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Low Complexity Iterative Localization of
Time-Misaligned Terminals in Cellular Networks

Mathieu Van Eeckhaute, Thomas Van der Vorst, André Bourdoux, François Quitin,
Philippe De Doncker and François Horlin

Abstract—Recently, iterative localization has arisen as a
promising approach to localize a Mobile Station (MS) in a
cellular system. The conventional geo-location is obtained in a
two-step approach: propagation delays are estimated and then
the multi-lateration is responsible for the determination of the
user position, based on the estimated delays. Iterative localization
iterates between the two conventional steps to progressively
refine delay estimates based on the position estimate available
from the previous iterations. This localization scheme was seen
to provide appealing performances compared to the two-step
approach. It also seems to be computationally attractive with
respect to direct localization that estimates the position using
the digitized received signals directly. However, the iterative
localization solution developed in literature relies on a strict time
synchronization between MS and Base Stations (BSs). Moreover,
the computational complexity of the iterative approach is not
thoroughly compared to two-step and optimal solutions. This
paper therefore proposes a new iterative localization method able
to operate in a cellular system with time-misaligned terminals.
We show by means of a detailed complexity analysis that the
iterative positioning algorithm is one order of magnitude less
complex than direct localization. Simulation results prove that
the achievable performance after a few iterations approaches
the performance of the direct localization solution.

Index Terms—Iterative localization, direct positioning estima-
tion, performance/complexity analysis.

I. INTRODUCTION

In addition to the communication functionality, cellular
networks are evolving towards increasingly accurate geo-
location services [1]. In 2G and 3G, the Mobile Station (MS)
location is determined based on Enhanced Cell ID (E-CID)
that refines the location information obtained from the Cell
ID with the estimate of the Round Trip Time (RTT) and
the Received Signal Strength (RSS). The spatial resolution
of this method does not exceed 100 meters. The provided
position estimate is therefore mainly used to accelerate the
initialization phase of the more accurate Global Navigation
Satellite System (GNSS) positioning. Further on, 4G includes
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André Bourdoux is with the Inter-university Micro-Electronics Center
(IMEC), Kapeldreef 75, 3008 Leuven, Belgium (e-mail:bourdoux@imec.be)

a specific Positioning Reference Signal (PRS) in its protocol
to allow a fine estimation of the signal Time-of-Arrival (ToA).
This PRS is defined as an Orthogonal Frequency Division
Multiplexing (OFDM) signal spread in time and frequency [2].

Localization methods based on the ToA rely on the estima-
tion of the absolute time-of-flight between the source and the
receiver. The MS must be strictly time synchronized to the
Base Stations (BSs). In practice, the quality of the backbone
network allows to synchronize the BSs together but the time
offset of the MS often remains unknown. Estimated ToAs are
therefore affected by a common time offset. The transmitter
position can then be estimated together with the time offset by
working with the estimated ToAs directly. Another solution is
to eliminate the unknown time offset by defining a set of Time
Difference of Arrivals (TDoAs) from the estimated ToAs.

The conventional two-step approach to localize a source
first estimates ToAs/TDoAs using the received signals. The
position of the MS is then determined in a multi-lateration
step where the non-linear system of equations formed by the
ToA/TDoA estimates is solved. A lot of algorithms have been
developed in literature to perform this multi-lateration. They
can work on the non-linear equations like the Maximum Like-
lihood (ML) estimator developed in [3]. This estimator jointly
estimates the position and the time offset of the user from the
ToA estimates. Paper [4] rather proposes an ML estimator
working with TDoAs extracted from the ToA estimations.
Localization algorithms can also work on linearized equations
like in [5], [6] for TDoA and in [7] for ToA formulations.

One of the main causes of inaccuracies in ToA-based
cellular localization systems is multipath propagation. In urban
environments, Line-of-Sight (LOS) condition can often not
be guaranteed between the MS and all the BSs involved in
the localization process. Non Line-of-Sight (NLOS) conditions
introduce a bias in the ToAs observed at the BSs [8]. In two-
step positioning, multipath propagation can be alleviated at
both delay estimation and multi-lateration steps. The delay
estimation generally consists in estimating the ToA of the
first arrival path. This can be done using the Generalized
Maximum Likelihood approach of [9] which jointly estimates
all multipath coefficients and their arrival times in an iterative
manner. Another approach is the frequency domain super-
resolution ToA estimation of [10] and [11]. Those subspace
methods use an estimation of the signal autocorrelation which
requires a large number of independent signal observations
with the same ToA. The authors of [12] and [13] rather rely
on the central limit theorem for random vectors to formulate an
ML ToA estimator in dense multipath. They show that based
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on some prior knowledge on the shape of the channel power
delay profile their estimator outperforms super-resolution and
GML approaches in a practical indoor environment. Due to
the blockage of direct path, the ToA of the first path may be
affected by a positive bias. A comprehensive survey of the
main NLOS mitigation techniques in the multi-lateration step
is provided in [14] and references therein. While most of the
NLOS mitigation techniques in [14] require prior information
on NLOS errors, [15] more recently proposed a NLOS multi-
lateration algorithm for Wireless Sensor Networks able to
operate without any prior information on NLOS errors. The
latter method does not discard the NLOS range measurements
and relaxes the localization problem using semi-definite pro-
gramming (SDP) to limit the implementation complexity.

