bab, obtained from Ba and Bb in the following way: we remove one vertex from Ba and
one vertex from Bb and then join together the edges that were attached to these two vertices in a
way consistent with the coloring. In the tensor model literature, this operation is called a ‘‘one-dipole
contraction’’. An example is depicted in Fig. 10. Since one connected component of Ba is connected to
one connected component of Bb under the contraction, we have

c(Bab) = c(Ba) + c(Bb) − 1 . (6.27)

Moreover, the vertices we remove belong to (12)-faces in Ba and Bb and under the contraction
these two faces merge into one, which yields

t(Bab) = t(Ba) + t(Bb) − 1 . (6.28)

By considering similarly the (13)- and (23)-faces passing through the vertices that are removed, we
get

F13(Bab) = F13(Ba) + F13(Bb) − 1 , F23(Bab) = F23(Ba) + F23(Bb) − 1 . (6.29)

Using (6.27), (6.28), (6.29) together with

V (Bab) = V (Ba) + V (Bb) − 2 , (6.30)

we then obtain

g(Bab) = g(Ba) + g(Bb) . (6.31)
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According to the general formulas (2.1) and (4.1), the overall powers of N and D in front of Iab(X) in
(6.24) must thus be

ND × N1−t(Bab) × Dt(Bab)−c(Bab)+g(Bab) =

ND × N2−t(Ba)−t(Bb) × Dt(Ba)+t(Bb)−c(Ba)−c(Bb)+g(Ba)+g(Bb) . (6.32)

Comparing with (6.24), we see that the coupling τab must scale as

Dt(Ba)−c(Ba)+g(Ba) × Dt(Bb)−c(Bb)+g(Bb) . (6.33)

This is precisely matching the scaling implied by the supersymmetric relation (6.25) between cou-
plings and by (4.1), as was to be shown.
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Université Libre de Bruxelles and International Solvay Institutes,

Campus de la Plaine, CP 231, B-1050 Bruxelles, Belgium
dDipartimento di Scienze e Innovazione Tecnologica and Arnold-Regge Center,
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1 Introduction

The study of defects and of their properties may improve our understanding of quantum

field theories. Wilson loops represent a class of gauge-invariant line defects which is of

paramount relevance in gauge theories.

In general, Wilson loops receive perturbative and non-perturbative corrections and

their exact evaluation is a difficult task. It is therefore important to find classes of theories

and of Wilson loops for which it is possible to make progress in this direction. In this

perspective, much work has been devoted to the study of Wilson loops in supersymmetric

gauge theories, in theories which possess integrable sectors and in theories enjoying confor-

mal symmetry. Furthermore, a powerful angle of approach to the strong coupling behavior

is furnished by correspondences of the AdS/CFT type.

N = 4 super Yang-Mills (SYM) theory is maximally supersymmetric, it is conformal

and many sectors of its observables are integrable. Moreover, it is the theory for which

– 1 –
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the AdS/CFT correspondence was originally conjectured and for which it is best estab-

lished. In this theory important results, many of which are exact, have been obtained

regarding Wilson loop operators which preserve at least a fraction of the supersymmetry.

In particular the 1/2-BPS circular Wilson loop has been evaluated exactly in terms of a

Gaussian matrix model in [1–3]. Wilson loops preserving fewer supersymmetries [4], such

as the 1/4-BPS circular loop [5] and particular classes of 1/8-BPS loops [6–8], have been

classified and analyzed. Correlators among such Wilson loops, or between Wilson loops

and local operators have also been considered [9–11]; in particular, correlators of a 1/8-

BPS circular loop and chiral primaries in N = 4 SYM theory have been computed [12–16],

mapping them to multi-matrix models. Also correlators with local chiral operators and

Wilson loops in higher representations have been discussed [17, 18]. Often these results

have been successfully compared, at least in the large-N limit, with AdS/CFT [17–19] and

with the outcome of the integrability approach [20].

N = 4 SYM is a superconformal theory, and Wilson loops that preserve a sub-

group of the superconformal symmetry are instances [21] of a defect conformal field theory

(DCFT) [22–25]. The spectrum and the structure constants of operators defined on the

defect represent an extra important piece of conformal data; correlators of certain such

operators have been considered both directly [26, 27] and via integrability [28]. Also the

correlators of the Wilson loop defect with bulk operators, such as the chiral primaries, are

constrained by the residual symmetry.

Similar progress has been made also in N = 2 SYM theories, mainly thanks to local-

ization techniques [29, 30]. These techniques, relying on supersymmetry, yield exact results

for the field theory partition function in a deformed space-time geometry by localizing it

on a finite set of critical points and expressing it as a matrix model. This procedure was

extended by Pestun in a seminal paper [3] to compute the expectation value of a circu-

lar Wilson loop in a S4 sphere background, reducing the path integral computation to

a matrix model which is a simple modification of the one for the partition function. In

the N = 4 SYM case the matrix model is Gaussian, in agreement with the field theory

results [1, 2] mentioned above, while in the N = 2 theory it receives both one-loop and

instanton corrections.

Pestun’s results on circular Wilson loops have opened several directions in the study

of gauge theories and allowed us to deepen our knowledge about the AdS/CFT duality in

the N = 2 setting [31–33], as well as to provide exact results for some observables directly

related to the Wilson loop, such as the Bremsstrahlung function [34–38].

When the N = 2 theory is conformal, as it is the case for N = 2 SQCD with Nf = 2N ,

it has been shown that the matrix model for the partition function on S4 also contains

information about correlators of chiral operators on R4 [39–43], provided one disentangles

the operator mixing induced by the map from S4 to R4 [44–46]. In [47] this disentangling

of operators has been realized as a normal-ordering procedure and the relation between

field theory and matrix model correlators has been shown to hold also in non-conformal

situations for a very special class of operators.

It is natural to conjecture that, as it is the case in the N = 4 theory, also in supercon-

formal N = 2 theories the matrix model for the circular Wilson loop on S4 may contain

– 2 –



J
H
E
P
0
3
(
2
0
1
8
)
1
9
3

information on correlators of chiral operators in the presence of a circular loop in R4. In

particular, from DCFT we know that the functional form of the one-point function in pres-

ence of a Wilson loop is completely fixed up to a coefficient depending on the coupling

constant g; this coefficient can be encoded in the Pestun matrix model.

In this paper, neglecting non-perturbative instanton contributions, we deal with the

determinant factor in the matrix model definition, which can be expanded in powers of g.

We work at finite and generic N . Following [47], we identify the matrix model counterparts

of chiral operators in the field theory through a normal-ordering prescription, and compute

the one-point functions of such operators in the matrix model. We then compare them

with the corresponding field theory one-point functions in presence of the Wilson loop

computed in standard perturbation theory up to two loops for finite N , and to all orders

in perturbation theory in planar limit for the ζ(3) dependent part. We heavily rely on

the N = 4 results in that we consider the diagrammatic difference between N = 4 and

N = 2 [48]; this procedure massively reduces the number of Feynman diagrams to be

computed. We find complete agreement between the matrix model and field theory results;

we believe that this represent compelling evidence for the conjecture.

The paper is structured as follows. We introduce our set-up in section 2. In sections 3

and 4 we perform the matrix model computation, reviewing first the N = 4 case and then

moving to the superconformal N = 2 theory. We also derive large-N results which are

exact in λ = gN2 for the N = 4 part of these one-point functions and for the extra part in

the N = 2 theory which has ζ(3) transcendentality. The diagrammatic evaluation of the

correlators in field theory is performed in section 5, up to two loops for finite N . We also

show how the large-N results derived in the matrix model approach arise diagrammatically.

Finally, section 6 contains our conclusions, while some more technical material is contained

in three appendices.

2 Wilson loop and its correlators with chiral operators

We consider a N = 2 SYM theory on R4 with gauge group SU(N) and Nf fundamental

flavours. As is well-known, when Nf = 2N this theory is superconformal invariant, even

at the quantum level. In the following we will restrict to this case.

We place a 1/2-BPS Wilson loop in a representation R along a circle C of radius R

inside R4. Such operator, which we denote WR(C), measures the holonomy of the gauge

field and the adjoint scalars around C and represents a (conformal) defect in the theory.

The explicit expression of WR(C) is

WR(C) =
1

N
TrR P exp

{
g

∮
C
dτ
[
iAµ(x) ẋµ(τ) +RθI(τ)φI(x)

]}
(2.1)

with I = 1, 2. Here g is the gauge coupling constant, Aµ is the gauge field and φI are the

two (real) scalar fields of the N = 2 vector multiplet, while P denotes the path-ordering

and TrR the trace in the representation R of SU(N). If we take θI(τ) = δI1, which

is the standard choice for the scalar coupling, and introduce the chiral and anti-chiral

– 3 –
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combinations

ϕ =
1√
2

(
φ1 + iφ2

)
, ϕ̄ =

1√
2

(
φ1 − iφ2

)
, (2.2)

the Wilson loop (2.1) becomes

WR(C) =
1

N
TrR P exp

{
g

∮
C
dτ

[
iAµ(x) ẋµ(τ) +

R√
2

(
ϕ(x) + ϕ̄(x)

)]}
. (2.3)

For definiteness, from now on we will take the representation R to be the fundamental of

SU(N) and denote the corresponding Wilson loop simply as W (C). Furthermore, we will

use the symbol “ tr ” for the trace in the fundamental representation.

We are interested in computing the correlators between the Wilson loop and the

chiral operators of the SYM theory. The latter are labeled by a vector of integers

~n = (n1, n2, · · · , n`) and take a multi-trace expression of the form

O~n(x) = trϕn1(x) trϕn2(x) · · · trϕn`(x) . (2.4)

In our model, these are protected chiral primary operators with a conformal dimension n

given by

n =
∑̀
k=1

nk , (2.5)

and obey chiral ring relations. Equivalently, by expanding ϕ(x) = ϕb(x)T b, where T b are

the generators of SU(N) in the fundamental representation normalized in such a way that

tr
(
T bT c

)
=

1

2
δbc , trT b = 0 with b, c = 1, · · · , N2 − 1 , (2.6)

we can write

O~n(x) = R b1...bn
~n ϕb1(x) . . . ϕbn(x) (2.7)

where R b1...bn
~n is a totally symmetric n-index tensor whose expression is encoded1 in (2.4).

