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Abstract
Applications of space-time symmetries to black holes and gravitational

radiation

by Roberto OLIVERI

This thesis deals with two classes of space-time symmetries: emergent symme-

tries in the near-horizon region of rapidly rotating Kerr black holes and residual

gauge symmetries. The main aim of the thesis is to investigate consequences and

effects of these symmetries on black holes and gravitational radiation.

The first class of symmetries is exploited to address questions of astrophysical

relevance for force-free magnetospheres, thin accretion discs, and strong mag-

netic fields around Kerr black holes. We investigate how the dynamics of electro-

magnetic and matter fields is constrained by global conformal symmetries of the

near-horizon geometry. In the context of force-free electrodynamics, we find ex-

act solutions and classify them according to the highest weight representation of

the isometry group. We introduce novel criteria to distinguish physical solutions

and deduce bounds on conformal weights of electromagnetic fields. For thin ac-

cretion discs, within the Novikov-Thorne model, new properties arise in the high

spin regime of the Kerr black hole. We find a novel self-similar solution and we

explain the critical behaviour of the observables by symmetry arguments. After-

wards, we study an exact analytic solution to the Einstein-Maxwell theory. It de-

scribes a black hole immersed in a strong magnetic field and it shares the same

near-horizon geometry of extreme Kerr black holes. We compute its total con-

served mass by means of the covariant phase space formalism and study its ther-

modynamics.

The second class of symmetries is considered in order to provide a new def-

inition of gravitational multipole moments by means of Noether charges and by

adopting the covariant phase space formalism. We show that such a definition

in terms of Noether charges reproduces multipole moments in General Relativity.

We propose to apply it to an arbitrary generally covariant metric theory of gravity.
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1

Introduction and main results

This thesis aims to address the following questions:

- What is the behaviour of accreting matter and electromagnetic fields close to

the horizon of rapidly rotating Kerr black holes?

- How to exploit the emergent global conformal symmetries in the near-horizon

region of extreme Kerr black holes to address questions of astrophysical rele-

vance?

- How to exploit large gauge transformations to compute multipole moments

in theories of gravity?

The motivation to pursue answers to these research questions is not only strongly

supported by theoretical reasons but also motivated by ongoing and upcoming

experimental missions. Continuous efforts to improve the accuracy of astrophys-

ical observations, both in the electromagnetic and gravitational-wave spectrum,

are underway by the scientific community. It is worth mentioning, among many

others, the Event Horizon Telescope (EHT), GRAVITY, the Advanced Telescope for

High ENergy Astrophysics (ATHENA), the Fermi Gamma-ray Space Telescope, the

Square Kilometre Array (SKA), the LIGO/Virgo and LISA collaborations. Special

attention is paid to the supermassive black hole at the centre of our galaxy, Sagit-

tarius A∗ (see, e.g., Broderick and Loeb, 2006; Doeleman, 2008; Doeleman et al.,

2009; Johnson, 2015), and the supermassive black hole hosted in the galaxy M87

(Doeleman et al., 2009; Doeleman et al., 2012).

Recent astronomical observations suggest that rapidly rotating black holes ex-

ist in Nature (see, e.g., McClintock et al., 2006; Gou et al., 2011; Brenneman, 2013;

Gou et al., 2014; Reynolds, 2014). Assuming that astrophysical black holes are

described by the Kerr solution (the so-called Kerr black hole hypothesis), it be-

comes of particular relevance for astrophysical purposes. Moreover, the near-

horizon region of maximally rotating Kerr black holes exhibits an enhanced isom-

etry group (Bardeen and Horowitz, 1999), containing the emergent global confor-

mal group SO(2,1). Such a unique feature has important consequences: it pro-

vides a connection between astrophysics and computational techniques used in

theories with conformal symmetries, and it allows to analytically explore physical
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phenomena occurring in the surroundings of these objects. The current state-

of-the-art developments include gravitational waves, force-free magnetospheres,

electromagnetic emission, and thin accretion discs.

One aim of this thesis is to investigate the effects of conformal symmetries on

the dynamics of matter and electromagnetic fields in the region close to the event

horizon of near-extreme Kerr black holes. We study force-free magnetospheres

and thin accretion discs around near-extreme Kerr black holes. In the first case,

the presence of symmetries helps us to solve force-free electrodynamics and clas-

sify solutions. In the second case, we show that the presence of conformal symme-

tries, and in particular the scaling symmetry near the horizon, implies a critical-

like behaviour of the fields, whose critical exponents are related to their conformal

weights.

The other aim of the thesis is to apply the covariant phase space formalism, de-

veloped by Regge and Teitelboim (1974), Iyer and Wald (1994), Barnich and Brandt

(2002) and Barnich and Compère (2008), to two concrete examples in General Rel-

ativity. In the first case, we consider gravitational multipole moments. We propose

a definition of multipole moments based on Noether charges associated to cer-

tain residual symmetries of the harmonic gauge. A new class of symmetries, called

multipole symmetries, generates the multipole moments of the gravitational field.

In the second case, instead, we consider an exact solution to Einstein-Maxwell

field equations describing black holes interacting with external magnetic fields.

This solution can be thought of as an analytical toy model to describe an astro-

physical black hole within a certain length-scale, depending on the magnetic field

strength. We address the problem to compute the total conserved mass and to

study the thermodynamics of this space-time.

Thesis outline and main results

The thesis consists of two main parts.

Part I is thought of as an introduction to the main topics of research of the the-

sis. It is a brief review on the background material, as seen from the point of view

of the author and for the purposes of this thesis, with a constant reference to the

literature. In chapter 1, we introduce Kerr black holes, their near-horizon geome-

try and those properties of the isometry group to be exploited to address questions

of astrophysical relevance. Chapter 2 deals with force-free electrodynamics. It is

adopted to describe magnetospheres of black holes and to explain the Blandford-

Znajek mechanism of energy extraction from rotating black holes. In chapter 3, we

introduce the Novikov-Thorne model for thin accretion disc and particular care is
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devoted to its derivation. To conclude the background part, chapter 4 introduces

the reader to gravitational multipole moments in General Relativity.

Part II consists of original contributions of the author to the literature.

Chapter 5 addresses the problem of solving force-free electrodynamics around

extreme Kerr black holes. To this aim, near-horizon global conformal symme-

tries are used to find exact solutions and to classify them according to the high-

est weight representation of the isometry group. Novel physical criteria are in-

troduced to discriminate between formal mathematical solutions and potentially

physical solutions describing force-free magnetospheres around extreme Kerr black

holes. Among these criteria for the electromagnetic field strength, we require finite

energy and angular momentum extraction as measured by an asymptotically flat

observer. Such criteria imply bounds on the conformal weights of the solutions

and, thus, highlight the importance of emergent symmetries on the dynamics of

electromagnetic fields around extreme Kerr black holes.

In chapter 6, we introduce and study an exact analytical solution to Einstein-

Maxwell theory describing a Kerr-Newman black hole immersed in an external

magnetic field. Strong magnetic fields around Kerr-Newman black holes distort

the geometry and the back-reaction affects the conserved charges (mass, angu-

lar momentum, electric charge). We compute the total mass by means of the

covariant phase space formalism and study the resulting thermodynamics. We

show that the total conserved mass, thermodynamic potentials and variables for

the magnetised Kerr-Newman can be implicitly written as those of the usual Kerr-

Newman black hole. This non-trivial property implies that magnetised Kerr-Newman

and Kerr-Newman black holes share the same thermodynamics away from the ex-

treme bound. Such a result extends away from extremality the property that both

space-times share the same near-horizon geometry.

Chapter 7 deals with thin accretion discs around a rapidly rotating Kerr black

hole. Thin accretion discs, within the Novikov-Thorne model, are studied with

a particular boundary condition imposed at the physical edge of the disc. We

construct piecewisely the global solution from the local solutions to the Novikov-

Thorne model. Then, we explicitly show the phase diagrams of thin accretion discs

for stellar-mass and supermassive black holes. We comment on the physical con-

sequences of the boundary condition and show new features when the rotating

Kerr black hole is in the high-spin regime. Such new features open up the possi-

bility to investigate the model in the near-horizon region of rapidly spinning black

holes, where a novel self-similar solution is obtained. The observables show a

critical-like behaviour governed by the underlying symmetries of the background

space-time. A quantitative analysis is performed to show the range of validity of
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the self-similar solution.

In chapter 8, we define gravitational multipole moments from Noether charges.

Such a definition relies on the novel concept of multipole symmetries, which ex-

tends the Poincaré Killing symmetries to higher multipole terms. They are specific

residual gauge transformations preserving the harmonic gauge. We then show

that source multipole moments can be expressed in terms of Noether charges as-

sociated to multipole symmetries, both for non-linear stationary solutions and for

linearised radiating solutions. In the latter case, from the multipole charges, we

extract the conserved multipole charges at spatial infinity, the source multipole

moments in the near-zone, and the multipole charges at future null infinity. We

also comment on the conservation law expressing the time variation of the source

multipole moments in the near-zone in terms of the multipole charges at future

null infinity. Our definition of gravitational multipole moments reproduces well-

known results in General Relativity with the advantage that it can be applied to an

arbitrary generally covariant metric theory of gravity.
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The architecture of the thesis is summarised in the figure below:

Rapidly rotating Kerr black holes

(chapter 1)

Force-free electrodynamics
(chapter 2)

Near-horizon extreme Kerr magnetospheres
(chapter 5)

Thin accretion disc
(chapter 3)

Self-similar thin discs around near-extreme black holes
(chapter 7)

Mass of Kerr-Newman black holes in an external magnetic field
(chapter 6)

Gravitational multipole moments Gravitational multipole moments from Noether charges
(chapter 4) (chapter 8)

Introductory chapters

Matter and electromagnetic fields around rotating black holes 

Application of near-horizon symmetries

Application of the covariant phase space formalism

Legend:
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Part I

Background material
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Chapter 1

Rapidly rotating Kerr black holes

Contents

1.1 Kerr black hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Extreme and near-extreme Kerr black hole . . . . . . . . . . . . . 12

1.3 Near-horizon extreme Kerr . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 The NHEK space-time and its derivation . . . . . . . . . . . 15

1.3.2 The isometry group and critical phenomena . . . . . . . . . 17

In this first chapter, we introduce the main properties of Kerr black holes. In

section 1.1, we write down the metric of the Kerr solution and study some basics

of its kinematics. We motivate our study for extreme and near-extreme Kerr black

holes by both theoretical and astrophysical reasons in section 1.2. Finally, in sec-

tion 1.3, we derive and study the near-horizon region of the extreme Kerr black

hole in order to analytically address questions of astrophysical relevance in the

next chapters of the thesis.

1.1 Kerr black hole

The Kerr black hole is the asymptotically flat stationary solution to the four di-

mensional vacuum Einstein’s field equations (Kerr, 1963). It describes the station-

ary and axisymmetric exterior gravitational field of a rotating black hole. Accord-

ing to the Kerr black hole hypothesis, it models the final state of the gravitational

collapse of a star. It has been shown that Kerr space-time is stable against linear

perturbations (Whiting, 1989; Dafermos, Rodnianski, and Shlapentokh-Rothman,

2014; Dias, Godazgar, and Santos, 2015). Therefore, the phenomenology of astro-

physical black holes rely on the properties of the Kerr solution (Bardeen, Press,

and Teukolsky, 1972).
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The Kerr line element in Boyer-Lindquist coordinates (t ,r,θ,φ) is given by1

d s2
K er r =−Σ∆

A
d t 2 + Σ

∆
dr 2 +Σdθ2 + sin2(θ)

A

Σ

(
dφ−ωd t

)2 , (1.1)

where the metric functions read as

∆(r ) = r 2 −2Mr +a2, (1.2a)

Σ(r,θ) = r 2 +a2 cos2(θ), (1.2b)

A(r,θ) = (
r 2 +a2)2 −a2∆sin2(θ), (1.2c)

ω(r,θ) = 2M ar

A
. (1.2d)

The Kerr black hole is parametrised by its mass M and its angular momentum

per unit mass a = J/M . According to the cosmic censorship conjecture proposed

by Penrose (1969), the specific angular momentum must satisfy the bound a ≤
|M |. For a = 0, the line element (1.1) describes the Schwarzschild black hole space-

time; whereas for a = M , it describes the maximally rotating or extreme Kerr black

hole. The latter, and its near-extreme version, will be considered in section 1.3.

The Kerr black hole space-time is stationary and axisymmetric. The Killing

vectors generating the time and axial symmetries are, respectively, η = δ
µ
t∂µ and

ξ = δ
µ

φ∂µ. The conserved quantities along the geodesic world-line xµ = xµ(λ) are

the rest mass, the total energy E =−g tµẋµ, and the component of the angular mo-

mentum parallel to the symmetry axis L = −gφµẋµ. In addition to these obvious

symmetries, the Kerr space-time possesses a Killing tensor (Carter, 1968). The cor-

responding conserved quantity, the Carter’s constant, provides the fourth integral

of the motion to analytically integrate the geodesic equation in closed form.

The Kerr line element (1.1) is singular for Σ(r,θ) = 0 and for ∆(r,θ) = 0. The

former represents the curvature singularity when M 6= 0, while the latter gives the

radial location of the coordinate singularities. The event horizon is located at the

outer root of ∆(r ) = 0,

r+ = M +
√

M 2 −a2. (1.3)

The outer boundary of the ergo-sphere is located where the time Killing vector η

is spacelike. This occurs at the outer root of Σ(r,θ) = 2Mr ,

r0(θ) = M +
√

M 2 −a2 cos2(θ). (1.4)

The region between the event horizon and the ergo-sphere is the ergo-region.

1We adopt natural units where G = c = 1. Properties of the Kerr space-time are discussed in
appendix B.
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The existence of such a region permits the extraction of energy and angular mo-

mentum from Kerr black holes. Notable mechanisms describing this viable as-

trophysical phenomenon are the Penrose-Floyd process for point particles (Pen-

rose and Floyd, 1971), the superradiant effect (or Misner (1972) process) for waves

(Zel’Dovich, 1971; Bekenstein, 1973) and the Blandford-Znajek process for force-

free magnetospheres (Blandford and Znajek, 1977).

For future reference, we focus our attention to circular orbits in the equatorial

plane. From the radial component of the geodesic equation,

Σ(r,θ)
dr

dλ
=±V 1/2

r (r ), (1.5)

where Vr (r ) is the effective potential governing the radial motion, one obtains

three classes of orbits:

• the photon orbit, describing an orbit whose energy per unit rest mass is in-

finite,

rph = 2M

{
1+cos

[
2

3
arccos

(
∓ a

M

)]}
, (1.6)

• the marginally bound orbit or innermost bound circular orbit (IBCO),

r I BCO = 2M ∓a +2
√

M(M ∓a), (1.7)

• the marginally stable orbit or innermost stable circular orbit (ISCO),

r I SCO = M
(
3+Z2 ∓

√
(3−Z1) (3+Z1 +2Z2)

)
, (1.8)

where

Z1 = 1+
(
1− a2

M 2

)1/3 [(
1+ a

M

)1/3
+

(
1− a

M

)1/3
]

, (1.9a)

Z2 =
√

3
a2

M 2
+Z 2

1 . (1.9b)

The upper signs refer to orbits co-rotating with the Kerr black hole, while the lower

signs refer to counter-rotating orbits. The Fig. 1.1 shows the circular co-rotating

equatorial orbits as functions of the specific angular momentum parameter. It is

evident that the Boyer-Lindquist radial locations of the horizon r+, the photon or-

bit rph , the IBCO r I BCO , and ISCO r I SCO are coincident for a = M . Of course this is

a deception of the Boyer-Lindquist coordinate system, because timelike surfaces,

like the IBCO or the ISCO, cannot coincide with null sufaces, like the horizon. This
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feature motives us to study in more detail the extreme Kerr black hole in the next

section.

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

a

M

r M

r+

M

r0 (π/2)

M

rph

M

rIBCO

M

rISCO

M

FIGURE 1.1: Circular co-rotating equatorial orbits around a Kerr black hole as
functions of the specific angular momentum parameter a/M .

1.2 Extreme and near-extreme Kerr black hole

The Kerr black holes family contains a special class in its parameter space: the

extreme case characterized by a = M . Extreme Kerr black holes rotate at the maxi-

mal angular momentum allowed by the cosmic censorship conjecture. According

to the third law of black-hole mechanics, Israel (1986) showed that it is not pos-

sible to spin up a Kerr black hole to the extreme value within a finite (advanced)

time. Moreover, extreme Kerr black holes suffer from instabilities against linear

perturbations at the event horizon (Aretakis, 2012; Aretakis, 2015). Nevertheless,

they serve as theoretical laboratories to investigate aspects of classical gravity (see,

e.g., Banados, Silk, and West, 2009) and, as we shall briefly comment in the next

section 1.3, to study properties of the quantum nature of gravity.

For astrophysical purposes, it is better to consider near-extreme Kerr black

holes as argued for the first time by Bardeen (1970), Bardeen and Wagoner (1971)

and later by Thorne (1974), where he computed the well-known limit a/M = 0.998

within the thin accretion disc model. In addition to theoretical reasons, there is

observational evidence about the existence of near-extreme black holes in Nature

(see, e.g., McClintock et al., 2006; Gou et al., 2011; Brenneman, 2013; Gou et al.,

2014; Reynolds, 2014).
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Since we would like to focus our attention on the limit a → M , we introduce

the near-extreme parameter σ that measures the deviation from the extreme case

σ=
√

1− a2

M 2
. (1.10)

By performing a Taylor expansion around σ = 0, we get the following leading be-

haviour for the circular co-rotating equatorial orbits around a near-extreme Kerr

black hole:

r+
M

= 1+σ, (1.11a)

r0(π/2)

M
= 2, (1.11b)

rph

M
= 1+ 2p

3
σ+O

(
σ2) , (1.11c)

r I BCO

M
= 1+p

2σ+O
(
σ2) , (1.11d)

r I SCO

M
= 1+21/3σ2/3 +O

(
σ4/3) . (1.11e)

It is then clear that the ISCO radial location scales differently and it approaches M

much slower than the horizon, the photon orbit and the IBCO radii. In particular,

the proper radial distance,

d(r f ,ri ) =
∫ r f

ri

p
gr r dr, (1.12)

between the horizon and the photon orbit as well as that between the photon orbit

and the IBCO remain finite and non-zero for σ → 0, whereas the proper radial

distance between the ISCO and both the IBCO and the outer boundary of the ergo-

sphere r0 diverges for σ→ 0. This characteristic property of extreme Kerr black

holes is diagrammatically summarized by the embedding diagrams for θ = π/2

and t = const in Fig. 1.2.

At the extreme value a = M , the Kerr space-time is divided into three regions.

It would be better to say that Kerr space-time has three distinct limits (see Geroch,

1969, for a well-posed definition of limit of a space-time):

a) the extreme Kerr, obtained by keeping fixed the Boyer-Lindquist coordinates

and sending a → M . This limit does not alter the asymptotically flat region,

but the manifold for r ≤ r I SCO is singularly projected into the event horizon

at r+|a=M = M , according to Eqs. (1.11)

b) the intermediate region, also known as near-horizon extreme Kerr geome-

try (NHEK), obtained by keeping fixed suitable co-rotating coordinates and
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FIGURE 1.2: Embedding diagrams for θ = π/2 and t = const of rapidly rotating
Kerr black holes of unit mass M = 1. The cracks stand for infinite
proper radial distance (Bardeen, Press, and Teukolsky, 1972).

sending a → M . This space-time is no longer asymptotically flat: it has a

timelike boundary. We shall provide its derivation in section 1.3.

c) the deepest region, known as near-NHEK, obtained by keeping fixed coordi-

nates adapted to the event horizon and sending a → M . It is diffeomorphic

to NHEK.

1.3 Near-horizon extreme Kerr

The theoretical importance of the extreme Kerr space-time lies in the presence of

an enhanced isometry group containing global conformal symmetries in its near-

horizon region (Bardeen and Horowitz, 1999). Such a unique feature has impor-

tant consequences: it provides a connection between astrophysics and computa-

tional techniques used in theories with conformal symmetries, and it allows to an-

alytically investigate phenomena occurring in the surroundings of these objects.

In fact, these symmetries have been exploited to analytically address astrophysi-

cal questions concerning gravitational waves (Gralla, Porfyriadis, and Warburton,

2015; Gralla, Hughes, and Warburton, 2016; Hadar and Porfyriadis, 2017; Compère
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et al., 2017), force-free magnetospheres (Zhang, Yang, and Lehner, 2014; Lupsasca,

Rodriguez, and Strominger, 2014; Lupsasca and Rodriguez, 2015; Compère and

Oliveri, 2016; Gralla, Lupsasca, and Strominger, 2016), electromagnetic emission

(Porfyriadis, Shi, and Strominger, 2017; Gralla, Lupsasca, and Strominger, 2017;

Lupsasca, Porfyriadis, and Shi, 2018), and thin accretion discs (Compère and Oliv-

eri, 2017).

The additional presence of infinite-dimensional conformal symmetries leds to

the proposal that NHEK space-time may be dual to a conformal field theory (CFT)

(Guica et al., 2009). Such putative correspondence takes the name of Kerr/CFT

correspondence (see, e.g., Bredberg et al., 2011; Compère, 2012). It turned out

however not to be a duality as the celebrated AdS/CFT duality. Despite the fact

that the Kerr/CFT correspondence is far to be a duality, there exist examples show-

ing common mathematical features between the extreme Kerr and the dual CFT

through explicit computation for gravitational waves (Porfyriadis and Strominger,

2014; Hadar, Porfyriadis, and Strominger, 2014; Hadar, Porfyriadis, and Strominger,

2015), superradiant effect (Bredberg et al., 2010), and wave scattering amplitudes

(Hartman, Song, and Strominger, 2010; Castro, Maloney, and Strominger, 2010).

1.3.1 The NHEK space-time and its derivation

We now derive the NHEK space-time by a limiting procedure from Kerr line ele-

ment in Boyer-Lindquist coordinates (t ,r,θ,φ) in Eq. (1.1). Let us define the co-

rotating coordinates (T,R,θ,Φ) as

T = t

r̃0
λn , R = r − r+

r̃0

1

λn
, Φ=φ−Ωext

+ t , and σ=
√

1− a2

M 2
= σ̄λ, (1.13)

where Ωext+ = 1/(2M) is the extreme angular velocity of the event horizon, r̃0 is

a dimensional factor, σ̄ is an arbitrary real number, and n is a positive and real

exponent. By performing a Taylor expansion aroundλ= 0, one gets a formal series

of the form

d s2
K er r (λ) =

∞∑
p=p0

d s2
(p) λ

p . (1.14)

The exponent n must be chosen in such a way that we get a well-defined limit

for λ→ 0 at fixed co-rotating coordinates. This result is achieved by approaching

the extreme value of the angular momentum faster than the zooming in the near-

horizon region. In formulæ,

σ

r − r+
∝λ1−n → 0 as λ→ 0 (1.15)
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implies that n ∈ (0,1). This range of n selects the intermediate region in Fig. 1.2

between the extreme Kerr (for n = 0) and the near-NHEK (for n = 1). By keeping

fixed the co-rotating coordinates (T,R,θ,Φ) and sending λ→ 0 with n ∈ (0,1), one

gets the NHEK line element at the leading order in λ

d s2
K er r (λ) = d s2

N HEK +O (λn), (1.16a)

d s2
N HEK = r̃ 2

0 Γ(θ)

[
−R2dT 2 + dR2

R2
+dθ2 +γ2(θ) (dΦ+RdT )2

]
, (1.16b)

where Γ(θ) = (
1+cos2(θ)

)
/2, γ(θ) = sin(θ)/Γ(θ), and r̃0 =

p
2M .

The n = 1 case adapts the co-rotating coordinates (1.13) to the event horizon.

The limit λ→ 0 gives the near-NHEK line element which is diffeomorphic to the

NHEK space-time (Amsel et al., 2009) and we will not consider it anymore in this

thesis.

The NHEK line element (1.16b) is a solution to the vacuum Einstein’s field

equations and it is geodesically complete with a timelike boundary (Bardeen and

Horowitz, 1999). Along the axis of rotation, i.e., for θ = 0 and θ = π, Eq. (1.16b)

is AdS2 in Poincaré coordinates with the horizon located at R = 0. At fixed polar

angle, the three-dimensional geometry is a quotient of warped AdS3 (Anninos et

al., 2009). In general, the NHEK line element is a warped and twisted product of

AdS2 ×S2.

The NHEK space-time is manifestly scale invariant: the rescaling of the radial

and time coordinates, R → cR and T → T /c, leaves the line element (1.16b) in-

variant for arbitrary c. This is the dilation symmetry of AdS2, whose generator is

part of the SL(2,R) algebra. Indeed, the isometry group of NHEK space-time is

enhanced from the isometry group R×U (1) of Kerr space-time to SL(2,R)×U (1),

in agreement with a general result proved by Kunduri, Lucietti, and Reall (2007) in

a broad class of theories. The Killing vectors of NHEK space-time are

H+ =p
2∂T , (1.17a)

H0 = T∂T −R∂R , (1.17b)

H− =p
2

[
1

2

(
T 2 + 1

R2

)
∂T −T R∂R − 1

R
∂Φ

]
, (1.17c)

Q0 = ∂Φ. (1.17d)

The Killing vector H+ is the generator of the (Poincaré) time translations, H0 is
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the generator of the scale invariance mentioned above, and Q0 generates the az-

imuthal rotations. They obey the SL(2,R)×U (1) commutation relations given by

[H0, H±] =∓H±, [H+, H−] = 2H0, [Q0, H±] = 0 = [Q0, H0]. (1.18)

One relevant property of NHEK space-time is the absence of any global time-

like Killing vector (Amsel et al., 2009). This feature has the consequence that there

is no unique definition of vacuum of a quantum field theory (DeWitt, 1975; Kay

and Wald, 1991), as already known for the Kerr space-time (Ottewill and Winstan-

ley, 2000a; Ottewill and Winstanley, 2000b). In particular, the Poincaré time trans-

lation generator H+ is spacelike for γ(θ) > 1, i.e., in the region around the equator

where θ ∈ [θ∗,π−θ∗] with θ∗ = arcsin[
p

3−1] ≈ 47°. In other words, H+ is timelike

only in the region where θ ∈ [0,θ∗]∪[π−θ∗,π], and therefore this region represents

the physical region in the NHEK space-time. Such a characteristic property orig-

inates by the fact that the horizon-generating Killing vector of the non-extreme

Kerr is timelike just outside the event horizon, then it becomes lightlike at the ve-

locity of light surface, beyond which it is spacelike. At the extreme case and upon

performing the near-horizon limit, the velocity of light surface asymptotically ap-

proaches the event horizon and the horizon-generating Killing vector is no longer

timelike near the horizon around the equator.

1.3.2 The isometry group and critical phenomena

The presence of the global conformal group SL(2,R) ∼ SO(2,1) in the isometry

group of NHEK space-time allows us to classify fields defined on NHEK space-

time. Moreover, these symmetries indicate the presence of critical behaviours of

certain physical observables. Very recently, critical phenomena have been discov-

ered in magnetospheres (Gralla, Lupsasca, and Strominger, 2017), thin accretion

discs (Compère and Oliveri, 2017), scalar, electromagnetic and gravitational per-

turbations (Gralla and Zimmerman, 2017), electromagnetic line emission (Lup-

sasca, Porfyriadis, and Shi, 2018), and gravitational waves (Compère et al., 2017).

As noticed for the first time in Gralla, Lupsasca, and Strominger (2017), the ex-

treme Kerr space-time can be thought of as a critical point in the Kerr family. The

origin of this interpretation stems from the seminal paper by Bardeen, Press, and

Teukolsky (1972) and from the meaning of Fig. 1.2. From this perspective, the re-

sult of Bardeen and Horowitz (1999) can be viewed as the emergence of conformal

symmetries near the critical point. As a consequence, extreme and near-extreme

Kerr black holes admit critical phenomena in their near-horizon region.
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In order to make this interpretation manifest and rigorous, let us consider a

smooth tensor field F on extreme Kerr space-time. After transforming the field F

to the co-rotating coordinates (1.13) and performing a Taylor expansion around

λ= 0, one gets

F (λ) =λ−h
∞∑

p=0
F(p)(T,R,θ,Φ) λp . (1.19)

Here h is a real number and it depends on the rank of the field F . The leading term

F(0)(T,R,θ,Φ) = lim
λ→0

λhF (λ) (1.20)

is the near-horizon field whenever it exists. We should notice that the near-horizon

limit in Eq. (1.13) is invariant under an arbitrary rescaling of the limiting param-

eter λ→ cλ and under the simultaneous rescaling of the time and radial coordi-

nates t → t/cn and r → cnr (or, equivalently, the simultaneous rescaling of the

near-horizon time and radial coordinates T → T /cn and R → cnR). After perform-

ing the limit in Eq. (1.20), the near-horizon field does not depend any longer by λ

and it scales like F(0) → chF(0) under T → T /cn and R → cnR. Infinitesimally, the

near-horizon field must obey the self-similarity condition given by

LH0F(0) = hF(0), (1.21)

where LH0 is the Lie derivative operator with respect to the dilation generator H0

which generates the finite rescaling T → T /c and R → cR. As an example, the

NHEK metric field in Eq. (1.16b) obeys Eq. (1.21) with h = 0, i.e., it is scale invari-

ant.

In order to classify tensor fields defined in NHEK space-time, we might use

representations of SL(2,R)×U (1). Among all the representations of SL(2,R), one

can consider the highest or lowest weight representations. Both of them are infinite-

dimensional (Barut and Raczka, 1986). A given tensor field F falls into the highest

weight representation labelled by {h, q,k} if
LH+F(h,q,0) = 0,

LH0 F(h,q,0) = hF(h,q,0),

LQ0 F(h,q,0) = i qF(h,q,0),

(1.22)

with descendants given by
(
LH−

)k F(h,q,0) = F(h,q,k). In physical terms (and in

Poincaré coordinates), the first condition imposes the stationarity of the field, the

second gives the self-similarity condition with respect to the dilation generator H0
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with weight h (h = 0 being a scale-invariant field), and the third condition intro-

duces the U (1) charge q of the field (q = 0 meaning an axisymmetric field). Explicit

examples of highest-weight classification of force-free electromagnetic fields have

been derived in Lupsasca, Rodriguez, and Strominger (2014), Lupsasca and Ro-

driguez (2015), and Compère and Oliveri (2016). A systematic approach for scalar,

vector and symmetric tensor fields is found in Chen and Stein (2017).
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Chapter 2

Force-free electrodynamics
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This chapter is devoted to force-free electrodynamics and it is conceived as

a quick introduction to the topic. We first motivate and introduce the reader to

the subject in section 2.1. Then, in section 2.2, we write down the equations gov-

erning force-free electrodynamics. In section 2.3, we explicit certain properties of

force-free fields and, in section 2.4, we give a field-theoretical description of the

force-free electrodynamics in terms of Euler potentials. Section 2.5 specialises to

force-free magnetospheres that are stationary and axial symmetric. This is a nec-

essary step to introduce the celebrated Blandford-Znajek mechanism of energy

extraction in section 2.6.
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2.1 Astrophysical motivations

Force-free electrodynamics (FFE) was first introduced in astrophysics by Lüst and

Schlüter (1954) in the context of the solar magnetosphere. This application mo-

tivated the search for exact solutions to FFE by Chandrasekhar (1956) and Chan-

drasekhar and Kendall (1957). Goldreich and Julian (1969) applied FFE to magne-

tospheres of pulsars1, observed one year earlier by Hewish et al. (1968) and identi-

fied with rapidly rotating and highly magnetized neutron stars (Gold, 1968; Pacini,

1968). Goldreich and Julian (1969) restricted their study to stationary and axisym-

metric electromagnetic field configurations that are solutions to the Maxwell’s elec-

trodynamics. They estimated that, though the pulsar magnetosphere is populated

by electron-positron plasma, the plasma rest-mass density is negligible with re-

spect to the electromagnetic field energy density. This implies that one may ne-

glect the exchange of energy-momentum between the plasma and the electro-

magnetic field, i.e., one may impose the constraint of vanishing Lorentz force den-

sity, from which the name force-free electrodynamics. For many years, the solu-

tion obtained by Michel (1973) has been the only analytical solution to investigate

pulsar magnetospheres.

The range of applicability of force-free electrodynamics is not only limited to

pulsar magnetospheres. It plays a fundamental role in the physics of the active

galactic nuclei (AGN), discovered more than fifty years ago by Schmidt (1963),

where a supermassive and rotating black hole is surrounded by an accretion disc,

sourcing magnetic fields, and a plasma. These objects are observed at the centre

of galaxies and they are the brightest object in our observable universe (see, e.g.,

Fabian, 2012). The most viable mechanism of energy extraction has been pro-

posed by Blandford and Znajek (1977) and it involves force-free electrodynamics.

General relativistic magneto-hydro-dynamics simulations confirm the force-free

approximation (McKinney, Tchekhovskoy, and Blandford, 2012; Penna, Narayan,

and Sadowski, 2013), and suggest that the Blandford-Znajek process is responsible

for the jets observed in the AGN (Tchekhovskoy, Narayan, and McKinney, 2011).

2.2 Equations of motion

Let gµν be the background space-time metric and Aµ be the gauge potential. The

Maxwell field is Fµν =∇µAν−∇νAµ. It obeys Maxwell’s equations

∇[σFµν] = 0, ∇νFµν = jµ, (2.1)

1See the reviews (Michel, 1982; Beskin, Gurevich, and Istomin, 1993) for a complete account on
the topic.
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with jµ being the electric current density. The corresponding energy-momentum

tensor of the electromagnetic field reads as

T µν
em = FµαFν

α−
1

4
gµνFαβFαβ. (2.2)

The total energy-momentum tensor is the sum of the contribution of the electro-

magnetic field and of that of the matter content:

T µν = T µν
em +T µν

mat ter . (2.3)

The conservation of the total energy-momentum implies that

0 =∇νT µν
em +∇νT µν

mat ter =−Fµν jν+∇νT µν
mat ter . (2.4)

The above equation governs the transfer of energy and momentum between the

electromagnetic field and the matter content. Under the simplifying assumption

that inertial forces are negligible with respect to the Lorentz force density, i.e., ne-

glecting any exchange of energy and momentum from the electromagnetic field

to the matter content, one obtains the so-called force-free condition

Fµν jν = 0. (2.5)

This constraint decouples the dynamics of the electromagnetic field from that of

the plasma. Therefore, the FFE equations are

∇[σFµν] = 0, ∇νFµν = jµ, Fµν jν = 0, (2.6)

or, eliminating jµ,

∇[σFµν] = 0, Fµν∇σFνσ = 0. (2.7)

FFE equations (2.6) are non-linear and, therefore, exact analytical solutions

are hard to find. Only a few exact analytical solutions are known: in Schwarzschild

space-time (Michel, 1973; Lyutikov, 2011), Kerr space-time (Blandford and Znajek,

1977; Menon and Dermer, 2005; Menon and Dermer, 2007; Menon and Dermer,

2011; Brennan, Gralla, and Jacobson, 2013; Menon, 2015), and near-horizon ex-

treme Kerr space-time (Lupsasca, Rodriguez, and Strominger, 2014; Zhang, Yang,

and Lehner, 2014; Lupsasca and Rodriguez, 2015; Compère and Oliveri, 2016).

However, despite the non-linearity, FFE equations show interesting and non-

trivial geometric properties. A force-free field defines a space-time foliation (Carter,
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1979) and it is described by Euler potentials (Uchida, 1997a; Uchida, 1997b). Re-

cently, diverse attempts have been made to understand the analytical properties

of FFE equations and to find new exact analytical solutions (Tanabe and Nagataki,

2008; Pan and Yu, 2015a; Pan and Yu, 2015b; Pan and Yu, 2016; Compère, Gralla,

and Lupsasca, 2016; Pan, Yu, and Huang, 2017; Harte, 2017; Kinoshita and Igata,

2017; Li and Wang, 2017; Grignani, Harmark, and Orselli, 2018).

For a detailed covariant treatment of FFE theory and its implications for pulsar

and black hole magnetospheres, we refer the reader to the review by Gralla and

Jacobson (2014), that we shall closely follow in this chapter.

2.3 Degenerate electromagnetic fields

From now on, we prefer adopting the language of differential forms for the ease

of notation and to make manifest properties of force-free fields that are metric-

independent. Our conventions on differential forms are summarised in appendix A.

FFE equations (2.6) can be rewritten, respectively, as

dF = 0, d ?F =?J , J ∧?F = 0. (2.8)

The first equation is the Bianchi identity: it is independent of the metric field and

reproduces the homogeneous Maxwell’s equations. The second equation gives

the inhomogeneous Maxwell’s equations, while the third equation is the force-

free constraint equivalent to the inner product between J and F , i J F = 0.2 The

conservation of the current 1-form J follows directly from the property that d 2 = 0.

We first notice that any source-free solution to Maxwell’s electrodynamics is

also a trivial solution to force-free electrodynamics. We shall consider solutions

with non-vanishing current 1-form J in the rest of the chapter. Another observa-

tion worth of mention is that the current J plays no role in the dynamics of the

field: indeed, it can be eliminated as shown in Eq. (2.7).

2.3.1 Degeneracy and field sheets

An important property obeyed by force-free fields is the degeneracy condition.

From the force-free condition i J F = 0, one has that

i J (F ∧F ) = i J F ∧F +F ∧ i J F = 0. (2.9)

2Here, we used the property that iX ?ω=?(ω∧X ), with X = J ,?ω= F andω=−?(?ω) =−?F .
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Since F ∧F is a 4-form in four dimensions (and J 6= 0), it follows that F must be

degenerate

F ∧F = 0. (2.10)

This is a necessary, but not sufficient, condition for an electromagnetic field to be

force-free. The degeneracy of the Maxwell field occurs when there exists a given

vector field v such that iv F = 0, as it is clear from Eq. (2.9). In physical terms,

if v is a unit time-like observer, iv F = 0 is the ideal Ohm’ law – stating that the

electric field in the local rest frame of the plasma is vanishing – and by no means

the degenerate electromagnetic field is force-free.