Another methodology to estimate the user position is the
Direct Position Estimation (DPE) proposed in papers [16] and
[17]. While conventional two-step location systems require
ToA/TDoA estimates to geometrically solve user coordinates,
DPE directly estimates the position coordinates from the
digitized received signals. Paper [18] analytically demonstrates
that the two-step approach cannot overcome DPE while [19]
shows by simulations that DPE provides an important per-
formance gain compared to the two-step method, especially
for lower Signal-to-Noise Ratios (SNRs). DPE algorithms
proposed in literature rely on the optimization of a multi-
variate non-convex cost function, like the ML estimator pro-
posed in [16]. Although outperforming the two-step approach,
this method suffers from a significant complexity increase.
Digitized received signals also need to be transmitted to the
fusion center. This incurs a lot of communication overhead.

At the time of writing, there is only a few DPE algorithms
designed to operate with a frequency-selective multipath envi-
ronment. Authors of [20] develop an Angle of Arrival (AoA)
based DPE method working with frequency-selective channels
but assuming strong LOS propagation. Paper [21] recently
introduced a joint ToA-AoA DPE technique operating with
an arbitrary multipath channel. The algorithm works with
OFDM signals and relies on a subspace method to limit the
computational load. However, the latter approach needs a large
number of signal observations and requires to estimate the
location of the scatterers.

An intermediate approach between two-step and direct
positioning is proposed in [22]. Instead of transmitting the
received signal to the fusion center as in DPE, each BS only
sends the sufficient statistics (sample covariance matrix) to
estimate the position at the fusion center. This method has
only been developed for Angle-of-Arrival based positioning
using narrowband signals received by antenna arrays at the
BSs. Paper [22] relies on the Multiple Signal Classification
(MUSIC) algorithm to derive the user position. Authors of [23]
rather perform the localization from the correlation matrices
using the Method-Of-Direction Estimation (MODE) algorithm
that is more robust to correlation in the received signals.

We recently demonstrated that the performance of the DPE
can be approached by iterating between the two conventional
steps (ToA estimate and multi-lateration) [24]. To the best
knowledge of the authors, there exists no other comparable
iteration-based localization method in literature. The algorithm

makes use of the Bayes framework to take into account prior
knowledge on the statistics obtained from the previous itera-
tions. Information exchanged between the delay estimation and
position estimation steps consists of the means and variances
of delay and position estimates. However, our original work
unrealistically assumed the MS to be strictly synchronized to
the BSs and did not include any computational complexity
analysis.

Contributions: The contributions of this paper can be
summarized as follows:
• We propose an iterative positioning algorithm able to

localize a MS affected by an unknown time offset. The
proposed position estimation step jointly determines the
user coordinates and the time offset based on the ToA
measurements from the delay estimation step. Those
position and time offset estimates are used as prior
information for the next iteration.

• We show the computational savings achieved by the
iterative formulation compared to DPE by means of a
detailed complexity analysis.

• We illustrate the performance of the developed algorithms
using numerical simulations. We focus on an emerging
cellular scenario making use of the OFDM modulation in
a network composed of small cells with strictly synchro-
nized base stations. We assess the impact of multipath
propagation on our algorithm in a LOS and obstructed
LOS scenario.

The rest of the paper is organized as follows. Section II
introduces the OFDM signal model. A description of the
iterative positioning algorithm is provided in Section III. The
complexity of the considered localization schemes is analyzed
in Section IV. Section V numerically assesses the complexity
and the performance compared to state-of-the-art DPE and
two-step approaches.

Throughout the text, vectors and matrices are identified by
lowercase and uppercase bold letters respectively. The real part
operator is represented by <{}. Expression diag

(
x
)

represents
a diagonal matrix with elements of vector x on the diagonal.
The ith element of vector x is denoted by xi while a vector
containing all elements of x excepting the kth one is written
as xk.

II. SYSTEM MODEL

We consider a cellular network operating with OFDM
modulation. For the sake of clarity, we focus on the uplink,
but the discussion can easily be extended to the downlink
as long as BSs transmit orthogonal signals. The MS is si-
multaneously connected to K neighbouring time-synchronized
BSs and operates on a communication bandwidth B centered
around the carrier frequency fc. The OFDM modulation splits
the communication bandwidth in Q orthogonal sub-carriers
allocated to data or pilot symbols. A cyclic prefix (CP)
is inserted in each multi-carrier block. This CP allows to
maintain orthogonality among the sub-carriers when the signal
undergoes a time dispersive channel.