The quantity of interest is the one-point function〈
W (C)O~n(x)

〉
. (2.8)

To evaluate it, we can proceed as follows. Firstly, without any loss of generality, we can

place the circle C in the plane (x1, x2) ⊂ R4. The points on the loop C can then be

parameterized as

xµ(τ) = R
(

cos τ, sin τ, 0, 0
)

(2.9)

with τ ∈ [ 0, 2π ]. Secondly, using the standard results of defect conformal field theory [24],

we can fix the functional dependence of the one-point function (2.8). Indeed, splitting the

coordinates xµ into parallel and transverse components, namely xµ → (xa;xi) with a = 1, 2

1Explicitly,

R b1...bn
~n = tr

(
T (b1 · · ·T bn1

)
tr
(
T bn1+1 · · ·T bn1+n2

)
. . . tr

(
T
bn1+...+n`−1+1 · · ·T bn))

where the indices are symmetrized with strength 1.

– 4 –
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Figure 1. The geometric set-up for the configuration we consider.

and i = 3, 4, and denoting xaxa = r2 and xixi = L2, so that x2 = r2 + L2 (see figure 1),

we see that

‖x‖C =

√
(R2 − x2)2 + 4L2R2

R
(2.10)

is the “distance” between x and C, which is invariant under the SO(1, 2)×SO(3) subgroup

of the conformal symmetry that is preserved by the Wilson loop (see appendix A for

details). When x→ 0, we have ‖x‖c → R.

Because of conformal invariance, the correlator (2.8) takes the form

〈
W (C)O~n(x)

〉
=

A~n(
2π‖x‖C

)n (2.11)

where A~n is a g-dependent constant which corresponds to the one-point function evaluated

in the origin:

A~n = (2πR)n
〈
W (C)O~n(0)

〉
. (2.12)

In the next sections we will compute this function in two different ways: one by using

the matrix model approach suggested by localization, and the other by using standard

perturbative field theory methods. As anticipated in the Introduction, these two approaches

lead to the same results.

3 The matrix model approach

The vacuum expectation value of the Wilson loop can be expressed and computed in terms

of a matrix model, as shown in [3] using localization methods. In the following we extend

this approach to compute also the correlators between the Wilson loop and the chiral

correlators in N = 2 superconformal theories, but before we briefly review the matrix

model and introduce our notations, relying mainly on [47].

The matrix model in question corresponds to putting the N = 2 SYM theory on a

sphere S4 and writing the corresponding partition function as follows:

ZS4 =

∫ N∏
u=1

dau ∆(a)
∣∣Z(ia)

∣∣2 δ( N∑
v=1

av

)
. (3.1)
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Here au are the eigenvalues of a traceless N × N matrix a which are integrated over the

real line; ∆(a) is the Vandermonde determinant and Z(ia) is the gauge theory partition

function on R4. The latter is computed using the localization techniques as in [49, 50], with

the assumption that the adjoint scalar ϕ(x) of the vector multiplet has a purely imaginary

vacuum expectation value given by 〈ϕ〉 = i a, and that the Ω-deformation parameters are

ε1 = ε2 = 1/R where R is the radius of S4 which from now on we take to be 1 for simplicity.

This partition function is a product of the classical, 1-loop and instanton contributions,

namely:

Z(ia) = Zclass(ia)Z1−loop(ia)Zinst(ia) . (3.2)

The classical part provides a Gaussian term in the matrix model:

∣∣Zclass(ia)
∣∣2 = e

− 8π2

g2
tr a2

, (3.3)

while the 1-loop contribution is

∣∣Z1−loop(ia)
∣∣2 =

N∏
u<v=1

H(iauv)
2

N∏
u=1

H(iau)−Nf (3.4)

where auv = au − av, and

H(x) = G(1 + x)G(1− x) (3.5)

with G(x) being the Barnes G-function. In the weak-coupling limit g � 1, where instantons

are exponentially suppressed, we can set∣∣Zinst(ia)
∣∣2 = 1 . (3.6)

Moreover, in this limit the integral (3.1) is dominated by the region of small au, and thus

we can expand the functions H appearing in (3.4) using

logH(x) = −(1 + γ)x2 −
∞∑
n=2

ζ(2n− 1)
x2n

n
(3.7)

where ζ(n) is the Riemann zeta-function and γ is the Euler-Mascheroni constant. In this

way the one-loop contribution can be viewed as an interaction term in a free matrix model:∣∣Z1−loop(ia)
∣∣2 = e−Sint(a) (3.8)

where Sint(a) is a sum of homogeneous polynomials Sn in a of order n. The first few are:

S2(a) = −(1 + γ) (2N −Nf ) tr a2 = 0 ,

S4(a) =
ζ(3)

2

[
(2N −Nf ) tr a4 + 6

(
tr a2

)2 ]
= 3 ζ(3)

(
tr a2

)2
,

S6(a) = −ζ(5)

3

[
(2N −Nf ) tr a6 + 30 tr a4 tr a2 − 20

(
tr a3

)2 ]
= −10 ζ(5)

3

[
3 tr a4 tr a2 − 2

(
tr a3

)2 ]
(3.9)
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where the last step in each line follow from the superconformal condition Nf = 2N . After

the rescaling

a→
(
g2

8π2

)1
2

a , (3.10)

the matrix model gets a canonically normalized Gaussian factor and the sphere partition

function becomes

ZS4 =

(
g2

8π2

)N2−1
2
∫ N∏

u=1

dau ∆(a) e−tr a2−Sint(a) δ

(
N∑
v=1

av

)
(3.11)

with

Sint(a) =
3 ζ(3) g4

(8π2)2

(
tr a2

)2 − 10 ζ(5) g6

3(8π2)3

[
3 tr a4 tr a2 − 2

(
tr a3

)2 ]
+ · · · . (3.12)

Exploiting the Vandermonde determinant ∆(a) and writing a = ab T b, we can alternatively

express the integral (3.11) using a flat integration measure da over all matrix components

ab as follows

ZS4 = cN

(
g2

8π2

)N2−1
2
∫
da e−tr a2−Sint(a) (3.13)

where cN is a g-independent constant and da ∝
∏
b dab. The overall factor cN and the

normalization of the flat measure da are clearly irrelevant for the computation of the

vacuum expectation value of any quantity f(a), which is defined as

〈
f(a)

〉
=

∫
da e−tr a2−Sint(a) f(a)∫
da e−tr a2−Sint(a)

=

〈
e−Sint(a) f(a)

〉
0〈

e−Sint(a)
〉

0

. (3.14)

Here we have denoted with a subscript 0 the expectation value in the Gaussian matrix

model, namely

〈
f(a)

〉
0

=

∫
da e−tr a2 f(a)∫
da e−tr a2

. (3.15)

This Gaussian model is the matrix model that is appropriate to describe the N = 4 SYM

theory. In this case, in fact, the field content of the theory is such that the 1-loop partition

function Z1−loop and the instanton partition function Zinst are both equal to 1, implying

that Sint = 0.

Notice that if we normalize the flat measure as

da =

N2−1∏
b=1

dab√
2π

, (3.16)

then the denominator of (3.15) becomes 1 and we simply have〈
f(a)

〉
0

=

∫
da e−tr a2 f(a) . (3.17)
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Using this, we can easily see that the basic Wick contraction in the Gaussian model is〈
ab ac

〉
0

= δbc . (3.18)

Introducing the notation

tn1,n2,··· =
〈

tr an1 tr an2 · · ·
〉

0
(3.19)

and using (2.6), we evidently have

t0 =
〈

tr 1
〉

0
= N , t1 =

〈
tr a

〉
0

= 0 , t2 =
〈

tr a2
〉

0
=
N2 − 1

2
. (3.20)

Higher order traces can be computed performing consecutive Wick contractions with (3.18)

and using the fusion/fission identities

tr
(
T bB T bC

)
=

1

2
trB trC − 1

2N
tr
(
BC

)
,

tr
(
T bC

)
tr
(
T bC

)
=

1

2
tr
(
BC

)
− 1

2N
trB trC ,

(3.21)

which hold for any two matrices B and C. In this way we can build recursion relations

and, for example, get:

tn =
1

2

n−2∑
m=0

(
tm,n−m−2 −

1

N
tn−2

)
,

tn,n1 =
1

2

n−2∑
m=0

(
tm,n−m−2,n1 −

1

N
tn−2,n1

)
+
n1

2

(
tn+n1−2 −

1

N
tn−1,n1−1

)
, (3.22)

tn,n1,n2 =
1

2

n−2∑
m=0

(
tm,n−m−2,n1,n2 −

1

N
tn−2,n1,n2

)
+
n1

2

(
tn+n1−2,n2 −

1

N
tn−1,n1−1,n2

)
+
n2

2

(
tn+n2−2,n1 −

1

N
tn−1,n1,n2−1

)
,

and so on. These relations, together with the initial conditions (3.20), give an efficient

way to obtain multi-trace vacuum expectation values in the Gaussian model and will be

the basic ingredients for the computations of the correlators in the N = 2 superconformal

theory.