A direct consequence of the degeneracy condition (2.10) is that the Maxwell

field F can be written as the wedge product of two 1-forms, i.e., F is a simple 2-

form

F =α∧β. (2.11)

This is readily showed by considering two arbitrary vector fields v and w such that

their contraction with the electromagnetic field, iv iw F 6= 0, is non zero. Then

0 = iw iv (F ∧F ) = iw (iv F ∧F +F ∧ iv F ) = 2iv iw F F +2iw F ∧ iv F. (2.12)

Hence, α∝ iv F and β∝ iw F .

The Frobenius’ theorem guarantees that a degenerate field F = α∧β, obey-

ing the Bianchi identity dF = 0, has integrable kernels. In other words, the Pfaf-

fian systemα= 0 =β is completely integrable because the integrability conditions

α∧F = 0 =β∧F are obeyed (Choquet-Bruhat, DeWitt-Morette, and Dillard-Bleick,

1982). The vector fields annihilating the degenerate electromagnetic field span a

two-dimensional sub-manifold in the four-dimensional space-time. These inte-

gral surfaces are called field sheets (Carter, 1979; Uchida, 1997a). The existence

of field sheets can be visualised by a simpler geometrical argument (Gralla and

Jacobson, 2014). Assume that v is a vector in the kernel of F , that is iv F = 0 every-

where in space-time. Then, by using the Cartan’s formula and the Bianchi identity,

one has that Lv F = 0, i.e., the electromagnetic field F is preserved along the flow

of v . Now, consider a second vector field w such that Lv w = 0 and iw F = 0 on

the three-dimensional surface transverse to the flow of v . It follows that the con-

traction of w with F is preserved along the flow of v because Lv (iw F ) = 0. Thus,

iw F = 0 everywhere and w is in the kernel of F . In conclusion, the electromagnetic

field F is preserved along the flow of v and w or, in different words, it is “frozen”

on the field sheet.

Force-free configurations have current vectors J tangent to the field sheets and
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force-free fields induce a foliation of space-times. This property will be impor-

tant for the existence of the Euler-potential formulation of the force-free electro-

dynamics in section 2.4.

2.3.2 Lorentz invariants

In classical electrodynamics, we have two Lorentz invariants: ? (F ∧F ) and? (F ∧?F ).

The first invariant is explicitly given by

? (F ∧F ) = 1

4
εαβγδFαβFγδ∝

√
det(F ). (2.13)

Force-free fields are degenerate and, therefore, det(F ) = 0 implies that F is a matrix

of rank two and its kernel is two-dimensional, as already stated above.

The second invariant is the Hodge dual of the Lagrangian density. It reads as

? (F ∧?F ) =−1

2
FµνFµν =−1

2
F 2. (2.14)

It is useful to introduce the electric and magnetic fields as measured by a (not

normalized) time-like observer v

Eµ = Fµνvν, Bµ = (?F )µνvν. (2.15)

The electromagnetic field Fµν can be decomposed in terms of Eµ and Bµ as

Fµν = 1

v2

(
2E[µvν] −εµνγδBγvδ

)
. (2.16)

The first Lorentz invariant reads as

? (F ∧F ) = 1

4
εαβγδFαβFγδ =

2

v2
EµBµ. (2.17)

Thus, the force-free condition implies that the electric and magnetic fields are or-

thogonal to each other. The second Lorentz invariant reads as

? (F ∧?F ) =−1

2
F 2 =− 1

v2

(
E 2 −B 2) . (2.18)

We can classify degenerate fields into three classes by looking at the sign of? (F ∧?F ).

We call F to be magnetically dominated if F 2 is positive, electrically dominated

if F 2 is negative, and null otherwise. Magnetically dominated configurations are

considered of physical relevance because the kernel of F is time-like and so is the

current four-vector (i J F = 0) and there always exists an observer four-velocity who
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measures only the magnetic field in his frame (iv F = 0). Null configurations are

also relevant because they describe the radiation field.

2.4 Euler potentials formulation

Uchida, in a series of papers (Uchida, 1997a; Uchida, 1997b), introduced a new

formulation of FFE based on Euler potentials as field variables. Motivated by the

degeneracy condition (2.11), one can introduce two scalar fields, the Euler poten-

tials φ1 and φ2, such that

F = dφ1 ∧dφ2. (2.19)

The force-free condition 0 = i J F =−(i J dφ2)dφ1+(i J dφ1)dφ2 becomes equivalent

to the system 3

0 = dφi ∧?J = dφi ∧d ?F =−d
(
dφi ∧?F

)
, i = 1,2. (2.20)

The two expressions dφi∧?F are called Euler currents (Gralla and Jacobson, 2014).

We will show that the conservation of energy and angular momentum amount to

the conservation of the first Euler current (see Eq. (2.44)), and the stream equation

is equivalent to the conservation of the second Euler current (see Eq. (2.46)).

The Euler potentials give a description of closed and degenerate 2-form fields

which is equivalent to the usual one in terms of gauge potential. However, Euler

potentials are not unique. Indeed, we might introduce a new pair of Euler po-

tentials φ̃1 = φ̃1(φ1,φ2) and φ̃2 = φ̃2(φ1,φ2) and the electromagnetic field strength

becomes

F̃ = dφ̃1 ∧dφ̃2 =
(
∂φ̃1

∂φ1

∂φ̃2

∂φ2
− ∂φ̃1

∂φ2

∂φ̃2

∂φ1

)
dφ1 ∧dφ2 = ∂(φ̃1, φ̃2)

∂(φ1,φ2)
F. (2.21)

The invariance of the field strength F under an arbitrary Euler potentials redef-

inition implies that the Jacobian of the transformation must be unitary. In ge-

ometrical terms, the unitary of the Jacobian means that the area element of the

field sheets remains invariant under a field redefinition. It is worth mentioning

that this arbitrariness is equivalent to the gauge freedom of the gauge potential

(Uchida, 1997a).

3For two p-forms α and β, α∧?β= (iβα)ε where ε is the volume element. Eq. (2.20) follows for
α= dφi , β= J .
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2.4.1 Euler potentials with one symmetry

Assume that F is invariant under the flow of the vector field s. By using the Cartan’s

formula and the Bianchi identity, one obtains that

0 =LsF = disF. (2.22)

By the Poincaré’s lemma, there exists a function f such that

d f = isF = is(dφ1 ∧dφ2) =−(isdφ2)dφ1 + (isdφ1)dφ2. (2.23)

In particular, f = f (φ1,φ2). There are two cases: either d f = 0 and both Euler

potentials are invariant under the symmetry s, or d f 6= 0. In the latter case, we

can redefine the Euler potentials such that f = −φ̃1. The unitary of the Jacobian

guarantees the existence of φ̃2. Thus,

−dφ̃1 =−(isdφ̃2)dφ̃1 + (isdφ̃1)dφ̃2, (2.24)

and we conclude that

isdφ̃1 = 0, isdφ̃2 = 1. (2.25)

2.4.2 Euler potentials with two commuting symmetries

Assume that F is invariant under the flow of two commuting vector fields s1 and

s2. Then, we have

is1 F = d f , is2 F = d g , (2.26)

for some functions f and g . From F ∧ is2 F = 0, one has

0 = is1 (F ∧ is2 F ) = is1 F ∧ is2 F + (is1 is2 F )F = d f ∧d g − (is2 is1 F )F. (2.27)

This means that F ∝ d f ∧d g . The scalar is2 is1 F is a real constant, since d(is2 is1 F ) =
Ls2 (is1 F )− is2 dis1 F = i[s2,s1]F + is1Ls2 F − is2Ls1 F = 0 by assumptions. As before,

there are two cases: either is2 is1 F = 0 or is2 is1 F 6= 0, respectively, case I and case II

studied in Uchida (1997b).

Let us analyse the case I. We have two subcases. In the first subcase Ia, d f =
0 = d g , and thus the Euler potentials are invariant under both symmetries s1 and

s2. In the second subcase Ib, where d f 6= 0, we redefine the Euler potentials such

that f = −φ̃1. Because is2 is1 F = 0, Eq. (2.27) implies that d f ∧d g = 0 and thus
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g = g (φ̃1). Then,

d f = is1 F =−(is1 dφ̃2)dφ̃1 + (is1 dφ̃1)dφ̃2 =−dφ̃1, (2.28a)

d g = is2 F =−(is2 dφ̃2)dφ̃1 + (is2 dφ̃1)dφ̃2 = ∂g (φ̃1)

∂φ̃1
dφ̃1, (2.28b)

and we conclude that

is1 dφ̃1 = 0, is1 dφ̃2 = 1, (2.29a)

is2 dφ̃1 = 0, is2 dφ̃2 =−∂g (φ̃1)

∂φ̃1
≡Ω(φ̃1). (2.29b)

Notice that the Euler potentials are invariant under the flow of s3 = s2 −Ω(φ̃1)s1.

It is not a Killing vector, except when Ω(φ̃1) is constant. In particular, since φ̃1 is

always constant on the field sheet, the vector field s3 deserves the name of field

sheet Killing vector.

In the case II, by choosing the Euler potentials such that f = −φ̃1 and g =
(is2 is1 F )φ̃2, one has

is1 dφ̃1 = 0, is1 dφ̃2 = 1, (2.30a)

is2 dφ̃1 =−is2 is1 F, is2 dφ̃2 = 0. (2.30b)

In the next section, we are going to study stationary and axisymmetric force-

free magnetospheres. Later, in Part II, we will relax the assumption of axial sym-

metry L∂φF = 0 in favour of axial eigenvalue L∂φF = i qF . Generalization on the

functional form of the Euler potentials can be found in section 5.3.

2.5 Stationary and axisymmetric force-free magneto-

spheres

Let ∂φ and ∂t be the two commuting Killing vectors, whereφ and t are Killing coor-

dinates in a given coordinate system (t ,r,θ,φ). Moreover, we restrict our consider-

ations to background geometries that are asymptotically flat solutions to Einstein’s

equations in vacuum, so that we deal with circular space-times (Wald, 1984). In

a circular space-time, the Killing vector fields are orthogonal to two-dimensional

surfaces. As a consequence, the four-dimensional space-time is split into poloidal
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subspaces described by (r,θ) and toroidal subspaces described by (t ,φ). In partic-

ular, the full volume element can be split into poloidal and toroidal volume ele-

ments

ε=p−g d t ∧dr ∧dθ∧dφ=
(√

−g T d t ∧dφ

)
∧

(√
g P dr ∧dθ

)
= εT ∧εP , (2.31)

obeying the identities ?εT =−εP and ?εP = εT .

By considering two commuting symmetries, we fall into the case I discussed

before, since the constant i∂φi∂t F vanishes on the axis of rotation.

We have three different scenarios.

- First scenario: i∂φF 6= 0

Let s1 = ∂φ and s2 = ∂t be the two commuting vector fields. In the case in which

is1 F 6= 0, Eqs. (2.29) implies that

is1 dφ1 = ∂φφ1 = 0, is1 dφ2 = ∂φφ2 = 1, (2.32a)

is2 dφ1 = ∂tφ1 = 0, is2 dφ2 = ∂tφ2 =−Ω(φ1). (2.32b)

Thus, the Euler potentials take the following functional form

φ1 =ψ1(r,θ), φ2 =ψ2(r,θ)+φ−Ω(ψ1)t . (2.33)

The electromagnetic field strength reads as

F = dψ1 ∧dψ2 +dψ1 ∧
(
dφ−Ω(ψ1)d t

)
. (2.34)

Notice that we might write F = d
(
ψ1dφ2

)
and the quantityψ1dφ2 plays the role of

the gauge potential. Then i∂t (ψ1dφ2) =−ψ1Ω(ψ1) can be interpreted as the elec-

trostatic potential between magnetic field lines. Moreover, there is no (toroidal)

electric field component proportional to d t ∧ dφ because of the Faraday’s law

(Gralla and Jacobson, 2014).

In order to interpret the physical meaning of the Euler potentials, it is instruc-

tive to compute some observables. Let us compute the magnetic flux through the

surface S bounded by the closed line obtained by flowing a poloidal point (r,θ)

along the azimuthal vector field ∂φ at t fixed. The surface S is a two-dimensional

surface in the poloidal space. One has

1

2π

∫
S

F = 1

2π

∫
S

dψ1∧dφ2 = 1

2π

∫
S

d
(
ψ1dφ2

)= 1

2π

∫
∂S

ψ1dφ2 =ψ1(r,θ). (2.35)
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Since ψ1(r,θ) describes the magnetic flux through a given surface spanned by the

poloidal coordinates, it deserves the name of magnetic flux function.

Another enlightening computation is the integration of the 3-form current over

the volume generated by the flowing of S along the vector field ∂t , which is by

definition the electric current along the flow of the Killing time

1

2π∆t

∫
S ×∆t

d ?F = 1

2π∆t

∫
∂S ×∆t

?F = 1

2π∆t

∫
∂S ×∆t

?
(
dψ1 ∧dψ2

)≡ I (r,θ).

(2.36)

In the first step, we have used the Stokes’ theorem and we have neglected the two

contributions from the top and bottom surfaces of S ×∆t because the field is

stationary. In the second step, we have computed the Hodge dual of the field

strength F . Since dψ1∧dψ2 ∝ dr ∧dθ, it turns out that?
(
dψ1 ∧dψ2

)∝ d t ∧dφ,

and we have defined ?
(
dψ1 ∧dψ2

) = (I /2π)d t ∧dφ. The function I = I (r,θ) is

called the polar current and it generates the toroidal magnetic field in the az-

imuthal direction. The second term, namely, ?
[
dψ1 ∧

(
dφ−Ω(ψ1)d t

)] = −?P

dψ1 ∧?T
(
dφ−Ω(ψ1)d t

)
does not contribute to the integral because we are inte-

grating ?F over a surface of constant r and θ.

The third function which characterises the Euler potentials is Ω(ψ1). It can

be interpreted as the angular velocity of the magnetic field lines. If the angular

velocityΩ vanishes, there is no electric field in Eq. (2.34).

- Second scenario: i∂φF = 0 and i∂t F 6= 0

Let s1 = ∂t and s2 = ∂φ be the two commuting vector fields. In the case in which

is2 F = 0, Eqs. (2.29) implies that

is1 dφ1 = ∂tφ1 = 0, is1 dφ2 = ∂tφ2 = 1, (2.37a)

is2 dφ1 = ∂φφ1 = 0, is2 dφ2 = ∂φφ2 = 0. (2.37b)

Thus, the Euler potentials take the following functional form

φ1 =χ1(r,θ), φ2 =χ2(r,θ)+ t . (2.38)

The electromagnetic field strength reads as

F = dχ1 ∧dχ2 +dχ1 ∧d t . (2.39)

In this scenario, there are no terms proportional to dr ∧dφ and dθ∧dφ. In other

words, the only non-vanishing component of the magnetic field is proportional to
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dr ∧dθ. According to the nomenclature in the literature, this is equivalent to say

that there are no poloidal magnetic fields.

- Third scenario: i∂φF = 0 and i∂t F = 0

This is the simplest scenario. The Euler potentials do not depend on t and φ,

therefore

φ1 = ξ1(r,θ), φ2 = ξ2(r,θ), (2.40)

and the electromagnetic field strength is simply given by

F = dξ1 ∧dξ2. (2.41)

The 2-form F is proportional to dr ∧dθ, i.e., there are no poloidal magnetic fields

and no electric fields. In other words, F describes only purely toroidal magnetic

fields.

2.5.1 Force-free condition

The three scenarios presented above concern generic degenerate, stationary and

axisymmetric electromagnetic fields F . Now, we want to make explicit the physical

meaning of the force-free condition (2.20) for the first scenario (2.34), which is the

most general one.

The first of the two equations in (2.20) is d
(
dψ1 ∧?F

) = 0. As noticed earlier,

the 3-form in parenthesis is the Euler current and it is conserved. It can be shown

that the Euler current conservation amounts to the conservation of energy and

angular momentum (Gralla and Jacobson, 2014). To see this, let Jξ be the Noether

current associated to the Killing vector ξ

Jξ =−iξF ∧?F + 1

2
iξ (F ∧?F ) =−iξF ∧?F + 1

4
F 2iξε. (2.42)

In the case of ξ= {∂t ,∂φ} and using Eqs. (2.32), one gets

i∂t F = i∂t

(
dφ1 ∧dφ2

)=−(i∂t dφ2)dφ1 + (i∂t dφ1)dφ2 =Ω(ψ1)dψ1, (2.43a)

i∂φF = i∂φ
(
dφ1 ∧dφ2

)=−(i∂φdφ2)dφ1 + (i∂φdφ1)dφ2 =−dψ1. (2.43b)

The Noether currents are then

J∂t =−Ω(ψ1)dψ1 ∧?F + 1

4
F 2i∂tε, (2.44a)

J−∂φ =−dψ1 ∧?F − 1

4
F 2i∂φε. (2.44b)
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By computing the exterior derivative of Eqs. (2.44), the second term in both ex-

pressions is conserved by itself.4 Thus, both the conservation of energy and the

conservation of angular momentum follow from the first constraint d
(
dψ1 ∧?F

)=
0. It is interesting to explicit the constraint:

0 = dψ1 ∧d ?F = dψ1 ∧d

{
I

2π
d t ∧dφ+?[

dψ1 ∧
(
dφ−Ω(ψ1)d t

)]}
,

= 1

2π
dψ1 ∧d I ∧d t ∧dφ+dψ1 ∧d ?

[
dψ1 ∧

(
dφ−Ω(ψ1)d t

)]
. (2.45)

The second term contains necessarily three poloidal 1-forms: one from the dψ1

and two from d ?
[
dψ1 ∧

(
dφ−Ω(ψ1)d t

)]
, as can be checked by explicit compu-

tations. Therefore, since the poloidal subspace is two-dimensional, it must vanish

identically. Thus, we conclude that the polar current must be a function of the

magnetic flux function, i.e., I = I (ψ1). We want to emphasise that all the results

obtained so far are valid for a generic stationary, axisymmetric field such that it

conserves the energy and angular momentum. Force-free magnetospheres must

obey also the second constraint, that we are going to discuss now.

The second of the two equations in (2.20), d
(
dφ2 ∧?F

)= 0, gives a non-linear

partial differential equation for the magnetic flux function ψ1 known as stream

equation (sometimes also dubbed as Grad-Shafranov equation). Expanding the

constraint, one has (Gralla and Jacobson, 2014)

d ?
(
iηη dψ1

)= [
I (ψ1)I ′(ψ1)

4π2g T
−Ω′(ψ1)idψ1 dψ1iηd t

]
ε, (2.46)

where η = dφ−Ω(ψ1)d t is the co-rotation 1-form and the prime denotes deriva-

tion with respect to the flux function ψ1. Hence, the stream equation (2.46) also

constrains the magnetic flux function ψ1 in terms of the unknown polar current

I (ψ1) and the unknown angular velocity Ω(ψ1). This highlights the difficulties

to find exact analytical solutions in Kerr space-time much better than any word.

Known classes of solutions have been found by restricting the dependence of ψ1

to only one poloidal coordinate. This approach converts the stream equation to

an ordinary differential equation. The two notable examples in literature are the

class of solutions of null type (F 2 = 0) where ψ, I and Ω do not depend on the ra-

dial coordinate (Menon and Dermer, 2005; Menon and Dermer, 2007; Menon and

Dermer, 2011) and the class of solutions of magnetic type (F 2 > 0) where ψ, I and

Ω do not depend on the polar coordinate (Menon, 2015). These exact analytical

solutions share the property that the current is null. By making the ansatz of null

4This is readily seen because 1
4 F 2iξε = −iξL, where L = − 1

2 (F ∧?F ) is the Lagrangian density.
Then, diξL =LξL− iξdL =LξL = 0 if ξ is a symmetry of the theory.
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current, Brennan, Gralla, and Jacobson (2013) discovered a larger class of exact so-

lutions of null type. Another way to find exact analytical solutions is to convert the

stream equation (2.46) in an equation for the foliation of the field lines (Compère,

Gralla, and Lupsasca, 2016). Despite of this effort, no other new solutions have

been found in Kerr space-time.

2.5.2 Energy and angular momentum extraction

We might make use of the Noether currents (2.44) to investigate the flux of energy

and angular momentum through a given three-surface. We first notice that the

integral of (the pullback of) the currents on surfaces where ψ1(r,θ) = const van-

ish; this is equivalent to say that there is no flux of energy or angular momentum

through a poloidal two-surface and the fluxes flow along these poloidal surfaces

in the toroidal directions. Let us define the three-surface Σ = P ×S1 ×∆t gener-

ated by a curve P in the poloidal space rotated around the axis of symmetry and

evolved along the Killing time ∆t . Then∫
Σ

J∂t =−
∫
Σ
Ω(ψ1)dψ1 ∧?F + 1

4

∫
Σ

F 2i∂tε=−
∫
Σ
Ω(ψ1)dψ1 ∧ I (ψ1)

2π
d t ∧dφ,

(2.47a)∫
Σ

J−∂φ =−
∫
Σ

dψ1 ∧?F − 1

4

∫
Σ

F 2i∂φε=−
∫
Σ

dψ1 ∧ I (ψ1)

2π
d t ∧dφ. (2.47b)

In the first step, the second integrals vanish because so does the pullback of the

interior product i∂tε (respectively, i∂φε) to a surface including the ∂t (respectively,

∂φ) direction. In the second step, we just considered the toroidal part of the in-

tegrand because the integration is performed over a 3-surface extending in the

time and azimuthal directions. Performing the integration after the last step, one

obtains the flux of energy and angular momentum, respectively, given by the fol-

lowing line integrals

dE

d t
=−

∫
P
Ω(ψ1)I (ψ1)dψ1, (2.48a)

dL

d t
=−

∫
P

I (ψ1)dψ1. (2.48b)

Notice that, for constant angular velocity Ω, we have dE /d t = Ω dL /d t and an

outflow of energy is always accompanied by an outflow of angular momentum.
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2.6 The Blandford-Znajek mechanism

In this section, we consider Kerr black hole as fixed background geometry and

we investigate force-free electrodynamics on such a space-time. The presence of

the ergo-region and the event horizon plays a fundamental physical role in the

description of force-free magnetospheres. The former allows the extraction of ro-

tational energy of Kerr black hole via force-free electromagnetic fields (Blandford

and Znajek, 1977), the latter acts as a surface where to impose the boundary con-

dition5 (Znajek, 1977).

2.6.1 The Blandford-Znajek monopole solution

Blandford and Znajek (1977) found a perturbative solution, to the second order in

the angular momentum parameter a, describing the stationary and axisymmetric

force-free magnetosphere around Kerr space-time. Before 1977, the only exact

solution to force-free electrodynamics was the Michel (1973) solution, which can

be thought of as a particular superposition of the vacuum monopole solution and

the Poynting flux solution.

To illustrate the basic idea, we start with the vacuum magnetic monopole so-

lution to source-free Maxwell equations on Schwarzschild space-time

F mon = q sin(θ)dθ∧dφ= d
(−q cos(θ)

)∧dφ, (2.49)

where q is the (magnetic) monopole charge. This solution is also a trivial solution

to force-free electrodynamics in the sense that it has no current d?F mon = 0. The

Poynting flux solution to force-free electrodynamics on Schwarzschild space-time

is

F f lux = dζ(u,θ,φ)∧du, (2.50)

where ζ(u,θ,φ) is an arbitrary function of the retarded time u and the spherical

coordinates (Brennan, Gralla, and Jacobson, 2013). It turns out that the linear

superposition of F mon and F f lux gives rise to a new solution to force-free elec-

trodynamics. This is not true in general, because force-free electrodynamics is

non-linear. Then

F = q sin(θ)dθ∧dφ+dζ(u,θ,φ)∧du. (2.51)

5The Znajek’s horizon boundary condition follows from the stream equation (2.46) and corre-
sponds to the regularity condition of the electromagnetic field on the future event horizon (Mac-
Donald and Thorne, 1982).
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This class of solutions has been proved to be the general force-free solution with

radial and null current in Schwarzschild space-time (Brennan, Gralla, and Jacob-

son, 2013; Gralla and Jacobson, 2014). The celebrated Michel’s monopole solu-

tion is recovered by choosing the Euler potential in the Poynting flux solution as

ζ= qΩcos(θ)

F Mi chel = q sin(θ)dθ∧ (
dφ−Ωdu

)
. (2.52)

Blandford and Znajek (1977) noticed that the Michel’s field strength remains solu-

tion to force-free electrodynamics in Schwarzschild when the angular velocity is

promoted to an arbitrary function of the polar angleΩ=Ω(θ) and ζ=−q
∫

sin(θ)Ω(θ)dθ.

Another generalisation of the Michel’s solution was found by Lyutikov (2011), who

realised thatΩ can also be a function of the retarded time and ζ=−q
∫

sin(θ)Ω(u,θ)dθ.

In Kerr space-time, the superposition procedure fails. Nevertheless, up to the

first order in the angular momentum parameter, the Blandford-Znajek solution is

nothing but the Michel’s solution withΩ∼O (a) (Gralla and Jacobson, 2014). Thus,

F B Z = q sin(θ)dθ∧ (
dφ−Ωdu

)
. (2.53)

Of course, the coordinate u is the outgoing Kerr coordinate. The co-rotating 1-

form dφ−Ωdu in outgoing Kerr coordinates must be regular on the event horizon.

To this end, we transform the 1-form to ingoing Kerr coordinates, v and φ̃, that are

regular on the future event horizon, and are defined by

du = d v −2
r 2 +a2

∆(r )
dr, (2.54a)

dφ= dφ̃− a

∆(r )
dr, (2.54b)

where ∆(r ) is defined in Eqs. (1.2). One has that

dφ−Ωdu = dφ̃−Ωd v + 2Ω(r 2 +a2)−Ω+(r 2++a2)

∆(r )
dr. (2.55)

The coefficient of dr must vanish at the horizon r = r+ in order to guarantee reg-

ularity of the 1-form. This implies thatΩ= 1
2Ω+ = 1

2
a

2Mr+ ∼O (a), that is consistent

with the ansatz (2.53).

Of course, the monopole solution (2.53) is not realised in Nature. Nevertheless,

it is possible to build a more realistic solution, as done by Blandford and Znajek

in their original paper, by splitting the monopole solution in the equatorial plane

and by gluing the upper and lower monopole solutions to cancel the total mag-

netic monopole charge. The splitting procedure implies the presence of a surface

charge and a surface current localised in the equatorial plane. In other words, the
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split monopole solution is a crude model for (force-free) electromagnetic fields

sourced by accretion discs in the equatorial plane.

2.6.2 The Blandford-Znajek energy extraction

The Blandford-Znajek mechanism is a Penrose-like process (see, e.g., Komissarov,

2009; Ruiz et al., 2012; Lasota et al., 2014; Koide and Baba, 2014). In order to

evaluate the explicit expressions of the flux of energy and angular momentum in

Eqs. (2.48), we have to compute the expression of the polar current I (ψ1) defined

in Eq. (2.36) in the case of the Kerr space-time. Let χ= ∂t +Ω+∂φ be the horizon-

generating Killing vector field andΩ+ be the angular velocity of the event horizon.

We first notice that, by using the expression (2.34) for the electromagnetic field,

one obtains

iχF = (
Ω(ψ1)−Ω+

)
dψ1, (2.56)

which can be interpreted as the variation of the electrostatic potential between

the event horizon and the magnetic field line in the context of the membrane

paradigm (Thorne, Price, and Macdonald, 1986). The polar current is, by defi-

nition (see discussion below Eq. (2.36)), proportional to the toroidal component

of ?F . Hence, as shown in Gralla and Jacobson (2014), it is given by

I

2π
= i∂φiχ (?F ) = (

Ω(ψ1)−Ω+
)

(∂θψ1)

√
gφφ
gθθ

. (2.57)

This expression, when evaluated on the future event horizon, is the Znajek’s hori-

zon boundary condition (Znajek, 1977). Actually, it is better to say that the Znajek’s

boundary condition is simply a consistency condition. MacDonald and Thorne

(1982) showed that it directly comes from the stream equation (2.46) evaluated

on the horizon. This condition guarantees the force-free electromagnetic field to

be regular there. Substituting the polar current into the expressions for the fluxes

(2.48), one gets

dE

d t
= 2π

∫ π

0
Ω(ψ1)

(
Ω+−Ω(ψ1)

)
(∂θψ1)2

√
gφφ
gθθ

dθ, (2.58a)

dL

d t
= 2π

∫ π

0

(
Ω+−Ω(ψ1)

)
(∂θψ1)2

√
gφφ
gθθ

dθ. (2.58b)

Notice that the outflow of energy comes along the outflow of angular momentum.

In order to have a positive outflow of energy, the angular velocity of the magnetic
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field lines must be bounded from above by the angular velocity of the event hori-

zon, 0 ≤ Ω(ψ1) ≤ Ω+. Indeed, there exists a thermodynamical argument for the

existence of an upper bound of the energy extracted (Gralla and Jacobson, 2014).

From the null energy condition, the electromagnetic energy-momentum tensor

obeys the inequality

0 ≤ Tµνχ
µχν = Tµν (∂t )µχν−Ω+Tµν

(−∂φ)µ
χν =−δE +Ω+δL . (2.59)

The ratio between the two angular velocities Ω(ψ1)/Ω+ is the efficiency of the en-

ergy extraction process. In the framework of the membrane paradigm, such a

ratio represents the circuit efficiency (see Fig. 38 in Thorne, Price, and Macdon-

ald, 1986). The maximum efficiency at fixed magnetic flux is reached for Ω(ψ1) =
1/2 Ω+, which is the value for which the electromagnetic field of the Blandford-

Znajek solution is regular on the horizon, as shown below Eq. (2.55). Another rea-

son for which Ω(ψ1) = 1/2 Ω+ is that it maximizes the power of energy emission.

Indeed, from the flux of energy (2.48), the power (per unit length) is proportional

to Ω(ψ1)
(
Ω+−Ω(ψ1)

)
and it is maximum for Ω(ψ1) = 1/2 Ω+. This result is con-

firmed by numerical simulations of jets dynamics (Penna, 2015).
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In this chapter, we introduce the reader to the physics of accretion discs and,

in particular, of thin accretion discs. We provide some astrophysical motivations

to the subject to motivate the reader with this fascinating topic in section 3.1. In

section 3.2, we write down the most fundamental equations governing the accre-

tion phenomenon: the energy balance equation and the relativistic Navier-Stokes

equations. Then, in section 3.3, we first introduce the approximations character-

ising the thin accretion disc and then we provide a step-by-step derivation of the

fundamental equations governing the dynamics of the disc. Section 3.4 is devoted

to the well-known Novikov-Thorne model of thin accretion discs and section 3.5
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lists the local solutions of the model in certain particular regimes of interest for

our later purposes.

3.1 Astrophysical motivations

The first indirect observational evidence of an astrophysical black hole is dated

back to the paper of Schmidt (1963) with the identification of the quasar1 3C 273

located at redshift z = 0.158 with luminosity L ≈ 1046 erg s−1. In order to explain

the total luminosity, Lynden-Bell (1969) proposed a model consisting of a massive

black hole, located at the centre of the host galaxy, accreting the surrounding mat-

ter. The model describes a mechanism, the accretion process onto the black hole,

in which the accreting matter forms a disc-like object - the accretion disc - where

loss of angular momentum due to viscosity effects heats the gas that radiates away

efficiently its gravitational energy.

First attempts to describe accretion of interstellar gas by stars have been pro-

posed by Hoyle, Lyttleton and Bondi in the 1940s. One very crude approximation

in these models was to neglect the effects of pressure with respect to dynamical ef-

fects. The reason of this approximation lies in the fact that the heat generated dur-

ing the accretion process would be radiated away very efficiently. In 1952, Bondi

introduced his model (Bondi, 1952), where the pressure effects were considered.

The model assumes a black hole surrounded by a cloud of gas, accreting with sta-

tionary and spherically symmetric motion. The model neglects any self-gravity

effects of the cloud, magnetic fields, angular momentum and viscosity due to the

accretion mechanism.

Several analytical models of accretion discs have been proposed after the sem-

inal paper of Bondi. Each of them describes different types of accretion discs (see,

e.g., the review of Abramowicz and Fragile, 2013), based on certain relevant phys-

ical parameters like, e.g., the geometrical thickness, the optical depth, the accre-

tion rate and efficiency. The most important scale in the accretion process is the

so-called Eddington accretion rate ṀE dd (Eddington, 1988). It is defined as a frac-

tion, denoted by η, of the maximum luminosity LE dd = ηṀE dd c2 produced dur-

ing the accretion process of a spherically distributed cloud of fully ionised hydro-

gen (where electrons and photons interact via Thomson scattering). By equating

1A quasar, or quasi-stellar-object (QSO), is an active galactic nucleus (AGN) consisting of a mas-
sive black hole surrounded by an accretion disc of gas.
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the radiation force (acting outward) and the gravitational force (acting inward) ex-

erted on a single electron, it is easy to show that

ṀE dd = LE dd

ηc2
= 4πG

cκ̄es

M

η
= 2.2×10−8

( η

0.1

)−1
(

M

M¯

)
M¯ yr−1. (3.1)

Here κ̄es is the electron-scattering Thomson opacity. Thin accretion discs describe

accretion flows with Ṁ < ṀE dd , slim accretion discs describe accretion flows at

roughly the Eddington rate Ṁ ≈ ṀE dd and thick accretion discs are consistent

with super-Eddington accretion rates Ṁ À ṀE dd (Abramowicz et al., 1988).

In this chapter, we will derive the Novikov-Thorne model of thin accretion disc,

originally presented in Novikov and Thorne (1973). It describes a geometrically

thin and optically thick accretion disc and it extends the non-relativistic version

of Shakura and Sunyaev (1973). Further extensions and refinements of the model

have been published in Page and Thorne (1974) for the equations governing the

radial structure of the disc, in Lightman and Eardley (1974) for the introduction

of the magnetic viscosity, in Riffert and Herold (1995) and in Abramowicz, Lanza,

and Percival (1997) for corrections about the vertical equilibrium equation, and in

Li (2002) for the introduction of the magnetic coupling between the disc and the

black hole.

For sake of completeness, we also mention other well-established accretion

disc models. The slim accretion disc model, firstly introduced by Abramowicz

et al. (1988), describes a geometrically slim and optically thick disc, where ad-

vection effects and radial pressure gradients are taken into account. Geometri-

cally thick accretion disc models were introduced by Jaroszynski, Abramowicz,

and Paczynski (1980), Paczyńsky and Wiita (1980) and Paczynski and Abramow-

icz (1982). They describe optically thick discs with negligible accretion efficiency.

There also exist analytical models constructed by Abramowicz et al. (1996) and

Gammie and Popham (1998) describing optically thin accretion discs with sub-

Eddington accretion rate and dominated by the advection mechanism: the advection-

dominated accretion flow (ADAF) models.

The plethora of models needs to understand observational data and to test

our theoretical knowledge of the topic. Indeed, these models – along with numer-

ical simulations – serve to fit both thermal and non-thermal emissions from AGN

and to estimate the black hole parameters. We would like to recall the main ef-

forts in this direction. Accretion models are tested via the continuum X-ray spec-

tra observed during the thermally-dominant state of the accretion disc emission

(see, e.g., Miller, Fabian, and Miller, 2004; Shafee et al., 2006; Davis, Done, and

Blaes, 2006; McClintock et al., 2006). Another interesting applications of accretion
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disc models is the fitting of the Iron Kα line profiles (see, e.g., Karas et al., 2000;

Reynolds and Fabian, 2008), the quasi-periodic oscillations (QPOs) (see, e.g., Cui,

Zhang, and Chen, 1998; Abramowicz and Kluzniak, 2001; Török, G. et al., 2005),

and the black hole’s shadow (Falcke, Melia, and Agol, 2000; Takahashi, 2004; Jo-

hannsen et al., 2016; Fish et al., 2016).

One important theoretical aspect, that is not yet fully understood at the present,

is the stability of the analytical models mentioned above. It is well-known that

the magneto-rotational instability (MRI) (Balbus and Hawley, 1991; Balbus and

Hawley, 1998) plays a fundamental role in the accretion mechanism. Indeed, it

explains how turbulence arises, transports angular momentum in the disc with

weak magnetic fields, and enhances the effective viscosity of the disc. Another as-

pect to analyse is the thermal-viscosity instability of the model. It arises when the

radiative cooling varies slower than the heating due to viscosity. For instance, it

is known that radiation-dominated regions of thin accretion discs are both ther-

mally and viscously unstable (Lightman and Eardley, 1974; Shibazaki and Hoshi,

1975; Shakura and Sunyaev, 1976). At present, there are no stabilisation mecha-

nisms to avoid these instabilities and, therefore, disc models suffering from these

instabilities are not expected to occur in Nature and to exist in steady-state con-

figurations.

3.2 Fundamental equations

Let T µν be the energy-momentum tensor of a single component relativistic vis-

cous fluid. Without any loss of generality, we can algebraically decompose T µν

with respect to the four-velocity vector uµ. The decomposition reads as

T µν = εuµuν+ tµν+uµqν+qµuν. (3.2)

Here ε= ρ+Π is the total energy density, with ρ being the rest-mass density andΠ

being the internal energy density, tµν represents the (symmetric) transverse stress-

tensor, and qµ is the transverse heat flux. All the quantities in Eq. (3.2) are referred

to the local rest frame (LRF; see appendix B.3 for details) and all the indices are

raised with gµν. We adopt gµν to be the Kerr space-time metric. Hence, the back-

ground geometry is asymptotically flat, stationary, axisymmetric, and reflection-

symmetric with respect to the equatorial plane. The disc is assumed not to self-

gravitate and not to self-irradiate. Magnetic fields are ignored except for their con-

tribution to the stresses. We also neglect neutrinos and dark matter. It is useful to
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factor out the isotropic pressure in Eq. (3.2) and write the energy-momentum ten-

sor as

T µν = ρηuµuν+pgµν+Sµν+uµqν+qµuν, (3.3)

where we have defined the relativistic enthalpy η = (ε+ p)/ρ. The symmetric,

transverse and traceless tensor Sµν is the anisotropic stress-tensor responsible,

for instance, of viscous and magnetic stresses. From the four-velocity uµ, we can

construct the projector operator hµν = uµuν+ gµν and define the following kine-

matical quantities

θ ≡ uµ
;µ, aµ ≡ uνuµ

;ν, (3.4)

ωµν ≡ hα
µhβ

νu[α;β], θµν ≡ hα
µhβ

νu(α;β), σµν ≡ θµν− 1

3
hµνθ, (3.5)

respectively, the expansion scalar, the acceleration, the vorticity tensor, the ex-

pansion tensor and the shear tensor. The covariant derivative of the four-velocity

vector is, therefore, decomposed as uµ;ν = θµν+ωµν−aµuν.