For the sake of simplicity, we assume a single path Line-Of-
Sight (LOS) channel introducing a delay τk between the MS
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and the kth BS. Delay τk(x, y) = dk(x, y)/c is the time-of-
flight of the signal with dk(x, y) =

√
(x− xk)2 + (y − yk)2

and c being the speed of light. Coordinates {x, y} and {xk, yk}
respectively denote the position of the MS and of the kth base
station.

The received OFDM signal is affected by a time offset and
a carrier frequency offset (CFO) that are roughly estimated
before the positioning takes place. This is achieved using
the preamble sequences appearing at the beginning of each
frame in typical OFDM-like communication systems [25].
The rough synchronization leaves a remaining CFO that can
be approximated as a common phase offset affecting all
sub-carriers in a given multi-carrier block. There is also a
remaining time offset tk that falls within the cyclic prefix. As
all BSs are perfectly time synchronized, the remaining time
offset tk can be expressed as

tk(x, y, t0) = τk(x, y) + t0 (1)

where t0 is the common time offset between the MS and the
BSs. Multiplying expression (1) by the speed of light gives
the pseudorange observed at BS k

δk(x, y, t0) = dk(x, y) + δ0 (2)

where δ0 = ct0 is the range offset.
Considering that the time-of-arrival tk(x, y, t0) is shorter

than the CP duration, sub-carriers remain orthogonal and the
frequency domain signal received on sub-carrier q at BS k is
given for one OFDM block by

rkq = ake
jφksqe

−j2π qδk(x,y,t0)

QTc + wkq (3)

for q = −Q/2, ..., Q/2− 1 and k = 1, ...,K. Symbol sq can
either carry data or be a pilot symbol, T = 1/B is the sample
period and ak models the signal amplitude. The term wkq is
the Additive White Gaussian Noise (AWGN) of variance σ2

wk
affecting sub-carrier q at BS k. The variance of this AWGN
is assumed to be known at the receiver.

Base station k then estimates the pseudorange δk(x, y, t0)
by observing model (3) on the subset of pilot sub-carriers
P = {q1, ..., qP } reserved for positioning. Since the pseu-
dorange is estimated using positioning pilot sub-carriers of
a single OFDM block, the channel can be assumed constant
during the localization process.

By gathering received signals on pilot sub-carriers, we can
build an equivalent vector model

rk = ake
jφks(δk) + wk (4)

where

rk = [rkq1 , ..., rkqP ]T (5)

wk = [wkq1 , ..., wkqP ]T (6)

and

s(δk) = [sq1e
−j2π q1δkQTc , ..., sqP e

−j2π qP δkQTc ]T (7)

with δk standing for δk(x, y, t0).
Pilot sub-carriers considered to estimate the pseudorange

in this paper are used in nowadays cellular systems for ToA

Pseudorange
estimation

position
estimation

coordinates to
pseudorange

Fig. 1. Iterative Delay/Position Estimation.

estimation. For example in LTE, such frequency domain pilot
symbols are the Sounding Reference Signals (SRS) in uplink
and the Positioning Reference Signal (PRS) in downlink [2].

III. ITERATIVE POSITIONING

The proposed positioning system extends the framework
developed in [24] to a scenario in which the MS is not strictly
time synchronized to the BSs. The working principle of the
iterative algorithm is illustrated in Fig. 1.

In uplink, two implementations of the algorithm can be
considered in backhaul cellular systems. The pseudorange
estimation step can be implemented at the base stations. Those
base stations would then transfer the pseudorange estimates
and their reliability to a fusion center (similar to the LTE
Evolved Serving Mobile Location Center) that implements the
multi-lateration [26, chap. 2]. Antenna sites can alternatively
directly transfer their baseband signals to the fusion center that
would then implement both pseudorange estimation and multi-
lateration steps. Exchanges between base stations and fusion
center involved in the first implementation would introduce
a 10ms delay at each iteration [26, chap. 2]. While not
introducing additional delay, the second implementation would
require a high capacity backhaul between the antenna sites
and the baseband processing unit, like optical fibers linking
the remote radio heads and the baseband unit in a 3GPP dis-
tributed antenna Coordinated Multi-Point (CoMP) system [26,
chap. 12]. Our positioning algorithm can also be implemented
in downlink as long as BSs transmit orthogonal signals. In
this case the mobile station implements both pseudorange and
position estimation steps.