3.1 Wilson loop and chiral operators in the matrix model

As shown in [3], in the matrix model the Wilson loop (2.3) in the fundamental representa-

tion and on a circle of radius R = 1 is given by the following operator

W(a) =
1

N
tr exp

(
g√
2
a

)
=

1

N

∞∑
k=0

gk

2
k
2 k!

tr ak . (3.23)

On the other hand, to any multi-trace chiral operator O~n(x) of the SYM theory defined

as in (2.4), it would seem natural to associate a matrix operator O~n(a) with precisely the

same expression but with the field ϕ(x) replaced by the matrix a, namely

O~n(a) = tr an1 tr an2 · · · tr an` = R b1...bn
~n ab1 ab2 · · · abn . (3.24)
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However, since the field theory propagator only connects ϕ with ϕ̄, all operators O~n(x)

have no self-contractions, whereas the operators O~n(a) defined above do not share this

property. This means that the dictionary between the SYM theory and the matrix model

is more subtle. Indeed, we have to subtract from O~n(a) all its self-contractions by making

it orthogonal to all the lower dimensional operators, or equivalently by making it normal-

ordered. As discussed in [47], given any operator O(a) we can define its normal-ordered

version O(a) as follows. Let be ∆ the dimension of O(a) and
{
Op(a)

}
a basis of in the

finite-dimensional space of matrix operators with dimension smaller than ∆. Denoting by

C∆ the (finite-dimensional) matrix of correlators(
C∆

)
pq

=
〈
Op(a)Oq(a)

〉
(3.25)

which are computed according to (3.14), we define the normal-ordered operator

O(a) = :O(a) :g = O(a)−
∑
p,q

〈
O(a)Op(a)

〉
(C−1

∆ )pq Oq(a) . (3.26)

As emphasized by the notation, the normal-ordered operators are g-dependent, since the

correlators in the right hand side of (3.26) are computed in the interacting N = 2 matrix

model using (3.12).

Using these definitions, the correspondence between field theory and matrix model

operators takes the following simple form

O~n(x) → O~n(a) = :O~n(a) :g . (3.27)

Let us give some explicit examples by considering the first few low-dimensional operators.

At level n = 2 we have just one operator:

O(2)(a) = :tr a2 :g = tr a2 − N2 − 1

2
+

3 ζ(3) g4

(8π2)2

(N2 − 1)(N2 + 1)

2
+O(g6) . (3.28)

Similarly, at level n = 3 we have one operator, which in the SU(N) theory does not receive

any correction:

O(3)(a) = :tr a3 :g = tr a3 . (3.29)

At level n = 4, we have instead two independent operators corresponding to ~n = (4) and

~n = (2, 2). Their normal-ordered expressions are given, respectively, by

O(4)(a) = :tra4 :g

= tra4− 2N2−3

N
tra2+

(N2−1)(2N2−3)

4N
(3.30)

+
3ζ(3)g4

(8π2)2

[
(2N2−3)(N2+5)

N
tra2− 2(N2−1)(N2+4)(2N2−3)

4N

]
+O(g6) ,

and

O(2,2)(a) = :
(
tr a2

)2
:g

=
(
tr a2

)2 − (N2 − 1) tr a2 +
N4 − 1

4
(3.31)

+
3 ζ(3) g4

(8π2))2

[
(N2 − 1)(N2 + 5) tr a2 − (N4 − 1)(N2 + 4)

2

]
+O(g6) .
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Up to the order g6 we have considered, it is easy to check that these operators satisfy〈
O~n(a)

〉
= 0 ,〈

O~n(a)O~m(a)
〉

= 0 ,
(3.32)

for n 6= m. Normal-ordered operators of higher dimension can be constructed without any

problem along these same lines.

We observe that the g-independent parts of the above expressions correspond to the

normal-ordered operators in the Gaussian model, i.e. in the N = 4 theory. Since we will

often compare our N = 2 results with those of the N = 4 theory, we find convenient to

introduce a specific notation for the g → 0 limit of the normal ordering and write

Ô~n(a) ≡ lim
g→0
O~n(a) = :O~n(a) : , (3.33)

so that most of the formulas will look simpler.

In the following section we will explicitly compute the one-point functions between the

Wilson loop and the chiral operators in the N = 2 matrix model, namely

A~n =
〈
W(a)O~n(a)

〉
(3.34)

which will later compare with the field theory amplitudes defined in (2.12).

4 Matrix model correlators in presence of a Wilson loop

Our main goal here is the computation of A~n in the interacting matrix model described

above. As a warming-up, but also for later applications, we begin by presenting the results

in the Gaussian matrix model, i.e. in the N = 4 theory.

4.1 The N = 4 theory

In this case we should consider the operators Ô~n(a) defined in (3.33) and compute

Â~n =
〈
W(a) Ô~n(a)

〉
0

(4.1)

using the definition (3.17).

The simplest example is the amplitude with the identity (~n = (0)), which yields the

vacuum expectation value of the Wilson loop operator (3.23):

Â(0) =
〈
W(a)

〉
0

=
1

N

∞∑
k=0

gk

2
k
2 k!

tk (4.2)

with tk defined in (3.19). Using the explicit expressions given in (3.20) and (3.22), we find

Â(0) = 1 + g2 N
2 − 1

8N
+ g4 (N2 − 1)(2N2 − 3)

384N2
+ g6 (N2 − 1)(N4 − 3N2 + 3)

9216N3
+ · · · (4.3)

This perturbative series can be resummed into

Â(0) =
1

N
L1
N−1

(
−g

2

4

)
exp

[
g2

8

(
1− 1

N

)]
(4.4)
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where Lmn is the generalized Laguerre polynomial of degree n. This is the SU(N) version

of the well-known result of [2], originally derived for U(N).

Next we consider the amplitude between the Wilson loop and the operator Ô(2)(a) at

level 2. This is given by

Â(2) =
〈
W(a) : tr a2 :

〉
0

=
1

N

∞∑
k=0

gk

2
k
2 k!

(
tk,2 −

N2 − 1

2
tk

)
. (4.5)

The recursion relations (3.22) imply

tk,2 =

(
k

2
+
N2 − 1

2

)
tk , (4.6)

and thus the amplitude (4.5) becomes

Â(2) =
1

N

∞∑
k=0

k

2

gk

2
k
2 k!

tk =
g

2
∂gÂ(0) . (4.7)

Expanding for small g, we get

Â(2) = g2 N
2 − 1

8N
+ g4 (N2 − 1)(2N2 − 3)

192N2
+ g6 (N2 − 1)(N4 − 3N2 + 3)

3072N3
+ · · · . (4.8)

This same procedure can be used to compute the amplitudes Â~n for any ~n. The remarkable

fact is that, thanks to the recursion relations (3.22), it is always possible to obtain compact

expressions in terms of Â(0) and its derivatives that are exact, i.e. valid for any N and any

g. For example, at level n = 3 we find

Â(3) =
g√
2
∂2
g Â(0) −

g2

4
√

2N
∂gÂ(0) −

g(N2 − 1)

4
√

2N
Â(0) , (4.9)

while at level n = 4 we have

Â(4) = g ∂3
g Â(0) +

g2

4N
∂2
g Â(0) +

g3 − 4gN(2N2 − 3)

16N2
∂gÂ(0) +

g2(N2 − 1)

16N2
Â(0) , (4.10)

and

Â(2,2) =
g2

4
∂2
g Â(0) −

g

4
∂gÂ(0) . (4.11)

We have performed similar calculations for higher dimensional operators, but we do not

report the results since they would not add much to what we have already exhibited.

Instead, we point out that the lowest order term in the small g expansion of Â~n, which we

call “tree-level term”, can be compactly written as

Â~n
∣∣∣
tree−level

=
gn

N 2
n
2 n!

R b1...bn
~n

〈
tr an :ab1 . . . abn :

〉
0

=
gn

N 2
n
2

R b1...bn
~n tr

(
T b1 . . . T bn

) (4.12)

where R b1...bn
~n is the symmetric tensor associated to the operator O~n(a) according to (3.24).

For later convenience, in table 1 we collect the explicit expressions of Â~n
∣∣
tree−level

for all

operators up to level n = 4.
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~n Â~n
∣∣
tree−level

(2) g2N2−1

8N

(3) g3 (N2−1)(N2−4)

32
√

2N2

(4) g4 (N2−1)(N4−6N2+18)

384N3

(2, 2) g4 (N2−1)(2N2−3)

192N2

Table 1. The tree-level contribution to Â~n for operators up to order n = 4.

4.2 The N = 2 superconformal theory

Let us now return to our main goal, namely the computation of the one-point amplitudes in

the interacting matrix model that describes the N = 2 superconformal theory. Comparing

A~n with the N = 4 amplitudes Â~n, we see two main differences:

1. the normal-ordered operators O~n explicitly contain g-dependent terms;

2. the vacuum expectation value is computed in a g-dependent matrix model.

Both effects arise from the interaction terms of Sint(a) given in (3.12); thus we can write

A~n = Â~n + δA~n (4.13)

with

δA~n =
3 ζ(3) g4

(8π2)2
X~n −

10 ζ(5) g6

3(8π2)3
Y~n + · · · (4.14)

where the ellipses stand for terms of higher transcendentality, proportional to ζ(7), ζ(3)2

and so on. The quantities X~n, Y~n and the analogous ones at higher transcendentality

depend on the coupling constant g and can be expressed using vacuum expectation values

in the Gaussian model and, eventually, Â(0) and its derivatives in a compact way. Since

δA~n starts at order g4, i.e. at two loops, we clearly have

δA~n
∣∣∣
tree−level

= 0 and δA~n
∣∣∣
1−loop

= 0 (4.15)

for any ~n. In the following we will restrict our analysis to the first correction X~n for which

we will provide explicit formulas in several examples.

Let us start with the Wilson loop, i.e. with the identity operator (n = 0). In this

case there is no normal-ordering to do and thus the only contribution to X(0) comes from

the interactions in the matrix model. Focusing on the ζ(3)-term which is proportional to(
tr a2

)2
, after some straightforward algebra we get

X(0) = −
〈
W(a)

(
tr a2

)2 〉
0

+
〈
W(a)

〉
0

〈 (
tr a2

)2 〉
0
. (4.16)
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Evaluating the vacuum expectation values by means of the recursion relations (3.22) and

expressing the results in terms of the N = 4 Wilson loop, we can rewrite the above

expression as

X(0) = −g
2

4
∂2
g Â(0) −

g(2N2 + 1)

4
∂gÂ(0) . (4.17)

Using (4.4) and expanding for small g, we easily get

X(0) = −g2 (N2 − 1)(N2 + 1)

8N
− g4 (N2 − 1)(2N2 − 3)(N2 + 2)

192N2

− g6 (N2 − 1)(N4 − 3N2 + 3)(N2 + 3)

8N
+ · · · .