The vanishing covariant divergence T µν
;ν = 0, expressing the energy-momentum

conservation, is equivalent to

(εuν);ν =−(Sνσσνσ+qνaν+qν;ν+pθ), (3.6)

(ε+p)aµ+hµ
ρ

(
gρνp,ν+Sρν;ν+uνqρ;ν

)+(
σ
µ
ν+ωµν+

4

3
θhµ

ν

)
qν = 0. (3.7)

The first equation is the component of T µν
;ν = 0 along the four-velocity uµ and it is

often referred to as the energy balance equation, because it takes into account all

the forms of energies involved in the accretion process. The second equation is the

projection of T µν
;ν = 0 onto the three-dimensional space orthogonal to uµ and we

refer to it as the relativistic Navier-Stokes equations or momentum balance equa-

tions. Indeed, these equations can be interpreted as balance equations for the

force densities in the three dimensional space orthogonal to the four-velocity uµ.

These fundamental equations must be supplemented by the equation of state, the

radiative energy transport law and prescriptions about the nature of the viscous

stresses and opacity, as we shall discuss below.

Before introducing the working assumptions and the approximations that we

need to treat these equations on the analytical ground, it is instructive to have a

closer look at them and exploit the physical meaning of the terms appearing in the

energy balance equation (3.6) and in the three relativistic Navier-Stokes equations

(3.7).
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3.2.1 Energy balance equation

The left-hand-side of Eq. (3.6) gives the total energy density production rate (per

unit time and unit volume) along the four-vector uµ of the fluid. From the def-

inition of the total energy density, we have (εuµ);µ = (ρuµ);µ+ (Πuµ);µ = (Πuµ);µ,

because of the rest-mass conservation (ρuµ);µ = 0. Then, the energy equation (3.6)

reads

(Πuµ);µ =−(Sµνσµν+qµaµ+qµ;µ+pθ). (3.8)

In words, the production of internal energy in the fluid frame is due to the energy

generated by viscous shear stresses Sµνσµν, by the inertia of the heat flux qµaµ,2

by radiative losses qµ;µ and by compression pθ. To maintain contact with the lit-

erature, it easy to check that Eq. (3.8) might be written as (see, e.g., Gammie and

Popham, 1998; Ellis, 2009)

uµ

[
∂µΠ− Π+p

ρ
∂µρ

]
=Qdi ss −Qcool , (3.9)

where Qdi ss =−Sµνσµν is the dissipative term due to viscous stresses and Qcool =
qµ;µ+qµaµ is the cooling term due to radiation losses. The physical interpretation

of the left-hand-side is manifest if we introduce the specific entropy: it is the ad-

vection term. To this aim, we write the energy equation (3.6) in an equivalent form

by using the first law of thermodynamics and assuming thermal equilibrium. We

define the specific total energy density u = ε/ρ, the specific volume v = 1/ρ and

the specific entropy s. The first law of thermodynamics T d s = du+pd v becomes

ρT d s = dε−ηdρ and the energy balance equation (3.6) takes the form

ρTuµs,µ+η(ρuµ);µ =−(Sµνσµν+qµaµ+qµ;µ). (3.10)

After imposing rest mass conservation (ρuµ);µ = 0, we obtain the rate of change of

the specific entropy along the four-velocity uµ (see, e.g., Peitz and Appl, 1997; Ellis,

2009)

ρTuµs,µ =−(Sµνσµν+qµaµ+qµ;µ). (3.11)

The quantity on the left-hand-side is the advection term, Qad v = ρTuµs,µ, that

takes into account the rate of change of the specific entropy along the four-velocity.

Thus, Eq. (3.11) might be written as

Qad v =Qdi ss −Qcool . (3.12)

2This term is a purely relativistic correction and we will neglect it in the non-relativistic regime.
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Therefore, the dissipation of energy involves both the advection and cooling ef-

fects.

More generally, the entropy must obey the second law of thermodynamics.

We define the entropy four-current Jµs = sρuµ+qµ/T and the entropy production

must be always non-negative, i.e.,

0 ≤ Jµs ;µ =− 1

T
Sµνσµν− 1

T 2
qµ(T,µ+Taµ), (3.13)

where, in the second step, we used the rest-mass conservation law and Eq. (3.11).

Thus, the second law of thermodynamics implies the two constitutive equations

Sµν =−ξσµν, qµ =−λhµν(T,ν+Taν) with ξ,λ≥ 0, (3.14)

with ξ and λ being the shear viscosity and heat conduction coefficients, respec-

tively. We neglect bulk viscosity in our discussion by following the traditional as-

sumption in the literature.3

3.2.2 Relativistic Navier-Stokes equations

The relativistic Navier-Stokes equations (3.7) can be rewritten in a more compact

form as

(ε+p)aµ+hµ
ρgρνp,ν+Sµ+Qµ = 0. (3.15)

The first term is proportional to the four-acceleration aµ and it takes into account

the gravitational acceleration due to the presence of the black hole; the second

term describes the acceleration due to pressure gradients in the fluid flow. The

contributions to the acceleration due to anisotropic viscous stresses Sµ and the

heat flux Qµ are, respectively, written as

Sµ = hµ
ρSρν;ν, (3.16)

Qµ = hµ
ρ

(
uνqρ+uρqν

)
;ν = hµ

ρuνqρ;ν+
(
σ
µ
ν+ωµν+

4

3
θhµ

ν

)
qν. (3.17)

The aim of the next section is to introduce physically meaningful approxima-

tions to analytically deal with the energy balance and relativistic Navier-Stokes

equations. This programme will be explicitly presented for the case of geometri-

cally thin accretion discs. The outcome is the celebrated Novikov-Thorne model

of a thin accretion disc (Novikov and Thorne, 1973; Page and Thorne, 1974).

3However, in an optically thick disc in the pressure-dominated phase, the presence of a shear
viscosity gives rise to a bulk viscosity of comparable magnitude (Papaloizou and Pringle, 1977).
See also the recent work by Moeen Moghaddas (2016).
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3.3 The thin disc approximation

From the fundamental equations (3.6) and (3.7), we shall derive the explicit ex-

pressions of the rest-mass, energy and angular momentum conservation laws and

the radial and vertical equilibrium equations. This goal is achieved by implement-

ing certain working assumptions and averaging approximations (see, e.g., Novikov

and Thorne, 1973; Page and Thorne, 1974). We will explicitly state those assump-

tions in order to simplify the physical description of the accretion flow and to keep

our discussion on the analytical ground.

BHz = r cos(θ)

r

ISCO

z = 0
H

F

h = H/r ¿ 1

FIGURE 3.1: Schematic representation of thin accretion disc. Here h ¿ 1 is the
opening angle, H is the half-thickness of the disc and F is the flux of
radiant energy off the upper surface

We assume that the angular momentum of the accreting flow is parallel to the

angular momentum of the black hole. This alignment is due to the Lense-Thirring

effect which causes the gradual transition of the tilted disc into the equatorial

plane, also known as Bardeen-Petterson effect (Bardeen and Petterson, 1975). The

Kerr metric near the equatorial plane, where the disc lies, is written in Eq. (B.3)

in coordinates (t ,r, z = r cosθ,φ) up to O (z/r ). The disc is assumed to be geo-

metrically thin, i.e., there exists a characteristic angular scale h(r ) = sin(H(r )/r ) ≈
H(r )/r ¿ 1, where H(r ) is the half-thickness of the disc about the equatorial plane,

located at z = 0 (or equivalently at θ =π/2).

On general ground, the accretion process is a complicated ensemble of differ-

ent physical phenomena with different characteristic time-scales. We might iden-

tify three time-scales: the characteristic times of the fluid orbital motion, of the

thermal processes and that of the viscous mechanisms, respectively, defined by

(see, e.g., Lasota, 2016)

tor b = 1

Ωc
, tth = 1

α

1

Ωc
= 1

α
tor b , tvi s = 1

α

(
H

r

)−2

tor b . (3.18)

Here Ωc is the angular velocity of circular equatorial orbits in the Kerr space-time

and H is the vertical depth of the disc with respect to the equatorial plane. The

effective parameter α, originally introduced by Shakura and Sunyaev (1973), de-

scribes magnetic and turbulent stresses in the disc by assuming that the shear

stresses (in the LRF) are proportional to the total pressure S r̂ φ̂ = αp. Moreover, it
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obeys the bound α < 1, because the characteristic speed of the turbulent motion

is bound from above by the speed of sound (Shakura and Sunyaev, 1973; Novikov

and Thorne, 1973). The characteristic times in Eq. (3.18) obey the following hier-

archy

tor b < tth ¿ tvi s , (3.19)

because α < 1 and, for geometrically thin discs, H ¿ r . The hierarchical rela-

tion (3.19) implies that the time-scale of the viscous mechanisms is much longer

than the time-scales of the fluid dynamics and thermal processes and, as a conse-

quence, we are allowed to consider the disc in hydrostatic equilibrium in its verti-

cal structure.

In the following, we write the fundamental equations in a suitable form by first

averaging the physical quantities over the time coordinate t and the azimuthal

coordinate φ, and then by integrating the averaged quantities over the height of

the disc. As an illustrative example, let f = f (t ,r, z,φ) be a function of the space-

time coordinates. Then, the averaged function f̄ is given by

f̄ (r, z) = 1

∆t

1

2π

∫ t+∆t

t

∫ 2π

0
f (t ′,r, z,φ′)d t ′dφ′. (3.20)

A given physical quantity, that is symmetric with respect to the equatorial plane,

admits a Taylor expansion as

f̄ (r, z) =
∞∑

n=0
f̄2n(r )

(z

r

)2n
, (3.21)

and the vertically integrated quantity then reads as

F (r ) =
∫ +H

−H
f̄ (r, z)d z = 2H f̄0(r )+O

(
H

r

)2

, (3.22)

where f̄0 is the averaged quantity evaluated at the equatorial plane z = 0. We shall

see that the equations governing the dynamics of the thin accretion disc are de-

rived by approximating all the physical quantities at the equatorial plane. The

only exception is represented by the vertical equilibrium equation, where we have

to assume a certain vertical profile for the total pressure.

3.3.1 Rest-mass and mass-energy conservation

We assume that the baryon number is conserved along the fluid flow, i.e., we im-

pose that (ρuµ);µ = 0. This assumption is valid for energies below 2mb , where mb

is the rest-mass of the baryon species or, equivalently, for temperatures below 1010
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K for electrons and 1013 K for protons and neutrons. The rest-mass conservation

(ρuµ);µ = 0, after the averaging approximation over t and φ, gives

∂r
(
2πr∆t ρ̄ur )+ r∂z

(
2π∆t ρ̄uz)= 0. (3.23)

After integrating over the vertical coordinate z ∈ [−H ,+H ], one finds

∂r
(
2πr∆tΣur )+2πr∆t

(
ρ̄uz)∣∣∣z=+H

z=−H
= 0, (3.24)

where we defined the surface density of the disc

Σ(r ) =
∫ H

−H
ρ̄(r, z)d z. (3.25)

We require the additional assumption that the mass (per unit time and unit area)

ρ̄uz leaving the disc surface at z = ±H is negligible with respect to the mass ac-

creted along the radial direction. Therefore the second term can be neglected and

integration over r gives the amount of mass accreting onto the black hole during

the time interval ∆t , the mass accretion rate Ṁ , given by

Ṁ =−2πrΣur =−2πrΣ
V D1/2

p
1−V 2

, (3.26)

where the minus sign has been chosen to have positive accretion mass. Note that

Ṁ is constant (independent of r ) and it will be a parameter of the Novikov-Thorne

model.

For future reference, we notice that the rest-mass conservation law can be writ-

ten in differential form as(
1

r
+ 1

ρ

dρ

dr
+ 1

ur

dur

dr

)
+ r

(
uz

ur

1

ρ

dρ

d z
+ 1

ur

duz

d z

)
= 0. (3.27)

In addition, we assume that the vertical component of the four-velocity and its

derivative with respect to the vertical coordinate z are negligible with respect to

the radial flow. This approximation leads us to consider only the terms in the first

bracket. Therefore, the differential form of the rest-mass conservation equation is

given by
1

r
+ 1

ρ

dρ

dr
+ 1

ur

dur

dr
= 0. (3.28)

This last equation, when integrated, gives the rest-mass conservation law (3.26).

Let us conclude the discussion with the closely related mass-energy conser-

vation equation derived by exploiting the time Killing vector η. The conserved
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current associated to η is given by

Jµη = T µ
νη

ν = [−ηρE +qt
]

uµ+pηµ+Sµt −E qµ, (3.29)

where E =−ut is the specific energy of the fluid particle. We first assume that the

fluid is non-relativistic, i.e., the relativistic enthalpy is η = 1.4 Following the same

steps that we outlined to obtain the rest-mass conservation (3.26), and assuming

that ρ̄uz = 0, q̄t = 0 = q̄r and S̄z
t = 0 at z = ±H , the law of conservation of energy

reads as

∂r
(
ṀE +2πr W r

t

)= 4πr EF, (3.30)

where F (r ) = q̄ z(r,+H) = −q̄ z(r,−H) is the flux of radiant energy5 off the upper

and lower surfaces of the disc and W r
t (r ) = ∫ +H

−H S̄r
t (r, z)d z is the vertically in-

tegrated shear stress. We notice that, since Sµνuν = 0, after averaging we have

W r
t (r ) = −(

uφ/ut
)

W r
φ(r ) = −ΩW r

φ(r ). Thus, the law of conservation of energy

equivalently reads as

∂r

(
ṀE −2πrΩW r

φ(r )
)
= 4πr EF. (3.31)

3.3.2 Angular momentum conservation

The angular momentum conservation can be derived by computing the conserved

current Jξ associated to the azimuthal Killing vector ξ

Jµ
ξ
= [

ηρL+qφ
]

uµ+pξµ+Sµφ+Lqµ, (3.32)

where L = uφ is the specific angular momentum of the fluid particle. We again as-

sume that the fluid is non-relativistic, i.e., the relativistic enthalpy is η= 1. Follow-

ing the usual averaging and vertically integration approximations, and assuming

that ρ̄uz = 0, q̄r = 0 = q̄φ and S̄z
φ = 0 at z =±H , the law of conservation of angular

momentum is given by

∂r

(
ṀL−2πr W r

φ

)
= 4πr LF, (3.33)

where F (r ) = q̄ z(r,+H) =−q̄ z(r,−H) is the flux of radiant energy off the upper and

lower surfaces of the disc and W r
φ(r ) = ∫ +H

−H S̄r
φ(r, z)d z is the vertically integrated

4This is equivalent to Π¿ ρ and p ¿ ρ, i.e., the specific internal energy and the total pressure
are negligible with respect to the rest-mass density. This is an assumption of the Novikov-Thorne
model.

5Notice that the heat flux qµ is assumed to be antisymmetric with respect to the equatorial
plane.
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shear stress.

3.3.3 Radial equation

Let us write the radial component of Eq. (3.7) in its explicit form. The radial com-

ponent of the acceleration, after substituting the four-velocity profile (B.22) for

general near-equatorial orbits, reads as

ar = D

1−V 2

(
V

1−V 2

dV

dr
− fr

)
, fr ≡−M

γ2
φ

r 2

A

D

(
1− Ω

Ω+
c

)(
1− Ω

Ω−
c

)
, (3.34)

where V is the rescaled radial velocity defined in Eq. (B.21), γφ = (
1− (V (φ))2

)−1/2

is the gamma factor with respect to the azimuthal velocity as measure by the lo-

cally non-rotating frame (LNRF), and Ω±
c are the angular velocity of the prograde

(+) and retrograde (−) circular equatorial orbits computed in Eqs. (B.9). The fr

contribution to the radial acceleration vanishes for circular equatorial orbits. The

radial pressure gradient becomes

hrµp,µ = hr r d p

dr
= D

1−V 2

d p

dr
. (3.35)

Thus, the radial momentum conservation is equivalent to the expression

D

1−V 2

[
(ε+p)

(
V

1−V 2

dV

dr
− fr

)
+ d p

dr

]
+Sr +Qr = 0. (3.36)

An equivalent expression for the radial momentum equation, in terms of ur rather

than V , has been derived in Peitz and Appl (1997).

It is common to assume that the radial acceleration due to viscous stresses Sr

and the heat flux Qr are negligible when compared with the radial acceleration

due to the pressure. Under these simplifying assumptions, the radial momentum

conservation takes the simpler form

V

1−V 2

dV

dr
= fr − 1

ε+p

d p

dr
. (3.37)

This is the radial momentum equation derived for advection-dominated accretion

discs in Gammie and Popham (1998), which generalises that first presented for

slim discs in Abramowicz et al. (1996) for non-relativistic fluid with η = 1. It is

nothing but the radial Euler equation for a perfect fluid.

When considering thin accretion discs, one assumes that the averaged and ver-

tically integrated orbital motion of the fluid is approximated by circular equatorial
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geodesics. The assumption that the averaged motion is nearly circular automati-

cally implies that the radial pressure gradient and the radial velocity gradient are

negligible with respect to the gravitational acceleration. Thus, from Eq. (3.37), the

term fr must vanish, which implies that the orbital motion is Keplerian Ω = Ω±
c .

Therefore, the radial equilibrium equation is trivially satisfied in the thin disc ap-

proximation.

Let us conclude the discussion of the radial momentum equation with one

interesting observation. We define the adiabatic sound speed by

c2
ad ≡ d p

dε

∣∣∣∣
ad

= 1

η

d p

dρ
= ρ

ε+p

d p

dρ
= 1

ε+p

d p

dr

(
1

ρ

dρ

dr

)−1

. (3.38)

By using the rest-mass conservation law in its differential form (3.28) and substi-

tuting the definition of adiabatic sound speed, the radial Euler equation can be

written as
1

V

dV

dr
=− 1−V 2

c2
ad −V 2

{
fr + c2

ad

[
1

r
+ M

r 2D

(
1− a2

Mr

)]}
. (3.39)

The accretion flow is subsonic (V < cad ) for large radii, then it approaches the

speed of sound at a certain radius location and it becomes transonic (V > cad ).

The above equation has a critical point for V = cad : this defines the so-called sonic

surface and it depends on the mass accretion rate and the α parameter. Thus, in

order to have a regular global solution, the factor in brackets must vanish at the

same radial location. This regularity condition amounts to an eigenvalue prob-

lem for angular momentum values. For more details, see Abramowicz et al. (1996)

and Gammie and Popham (1998) in the context of slim accretion discs, Peitz and

Appl (1997) for more general disc-like accretion flows, and the recent review by

Abramowicz and Fragile (2013). In Abramowicz et al. (2010) (see their Fig. 7), it

has been shown that, for small accretion rates Ṁ < 0.3ṀE dd , the sonic-surface

is located at ISCO independently of the α parameter. For thin accretion discs,

where the physical edge is the ISCO by construction, one can consistently make

the assumption that the sonic-surface coincides with the ISCO. As we will see in

section 7.2, this assumption amounts to impose non-vanishing viscous stresses at

ISCO (Penna, Sadowski, and McKinney, 2012).

3.3.4 Vertical equilibrium equation

In the following, and only to derive the vertical equilibrium equation, we consider

those terms linear in cosθ, i.e., terms of O (z/r ). We neglect higher orders terms.
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The polar component of the acceleration is explicitly given by

aθ = cosθ

(
ur d(γrU )

dr
−γ2U 2 − L 2

?

r 2

)
, (3.40)

where L 2
? = L2−a2(E 2−1), being L = uφ and E =−ut the specific angular momen-

tum and the specific energy, respectively, and U is related to the polar component

of the four-velocity by uθ = γrU cosθ. Following the work of Abramowicz, Lanza,

and Percival (1997), we assume the following pressure profile

p(r,θ) = p0(r )

[
1− r 2 cos2θ

H 2

]
= p0(r )

[
1− cos2θ

cos2θH

]
, (3.41)

where p0(r ) = p(r,θ = π/2) and H = r cosθH The polar gradient of the pressure is

given by

h ρ

θ
p,ρ = cosθ

(
urγrU

∂p0

∂r
+2

r 2

H 2
p0

)
. (3.42)

The contribution of viscous stresses hθρSρν;ν is proportional to the vertical veloc-

ity U . As done for the radial equilibrium equation, we neglect contributions from

viscous stresses and from the heat flux. In other words, we consider the Euler ver-

tical equation for a perfect fluid, instead of the more complicated Navier-Stokes

vertical equation. Moreover, from Eqs. (3.40) and (3.42), we consider only those

terms not involving the polar component U and its radial derivative. By adopting

this approximation, we obtain the final form of the vertical equilibrium equation,

originally derived by Abramowicz, Lanza, and Percival (1997). It reads as

−2
p0

ρ0
+ H 2

r 2

L 2
?

r 2
= 0, (3.43)

where we have used the non-relativistic fluid approximation ε+p ≈ ρ.

3.4 The Novikov-Thorne model

As already said, one of the main assumptions made by Novikov and Thorne (1973)

is that the fluid particles move on nearly circular equatorial geodesics. In differ-

ent words, the motion in the t-φ plane is geodesic with a small radial (and non-

geodesic) component, ur , produced by viscous stresses, responsible for the accre-

tion process onto the black hole. Such an assumption implies that we can use the

kinematic quantities of circular equatorial geodesics listed in appendix B.2 and

B.3. In particular, in the LRF, the shear tensor σµ̂ν̂ of circular equatorial geodesics
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has only one non-vanishing component

σr̂ φ̂ =σφ̂r̂ =
1

2

A

r 3
γ2Ω,r =−3

4
M−1x−3C −1D. (3.44)

This is an important observation to express the thin disc equations in an appro-

priate form for our purposes. Indeed, according to the first constitutive equation

(3.14), one can write the vertically integrated shear tensor, already defined below

the angular momentum conservation law (3.33), as

W (r ) ≡
∫ H

−H
S̄ r̂ φ̂(r, z)d z = 2HS̄ r̂ φ̂. (3.45)

We assume the α-viscosity prescription of Shakura and Sunyaev (1973)

S̄ r̂ φ̂ =αp, (3.46)

where α is a free parameter and p is total pressure. It is a crude effective de-

scription of viscous mechanisms involved in the accretion process. In words, the

Shakura-Sunyaev prescription states that, in the LRF, the vertically integrated shear

stress is proportional to the total pressure.6

3.4.1 Energy balance equation

We recall that the energy balance (3.12) states that the energy dissipated is given

by the energy generated by advection and the energy radiated away

Qdi ss =Qad v +Qcool . (3.47)

We neglect the advection term and, therefore, the energy balance equation im-

plies that the energy dissipated equals the energy radiated away. In formulæ, after

averaging and vertically integrating, one gets

F (r ) =−σr̂ φ̂W (r ). (3.48)

This equation determines the radiated flux F (r ) once we know the integrated shear

stress W (r ).

6Some specific MHD turbulent discs might be modelled by this prescription (Balbus and Pa-
paloizou, 1999). The modification of αp to αpg as was argued in Lightman and Eardley (1974) and
further developed in Bisnovatyi-Kogan and Blinnikov (1977) and Sakimoto and Coroniti (1981).
Such models, later called βp models, do not suffer from thermal instabilities. However, MHD sim-
ulations do not conclude on their validity (Hirose, Krolik, and Blaes, 2009; Ohsuga et al., 2009; Ross,
Latter, and Guilet, 2016). More elaborated prescriptions have been developed by Ogilvie (2003) and
Pessah, Chan, and Psaltis (2006).



54 Chapter 3. Thin accretion disc

3.4.2 Conservation laws

The rest-mass conservation law (3.26) is given by

Ṁ =−2πrΣ(r )ur . (3.49)

The mass-energy conservation law (3.31) and the angular momentum conserva-

tion law (3.33) can be integrated to obtain (Page and Thorne, 1974)

−4πr
(E −ΩL)2

Ω,r

F

Ṁ
=

∫ r

r0

(E −ΩL)L,r ′dr ′+MP0. (3.50)

The constant of integration Ṁ is the accretion rate, while E , L,Ω andσr̂ φ̂ are kine-

matic quantities of circular equatorial geodesics (see appendix B.2 for their ex-

pressions). The right-hand side of Eq. (3.50) is nothing else than MP defined in

(B.10). The dimensionless integration constant P0 is fixed by the boundary con-

ditions, which are discussed in section 7.2.

From the conservation laws, we can explicitly compute F (r ) (and then W (r ))

and the product Σ(r )ur . To calculate Σ(r ) and ur we need equations governing

the vertical equilibrium and describing the equation of state of the fluid and other

physical features of the disc.

3.4.3 Vertical equilibrium equation

The vertical equilibrium equation, after the approximations discussed above (see

Eq. (3.43)), reads as (Abramowicz, Lanza, and Percival, 1997)7

2
p

ρ
= H 2

r 2

L 2
?

r 2
, (3.51)

where p is the total pressure, i.e., it is the sum of the radiation pressure and the gas

pressure p = p(g as) +p(r ad).

3.4.4 Equation of state and energy transport law

We express the equation of state for the ideal gas and the radiation pressure as

p(g as) = kBρ

mp
T, (3.52a)

p(r ad) = 1

3
bT 4, (3.52b)

7Note the factor 2 typo in Eq. (B12) of Penna, Sadowski, and McKinney (2012).
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where b = 4σSB /c is the radiation constant density, kB Boltzmann’s constant, σSB

Stefan-Boltzmann’s constant and mp the rest-mass of the proton.

We also impose the energy transport law

bT 4 = κ̄ΣF, (3.53)

where κ̄ is the optical opacity of the disc

κ̄= κ̄ f f + κ̄es , (3.54a)

κ̄ f f =
(
0.64×1023cm2g−1)( ρ

g /cm3

)(
T

K

)−7/2

, (3.54b)

κ̄es = 0.40 cm2g−1, (3.54c)

originating from the free-free (ff) absorption and the electron scattering (es).

3.5 Local solutions to the Novikov-Thorne model

The Novikov-Thorne model consists of eight equations, (3.25), (3.45), (3.48), (3.49),

(3.50), (3.51), (3.52), (3.53) and eight unknown functions F , Σ, W , h, ur , p, ρ, T of

the radial coordinate. The system of equations is algebraic and admits a single

solution upon imposing the physical conditions that T > 0, p > 0. The solution

depends upon four free parameters. The solution can be patched by local solu-

tions where either the gas pressure or radiation pressure dominates, and opacity

is either dominated by electron scattering or free-free absorption. The three rele-

vant local solutions are detailed below and are denoted as

Gas-es: Gas pressure-electron scattering dominated: p = p(g as) and κ̄= κ̄es ;

Rad-es: Radiation pressure-electron scattering dominated: p = p(r ad) and κ̄= κ̄es ;

Gas-ff: Gas pressure-free free absorption dominated: p = p(g as) and κ̄= κ̄ f f .

The numerical values in cgs units of all physical constants used in the solutions

are

G = 6.67×10−8cm3/(sec2g ), c = 3.00×1010cm/sec, kB = 1.38×10−16er g /K ,

mp = 1.67×10−24g , b = 7.56×10−15er g /(cm3K 4), M¯ = 1.99×1033g .

We took particular care to correct various algebraic errors and typos found in the

literature. The Novikov-Thorne local solutions (with typos fixed) can be recovered

by substituting x →p
r∗, P → r 1/2∗ B−1C 1/2Q and using the boundary condition
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at the ISCO Q(r0) = 0. The curly functions B,C ,D,R are defined in Eqs. (B.6) and

the function P is defined in Eq. (B.10) (see also Eq. (3.50)).

[Gas-es] Gas pressure-electron scattering dominated solution

In this region, the gas pressure p(g as) is predominant with respect to the ra-

diation pressure p(r ad) and the electron scattering contributes mainly to the

opacity of the disc.

F = (
5.5×1025er g /(cm2sec)

)(
M−2
? Ṁ?

)
x−7C −1P , (3.55a)

Σ= (
5.0×104g /cm2)(α−4/5M−2/5

? Ṁ 3/5
?

)
x−9/5C 1/5D−4/5P 3/5, (3.55b)

W = (
1.1×1021d yn/cm

)(
M−1
? Ṁ?

)
x−4D−1P , (3.55c)

h = (
7.0×10−3)(α−1/10M−3/10

? Ṁ 1/5
?

)
x−1/10C −1/10D−1/10R−1/2P 1/5,

(3.55d)

ur = (−7.3×105cm/sec
)(
α4/5M−3/5

? Ṁ 2/5
?

)
x−1/5C −1/5D4/5P −3/5,

(3.55e)

p(g as) = (
1.8×1017d yn/cm2)(α−9/10M−17/10

? Ṁ 4/5
?

)
x−59/10C 1/10D−9/10R1/2P 4/5,

(3.55f)

ρ = (
8.1g /cm3)(α−7/10M−11/10

? Ṁ 2/5
?

)
x−37/10C 3/10D−7/10R1/2P 2/5,

(3.55g)

T = (
2.6×108K

)(
α−1/5M−3/5

? Ṁ 2/5
?

)
x−11/5C −1/5D−1/5P 2/5. (3.55h)

For consistency, this solution is valid where h ¿ 1, ur ¿ 1 and

p(r ad)

p(g as)
= (69.)

(
α1/10M−7/10

? Ṁ 4/5
?

)
x−29/10C −9/10D1/10R−1/2P 4/5 ¿ 1,

(3.56a)

κ̄ f f

κ̄es
= (

4.4×10−6)(M?Ṁ−1
?

)
x4C R1/2P −1 ¿ 1. (3.56b)
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[Rad-es] Radiation pressure-electron scattering dominated solution

In this region, the radiation pressure p = p(r ad) is dominant, but still the

electrons scattering is the main mechanism for the opacity in the disc.

F = (
5.5×1025er g /(cm2sec)

)(
M−2
? Ṁ?

)
x−7C −1P , (3.57a)

Σ= (
10.g /cm2)(α−1M?Ṁ−1

?

)
x4C 2D−1RP −1, (3.57b)

W = (
1.1×1021d yn/cm

)(
M−1
? Ṁ?

)
x−4D−1P , (3.57c)

h = (0.5)
(
M−1
? Ṁ?

)
x−3C −1R−1P , (3.57d)

ur = (−3.5×109cm/sec
)(
αM−2

? Ṁ 2
?

)
x−6C −2DR−1P , (3.57e)

p(r ad) = (
2.6×1015d yn/cm2)(α−1M−1

?

)
x−3C D−1R, (3.57f)

ρ = (
2.5×10−5g /cm3)(α−1M?Ṁ−2

?

)
x5C 3D−1R2P −2, (3.57g)

T = (
3.2×107K

)(
α−1/4M−1/4

?

)
x−3/4C 1/4D−1/4R1/4. (3.57h)

For consistency, this solution is valid where h ¿ 1, ur ¿ 1 and

p(g as)

p(r ad)
= (

2.6×10−5)(α−1/4M 7/4
? Ṁ−2

?

)
x29/4C 9/4D−1/4R5/4P −2 ¿ 1,

(3.58a)

κ̄ f f

κ̄es
= (

2.2×10−8)(α−1/8M 15/8
? Ṁ−2

?

)
x61/8C 17/8D−1/8R9/8P −2 ¿ 1.

(3.58b)
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[Gas-ff] Gas pressure-free free absorption dominated solution

In this region, the gas pressure p = p(g as) and the free-free term contribution

in the opacity law are dominant. Then, we find

F = (
5.5×1025er g /(cm2sec)

)(
M−2
? Ṁ?

)
x−7C −1P , (3.59a)

Σ= (
1.70×105g /cm2)(α−4/5M−1/2

? Ṁ 7/10
?

)
x−11/5C 1/10D−4/5R−1/20P 7/10,

(3.59b)

W = (
1.1×1021d yn/cm

)(
M−1
? Ṁ?

)
x−4D−1P , (3.59c)

h = (
3.8×10−3)(α−1/10M−1/4

? Ṁ 3/20
?

)
x1/10C −1/20D−1/10R−19/40P 3/20,

(3.59d)

ur = (−2.1×105cm/sec
)(
α4/5M−1/2

? Ṁ 3/10
?

)
x1/5C −1/10D4/5R1/20P −7/10,

(3.59e)

p(g as) = (
3.3×1017d yn/cm2)(α−9/10M−7/4

? Ṁ 17/20
?

)
x−61/10C 1/20D−9/10R19/40P 17/20,

(3.59f)

ρ = (
51.g /cm3)(α−7/10M−5/4

? Ṁ 11/20
?

)
x−43/10C 3/20D−7/10R17/40P 11/20,

(3.59g)

T = (
7.7×107K

)(
α−1/5M−1/2

? Ṁ 3/10
?

)
x−9/5C −1/10D−1/5R1/20P 3/10.

(3.59h)

For consistency, this solution is valid where h ¿ 1, ur ¿ 1 and

p(r ad)

p(g as)
= (0.27)

(
α1/10M−1/4

? Ṁ 7/20
?

)
x−11/10C −9/20D1/10R−11/40P 7/20 ¿ 1,

(3.60a)

κ̄es

κ̄ f f
= (

4.8×102)(M−1/2
? Ṁ 1/2

?

)
x−2C −1/2R−1/4P 1/2 ¿ 1. (3.60b)
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Gravitational multipole moments
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Multipole moments in the theory of General Relativity are introduced in this

chapter. After stating motivations in section 4.1, we introduce the common nomen-

clature to define regions around a gravitational wave source in section 4.2. Then,

in section 4.3, we introduce the harmonic gauge and we define the so-called canon-

ical harmonic gauge, where gravitational multipole moments can be read off from

the multipolar expansion of the metric field. Finally, section 4.4 provides the defi-

nition of source multipole moments and radiation multipole moments.

4.1 Astrophysical motivations

Multipole moments, and multipole expansion, are ubiquitous in theoretical physics

wherever one deals with fields (electromagnetic, gravitational, hydrodynamical,

etc. . . ). The idea that multipole moments are in connection with the coefficients

of the multipole expansion of the given field is meaningful whenever the theory is

linear. General Relativity is not and this feature, together with the tensorial nature

of the gravitational interaction, makes the definition of the gravitational multipole

moments more involved (see Box. 1 in Thorne, 1980, for a historical overview of
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the literature on multipole expansion in General Relativity). In addition, in gen-

eral curved space-times there is no a natural choice of the origin with respect to

which one can perform the harmonic expansion.

The gravitational field, in General Relativity, is characterized by two and only

two sets of multipole moments: the mass multipole moments and the current

multipole moments. The former moments are already defined in Newtonian the-

ory (see, e.g., Poisson and Will, 2014), while the current multipole moments are

only defined in General Relativity (Geroch, 1970; Hansen, 1974; Thorne, 1980;

Fodor, Hoenselaers, and Perjés, 1989).

The gravitational field surrounding a stationary body in General Relativity is

entirely described by its mass and current multipole moments, determined by the

expansion of the metric at spatial infinity (Geroch, 1970; Hansen, 1974; Simon and

Beig, 1983), up to a diffeomorphism (Beig and Simon, 1980; Beig and Simon, 1981;

Kundu, 1981a; Kundu, 1981b). Any stationary and axisymmetric metric in General

Relativity can be reconstructed from given multipole moments under certain as-

sumptions (Backdahl and Herberthson, 2005; Backdahl, 2007). The gravitational

field of a non-stationary body in the wave-zone region, assuming no incoming

radiation and asymptotically flatness, is also entirely described by its mass and

current multipole moments, determined by the expansion of the metric at future

null infinity, up to a diffeomorphism (Blanchet and Damour, 1986).

For a Kerr black hole, the mass multipole moments I lm and the current mul-

tipole moments Slm are completely determined by its mass M and angular mo-

mentum J = M a. Since the Kerr black hole is axisymmetric, I lm = Il δm,0 and

Slm = Sl δm,0. Since it is reflection-symmetric (i.e., symmetric under reflection

with respect to the equatorial plane), odd mass multipole moments and even cur-

rent multipole moments vanish, I2l+1 = S2l = 0. The non-vanishing multipole mo-

ments are given by the Geroch-Hansen formulæ (Geroch, 1970; Hansen, 1974)

I2l = (−1)l M a2l , S2l+1 = (−1)l M a2l+1, (4.1)

where I0 = M is the mass, S1 = J is the angular momentum and I2 = −J 2/M is

the mass quadrupole moment. Kerr black hole is generally accepted to be the

final stationary state in General Relativity. Thus, measuring more than two mul-

tipole moments of the gravitational field surrounding a stationary black hole is a

direct test of General Relativity, or more precisely, of its no-hair theorems (see, e.g.,

Collins and Hughes, 2004; Cardoso and Gualtieri, 2016). The gravitational wave

detector LISA might be able to measure the mass quadrupole moment of merging

black holes with good accuracy (Ryan, 1997; Barack and Cutler, 2007). This would
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allow to constrain alternative gravitational theories that predict a different mass

quadrupole moment (see, e.g., Berti (2015) for a status report and Yagi, Yunes, and

Tanaka (2012); Ayzenberg and Yunes (2014); Collins and Hughes (2004); Herdeiro

and Radu (2015) for specific models).

Another potential application of gravitational multipole moments is in the rich

physics of neutron stars (Baiotti and Rezzolla, 2017; Fernández and Metzger, 2016)

and in the long-standing open problem of their equation of state (Lattimer, 2012).