A. Pseudorange Estimation

One independent pseudorange measurement is made per
base station. The prior information received on the pseudor-
ange (estimate and reliability of this estimate) is refined using
the pilot sub-carriers of the received OFDM signal. Resorting
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to the Bayes framework [27], the posterior Probability Density
Function (PDF) of δk can be obtained as follows

p(δk|rk) =
p(rk|δk)p(δk)

+∞∫
−∞

p(rk|δk)p(δk)dδk

. (8)

Similar to [24], we assume that the observed pseudorange δk
has a Gaussian prior PDF characterized by its mean µδk and
its variance σ2

δk

p(δk) = Cδk exp
(
− 1

2σ2
δk

(δk − µδk)
2 ) (9)

where Cδk is a constant. We also know from (4) that the
received signal rk follows a Gaussian distribution

p(rk|δk, ak, φk) = Crk exp
(
− 1

σ2
wk

(
rk − akejφks(δk)

)H
·
(
rk − akejφks(δk)

) )
(10)

where Crk is a constant.
The PDF p(rk|δk) in (8) is obtained from (10) by marginal-

izing the nuisance parameters ak and φk

p(rk|δk) =

+∞∫
−∞

+∞∫
−∞

p(rk|δk, ak, φk)p(ak)p(φk)dakdφk. (11)

The final exression of the posterior delay distribution is given
in (12). The latter expression is obtained by substituting
expressions (9) - (11) in (8) and simplifying terms that do
not depend on δk, ak or φk.

Computing the mean and the variance of the pseudorange
knowing the latter posterior PDF provides the Minimum
Mean Square Error (MMSE) estimation δ̂k together with its
reliability [27]

δ̂k =

+∞∫
−∞

δk p(δk|rk)dδk (13)

σ2
ek

=

+∞∫
−∞

(δk − δ̂k)2p(δk|rk)dδk (14)

where ek = δk− δ̂k can be seen as the pseudorange estimation
error.

B. Joint Position and Synchronization Estimation

The fusion center makes one independent estimation per
base station. For each base station, the position of the MS
is deduced from the pseudorange estimates of the K − 1
other BSs. Excluding the current BS ensures the independence
of the prior information communicated to the time-of-arrival
estimation step in the next iteration with the signal received
at the base station. This implies that our algorithm requires at
least four BSs to jointly synchronize and localize a MS in the
2D plane. The error ek corrupting the observed pseudorange at
base station k is assumed to be Gaussian distributed of zero

mean and variance σ2
ek

. The pseudorange observed at BS k
reads

δ̂k = δk(x, y, t0) + ek (15)

We can build an equivalent vector model used to compute
the position estimate at base station k by gathering the
observed pseudoranges from the K − 1 other BSs

δ̂
k

= δk(x, y, t0) + ek (16)

where

δ̂
k

= [δ̂1, ..., δ̂k−1, δ̂k+1, ..., δ̂K ]T (17)

δk(x, y, t0) = [δ1(x, y, t0), ..., δk−1(x, y, t0),

δk+1(x, y, t0), ..., δK(x, y, t0)]T (18)

ek = [e1, ..., ek−1, ek+1, ..., eK ]T . (19)

Note that the index of the target base station is absent in those
vector expressions.

Elements of ek are independent and of possibly different
variance since the reliability of the distance estimations can
depend on the base station index. The noise covariance matrix
is therefore diagonal and given by

Cek = diag
(
[σ2
e1 , ..., σ

2
ek−1

, σ2
ek+1

, ..., σ2
eK ]
)
. (20)

The position estimate from base station k and its reliability
are obtained using the posterior PDF of the position given the
pseudorange estimations of the K − 1 other BSs. We assume
coordinates x and y to be uniformly distributed on intervals
[xmin, xmax] and [ymin, ymax]. The time offset t0 is also
considered to be uniformly distributed on [t0min

, t0max
] and is

independent from the user position. The posterior PDF of the
user position is thus expressed by

p(γ|δ̂
k
) =

p(δ̂
k
|γ)p(γ)

+∞∫
−∞

p(δ̂
k
|γ)p(γ)dγ

(21)

where γ gathers variables x, y and t0, i.e. γ = [x, y, t0]T .
We therefore have that

p(γ) =


(∏3

l=1 γl,max − γl,min

)−1
γmin ≤ γ ≤ γmax

0 otherwise
(22)

where γmin = [xmin, ymin, t0min
]T and

γmax = [xmax, ymax, t0max
]T From (16), we know

that the PDF p(δ̂
k
|γ) is Gaussian distributed, i.e.

p(δ̂
k
|γ) = Ck exp

(
− 1

2

(
δ̂
k
− δk(γ)

)T
C−1
ek

(
δ̂
k
− δk(γ)

))
(23)

where Ck is a constant.
Inserting expression (23) in (21) and remembering that γ

follows the uniform distribution (22) yields after simplification
of the terms independent from γ that
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p(δk|rk) =

(
+∞∫
−∞

+∞∫
−∞

exp
(

2
σ2
wk

ak cosφk<{rHk · s(δk)} − a
2
kP
)
p(ak)p(φk)dakdφk

)
· exp

(
1
σ2
δk

(µδkδk −
δ2k
2
)
)

+∞∫
−∞

(
+∞∫
−∞

+∞∫
−∞

exp
(

2
σ2
wk

ak cosφk<{rHk · s(δk)} − a
2
kP
)
p(ak)p(φk)dakdφk

)
· exp

(
1
σ2
δk

(µδkδk −
δ2
k
2
)
)
dδk

. (12)

p(γ|δ̂
k
) =


exp

((
δ̂
k− 1

2δ
k(γ)
)T
·C−1

ek
·δk(γ)