(4.18)

Therefore, in the difference δA(0) the leading term, which is a 2-loop effect induced by the

g4-part of Sint(a) proportional to ζ(3), turns out to be

δA(0)

∣∣∣
2−loop

= −g6 ζ(3)

(8π2)2

3(N2 − 1)(N2 + 1)

8N
. (4.19)

This expression has been successfully checked in [48] against an explicit perturbative 2-loop

calculation in field theory.

Let us now consider the operator O(2) at level n = 2. In this case we have

X(2) = −
〈
W(a) Ô(2)(a)

(
tr a2

)2 〉
0

+
〈
W(a) Ô(2)(a)

〉
0

〈(
tr a2

)2 〉
0

+
(N2 − 1)(N2 + 1)

2

〈
W(a)

〉
0

(4.20)

where the last term is due to the normal-ordering procedure in the interacting theory which

indeed yields a part proportional to (N2−1)(N2+1)/2 (see (3.28)). Evaluating the vacuum

expectation values, this expression becomes

X(2) = −g
3

8
∂3
g Â(0) −

g2(2N2 + 7)

8
∂2
g Â(0) −

5g(2N2 + 1)

8
∂gÂ(0) , (4.21)

while its perturbative expansion is

X(2) = −g2 3(N2 − 1)(N2 + 1)

8N
− g4 (N2 − 1)(2N2 − 3)(N2 + 2)

48N2

− g6 5(N2 − 1)(N4 − 3N2 + 3)(N2 + 3)

3072N3
+ · · · .

(4.22)

The leading term tells us that the 2-loop correction to the N = 2 amplitude A(2) is

δA(2)

∣∣∣
2−loop

= −g6 ζ(3)

(8π2)2

9(N2 − 1)(N2 + 1)

8N
. (4.23)

This procedure can be easily applied to operators of higher dimensions. For example,

skipping the intermediate steps, at level n = 3 we find

X(3) = − g3 3(N2 − 1)(N2 − 4)(N2 + 3)

32
√

2N2
− g5 (N2 − 1)(N2 − 4)(N4 + 2N2 − 8)

128
√

2N3

− g7 (N2 − 1)(N2 − 4)(3N6 + 5N4 − 35N2 + 75)

12288
√

2N4
+ · · · ,

(4.24)
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~n δA~n
∣∣
2−loop

(2) −g6 ζ(3)

(8π2)2

9(N2−1)(N2+1)

8N

(3) −g7 ζ(3)

(8π2)2

9(N2−1)(N2−4)(N2+3)

32
√

2N2

(4) −g8 ζ(3)

(8π2)2

(N2−1)(N6+2N4−18N2+81)

32N3

(2, 2) −g8 ζ(3)

(8π2)2

3(N2−1)(2N2−3)(N2+3)

32N2

Table 2. The 2-loop contribution to the difference δA~n between the N = 2 and the N = 4

amplitudes for operators up to order n = 4.

while at level n = 4 we get

X(4) = − g4 (N2 − 1)(N6 + 2N4 − 18N2 + 81)

96N3

− g6 (N2 − 1)(2N8 + 5N6 − 41N4 + 270N2 − 486)

3072N4

− g8 (N2 − 1)(2N10 + 9N8 − 53N6 + 270N4 − 960N2 + 1710)

122880N5
+ · · · ,

(4.25)

and

X(2,2) = − g4 (N2 − 1)(2N2 − 3)(N2 + 3)

32N2
− g6 (N2 − 1)(7N2 + 27)(N4 − 3N2 + 3)

1536N3

− g8 (N2 − 1)(4N2 + 19)(2N6 − 8N4 + 15N2 − 15)

61440N4
+ · · · . (4.26)

Multiplying the leading terms in these expansions by 3 ζ(3) g4

(8π2)2
, we obtain the 2-loop cor-

rections to the amplitudes A~n, whose explicit expressions are collected in table 2 for all

operators up to dimension n = 4.

It should be clear by now that this procedure can be used to find X~n for any ~n, and

also that it can be straightforwardly generalized to obtain the exact expressions of the

corrections with higher transcendentality, like for example Y~n in (4.14). Of course, the

resulting formulas become longer and longer when one goes higher and higher in n or

in transcendentality; however this approach, which is essentially based on the use of the

recursion relations (3.22), provides a systematic way to obtain exact expressions to any

desired order.

4.3 The large-N limit

We now study the behavior of the matrix model amplitudes in the planar limit N → ∞
with the ’t Hooft coupling

λ = g2N (4.27)

kept fixed. We begin with the N = 4 theory and later turn to the superconformal N = 2

model.

– 14 –



J
H
E
P
0
3
(
2
0
1
8
)
1
9
3

~n
Expansion of Exact expression of

gn−2` Â~n
∣∣
planar

gn−2` Â~n
∣∣
planar

(2) λ
8 + λ2

96 + λ3

3072 + · · · I2

(√
λ
)

(3) λ2

32
√

2
+ λ3

512
√

2
+ λ4

20480
√

2
+ · · · 3

√
λ

2
√

2
I3

(√
λ
)

(4) λ3

384 + λ4

7680 + λ5

368640 + · · · λ I4

(√
λ
)

(2, 2) λ2

96 + λ3

1536 + λ4

61440 + · · ·
√
λ

2 I3

(√
λ
)

Table 3. Results for the N = 4 matrix model in the planar limit. As explained in the text, n is

the sum of the components of ~n while ` is the number of these components.

The N = 4 theory. Taking the planar limit of the expectation value of the Wilson

loop, from (4.3) we get

Â(0)

∣∣∣
planar

= 1 +
λ

8
+

λ2

192
+

λ3

9216
+ · · · = 2√

λ
I1

(√
λ
)

(4.28)

where In is the modified Bessel function of the first kind. This is a well-known and estab-

lished result [1].

Next, let us consider the amplitude between the Wilson loop and the operator at level

n = 2 given in (4.8). In the planar limit it becomes

Â(2)

∣∣∣
planar

=
λ

8
+
λ2

96
+

λ3

3072
+ · · · = I2

(√
λ
)
. (4.29)

Also this is a known result [9].

Proceeding systematically in this way and using the explicit results in the Gaussian

matrix model, it is not difficult to find the weak-coupling expansion of the amplitude Â~n in

the planar limit for a generic operator, and also to obtain its exact resummation in terms

of Bessel functions. Indeed, for a generic vector ~n one can show that

gn−2` Â~n
∣∣∣
planar

=

(√
λ
)n−`−1

2
n
2

+`−1
In−`+1

(√
λ
) ∏̀
i=1

ni (4.30)

where n is, as usual, the sum of the components of ~n (see (2.5)), while ` is the number of

these components, namely the number of traces that appear in the corresponding operator.

We have verified the validity of this formula by explicitly computing the planar limit of the

amplitudes between the Wilson loop and all operators up to dimension n = 7. In table 3

we collect our results up to level n = 4. We point out that for ` = 1, i.e. for the single

trace operators, our formula (4.30) agrees with the findings of [9].
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~n
Expansion of the ζ(3)-term of Exact expression of the ζ(3)-term of

gn−2` δA~n
∣∣
planar

gn−2` δA~n
∣∣
planar

(2) −3 ζ(3)λ2

(8π2)2

(
3λ
8 + 4λ2

96 + 5λ3

3072 + · · ·
)

−3 ζ(3) (
√
λ)5

2(8π2)2

(
I1

(√
λ
)

+ 2√
λ
I2

(√
λ
))

(3) −3 ζ(3)λ2

(8π2)2

(
3λ2

32
√

2
+ 4λ3

512
√

2
+ 5λ4

20480
√

2
+ · · ·

)
− 9 ζ(3)λ3

4
√

2(8π2)2
I2

(√
λ
)

(4) −3 ζ(3)λ2

(8π2)2

(
4λ3

384 + 5λ4

7680 + 6λ5

368640 + · · ·
)

−3 ζ(3) (
√
λ)7

2(8π2)2
I3

(√
λ
)

(2, 2) −3 ζ(3)λ2

(8π2)2

(
6λ2

96 + 7λ3

1536 + 8λ4

61440 + · · ·
)

− 3 ζ(3)λ3

4(8π2)2

(
I2

(√
λ
)

+ 6√
λ
I3

(√
λ
))

Table 4. Results for the N = 2 superconformal matrix model in the planar limit. As before, n is

the sum of the components of ~n while ` is their number.

The N = 2 superconformal theory. Multiplying (4.16) by 3 ζ(3) g4

(8π2)2
and then taking

the large N limit, it is straightforward to obtain2

δA(0)

∣∣∣
planar

=−3ζ(3)λ2

(8π2)2

(
λ

8
+

2λ2

192
+

3λ3

9216
+· · ·

)
+· · ·=−3ζ(3)λ2

(8π2)2
I2

(√
λ
)
+· · · (4.31)

where the last ellipses stand for terms of higher transcendentality.

In a similar way, from (4.22) we easily get

δA(2)

∣∣∣
planar

= −3 ζ(3)λ2

(8π2)2

(
3λ

8
+

4λ2

96
+

5λ3

3072
+ · · ·

)
+ · · · . (4.32)

It is interesting to observe that if one compares this expression with the expansion of the

planar limit of the N = 4 amplitude Â(2) given in (4.29), one sees that each term of the

latter proportional to λk gets multiplied by

− 3 ζ(3)λ2

(8π2)2
(k + 2) . (4.33)

As we will see in section 5, this fact has a simple and nice diagrammatic interpretation.

The expansion (4.32) can be resummed in terms of modified Bessel functions as follows

δA(2)

∣∣∣
planar

= −3 ζ(3) (
√
λ)5

2(8π2)2

(
I1

(√
λ
)

+
2√
λ
I2

(√
λ
))

+ · · · . (4.34)

Taking into account the different normalization of the operator O(2)(a) we have used, our

result agrees with [46].

Proceeding in this way and using (4.24)–(4.26), it is not difficult to obtain the weak-

coupling expansions of δA(3), δA(4) and δA(2,2) in the planar limit, and eventually their

exact expressions. In table 4 we have collected our findings for the terms proportional to

ζ(3) in δA~n for all operators up to dimension n = 4.