For neutron stars or other types of stars, the two sets of multipole moments are

determined by the matter distribution. The multipole moments of a stationary

neutron star also characterize the equation of state of the matter it consists of (see,

e.g., Datta, 1988; Salgado et al., 1994; Laarakkers and Poisson, 1999). Indeed, it has

been proposed that the equation of state can be constrained by the gravitational

waveform of a binary neutron stars system (Bauswein and Janka, 2012) and of a

black hole-neutron star system (Lackey et al., 2012), because the imprinting of the

equation of state in the waveform is due to the quadrupole-monopole interaction

(Poisson, 1998) and to tidal deformations of the neutron stars in the binary system

(Hinderer et al., 2010; Damour, Nagar, and Villain, 2012). Gravitational wave emis-

sion from binary neutron star mergers, such as the one recently observed (Abbott,

2017a; Abbott, 2017b), or black hole-neutron star mergers, therefore, contains sig-

natures of the equation of state of neutron stars. Another aspect of neutron stars

concerns the universal relations among certain multipole moments (see, e.g., Yagi

and Yunes, 2017, and references therein) and their origin for this universality (Yagi

et al., 2014).

4.2 Regions around an isolated source

Before defining source and radiative multipole moments, it is much instructive

to introduce all the characteristic length-scales involved in the process of gravita-

tional radiation.

Let us consider a given isolated source of mass M described by an energy-

momentum tensor that is defined inside a compact region of size a. Such a source

emits gravitational radiation with a characteristic wavelength λ. We define the

following regions defined by the above characteristic lengths (Thorne, 1980):

1. the source region defined by r ≤ a where the source lies,

2. the strong-field region characterised by r ≤ 5rS
1 if a/M ≤ 10. The strong-

field regime typically does not exist if the ratio of compactness a/M is much

1We define rS = 2M as the radius of influence or the Schwarzschild radius of the source.
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bigger than 10,

3. the weak-field near zone, where r > a and defined by 2rS ¿ r ¿λ.

In addition to these regions, we define the

- the local wave zone defined between two characteristic radii: the inner ra-

dius r I and the outer radius rO . The former is located where one or more of

the following instances take place: a) the waves become a near-zone field,

i.e., r ≤λ, b) one has to consider the red-shift effect of the source, i.e., r ≈ rS ,

c) the source distorts the wave fronts and produces the back-scattering of

the waves, i.e.,
(
r 3/M

)1/2 ≈ λ, d) one enters the source region. The outer

radius is located where either a) the Newtonian potential M/r of the source

produces a significant phase-shift in the wave or b) the presence of nearby

masses perturbs the propagation of the waves. We also demand that rO −
r I À λ., so that the local wave zone is very large with respect to the charac-

teristic wavelength of the gravitational radiation.

- the distant wave zone is defined as r > rO .

The wave generation and the wave propagation regions overlap in the local wave

zone, where one has to match the source multipole moments and the radiation

multipole moments (see, e.g., the recent review of Blanchet, 2014). In other words,

source multipole moments parametrise the source, while the radiative multipole

moments parametrise the radiation field. These two kinds of moments must be

related to each other by means of the matching asymptotic expansion technique.

This is a necessary step when one wants to compare theoretical predictions with

experimental observations by gravitational waves detectors.

4.3 Harmonic gauge

We consider an asymptotically flat space-time with dynamical metric gµν. We de-

note the inverse metric as gµν and the Minkowski metric as ηµν, whose inverse is

ηµν. We define the field gµν ≡ ηµν−p−g gµν and impose the de Donder or har-

monic gauge

∂µg
µν = 0. (4.2)

The exact equations of General Relativity are written in this gauge as (see, e.g.,

Blanchet, 2014))

äηg
µν =−16πτµν ≡ 16π|g |T µν+Λµν, (4.3)
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whereΛµν is the effective stress tensor of the gravitational field and is quadratic or

higher order in powers of gµν and äη = ηµν∂µ∂ν = −∂2
t +∇̄2 is the D’Alembertian

operator with respect to the background flat metric. Due to the de Donder gauge,

the stress-energy pseudo-tensor τµν is conserved ∂µτµν = 0.

4.3.1 Canonical harmonic gauge in General Relativity

As claimed in the section 4.1, the definition of multipole moments is ambigu-

ous in harmonic gauge. It is, therefore, necessary to further fix the gauge. For

outgoing-wave linearised configurations and for stationary non-linear configu-

rations in General Relativity, Thorne (1980) provided a unique and well-defined

definition of multipole moments for asymptotically flat space-times. His defini-

tion is stated in the so-called Asymptotically Cartesian Mass Centered (ACMC∞)

gauge, also known as canonical harmonic gauge (Blanchet, 1998), obtained from

the usual de Donder gauge after further gauge fixing.

Here, we outline, following the section VIII of Thorne (1980), the main steps to

reach the canonical harmonic gauge in the linearised theory.2

Consider the linearised metric field gµν = ηµν+hµν around Minkowski space-

time. At the linearised level, the field gµν is given by gµν = γµν+O (γ2) where

γµν = ηµαηνβhαβ−
1

2
ηµνηαβhαβ = hµν− 1

2
ηµνh (4.4)

is the trace-reversed perturbation. The harmonic gauge, ∂µγµν = 0, and the lin-

earised equations of motion in vacuum read as

γ̇µ0 = ∂iγµi , äηγµν = 0, (4.5)

where the dot stands for the derivative with respect to time. The most general sym-

metric gravitational field satisfying the above equations and describing outgoing

waves has the following form

γ00 = ∂Al

(
r−1AAl (u)

)
γ0i = ∂Al−1

(
r−1Bi Al−1 (u)

)+∂p Al−1

(
r−1εi pqCq Al−1 (u)

)+∂i Al

(
r−1DAl (u)

)
(4.6a)

γi j = δi j∂Al

(
r−1EAl (u)

)+∂Al−2

(
r−1Fi j Al−2 (u)

)+∂p Al−2

(
r−1εpq(iGj )q Al−2 (u)

)+
+ [
∂ j Al−1

(
r−1Hi Al−1 (u)

)+∂ j p Al−1

(
r−1εi pqNq Al−1 (u)

)]S +∂i j Al

(
r−1KAl (u)

)
,

2We refer the reader to section IX and section X of Thorne (1980) and references therein, re-
spectively, for the explicit construction of the canonical harmonic coordinates in radiating and
stationary space-times in the full non-linear theory.
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where all coefficients are functions of the retarded time u = t − r . The functions

A,B, . . . are symmetric and trace-free (STF) tensors (see appendix E). The har-

monic or de Donder gauge fixes the constraints

BAl = ȦAl −D̈Al , (4.7a)

EAl = ḊAl −
1

2
HAl −K̈Al , (4.7b)

FAl = ÄAl −
...
DAl −

1

2
ḦAl , (4.7c)

GAl = 2ĊAl − N̈Al . (4.7d)

From Eqs. (4.6), it is immediate to notice that the STF coefficients B,C,H,N ap-

pear from the dipole term l ≥ 1 and F,G appear from quadrupole term l ≥ 2.

Thus, the harmonic gauge conditions (4.7) imply for the monopole and dipole

terms the following constraints

0 = Ȧ−D̈, (4.8a)

E= Ḋ−K̈, (4.8b)

0 = Äi −
...
Di − 1

2
Ḧi , (4.8c)

0 = 2Ċi − N̈i . (4.8d)

The first and third equations of (4.8) are equivalent to the four-momentum con-

servation law, being

P 0 = 1

4

(
A−Ḋ

)
, Pi =−1

4

(
Ȧi −D̈i − 1

2
Ḣi

)
(4.9)

the total four-momentum of the source, according to Eq. (20.6) of Misner, Thorne,

and Wheeler (1973). Now, we perform a Lorentz boost to go to the rest-mass frame

of the source and we set the centre of mass at the origin of our coordinates. These

last two requirements are equivalent, respectively, to

Ȧi −D̈i − 1

2
Ḣi = 0, Ai −Ḋi − 1

2
Hi = 0. (4.10)

The next step is to use the gauge freedom to bring to zero four of the aforemen-

tioned STF coefficients. To this aim, we recall that a gauge transformation acts on

the linearised metric perturbation as hµν 7→ hµν+∂µξν+∂νξµ and therefore as

γµν 7→ γµν+∂µξν+∂νξµ−ηµν∂αξα, (4.11)
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on the trace-reversed field, where all indices are lowered with the flat metric. The

explicit form of the vector field ξµ, preserving the harmonic gauge, can be written

as3

ξ0 =−∂Al

(
r−1DAl (u)

)+ 1

2
∂Al

(
r−1K̇Al (u)

)
, (4.12a)

ξi =−1

2
∂i Al

(
r−1KAl (u)

)− 1

2
∂Al−1

(
r−1Hi Al−1 (u)

)− 1

2
∂p Al−1

(
r−1εi pqNq Al−1 (u)

)
.

(4.12b)

Thus, we use the gauge freedom to set to zero DAl ,HAl ,NAl ,KAl . This defines the

canonical harmonic gauge, i.e., the harmonic gauge in the rest-frame of the source

with the centre of mass at the origin of the coordinates and with the only two inde-

pendent STF coefficients A and C in Eq. (4.6) parametrising the linearised metric

perturbation.

4.4 Multipole moments

The definitions of mass and current multipole moments require a background

structure involving Minkowski space-time and either a choice of gauge (in the

Thorne’s approach with canonical harmonic gauge) or a choice of conformal com-

pletion (in the Geroch-Hansen’s formalism).

Source multipole moments are defined in canonical harmonic gauge at spatial

infinity from the spherical harmonic decomposition of the metric field. Thorne’s

source moments agree with the Geroch-Hansen’s definition for stationary space-

times (Geroch, 1970; Hansen, 1974), up to a choice of normalization, after cali-

brating appropriately the ambiguity in the definition of the conformal factor in

the Geroch-Hansen formalism (Gürsel, 1983).

Independently, radiative multipole moments are defined in radiative (Bondi)

gauge at future null infinity from the spherical harmonic decomposition of the

Bondi news tensor (Bondi, van der Burg, and Metzner, 1962; Sachs, 1962).

4.4.1 Source multipole moments

Multipole moments are generated by sources. In linearised General Relativity,

source multipole moments can be expressed as volume integrals depending on

3see section VIII, Eq. (8.9) of Thorne (1980) and the equivalent expression in terms of vector
spherical harmonics in Eq. (E.52).
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the source stress-tensor (Campbell and Morgan, 1971; Campbell, Macek, and Mor-

gan, 1977; Damour and Iyer, 1991). In full General Relativity, the problem of defin-

ing source multipole moments is more involved as it has been already said at the

beginning of the introduction of this chapter. The reason is that source multipole

moments mix with each other and it is not obvious at first sight how to define a

consistent multipole expansion. However, for slow moving sources (v ¿ c), the

post-Newtonian (PN) expansion of General Relativity is applicable and multipole

moments can still be expressed as volume integrals over the sources (Burke, 1971;

Epstein and Wagoner, 1975; Thorne, 1980; Blanchet, 1998). These volume inte-

grals can be expressed as surface integrals in the outer or weak-field near-zone,

i.e., far from the source but at radii negligible with respect to the radiation wave-

length (Blanchet, Damour, and Iyer, 2005).

In the following, we introduce source multipole moments from the expansion

at spatial infinity (r → ∞ and t = constant) of the metric field in canonical har-

monic gauge. We first consider the case of radiating space-times within the lin-

earised theory and then we discuss the case of stationary space-times within the

full General Relativity.

Phase space for linearised radiating space-times

Recall that gµν = ηµν+hµν is the linearised metric describing the external grav-

itational field of an arbitrary isolated system with no incoming wave boundary

conditions, and further excluding NUT or acceleration parameters which are not

considered physical.

In the canonical harmonic gauge (also called AC MC∞ coordinates in Thorne,

1980), hµν takes the following form

h00 = 2I

r
+

∞∑
l=2

(−1)l 2

l !
∂Al

(
IAl (u)

r

)
, (4.13)

h0 j =−
∞∑

l=1
(−1)l 4l

(l +1)!
∂q Al−1

(
ε j pqSp Al−1 (u)

r

)
+

∞∑
l=2

(−1)l 4

l !
∂Al−1

(
İj Al−1 (u)

r

)
,

hi j = h00δi j +
∞∑

l=2
(−1)l

[
4

l !
∂Al−2

(
Ïi j Al−2 (u)

r

)
− 8l

(l +1)!
∂q Al−2

(
εpq(i Ṡj )p Al−2 (u)

r

)]
.

The linearised metric is expressed in terms of symmetric trace-free (STF) tensors

IAl (u), SAl (u) that are respectively the mass and current gravitational multipole

moments. This is Thorne’s definition in terms of metric components. The mass

monopole I is constant and is interpreted as the mass of the source. The cur-

rent dipole Si is also constant and is interpreted as the angular momentum of the
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source. Because we are in the centre of mass frame, no mass dipole moment Ii is

present.

Phase space for stationary space-times

Let gµν = ηµν +O (1/r ) be an asymptotically flat stationary metric in de Donder

coordinates. We restrict our analysis to those metrics that are solutions to General

Relativity, where the metric coefficients gµν are analytic functions of the de Don-

der coordinates (Hagen, 1970). In canonical harmonic coordinates, the resulting

metric reads as (see section X and Eqs. (10.6) in Thorne (1980))

g00 =−1+ 2I

r
+ (0)pole

r 2
+

∞∑
l=2

1

r l+1

(
2(2l −1)!!

l !
IAl NAl + (l −1)pole+·· ·+ (0)pole

)
,

g0 j =
∞∑

l=1

1

r l+1

(
−4l (2l −1)!!

(l +1)!
ε j palSp Al−1 NAl + (l −1)pole+·· ·+ (0)pole

)
, (4.14)

gi j = δi j

(
1+ 2I

r

)
+ (0)pole

r 2
+

∞∑
l=2

1

r l+1

(
2(2l −1)!!

l !
IAl NAlδi j + (l −1)pole+·· ·+ (0)pole

)
.

Here (0)pole is a constant monopole, (1)pole a combination of l = 1 spherical har-

monics, etc. The tensors NAl are defined in appendix E.1. The coefficients IAl

and SAl are defined as the mass multipole moments and the current multipole

moments, respectively (Thorne, 1980). In such canonical harmonic coordinates

there is no mass dipole moment Ii . The mass and angular momentum are re-

spectively I and Si . The STF version of the multipole moments IAl , SAl can be

translated in harmonic coefficients I lm and Sl m (see, e.g., Eq. (E.33)).

4.4.2 Radiative multipole moments

The radiative multipole moments parametrize the radiation field. Throughout the

local wave zone, by definition, the gravitational waves can be described as lin-

earised perturbation of the metric around the Minkowski background.

We introduce radiative multipole moments from the expansion at future null

infinity (R → ∞ and u = constant) of the metric field in radiative (Bondi) gauge

(U ,R,θ,φ), where R = r and U = u −2M log(r ). In radiative coordinates and un-

der the assumption of no incoming radiation, the metric admits an expansion at

future null infinity in powers of 1/R without logarithmic terms (Blanchet, 1987).

In this coordinate system, the gravitational radiation is fully determined by the

transverse and traceless (TT) part of the spatial part of linearised metric pertur-

bation (see, e.g., Misner, Thorne, and Wheeler, 1973). Mathews (1962) proved that
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the linearised radiation field must have the following form

hT T
i j = 1

R

∞∑
l=2

l∑
m=−l

[
(l )I lm(U )T E2 lm

i j + (l )Slm(U )T B2 lm
i j

]
, (4.15)

where T E2 lm
i j and T B2 l m

i j are the transverse and traceless tensor spherical harmon-

ics of spin-2 defined in appendix E.2.3. The gravitational radiation field in (4.15) is

the most general outgoing-wave TT solution of the equation äηhT T
i j = 0. It is man-

ifest that the radiation field contains multipole moments from the quadrupole

term (l = 2) and higher: this is another way to highlight the tensorial nature of

the gravitational radiation within General Relativity.

The equivalent expression in terms of STF tensors reads as (Sachs, 1961; Thorne,

1980)

hT T
i j = 1

R

∞∑
l=2

[
4

l !
(l )Ii j Al−2 (U )NAl−2 +

8

(l +1)!
εpq(i

(l )Sj )p Al−2 (U )nq NAl−2

]T T

,

= 1

R

∞∑
l=2

[
4

l !
Ui j Al−2 (U )NAl−2 +

8

(l +1)!
εpq(i V j )p Al−2 (U )nq NAl−2

]T T

. (4.16)

The radiative multipole moments UAl and VAl characterize the radiation field. We

notice that the radiative multipole moments are the l -th derivatives of the source

multipole moments at the linearised order in the gravitational coupling. For ex-

ample, the quadrupole formula as derived by Einstein (1918) is simply given by

Ui j (U ) = (2)Ii j (U )+O (G). (4.17)

The expression of radiative multipole moments in terms of source multipole

moments can be established perturbatively to all orders in the gravitational cou-

pling under certain hypotheses including no incoming radiation (Blanchet, 1987).

Such expressions involve time integrals, known as tails, and further non-linear

terms including the non-linear memory (see, e.g., the review of Blanchet, 2014).

In chapter 8, we shall discuss how to directly extract the source multipole mo-

ments (without derivative) close to future null infinity by means of Noether charges.
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In the first two chapters of Part I, we have introduced the Near-Horizon Ex-

treme Kerr (NHEK) space-time and Force-Free Electrodynamics (FFE). In this chap-

ter, we will proceed in a systematic study of FFE around NHEK. The content of this

chapter is mainly based on Compère and Oliveri (2016).
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After a brief introduction in section 5.1, we define the problem we want to ad-

dress in section 5.2, namely, to solve the FFE equations around NHEK space-time

and to classify the solutions using the highest weight representation of the isom-

etry group of NHEK space-time. We introduce the language of canonical Euler

potential in section 5.3. Then, we find the maximally symmetric solutions to the

above problem in section 5.4. Later, in section 5.5, we outline the strategy to solve

the equations. Having found a list of mathematical solutions to the equations, in

section 5.6, we introduce certain physical requirements to discriminate the phys-

ically relevant ones describing the extreme Kerr force-free magnetospheres. Fi-

nally, section 5.7 concludes the chapter with the discussion of the main results.

5.1 Introduction

The study of FFE around (near-) NHEK space-time started with the paper of Li et

al. (2015) and continued with Lupsasca, Rodriguez, and Strominger (2014), Zhang,

Yang, and Lehner (2014), Lupsasca and Rodriguez (2015), and Compère and Oliv-

eri (2016). In Li et al. (2015), it has been realised that (near-) NHEK space-time al-

lows to analytically investigate force-free magnetospheres around rapidly rotating

(astrophysical) black holes. In this earlier attempt, no use of conformal symme-

tries has been made. Lupsasca, Rodriguez, and Strominger (2014) and subsequent

papers mentioned above, instead, exploit the symmetries of the NHEK isometry

group to solve FFE and to find classes of exact analytical solutions.

In this context, we build on previous works and extend their preceding results

in several directions. First of all, we extend the list of exact solutions to FFE around

NHEK and classify them in seven independent classes. Second, we provide new

insights into the physical properties of force-free magnetospheres by introducing

criteria to select potentially physical solutions. Among such criteria, the solutions

must admit finite extraction of energy and angular momentum with respect to

an asymptotically flat observer. As a consequence, the criteria impose tight con-

straints on the conformal weights of the solutions, in agreement with the analysis

of Gralla, Lupsasca, and Strominger (2016). Another result is to have highlighted

the presence and the role of the velocity of light surface, where potentially physical

solutions have a logarithmic divergence.1

1See the discussion below Eq. (1.18) for the definition of the velocity of light surface. Moreover,
the velocity of light surface changes the order of the differential equations describing the magne-
tospheres (Zhang, Yang, and Lehner, 2014).
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5.2 Set-up of the problem

The basic problem is to find solutions to FFE

dF(h,q,0) = 0, d ?F(h,q,0) =?J(h,q,0), J(h,q,0) ∧?F(h,q,0) = 0, (5.1)

falling into the highest weight representation2 of SL(2,R)×U (1) labelled by {h, q,k},

where k labels descendants given by
(
LH−

)k F(h,q,0) = F(h,q,k),
LH+F(h,q,0) = 0,

LH0 F(h,q,0) = hF(h,q,0),

LQ0 F(h,q,0) = i qF(h,q,0),

(5.2)

around the NHEK space-time

d s2
N HEK = 2M 2 Γ(θ)

[
−R2dT 2 + dR2

R2
+dθ2 +γ2(θ) (dΦ+RdT )2

]
, (5.3)

where Γ(θ) = (
1+cos2(θ)

)
/2 and γ(θ) = sin(θ)/Γ(θ). Notice that the metric in

Poincaré coordinates can be decomposed into the toroidal part spanned by (T,Φ)

with volume form εT = ΓγRdT ∧dΦ, and the poloidal part spanned by (R,θ) with

volume form εP = Γ
R dR ∧dθ. We have ε= εT ∧εP , ?εT =−εP , ?εP = εT .

Once classes of solutions have been found, it is natural to ask whether they are

physical or not. First of all, the electromagnetic field F must be real and its char-

acter must be either magnetically dominated or null. Then, we demand that they

should have finite and computable energy and angular momentum flux with re-

spect to an asymptotically flat observer. In addition, we would like to select those

solutions that come from the near-horizon limit of regular solutions to FFE around

(near-) extreme Kerr. In different words, we want to have a criterion to select gen-

uine NHEK solutions from solutions that are originated as limit (in the sense de-

fined at the end of chapter 1) of solutions existing on (near-) extreme Kerr.

5.3 Canonical Euler potentials

5.3.1 Stationary and axisymmetric case

Let us first summarise the stationary and axisymmetric case as analysed in sec-

tion 2.5. There is no toroidal electric field (and therefore no components of the

2The physical motivation behind this strategy is to find stationary, self-similar and U (1)-charged
solutions. See also the discussion below Eq. (1.22).
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field strength proportional to dT ∧dΦ) for axisymmetric configurations as a sim-

ple consequence of Faraday’s law. We distinguish three scenarios:

generic case i∂ΦF 6= 0. One can choose

φ1 =ψ(R,θ), φ2 =Φ+ψ2(R,θ)−Ω(ψ)T. (5.4)

The polar current I (R,θ) is defined as

?(dψ∧dψ2) = I (R,θ)√
−g T

εT . (5.5)

It is equal to the electric current with respect to time T flowing in the up-

ward direction through the loop of revolution defined by the poloidal point

(R,θ). Note that this interpretation breaks down beyond the velocity of light

surface where ∂T is spacelike. The force-free equations imply that I = I (ψ).

We therefore have

F = dψ∧ (
dΦ−Ω(ψ)dT

)+I (ψ)
dR ∧dθ

γR2
. (5.6)

In particular, ifΩ(ψ) = 0, there is no electric field, i∂T F = 0.

No poloidal magnetic field i∂ΦF = 0, i∂T F 6= 0. One can choose instead

φ1 =χ(R,θ), φ2 = T +χ2(R,θ). (5.7)

We then define the polar current as ?(dχ∧dχ2) = I (R,θ)p
−g T

εT which has the

same interpretation as above. The force-free equations imply I = I (χ). The

corresponding field strength takes the form

F = dχ∧dT + I (χ)
dR ∧dθ

γR2
. (5.8)

Only toroidal magnetic field i∂T F = 0, i∂ΦF = 0. In that case,

φ1 =χ(R,θ), φ2 =χ2(R,θ), F = I (χ)
dR ∧dθ

γR2
. (5.9)

There is no electric field and no poloidal magnetic field.
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5.3.2 Stationary and ∂Φ-eigenvalue case

Let us now consider a complex force-free field strength which is stationary, L∂T F =
0, and which is an i q ∂Φ-eigenvalue, L∂ΦF = i qF . Stationarity implies

0 =L∂T F = di∂T F = d
(−∂Tφ2dφ1 +∂Tφ1dφ2

)
, (5.10)

where we used Cartan’s formula, Bianchi’s identity and the degeneracy of F . By

Poincaré’s lemma, there exists a function f = f (φ1,φ2) such that:

−∂Tφ2dφ1 +∂Tφ1dφ2 = d f . (5.11)

We distinguish here two cases: (i) i∂T F = d f = 0 which implies that both Euler

potentials are time independent and (ii) i∂T F = d f 6= 0 to which we now turn our

attention. Euler potentials are defined up to the following arbitrariness: we may

choose any other pair of potentials (φ̃1, φ̃2), leaving the electromagnetic 2-form

invariant, provided the map (φ1,φ2) → (φ̃1, φ̃2) has unit Jacobian determinant. Us-

ing this freedom, we choose φ̃1 =− f . Let us check the existence of φ̃2(φ1,φ2). The

Jacobian of the transformation reads as

1 = ∂φ̃1

∂φ1

∂φ̃2

∂φ2
− ∂φ̃1

∂φ2

∂φ̃2

∂φ1
=− ∂ f

∂φ1

∂φ̃2

∂φ2
+ ∂ f

∂φ2

∂φ̃2

∂φ1
, (5.12)

which is a first order partial differential equation (PDE) for φ̃2(φ1,φ2) and can be

integrated with respect to φ2 if ∂ f
∂φ1

6= 0 or with respect to φ1 if ∂ f
∂φ2

6= 0. With this

new pair of Euler potentials, Eq. (5.11) becomes

−∂T φ̃2dφ̃1 +∂T φ̃1dφ̃2 =−dφ̃1, (5.13)

from which we read off the conditions

∂T φ̃1 = 0, ∂T φ̃2 = 1, (5.14)

whose solutions are

φ̃1 =χ1(R,θ,Φ), φ̃2 = T +χ2(R,θ,Φ). (5.15)

Finally, merging cases (i) and (ii) and dropping tildes, Euler potentials for station-

ary solutions can be fixed to

φ1 =χ1(R,θ,Φ), φ2 = εT +χ2(R,θ,Φ), (5.16)
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where ε= 1 if i∂T F 6= 0 and ε= 0 if i∂T F = 0.

Let us now turn our attention to the second condition L∂ΦF = i qF . We have

0 = di∂ΦF − i qF

= di∂Φ(dφ1 ∧dφ2)− i qdφ1 ∧dφ2

= d
[
(i∂Φdφ1)dφ2 − (i∂Φdφ2)dφ1

]− i qdφ1 ∧dφ2 (5.17)

= d
[
(∂Φφ1 − i qφ1)dφ2 − (∂Φφ2)dφ1

]
= d

[
(∂Φχ1 − i qχ1)(εdT +dχ2)− (∂Φχ2)dχ1

]
,

where we used Bianchi identity in the first step and stationarity in the last one.

Let us first discuss the case ε= 1. Since χ1,χ2 have no time dependence, from the

identity

0 = d(∂Φχ1 − i qχ1)∧ (dT +dχ2)−d(∂Φχ2)∧dχ1, (5.18)

we infer that

∂Φχ1 − i qχ1 = const, ∂Φχ2 = κ(χ1), (5.19)

where κ(χ1) is an arbitrary function of the Euler potential χ1 and where the arbi-

trary constant can be set to zero by shifting χ1.

From the first differential equation we have

χ1(R,θ,Φ) = e i qΦχ̃1(R,θ). (5.20)

From the second differential equation, we infer

χ2(R,θ,Φ) =
∫ Φ

κ
(
e i qΦ′

χ̃1

)
dΦ′+ χ̃2(R,θ). (5.21)

In conclusion, dropping the tildes for simplicity, the Euler potentials in the case

i∂T F 6= 0 can be taken as

φ1 = e i qΦχ1(R,θ), φ2 = T +χ2(R,θ)+
∫ Φ

κ
(
e i qΦ′

χ1(R,θ)
)

dΦ′. (5.22)

Let us compute the field strength. We define h(R,θ,Φ) = ∫ Φ
κ

(
e i qΦ′

χ1(R,θ)
)

dΦ′,
then

dh(R,θ,Φ) = ∂h

∂R
dR + ∂h

∂θ
dθ+ ∂h

∂Φ
dΦ, (5.23)
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where

∂h

∂R
=

∫ Φ ∂κ(φ1)

∂φ1

∣∣∣
Φ→Φ′e

i qΦ′
∂Rχ1dΦ′, (5.24)

∂h

∂θ
=

∫ Φ ∂κ(φ1)

∂φ1

∣∣∣
Φ→Φ′e

i qΦ′
∂θχ1dΦ′, (5.25)

∂h

∂Φ
= κ(φ1). (5.26)

The exterior derivative of φ2 is

dφ2 = dT +dχ2 +κ(φ1)dΦ+
(∫ Φ ∂κ(φ1)

∂φ1

∣∣∣
Φ→Φ′e

i qΦ′
dΦ′

)
dχ1, (5.27)

and the field strength takes the following form

F = dφ1 ∧ (dT +dχ2)+e i qΦ
[
κ(φ1)− i qχ1

∫ Φ ∂κ(φ1)

∂φ1

∣∣∣
Φ→Φ′e

i qΦ′
dΦ′

]
dχ1 ∧dΦ.

(5.28)

Let us now return to the case ε = 0 (i∂T F = 0). We restart from Eq. (5.17). By

Poincaré’s lemma there exists a function f such that

[
(∂Φχ1 − i qχ1)(dχ2)− (∂Φχ2)dχ1

]= d f . (5.29)

If d f = 0 we find directly

∂Φχ2 = 0, ∂Φχ1 − i qχ1 = 0, (5.30)

and we find the Euler potentials in the case ∂T F = 0 with d f = 0,

φ1 = e i qΦχ1(R,θ), φ2 =χ2(R,θ). (5.31)

In that case, the field strength is

F = e i qΦ
(
dχ1 ∧dχ2 − i qχ1dχ2 ∧dΦ

)
. (5.32)

If d f 6= 0, one can use again the ambiguity in the definition of Euler potentials to

choose χ1 =− f . Then

∂Φχ2 = 1, ∂Φχ1 − i qχ1 = 0, (5.33)

and we find the Euler potentials φ1 = e i qΦχ1(R,θ), φ2 = Φ+χ2(R,θ). Since these

potentials generalise (5.4) whenΩ= 0, we find it convenient to align the notations
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so that finally we get in the case ∂T F = 0 with d f 6= 0,

φ1 = e i qΦψ(R,θ), φ2 =Φ+ψ2(R,θ). (5.34)

In that case, the field strength is

F = e i qΦ
(
dψ∧dψ2 + (dψ− i qψdψ2)∧dΦ

)
. (5.35)

5.4 Maximally symmetric solutions

To warm up, we begin by deriving the maximally symmetric solutions to FFE, i.e.,

those solutions invariant under the full isometry group SL(2,R)×U (1). We first

want to exploit the symmetries and find solutions to the system LX F = 0, where

X = {H±, H0,Q0}. We notice that 0 =LX F =LX d A = dLX A. Therefore, LX A = 0

implies LX F = 0. The invariance of the gauge potential A under the generators

H±, H0 and Q0 constrains the potential to be

A = A0(θ)Q̂0 + A1(θ)dθ, (5.36)

where A0 and A1 are two arbitrary real-valued function of the polar angle and Q̂0 =
Q0/|Q0| = dΦ+RdT . We impose the gauge A1 = 0 and we get

F =−A0(θ)dT ∧dR +∂θA0(θ)dθ∧Q̂0, (5.37a)

J =−γ(θ)

Γ(θ)

[
∂θ

(
∂θA0(θ)

γ(θ)

)
+γ(θ)A0(θ)

]
Q̂0. (5.37b)

The force-free condition amounts to

0 = J ∧?F =−∂θA0(θ)

Γ(θ)

[
∂θ

(
∂θA0(θ)

γ(θ)

)
+γ(θ)A0(θ)

]
dT ∧dR ∧dθ. (5.38)

There are two branches:

• the non-trivial force-free solution for constant A0 =−E0 and

A =−E0Q̂0, F =−E0dQ̂0, J =−γ
2(θ)

Γ(θ)
A. (5.39)

This solution is electrically dominated, because?(F∧?F ) =−1/2 F 2 = E 2
0/Γ2(θ) >

0. This solution is also understood to be the h = 0 universal near-horizon

limit of force-free magnetospheres defined on extreme Kerr (see Eqs. (23) in

Gralla, Lupsasca, and Strominger, 2016). In other words, this solution is the

unique electromagnetic field with conformal weight h = 0 originating from
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a stationary, axisymmetric and regular (on the future horizon) solution to

FFE on extreme Kerr space-time. We shall review the reasoning leading to

this conclusion in section 5.6.5.

• the trivial force-free solution (or source-free Maxwell solution) obeying

∂θ

(
∂θA0(θ)

γ(θ)

)
+γ(θ)A0(θ) = 0. (5.40)

The general solution reads as

A0(θ) = M0 cos[θ0 +2arctancos(θ)] , (5.41)

where M0 and θ0 are the two constants of integration. The electromagnetic

field is regular both at the north and at south pole since A′
0(0) = 0 = A′

0(π).

The character of the solution is given by the expression

? (F ∧?F ) =−1/2 F 2 = 1

γ2(θ)Γ2(θ)

[− (∂θA0(θ))2 +γ2(θ)A2
0(θ)

]
. (5.42)

It is possible to make this solution magnetically dominated in the physical

region beyond the velocity of light surface upon choosing the constant of

integration θ0 ≤ |2arctan
√

2
p

3−3−π/4| ≈ 23.5°.

The same solution to the source-free Maxwell’s equations has been found

in Gralla, Lupsasca, and Strominger (2016); see their Eq. (15). The two con-

stants are identified with the electric and magnetic charges associated to the

solution:

A0(θ) =−Qe cos[G(θ)]+Qm sin[G(θ)], G(θ) =−
∫ θ

γ(θ′)dθ′. (5.43)

Astrophysical black holes have no net electric and magnetic charge, there-

fore we have to set Qe = 0 = Qm . Thus the electromagnetic field F entirely

vanishes in the near-horizon geometry as a consequence of the SL(2,R) sym-

metry. This statement is stronger than the so-called Meissner effect where

the magnetic flux through the upper hemisphere of the event horizon van-

ishes in the extreme Kerr case (see section 6.2 for a discussion about the

Meissner-like effect).
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5.5 Highest weight classification of solutions

5.5.1 Solving the force-free condition

In order to classify highest weight solutions, we first choose a SL(2,R) covariant

basis for 1-forms {µi }i=1,...,4 and 2-forms {w j } j=1,...,6, whose explicit expressions

can be found in appendix C.3. The electromagnetic field can be written in the

{w j } basis as

F(h,q) = F(h,q),i w i , (5.44)

where F(h,q),i are functions of the space-time coordinates. Then, the system (5.2)

is equivalent to the following conditions on the coefficients of F(h,q)
H+F(h,q),i = 0,

H0F(h,q),i = (h −1)F(h,q),i ,

Q0F(h,q),i = i qF(h,q),i ,

(5.45)

where, e.g., H+F(h,q),i = Hµ
+∂µF(h,q),i . The most general solution is expressed by

F(h,q) =Φ(h−1,q) fi (θ)w i , (5.46)

where Φ(h,q) are the highest weight scalars3 defined in Eq. (C.4) and fi (θ) are six

arbitrary functions of the polar angle. In other words, the symmetries of F(h,q)

imply that the space-time dependence of F(h,q),i is factorised into the functions

Φ(h,q), carrying the conformal weight and the U (1) charge of the field, and fi (θ),

expressing the polar angle dependence.

The most general vector potential A(h,q) such that F(h,q) = d A(h,q) can be writ-

ten in terms of four arbitrary functions of the polar angle ai (θ) as

A(h,q) =Φ(h,q)ai (θ)µi . (5.47)

3Do not confuse the azimuthal coordinate Φ with the highest weight scalar Φ(h,q). All Φ’s ap-
pearing in the expressions of A, F and J hereafter are the highest weight scalars.
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Simple algebra shows that fi ’s can be written in terms of ai ’s functions as follows

f1(θ) = ha3(θ)−γ(θ)a′
4(θ),

f2(θ) =−i qa3(θ)+γ(θ)
(−a′

1(θ)+a′
2(θ)

)
,

γ2(θ) f3(θ) = i qa3(θ)−γ(θ)a′
2(θ),

f4(θ) = (1−h)a1(θ)+ha2(θ)− i qa4(θ),

f5(θ) =−ha2(θ)+ i qa4(θ),

f6(θ) = i qa1(θ).

(5.48)

Of course Bianchi identity dF(h,q) = 0 is automatically satisfied. It reduces the

number of independent components fi (θ) to three. Upon choosing a gauge, e.g.,

a4(θ) = 0, we are left with only three functions of the polar angle ai (θ). The non-

linear force-free condition will fix them, as we shall discuss. From the inhomoge-

neous Maxwell’s equation, d ?F(h,q) =?J(h,q), the current takes the form

J(h,q) =Φ(h,q) ji (θ)µi , (5.49)

where the ji ’s are expressed in terms of fi ’s functions

γ2(θ)Γ(θ) j1(θ) = γ(θ) f ′
2(θ)+ i q f6(θ)

(
γ2(θ)−1

)+
+γ2(θ)

[
γ(θ) f ′

3(θ)+ (
h −γ2(θ)

)
f4(θ)+ (h −1) f5(θ)

]
,

Γ(θ) j2(θ) = (h −1) f5(θ)+ i q f6(θ)−γ(θ)
(
γ(θ) f4(θ)− f ′

3(θ)
)

,

Γ(θ) j3(θ) =−(h −1) f1(θ)− i q( f2(θ)+ f3(θ)),

γ2(θ)Γ(θ) j4(θ) = γ(θ) f ′
1(θ)− i q

(
γ2(θ) f4(θ)+ f5(θ)

)
.

(5.50)

Up to this point, we have only used the Maxwell’s equations. The force-free

condition, J(h,q) ∧?F(h,q) = 0, is equivalent to the following relations between fi ’s

and ji ’s:

(
f2(θ)+ f3(θ)

)
j3(θ)+ (

f5(θ)+γ2(θ) f4(θ)
)

j4(θ) = f6(θ) j1(θ),

f2(θ) j3(θ)+γ2(θ) f4(θ) j4(θ) = f6(θ) j2(θ),

−γ2(θ) f4(θ) j1(θ)+ (
f5(θ)+γ2(θ) f4(θ)

)
j2(θ) = f1(θ) j3(θ),

f2(θ) j1(θ)− (
f2(θ)+ f3(θ)

)
j2(θ) = f1(θ) j4(θ).