)
γmax∫
γmin

exp

((
δ̂
k− 1

2δ
k(γ)
)T
·C−1

ek
·δk(γ)

)
dγ

. γmin ≤ γ ≤ γmax

0 otherwise
(24)

The MMSE estimate of γ is given by the mean vector

µ
γ|δ̂k =

[
µ
x|δ̂k , µy|δ̂k , µt0|δ̂

k

]T
that can be obtained as

µ
γ|δ̂k =

γmax∫
γmin

γ p(γ|δ̂
k
)dγ. (25)

The reliability of the estimate of γ is associated to the
covariance matrix

C
γ|δ̂k =


σ2

x|δ̂k
Γ
xy|δ̂k Γ

xt0|δ̂
k

Γ
xy|δ̂k σ2

y|δ̂k
Γ
yt0|δ̂

k

Γ
xt0|δ̂

k Γ
yt0|δ̂

k σ2

t0|δ̂
k

 . (26)

This matrix computes

C
γ|δ̂k =

γmax∫
γmin

(γ − µ
γ|δ̂k)(γ − µ

γ|δ̂k)T p(γ|δ̂
k
)dγ. (27)

The MMSE estimate of γ for the current iteration is
obtained from the average of the estimates acquired by the
K BSs

γ̂ =
1

K

K∑
k=1

µ
γ|δ̂k . (28)

C. Position to Pseudorange Conversion

As explained in Section III-A, the pseudorange estimation
step of the next iteration requires the knowledge of the
mean and variance of the prior distribution of the observed
pseudorange. Those two first order moments can be computed
knowing the mean vector µ

γ|δ̂k and covariance matrix C
γ|δ̂k .

However, relationships between γ and the pseudoranges are
non-linear. In order to ease the computations, we perform
a linear approximation around the mean to obtain closed
form expressions. This makes sense since elements of the
covariance matrix C

γ|δ̂k are generally small. We can therefore
approximate the pseudorange by its first order expansion
around its mean

δk(x, y, t0) ≈ δk(µ
x|δ̂k , µy|δ̂k , µt0|δ̂

k)− xk − µx
dk(µx, µy)

(x− µ
x|δ̂k)

− yk − µy
dk(µx, µy)

(x− µ
x|δ̂k) + c(t0 − µt0|δ̂k)

.

(29)

The mean pseudorange used as prior information for base
station k is therefore approximated by

µδk ≈ δk(µ
x|δ̂k , µy|δ̂k , µt0|δ̂

k). (30)

The variance of this prior information is by definition given
by

σ2
δk

= E{(δk(x, y, t0)− µδk)
2} (31)

where operator E{} denotes the statistical expectation.
Using (29) and (30), it results from (31) that this variance

can be approximated by

σ2
δk
≈ 1

d2k(µ
x|δ̂k , µy|δ̂k)

 xk − µx|δ̂k
yk − µy|δ̂k

−cdk(µ
x|δ̂k , µy|δ̂k)


T

·


σ2

x|δ̂k
Γ
xy|δ̂k Γ

xt0|δ̂
k

Γ
xy|δ̂k σ2

y|δ̂k
Γ
yt0|δ̂

k

Γ
xt0|δ̂

k Γ
yt0|δ̂

k σ2

t0|δ̂
k

 ·
 xk − µx|δ̂k

yk − µy|δ̂k
−cdk(µ

x|δ̂k , µy|δ̂k)

 .
(32)

IV. COMPLEXITY AND COMMUNICATION OVERHEAD
ANALYSIS

In this section, we analyze the computational complexity of
the iterative positioning scheme and compare it to state-of-the-
art approaches. We also compare DPE, two-step and iterative
positioning approaches in terms of communication overhead.

A. Computational Complexity

We define the computational complexity as the number
of real multiplications required to estimate the user position
based on the received signals. For the sake of simplicity,
we do not consider additions and subtractions since their
implementation complexity is negligible compared to multi-
plications and divisions. The small number of divisions make
their impact on the total complexity negligible. We therefore
also discard divisions in our analysis. Complex multiplications
are assumed to require three real multiplications [28]. To keep
the discussion as simple as possible, we assume that grids are
used to assess the numerical integrals.