2See also [51].
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From these explicit results it is possible to infer the following general formula

gn−2` δA~n
∣∣∣
planar

= − 3 ζ(3)

(8π2)2

(√
λ
)n−`+4

2
n
2

+`

{[
In−`

(√
λ
)

+
2(`− 1)√

λ
In−`+1

(√
λ
)] ∏̀

k=1

nk

+

(∑̀
i=1

δni,2

)
2√
λ
In−`+1

(√
λ
) ∏̀
k=1

nk

}
+ · · · (4.35)

which we have verified in all cases up to n = 7. We observe that there is a contribution,

represented by the second line above, which occurs only when the operator O~n(a) contains

at least a factor of the type tr a2. This fact has a precise diagrammatic counterpart, as we

will see in the next section.

Comparing the two exact expressions (4.35) and (4.30) and using the properties of the

modified Bessel functions, it is not difficult to realize that

gn−2` δA~n
∣∣∣
planar

= −3 ζ(3)λ2

(8π2)2

(
λ
∂

∂λ
+ `+

∑̀
i=1

δni,2

)(
gn−2` Â~n

∣∣∣
planar

)
+ · · · (4.36)

where, as usual, the ellipses stand for terms of higher transcendentality. Such a relation im-

plies that if we multiply each term λk in the weak-coupling expansion of gn−2` Â~n
∣∣
planar

by

− 3 ζ(3)λ2

(8π2)2

(
k + `+

∑̀
i=1

δni,2

)
, (4.37)

then we obtain the expansion of the ζ(3)-correction of the corresponding N = 2 planar am-

plitude gn−2` δA~n
∣∣
planar

. Also this formula, which generalizes (4.33) to any ~n, has a simple

and nice interpretation in terms of field theory diagrams, as we will see in the next section.

5 Perturbative checks in field theory

We now consider the direct field theory computation of the expectation values of chiral

operators with a circular BPS Wilson loop in a superconformal N = 2 theory defined on R4.

As explained in section 2, conformal invariance implies that all information about these

expectation values is contained in the amplitudes A~n defined in (2.12). The conjecture we

want to test is that these amplitudes match the corresponding ones A~n in the matrix model

that we introduced in (3.34), namely we want to show that

A~n = A~n . (5.1)

The diagrammatic evaluation in field theory of the correlators A~n beyond tree-level is

in general quite complicated. However, it becomes tractable if one only computes the

difference between the N = 2 result and the one we would have in the N = 4 theory. This

is the same strategy utilized in [48] to check the matrix model expression (4.19) for the

N = 2 Wilson loop itself, as well as in [47] to compute chiral-antichiral two-point functions

in absence of Wilson loops. We now briefly recall the main steps of this approach.
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We first split the N = 2 action as:

S
(Nf )
N=2 = Sgauge + SQ , (5.2)

separating the pure gauge term, Sgauge, with the N = 2 vector multiplet from the matter

term, SQ, which contains Nf hypermultiplets Q in the fundamental representation of the

gauge group. Then, we view the N = 4 vector multiplet as a combination of a N = 2

vector with an adjoint N = 2 hypermultiplet H; in this way the N = 4 SYM action can

be written as:

SN=4 = Sgauge + SH , (5.3)

so that

S
(Nf )
N=2 = SN=4 + SQ − SH . (5.4)

All terms in the right hand side of (5.4) have a well-established N = 1 superfield formula-

tion, which allows us to easily write down the Feynman rules in configuration space. For

this we refer to section 3.1 of [47], whose notations and conventions we consistently use in

the following.

From (5.4) we deduce that any correlator A~n of the N = 2 theory can be written as:

A~n = Â~n +A~n,Q −A~n,H (5.5)

where Â~n is the correlator in the N = 4 theory, while A~n,H and A~n,Q are the contributions

from diagrams in which the adjoint hypermultiplet H and the fundamental hypermultiplets

Q run in the internal lines. Therefore the difference between the N = 2 and the N = 4

amplitudes is

δA~n = A~n − Â~n = A~n,Q −A~n,H . (5.6)

Performing this diagrammatic difference in the perturbative field theory computations leads

to remarkable simplifications, since all diagrams without Q or H internal lines do not need

to be considered.

Starting from this set up, what we shall check, up to two loops, is in fact the following

equality:

δA~n = δA~n , (5.7)

where δA~n is the difference between the N = 2 and N = 4 matrix model results introduced

in (4.13).

5.1 Tree-level

At the lowest order in g the N = 2 and N = 4 amplitudes coincide:

A~n

∣∣∣
tree−level

= Â~n

∣∣∣
tree−level

; (5.8)

in other words,

δA~n

∣∣∣
tree−level

= 0 . (5.9)

Also in the matrix model this difference vanishes at the lowest order, see (4.15). Thus, the

equality (5.7) is satisfied at tree level.
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O~n(x)

W (C)

Figure 2. At the lowest perturbative order, the operator O~n(x) is connected to the Wilson loop

by n scalar propagators. Exploiting conformal invariance, we can place the operator in the origin,

i.e. in the center of the Wilson loop. Nevertheless, in this and in the following pictures we will

continue to place it outside the loop to avoid graphical clutter.

Actually, in this case it is easy (and also convenient for later purposes) to check directly

the validity of (5.1). Performing this check is helpful also to establish some facts that will

be useful at higher orders; in particular, the way the path-ordered integration over the

Wilson loop simplifies in the tree-level case will be exploited also in the two-loop order

computations. Thus, for later convenience we briefly show some details. At the lowest

order in g, the n chiral fields ϕ appearing in the operator O~n must be contracted with

the n antichiral fields present in the term of order n in the expansion on the Wilson loop

operator (2.3). This is represented by the diagram in figure 2.

Thus, we have

〈
W (C)O~n(0)

〉∣∣∣
tree−level

=
1

N

gn

n!

〈
P tr

(
n∏
i=1

∮
C
dτi

R√
2
ϕ̄(xi)

)
O~n(0)

〉
(5.10)

where we have denoted by xi = x(τi) the positions along the Wilson loop C. Using (2.7),

we rewrite this expression as

〈
W (C)O~n(0)

〉∣∣∣
tree−level

=
1

N

gnRn

2
n
2 n!
P

n∏
i=1

∮
C
dτi tr

(
T a1 · · ·T an

)
Rb1...bn~n

×
〈
ϕ̄a1(x1) · · · ϕ̄an(xn)ϕb1(0) · · ·ϕbn(0)

〉
. (5.11)

The vacuum expectation value in the second line above is computed using the free scalar

propagator 〈
ϕ̄a(xi)ϕ

b(0)
〉

=
δab

4π2 x2
i

=
δab

4π2R2
(5.12)

where we have exploited the fact that xi = x(τi) belongs to the circle C of radius R and

thus can be parameterized as in (2.9). In view of this, when we apply Wick’s theorem

in (5.11) we obtain an integrand that does not depend on the variables τi. The path

ordering becomes therefore irrelevant and, from the integration over τi, we simply get a

factor of (2π)n. Moreover the n! different contraction patterns all yield the same expression,
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O~n(x)

W (C) W (C)

W (C) W (C)

O~n(x)

O~n(x) O~n(x)

Figure 3. Diagrams which do not contain interaction vertices including H or Q hypermultiplets

and which therefore vanish in the difference between the N = 2 and the N = 4 theory. Here there

are some examples of diagrams which appear at order g2 with respect to the tree-level amplitude

A~n, but vanish in the difference δA~n.

due to the symmetry of the tensor R~n. Taking all this into account, we get〈
W (C)O~n(0)

〉∣∣∣
tree−level

=
1

N

gn

2
n
2

1

(2πR)n
R b1...bn
~n tr

(
Tb1 . . . T

bn
)
, (5.13)

which implies that

A~n

∣∣∣
tree−level

= Â~n

∣∣∣
tree−level

=
gn

N 2
n
2

R b1...bn
~n tr

(
T b1 . . . T bn

)
, (5.14)

in full agreement with the matrix model result (4.12).

5.2 Loop corrections

At higher orders in g we concentrate on the difference δA~n. As we already pointed out, the

number of diagrams which contribute to this difference is massively reduced. For example,

all diagrams represented in figure 3 yield a g2 correction with respect to the tree-level

amplitude A~n but they should not be considered in the computation of δA~n since they do

not contain internal lines with H or Q hypermultiplets.

One loop. It is easy to see that in the N = 2 superconformal theory there are no

corrections of order g2 with respect to the tree-level result. In fact, at this order the only

possible diagrams containing H and Q hypermultiplets arise from the one-loop correction

of the external scalar propagators as shown in figure 4. This one-loop correction is due to

the two diagrams represented in figure 5. Using the Feynman rules and conventions spelled

out in detail in [47], one can easily see that the sum of these two diagrams is proportional to

Nf tr
(
T bT a

)
−
(
i f bcd

) (
i fadc

)
=

(
Nf

2
−N

)
δab , (5.15)
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O~n(x)

W (C)

1

Figure 4. The only diagrams that yield a g2 correction to the tree-level amplitude A~n and contain

Q and H hypermultiplets arise from the one-loop correction of the external scalar propagators.

1 =

−

b a b a

b a

Figure 5. The one-loop correction to the scalar propagator. The first diagram on the right

hand side is the Q-contribution due the fundamental hypermultiplets; the second diagram is the

H-contribution due the adjoint hypermultiplet and so it comes with a minus sign.

which vanishes for Nf = 2N . Therefore, in the superconformal N = 2 theory we have

δA~n

∣∣∣
1−loop

= 0 , (5.16)

in full agreement with the matrix model result (see (4.15)).