(5.51)

By substituting the expressions of fi = fi [a j ] from Eqs. (5.48) and ji = ji [a j ] from

Eqs. (5.50), the force-free condition (5.51) becomes a system of three highly non-

linear ordinary differential equations (ODEs). It is then obvious that such a system



82 Chapter 5. Near-horizon extreme Kerr magnetospheres

is computationally hard to solve in terms of the three functions ai ’s. However, the

system (5.51) is linear in fi ’s and ji ’s. Hence, we can recast this system of equations

in the matrix form [
A − f6(θ)11

− f1(θ)11 B

][
x

y

]
=

[
0

0

]
, (5.52)

where the 2×2 matricesA and B are given by

A=
[

f2(θ)+ f3(θ) f5(θ)+γ2(θ) f4(θ)

f2(θ) γ2(θ) f4(θ)

]
, B=σATσ, σ=

[
0 1

−1 0

]
, (5.53)

and the two 2-dimensional vectors x and y are

x =
[

j3(θ)

j4(θ)

]
, y =

[
j1(θ)

j2(θ)

]
. (5.54)

The linear system (5.52) has non-trivial solutions if its determinant is vanishing,

i.e.,

0 = det

[
A − f611

− f111 B

]
= [

det(A)+ f1 f6
]2 , (5.55)

which turns out to be equivalent to the degeneracy condition of the field strength

F(h,q). For definiteness, we work in the gauge

a4(θ) = 0 ∀h and a3(θ) = a4(θ) = 0 for h = 0. (5.56)

The degeneracy condition (see Eq. (2.13)) can then be written as

(h −1)a1(θ)a′
2(θ)−ha′

1(θ)a2(θ)+ i q
a1(θ)a3(θ)

γ(θ)
= 0. (5.57)

The degeneracy condition (5.57) is one of the three non-linear coupled ODEs in

terms of the gauge potential functions a1, a2, a3. This is consistent with the fact the

a force-free field must be degenerate, as discussed in section 2.3. The two other

equations are lengthy and unenlightening and we omit them. Given the difficulty

to find solutions to the system of coupled ODEs, it is useful to organize them in

independent classes characterised by conditions on the components of the field

strength and the current vector. It is possible to identify seven independent and

complete cases

1. f1 = f2 = f3 = f4 = f6 = 0, f5 6= 0, j2 = j4 = 0,

2. f1 = f2 = f3 = f6 = 0, f4 6= 0, j4 = 0, j1 = j2 + f5 j2

f4γ2 ,
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3. f1 = f2 = f4 = f6 = 0, f3 6= 0, j2 = 0, j3 =− f5 j4
f3

,

4. f1 = 0, f2 6= 0, f5 = γ2 f3 f4
f2

, j1 = j2 + f3 j2
f2

, j3 = f6 j2−γ2 f4 j4
f2

,

5. f1 = f2 = f3 = 0, f6 6= 0, j1 = j4( f5+γ2 f4)
f6

, j2 = γ2 f4 j4
f6

,

6. f1 = f2 = f4 = 0, f6 6= 0, j2 = 0, j1 = f3 j3+ f5 j4
f6

,

7. f1 6= 0, f6 = f2 f5−γ2 f3 f4
f1

, j3 = f5 j2+γ2 f4(− j1+ j2)
f1

, j4 = − f3 j2+ f2( j1− j2)
f1

.

The cases from 1 to 6 are entirely solved and all solutions have been found and

classified. However, the general solution in case 7 eluded us, because the remain-

ing two ODEs are strongly non-linear and it is not clear whether we have obtained

all possible solutions. The full list of solutions is presented in section 5.5.4.

5.5.2 Nomenclature for the classification

In order to better present the solutions, it is first instructive to get some intuition

by concentrating on Poincaré coordinates (T,R,θ,Φ). The field strength then reads

as

F = e i qΦ

Rh


0 (h −1)a1(θ) −Ra′

1(θ) −i qRa1(θ)

0 −h a3(θ)
γR −h a2(θ)

R

0 a′
2(θ)− i q a3(θ)

γ

0

 . (5.58)

It is therefore natural to distinguish four (partially overlapping) qualitative classes

of solutions types4:

Poincaré magnetic ⇔ a1 = 0

Poincaré electric ⇔ a2 = a3 = 0

Poincaré nontoroidal ⇔ a2 = 0, q = 0

Poincaré generic ⇔ a1 6= 0 and a2 6= 0 which obey (5.57).

A Poincaré magnetic solution has no electric field with respect to ∂
∂T . Any such

real solution is therefore magnetically dominated. For example, an axisymmetric

configuration (q = 0) with real weight h and ai ’s is real and magnetically dom-

inated. (Other real solutions can be obtained by superposition as discussed in

4Poincaré magnetic was denoted as Type M in Lupsasca and Rodriguez (2015) while Poincaré
electric was denoted as Type E and Poincaré generic was denoted as Type E-M. Our terminology
emphasizes the role of the Poincaré time t in the 3+1 decomposition.



84 Chapter 5. Near-horizon extreme Kerr magnetospheres

section 5.6.) A Poincaré electric solution has no magnetic field with respect to

the 3+1 decomposition involving the Poincaré time T . Any such real solution is

therefore electrically dominated. A Poincaré nontoroidal solution has no compo-

nents of the electromagnetic field along dΦ. This implies that the electric field has

no toroidal components while the magnetic field (related to the dual of F ) has no

poloidal components. Since the toroidal and poloidal subspaces are orthogonal,

it is indeed consistent with EµBµ = 0. In general, there are still toroidal magnetic

fields and poloidal electric fields but nothing prevents us from canceling one such

field. The solution can then also be either Poincaré magnetic or Poincaré electric.

The Poincaré generic solution has no particular electromagnetic property with re-

spect to Killing time T . For real fields, there might however be another observer

that identifies the solution as magnetically or electrically dominated or null.

5.5.3 Linear superposition

The FFE equations of motion (5.1) are non-linear. Hence, the principle of linear

superposition of solutions does not apply in general. However, Lupsasca and Ro-

driguez (2015) provided sufficient conditions to superpose solutions. Here, we

review these conditions and apply them to our programme.

SL(2,R) descendants superposition

Let K be a Killing vector. Assume that F is a solution to FFE equations and that

LK J ∝ J .5 Then LK F is a solution to FFE. Indeed,

dLK F =LK dF = 0, (5.59a)

d ?LK F = dLK ?F =LK d ?F =LK ? J =?LK J , (5.59b)

iLK JLK F ∝ i JLK F = [
i J ,LK

]
F +LK i J F = i[J ,K ]F =−iLK J F ∝−i J F = 0. (5.59c)

SL(2,R) descendants of the highest weight solution F(h,q,0) are defined by the op-

eration F(h,q,k) =
(
LH−

)k F(h,q,0). Since H− is a Killing vector, F(h,q,k) is a solution

provided that J(h,q,k) =
(
LH−

)k J(h,q,0) ∝ J(h,q,0). This condition is met when the

current J(h,q,0) is a linear combination of Q0, H− and ∂θ, because all these three

vector fields commute with H−. This property allows us to linearly superpose a

primary solution with its descendants. Such class of solutions are labelled as ad-

mitting descendants.

5The symbol ∝ stands for proportional. In other words, the two current vectors are collinear
and the proportionality factor can be a function of space-time coordinates.
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SL(2,R) primaries superposition

Assume that F1 and F2 are two solutions to FFE equations and that the associated

two currents J1 ∝ J2. Then an arbitrary linear combination F = αF1 +βF2, with

α, β constants, is a solution to FFE.

dF = d
(
αF1 +βF2

)=αdF1 +βdF2 = 0, (5.60a)

d ?F =αd ?F1 +βd ?F2 =α? J1 +β? J2 =?J , (5.60b)

i J F ∝ iαJ1+βJ2

(
αF1 +βF2

)=α2i J1 F1 +β2i J2 F2 +αβ
(
i J2 F1 + i J1 F2

)= 0. (5.60c)

This property allows us to linearly superpose two different primary solutions.

5.5.4 List of all solutions

Here, we list all solutions to force-free electrodynamics with nonvanishing current

that we found in our analysis starting from the highest-weight ansatz. We first

classify the solutions according to their highest-weight representation labeled by

the (complex) weight h and the (integer) U (1)-charge q and then by their Poincaré

electromagnetic type. The functions Xi (θ), i = 1,2,3,4,5 obey ODEs in θ which

are described in appendix D.1. More details on the solutions including the field

strength, current and Euler potentials can be found in appendix D.2. We keep

explicit k that for NHEK geometry is simply k = 1.

(h, q)-eigenstates Two classes of solutions with arbitrary weight h and U (1)-charge

q :

• Poincaré magnetic

A =
∫

dh
∑
q∈Z

Φhλq
[

X5µ
2 − i qγ(1−k2γ2)

q2 −∆(h, q)γ2
X ′

5µ
3
]

, (5.61)

where X5 = X5(θ;h, q) and∆(h, q) = h(h−1)+k2q2. The solution is pure

gauge for h = 0. When q = 0, h 6= 0,1 the solution reduces to (5.65).

• Poincaré generic

A(h,q) =Φhλq
[

h(h −1)X2µ
1 −kq2X2µ

2 + i kqγX ′
2µ

3
]

, (5.62)

where X2 = X2(θ;∆(h, q),c1 = q2). The solution is pure gauge for h = 0.

(h 6= 0,q = 0)-eigenstates Four classes of axisymmetric solutions with arbitrary weight

h and one special subcase:
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• Poincaré generic

A(h,0) = ch
1Φ

h
[
−X h−1

3 µ1 +X h
3 µ

2 ±
√
ξX h−1

3 µ3
]

, (5.63)

where X3 = X3(θ;h,ξ), h,ξ ∈C and c1 6= 0.

• Poincaré magnetic

A(h,0) = ch
2Φ

h
[

X4µ
2 ±X

h−1
h

4 µ3
]

, (5.64)

where X4 = X4(θ;∆(h)) with ∆(h) = h(h −1) and c2 6= 0.

• Poincaré magnetic

A =
∫

dhΦh X1µ
2, (5.65)

where X1 = X1(θ;∆(h)).

• Poincaré nontoroidal

A(h,0) =Φh X2

[
hµ1 ±p

c1µ
3
]

, (5.66)

where X2 = X2(θ,∆(h, q),c1).

• Poincaré electric and nontoroidal - admitting descendants

A(h,0) =Φh X2µ
1, (5.67)

where X2 = X2(θ,∆(h, q),0). It is the special case c1 = 0 of (5.66).

(h = 0,q 6= 0)-eigenstates One weight 0 solution with arbitrary U (1) charge q :

• Poincaré electric

A(0,q) =λq e±∫ q
γdθ

µ1. (5.68)

(h = 1,q 6= 0)-eigenstates One weight 1 solution with arbitrary U (1) charge q :

• Poincaré electric - admitting descendants

A = ∑
q∈Z

Φλq e±∫ q
γdθ

µ1. (5.69)

(h =±ikq,q 6= 0)-eigenstates Two weight±i kq solutions with arbitrary U (1) charge

q :
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• Poincaré generic

A(h=±i kq,q) =Φhλq e±∫ dθ
γ

[
i kqµ1 + i qµ2 ±µ3

]
, (5.70)

A(h=±i kq,q) =Φhλq
[

kµ1 +µ2
]

. (5.71)

(h = 1± ikq,q 6= 0)-eigenstates One weight 1 ± i kq solution with arbitrary U (1)

charge q :

• Poincaré generic - null

∑
q∈Z

A(h(q)=1±i kq,q) =
∑
q∈Z

Φhλq
[

h(q)a1(θ)µ1 ± i qa1(θ)µ2 ±γa′
1(θ)µ3

]
.

(5.72)

(h = 1,q = 0)-eigenstates Two weight 1 axisymmetric solutions:

• Poincaré nontoroidal - null

A(1,0) =Φ
[

a1(θ)µ1 ±
√

c3 + [γa′
1(θ)]2µ3

]
, (5.73)

where a1 is an arbitrary function.

• Poincaré magnetic

A(1,0) =Φ(c2µ
2 + c3µ

3). (5.74)

(h = 0,q = 0)-eigenstates One weight 0 axisymmetric solution:

• Poincaré electric and nontoroidal - admitting descendants

A(0,0) =−E0

(
µ1 + 1

k
µ2

)
. (5.75)

This solution is just the SL(2,R) invariant solution (5.39) with k = 1 (for

the near-horizon geometry of the extreme Kerr).

In comparison with Lupsasca and Rodriguez, 2015, the solutions (5.64), (5.66),

(5.70), (5.71), (5.72), (5.73) are new and the solutions (5.68), (5.69) are given with

two branches distinguished by a sign.
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5.6 Physical requirements

So far, we have classified the solutions to force-free electrodynamics around NHEK

according to their highest weight representation labelled by the (complex) confor-

mal weight h and the (integer) U (1) charge q . These solutions are, in general,

complex and it is not obvious a priori which of them are physically relevant to de-

scribe stationary and axisymmetric magnetospheres of rapidly rotating Kerr black

holes. To this aim, we introduce certain physical requirements to discriminate

potentially physical solutions from the list of all mathematical solutions. We de-

mand that potentially physical solutions are real, either magnetically dominated

or null, admit finite extraction of energy and angular momentum as measured by

an asymptotically flat observer, and are limiting solution of a regular solution de-

fined on (near-) extreme Kerr.

5.6.1 Reality condition

The sufficient condition for linearly superpose primary solutions is used to build

real solutions from complex ones. Given a complex solution to FFE, F(h,q), and its

associated current J(h,q), we can build the real solution by linearly superpose F(h,q)

and its complex conjugate F∗
(h,q) provided that J(h,q) ∝ J∗(h,q). We scrutinised the

list of solutions to FFE to build the largest class of real solutions that are magneti-

cally dominated or null dominated.

5.6.2 List of near-horizon solutions

Let us now list all real magnetically dominated or null solutions that we could

build from the complex solutions enumerated in section 5.5.4. At this stage, we

list these solutions with arbitrary highest-weight h.

• Nonaxisymmetric, magnetic:

AM =
∫

dh
∑
q∈Z

Φhλq
[

X5µ
2 − i qγ(1−k2γ2)

q2 −∆(h, q)γ2
X ′

5µ
3
]
+ c.c. (5.76)

where X5 = X5(θ;h, q) and ∆(h, q) = h(h −1)+k2q2. The axisymmetric case

q = 0 is listed below and we have then X5(θ,h,0) = X1(θ,∆(h)).

• Nonaxisymmetric, magnetic:

AE M
(h=1+iµ,q) = Φ1+iµλq

[
h(h −1)X2µ

1 −kq2X2µ
2 + i kqγX ′

2µ
3
]

(5.77)

+Φ1−iµλ∗q
[

h∗(h∗−1)X ∗
2 µ

1 −kq2X ∗
2 µ

2 − i kqγX ∗′
2 µ

3
]

,
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where X2 = X2(θ;∆(h, q),c1 = q2). The solution is magnetically dominated

in the range −kq < µ < kq . The borderline case µ2 = k2q2 is a null solu-

tion. (This is an example of Poincaré generic solution which is magnetically

dominated.)

• Axisymmetric (magnetic dominance not checked):

AE M
(h,0) = ch

1Φ
h
[
−X h−1

3 µ1 +X h
3 µ

2 ±
√
ξX h−1

3 µ3
]

, (5.78)

where h > 1, c1 is real, and ξ> 0. (In the case h = 1, X3 becomes X1 and the

solution is not smooth at the velocity of light surface; see appendix D.2). It

has been observed that for h = −1 this solution is magnetically dominated

(Zhang, Yang, and Lehner, 2014). We did not check if it is the case for h ≥ 1.

The solution to the non-linear equation for X3(θ) is required which we did

not obtain here.

• Axisymmetric, magnetic:

AM
(h,0) = ch

2Φ
h
[

X4µ
2 ±X

h−1
h

4 µ3
]

, (5.79)

where X4 = X4(θ;∆(h)), c2 is real and arbitrary and h ≥ 2. It is magnetically

dominated since it is Poincaré magnetic.

• Axisymmetric, magnetic:∫
dh AM

(h,0) =
∫

dhΦh X1µ
2 + c.c. (5.80)

where X1 = X1(θ,∆(h)) and h is complex. For h real we observed that the

spectrum of h is discrete and the lowest value is greater than 4 in appendix D.1.

• Axisymmetric, magnetic, nontoroidal:

AN T
(h,0) =Φh X2

[
hµ1 ±p

c1µ
3
]

, (5.81)

where X2 = X2(θ,∆(h),c1), h is real. After a numerical check involving X2, it

turns out that for all c1 > 0 there exists a range of 1 ≤ h ≤ hmax(c1) where the

solution is magnetically dominated for all values of θ. The function hmax

tends to 1 in the limit c1 → 0 and tends to infinity in the limit c1 →∞. It is a

solution with no toroidal electric field and no poloidal magnetic field.
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• Nonaxisymmetric, null:

∑
q∈Z

AE M
(h=1±i kq,q) =

∑
q∈Z

Φhλq
[

ha1(θ)µ1 ± i qa1(θ)µ2 ±γa′
1(θ)µ3

]
+ c.c. (5.82)

Here a1(θ) can be complex. We require that a1(θ) and a′
1(θ) vanish at the

poles.

• Axisymmetric, null

AE M
(1,0) =Φ(a1(θ)µ1 ±γa′

1(θ)µ3), (5.83)

where a1(θ) and a′
1(θ) vanish at the poles but a1(θ) is otherwise arbitrary.

This is a special case of the solution (5.82) for q = 0.

5.6.3 Finite energy and angular momentum fluxes

Additional constraints on the conformal weight can be obtained by demanding

that a given solution have a finite extraction of energy and angular momentum.

We want to compute the energy and angular momentum fluxes in Poincaré co-

ordinates for definiteness. Let E and L be the energy and angular momentum,

respectively, with respect to the ∂T and −∂Φ. The fluxes per unit time and per

solid angle are given by

Ė =p−σT µ
ν[F ] (∂T )νnµ∝ E(θ)R2−2h , (5.84a)

L̇ =p−σT µ
ν[F ] (−∂Φ)νnµ∝ J (θ)R1−2h . (5.84b)

Here the dot stands for derivative with respect to the Poincaré time T , σ is the

induced metric on surfaces of constant radius R, nµ is the unit normal vector to

these surfaces and Tµν[F ] is the electromagnetic energy-momentum tensor. The

explicit expressions of the functions E(θ) and J (θ) are written in section 5.3 of

Compère and Oliveri (2016) and we omit them, because they are not important

for the following discussion.

We have two different limits to consider: either we study the fluxes at the

boundary of NHEK located at R → ∞ or we study the fluxes from the Poincaré

horizon located at R = 0. In the former case, by requiring no energy and angular

momentum flux at the boundary and assuming that both E(θ) and J (θ) are non-

vanishing, we have that the real part of h must obey the condition ℜ(h) > 1. This

conclusion is in contradiction with the regularity condition derived later. More-

over, the fluxes diverge at the Poincaré horizon, where we have to require ℜ(h) <
1/2 to have finite quantities. These two classes of solutions, namely those with
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ℜ(h) < 1/2 and with ℜ(h) > 1, might be useful for discussing holographic duality

in near-horizon geometries in the framework of Kerr/CFT correspondence.6 We

neglect them, because we are more interested in those solutions with finite ex-

traction of energy as measured by an asymptotic observer.

Let us now define the energy and angular momentum with respect to an asymp-

totically flat observer, i.e., with respect to ∂t and −∂φ, respectively. From the scal-

ing co-rotating coordinates (1.13), one finds that ∂t +Ωext+ ∂φ = (λ/r0)∂T and ∂φ =
∂Φ. Thus, the definitions of angular momentum in the near-horizon and far-region

agree, whereas the definition of energy in the near-horizon is the linear com-

bination of energy and angular momentum of the co-rotating observer. From

Eqs. (5.84), substituting to each power of R a power of λ (because r = r++λr0R),

we can deduce the scaling between far-region and near-horizon fluxes

E ′−Ωext
+ L ′ ∼λ2−2hĖ , (5.85a)

L ′ ∼λ1−2hL̇ . (5.85b)

The prime stands for derivative with respect to the asymptotic time t . In the near-

horizon limit, λ→ 0, the flux of energy and angular momentum should remain

finite. There are five scenarios (see also appendix B of Gralla, Lupsasca, and Stro-

minger (2016)):

1. for ℜ(h) < 1/2, one has E ′ = 0 = L ′. The far-region fluxes both vanish and

the asymptotic observer does not measure any extraction of energy and an-

gular momentum, whatever the near-horizon fluxes Ė , L̇ are;

2. for ℜ(h) = 1/2 , one has E ′ =Ωext+ L ′ and L ′ ∼ L̇ . The electromagnetic field

saturates the superradiant bound;

3. for 1/2 < ℜ(h) < 1 and J (θ) = 0, one has E ′ = Ωext+ L ′ and L ′ is not deter-

mined from the near-horizon flux. Once again, the electromagnetic field

saturates the superradiant bound. The far-region flux of the angular mo-

mentum is not determined, and so is also the far-region flux of the energy as

measured by the asymptotic observer;

4. for ℜ(h) = 1 and J (θ) = 0, one has E ′−Ωext+ L ′ ∼ Ė and L ′ undetermined.

Using the thermodynamic argument, and Eq. (2.59), one finds that E ′−Ωext+ L ′ ∼
Ė ≤ 0; this result is equivalent to assume the first and second law of thermo-

dynamics δM −Ω+δJ = κ/(8π)δA ≥ 0 with δM =−δE and δJ =−δL ;

6See Jacobson and Rodriguez, 2017 for an earlier attempt of an holographic dual to the
Blandford-Znajek mechanism.
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5. for ℜ(h) > 1 and E(θ) = 0 = J (θ), both far-region fluxes E ′ and L ′ are not

determined from the near-horizon fluxes.

We want to select those solutions with finite fluxes of energy and angular mo-

mentum with respect to an asymptotic observer. Finiteness implies that ℜ(h) ≥
1/2. In addition, according to regularity condition, ℜ(h) ≤ 1. Thus, the window of

conformal weights h for potentially physical solutions is

1

2
≤ℜ(h) ≤ 1 and

(
ℜ(h)− 1

2

)
J (θ) = 0. (5.86)

The list of potentially physical solutions is presented in the next section.

5.6.4 List of potentially physical solutions

In the following we list the real, magnetically dominated or null force-free solu-

tions with nontrivial current and ℜ(h) = 1
2 or 1

2 < ℜ(h) ≤ 1 and J (θ) = 0, which

lead to finite asymptotically flat energy and angular momentum fluxes. We also

do consider linear superposition.

• Nonaxisymmetric, magnetic

We have two classes of solutions from Eq. (5.76). The first one for h(η) =
1
2 + iη, η ∈R:

A =
∫

dη
∑
q∈Z

{
Φh(η)λq

[
X5µ

2 − i qγ(1−k2γ2)

q2 −∆(h(η), q)γ2
X ′

5µ
3
]
+ c.c.

}
, (5.87)

where X5 = X5(θ;h(η), q) and ∆(h(η), q) = k2q2 − η2 − 1
4 . When q = 0, the

solution reduces to Eq. (5.90).

When Re(h) 6= 1
2 , the constraint J (θ) = 0 imposes h = 1. The solution is

A = ∑
q∈Z

{
Φλq

[
X2µ

2 − iγ

q
X ′

2µ
3
]
+ c.c.

}
, (5.88)

after using (D.26), where X2 = X2(θ;k2q2, q2).

• Nonaxisymmetric, null

The solution (5.77) has J (θ) = 0 for µ=±kq . This leads to the null solution

A(q) =Φ1±i kqλq
[

(i kq ±1)X2µ
1 + i q X2µ

2 +γX ′
2µ

3
]
+ c.c. (5.89)

where X2 = X2(θ;±i kq,c1 = q2).
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• Axisymmetric, magnetic

A =
∫

dhΦh X1µ
2 + c.c. (5.90)

where X1 = X1(θ;∆(h)) and h is complex in the range 1
2 ≤ℜ(h) ≤ 1. It is not

clear whether regular solutions exist in that range. Indeed, at least for h real,

the spectrum of h is discrete for regular solutions and the lowest value is

greater than 4; see appendix D.1. Since the solution is axisymmetric, we can

check the Znajek’s condition

I (ψ) = (Ω(ψ)−ΩH )∂θψ

√
gφφ
gθθ

. (5.91)

After taking the near-horizon limit, the generator of the black hole horizon is

∂T so the angular velocity at the Poincaré horizon of the near-horizon geom-

etry is ΩH = 0. We also have I (ψ) =Ω(ψ) = 0 as shown in (D.33), and there-

fore (5.91) holds. The second regularity condition that should be obeyed for

extremal black holes only, as described in Gralla and Jacobson (2014), is also

trivially satisfied.

• Axisymmetric, magnetic

The solution (5.81) has J (θ) = 0. For h = 1, it is magnetically dominated and

therefore admissible. It reads as

A =ΦX2

[
µ1 ±p

c1µ
3
]

, (5.92)

where X2 = X2(θ,0,c1) and c1 > 0. Znajek’s condition does not apply because

the field is non-toroidal, i∂ΦF = 0.

• Nonaxisymmetric, null

Solutions (5.82) with h(q) = 1± i kq have J (θ) = 0:

A = ∑
q∈Z

Φh(q)λq
[

h(q)a1(θ)µ1 ± i qa1(θ)µ2 ±γa′
1(θ)µ3

]
+ c.c (5.93)

We require a1 to vanish at the poles. For q = 0, we obtain the axisymmetric

null solution:

• Axisymmetric, null

A(1,0) =Φ
(
a1(θ)µ1 ±γa′

1(θ)µ3) . (5.94)
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As discussed in appendix D.1, solutions to the ODEs for X1, X2 and X5 exist

which are regular at the north and south poles. However, the functions X1 and

X5 are generically logarithmically divergent at the velocity of light surface. Since

the fate of the velocity of light surface is unclear when extending these solutions

to the asymptotically flat region, we do not exclude them and consider them as

potentially physical. A more complete analysis of the extension of these solutions

to the asymptotically flat region would however be necessary to fully settle the

issue.

Generically, highest weight solutions with non-zero weight have a singular field

strength at the Poincaré horizon. However, the energy and angular momentum

fluxes are regular at the Poincaré horizon as a consequence of the restriction (5.86).

One exception is the negative branch of (5.94) which is, up to a gauge transfor-

mation, A(1,0) = a1(θ)d
(
T − 1

R

)
. This solution is regular at the future horizon but

singular at the past horizon (see Eq. (5.101) later).

The solutions are written in a SL(2,R) covariant manner and one can choose

any SL(2,R) generators related by isomorphisms of the algebra, as discussed around

(C.14).

5.6.5 Regularity conditions

Among all the real solutions, one aims to have those that come from solutions to

FFE around (near-) extreme Kerr and are regular on the future event horizon. The

first condition is imposed to avoid those solutions that are genuine solutions in

NHEK and do not have a continuation from the throat geometry all the way to

the asymptotic region. This approach has been pursued in Gralla, Lupsasca, and

Strominger (2016). Here, we outline the reasoning.7

Let F be the electromagnetic field strength defined on (near-) extreme Kerr in a

given coordinates system. By transforming the field to the co-rotating coordinates

(1.13) and performing a Taylor expansion around λ= 0, one gets

F =λ−h
∞∑

p=0
F(p) λ

p =λ−h (
F(0) +F(1)λ+O (λ2)

)
. (5.95)

The leading field F(0) = limλ→0λ
hF is the near-horizon field and it is self-similar

with respect to the dilation operator LH0F(0) = hF(0). Though the conformal

weight h is a complex number, its real part is bounded by the rank of the field

7See also the discussion at the end of chapter 1 about the isometry group and critical phenom-
ena in NHEK space-time.
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F . Indeed, by considering F to be a smooth field on extreme Kerr in ingoing coor-

dinates (v,r,θ,φ), its transformation to the co-rotating coordinates (1.13) gives

Fµν(T,R,θ,Φ) = J α
µ Fαβ(v,r,θ,φ)Jβν, (5.96)

where Jµν is the Jacobian, whose elements can be read from

d v = 2M

λ

[
dT +

(
1

R2
+ λ

R
+ λ2

2

)
dR

]
, (5.97a)

dr =λMdR, (5.97b)

dφ= 1

λ

(
dT + dR

R2

)
+dΦ. (5.97c)

Since the elements of the Jacobian have leading terms of O (λ−1), the transforma-

tion law introduces at most two factors of O (λ−1). In addition, because F is an

antisymmetric tensor of rank-two, the transformation law implies that the leading

term is of O (λ−1). In terms of the conformal weight, this reasoning implies that

the conformal weight h is h ≤ 1. Therefore, we conclude that for electromagnetic

fields one has

F = 1

λ

(
F(0) +F(1)λ+O (λ2)

)
. (5.98)

Moreover, for fields with positive conformal weight, the norm (taken with respect

to the NHEK metric) must vanish. Indeed, by computing the norm of F (with re-

spect the extreme Kerr metric), one obtains that

F 2 = 1

λ2

(
F 2

(0) +2λF(0) ·F(1) +O (λ2)
)

. (5.99)

Since F 2 is a scalar quantity (i.e., it has weight h = 0), upon taking the near-horizon

limit it should be finite. Therefore, we infer that F(0) must be null.

By imposing that F(0) is stationary, axisymmetric, null, self-similar with con-

formal weigh h = 1 and obeys the FFE equations, one finds that

F(0) = F(1,0) = A(θ)γ(θ)
(
w 2 −w 1) . (5.100)

This solution has been originally found in Lupsasca and Rodriguez (2015).

In Poincaré coordinates, it reads as

F(0) = F(1,0) = A(θ)d

(
T − 1

R

)
∧dθ, (5.101)

where A(θ) is an arbitrary function of the polar angle. This solution is the unique

electromagnetic field with conformal weight h = 1 (and the properties mentioned
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above) to be regular on the future event horizon and to be the near-horizon limit

of a solution in extreme Kerr. Notice that this solution is the axisymmetric null

solution obtained in Eq. (5.94).

If instead the arbitrary function A(θ) vanishes, then the next to leading order

F(1) in Eq. (5.98) is nothing but the maximally symmetric solution obtained in

Eq. (5.39).

5.7 Discussion and conclusions

In this chapter, we have outlined the strategy to solve force-free electrodynamics

(FFE) around near-horizon extreme Kerr (NHEK) space-time We have exploited

the isometry group and the presence of global conformal symmetries to solve FFE

equations and to classify the solutions using the highest weight representation.

We found a plethora of solutions and we organized them in seven indepen-

dent classes. As in each solution generating technique, one has to distinguish be-

tween the set of formal solutions and the set of physical solutions. In order to

discriminate the latter, we have introduced criteria for the electromagnetic field

strengths: reality and regularity conditions, and finite energy and angular momen-

tum extraction measured by an asymptotically flat observer. All these conditions

imply bounds on the conformal weight. The set of potentially physical solutions

for which 1/2 ≤ ℜ(h) ≤ 1 does not overlap with the set of near-horizon solutions

for which either ℜ(h) < 1/2 (finite flux at the Poincaré horizon) or ℜ(h) > 1 (no

outward flux at the boundary of NHEK).

Among the potentially physical solutions, there are two notable solutions:

1. the maximally symmetric one, discussed earlier in Eq. (5.39),

F(0,0) = E0 dT ∧dR. (5.102)

Though this solution is electrically dominated, it deserves further investi-

gation. Indeed, as pointed out in Gralla, Lupsasca, and Strominger (2016),

the presence of gravitational fields might prevent charged particles of the

plasma to travel faster than the speed of light as happens in Minkowski space-

time (see. e.g., Komissarov, 2004). This is still an open question and we leave

it for future work.

2. the h = 1 and axisymmetric solution, discussed in Eqs. (5.94) and (5.101),

F(1,0) = A(θ)d

(
T − 1

R

)
∧dθ. (5.103)
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This solution is null and it is the only one to be regular on the future event

horizon.

These two notable solutions should descend from smooth solutions defined

on extreme Kerr, according to the discussion below Eq. (5.95). Solving analytically

FFE around (extreme) Kerr is a hard computational task and, therefore, except few

exceptions mentioned earlier in chapter 2, we do not know the analytical expres-

sions of the original solutions. However, we know the near-horizon limits and we

can attempt to reconstruct the full original solutions by using the matched asymp-

totic expansion. In other words, we may glue the near-horizon solutions to the

asymptotically flat region which has been decoupled by the near-horizon limit.8

Such programme has not been yet realized in the context of force-free magneto-

spheres. That is another open question that requires further study.

Another interesting point that comes to light is the role of the velocity of light

surface. It marks the boundary of the physical region in NHEK. The potentially

physical solutions have a logarithmic divergence at the velocity of light surface

and it is not clear whether such a divergence is physical or it disappears upon

gluing the near-horizon solution with the asymptotic region. This is yet another

aspect that is remained unsolved.

8Recall the Fig. 1.2.
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In this chapter, we are going to investigate the thermodynamics of Kerr-Newman

black holes immersed in an external back-reacting magnetic field, sometimes known

as Melvin-Kerr-Newman or Magnetised-Kerr-Newman (MKN) black holes. The

content of this chapter is based on Astorino, Compère, Oliveri, and Vandevoorde

(2016). In section 6.1, we introduce the research literature on the topic. Then,

in section 6.2 and section 6.3, we discuss how to embed a rotating black hole in

test and back-reacting external magnetic field, respectively. Section 6.4 addresses
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the problem to compute the total conserved mass of the MKN black hole. In sec-

tion 6.5, we study the canonical thermodynamics and, in section 6.6, we comment

about alternative thermodynamic description of the MKN solution and make con-

tact between our results and those already present in the literature. We conclude

with a discussion in section 6.7.

6.1 Introduction

According to the black hole no-hair theorems of General Relativity (Israel, 1967; Is-

rael, 1968; Carter, 1971; Hawking, 1972; Robinson, 1974), an isolated rotating black

hole is completely described by its mass M , angular momentum J , and if any, by its

net electric charge Q. However, astrophysical black holes are not isolated objects

and they are usually surrounded by electromagnetic fields produced by external

sources like, e.g., plasma, accretion discs, and stars (Eatough, 2013). Few exact an-

alytical models, which describe black holes interacting with their surroundings,

are known in the literature.

The first attempt to construct an analytical model, describing Kerr black holes

immersed in a magnetic field, is due to Wald (1974) and it is reviewed in sec-

tion 6.2. Though Wald’s solution was a great first achievement, it was a pertur-

bative approach valid in the weak field regime. Several attempts to find exact

solutions to Einstein-Maxwell equations, describing black holes immersed in ex-

ternal magnetic fields, received attention since the Wald’s paper. In 1976, Ernst

(1976a), Ernst (1976b), and Ernst and Wild (1976), in a series of three papers,

were able to build an exact and regular solution by using the solution generat-

ing technique originally presented by Harrison (1968) and reformulated by Ernst

(1968a); Ernst (1968b). The Ernst-Wild solution is a stationary and axisymmet-

ric solution to the Einstein-Maxwell equations. In section 6.3 we will introduce

this solution and comment about its main properties. Since this solution can be

interpreted as a Kerr-Newman black hole immersed in an external back-reacting

magnetic field, it is often dubbed as Magnetised-Kerr-Newman or Melvin-Kerr-

Newman black hole, because it reduces to the Bonnor-Melvin solution (Bonnor,

1954; Melvin, 1964) when the mass, angular momentum and electric charge van-

ish. The asymptotics, the ergo-sphere and the motion of test charged particles

around MKN black hole have been investigated in Gal’tsov and Petukhov (1978),

Aliev, Gal’tsov, and Sokolov (1980), Hiscock (1981), Aliev and Gal’tsov (1988), Aliev

and Gal’tsov (1989a), Aliev and Gal’tsov (1989b), and Karas and Vokrouhlickỳ (1991)

and in the two reviews by Dokuchaev et al. (1987) and Aliev and Gal’tsov (1989c).



6.1. Introduction 101

Recently, MKN solution received a renewed attention. Gibbons, Mujtaba, and

Pope (2013) studied the causal and asymptotic structure of MKN solution. For

certain values of the parameters of the solution, the ergo-region forms around

the axis of rotation and it extends all the way to infinity. Moreover, despite the

common phrasing in the literature that MKN is asymptotically Melvin, it is not

true in general. These features make the MKN black hole unphysical and its role

unclear for an astrophysical perspective. The fact that the asymptotic region of

MKN space-time is not conventional amounts to serious difficulties in defining

global charges like its mass and angular momentum and, in turn, its thermody-

namics. Several attempts have been made in that direction by using different the-

oretical methods, but there has been no general agreement. The thermodynam-

ics of MKN black hole has been studied in Gibbons, Pang, and Pope (2014) and

Booth et al. (2015) by making use of two different approaches: the former used an

approach based on dimensional reduction, while the latter adopted the isolated

horizon formalism. However, the definitions of mass proposed do not coincide.

To resolve this tension, Astorino et al. (2016) used the covariant phase space for-

malism (Regge and Teitelboim, 1974; Iyer and Wald, 1994; Barnich and Brandt,

2002; Barnich, 2003; Barnich and Compère, 2008). This formalism was already

applied previously to black holes with unusual asymptotics (Barnich and Com-

père, 2005; Banados et al., 2006; Compère, 2007b). It is especially well adapted to

the problem at hand since the asymptotic region has no role to play. The lack of

known boundary conditions for Melvin universes is, therefore, not an obstacle for

defining the mass. The procedure amounts to first define the infinitesimal change

of mass due to infinitesimal changes of phase space parameters by considering

the integral of a uniquely defined surface charge form on an arbitrary sphere sur-

rounding the black hole. One then writes the conditions for the existence of a

finite mass known as integrability conditions. The definition of the mass amounts

to solving these integrability conditions, as we will show in section 6.4.