In the following, symbols K and P respectively denote the
number of base stations and the number of pilot sub-carriers.
N is the number of equispaced points composing both coor-
dinates intervals [xmin, xmax] and [ymin, ymax]. The common
phase φk is supposed to be uniformly distributed on [0, 2π[.
We assume ak to be Rician distributed. Numerical integrals
to marginalize the phase and the amplitude in pseudorange
estimation and DPE are respectively computed on Nφ and Na
points. We also consider integrals on δk and t0 to be computed
on Nδ and Nt0 points respectively.
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1) Direct Positioning Estimation: The DPE scheme con-
sidered in this paper is designed according to the MMSE
criterion (see Appendix A). It relies on the estimation of
the posterior PDF of the user position (46). To compute the
numerator of this PDF, the theoretically received signal vector
s(δk(x, y, t0)) is compared to the actually received signal rk
on the pilot sub-carriers. This involves the multiplication of
the two P × 1 complex vectors rk and s(δk(x, y, t0)) for
all possible combinations of x, y and t0. Assuming all the
values of s

(
δk(x, y, t0)

)
to be pre-computed and neglecting

the impact of the exponential and real part operators, assessing
the numerator of (46) requires 3N2Nt0KP real multiplica-
tions. Marginalizing the phase φk and the amplitude ak and
multiplying the K resulting PDFs p(rk|γ) approximately re-
quires N2Nt0NaNφ real multiplications. Numerical integrals
involved in the computation of the denominator of (46) and
of the position and clock offset estimator (47) can also be
neglected compared to the cost of computing the numerator
of (46). We can therefore consider that DPE requires

Cdirect ≈ N2Nt0K(3P +NaNφ) (33)

real multiplications to determine the user location.
2) Two-step Localization: The two-step position estimation

is nearly equivalent to the first iteration of the iterative
localization procedure. Each base station first estimates the
mean pseudoranges of the received signals together with their
reliabilities using the MMSE estimator described in expres-
sions (12) to (14). Building the posterior PDF (12) involves
to compute the frequency domain correlation rHk ·s(δk) for all
possible values of δk. Numerical integrals needed to compute
the denominator of (12) and the mean and variance of the
pseudorange can be neglected. The impact of the right term
of the numerator of (12) linked to the prior pseudorange
distribution can also be neglected as well as the exponential
and real part operators. Marginalizing the common phase
φk and the amplitude approximately requires NaNφNδ real
multiplications for each BS. Estimating the time-of-arrival
for the K base stations therefore approximately requires
KNδ(3P +NaNφ) real multiplications.

The fusion center then deduces the MMSE user position
from the K pseudorange estimates using the posterior position
PDF (24). The latter PDF needs to be assessed for each
possible values of x, y and t0. Neglecting the cost of numerical
integrals involved in expressions (24) to (27), this position es-
timator approximately requires N2Nt0K real multiplications.
We again neglect the exponential and real part operators in the
numerator of (24) and assume that values of δk(x, y, t0) are
pre-computed over the whole parameter grid. This makes the
complexity of the MMSE based two-step estimator equal to

C2s ≈ (Nδ(3P +NaNφ) +N2Nt0)K. (34)

3) Iterative Localization: Similarly to the two-step estima-
tion, we assume s(δk) and δk(x, y, t0) to be pre-computed for
all parameter values. For the pseudorange estimation, the term
corresponding to the PDF p(rk|δk) in (12) can be computed
only once and prior to iterating and will therefore only be
taken into account at the first iteration. For the next iterations,
the dominant terms are the numerical integrals to compute the

mean and variance of the pseudorange estimate. They require
approximately KNδ real multiplications.

Each base station sends its pseudorange estimate together
with its reliability to the fusion center where the MS position is
estimated. Similar to the two-step case, the posterior PDF (24)
is computed for each base station based on the K − 1 other
stations. Additional operations are also required to compute
the mean vector µγ|δ̂k and covariance matrix Cγ|δ̂k . Those
operations can be neglected compared to the computation of
the posterior PDF (24).

The complexity of operations (30) and (32) to convert
position informations to a pseudorange information can also
be neglected. This leads to a complexity for the MMSE based
iterative algorithm equal to

Cit ≈ Niter
(
KN2Nt0(K − 1) +KNδ

)
+KNδ(3P +NaNφ)

(35)

where Niter denotes the number of iterations.

B. Communication Overhead

If pseudoranges are estimated at the BSs, another advan-
tage of the iterative approach over the DPE is its reduced
communication overhead. Considering an uplink positioning
scenario, the direct approach indeed requires each base station
to transmit its received signal on the pilot sub-carriers to the
fusion center. Assuming a Nb bits analogue to digital converter
for I and Q branches at each base station, the fusion center
should receive

bdirect = 2Nb · P ·K (36)

bits exclusively dedicated to positioning.
For each step of the iterative approach, each base station

receives corresponding µδk and σ2
δk

from the fusion center,
estimates the pseudoranges and transmits those estimates δ̂k
and σ2

ek
back to the fusion center. This makes the total number

of bits dedicated to positioning equal to

bit = 2Nb ·K · (2Nit − 1) (37)

where we assumed that mean and variance estimates are
represented on Nb bits. Nit denotes the number of iterations.

In the two-step approach, the BSs only transmit their
pseudorange estimates once to the fusion center. The number
of bits dedicated to positioning is therefore

b2s = 2Nb ·K. (38)

Comparing expression (37) to (36) and (38) for 4 BSs, P = 64
and Nit = 6 iterations yields that the communication overhead
of the iterative approach is nine times lower than the DPE but
seven times higher than the two-step approach.