Two loops. Let us now consider the two-loop corrections, i.e. those at order g4 with

respect to the tree-level amplitudes, and focus on the difference δA~n. The H or Q diagrams

which contribute at this order can be divided into two classes. The first one is formed by

those diagrams which contain a sub-diagram with the one-loop correction to the scalar

propagator, or to the gluon propagator or to the 3-point vertex. Some examples of such

diagrams are shown in figure 6. All these diagrams vanish in the N = 2 superconformal

theory. Indeed, both the one-loop correction to the gluon propagator and the one-loop

correction to the 3-point vertex are proportional to (Nf − 2N), just like the one-loop

correction to the scalar propagator as we have seen in (5.15)

The second class of diagrams that can contribute to δA~n at two loops in the supercon-

formal theory are those of the type displayed in figure 7. They contain either the irreducible

two-loop correction of the scalar propagator represented in figure 8, or the two-loop effective

vertex represented in figure 9. Thus, we can write

δA~n

∣∣∣
2−loop

= I~n + J~n (5.17)

where I~n and J~n correspond, respectively, to the diagrams of type (i) and (j).
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O~n(x)

W (C) (a)

1

W (C) (b)

1

O~n(x)

W (C) (d)

1

O~n(x)

W (C) (c)

1

O~n(x)

O~n(x)

W (C) (e)

O~n(x)

W (C) (f)

1

1
1

1

Figure 6. Some examples of diagrams contributing to δA~n at two loops. Diagrams (a) and

(c) contain the one-loop correction of the gluon propagator, diagram (d) contains the one-loop

correction to the 3-point vertex, while diagrams (b), (e) and (f) contain the one-loop correction

to the scalar propagator. All these diagrams vanish in the superconformal theory since they are

proportional to (Nf −2N). Beside these, one should also consider the one-loop diagrams of figure 3

in which one of the external scalar propagators is corrected at one loop. Also such diagrams vanish

in the superconformal theory.

O~n(x)

W (C) (i)

2

O~n(x)

W (C)

2

(j)

Figure 7. Diagrams that contribute to δA~n at two loops in the N = 2 superconformal theory. Dia-

gram (i) on the left contains the irreducible two-loop correction of the scalar propagator represented

in figure 8, while diagram (j) on the right contains the two-loop effective vertex depicted in figure 9.

Let us first consider the irreducible two-loop correction3 of the scalar propagator drawn

in figure 8. In configuration space this correction has been computed in [47] to which we

refer for details, and the result is4

− 8 g4Cba2 W2(x1, x2) (5.18)

3Notice that in the superconformal theory the only diagrams that contribute to the scalar propagator at

two loops are those represented in figure 8. Indeed, all other two-loop diagrams that correct the propagators

are proportional to (Nf − 2N).
4See eq. (3.24) of [47].
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2 =

−

b a b a

b a

Figure 8. The irreducible two-loop correction to the scalar propagator in the N = 2 superconformal

theory. The first diagram on the right hand side is the Q-contribution involving the fundamental

hypermultiplets, while the second diagram is the H-contribution due to the adjoint hypermultiplet

which therefore comes with a minus sign.

b1 a1

b2 a2
2 =

b1 a1

b2 a2

−
b1 a1

b2 a2

Figure 9. The two-loop effective vertex that can contribute to the amplitude A~n in the N = 2

superconformal theory. The first diagram on the right hand side is the Q-contribution involving the

fundamental hypermultiplets, while the second diagram is the H-contribution due to the adjoint

hypermultiplet and thus comes with a minus sign.

where the colour factor is

Cba2 = Nf tr
(
T bT cT aT c

)
− f bd4d1 f cd1d2 fad2d3 f cd3d4

= −
(Nf

2N
+N2

)
tr
(
T bT a

)
= −N

2 + 1

2
δab ,

(5.19)

while the superspace integral yields

W2(x1, x2) = − 3 ζ(3)

(16π2)2

1

4π2(x1 − x2)2
. (5.20)

Putting everything together, we find that the two-loop correction of the scalar propagator is

− g4 3 ζ(3)

(8π2)2

[
δab

4π2(x1 − x2)2

]
(N2 + 1) (5.21)

where the expression in square brackets is the tree-level propagator. Therefore, when we

compute the amplitude I~n corresponding to the diagram (i) of figure 7, we simply obtain

an expression which is proportional to the tree-level result (5.14). Indeed we get

I~n = −n g4 3 ζ(3)

(8π2)2

[
gn

N 2
n
2

R b1...bn
~n tr

(
T b1 . . . T bn

)]
(N2 + 1) (5.22)
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where the overall factor of n is due to the fact that the two-loop correction (5.21) can be

inserted in any of the n external propagators.

Let us now consider the two-loop diagram (j) of figure 7. To compute the corresponding

amplitude J~n, we have to perform all contractions as in the tree-level diagram but with two

scalar propagators replaced by the sub-structure corresponding to the two-loop effective

vertex of figure 9. The latter has been analyzed in [47] to which we refer again for details.

Considering that the two external legs with colour indices b1 and b2 are inserted at the

point x where the operator O~n is located, and the other two external legs with indices

a1 and a2 are inserted at two points x1 and x2 on the circular Wilson loop, the relevant

expression is5

2 g4C b1b2a1a2
4 W4(x, x;x1, x2) (5.23)

where the colour factor is

C b1b2a1a2
4 = Nf tr

(
T b1T a1T b2T a2

)
− f b1d4d1 fa1d1d2 f b2d2d3 fa2d3d4

= −1

2

(
δb1a1 δb2a2 + δb1b2 δa1a2 + δb1a2 δb2a1

)
,

(5.24)

while the superspace integral leads to

W4(x, x;x1, x2) =
6 ζ(3)

(16π2)2

[
1

4π2(x− x1)2

1

4π2(x− x2)2

]
. (5.25)

As is clear from the expression in square brackets, we still recover the same space depen-

dence of two scalar propagators as in the tree-level computation, even if the colour structure

of the C4 tensor is different. Exploiting conformal invariance to set x = 0 and recalling

the parametrization (2.9) for points on a circle, the above square brackets simply becomes

1/(2πR)4; thus the path-ordering and the integration over the Wilson loop become trivial

to perform, just as they were in the tree-level amplitude. Putting everything together and

replacing any pair of external scalar propagators with this effective two-loop vertex in all

possible ways, we obtain

J~n = g4 3 ζ(3)

(8π2)2

[
gn

N 2
n
2

R b1...bn
~n tr

(
T a1 . . . T an

)]
× 2

∑
p∈Sn−1

C
b1b2ap(1)ap(2)
4 δb3ap(3) . . . δbn−1ap(n−1) δbnan

(5.26)

where p ∈ Sn−1 are the permutations of (n−1) elements. We observe that the 1/n! coming

from the expansion of the Wilson loop operator at order gn is compensated by a factor of

n! that arises when we take into account the complete symmetry of the tensor R~n and the

cyclic symmetry of the trace factor in the square bracket. Furthermore the factor of 2 in

the last line of (5.26) is a combinatorial factor due to the multiplicity of the two-loop box

diagram of figure 9.

5See eq. (3.33) of [47].
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Summing I~n and J~n, we get

δA~n

∣∣∣
2−loop

=−g4 3ζ(3)

(8π2)2

[
gn

N 2
n
2

Rb1...bn
~n tr

(
T a1 . . .T an

)]
(5.27)

×

[
n(N2+1)δb1a1 . . . δbnan−2

∑
p∈Sn−1

C
b1b2ap(1)ap(2)
4 δb3ap(3) . . . δbn−1ap(n−1) δbnan

]
.

This is the final result of our diagrammatic computation of the two-loop correction to the

amplitude A~n in the N = 2 superconformal theory.

As an example, we work out the explicit expression for the lowest dimensional operator

O(2). In this case, we simply have

Rb1b2(2) = tr
(
T b1T b2

)
=

1

2
δb1b2 . (5.28)

Thus, the contribution from the diagram (i) is (see (5.22)):

I(2) = −2 g4 3 ζ(3)

(8π2)2

[
g2

2N

(N2 − 1)

4

]
(N2 + 1) , (5.29)

while from the diagram (j) we get (see (5.26)):

J(2) = −g4 3 ζ(3)

(8π2)2

[
g2

2N

(N2 − 1)

4

]
(N2 + 1) . (5.30)

Note that in this case both diagrams (i) and (j) provide colour contributions with the

same leading power of N . This is a specific feature of this operator and it does not hold for

higher dimensional operators unless they contain a factor of tr φ2 (see appendix B where

we discuss the cases corresponding to ~n = (4) and ~n = (2, 2) in which this property is

clearly exhibited). This fact will have important consequences for the planar limit as we

will see in the following subsection. Summing (5.29) and (5.30), we finally get

δA(2)

∣∣∣
2−loop

= −g6 ζ(3)

(8π2)2

9(N2 − 1)(N2 + 1)

8N
, (5.31)

in perfect agreement with the matrix model result (4.23).

We have explicitly performed similar checks for many operators of higher dimension

and always found a precise match between the field theory expression (5.27) and the matrix

model results summarized in table 2, thus confirming the validity of (5.7) up to two loops.

The details of the calculation in the cases ~n = (4) and ~n = (2, 2) are given in appendix B.

5.3 Planar limit

All the above checks are easily extended in the planar limit by keeping the highest power

of N and performing the substitution g2N = λ. In this limit the number of diagrams

which contribute to the correlator is drastically reduced, and thus such checks can be

pushed to higher orders in perturbation theory without much effort. Let us first review

the well-known N = 4 case [9–11].
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O~n(x)

W (C) (r) W (C) (s)

O~n(x)

Figure 10. In the planar limit of the N = 4 theory, the tree-level expression encoded in figure 2

gets corrected only by the so-called “rainbow” diagrams, the first two of which are represented here.

We have used a double line to denote the sum of the gluon and the scalar propagator, which always

occur together when attached to the Wilson loop and yield the simple expression given in (5.35).

The N = 4 theory. At leading order, using the tree-level result (5.14) that corresponds

to the diagram of figure 2, one easily finds

gn−2` Â~n

∣∣∣
tree−level,planar

= lim
N→∞

g2n−2`

N 2
n
2

R b1...bn
~n tr

(
T b1 . . . T bn

)
= c~n,0 λ

n−` (5.32)

where c~n,0 are numerical coefficients which can be deduced from table 1. In particular

we have:

c(2),0 =
1

8
, c(3),0 =

1

32
√

2
, c(4),0 =

1

384
, c(2,2),0 =

1

96
. (5.33)

In [9] it was argued that all diagrams with internal vertices cancel at the next order and

it was conjectured that analogous cancellations should occur at all orders in perturbation

theory. Thus, only the “rainbow” diagrams of the type represented in figure 10 contribute

to the amplitude Â~n in the planar limit.