Interestingly, Astorino (2015) and Bičák and Hejda (2015) showed that the ex-

treme MKN shares the same near-horizon geometry with the extreme Kerr-Newman

black hole by providing a map among the parameters of the two solutions. This

conclusion, based on explicit computations, is implied by more general results

obtained by Lewandowski and Pawlowski (2003) and Kunduri and Lucietti (2013).

Though the definition of the mass of MKN has been controversial until our pro-

posal, its extreme limit was known and matched with the definition proposed in

Booth et al. (2015) by means of the isolated horizon formalism. Same agreement is

found for the mass computed in Astorino et al. (2016) by means of covariant phase

space formalism. In addition, Astorino et al. (2016) establishes a relationship away
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from the extreme case: both the MKN and the Kerr-Newman black holes share the

same thermodynamics. This aspect will be discussed in section 6.5.

6.2 Black holes with external magnetic test fields

In this section, we work in the weak field regime, i.e., we do not consider any back-

reaction of the electromagnetic field on the Kerr black hole geometry, and we treat

all the fields as test fields. More formally, the Einstein-Maxwell equations areRµν− 1
2 Rgµν = 2T E M

µν ,

Fµν
;ν = 0,

(6.1)

where Fµν is the electromagnetic field and T E M
µν the associated energy-momentum

tensor. We assume that the contribution of the external electromagnetic fields on

the geometry is negligible, therefore T E M
µν ≈ 0 and it does not alter the geometry

of the space-time. In other words, we want to consider electromagnetic pertur-

bations around the Kerr black holes space-time. In particular, we are going to

construct two different kinds of electromagnetic test perturbations: one giving a

negligible electric charge Q to the Kerr black hole, the other embedding the Kerr

black hole in a (asymptotically uniform) magnetic test field B . In natural units,

the mass of the Kerr black hole determines the characteristic scale of the system.

Therefore, if both Q/M ¿ 1 and B ¿ 1/M , we might neglect any back-reaction

and consider the electromagnetic field as a test field on the fixed background ge-

ometry.

6.2.1 Wald’s solution

Wald (1974) showed the existence of a mechanism to charge up the Kerr black hole

when it is immersed in an external magnetic test field. The argument of Wald, as

we shall review below, is based on a well-known result by Papapetrou (1966).

Assume that ξ is a Killing vector field. Then, Lξgµν = ξµ;ν + ξν;µ = 0 where

gµν is the metric field and the semicolon stands for the operation of covariant

derivation. The Papapetrou’s result states that a Killing vector generates a solution

to Maxwell’s equations in vacuum space-times. Let us define the antisymmetric

rank-two tensor as

Fµν = ξν;µ−ξµ;ν =−2ξµ;ν. (6.2)
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Its covariant derivative is

Fµν
;ν =−2ξµ;ν

;ν =−2Rµ

λ
ξλ = 0. (6.3)

In the second step, we have used the property that the double covariant derivative

of a Killing vector is ξµ;ν;σ = ξλRλσµν, while in the last step we have used the as-

sumption of vacuum space-time Rµν = 0. Therefore, the electromagnetic test field

Fµν satisfies the source-free Maxwell’s equations.

In Minkowski space-time, there are ten independent Killing vectors. The elec-

tromagnetic field generated by the four translation Killing vectors vanish, those

generated by the three rotational Killing vectors reproduce uniform magnetic fields,

and those generated by the three boost Killing vectors reproduce uniform electric

fields.

In Kerr space-time, there are two independent Killing vectors: the time Killing

vector ηµ∂µ = ∂t and the axial Killing vector ψµ∂µ = ∂φ. We denote the electro-

magnetic test field generated by η as Fη = dη.1 The 1-form corresponding to the

Killing vector, ηµ = gµνην, serves as gauge potential for the electromagnetic field

Fη. Analogously for the axial Killing vector ψ. Both Fη and Fψ are stationary and

axisymmetric fields

LηFη = 0 =LψFη, LηFψ = 0 =LψFψ. (6.4)

The electromagnetic field generated by the time Killing vector vanishes asymptot-

ically. When integrated over a topological two-sphere, one has

1

4π

∫
S2

Fη = 0,
1

4π

∫
S2
?Fη =−2M . (6.5)

Instead, the electromagnetic field generated by the axial Killing vector approaches

the uniform magnetic field asymptotically. Integrations over a two-sphere give

1

4π

∫
S2

Fψ = 0,
1

4π

∫
S2
?Fψ = 4J . (6.6)

Thus, the two Killing vectors generate stationary and axisymmetric electromag-

netic (test) fields, Fη and Fψ, carrying charges −2M and 4J , respectively.

At this stage, one may wonder if it is possible to perturb the Kerr black hole

by introducing a perturbation to add a net electric charge Q or to place the Kerr

black hole in a (asymptotically uniform) magnetic field. The answer to both ques-

tions is positive and the uniqueness relies on a theorem proved by Carter (see, e.g.,

1Here, Fη = 1
2 Fη µνd xµ∧d xν = 1

2 (dη)µνd xµ∧d xν = 1
2

(
∂µην−∂νηµ

)
µν

d xµ∧d xν.
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the republication of his Les Houches lecture notes in Carter, 2009; Carter, 2010),

stating that if the electromagnetic test field F is a) stationary and axisymmetric, b)

regular on the horizon and in the exterior region of the black hole, c) asymptoti-

cally vanishing and d) without magnetic monopole and charge, then F = 0. Thus,

in order to have a non-trivial perturbation, we need to relax one of the hypothesis.

For the aim to add a net electric charge Q, we relax hypothesis d). From Eqs. (6.5),

we might define the electromagnetic field to be

FQ =− (Q/2M)Fη. (6.7)

Notice that if F ′
Q is another field carrying the same charge Q, the theorem above

implies that F ′
Q −FQ = 0. Moreover, as it should be, FQ =− (Q/2M)Fη is exactly the

Kerr-Newman electromagnetic field.

Now, let us focus on the second aim: embedding the Kerr black hole in an asymp-

totically uniform magnetic field. To this aim, we have to relax the hypothesis c)

in favour of having an asymptotically uniform magnetic field. From Eqs. (6.5) and

Eqs. (6.6), it is clear that

FB = 1

2
B0

(
Fψ+ 2J

M
Fη

)
(6.8)

is the only combination with vanishing charges. The uniqueness is again guaran-

teed by the theorem mentioned above. Asymptotically, FB behaves like Fψ and B0

is a real number equal to the magnitude of the asymptotic uniform magnetic field.

These two results, Eqs. (6.7) and (6.8), can be linearly superposed to describe

the electromagnetic test field for a Kerr black hole perturbed by an electric charge

Q and immersed in a magnetic field

FW ald = FQ +FB =− (Q/2M)Fη+ 1

2
B0

(
Fψ+ 2J

M
Fη

)
= 1

2M
(2B0 J −Q)Fη+ 1

2
B0Fψ.

(6.9)

Such a field is generated by the gauge potential

AW ald = 1

2M
(2B0 J −Q)η+ 1

2
B0ψ. (6.10)

The time Killing vector generates the Coulomb part of the electromagnetic field

and it contributes to the electric field and magnetic field for J 6= 0 2. In other words,

the rotation of the charged black hole immersed in the magnetic field induces an

electric field and contributes further to the magnetic field.

In order to unveil the charging mechanism, we restrict our discussion only to

2It is easy to check that, in coordinates, both Fη and Fψ contribute to the electric field in the
d t∧dr and d t∧dθ components and to the magnetic field in the dr ∧dφ and dθ∧dφ components
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particles along the axis of rotation at θ = 0. For a particle of mass m, charge q

and four-momentum pµ = muµ−q Aµ, the variation of the electrostatic potential

U =−pµηµ between infinity (r →∞) and the event horizon (r = r+) reads as

∆U =Ur=r+ −U∞ = q AW ald µη
µ
∣∣∣r=r+

∞ =−q AW ald µη
µ
∣∣∣∞ =− q

2M
(Q −2B0 J ) ,

(6.11)

where, in the second step, we have used the fact that ηµηµ
∣∣
θ=0 = 0 on the horizon,

ψµη
µ
∣∣
θ=0 = 0, and ηµηµ→−1 as r →∞. Fixed the sign of the charge q , for ∆U < 0

the accretion mechanism of such charged particles is energetically favourable till

∆U = 0. Therefore, regardless of the sign of q , the equilibrium charge is given by

QW ald = 2B0 J . Moreover, assuming that J ≤ M 2, the charge-to-mass ratio of the

black hole is

QW ald

M
= 2B0 J

M
≤ 2B0M ≈ 1.7×10−20

(
M

M¯

)(
B0

1Gauss

)
. (6.12)

The ratio QW ald /M , or equivalently the product B0M , is well below the unity for

astrophysically realistic black hole masses and magnetic field strengths (Dokuchaev

et al., 1987).

6.2.2 Meissner-like effect for rotating black holes

One year after Wald published his solution, King, Lasota, and Kundt (1975) com-

puted the flux of the magnetic field through the upper hemisphere of the event

horizon. Given the electromagnetic test field in (6.8), the magnetic flux across the

upper hemisphere H 2+ is

ΦB = 1

2π

∫
H 2+

FB = 1

2π

∫
∂H 2+

AB = Aφ

∣∣∣θ=π/2
r=r+

= 1

2
B0r 2

+

(
1+ a2

r 2+

)(
1− a2

r 2+

)
, (6.13)

where we used the Stokes’ theorem. The magnetic flux ΦB = ΦB (a;B0) is a func-

tion of the spin parameter a and of the magnetic field strength at infinity B0. It is

a monotonic function of a: its maximum is for Schwarzschild black hole (a = 0)

and it vanishes for extreme Kerr black hole (a = M). The expulsion of magnetic

field lines from the upper hemisphere of extreme Kerr black hole is known as

Meissner-like effect.3 Here, we have shown it for magnetic test field on Kerr black

hole background. Ten years later, Bičák and Janiš (1985) confirmed this effect for

all axisymmetric stationary test fields, by explicitly solving the vacuum Maxwell’s

3The Meissner effect, originally discovered by Meissner and Ochsenfeld (1933), describes the
expulsion of magnetic fields from a superconductor when it is cooled below a critical temperature
Tc , marking the transition to the superconducting state.
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equations around Kerr space-time. Actually, the effect has been also checked for

back-reacting magnetic field for uncharged MKN solution (Karas and Vokrouh-

lickỳ, 1991). More recently, the Meissner-like effect has been shown to operate also

in more general settings, e.g., where Kerr black hole is surrounded by accretion

disc (Guerlebeck and Scholtz, 2017; Guerlebeck and Scholtz, 2018). The Meissner-

like effect has astrophysical relevance because it might affect the efficiency of the

extraction of energy from rotating black holes. Indeed, further studies on the

Meissner-like effect have been pursued by Penna (2014a) and Penna (2014b) to

highlight feasible conditions to evade this effect. However, there is no total con-

sensus whether this effect realistically quenches the jet creation efficiency (see,

e.g., Ruiz et al., 2012; Kinoshita and Igata, 2017).

A similar computation with the Wald’s solution (6.9) leads to a more general

expression accounting for the charge of the black hole (see, e.g., Kim, Lee, and

Lee, 2001)

ΦW = 1

2π

∫
H 2+

FW = 1

2
B0r 2

+

(
1+ a2

r 2+

)[
1− a2

r 2+

(
1− Q

B0 J

)]
. (6.14)

For Q = 0, we recover the result in Eq. (6.13). For finite values of Q in the range

0 < Q < QW ald = 2B0 J , the magnetic flux never reaches zero, as shown in Fig. 6.1

for some values of the electric charge. At extremality, its value equals the electric

charge. Therefore charged black holes immersed in an external magnetic field do

not experience the Meissner-like effect at the extremal bound. For the limiting

value of the Wald’s charge, the flux becomes ΦW = 1/2B0r 2+
(
1+a2/r 2+

)2
. Surpris-

ingly, an extreme black hole with the Wald’s charge has the same magnetic flux

as in the Schwarzschild case (Dokuchaev et al., 1987). In other words, the Wald’s

charge can be thought of as that equilibrium charge to match the magnetic flux

for both cases of slightly charged Kerr and Schwarzschild black holes.

6.3 Black holes with external magnetic back-reacting

fields

6.3.1 Magnetised-Kerr-Newman black hole

We begin with the Kerr-Newman (KN) solution, describing an electrically charged

and rotating black hole, parametrised by the mass M , the angular momentum per

unit mass a, the electric charge q and the magnetic charge p. The line element of

KN space-time can be recast in the same form of the Kerr line element in Eq. (1.1)
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FIGURE 6.1: Magnetic flux for different values of the electric charge Q as function
of the angular momentum parameter a. We have set m = 1 and B0 =
1/2 to normalize the flux to the unity for the Schwarzschild case.

as follows (see, e.g., appendix B of Gibbons, Mujtaba, and Pope, 2013)

d s2
K N =−Σ∆̄

Ā
d t 2 + Σ

∆̄
dr 2 +Σdθ2 + sin2(θ)

Ā

Σ

(
dφ− ω̄d t

)2 , (6.15a)

AK N = Āt d t + Āφdφ, (6.15b)

where the metric and gauge potential functions read as

∆̄(r ) = r 2 −2Mr +a2 +q2 +p2, (6.16a)

Σ(r,θ) = r 2 +a2 cos2(θ), (6.16b)

Ā(r,θ) = (
r 2 +a2)2 −a2∆̄sin2(θ), (6.16c)

ω̄(r,θ) = a
(
2Mr −q2 −p2

)
Ā

, (6.16d)

Āt (r,θ) = Φ̄0(r,θ)− ω̄(r,θ)Φ̄3(r,θ), (6.16e)

Āφ(r,θ) = Φ̄3(r,θ), (6.16f)

and where the functions Φ̄0 and Φ̄0 read as

Φ̄0(r,θ) = 1

Ā

[
ap∆̄cos(θ)−qr

(
r 2 +a2)] , (6.17a)

Φ̄3(r,θ) = 1

Σ

[
aqr sin2(θ)−p

(
r 2 +a2)cos(θ)

]
. (6.17b)

The MKN solution is obtained by applying the Harrison transformation to the
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KN solution (Harrison, 1968). The transformation appends an external magnetic

field, parametrised by the real number B , to the seed KN solution. The result has

been nicely written in appendix B of Gibbons, Mujtaba, and Pope (2013). The

MKN line element takes the form

d s2
MK N = H(r,θ)

[
−Σ∆̄

Ā
d t 2 + Σ

∆̄
dr 2 +Σdθ2

]
+ 1

H(r,θ)

[
sin2(θ)

Ā

Σ

(
dφ−ωd t

)2
]

,

(6.18a)

AMK N = At d t + Aφdφ. (6.18b)

The KN line element is modified by the presence of the Harrison function H(r,θ)

and the angular velocity ω(r,θ), both expressed by a finite expansion in powers of

the magnetic field parameter B

H(r,θ) = 1+ H(1)B +H(2)B 2 +H(3)B 3 +H(4)B 4

Σ
, (6.19a)

ω(r,θ) = ω̄(r,θ)+ ω(1)B +ω(2)B 2 +ω(3)B 3 +ω(4)B 4

Ā
. (6.19b)

The gauge potential components, given by At (r,θ) = Φ0 −ωΦ3 and Aφ(r,θ) = Φ3,

are, instead, deformed as

Φ0(r,θ) = Φ̄0 +
Φ(1)

0 B +Φ(2)
0 B 2 +Φ(3)

0 B 3

4Ā
, (6.20a)

Φ3(r,θ) = Φ̄3

H
+ Φ

(1)
3 B +Φ(2)

3 B 2 +Φ(3)
3 B 3

ΣH
. (6.20b)

The explicit expressions of the functions H(i )(r,θ),ω(i )(r,θ),Φ(i )
0 (r,θ), andΦ(i )

3 (r,θ)

can be found in appendix B of Gibbons, Mujtaba, and Pope (2013).

The MKN black hole depends upon five parameters: the mass parameter M ,

the angular momentum parameter j = aM or the angular momentum per unit

mass a, the electric charge parameter q , the magnetic charge parameter q , and

the magnetic field B . In order to cancel the magnetic monopole charge, we set the

parameter p = 0. It is easy to verify that the MKN metric smoothly reduces to the

KN metric for B = 0, to the Kerr metric for B = 0 and q = 0, to the Schwarzschild

metric for B = 0, q = 0 and j = 0, to the Minkowski metric for B = 0, q = 0, j = 0

and M = 0 and to the Melvin metric (sometimes called magnetised Minkowski)

for q = 0, j = 0 and M = 0. As claimed in the Introduction, this exact solution

to Einstein-Maxwell equations has not a clear physical interpretation in general,

because of its unconventional asymptotic region and because the ergo-region ex-

tends all the way to infinity along the axis of rotation for a certain range of the
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parameter B . However, it has a well-defined weak field approximation in agree-

ment with the Wald’s solution discussed before. When Q/M ¿ 1 and B M ¿ 1 (see

Eq. (6.12)), MKN metric approaches the Kerr metric in the linear approximation

and the gauge potential is given by a linear combination of the two Killing vectors,

according to the Wald’s construction in Eq. (6.10) (Gibbons, Mujtaba, and Pope,

2013). The weak field approximation guarantees that the magnetic field does not

affect the geometry of the Kerr or Kerr-Newman black hole up to the so-called

Melvin radius rMel vi n = B−1, beyond which the magnetic field distorts the metric

in the far asymptotic region. Therefore, MKN solution can be used as a toy model

in the surroundings of the black hole in the radial range r+ ¿ r ¿ rMel vi n = B−1

with B M ¿ 1 (Aliev and Gal’tsov, 1989c).

To ensure that the MKN metric does not admit any conical deficit at the North

and South poles of the sphere, the azimuthal angleφmust have a period equals to

(Hiscock, 1981)

∆φ= 2πH(r,0) = 2πH(r,π) = 2π

[
1+ 3

2
q2B 2 +2 j qB 3 +

(
j 2 + q4

16

)
B 4

]
≡ 2πΞ.

(6.21)

We rescale the azimuthal angle φ by Ξ, so that its period is equal to 2π. More-

over, we add a space-time constant A(0)
φ to the azimuthal component of the gauge

potential to have regularity along the axis of rotation. The regularity condition at

both the North and South poles is Aφ(r,0) = 0 = Aφ(r,π) and it amounts to the

expression

A(0)
φ =−

[
3

2
q2 +3 j qB + 1

8

(
q4 +16 j 2)B 2

]
B. (6.22)

For future reference, we compute other physical quantities to discuss the ther-

modynamics of the MKN black hole. The inner and outer horizons are located at

r± = M ±√
M 2 −a2 −q2 and their expressions are not affected by the magnetic

field parameter. Therefore, also the Hawking temperature given by

TH = κ+
2π

= 1

4π

r+− r−
r 2++a2

, (6.23)

does not depend upon the magnetic field parameter B . However, the other ther-

modynamic potentials, namely, the angular velocity and the Coulomb electro-

static potential do depend on the four parameters of the solution. Indeed, the

angular velocity of the event horizon r+ is given by (after having rescaled the az-

imuthal coordinate φ→φ/Ξ)

Ω+ =− g tφ

gφφ

∣∣∣∣
r=r+

=ω(r+,θ), (6.24)
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while the Coulomb electrostatic potential measured at the event horizon is

Φ+ =−Aµξ
µ
∣∣∣
r=r+

=−A(0)
φ Ω+−Φ0(r+), (6.25)

where ξ is the horizon-generating Killing vector ξ = ∂t +Ω+∂φ. Finally, the area

of the event horizon is given by A+ = 4πΞ
(
r 2++a2

)
and the Bekenstein-Hawking

entropy is S = A+/4.

6.3.2 Near-horizon geometry of the MKN black hole

The near-horizon geometry of the extreme MKN black hole (abbreviated in NH-

EMKN) can be cast in the same form as in the case of extreme Kerr (see Eq. (1.16b)).

More precisely, one first goes to the extreme case, defined by the constraint M =√
a2 +q2 on the parameters. Then one performs a gauge transformation of the

form At → At +Φe to guarantee the finiteness of the near-horizon limit of the

gauge potential (Compère, 2012). Finally, one changes the coordinates from the

(t ,r,θ,φ) of the EMKN black hole (6.18) to the scaling coordinates (T,R,θ,Φ) de-

fined in Eq. (1.13)

T = t

r̃0
λ, R = r − r+

r̃0

1

λ
, Φ=φ−Ωext

+ t , (6.26)

and one gets

d s2
N H−E MK N = r̃ 2

0 Γ(θ)

[
−R2dT 2 + dR2

R2
+dθ2 +γ2(θ) (dΦ+kRdT )2

]
, (6.27a)

AN H−E MK N = l (θ) (dΦ+kRdT )− e

k
dΦ. (6.27b)

The functions Γ(θ), γ(θ), l (θ) and the constants r̃0, k, e in the metric tensor and in

the gauge potential are written in appendix A of Astorino (2015).

In Astorino (2015) and in Bičák and Hejda (2015), an explicit map have been

derived between the parameters of the near-horizon geometry of the extreme Kerr-

Newman (aK N , qK N ) and the parameters of the near-horizon geometry of the ex-

treme Magnetised-Kerr-Newman (aMK N , qMK N ,B)

aMK N = aK N −qK N

√
a2

K N +q2
K N B − aK N

4

(
4a2

K N +3q2
K N

)
B 2, (6.28a)

qMK N = qK N +2aK N

√
a2

K N +q2
K N B − q3

K N

4
B 2. (6.28b)

As we will show in Eqs. (6.34) and (6.35), both aMK N and qMK N coincide, respec-

tively, with the angular momentum (per unit mass) and the physical electric charge
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of the extreme MKN black hole. Therefore, by assuming that also the mass can be

mapped according to the above parameter redefinition, one can infer the extreme

mass of MKN black hole to be

MMK N =
√

a2
MK N +q2

MK N =
√

a2
K N +q2

K N+aK N qK N B+1

4

√
a2

K N +q2
K N (4a2

K N+q2
K N )B 2.

(6.29)

It is worth noticing that this last expression can be recovered as the extreme value

of the mass of MKN black hole computed by the isolated horizon formalism in

Booth et al., 2015 and does not agree with the extreme value of the mass of MKN

black hole computed by dimensional reduction in Gibbons, Pang, and Pope, 2014.

In the following, we resolve this tension by using the covariant phase space for-

malism and, in addition, we will clarify the relation between the two different def-

initions of mass by studying the respective thermodynamics.

6.4 Mass of Magnetised-Kerr-Newman black holes

In the strong field regime, where the magnetic field back-reacts with the geometry

and the space-time is described by the MKN line element (6.18), the conserved

charges of the MKN black hole are affected by the presence of the electromagnetic

field.

The unconventional asymptotic region of the metric introduces subtleties and

ambiguities in the calculation of conserved charges. While the conserved angular

momentum J and the electric charge Q do not raise any obstacle in their compu-

tation, such problems are manifest in the definition of the mass. Several attempts

have been made since the publication of the MKN solution. The first attempts

performed in Dokuchaev et al. (1987), and later in Aliev and Gal’tsov (1989c) and

Karas and Vokrouhlickỳ (1991), consisted in computing the following integrals at

spatial infinity r →∞

M = 1

8π

∫
S2
ηµ;νd 2Σµν, (6.30a)

J =− 1

16π

∫
S2
ψµ;νd 2Σµν, (6.30b)

Q = 1

8π

∫
S2

Fµνd 2Σµν, (6.30c)

where η and ψ are, respectively, the time and axial Killing vectors and the 2-form

d 2Σµν = 1/2εµναβd xα ∧ d xβ is the differential area element of the two-sphere.

For asymptotically flat space-times, the definitions above give the total conserved

mass, angular momentum and electric charge (Bardeen, Carter, and Hawking,
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1973). For MKN space-time, that is not asymptotically flat, the total mass is for-

mally divergent as an immediate computation can show. Therefore, a change of

strategy to compute the conserved charges is needed. Such new ideas come with

the recent attempts by Gibbons, Pang, and Pope (2014) and Booth et al. (2015), us-

ing Kaluza-Klein reduction to three-dimensional gravity and isolated horizon for-

malism, respectively. Their results totally agree for the angular momentum and

the electric charge expressions, but these two approaches give two different ex-

pressions for the total mass. Astorino et al. (2016) resolved the tension between

the two definitions by adopting the covariant phase space formalism and provided

a detailed analysis of the thermodynamics of MKN space-time.

6.4.1 Covariant phase space formalism

Before starting the computation of the conserved charges, we have to mention

the notation and the nomenclature of the covariant phase space formalism used

in the following (see, e.g., the review Compère, 2006). In the context of Einstein-

Maxwell theory, the generalised Killing equations for the metric field gµν and the

gauge field Aµ are

Lξgµν = 0, LξAµ+∂µλ= 0, (6.31)

where ξ = ξµ∂µ is a Killing vector field and λ is a real constant. We call symmetry

parameter the pair (ξ,λ), which is solution to the generalised Killing equations. It

can be shown that a surface charge k(ξ,λ)[δg ,δA; g , A] is associated with the sym-

metry parameter (ξ,λ) and it is uniquely fixed as a functional of the Lagrangian, up

to an irrelevant total derivative (Barnich and Brandt, 2002). The surface charges

k(ξ,λ) are space-time 2-forms and 1-forms in the field space. The explicit formula

for the surface charge that we will use in this chapter can be found in Eq. (4.22)

of Compère, Murata, and Nishioka (2009) (where one sets the scalar field to zero,

χ= 0, hI J = 0 and kI J = 1).

The total conserved charge Q(ξ,λ) associated to (ξ,λ) is defined by

Q(ξ,λ)[g , A; ḡ , Ā] =
∫

S2

∫ g

ḡ

∫ A

Ā
k(ξ,λ)[δg ′,δA′; g ′, A′], (6.32)

where S2 is a space-time two-surface. Such a definition is meaningful provided

that the surface charge does not depend on the path in the field space. This re-

quirement is called the integrability condition and reads as∫
S2
δ1k(ξ,λ)[δ2g ,δ2 A; g ′, A′]−

∫
S2
δ2k(ξ,λ)[δ1g ,δ1 A; g ′, A′] = 0. (6.33)
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Since the surface charge is closed on-shell (Barnich and Brandt, 2002), the charge

(6.32) is conserved under any deformation of the surface. It is, therefore, radius

and time independent.

The integrability condition depends on the choice of the symmetry parameters

(ξ,λ). One can introduce a prefactor α (which is a function of the phase space pa-

rameters) in front of the symmetry parameters and solve the integrability of the to-

tal conserved charge over the phase space (Barnich and Compère, 2008). In other

words, the prefactorα serves as an integrating factor for Eq. (6.33). As an example,

let us consider the total energy of Schwarzschild or Kerr black holes. It is the total

conserved charge associated to the Killing vector ξ= ∂t . It is integrable and equals

to the mass parameter m. However, for Kerr black holes in anti-de Sitter (AdS)

space-time in Boyer-Lindquist coordinates, one needs to multiply the Killing vec-

tor ξ= ∂t by a prefactor ξ‘ = (
1−a2/l 2

)−1
∂t , where a is the spin parameter and l is

the AdS radius, to get the canonical integrable mass M = (
1−a2/l 2

)−2
m (see, e.g.,

Caldarelli, Cognola, and Klemm, 2000; Gibbons, Perry, and Pope, 2005; Deruelle

and Katz, 2005; Barnich and Compere, 2005). The integrating factor technique re-

produces the mass obtained from consistent boundary conditions by Henneaux

and Teitelboim (1985) and, in that sense, it is equivalent to requiring a differen-

tiable generator in the Hamiltonian sense (Regge and Teitelboim, 1974).

In the following section, we will address the problem to compute the integrable

mass of MKN black holes by allowing all the phase space parameters to vary.

6.4.2 Computation of conserved charges

Let us first obtain the angular momentum J and electric charge Q. By defini-

tion, the angular momentum and electric charge are the conserved charges as-

sociated with the symmetry parameters (−∂φ,0) and (0,−1), respectively. Using

the Barnich-Brandt method (Barnich and Brandt, 2002), we directly note that the

infinitesimal charges δQ and δJ obey the integrability conditions (6.33). Using the

definition (6.32), we obtain

J ≡Q(−∂φ,0) = j −q3B − 3

2
j q2B 2 − 1

4
q(8 j 2 +q4)B 3 − 1

16
j (16 j 2 +3q4)B 4, (6.34)

Q ≡Q(0,−1) = q +2 j B − 1

4
q3B 2, (6.35)

Both the angular momentum and the total electric charge match with the results

in the literature (Gibbons, Pang, and Pope, 2014; Astorino, 2015; Booth et al.,

2015).
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Let us now compute the infinitesimal change of energy caused by a change of

all parameters of the solution (δM ,δ j ,δq,δB). Since it is not clear which canon-

ical generator is associated with the conserved energy, let us first obtain the in-

finitesimal conserved charge /δQ(∂t ,0) =
∮

S2 k(∂t ,0) associated with the symmetry

parameter (∂t ,0). Here S2 is a sphere of integration around the black hole, i.e.,

the integration is performed on a constant t and r surface. Using the definition of

the surface charge and after a lengthy algebra, we obtain

/δQ(∂t ,0) = cMδM + c jδ j + cqδq + cBδB , (6.36)

where the coefficients read as

cM = 1+ 3

2
q2B 2 +2 j qB 3 +

(
j 2 + q4

16

)
B 4, (6.37a)

c j =−5M qB 3 − 1

8

j

M

(
28M 2 +q2)B 4, (6.37b)

cq =−3M qB 2 − 1

4

j

M

(
8M 2 +5q2)B 3, (6.37c)

cB = j

M
q + 3

2
M q2B −3 j q

(
2M + q2

4M 2

)
B 2 − 1

2

(
5

4
M q4 + j 2

M
(8M 2 +q2)

)
B 4.

(6.37d)

We have used the symbol /δ to emphasize that the expression (6.36) is not inte-

grable in the parameter space. Indeed, it is easy to check that δ1(/δ2Q(∂t ,0))− (1 ↔
2) 6= 0. Therefore, ∂t is not associated with the energy. Note that the coefficient cM

exactly matches with the factorΞ introduced in Eq. (6.21) to avoid conical deficits.

The goal of this section is now to define the mass from integration over the

phase space of an integrable infinitesimal canonical charge δM and prove that

the procedure is unique and, therefore, that the mass M is uniquely defined.

The black hole admits exactly three generalised Killing vectors and the symme-

try associated with the mass can be any combination thereof. We can parametrize

it as α
(
χ,λ

) = (
α(∂t +Ωi nt∂φ),αΦi nt

)
. We have to determine the four following

functions defined over the parameter space: the mass M = M (M , j , q,B) and

the three constants which fix the canonical generator: α = α(M , j , q,B), Ωi nt =
Ωi nt (M , j , q,B) and Φi nt = Φi nt (M , j , q,B). By definition, these four functions

obey the following equality

δM =α(
/δQ(∂t ,0) −Ωi ntδJ −Φi ntδQ

)
. (6.38)
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Quite remarkably, these defining equations are four equations since there are four

parameters to be varied: M , j , q,B . They read in detail as

∂MM =αΞ, (6.39)

∂qM =α
(
cq −∂qQΦi nt −∂q JΩi nt

)
, (6.40)

∂BM =α
(
cB −∂BQΦi nt −∂B JΩi nt

)
, (6.41)

∂ j M =α
(
c j −∂ j QΦi nt −∂ j JΩi nt

)
. (6.42)

From the first equation, we algebraically solve for α and we obtain

α= 1

Ξ
∂MM . (6.43)

By algebraically solving the second and third equation forΦi nt andΩi nt , we get

Ωi nt = 1

α(∂q J∂BQ −∂B J∂qQ)

[
α(cq∂BQ − cB∂qQ)+∂qQ∂BM −∂BQ∂qM

]
, (6.44)

Φi nt = 1

α(∂q J∂BQ −∂B J∂qQ)

[
α(cB∂q J − cq∂B J )+∂B J∂qM −∂q J∂BM

]
. (6.45)

One can check that the denominator ∂q J∂BQ − ∂B J∂qQ only vanishes when the

charge parameter q = 0 or q = 3 j B . However both Ωi nt and Φi nt shall be well

defined, except for the trivial case m = 0, upon substituting α and the mass M

into their expressions.

Finally, by substituting α, Ωi nt and Φi nt in the last equation, we obtain a first-

order linear homogeneous partial differential equation for the total mass M

[
D−M(4+9q2B 2)∂B

]
M = 0, (6.46)

where we defined the differential operator

D= 2q(2 j +3qM 2B)∂M +2M(4 j +3q3B)∂q −4M q2(q −3 j B)∂ j . (6.47)

We reduced the integrability requirement for defining the mass to a single partial

differential equation for the mass (6.46). Let us now solve it. First note that B = 0 is

a regular point of the differential operator. Therefore, one has an analytic solution

around B = 0,

M (M , j , q,B) = ∑
n≥0

fn(M , j , q)B n . (6.48)

The differential equation requires a boundary condition at B = 0. We now impose
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the physical requirement that the mass should coincide with the Kerr-Newman

mass M in the absence of a magnetic field. Thus, we set f0(M , j , q) = M . It can be

shown that the ansatz (6.48) leads to an infinite series in the B expansion which

we can solve exactly to each order in B . It turns out to be simpler to consider the

expansion of the mass squared:

M 2(M , j , q,B) = M 2 + ∑
n≥1

gn(M , j , q)B n (6.49)

The functions gn(M , j , q) must satisfy the following differential equation:

M(4+9q2B 2)
∑

n≥1
ngn(M , j , q)B n−1 − ∑

n≥1
D[gn(M , j , q)]B n = 4M q(2 j +3qM 2B).(6.50)

By collecting the terms order by order in the above equation, we get

g1 = 2 j q, (6.51)

g2 = 1

2M

(
3M 3q2 +F[g1]

)
= 2 j 2 + 3

2
M 2q2 −q4, (6.52)

gn = 1

4nM

[
3M q2(−3(n −2)gn−2 +2G[gn−2]

)+4F[gn−1]
]

, (6.53)

where the differential operators F and G are defined as

F= q j∂M −M q3∂ j +2M j∂q , (6.54)

G= M∂M +2 j∂ j +q∂q . (6.55)

We would like to stress that the coefficients are uniquely determined, so that the

mass M is unique. We can solve explicitly for the coefficients gn . We observe

that gn = 0 ∀n ≥ 5. Thus, the solution (6.49) has the remarkable advantage of

admitting a finite B expansion up to the fourth power in the parameter B

M 2(M , j , q,B) = M 2 +2 j qB +
(
2 j 2 + 3

2
M 2q2 −q4

)
B 2+ (6.56)

+ j q
(
2M 2 − 3

2
q2

)
B 3 +

(
j 2M 2 − 1

2
j 2q2 + 1

16
M 2q4

)
B 4.

This is, therefore, the unique mass of the Kerr-Newman black hole immersed in

a back-reacting magnetic field. This answer agrees with the mass computed in

Booth et al., 2015 by using the isolated-horizon formalism.4 It disagrees with the

other proposals in the literature.

4The published version of Booth et al. (2015) does not contain the explicit expression of the total
mass. It is written in the unpublished second version of the preprint posted on ArXiv.
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We checked that our total mass (6.56) reproduces the putative extreme limit in

Eq. (6.29) proposed by Astorino (2015) and Bičák and Hejda (2015).

We conclude this section with another interesting observation about the to-

tal mass in Eq. (6.56). It is nothing but the Christodoulou-Ruffini mass originally

derived for the Kerr-Newman black hole by Christodoulou and Ruffini, 1971 and

given by

M 2(S, J ,Q) = S

4π
+ Q2

2
+ π(Q4 +4J 2)

4S
. (6.57)

When expressed in terms of extensive quantities, the entropy S, the angular mo-

mentum J and the total electric charge Q, the total mass does not depend explic-

itly on the magnetic field parameter B .5 This result is in agreement with the gen-

eral proof of the first law that we shall give in section 6.5, where no additional δB

term is present.

6.5 Thermodynamics of Magnetised-Kerr-Newman black

holes

In this section, we prove the first law of black hole mechanics for MKN black holes

by considering the integrable mass computed before.6 Our proof only relies on the

geometrical derivation of the first law and the integrability of the mass. The origi-

nal proof of the first law was done for asymptotically flat space-times by Bardeen,

Carter, and Hawking (1973). However, one readily generalizes it to any asymp-

totics using the definition of infinitesimal charge associated with canonical gen-

erators as done by Iyer-Wald in pure gravity using covariant phase space methods

(Iyer and Wald, 1994) (this derivation was extended in Einstein-Maxwell theory by

Rogatko (2002) and Gao (2003). We want to emphasize that there are no subtleties

related to the presence of the magnetic field. Indeed, the metric is smooth and the

gauge field is regular outside the black hole. In particular, in the following deriva-

tion, we have assumed that no magnetic monopole is present and we have used

a gauge potential regular at the poles. In the presence of magnetic monopoles or

dipoles where the gauge field is singular, subtleties in the geometrical derivation

5Though the Christodoulou-Ruffini mass was originally derived for the asymptotically flat Kerr-
Newman black hole, the robustness of the formula can be checked for Kerr-Newman-AdS black
holes (Caldarelli, Cognola, and Klemm, 2000) and for accelerating Reissner-Nordstrom black holes
(Astorino, 2017).

6However, we will discuss alternative thermodynamics description of MKN space-time in sec-
tion 6.6, where the mass is not integrable because the magnetic field is considered as an external
source (Gibbons, Pang, and Pope, 2014).
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of the first law are present and lead to an additional term (Copsey and Horowitz,

2006).

6.5.1 First law and Smarr formula for MKN black holes

The first law of black hole mechanics is essentially the expansion of the following

conservation law ∫
H 2

k(ξ,0) =
∫

S2
k(ξ,0), (6.58)

where ξ = ∂t +ΩH∂φ is the Killing generator of the black hole horizon and ΩH is

the angular velocity of the horizon. The equivalence is between the surface charge

integrated over the spacelike section of the black hole horizon H 2 and over the

sphere at infinity S2, even though any sphere enclosing the horizon is equally valid

for the argument.