V. SIMULATION RESULTS

The following section investigates the performance of the
positioning algorithms. We assume a system of four base
stations laying at the corners of a 100 m sided square. The MS
lies at arbitrary positions in the square and communicates in
the uplink with the K = 4 BSs at a carrier frequency of 2 GHz.
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Fig. 2. Convergence of the Iterative Algorithm -
Mean Distance Error as a Function of the Signal-to-Noise Ratio.

The uplink communication uses the OFDM modulation over
a bandwidth of 40 MHz. Pilot symbols are spread on P = 64
equispaced sub-carriers among 1024. We assume a single
path propagation channel. The common phase φk affecting
the received signal in (4) is considered to be uniformly
distributed on [0, 2π[. We consider a strong Line-Of-Sight
(LOS) scenario and therefore assume the signal amplitude
ak to be Rician Distributed with a Rice factor of 22dB.
Such a Rice factor is used for the first tap of the strong
LOS ETSI TDL-E channel model [29]. The Rice factor is
assumed to be known by the receiver. The time offset t0
is randomly drawn from [0ns, 250ns]. Numerical integrals
of the MMSE position estimator are assessed considering
that search intervals [xmin, xmax] and [ymin, ymax] are both
composed of N = 70 equispaced points. The uniform search
interval [t0min

, t0max
] is defined on Nt0 = 50 points. We also

consider the interval of possible pseudoranges [δmin, δmax] to
be composed of Nδ = 500 points. The numerical integral to
marginalize the common phase φk and the amplitude ak are
respectively assessed on Nφ = 30 and Na = 10 equispaced
points. Those interval lengths are sufficient to make numerical
approximations negligible compared to the noise. Algorithm
performances depicted in Section V-A are averaged over 500
MS position and noise realizations.

A. Algorithm performance

Figs. 2 illustrates the convergence of the iterative positioning
algorithm. This figure depicts the mean distance error as a
function of the SNR for an increasing value of the number
of iterations. For a given SNR and iteration index, this mean
distance error ed is computed as

ed =
1

Nsim

Nsim∑
n=1

√
(x̂n − xn)2 + (ŷn − yn)2 (39)

where Nsim denotes the number of realizations. Clearly, most
of the gain comes from the two first iterations. The algorithm
converges after six iterations.

Fig. 3 compares the performance of the iterative algorithm
to the two-step and direct localization methods in terms of both
average localization and synchronization error as a function
of the SNR. The first iteration of the iterative approach is
slightly outperformed by the two-step estimation. This is due
to the fact that in the two-step case, the position estimate is
directly obtained from the pseudoranges of the four BSs while
it results from the average of the estimates of the four possible
subsets of three BSs in the iterative case. When the number
of iterations increases, the performance of the iterative scheme
comes closer to the DPE. The mean absolute clock offset error
et0 depicted in Fig.4(b) is computed as

et0 =
1

Nsim

Nsim∑
n=1

∣∣t̂0n − t0n∣∣ . (40)

Multipath propagation: Up to now, only an strong
line-of-sight scenario characterized by a single path channel
was considered. However, in a cellular environment the signal
is often prone to multipath propagation.

A simple scenario to study the impact of multipath propa-
gation on the positioning algorithms is to consider a two-path
channel between the MS and BS k given by

hk(t) = ejϕ
0
kδ(t− τk) + a1ke

jϕ1
kδ(t− τk − τ1k ) (41)

where a1k, ϕ1
k and τ1k are respectively the amplitude, the phase

and the delay of the reflection. We assume the first path to be
affected by a phase ϕ0

k. Fig. 4 illustrates the impact of this
multipath reflection on our positioning algorithm. The pilot
signal is subject to the multipath channel (41) with a1k chosen
to have a Signal to Multipath Ratio (SMR) of 1 dB and a
reflection delay τ1k randomly chosen in the uniform interval[
0, τ1max

]
. The phases ϕ0

k and ϕ1
k are randomly drawn from

the uniform interval [0, 2π[. Fig. 4 shows that the multipath
reflection actually acts as an additional noise component. The
distance error and synchronization error curves are shifted to
the right by 1 dB for the direct, the two-step and iterative
methods after convergence. There is also a saturation effect at
high SNR, i.e. the multipath reflection introduces a noise floor
in the positioning process.

Obstructed LOS propagation: When the LOS between MS
and BS is obstructed as often occurs in indoor and urban
environments, the time-of-arrival of the strongest path is
affected by a positive bias compared to the LOS propagation
time τk. We therefore investigate the impact of obstructed-
line-of-sight (OLOS) errors on the positioning algorithms by
including a random bias tbk ∼ U [0, tbmax] in the observed
signal ToA at base station k

tk = τk(x, y) + t0 + tbk. (42)

Figs. 5(a) and 5(b) respectively illustrate the distance and
synchronization errors as a function of the SNR when the ToAs
are affected by OLOS errors as in equation (42). Each base
station is affected by an independent time bias tbk randomly
drawn from the uniform interval [0, tbmax] with tbmax = 45 ns.
This maximum bias of 45 ns corresponds to the delay of the
strongest path of the NLOS Tapped Delay Line A (TDL-A)
channel model of the 3GPP Urban Microcell (3GPP UMi)
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Fig. 3. Performance of the Positioning Algorithms.
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Fig. 4. Effect of a Multipath Reflection on the Positioning Algorithms. Solid line: 2-paths Channel (41), SMR = 1dB, τ1max = 35ns. Dashed Line: Single
Path Propagation, signal amplitude fixed to ak = 1.