The evaluation of these “rainbow” diagrams is particularly simple in the case of a

circular Wilson loop. Indeed, if we denote by wa(x) the combination of gluons and scalars

that appears inside the path-ordered exponential in (2.3), namely

wa(x) = iAaµ(x) ẋµ +
R√
2

(
ϕa(x) + ϕ̄a(x)

)
(5.34)

with x being a point on the circle C, then we have〈
wa(x1)wb(x2)

〉
=
δab

4π2

1− ẋ1 · ẋ2

(x1 − x2)2
=

δab

8π2R2
(5.35)

where in the last step we have used the parameterization (2.9). Thus, the contribution of

the internal propagators, represented by double lines in figure 10, is constant and similar to

the one of the external scalar propagators (see (5.12)) so that only combinatorial coefficients

have to be computed. For example, the diagram (r) yields a contribution of the form

c~n,1 λ
n−`+1 (5.36)

with

c(2),1 =
1

96
, c(3),1 =

1

512
√

2
, c(4),1 =

1

7680
, c(2,2),1 =

1

1536
. (5.37)
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Similarly, the diagram (s) leads to

c~n,2 λ
n−`+2 (5.38)

with

c(2),2 =
1

3072
, c(3),2 =

1

24480
√

2
, c(4),2 =

1

368640
, c(2,2),2 =

1

61440
. (5.39)

From these results it is possible to infer the following resummed expression

gn−2` Â~n

∣∣∣
planar

=
∞∑
j=0

c~n,j λ
n−`+j =

(√
λ
)n−`−1

2
n
2

+`−1
In−`+1

(√
λ
) ∏̀
i=1

ni (5.40)

which agrees with the matrix model result (4.30).

The N = 2 theory. In this case we focus on the planar limit of the difference δA~n and

in particular on the terms proportional to ζ(3). To obtain the result at the lowest order,

one simply has to take the two-loop result (5.27) and evaluate it in the large-N limit. As

we have seen in the previous subsection, there are two types of terms: one corresponding

to the diagram (i) of figure 7 and one corresponding to the diagram (j), which arise from

the two-loop contributions depicted, respectively, in figure 8 and 9. The correction to the

scalar propagator gives rise to a contribution that always survives in the planar; in fact

in (5.21) it was proved to be proportional to g4(N2 + 1), which in the planar limit reduces

to λ2. On the other hand, the two-loop effective vertex does not always contribute in the

planar limit, since it is leading for N →∞ only when it is attached to trϕ2. This can be

realized by noticing that in this case such a diagram, because of (5.24), always produces

the structure

tr
(
T b1T b2

)
δb1b2 δa1a2 =

1

2
(N2 − 1)δa1a2 , (5.41)

with the N2 factor making the contribution leading. Thus, the diagrams of type (i) always

contribute in the planar limit, while the diagrams of type (j) are sub-leading unless some

of the components of the vector ~n are equal to 2. This fact can be checked in the explicit

computations for O(2) (see (5.29) and (5.30)) and for O(4) and O(2,2) reported in appendix B.

These simple considerations give a nice field theory interpretation to some of the matrix

model results presented in section 4.3.

Building on the idea that all diagrams with internal vertices cancel at all orders in per-

turbation theory, like in the N = 4 model [9], one can construct a class of ζ(3)-proportional

diagrams, starting from the N = 4 “rainbow” diagrams and performing on them one of

the aforementioned planar two-loop corrections. This can be done either by correcting one

of the external scalar propagators, or by correcting one of the internal double-line propa-

gators6 or by including the two-loop effective vertex if O~n contains at least a factor trϕ2.

The result of performing any of these corrections is always equal to the original N = 4

“rainbow” diagram multiplied by −3 ζ(3)λ2

(8π2)2
. This analysis tells us how to get the N = 2

correction proportional to ζ(3) in the planar limit starting from the N = 4 amplitude. In

6Since these internal propagators and the scalar propagators are proportional to each other (see (5.35)

and (5.12)), also their planar two-loop corrections are proportional.
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fact, expanding (5.40) for small λ, the term of order k corresponds to a sum over “rainbow”

diagrams with (k − n + `) internal propagators and n external ones. Using the method

we just described, any such diagram can be corrected once for every internal propagator,

once for every external propagator and once for every factor trϕ2 appearing in O~n, giving

a total of

(k − n+ `) + n+
∑̀
i=1

δni,2 = k + `+
∑̀
i=1

δni,2 (5.42)

corrections proportional to −3 ζ(3)λ2

(8π2)2
. This result precisely matches the matrix model ex-

pression (4.37) and suggests that this class of diagrams reconstructs the full ζ(3)-term of

the N = 2 correlator at all orders in perturbation theory, just like the “rainbow” diagrams

make up the full N = 4 correlator.

6 Conclusions

We have verified up to two loops in the N = 2 superconformal theory that the one-point

amplitude A~n of a chiral operator in presence of a circular Wilson loop computed using

the matrix model exactly matches the amplitude A~n computed using standard field theory

methods with (super) Feynman diagrams. We have also discussed the planar limit of the

amplitudes and found a perfect agreement between the two approaches also in this case.

We have performed our checks in many examples with operators of dimensions up to n = 7,

even if here we have explicitly reported our results only for the low-dimensional operators

up to n = 4 for brevity.

We would like to remark that in order to obtain this agreement, an essential ingredi-

ent on the matrix model side is the g-dependent normal ordering of the chiral operators

introduced in [47]. This normal ordering prescription is equivalent to the Gram-Schmidt

orthogonalization algorithm discussed in [44] and later in [43, 45, 46, 52] in both N = 4

and N = 2 cases. In the N = 4 theory, however, this procedure actually does not intro-

duce any g-dependence, while in the N = 2 examples considered so far in the literature,

the g-dependent terms of the normal-ordered operators could not be really tested since

they affect only higher-loop subleading terms which have not been computed. This is the

case, for instance, of the two-point functions of chiral operators investigated in [44] for

the superconformal theory, or in [47] for the superconformal theory and for a special class

of operators in the non-conformal case. On the contrary, for the one-point functions in

presence of a Wilson loop that we have studied in this paper, such g-dependence already

shows up at two loops, and thus its crucial role for the agreement with the field theory

results could be tested in our two-loop calculations.

Several extensions and generalizations are possible. For example, one could compute

the one-point functions of chiral operators in presence of Wilson loops that are more gen-

eral than the circular one we have considered and that preserve a smaller amount of su-

persymmetry. Another interesting possibility would be to study the two-point functions in

presence of a Wilson loop (as in [53]) and see what kind of information could be extracted

from the matrix model in this case. An even more challenging development would be to
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consider non-conformal N = 2 theories [54] and check whether also in this case the matrix

model can be used to obtain the field theory amplitudes. As is clear from our discussion

in section 3, there is no obstruction to define and compute amplitudes in non-conformal

N = 2 theories. One simply has to take into account the fact that several cancellations do

not occur any longer when Nf 6= 2N and thus more terms have to be considered. On the

field theory side, instead, one has deal with delicate issues related to the renormalization

of the coupling constant, of the wave-function and of the composite operators, and also to

the appearance of a dynamically generated scale at the quantum level. We believe that

making some progress in this direction would be very interesting since the matrix model

approach is technically much more amenable than the diagrammatic one and allows one to

obtain results at high perturbative orders in a more efficient way.
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A One-point functions from defect conformal field theory

In a conformal field theory, the functional form of the one-point function of a conformal

operator O(x) in presence of a circular defect W (C) of radius R is completely determined.

One way to obtain this form is to use the embedding formalism, in which a point x ∈ R4 is

associated in a projective way to a null section P in the embedding space M1,5 of the form

P =

(
R2 + x2

2R
,
R2 − x2

2R
, xµ
)
, (A.1)

which satisfies P 2 ≡ P T η P = 0 with η = diag(−1, 1, 1, 1, 1, 1). Scalar operators O(x) of

dimension ∆ are associated to operators Ô(P ) which are homogeneous of degree ∆, namely

such that Ô(λP ) = λ−∆ Ô(P ).

In absence of defects, the conformal group SO(1, 5) is the isometry group of the em-

bedding space and acts linearly on P . In presence of the Wilson loop, we can split the

spacetime coordinates into “parallel” and “transverse” ones: xµ → (xa, xi), where a = 1, 2

and i = 3, 4. We will denote xaxa = r2 and xixi = L2, so that x2 = r2 +L2. The symmetry

is reduced according to the pattern

SO(1, 5)→ SO(1, 2)× SO(3) , (A.2)

with SO(1, 2) and SO(3) linearly acting, respectively, on

P‖ =

(
R2 + x2

2R
, xa
)

and P⊥ =

(
R2 − x2

2R
, xi
)
. (A.3)
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There are two scalar products invariant with respect to the two symmetry factors, which

we denote as

P •P ≡ P T‖ η P‖ with η = diag(−1, 1, 1) and P ◦P ≡ P T⊥ P⊥ . (A.4)

They are not independent, since P •P + P ◦P = P 2 = 0. Therefore, we can take as the

single independent invariant the quantity

‖x‖C ≡ 2
√
P ◦P =

√
(R2 − x2)2 − 4R2L2

R
. (A.5)

The one-point function
〈
W (C)O(x)

〉
=
〈
W (C) Ô(P )

〉
must depend on ‖x‖C , and

must be homogeneous of degree ∆ in it; thus it must necessarily be of the form〈
W (C) Ô(P )

〉
=

AO
(2π‖x‖C)∆

. (A.6)

The 2π factor is inserted for convenience and the constant AO is related to the value of the

correlator at x = 0, i.e. at P = P0 = (R2 ,
R
2 ,
~0) where ‖x‖C → R, so that

〈
W (C) Ô(P0)

〉
=

AO
(2πR)∆

. (A.7)

B Calculation of δA(4) and δA(2,2) at two loops

We provide some details for the calculation of the color factor in the amplitude δA(4) and

δA(2,2) at two loops.