At the horizon, the standard derivation of Bardeen, Carter, and Hawking (1973)

and Iyer and Wald (1994) leads to∫
H 2

k(ξ,0) = THδS +Φ+δQ, (6.59)

where the chemical potential TH , associated to the entropy S, is the Hawking

temperature. The Coulomb electrostatic potential at the horizon is defined as

Φ+ =−Aµξ
µ|r=r+ and Q is the electric charge. We have computed Φ+ in Eq. (6.25)

and Q in Eq. (6.35) for the MKN space-time.

In order to develop the right-hand side of Eq. (6.58), it is necessary to iden-

tify which is the canonical symmetry parameter associated with the energy. In

general, it is not (∂t ,0). In other words, one needs to consider the most general

symmetry generator α
(
χ,Φ

)
, where χ= ∂t +Ω∂φ is a Killing vector field andΦ is a

gauge transformation parameter. Here, α, Ω and Φ are space-time constants, but

they are functions of the phase space parameters. We can use the linearity of the

definition of symmetry parameters and write the symmetry parameter as follows:

α
(
∂t +Ω+∂φ,0

)=α(
∂t +Ωi nt∂φ,Φi nt

)+α(
(Ω+−Ωi nt )∂φ,−Φi nt

)
. (6.60)

Since the surface charge is linear in the symmetry parameter, Eq. (6.58) becomes∫
H 2

kα(ξ,0) =
∫

S2
kα(χ,Φi nt ) +

∫
S2

kα((Ω+−Ωi nt )∂φ,−Φi nt ). (6.61)
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Using the following definitions,

δM =
∫

S2
kα(χ,Φi nt ), δJ =

∫
S2

k(−∂φ,0), δQ =
∫

S2
k(0,−1), (6.62)

Eq. (6.61) becomes

α (THδS +Φ+δQ) = δM −α(Ω+−Ωi nt )δJ +αΦi ntδQ, (6.63)

from which we obtain

δM =α
(
THδS + (Ω+−Ωi nt )δJ + (Φ+−Φi nt )δQ

)
(6.64)

which is the first law of black hole mechanics.

Under a change of frame, t → t̃ =∆t t , φ→ φ̃=φ+∆Ω t and a change of gauge

A → Ã = A +dλ with λ = −(∆At )t (leading to the total transformation At → Ã t̃ =
∆−1

t (At −∆ΩAφ−∆At )) the potentials appearing in the first law transform as

TH → TH∆
−1
t , α → α∆t ,

Ω+ → (Ω++∆Ω)∆−1
t , Ωi nt → (Ωi nt +∆Ω)∆−1

t , (6.65)

Φ+ → (Φ++∆At )∆−1
t , Φi nt → (Φi nt +∆At )∆−1

t .

Here ∆Ω, ∆t and ∆At are space-time constants, but functions of the phase space

parameters.7 The last transformation law follows from the fact that the surface

charge k(∂t ,0) transforms under the large gauge transformation A → A+dλ gener-

ated by λ = −∆At t as
∮

S k(∂t ,0) →
∮

S k(∂t ,0) − (∆At )
∮

S k(0,−1), as described in Com-

père, 2007b. Therefore, one needs a compensating shift of Φi nt to preserve the

symmetry generator which defines the mass. Therefore, it is natural to define the

frame independent thermodynamic potentials:

T =αTH , (6.66a)

Ω=α(Ω+−Ωi nt ), (6.66b)

Φ=α(Φ+−Φi nt ). (6.66c)

Then, the first law (6.64) takes the standard textbook form:

δM = TδS +ΩδJ +ΦδQ. (6.67)

7It is easy to realise that the canonical frame, i.e., that frame in which the mass M is associated
with (∂tcan ,0) is reached with ∆t =α−1, ∆Ω=−Ωi nt and ∆At =−Φi nt .
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We then recognize the thermodynamic quantities T , Ω and Φ as the chemical po-

tentials associated to S, J and Q, respectively. The first law (6.67) differs from the

one presented in Gibbons, Pang, and Pope (2014), where there is an additional δB

term. The discrepancy arises from the fact that their mass is not integrable for ar-

bitrary variations of the magnetic field parameter B . We will comment about this

tension in section 6.6.

Another relation among the black hole conserved charges is the Smarr for-

mula. Let us review that the Smarr formula follows from the first law and Eu-

ler’s theorem for homogeneous functions (see, e.g., the excellent lecture notes

of Townsend, 1997)).8 The main observation, from Eq. (6.57), is that the mass

squared is an homogeneous function of S, J , Q2, because its variables have the

same dimension, [S] = [J ] = [Q2] = [mass2] in geometric units (G = c = 1). There-

fore, the mass M must be homogeneous of degree n = 1/2 and it fulfils the relation

1

2
M = ∂M

∂S
S + ∂M

∂J
J + ∂M

∂Q2
Q2. (6.68)

After using ∂M
∂Q2 Q2 = 1

2
∂M
∂Q Q and the first law (6.67), we get the Smarr formula

M = 2T S +2ΩJ +ΦQ. (6.69)

6.5.2 Thermodynamic potentials of MKN black holes

With the unique mass at hand, we obtain the expression of α from Eq. (6.43). It is

given by

α= M

M
. (6.70)

We can then deriveΩi nt andΦi nt from Eqs. (6.44) and (6.45). Their expressions are

well defined except for the trivial case m = 0. When the magnetic field is turned

off, we can check that we get α = 1, Ωi nt = 0 = Φi nt as expected in an asymptot-

ically flat space-time. The thermodynamic quantities defined in Eqs. (6.66) are

8Euler’s theorem states that any homogeneous function of degree n of N variables, i.e., such

that f (tx) = t n x, satisfies the relation
∑N

i=1 xi ∂ f
∂xi = n f (x).
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then explicitly given by

T =αTH =Ξ M

M

2

A+
(r+−M), (6.71a)

Ω=α(Ω+−Ωi nt ) = 1

Ξ

J

M

1

r 2++a2
, (6.71b)

Φ=α(Φ+−Φi nt ) = 1

Ξ

M

M
Q

[
r+

r 2++a2

(
Q

q

)2

+ M

q2

(
Ξ− M 2

M 2

)]
. (6.71c)

The quantities r+, TH , Ω+, Φ+, A+ have been computed at the end of section 6.3.

For B = 0, we recover the well-known expressions of the Kerr-Newman black hole.

We can also check that the thermodynamic potentials coincide with the ones de-

rived from the Christodoulou-Ruffini mass (6.57):

T = ∂M

∂S
= 1

8πM

[
1− 4π2

S2

(
J 2 + Q4

4

)]
, (6.72a)

Ω= ∂M

∂J
= πJ

MS
, (6.72b)

Φ= ∂M

∂Q
= Q

2MS
(S +πQ2). (6.72c)

By construction, the first law (6.67) and the Smarr relation (6.69) are verified.

The magnetic field parameter B only appears implicitly in the thermodynamic

quantities T , Ω and Φ. That means that the study of the thermodynamic stabil-

ity against thermal or electric fluctuations is unchanged with respect to the Kerr-

Newman black hole (Davies, 1977). For example, the expressions for the heat ca-

pacity and electric permittivity are identical as in the Kerr-Newman case in terms

of explicit thermodynamic variables. In Fig. 6.2, we schematically emphasize that

the magnetised Kerr-Newman and the Kerr-Newman black holes share the same

thermodynamics away from the extreme limit (see Eqs. (6.72)), while they share

the same near-horizon geometry at extremality (see Eqs. (6.28)).

Magnetized Kerr-Newman (MKN) Kerr-Newman (KN)

Near-horizon extreme MKN Near-horizon KN

same thermodynamics

same geometry

FIGURE 6.2: The magnetised Kerr-Newman and the Kerr-Newman share the
same thermodynamics away from extremality and the same near-
horizon geometry at extremality
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6.6 Alternative thermodynamics: magnetic field as a

source

If one allows for all physical quantities (M ,Q, J ,B) to be varied, the definition of

mass is unique as we have shown. It matches with the mass computed using the

isolated horizon formalism (Booth et al., 2015) and, at extremality, using the match

with the near-horizon of the Kerr-Newman black hole (Astorino, 2015; Bičák and

Hejda, 2015). This existence and uniqueness of the result suggests that the solu-

tion space of Melvin-Kerr-Newman metrics with arbitrary freely varying parame-

ters constitutes a phase space with well-defined boundary conditions.

Now, alternative boundary conditions can lead to alternative definitions of

the gravitational mass, as illustrated, e.g., in the case of gravity coupled to scalar

fields (Henneaux et al., 2007) with bare mass in the Breitenlohner-Freedman range

which allows for various boundary conditions (Breitenlohner and Freedman, 1982).

More precisely, one defines new quantities α̃, Ω̃i nt and Φ̃i nt . The infinitesimal

charge /δM associated with the generator α̃(∂t +Ω̃i nt∂φ,Φ̃i nt ) is not integrable for

arbitrary variations of the magnetic field B , but it can be written as

/δM = δM̃ +µδB (6.73)

The left-hand side of Eq. (6.73) is exactly the infinitesimal charge which can be de-

duced from Eqs. (6.34)-(6.35)-(6.36). Once M̃ = M̃ (M , a, q,B) is fixed as a function

of the parameters, µ is uniquely defined from Eq. (6.73). There are four unknown

functions α̃,Ω̃i nt ,Φ̃i nt ,M̃ and three integrability conditions (6.39)-(6.40)-(6.42).

There is, therefore, one free function, the mass, which should be fixed by indepen-

dent considerations such as a boundary condition. A physical requirement is that

the mass reduces to the Kerr mass in the absence of magnetic field, M̃ = M+O (B).

Otherwise, the mass is arbitrary with this method. Once the remaining function

is fixed, one can compute µ from Eq. (6.73), which can be interpreted as a con-

jugate chemical potential for the magnetic field, i.e., an induced magnetic dipole

moment. Indeed, after using Eq. (6.73), the first law (6.67) reads as

δM̃ +µδB = T̃δS + Ω̃δJ + Φ̃δQ, (6.74)
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where the tilded chemical potentials are defined as

T̃ = α̃TH , (6.75)

Ω̃= α̃(Ω+− Ω̃i nt ), (6.76)

Φ̃= α̃(Φ+− Φ̃i nt ). (6.77)

Since B has mass dimension [mass]−1, the Smarr relation reads as

M̃ = 2T̃H S +2Ω̃J + Φ̃Q +µB. (6.78)

As an intermediate summary, one can arbitrarily define the mass with the inte-

grability procedure, up to the constraint of matching with M in the absence of

magnetic field, and still get a consistent thermodynamics with first law and Smarr

formula.

One such definition of mass was recently given in Gibbons, Pang, and Pope

(2014) after using a Kaluza-Klein reduction to three dimensions. Its expression is

given by

MGPP =ΞM , (6.79)

where the factor Ξ defined in Eq. (6.21) naturally appears in the regulation of the

metric in order to avoid conical defects. Identifying M̃ =MGPP one can solve the

three integrability conditions (6.39)-(6.40)-(6.42) with

α̃= 1, (6.80)

Ω̃i nt =
B 3

[
160qM 2 + j (80M 2 +76q2)B +8q(4 j 2 +31M 2q2)B 2 +3 j q2(44M 2 +q2)B 3

]
8ΞM(4+9q2B 2)

,

(6.81)

Φ̃i nt = 1

16ΞM(4+9q2B 2)

[
−384qM 2B 2 −16 j (16M 2 +5q2)B 3 −16q(2 j 2 +53M 2q2)B 4

+96 j q2(q2 −5M 2)B 5 +8(−46M 2q5 +q j 2(28M 2 +43q2))B 6+ (6.82)

+ j (−408M 2q4 +5q6 +32 j 2(2M 2 +11q2))B 7 +3q(32 j 4 −8 j 2M 2q2 +5M 2q6)B 8
]

.

According to Eq. (6.73), this leads to the magnetic dipole moment

µ=Ξ2q

M

2 j −3B qM 2

4+9B 2q2
. (6.83)

In the weak magnetic field approximation both Ω̃i nt and Φ̃i nt vanish, whereas

µ approaches j q
M ' JQ

M
, which is the well-known magnetic dipole moment of a
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charged stationary axisymmetric vacuum black hole space-time (Wald, 1974).

In summary, the mass proposed in Gibbons, Pang, and Pope (2014) leads to a

consistent thermodynamics in the case where the magnetic field is considered as

an external source. The definition MGPP however does not match with the ex-

tremal mass (6.29) computed from the near-horizon matching (Astorino, 2015;

Bičák and Hejda, 2015). We found that in all generality, integrability methods are

ambiguous up to one arbitrary function which can be precisely identified with the

mass. There is, therefore, a one-function family of consistent thermodynamics

when the magnetic field is considered as an external source.

6.7 Discussion and conclusions

In this chapter, we have discussed the Kerr-Newman black hole immersed in an

external magnetic field in the weak and strong regime. The exact analytical solu-

tion to the Einstein-Maxwell theory, known as Melvin-Kerr-Newman (MKN) space-

time, has been presented and discussed. In particular, we focused on the effect of

the external magnetic field on the conserved charges in the strong field regime.

Though such a solution might not have a physical role in modelling an active

galactic nucleus, we were motivated to study the MKN because of the open prob-

lem in defining its total mass and, consequently, its thermodynamics. Recent ap-

proaches have been made by means of dimensional reduction methods (Gibbons,

Pang, and Pope, 2014), the isolated horizon formalism (Booth et al., 2015), and

the covariant phase space formalism (Astorino et al., 2016). We extensively dis-

cussed the results presented in Astorino et al. (2016). We showed that the mass in

Eq. (6.56), originally computed in Booth et al. (2015) (though not published in the

final version of the paper), is the unique and integrable mass of the MKN black

hole. To achieve this result, we first showed that the integrability condition leads

to a partial differential equation of the first order in the parameters of the MKN

solution. Then, by demanding that the mass is that of the Kerr-Newman when the

magnetic field parameter vanishes, we obtained the unique solution to the inte-

grability condition. Such an unique and integrable total mass correctly reproduces

the extreme mass computed after matching the parameters of the near-horizon

geometries of the extreme MKN and the extreme KN (Astorino, 2015; Bičák and

Hejda, 2015). Additionally, we derived the first law of black hole thermodynamics

for MKN (see Eq. (6.67)) when all the parameters of the phase space are allowed to

vary. Consistently with the first law, we were able to write the total mass in terms of

the thermodynamic variables (and without any explicit dependence on the mag-

netic field parameter) and we checked that it is equivalent to the the well-known
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Christodoulou-Ruffini mass formula (6.57). Interestingly, we found that MKN and

KN space-times share the same thermodynamics: this is a nontrivial relationship

away from extremality, where the two space-times share the same near-horizon

geometry. We also studied alternative thermodynamics, where the magnetic field

is considered as an external source with no dynamics. Such alternative thermo-

dynamics has a modified first law, given in Eq. (6.74), with an explicit term ac-

counting for the variation of the external magnetic field. In this case, we found a

consistent family of thermodynamics parametrised by an alternative mass. The

latter is not anymore integrable. One such example is provided by the work of

Gibbons, Pang, and Pope (2014).

We leave open the problem whether or not an alternative mass exists in this

framework which matches with the Kerr mass in the absence of magnetic field

and which also matches with the near-horizon extremal mass at extremality. The

relationship between the mass formula and consistent boundary conditions for

Melvin-Kerr-Newman space-times is also left open.
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This chapter is based on Compère and Oliveri (2017), where a new research

programme to investigate specific signatures of conformal symmetries in the high

spin regime for accretion discs has been initiated. We start with an introduction

in section 7.1. Then, we discuss a particular boundary condition imposed at the

physical edge of the thin accretion disc; we comment the physical consequences

of such a condition in the Novikov-Thorne model presented in chapter 3. In sec-

tion 7.3, we study the Novikov-Thorne model with the above boundary condition

and we derive new features of the accretion disc when the central black hole is

rapidly rotating. Such new features open up the possibility to study the Novikov-

Thorne accretion disc around the near-horizon region of a rapidly rotating black

hole. The outcome of this analysis, discussed in section 7.4, is that the disc shows

a critical-like behaviour dictated by the conformal symmetry of the underlying

background geometry. We conclude the chapter with section 7.5.
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7.1 Introduction

In this chapter, we exploit the emergent conformal symmetry of near-extreme

black holes in their near-horizon region to find physical implications on thin ac-

cretion discs within the Novikov-Thorne model introduced in chapter 3. The model

is analytical, based on falsifiable assumptions whose range of validity can be tested,

and it only depends on four free parameters that include the phenomenological

Shakura-Sunyaevα prescription for the viscosity. In particular, the model predicts

a black-body thermal spectrum in the range 104 −107K which makes it suitable as

a rough model of several classes of black hole binaries and luminous active galac-

tic nuclei (see, e.g., Koratkar and Blaes, 1999; McClintock, Narayan, and Steiner,

2014).

The original Novikov-Thorne model has the property that the torque vanishes

at the ISCO (the physical edge of the accretion disc), which leads to an incon-

sistency of the model, because the radial fluid velocity diverges at the ISCO even

though observables remain finite. This boundary condition has also been chal-

lenged by other considerations (Krolik, 1999; Gammie, 1999; Li, 2000; Noble, Kro-

lik, and Hawley, 2010). Modelling physical boundary conditions at the ISCO is

crucial in particular for highly spinning black holes in order to accurately calibrate

their spin estimate (Li et al., 2005). In Penna, Sadowski, and McKinney (2012), a

self-consistent boundary condition, hereafter called “sonic-ISCO”, was proposed,

which consists in equating the radial co-moving fluid velocity at the ISCO with

the sound speed. Two arguments were presented in its favour. First, in slim disc

models around the Schwarzschild black hole analysed in Abramowicz et al. (2010),

the sonic point asymptotes to the ISCO in the thin disc regime (where the accre-

tion rate is sub-Eddington), independently of α. Secondly, the boundary condi-

tion implies that advection terms are negligible with respect to the stresses at the

ISCO in the energy balance, in the limit where the disc height is negligible with

respect to α. We will check that the latter assumption is self-consistent for typi-

cal stellar-mass black holes and luminous AGN parameters. A crucial consistency

condition of thin discs is therefore satisfied. As we will discuss, the boundary con-

dition also implies that the specific internal energy is negligible, which automat-

ically enforces another hypothesis of the Novikov-Thorne model. In addition, we

will show that the sonic-ISCO boundary condition allows for a well-defined near-

horizon near-extreme scaling behaviour, in contrast to the no-torque boundary

condition.

According to the cosmic censorship conjecture, the spin of the Kerr black hole
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is bounded by its value at extremality. Extreme spinning black holes admit a near-

horizon region with global conformal symmetry SO(2,1), as has been discussed

in chapter 1. Approaching the extreme bound by realistic accreting processes is,

however, limited by the absorption cross-section of retrograde photons as shown

by Thorne (1974), leading to the bound J/M 2 < 99.8%. This bound is commonly

accepted (see, e.g., the recent work by Kesden, Lockhart, and Phinney, 2010), even

though it can be lowered by magnetic fields (Gammie, Shapiro, and McKinney,

2004) or instead challenged (Sa̧dowski et al., 2011). More fundamentally, for ac-

cretion disc models where the inner edge approaches the marginally bound orbit

instead of the innermost stable orbit, the capture of retrograde photons asymp-

totes to zero, which allows spinning black hole to further approach extremality

(Abramowicz and Lasota, 1980). Such scenarios have been shown to occur in slim

disc models (Sa̧dowski et al., 2011). It is therefore worthwhile to explore which

specific signatures may arise in the extremely high spin regime, where conformal

symmetry is only slightly broken.

A new feature emerges from our analysis. For highly spinning stellar-mass

black holes, gas pressure at the ISCO becomes negligible with respect to radia-

tion pressure. The sonic-ISCO boundary condition then implies that the accre-

tion rate is not a free parameter of the model. Instead, the disc height at the ISCO

is the fourth independent parameter. It allows us to infer a best-fitting value for

the Shakura-Sunyaev parameter α in terms of the total luminosity, radiative effi-

ciency and spin of the source. For example in the case of the X-ray binary source

GRS 1915+105, recent estimates of the mass and spin, using the Very Long Baseline

Array, give M ∼ 12±2 M¯ and J/M 2 = 0.98±0.01 (Reid et al., 2014). Also, the best-

fitting model of the NuSTAR observation of GRS 1915+105 in the plateau state gives

a disc luminosity at 23%±4% of the Eddington rate (Miller et al., 2013). Taking into

account the torque contribution to the radiative efficiency of thin accretion discs

(Li, 2002), we will infer that the best-fitting Novikov-Thorne model is a disc domi-

nated by radiation around the ISCO with α= 0.43 and Ṁ = 1.6×1018g sec−1.

7.2 Sonic-ISCO boundary condition

A physical system is determined by its equations of motion and its boundary con-

ditions. In the original analysis of Novikov and Thorne (1973), it was assumed that

there is no torque at the ISCO, located at r = r0, which is equivalent to assume that

there is no radiation at that point,

F (r0) = 0, (7.1)
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which is also equivalent to fixing the integration constant P0 = 0 in Eq. (3.50).

Following Penna, Sadowski, and McKinney (2012), we impose instead that the

radial fluid velocity in the frame co-rotating with the geodesic flow equals (minus)

the sound speed at the ISCO,

cs(r0) =−u r̂ (r0). (7.2)

This boundary condition has three important advantages that we will describe in

what follows: firstly, it implies that the advection processes are negligible with re-

spect to the dissipative and radiating effects; secondly, it reinforces the hypothesis

that the specific internal energy can be neglected and, then, the boundary condi-

tion regularizes the original Novikov-Thorne model.

So far, we can rewrite the energy conservation equation as

Qdi ss =Qcool +Qad v , (7.3)

where Qdi ss =−Sµνσµν is the dissipation function, Qcool = qµ;µ is the cooling func-

tion and Qad v = ρTuµs,µ is the advection function that takes into account the rate

of change of the specific entropy along the four-velocity. Now, as shown in Penna,

Sadowski, and McKinney (2012), the boundary condition (7.2) implies the follow-

ing scaling relations: Qad v ∼ h2, Qcool ∼ Qdi ss ∼ αh; so if h ¿ α, advection can

indeed be neglected.

Thin disc models usually assume that the specific internal energy density is

negligible Π= 0. This hypothesis is justified if the sound speed is non-relativistic,

cs ¿ 1. Due to the gravitational potential, the sound speed is highest in the near-

horizon region of the disc, where we will impose the boundary condition (7.2).

The hypothesis cs ¿ 1 will therefore be obeyed as long as |u r̂ | ¿ 1 at the ISCO,

which is already part of the hypotheses since we assumed that the fluid follows

nearly circular geodesics. We will check that the solutions indeed obey |u r̂ | ¿ 1

and cs ¿ 1.

Finally, with the no-torque boundary condition, the disc model has no regu-

lar limit at the ISCO, as we will review below, while the boundary condition (7.2)

regularizes the model.

Let us now fix the remaining integration constant P0 for the sonic-ISCO bound-

ary condition. It will be fixed as a function of the disc height at the ISCO, h0, as

follows. The integral in the right-hand side of (3.50) is zero when evaluated at the

ISCO. Thus, Eq. (3.50) reads as(
F

Ṁ

)
0
=− MΩ,r |0P0

4πr0(E0 −Ω0L0)2
. (7.4)
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On the other hand, dividing equations (3.49) and (3.48), we get

(
F

Ṁ

)
0
=

( σr̂ φ̂W

2πrΣur

)
0
=− 1p

2

A0

4πr 4
0∆

1/2
0

αh0γ
2
0L?,0Ω,r |0. (7.5)

In the second step, we have expressed the radial velocity component in the LRF,

ur = (∆1/2/r )u r̂ , we have substituted the definitions of Σ and W , we have used the

Shakura-Sunyaev prescription and assumed the sonic-ISCO boundary condition

(7.2), u r̂
0 =−√

p0/ρ0. Equating (7.4) and (7.5), we find

P0 = 1p
2

αh0

M

A0

r 3
0∆

1/2
0

γ2
0(E0 −Ω0L0)2L?,0 = 1p

2
αh0x0D

1/2
0 R1/2

0 , (7.6)

after some algebra involving the functions defined in appendix B. Our final for-

mula for MP0 disagrees with the constant C derived in Penna, Sadowski, and

McKinney (2012), which is easily seen to be incorrect since it has the wrong di-

mension of length.

The physical meaning of the integration constant P0 is to introduce a torque at

the ISCO. More precisely, the torque might be derived by comparison of Eq. (3.50)

and Eq. (12) of Li (2002). The torque g0 is then

g0 = M ṀP0

E0 −Ω0L0
. (7.7)

The total energy radiated per unit time as measured by an observer at infinity is

therefore given by both an accretion and a torque contribution (Li, 2002)

Ltot = η0Ṁ + g0Ω0 ≡ ηṀ , (7.8)

where η0 = 1−E0 is the specific conserved energy of a particle orbiting along the

ISCO (see Eqs. (B.9)) and η is the radiative efficiency of the disc

η= η0 + g0Ω0

Ṁ
= η0

( a

M

)
+αh0g

( a

M

)
, (7.9)

where

g
( a

M

)
= 2−1/2MΩ0(E0 −Ω0L0)−1x0

√
D0R0 = 2−1/2x−2

0 C −1/2
0

√
D0R0. (7.10)

Here, we are ignoring the capture of radiation from the hole, which decreases the

efficiency for high spin (Thorne, 1974).
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7.3 Features of the general solution

We introduce the dimensionless mass and mass accretion rate

M? ≡ M

3M¯
, Ṁ? ≡ Ṁ

1017g sec−1
, (7.11)

where M¯ is the mass of the Sun.

The global solution can be approximated by a piece-wise construction of three

local solutions described in section 3.5, which are patched according to their range

of validity. The qualitative features of the global solution depend upon the region

that dominates at the ISCO. There are three possibilities depending which of the

three relevant local solution is valid around the ISCO.

7.3.1 Gas-pressure-dominated ISCO

In the “standard” first two cases, the ISCO lies in the region dominated by gas pres-

sure, either Region [Gas-es] or Region [Gas-ff] of section 3.5. The four free param-

eters of the model are (M , a, Ṁ ,α) and the disc height at the ISCO, h0, is fixed.

Indeed, if the ISCO lies in Region [Gas-es], we evaluate (3.55d) at the ISCO using

Eq. (7.6). The result is

h0 =
(
1.8×10−3)(α1/8M−3/8

? Ṁ 1/4
?

)
x1/8

0 C −1/8
0 R−1/2

0 . (7.12)

If the ISCO lies in Region [Gas-ff] instead, we evaluate (3.59d) at the ISCO using

Eq. (7.6). The result is

h0 =
(
1.3×10−3)(α1/17M−5/17

? Ṁ 3/17
?

)
x5/17

0 C −1/17
0 D−1/34

0 R−8/17
0 . (7.13)

We checked that the hypothesis h0 ¿α is obeyed at the ISCO in both cases (7.12)

and (7.13) for the range α ∼ 0.01− 1 and a/M ∼ 0− 0.999 and either (M?, Ṁ?) ∼
(1,1) or (M?, Ṁ?) ∼ (107,105).

As explicit examples, the disc regions and their transitions are plotted in Figs

7.1 and 7.2 for the spin range 0 ≤ a ≤ 0.999M assumingα= 0.2 for either (M?, Ṁ?) =
(1,1) (modelling a stellar-mass black hole) and (M?, Ṁ?) = (107,105) (modelling an

AGN).

In Fig. 7.1, the first region in which the ISCO is located is called the edge region.

There, the gas pressure overwhelms the radiation pressure and the opacity due

to electron scattering is dominant over the free-free absorption. The disc height

is given by Eq. (7.12). The transition to the inner region occurs when radiation

pressure starts becoming predominant over the gas pressure. A new transition
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FIGURE 7.1: Disc regions for stellar-mass black holes with (M?, Ṁ?) = (1,1) and
α= 0.2 in the spin range 0 ≤ a ≤ 0.999M .
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FIGURE 7.2: Disc regions for supermassive black holes with (M?, Ṁ?) = (107,105)
and α= 0.2 in the spin range 0 ≤ a ≤ 0.999M .

occurs when the gas pressure becomes dominant again over radiation pressure

and the resulting region is called the middle region. For very low spins, the inner

region is absent and the edge and middle regions merge. The outer region is still

gas-pressure-dominated, but the main mechanism responsible for the opacity is

the free-free absorption. We checked that the height satisfies h ¿α= 0.2 for r ¿
1013M where the model breaks down for other reasons (because self-gravitation is

not negligible). The temperature of the accretion disc is hotter in the region near

the ISCO, and in general the temperature is higher for faster spin. By evaluating

the temperature at the ISCO for a = 0.999M , we found T ∼ 107K. This implies that

the assumption of conservation of mass is valid. We also checked that the sound

speed is negligible with respect to light speed, cs =
√

p/ρ¿ c, in the entire disc.

The original Novikov-Thorne model did not contain the edge region, but it

should contain it by consistency: for standard spins, the radiation pressure in the
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inner region goes to zero at the ISCO and therefore the gas pressure needs to dom-

inate at low enough radius. Yet, if one assumes the no-torque boundary condition,

the Novikov-Thorne model is singular at the ISCO in the edge region. The reason

is readily seen because in the [Gas-es] solution (3.55) the function P defined in

Eq. (B.10) vanishes at the ISCO if P0 = 0, and the radial velocity is then divergent

at the ISCO. The non-zero torque introduced by the sonic-ISCO boundary condi-

tion allows us to regulate the model as claimed earlier.

In Fig. 7.2, the disc is always dominated by gas pressure, but the dominant

contribution to opacity varies with radius. In the edge region, where the ISCO

lies, the free-free absorptions are dominant. The disc height is therefore given by

Eq. (7.13). The middle region is dominated by electron scattering. The outer region

is again dominated by free-free absorption. The assumption h ¿α= 0.2 is obeyed

for r ¿ 1021M where the model breaks down. The accretion disc for supermassive

black holes is colder with respect to the stellar-mass black holes; it never exceeds

T ∼ 104K and the conservation of mass is obeyed. We also checked that the sound

speed is negligible with respect to light speed, cs ¿ c, in the entire disc.

7.3.2 Radiation-pressure-dominated ISCO

Let us now discuss the configurations where the ISCO lies in the region dominated

by radiation pressure and electron scattering (Region [Rad-es] of section 3.5). This

scenario happens for very high spins as we will discuss below. A new feature arises

as a result of the sonic-ISCO boundary condition: a constraint relates the accretion

rate Ṁ , the mass, spin and α parameter, while the opening angle at the ISCO is

unconstrained.

Indeed, the disc height (3.57d) in geometric units is given by

h = κ̄es

2π

Ṁ

M
x−3C −1R−1P . (7.14)

At the ISCO, P is given by P0 (see Eq. (B.10)) that can be evaluated using the

expression for the sonic-ISCO boundary condition in Eq. (7.6). Therefore, h0 ap-

pears linearly in both sides and we are left with a constraint among the parameters

of the model given by

ακ̄es

4π

Ṁ

M
= 1p

2
x2

0C0D
−1/2
0 R1/2

0 ≡ f
( a

M

)
. (7.15)

The function f
( a

M

)
monotonically decreases and vanishes at extremality.

It is instructive to compare the accretion rate in Eq. (7.15) with the Eddington

accretion rate ṀE dd = 4πM/(κ̄esη), where η is the radiative efficiency defined in
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Eq. (7.9). We find the reduced accretion rate

ṁ ≡ Ṁ

ṀE dd
= η

α
f
( a

M

)
. (7.16)

Since the α parameter is usually hard to estimate, it is useful to solve the relation

(7.16) for α in terms of ṁ using Eq. (7.9). The accretion rate is then determined

from Eq. (7.15) and we obtain

α= η0 f

ṁ −h0 f g
, Ṁ = 4πM

η0κ̄es
(ṁ −h0 f g ). (7.17)

The free parameters of the model where the ISCO lies in a radiation-dominated

region can be finally taken to be (M , a,ṁ,h0).

In the phase diagrams of both typical stellar-mass and supermassive black

holes displayed in Figs 7.1 and 7.2, the gas pressure dominates at the ISCO for

all standard spins. However, for sufficiently high spins, radiation pressure domi-

nates as we will now show. Let us first discuss configurations where the ISCO lies

in the Region [Gas-es] for standard spins such as the case studied in Fig. 7.1.

If one (wrongly) assumes that the ISCO lies in Region [Gas-es] for very high

spins, one deduces from Eqs. (3.56a) and (7.12) that the ratio of pressures at the

ISCO is

pr ad

pg as

∣∣∣∣
0
= ακes

2
p

2π

Ṁ

M

√
D0

C0
p

R0x2
0

= 0.27
αṀ?

M?
σ−2/3 +O (σ), (7.18)

where in the last step we took the near-extreme scaling a/M =
p

1−σ2. For σ¿
1, one obtains that radiation pressure will instead dominate. In the example of

M? = Ṁ? = 1 and α = 0.2, the transition occurs (in the sense that pr ad = pg as) at

a/M = 0.99996 which is much above the Thorne’s bound of 0.998 (Thorne, 1974)

and therefore much probably unrealistic.

If instead the ISCO lies in the Region [Gas-ff] for standard spins such as the

case studied in Fig. 7.2, one deduces from Eqs. (3.60a) and (7.13) that the ratio of

pressures at the ISCO is

pr ad

pg as

∣∣∣∣
0
= 0.02

α8/17Ṁ 7/17
?

M 6/17
?

σ−14/51 +O
(
σ19/51) , (7.19)

which is divergent for σ¿ 1. Again, radiation pressure dominates for sufficiently

high spins and a new near-ISCO region opens up. However, for typical parameters

M? = 107, Ṁ? = 105 and α= 0.2, the transition to the near region occurs at a/M =
1−10−18 which is unreasonably high to be realistic.
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However, there are more interesting parameters to consider. Let us take an

accretion rate at 23% Eddington (ṁ = 0.23) as a model for the plateau state of

GRS 1915+105 (Miller et al., 2013) with the spin estimate J/M 2 = 0.98 (Reid et

al., 2014). Assuming a radiation-dominated ISCO, we can derive the α parame-

ter using Eq. (7.17) after fixing an estimate for h0. We checked that for any value

0 < h0 < 0.01, the resulting values of α = 0.43 and Ṁ? = 16.5 differ by 1% or less.

The continuous transition between the gas-pressure- and radiation-dominated

phases occurs at a/M = 0.980 ± 0.001. For definiteness, we choose h0 = 0.002,

so that the transition exactly occurs at a/M = 0.98.

0 2 4 6 8 10
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gas pressure,

electron scattering
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free- free absorption

FIGURE 7.3: Disc regions for rapidly accreting highly spinning stellar-mass black
hole with M? = 4, accretion rate at 23% of the Eddington limit and
disc height at the ISCO h0 = 0.002. The radiation-dominated region
extends from the ISCO up to r ∼ 150M .

We conclude that GRS 1915+105 could be modelled by a high spin a/M >
0.98 and rapidly accreting thin disc, which is radiation-dominated at the ISCO.

As an example, we depict in Fig. 7.3 the phase diagram for the parameters M? = 4,

ṁ = 0.23, h0 = 0.002 and spins 0.98 < a/M < 1. The inner region is radiation-

dominated. At finite radius away from the ISCO, there is a transition to a middle

region, which is gas pressure-dominated, but whose opacity is still dominated by

electron scattering. There is also an outer region further away, where the main

mechanism for opacity is free-free absorption.

7.4 Near-horizon near-extreme solution

In the near-extreme regime, a new space-time region, the NHEK region, opens up

as explained in section 1.3, which is characterized by conformal symmetry. Since

the radiation-dominated solution is the only one relevant in the limit of extremely
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high spins, we will perform the near-extreme near-horizon limit of the solution

(3.57) in order to exhibit its conformal properties.

We perform the scaling (1.13) with a/M =
p

1− σ̄2λ3 and let λ→ 0. The ISCO

is located at R0 = 21/3σ̄2/3. The accretion rate Ṁ (in terms of asymptotic time) is

constrained as in Eq. (7.15) which implies the scaling Ṁ ∼ λ. In terms of near-

horizon time T , the accretion rate M ′ is finite,

M ′ = ∂t

∂T
Ṁ = 2M

λ
Ṁ =π

√
6(7−p

3)
M 2

ακ̄es
R0. (7.20)

Therefore, contrary to the asymptotically flat observer, the NHEK observer mea-

sures a finite non-zero accretion rate M ′. The ratio M ′/R0 is fixed by the parame-

ters of the model.

The near-horizon behaviour of the solution (3.57) can be obtained by perform-

ing the near-extreme near-horizon scaling and trading Ṁ for M ′. We get the fol-

lowing expressions at leading order, i.e., O (λ0):

F = 7−p
3

4

h0

M κ̄es

(
R0

R

)2

= (
2.0×1026er g /(cm2sec)

)(
h0M−1

?

)(R0

R

)2

, (7.21a)

Σ= 3

2

1

αh0κ̄es

(
R

R0

)2

= (
3.75g /cm2)(α−1h−1

0

)( R

R0

)2

, (7.21b)

h = h0

(
R0

R

)2

, (7.21c)

uR =−
√

7−p
3

6

h0R0

M

(
R0

R

)2

= (−6.3×104/sec
)(

h0R0M−1
?

)(R0

R

)2

, (7.21d)

p = 7−p
3

8

1

αM κ̄es
= (

3.4×1015d yn/cm2)(α−1M−1
?

)
, (7.21e)

ρ = 3

4

1

Mαh2
0κ̄es

(
R

R0

)4

= (
4.21×10−6g /cm3)(α−1h−2

0 M−1
?

)( R

R0

)4

, (7.21f)

T =
(

3(7−p
3)

8αbM κ̄es

)1/4

= (
3.39×107K

)(
α−1/4M−1/4

?