Street-Canyon scenario [29], considering a channel delay
spread of 120 ns. According to Table 7.7.3-2 in [29], 120 ns
corresponds to a normal delay spread for this NLOS UMi
scenario for a 2 GHz carrier frequency. Fig. 5 shows that at low
to medium SNR, the performance of the iterative algorithm is
degraded compared to the pure LOS case but the performance
after six iterations is still improved compared to the two-step
approach since noise dominates the impact of OLOS errors. At
high SNR, OLOS errors dominate the noise and the iterative as
well as the direct positioning methods perform slightly worse
than the two-step localization. Observations are similar for the
synchronization performance. However, the relative impact of
the OLOS propagation bias is more pronounced at high SNR
than for the positioning.

B. Complexity comparison

Fig. 6 illustrates the number of cumulated real multiplica-
tions for the iterative algorithm compared to the two-step and
direct positioning approaches. Those curves are drawn from
the complexity formulas (33) to (35). The iterative algorithm is
five times more complex than the two-step approach from the
first iteration. This is due to the fact that the position estimator
must be run for each base station in the iterative case and only
once for the two-step approach. Assessing position and time
offset (co)variances also induces a complexity increase.

It should also be noted that if the pseudorange estimation
is performed at the BSs, the DPE approach concentrates the
computing effort on the fusion center while the two-step and
iterative approaches share the computations between the BSs
that estimate the time of arrivals and the fusion center that
deduces the position estimate.
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Fig. 5. Effect of OLOS Propagation Errors on the Positioning Algorithms. Solid Line: OLOS Propagation, tbmax = 45ns. Dashed Line: Strong LOS Single
Path Propagation, tbk = 0 s, signal amplitude fixed to ak = 1.
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VI. CONCLUSION

In this paper, we propose an iterative joint positioning
and synchronization algorithm able to operate in a cellular
system where the MS is only roughly time synchronized to the
connected BSs. This algorithm refines the position estimate
traditionally acquired in two steps by iterating between the
pseudorange and position estimation steps. Pseudorange and
position estimates are exchanged together with an indication of
their reliability between the two steps. The position and time
offset computed during a pass of the algorithm are translated
to a pseudorange information used as prior information by
the next iteration. This allows to progressively recover the
information contained in the received signal that is discarded
by the two-step approach.

We illustrate using numerical simulations that the iterative
localization system approaches the performance of the direct

positioning algorithm while reducing the computational load
by one order of magnitude.

APPENDIX A
DIRECT POSITIONING ALGORITHM

The direct positioning localization scheme used in this
paper is inspired from [30]. It relies on a MMSE estimation
implemented making use of the Bayes framework to take into
account some available prior information. Paper [30] develops
a MMSE direct positioning algorithm to perform a sequential
tracking of the position of the MS based using a motion model.
We rather reformulate the estimator for static positioning,
using as prior information the distribution of the user position
and time offset.

Assuming that each BS makes an independent position
estimation, we have

p(r1, ..., rK |γ) =

K∏
k=1

p(rk|γ) (43)

where γ = [x, y, t0]T and

p(rk|γ) =

+∞∫
−∞

+∞∫
−∞

p(rk|γ, ak, φk)p(ak)p(φk)dakdφk (44)

The joint posterior distribution of the positioning parameters
for all base stations can be expressed following the Bayesian
framework as

p(γ|r1, ..., rK) =
p(r1, ..., rK |γ)p(γ)

+∞∫
−∞

p(r1, ..., rK |γ)p(γ)dγ

. (45)

We deduce from (4) that rk follows a Gaussian distribution.
Assuming in addition that γ is uniformly distributed on
interval [γmin,γmax], the posterior PDF (45) can be written
after some simplification as expression (46).
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p(γ|r1, ..., rK) =

∏K
k=1

(
+∞∫
−∞

+∞∫
−∞

exp
(

2
σ2
wk

ak cosφk<{rHk · s (δk(γ))} − a
2
kP
)
p(ak)p(φk)dakdφk

)
γmax∫
γmin

∏K
k=1

(
+∞∫
−∞

+∞∫
−∞

exp
(

2
σ2
wk

ak cosφk<{rHk · s (δk(γ))} − a
2
kP
)
p(ak)p(φk)dakdφk

)
dγ

(46)

Numerically computing the mean of γ provides the MMSE
estimate of the position and of the clock offset

γ̂ =

γmax∫
γmin

γ p(γ|r1, ..., rK)dγ. (47)
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