δA(4) at two loops. When ~n = (4), the tensor R(4) associated to the chiral opera-

tor O(4) can be written as a normalized sum over all permutations of the generators in

tr
(
T b1T b2T b3T b4

)
, up to cyclic rearrangements, namely (see also footnote 1)

R b1b2b3b4
(4) =

1

4!
4
∑
p∈S3

tr
(
T bp(1)T bp(2)T bp(3)T b4

)
. (B.1)

Using this, we can easily compute the tree-level amplitude A(4)

∣∣
tree−level

given in (5.14):

A(4)

∣∣∣
tree−level

=
g4

4N
tr
(
T b1T b2T b3T b4

)
Rb1b2b3b4(4) . (B.2)

Using the explicit form (B.1), one can realize that tr
(
T b1T b2T b3T b4

)
Rb1b2b3b4(4) contains six

terms that have three different structures. The first one is

1

6
tr
(
T b1T b2T b3T b4

)
tr
(
T b1T b2T b3T b4

)
=

1

6

[
1

8

(
db1b2e + if b1b2e

)(
db3b4e + if b3b4e

)
+

1

4N
δb1b2δb3b4

]2

=
(N2 − 1)(N2 + 3)

96N2

(B.3)
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where the last equality follows from the group theory identities in appendix C. The second

type of structure is

1

6
tr
(
T b1T b2T b3T b4

)
tr
(
T b2T b1T b3T b4

)
=

1

6

[
(N2 − 1)(N2 + 3)

16N2
+ if b2b1c tr

(
T cT b3T b4

)
tr
(
T b1T b2T b3T b4

)]
= −(N2 − 1)(N2 − 3)

96N2
.

(B.4)

Up to relabeling of the indices, we have four such terms. Finally, the third structure is

1

6
tr
(
T b1T b2T b3T b4

)
tr
(
T b3T b2T b1T b4

)
=

1

6

[
− (N2 − 1)(N2 − 3)

16N2
+ if b4b3c tr

(
T cT b2T b1

)
tr
(
T b1T b2T b3T b4

)]
=

(N2 − 1)(N4 − 3N2 + 3)

96N2
. (B.5)

Summing these contributions and plugging the result in (B.2), we get

A(4)

∣∣∣
tree−level

= g4 (N2 − 1)(N4 − 6N2 + 18)

384N3
, (B.6)

which precisely matches the matrix model expression reported in the last-but-one row of

table 1.

Now let us consider the two-loop correction δA(4)

∣∣
2−loop

. From (5.27), we have

δA(4)

∣∣∣
2−loop

=−g4 3ζ(3)

(8π2)2

[ g4

4N
Rb1b2b3b4

(4) tr
(
T a1T a2T a3T a4

)]
(B.7)

×

[
4(N2+1)δb1a1 δb2a2 δb3a3 δb4a4−2

∑
p∈S3

C
b1b2ap(1)ap(2)
4 δb3ap(3) δb4a4

]
.

The first term in the square brackets, which corresponds to the sub-amplitude I(4) asso-

ciated to the diagram (i) of figure 7, is proportional to the tree-level result (B.6) and is

given by

I(4) = −g4 ζ(3)

(8π2)2

[
g4 (N2 − 1)(N2 + 1)(N4 − 6N2 + 18)

32N3

]
. (B.8)

The second term in the square brackets of (B.7), corresponding to the sub-amplitude J(4)

associated to the diagram (j) of figure 7, is a bit lengthy to compute, since it is no more

proportional to the tree-level expression (B.6). However, looking at the explicit form of

the tensor C4 which we rewrite here for convenience

C b1b2a1a2
4 = −1

2

(
δb1a1 δb2a2 + δb1a2 δb2a1 + δb1b2 δa1a2

)
, (B.9)

we can realize that

g4

4N
R b1b2b3b4

(4) tr
(
T a1T a2T a3T a4

)
δb1ap(1) δb2ap(2) δb3ap(3)δb4a4 = A(4)

∣∣∣
tree−level

(B.10)
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for any permutation p ∈ S3, thanks to the symmetry of R(4). Thus, the first two terms of

C4 produce color structures that are proportional to the tree-level one for each permutation

p. We can therefore write

J(4) = −g4 3 ζ(3)

(8π2)2

[
12A(4)

∣∣∣
tree−level

+
g4

4N
R b1b2b3b4

(4) tr
(
T a1T a2T a3T a4

) ∑
p∈S3

δb1b2 δap(1)ap(2) δb3ap(3) δb4a4

]
.

(B.11)

The last term must be computed explicitly. To do so we use the fact that

R aabc
(4) =

2N2 − 3

12N
δbc , (B.12)

so that

J(4) = −g4 3 ζ(3)

(8π2)2

[
12A(4)

∣∣∣
tree−level

+
g4

4N

2N2 − 3

12N

(
4 tr

(
T aT aT bT b

)
+ 2tr

(
T aT bT aT b

))]
= −g8 3 ζ(3)

(8π2)2

1

4N

[
(N2 − 1)(N4 − 6N2 + 18)

8N2
+

(N2 − 1)(2N2 − 3)2

24N2

]
= −g8 ζ(3)

(8π2)2

(N2 − 1)(7N4 − 30N2 + 63)

32N3
.

(B.13)

Notice that in the large-N limit, J(4) is subleading with respect to I(4). Summing the two

contributions, we find that the total amplitude δA(4)

∣∣
2−loops

is

δA(4)

∣∣∣
2−loops

= I(4) + J(4) = −g8 ζ(3)

(8π2)2

(N2 − 1)(N6 + 2N4 − 18N2 + 81)

32N3
(B.14)

which exactly matches the matrix model expression reported in the last-but-one row of

table 2.

δA(2,2) at two loops. In a similar way we perform the computation for the other 4-

dimensional operator, namely O(2,2), defined by the tensor

R b1b2b3b4
(2,2) =

1

4!
4
∑
p∈S3

tr
(
T bp(1)T bp(2)

)
tr
(
T bp(3)T b4

)
=

1

12

(
δb1b2δb3b4 + δb1b3δb2b4 + δb2b3δb1b4

)
.

(B.15)

Then, from (5.14) the tree-level amplitude:

A(2,2)

∣∣∣
tree−level

=
g4

4N
tr
(
T b1T b2T b3T b4

)
Rb1b2b3b4(2,2)

=
g4

4N

1

12

[
2 tr

(
T aT aT bT b

)
+ tr

(
T aT bT aT b

)]
=

g4

4N

(N2 − 1)(2N2 − 3)

48N
.

(B.16)
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We can see that this matches the matrix model expression reported in the last row of

table 1.

Let us then consider the two-loop correction δA(2,2)

∣∣
2−loop

. According to (5.27):

δA(2,2)

∣∣∣
2−loop

= −g4 3 ζ(3)

(8π2)2

[
g4

4N
R b1b2b3b4

(2,2) tr
(
T a1T a2T a3T a4

)]
(B.17)

×

[
4 (N2 + 1) δb1a1 δb2a2 δb3a3 δb4a4 − 2

∑
p∈S3

C
b1b2ap(1)ap(2)
4 δb3ap(3) δb4a4

]
.

The first term in the square brackets of the last line, which corresponds to the diagram of

type (i) in figure 7, is manifestly proportional to the tree-level result (B.16) and is given by

I(2,2) = −g4 ζ(3)

(8π2)2

[
g4 (N2 − 1)(N2 + 1)(2N2 − 3)

16N2

]
. (B.18)

The second term of the last line of (B.17) corresponds to the sub-amplitude J(2,2) associ-

ated to the diagram of type (j) in figure 7. Exploiting the symmetry properties of C4 and

R(2,2), we can immediately write it as

J(2,2) = −g4 3 ζ(3)

(8π2)2

[
12A(2,2)

∣∣∣
tree−level

+
g4

4N
R b1b2b3b4

(2,2) tr
(
T a1T a2T a3T a4

) ∑
p∈S3

δb1b2 δap(1)ap(2) δb3ap(3) δb4a4

]
.

(B.19)

Differently from J(4), the form of

R aabc
(2,2) =

N2 + 1

12
δbc (B.20)

implies that also J(2,2) is proportional to the tree-level amplitude. Indeed,

J(2,2) = −g4 3 ζ(3)

(8π2)2

[
12 + 2 (N2 + 1)

]
A(2,2)

∣∣∣
tree−level

= −g4 ζ(3)

(8π2)2

[
g4 (N2 − 1)(N2 + 7)(2N2 − 3)

32N2

]
.

(B.21)

We explicitly notice that in this case both I(2,2) and J(2,2) contribute to the leading order

in the large-N limit. In total we get:

δA(2,2)

∣∣∣
2−loops

= I(2,2) + J(2,2) = −g8 ζ(3)

(8π2)2

3 (N2 − 1)(2N2 − 3)(N2 + 3)

32N2
(B.22)

which matches the matrix model expression reported in the last row of table 2.
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C Group theory identities

Here we collect some group theory formulas that are useful to perform explicit calcula-

tions and check our results. We take the generators T a of SU(N) to be Hermitean and

normalized as

tr
(
T aT b

)
=

1

2
δab , (C.1)

and define the structure constants fabc by[
T a , T b

]
= i fabc T c , (C.2)

and the dabc-symbols by {
T a , T b

}
=

1

N
δab + dabc T c . (C.3)

Then one has

tr
(
T aT bT c

)
=

1

4

(
dabc + i fabc

)
, (C.4)

tr
(
T aT bT cT d

)
=

1

8

(
dabe + i fabe

)(
dcde + i f cde

)
+

1

4N
δab δcd , (C.5)

and

fabe f cde =
2

N

(
δac δbd + δad δbc

)
+ dace dbde − dade dbce , (C.6)

dabc dabd =
N2 − 4

N
δdc , (C.7)

fabc fabd = N δdc , (C.8)

fabc dabd = 0 . (C.9)
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