)
. (7.21g)

All these quantities are defined for R ≥ R0. Note that all quantities, except p and

T , depend on the ratio

R0

R
=

[
2
(
1− (a/M)2

)]1/3

x2 −1
, (7.22)

which is independent of the choice of the constant σ̄. The only exception is the

radial component of the four-velocity, which has an additional power of R0, and

therefore depends on the position of the ISCO. Note one unusual property of the

self-similar solution: starting from h0 at the ISCO the disc height h decreases with

the radius and it increases again outside of the range of validity of the self-similar
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solution.

From Eqs. (7.21), and thanks to Eq. (1.21), we explicitly read off the critical ex-

ponents for thin accretion disc within the Novikov-Thorne model. In conclusion,

one finds that the critical exponent hO associated to the observable O is given by

hF = hh = huR = 2, hp = hT = 0, hρ =−4. (7.23)

As a final remark, we emphasise that the solution presented in Eqs. (7.21) is an

analytic solution of thin accretion discs in NHEK space-time. It is the analogue of

the analytic force-free solutions (5.102) and (5.103) in NHEK space-time presented

in chapter 5. It worth mentioning that, while we do not know the exact solutions

in Kerr space-time that originate (5.102) and (5.103), in this case we know that the

Novikov-Thorne model with the sonic-ISCO condition in Kerr space-time gives

rise to a well-behaved solution in NHEK space-time.

7.4.1 Approaching the self-similar solution

The self-similar solution is an approximate solution of the disc around the ISCO.

It is worth discussing quantitatively its range of validity. The critical temperature

does not depend upon the accretion rate Ṁ or the height of the disc h0. Sinceα or

M are overall factors of the temperature profile (3.57h), the relative error between

the actual temperature profile and the constant critical temperature only depends

upon the radius and the spin. We find that for near-extreme spins 0.96 ≤ a/M ≤ 1,

the actual temperature profile deviates from the critical temperature by less than

25% only in the range r0 ≤ r ≤ 2.1−2.2M , where the upper bound is nearly inde-

pendent of the spin. This very limited near-ISCO region is the region where the

disc is approximately described by the self-similar solution. The region is biggest

when the ISCO approaches M , which occurs closest to extremality. If a higher pre-

cision is required, the region of validity shrinks accordingly. We plot in Fig. 7.4 the

range of validity of the temperature of the self-similar solution with 25%, 15% and

10% relative precision.

Other physical quantities can be analysed similarly. Unfortunately, the relative

precision of the pressure requires a spin higher than the Thorne bound a/M =
0.998 and a narrower region around the ISCO, as plotted in Fig. 7.5.

Another important physical quantity is the radiation flux F . Fig. 7.6 shows

that the range of validity of the self-similar solution is limited to a narrow region

around the ISCO. The physical relevance of the self-similar solution (7.21) is there-

fore uncertain.
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FIGURE 7.4: Relative precision of the self-similar critical temperature with re-
spect to the actual temperature profile in the radiation-dominated
region around the ISCO as a function of the spin. The relative preci-
sion is independent of other parameters of the model.
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FIGURE 7.5: Relative precision of the self-similar critical pressure with respect
to the actual pressure profile in the radiation-dominated region
around the ISCO as a function of the spin. The relative precision
is independent of other parameters of the model.
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FIGURE 7.6: Relative precision of the self-similar critical radiation flux with re-
spect to the actual radiation flux profile in the radiation-dominated
region around the ISCO as a function of the spin for h0 = 0.002,
ṁ = 0.23. The auxiliary parameter α is fixed through Eq. (7.17). The
relative precision is independent of the mass, because it factors out
upon substituting the accretion rate (7.17) into Eq. (3.57a) and tak-
ing the ratio with Eq. (7.21a).

7.5 Discussion and conclusions

In this chapter, we considered the Novikov-Thorne thin accretion disc model around

a rapidly rotating Kerr black hole.

First, we refined the self-consistent boundary condition at the innermost sta-

ble circular orbit (ISCO), originally proposed by Penna, Sadowski, and McKinney

(2012). Such a boundary condition plays a crucial importance, because it regu-

larises the Novikov-Thorne model at the ISCO, and it is a key ingredient for the

results obtained in the chapter. We constructed piece-wisely the global solution

from the local solutions to the Novikov-Thorne model and, for the first time in

the literature, we explicitly showed the phase diagrams of thin accretion discs for

stellar-mass and supermassive black holes. We observed a novel phase transi-

tion close to the ISCO in the high spin regime from the gas-dominated-pressure to

the radiation-dominated-pressure phase1. As a consequence of the model in that

regime, we found a new feature: the accretion rate is not a free parameter and it

1It is well-known that thin accretion discs with the α-viscosity prescription suffer from thermal
and viscous instabilities in the radiation-dominated phase (Lightman and Eardley, 1974; Shibazaki
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can be expressed in terms of the spin, the Shakura-Sunyaev viscosity parameter

and the radiative efficiency.

Motivated by this result, we considered rapidly rotating black holes and inves-

tigated the effects of emergent conformal symmetries on the dynamics of matter

discs orbiting around them. Then, by computing the near-horizon limit of the

Novikov-Thorne model in the high spin regime, we showed how conformal sym-

metry constrains finite observables and we found a novel self-similar radiation-

dominated solution. Finally, we discussed the critical-like behaviour of the accre-

tion disc, dictated by the conformal symmetries of the background geometry in

the near-horizon region, and we quantitatively studied its range of validity. This

self-similar solution is a first example of critical accretion around a near-extreme

black hole, which admits scale invariance in a region close to the ISCO.

More elaborated models are required to find more realistic solutions and make

contact with observations. In the thin accretion disc, the inner edge is set at the

ISCO. However, the inner edge of the accretion disc is placed within few Schwarzschild

radii from the compact object (Bromley, Miller, and Pariev, 1998). In general, its

location depends on the accretion rate, the viscosity, the presence of magnetic

fields, the thickness of the disc and other physical effects. Several definitions of

inner edge have been proposed in Krolik and Hawley (2002) and Abramowicz et

al. (2010) to probe accretion physics in the strong gravity regime. This analysis

has been carried out for Schwarzschild black hole in Abramowicz et al. (2010). It

is important to generalise these results in the case of Kerr black holes (or other

astrophysically motivated black hole solutions to modified gravity (see, e.g., Jo-

hannsen, 2013, for an early attempt), as the inner edge sits closer to the compact

object than ISCO, magnifying strong gravity effects in the electromagnetic spec-

trum. Moreover, a better theoretical knowledge of the inner edge will help our

understanding of phenomena, like QPOs and iron Kα lines, occurring in the inner

region of accretion discs, that serve as test of Einstein’s gravity (see, e.g., Bambi

(2017) and references therein) or modified theories of gravity in the strong field

regime (Maselli et al., 2015; Zhang et al., 2017).

and Hoshi, 1975; Shakura and Sunyaev, 1976). Such instabilities have also been observed in numer-
ical simulations (see, e.g, Mishra et al., 2016). See also the recent review by Ciesielski et al. (2012)
and references therein.
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This chapter deals with the results published in Compère, Oliveri, and Seraj

(2018), where a new way to compute gravitational multipole moments is presented.

We introduce the results in section 8.1. In section 8.2, we define the canonical

harmonic gauge independently of field equations and, after an overview of sev-

eral concepts of symmetries, we find the multipole symmetries. In section 8.3,

we compute the canonical charges associated to multipole symmetries for non-

linear stationary configurations in Einstein gravity and relate them to the multi-

pole moments of the source. In section 8.4, we discuss radiating geometries at the
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linearised level. We express the multipole moments as Noether charges and we

derive their conservation equation. We conclude with several avenues for further

research in section 8.5.

8.1 Introduction

In this chapter, we provide a definition of mass and current multipole moments

for an arbitrary generally covariant theory of gravity. Such a new definition agrees,

in the case of Einstein gravity, with Thorne’s definition of source multipole mo-

ments both for outgoing-wave linearised configurations and for stationary non-

linear configurations introduced in chapter 4.

Our programme is achieved by defining multipole moments from the canoni-

cal Noether charges associated with specific residual symmetries of canonical har-

monic gauge. First, we will characterize the infinitesimal form of three sets of large

coordinate transformations that preserve the canonical harmonic gauge and that

generalize the Poincaré algebra of Killing symmetries. The vector fields generating

these transformations will be denoted multipole symmetries. Given an arbitrary

generally covariant Lagrangian, one can define surface charges associated with an

arbitrary vector field using either covariant phase space methods (Iyer and Wald,

1994) or cohomological methods (Barnich and Brandt, 2002; Barnich and Com-

père, 2008). The explicit expressions are summarized in appendix E.4 for General

Relativity and in Iyer and Wald (1994); Compère, Murata, and Nishioka (2009);

Azeyanagi et al. (2009) for a large class of higher curvature gravity theories coupled

to bosonic matter. We will provide expressions for the gravitational multipole mo-

ments in terms of the canonical multipole charges, and find precise agreement

with Thorne’s definitions, up to a choice of normalisation. This will allow us to

calibrate our definition, which then straightforwardly extends to a general theory.

The multipole symmetries are generically outer symmetries: they are not tan-

gent to the phase space defined by the boundary conditions (i.e., the Lie derivative

of the metric with respect to these symmetries do not fall off sufficiently fast), ex-

cept for the lowest harmonic modes which form the Poincaré algebra. Yet, these

symmetries are associated with well-defined conserved Noether charges at spatial

infinity, as we will show.

In the radiative case, the conservation equation will be used to relate the vari-

ation of source multipole moments, evaluated in the near-zone region, to the flux

of multipole charges at null infinity, by means of the generalized Noether theorem

for gauge theories (Wald, 1993; Barnich, Brandt, and Henneaux, 2000; Barnich and
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Brandt, 2002). The flux of multipole charges is not the observable radiative multi-

pole moments encoded in the Bondi news tensor. Instead, it is the time variation

of the source multipole moments which is encoded in sub-leading components of

the metric in radiation (Bondi) gauge.

Our construction extends to gravity theories the analysis of electromagnetic

multipole charges in Maxwell theory, recently studied by Seraj (2016).

8.2 Harmonic gauge and residual transformations

8.2.1 Prelude on symmetries in gravity and gauge theories

It is by now a well know fact that gauge transformations exhibit novel features on

manifolds with (asymptotic or finite) boundaries. This effect is sometimes inter-

preted as the spontaneous breaking of gauge invariance by the boundary condi-

tions. More precisely, while the local gauge transformations are degeneracies of

the pre-symplectic form of the theory and are hence quotiented out in the physi-

cal phase space (Lee and Wald, 1990), those with support at the boundary are not

degeneracies and form vector fields acting on the phase space. These “asymp-

totic symmetries” are required to generate Hamiltonian vector fields on the phase

space whose generators are finite and conserved quantities. In other words, the

boundary conditions require that all canonical charges associated with asymp-

totic symmetries be finite, conserved and integrable in the sense of Regge and

Teitelboim (1974) and Iyer and Wald (1994). When these conditions are met, one

obtains, after quotienting by local gauge symmetries, the asymptotic symmetry

group (ASG), i.e.

ASG = Boundary conditions preserving gauge transformations

Local gauge transformations
.

For asymptotically flat space-times, the asymptotic symmetry group at spatial in-

finity is the BMS group, consisting of super-translations and Lorentz transforma-

tions, which contains the Poincaré group as a subgroup1:

• Asymptotic symmetries ' BMS symmetries ⊃ Poincaré symmetries.

Now, one may find Hamiltonian vector fields that are not tangent to the phase

space, but still associated with finite, conserved and integrable canonical charges

1See, e.g., (Arnowitt, Deser, and Misner, 1959; Bondi, van der Burg, and Metzner, 1962; Sachs,
1962; Regge and Teitelboim, 1974; Ashtekar and Hansen, 1978; Blanchet and Damour, 1992;
Christodoulou and Klainerman, 1993; Barnich and Troessaert, 2010; Compere and Dehouck, 2011;
Barnich and Troessaert, 2011; Virmani, 2012; Strominger, 2013; Troessaert, 2018) and references
therein for a better account of the huge literature on the topic.
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on the phase space. We call phase space symmetries the coordinate transforma-

tions that are associated with finite, conserved and integrable canonical charges

on the phase space. The phase space symmetries contain the asymptotic sym-

metries and other symmetries that violate the boundary conditions, which we call

outer symmetries:

Phase space symmetries = Asymptotic symmetries ∪ Outer symmetries.

In geometrical terms, the boundary conditions impose a set of constraints which

determine the phase space as a submanifold in the space of field configurations

(further quotiented by local gauge transformations). The asymptotic symmetries

then generate vector fields tangent to this constraint submanifold and their cor-

responding canonical charges are functions on the phase space. However, there is

still the possibility of Hamiltonian vector fields that are not tangent to the phase

space, but such that their canonical charges are functions on the phase space. This

is another way to say that outer symmetries violate the boundary conditions, but

are associated with finite and integrable charges.

We will not attempt at a rigorous analysis of the mathematical framework for

describing outer symmetries. Instead, we will discuss how this concept is useful

in gravity: we will show that the two sets of multipole moments of Einstein gravity

are precisely associated with particular phase space symmetries. We call these

multipole symmetries which form a natural extension of the Poincaré generators,

distinct from the BMS symmetries:

• Phase space symmetries ⊃ Multipole symmetries ⊃ Poincaré symmetries.

Since the multipolar structure of a metric configuration defines a hierachical sub-

leading structure at spatial infinity, the multipole symmetries form in compensa-

tion a fine-tuned overleading hierarchy, such that the resulting canonical charges

are finite. The lowest multipolar modes are the Poincaré symmetries, while the

higher modes are outer symmetries that violate the boundary conditions.

Several other examples of outer symmetries have recently appeared in elec-

tromagnetism (Campiglia and Laddha, 2016; Seraj, 2016) and in gravity (Compère

and Long, 2016; Mirbabayi and Simonović, 2016; Conde and Mao, 2017b) (see also

an alternative perspective in Conde and Mao (2017a); Mao and Wu (2017)).

8.2.2 Residual transformations of the harmonic gauge

We work in harmonic gauge, discussed previously in section 4.3. As we have fixed

the harmonic gauge (4.2), the gauge transformations of the theory reduce to the
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residual transformations of harmonic gauge. It can be shown that an infinitesimal

diffeomorphism xµ→ xµ+ξµ respecting harmonic gauge (4.2) solves the equation

ägξ
µ = 0. (8.1)

We further restrict the phase space and, accordingly, the harmonic vector fields (8.1)

to those preserving the following asymptotic behaviour of the lapse and shift at

spatial infinity

g0µ = η0µ+O (1/r ). (8.2)

However, since we are considering outer symmetries, we do not enforce the vec-

tor fields to preserve the boundary conditions gi j = O (1/r ) on the spatial com-

ponents. At this step of our procedure, we break Lorentz covariance by explicitly

choosing an asymptotic time foliation and therefore a notion of asymptotic ob-

server at rest. Our reasoning herebelow will not depend upon the boundary con-

ditions at future or past null infinity (see later on Eq. (8.27)).

Setting µ= 0 in (8.2) implies that ∂0ξ
0 =O (1/r ), hence

ξ0 = ε(x)+O (1/r ). (8.3)

Setting µ= i in (8.2), we find

ξµ =
(
ε(x) , χi (x)+ t ηi j∂ j ε(x)

)
+O (1/r ). (8.4)

The de Donder gauge condition (4.2) now amounts to

∇2ε(x) = 0, ∇2χi (x) = 0, (8.5)

where ∇2 = ηi j∂i∂ j is the spatial Laplacian operator. The harmonic function ε ad-

mits two branches of solutions: either of the form r−(l+1)Y l m(θ,φ) or r l Y l m(θ,φ)

in terms of spherical harmonics. The first set are gauge transformations that we

discard. We, instead, consider the sum of regular solid scalar harmonics r l Y l m(θ,φ)

ε(r,θ,φ) =
∞∑

l=0

l∑
m=−l

εlmr l Ylm(θ,φ), (8.6)
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where εlm are arbitrary coefficients. The function can also be expanded in Carte-

sian harmonics

ε=
∞∑

l=0
εAlXAl = ε0 + (εx x +εy y +εz z)+εi j

(
xi x j − x2

3
δi j

)
+·· · (8.7)

This expression defines the monopole term (l = 0), dipole term (l = 1), quadrupole

term (l = 2) and so on. Our notation and conventions are relegated to appendix E.1

and properties of spherical harmonics are summarized in appendix E.2.

The intuitive idea for defining multipole symmetries is that a vector of compo-

nents of order r l will be able to probe terms of order r−l in the metric, and there-

fore, allow to define the l-multipole. The harmonic equation ensures that there

is a correlation between the radial behaviour r l of the components of the vector

field and the spherical harmonic Y lm . Thanks to the orthogonality of spherical

harmonics, it will allow to single out the corresponding multipole; see also the

discussion around Eq. (8.16).

In the vector case, a general harmonic is a linear combination of three pure

gauge transformations, which we discard, and three large gauge transformations

of the form (see appendix E.3.2 for details)

χ=χi∂i = r ×∇ε1(x)+∇ε2(x)+V (x), (8.8)

where∇ε= ηi j ∂iε∂ j and×denotes the cross product defined in three-dimensional

flat space. The functions ε1,ε2 are combinations of regular solid scalar harmonics

and V defined in (E.44), is a combination of irreducible vector harmonics which

cannot be expressed in terms of one harmonic scalar. However, we discard this

vector since the associated charge does not contain any non-trivial information in

Einstein theory, as discussed below equation (E.50). However, it might be relevant

for a general theory of gravity, as discussed in section 8.5.

In summary, we define the multipole symmetries as the three sets of residual

transformations:

Kε = ε∂t + t ∇ε , (8.9a)

Lε =−r ×∇ε , (8.9b)

Pε =∇ε . (8.9c)
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These symmetries can be expanded in terms of scalar and vector spherical har-

monics (introduced in E.2.2) as

Kε =
∞∑

l=0

l∑
m=−l

εlm

[
r l Ylm ∂t + t r l−1

(√
l (l +1) E Y i

lm + l R Y i
lm

)
∂i

]
, (8.10a)

Lε =−
∞∑

l=1

l∑
m=−l

εl m

√
l (l +1) r l B Y i

lm∂i , (8.10b)

Pε =
∞∑

l=1

l∑
m=−l

εlm r l−1
(√

l (l +1) E Y i
l m + l R Y i

l m

)
∂i . (8.10c)

Upon expanding in Cartesian harmonics (8.7) or, equivalently, in real spher-

ical harmonics Y m
l defined in (E.11), we find the Poincaré algebra as the l = 0,1

subset of harmonics of the three vectors Kε, Lε, Pε. To show this, let us expand the

harmonic function ε in terms of the real spherical harmonics and define Ll
m =

Lε=r l Y m
l

and similarly Kl
m , Pl

m . Then, it can be checked that

Rotations The SO(3) rotations are generated by the (l = 1,m) modes of Lε

L 1
1 = y∂z − z∂y = Lx , (8.11a)

L−1
1 = z∂x −x∂z = Ly , (8.11b)

L 0
1 = x∂y − y∂x = Lz , (8.11c)

where the last equality in each line refers to the Cartesian expansion (8.7) (i.e., Lx =
Lε=x), which also coincides with the standard notation for generators of rotation.

We fixed the sign convention in (8.9b) so that Lz = +∂φ with εrθφ = +1, which is

the opposite convention than Iyer and Wald (1994).

Boosts The (l = 1,m) modes of Kε give the Poincaré boosts

K 1
1 = x∂t + t∂x = Kx , (8.12a)

K −1
1 = y∂t + t∂y = Ky , (8.12b)

K 0
1 = z∂t + t∂z = Kz . (8.12c)

Translations The l = 0 mode of Kε gives the translation in time

K 0
0 = ∂t , (8.13)
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while the (l = 1,m) modes of Pε give spatial translations

P 1
1 = ∂x = Px , (8.14a)

P−1
1 = ∂y = Py , (8.14b)

P 0
1 = ∂z = Pz . (8.14c)

All vectors that are distinct from the standard Poincaré vectors are outer sym-

metries. Note that, contrary to the l = 0,1 vectors, they do not generate a closed

algebra under the Lie bracket. We leave as an open problem to determine whether

an algebra of multipole symmetries exists using a modified bracket, along the lines

of Seraj and Bleeken, 2017. The various vectors and their physical interpretation

are summarized in Table 8.1.

The terminology of mass and current multipole symmetries is standard and

will be clear once we compute the conserved charges associated with these trans-

formations in the next sections. We will name the multipoles associated with Plm

as the momentum multipoles. We will interpret these multipoles in sections 8.3

and 8.4.

l = 0 l = 1 l ≥ 2

Klm Time translation Boosts Mass multipole symmetries
Llm ∅ Rotations Current multipole symmetries
Plm ∅ Spatial translations Momentum multipole symmetries

TABLE 8.1: Multipole symmetries and the Poincaré algebra

8.2.3 Canonical harmonic gauge: revisited and extended

As shown by many authors and briefly discussed in chapter 4, the definition of

multipole moments is ambiguous in harmonic gauge. Here, we will further fix the

gauge in order to uniquely fix the multipole moments. Since our aim is to derive a

definition of multipole moments for any theory of gravity, we cannot rely on prop-

erties of Einstein solutions in order to determine the gauge fixing conditions (see

Thorne, 1980, and section 4.3.1 in the case of linearised General Relativity). In-

stead, we will only rely on the harmonic decomposition of tensor representations

of SO(3).

For that purpose, we decompose the field gµν in SO(3) scalar, vector and ten-

sor, respectively, g00, g0i , gi j . We only consider non-linear metrics which can

be obtained from a perturbative construction starting from a linearised metric
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gµν = ηµν +hµν. At the linearised level, the field gµν = γµν +O (h2) is the trace-

reversed metric perturbation, γµν = ηµαηνβhαβ− 1
2η

µνηαβhαβ.

A gauge transformation acts as hµν 7→ hµν+∂µξν+∂νξµ and therefore as

γµν 7→ γµν+∂µξν+∂νξµ−ηµν∂αξα, (8.15)

where all indices are lowered with the flat metric.

As explained by Thorne (1980), the symmetric trace-free (STF) harmonic ten-

sor decomposition is the most adapted to describe the multipolar structure of the

gravitational field. Indeed, remember that the very definition of multipole mo-

ments originates from a STF decomposition or, equivalently, a spherical harmonic

decomposition in canonical harmonic gauge. Conceptually, we aim to deduce the

definition of some l m-multipole moment M lm from a projection of the metric

using a vector ξ[ε] depending on a scalar harmonic ε= εlm . Schematically,

M lm ∼ 〈ξ[ε], gµν〉. (8.16)

The projection operator 〈·〉 will be soon defined in Eq. (8.20) and in Eqs. (8.25)-

(8.33) as particular integrals over the sphere. Here, we simply note that the multi-

pole moments will be extracted from the metric thanks to the property of orthog-

onality of spherical harmonics or, equivalently, of the STF tensors. Therefore, it is

computationally simpler to consider the STF decomposition of the metric.2

In Thorne’s analysis, however, the linearised Einstein’s equations were used.

Here, we simply generalize his considerations to a general STF decomposition

without resorting to field equations. The general linearised metric can be decom-

posed in STF tensors as (see appendix E.1 for notations)

γ00 = ∂AlAAl (u,r )

γ0i = ∂Al−1Bi Al−1 (u,r )+∂p Al−1

(
εi pqCq Al−1 (u,r )

)+∂i AlDAl (u,r ) (8.17)

γi j = δi j∂AlEAl (u,r )+∂Al−2Fi j Al−2 (u,r )+∂p Al−2

(
εpq(iGj )q Al−2 (u,r )

)+
+ [

∂ j Al−1Hi Al−1 (u,r )+∂ j p Al−1

(
εi pqNq Al−1 (u,r )

)]S +∂i j AlKAl (u,r ),

2Yet, one might think to perform the same projection operation by using another decompo-
sitions such as the SVT (scalar-vector-tensor) decomposition used in cosmological perturbation
theory.
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where all coefficients are functions of r and u = t − r . The de Donder gauge fixes

the constraints

BAl = ȦAl −∇2DAl , (8.18a)

EAl = ḊAl −
1

2
HAl −∇2KAl , (8.18b)

FAl = ÄAl −∇2ḊAl −
1

2
∇2HAl , (8.18c)

GAl = 2ĊAl − N̈Al , (8.18d)

where dots denote time derivatives. For retarded harmonic fields, which there-

fore obey linearised Einstein’s equations, all functions AAl (u,r ), BAl (u,r ), . . . take

the form 1
r AAl (u), 1

r BAl (u), etc. We assume that all such functions are O (1/r ) in

general as a result of asymptotically flat boundary conditions.

A generic retarded harmonic vector field, which preserves the asymptotically

flat boundary conditions, can be used to further gauge fix the de Donder gauge

to the canonical harmonic gauge (see Eq. (8.9b) of Thorne, 1980, and Eq. (E.52)

for its explicit expression in spherical harmonics). One can use this vector field

to remove the 1/r components of DAl (u,r ),HAl (u,r ), NAl (u,r ),KAl (u,r ), which

leads to

{DAl (u,r ),HAl (u,r ),NAl (u,r ),KAl (u,r )} =O

(
1

r 2

)
. (8.19)

In Einstein gravity, these functions are then exactly zero (see the discussion at the

end of section 4.3.1), but they may be non-zero in alternative theories of gravity.

We further apply a Lorentz boost and a spatial translation to put the system in the

centre of mass frame, leading to Ai =O (r−2). This defines the canonical harmonic

gauge in the linearised theory.

In the non-linear theory, one computes at each perturbative order the next

metric perturbation up to a linearised diffeomorphism. We fix the linearised dif-

feomorphism ambiguity in this expansion (of the form ∂µξν+∂νξµ−ηµν∂αξα) by

cancelling again the same coefficients in the radial harmonic decomposition of

gµν. Non-linearities will introduce additional radial subleading terms for each STF

tensor harmonic which will not be gauged fixed. Only the leading 1/r terms in the

radial expansion of each STF tensor harmonic will be gauge fixed. This defines the

canonical harmonic gauge for the non-linear theory.

The resulting asymptotic expansion of the non-linear field in STF tensor har-

monics has been presented explicitly for Einstein gravity in Thorne (1980) and

Blanchet and Damour (1986).
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8.3 Multipole charges for stationary solutions

In the following, we will present our definition of mass and current multipole mo-

ments in terms of Noether charges, which are defined with respect to the vectors

fields (8.9) and the Lagrangian. We will explicit our definition only for vacuum Ein-

stein solutions which will allow us to verify the complete equivalence to Thorne’s

definition. This allows us to calibrate our definition. Now, given an arbitrary gen-

erally covariant Lagrangian, we propose to define the multipole moments as the

Noether charges associated with the very same vector fields (8.9). This provides a

precise canonical definition of gravitational multipole moments for any generally

covariant theory.

The canonical charge of a solution gµν associated with the vector field ξµ is

defined as a surface integral over a sphere and as an integral in phase space from

the reference solution (here Minkowski ηµν) to the solution gµν (Regge and Teitel-

boim, 1974; Iyer and Wald, 1994; Barnich and Brandt, 2002; Barnich and Compère,

2008)

Qξ[g ] = 1

8πG

∫ g

η

∫
S

kξ[d g ′; g ′]. (8.20)

The 2-form kξ is linear in its first argument and non-linear in its second argument.

It can be constructed from the Lagrangian, up to an ambiguous term proportional

to Lξgµν = ∇µξν+∇νξµ. There are two covariant prescriptions that exist in the

literature to fix this ambiguity. We find convenient to label the surface charge by

the parameter α multiplying the covariant ambiguous term. For α = 0, one has

the Iyer-Wald charge (Iyer and Wald, 1994). For α = 1, one has the Abbott-Deser

(Abbott and Deser, 1982) or, equivalently, the Barnich-Brandt charge (Barnich and

Brandt, 2002). Such an ambiguity enters the normalisation factor and might me

eliminated by a careful rescaling of the vector field ξ. We keep α in the future

computation and we emphasise that the choice with α = 1 only depends on the

equations of motion of the Lagrangian. The explicit expression for the surface

charge in Einstein gravity is given in appendix E.4.

Let us now evaluate the surface charge at spatial infinity for each of the three

families of vector fields defined in (8.9). We first compute the spherical harmonic

decomposition of each vector field. Let us discuss the (l )pole symmetries. We note

that all subleading (l +k)pole moments in (4.14) (k ≥ 1) do not contribute to the

charges. This non-trivial property originates from the orthogonality of spherical

harmonics, and the fact that the subleading (l+k)pole moments are suppressed by

negative powers of r with respect to the leading (l )pole moment of order r−(l+1). It

can be checked by explicitly evaluating the charge. Since all non-linearities belong

to such terms, only linear terms matter. The surface charge at spatial infinity can



154 Chapter 8. Gravitational multipole moments from Noether charges

be equivalently defined using the linearised theory as

Qξ[h] = lim
r→∞

(
1

8πG

∫
S

kξ[h;η]

)
, (8.21)

where hµν is the linear perturbation around ηµν in the post-Minkowskian expan-

sion of gµν. The proof that all subleading monopole terms do not contribute to

the definition of multipole moments was essentially performed in Thorne (1980).

It also shows that any change of coordinates which preserves the canonical har-

monic gauge does not change the definition of multipole moments.

8.3.1 Mass multipole charges

The mass multipole charges are associated to the multipole symmetries Kε. They

read as

Q lm
K = 2(2l +1)!!

l !
I lm . (8.22)

Note that the result is independent of theα prescription. Here I lm is the harmonic

coefficient of the multipole moment IAl in Eq. (4.14).

8.3.2 Current multipole charges

The current multipole charges are associated to the multipole symmetries Lε. They

read as

Q lm
L =−

√
l

l +1

(2l −1)!!

(l −1)!
(2(l +2)+α(l −1))Slm . (8.23)

The normalization constant depends upon the definition of the canonical charges

through the α prescription. Here Sl m is the harmonic coefficient of the multipole

moment SAl in Eq. (4.14).

8.3.3 Momentum multipole charges

The momentum multipole charges are identically zero for stationary configura-

tions,

Q l m
P = 0. (8.24)

There is no role to the momentum multipole charges in stationary Einstein grav-

ity, but we expect that they might play a role in stationary configurations in other

theories of gravity.
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Equations (8.22)-(8.23)-(8.24) are the main result of this section. Thorne’s def-

inition and the Noether charge definition agree up to a unique and well-defined

normalization constant.

Let us make some additional comments. In the linear case, it turns out that the

surface charge can be evaluated at any radius and yet gives the identical answers

(8.22)-(8.23)-(8.24). This is due again to the orthogonality of spherical harmon-

ics and the fact that, in the linear theory, each harmonic mode is associated with

a particular radial falloff. The multipole symmetries generating such charges are

therefore symplectic symmetries in the linear theory in the terminology of Com-

père et al. (2015); Compère et al. (2016).

A natural question is whether the charges associated with the multipole sym-

metries are affected by a change of gauge. In this thesis, we did not investigate

a generic change of gauge. Instead, we investigated the change of gauge from

canonical harmonic gauge to generic mass-centred de Donder gauge in the lin-

earised theory. The details are relegated to appendix E.4.2. The result is that for

linear stationary configurations, the current and momentum multipole charges

Q l m
Lε

, Q lm
Pε

are unaffected by a change of gauge which preserves stationarity within

de Donder gauge, while the mass multipole charges Q lm
Kε

are affected, but only by

gauge transformations of the form x → x+∇ε with ∇2ε= 0, ε=O(r−1).

The conclusion is that the current multipole moments can be computed in any

mass-centred de Donder gauge coordinate system. This is very useful in practice

since work is only needed to reach de Donder gauge, but it is not necessary to fur-

ther restrict to canonical harmonic gauge. However, the mass multipole moments

need to be defined in the canonical harmonic gauge, or at least in mass-centred

de Donder gauge where the gauge transformations x → x+∇ε have been fixed ac-

cording to the canonical prescription. This illustrates the gauge dependence in

the definition of mass multipole moments.

8.4 Multipole charges for linearised radiating solutions

In this section, we turn our attention to dynamical radiating solutions in the lin-

earised regime. We introduce the multipole charges at spatial infinity as conserved

surface charges, while the source multipole moments are expressed in terms of

surface charges in the near zone region. We will discuss the relation between these

two and the implications of conservation laws for the time variation of the source

multipole moments. We expect that the results for the linear theory can be ex-

tended to the non-linear theory essentially in the same way as discussed in the

last section, but this problem is beyond the scope of this thesis.



156 Chapter 8. Gravitational multipole moments from Noether charges

The covariant phase space charges are defined in the linear theory as (Regge

and Teitelboim, 1974; Iyer and Wald, 1994; Barnich and Brandt, 2002; Barnich and

Compère, 2008)

Qξ[h] = 1

8πG

∫
S

kξ[h;η], (8.25)

where ηµν is the Minkowski background and hµν the perturbation. The precise

definition of the 2-form kξ is given in appendix E.4.

We now compute the Noether charges associated with the three sets of residual

symmetries Lε, Kε and Pε presented in (8.9). The explicit values of the charges

evaluated on a sphere at arbitrary retarded time u and radius r are given by the

following expressions

8πG Q lm
L =

l+1∑
p=0

CL (p, l ) r p (p)Slm(u), (8.26a)

8πG Q lm
K =

l+1∑
p=0

CK (p, l ) r p (p)I lm(u)+8πG t Q l m
P , (8.26b)

8πG Q lm
P =

l∑
p=0

CP (p, l ) r p (p+1)I lm(u). (8.26c)

The coefficients CL (p, l ), CK (p, l ), CP (p, l ) are given in appendix E.4.1. These charges

are not well defined as such and require further insight in order to extract their

physical content. We will discuss these charges in detail in the following.

We will first define the conserved multipole charges at spatial infinity. We then

define the source multipole moments. We finally define the radiation multipole

moments at null infinity as derived quantities.

8.4.1 Conserved multipole charges at spatial infinity

Let us first assume stationarity at past of null infinity, in the sense that

I lm(u) = I lm +O

(
1

u

)
, u →−∞, (8.27a)

Sl m(u) = Slm +O

(
1

u

)
, u →−∞. (8.27b)

We expect that we can relate these asymptotic conditions to the behaviour of the

Bondi news and Bondi mass (Christodoulou and Klainerman, 1993). These con-

ditions imply that at spatial infinity (i.e., in the limit r →∞ at fixed t = r +u),

lim
t fixed
u→−∞

r p (p)I l m(u) = 0 = lim
t fixed
u→−∞

r p (p)Slm(u), ∀p ≥ 1. (8.28)
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This follows from r p (p)I l m(u) ∼ up (p)I lm(u) ∼O (1/u) for p ≥ 1.

Under this asymptotic stationarity hypothesis, the finite stationary multipole

charges (8.22)-(8.23)-(8.24) are recovered at spatial infinity. These are the con-

served multipole charges.

8.4.2 Source multipole moments in the near-zone

As we can see explicitly, the surface charges (8.26) are finite in the r → 0 limit. This

limit has a clear physical interpretation and gives the value of the surface charges

in the near zone of the radiation zone. Indeed, one has in general that (see, e.g.,

section IX.D of Thorne, 1980)∣∣∣∣r p (p)Slm

Slm

∣∣∣∣∼ ∣∣∣∣r p (p)I lm

I l m

∣∣∣∣∼ ( r

λ

)p
, (8.29)

where λ is the typical wavelength of the radiation generated by the sources. Ac-

cordingly, in the near zone where r ¿λ, we have

Q =Q
∣∣∣
r=0

+O
( r

λ

)
, (8.30)

and all charges are finite. Moreover, all multipole moments are then functions of

time t since u = t at r = 0. In the post-Newtonian/post-Minkowskian matched

asymptotic expansion scheme to solve Einstein’s equations for a radiating non-

linear system, there exist surface integrals defined in terms of the sources in the

outer near-zone (Blanchet, Damour, and Iyer, 2005). Here, we will obtain the cor-

responding matching surface charges in the near-zone of the radiation region, in

the linear approximation. We will now explicitly describe which Noether charges

give the source mass multipole moments I lm(t ) and current multipole moments

Slm(t ).

Current multipole moments The current multipole moments are simply defined

as the Noether charges associated with Lε (8.9) in the near zone. Their values are

Q lm
L

∣∣∣
r=0

=−
√

l

l +1

(2l −1)!!

(l −1)!
(2(l +2)+α(l −1))Slm(t ). (8.31)

The numerical proportionality coefficient depends upon the detailed definition of

the canonical charge through the α prescription.

Momentum multipole moments The momentum multipole moments are de-

fined as the Noether charges associated with Pε (8.9) in the near zone. Their values
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are

Q lm
P

∣∣∣
r=0

=−2(2l −3)!!

l !

(2l −1)l + (1−δ1l )

√
l

l +1
[1+ (3−2l )l +α(l −1)(2l +1)]

 (1)I lm(t ).

(8.32)

Contrary to the stationary case, they are non-zero for radiating configurations.

They are derived quantities in terms of the mass multipole moments I l m and are

therefore not fundamental, at least in Einstein gravity. They will however play a

role in the definition of mass multipole moments as we describe next.

Mass multipole moments Finally, the mass multipole moments are defined as

the following combination of Noether charges in the near zone,

Q lm
K

∣∣∣
r=0

− t Q lm
P

∣∣∣
r=0

. (8.33)

After evaluation we find

Q lm
K

∣∣∣
r=0

− t Q l m
P

∣∣∣
r=0

= 2(2l +1)!!

l !
I lm(t ), (8.34)

which exactly reproduce Thorne’s definition I lm(t ), upon adjusting the normal-

ization constant. Remark that both the Iyer-Wald and the Abbott-Deser-Barnich-

Brandt definitions agree in this case since there is noα dependence in the numer-

ical coefficient.

The linear combination in the definition (8.33) can be explained very naturally

in two different ways. First, the definition (8.33) is covariant under a time shift.

The time dependence of the generator Kε (8.9) is exactly compensated by the sub-

tracting term in (8.33) and a time shift only shifts the source. More fundamentally,

the definition (8.33) generalizes to gravitating configurations and to generic mass

multipole moments the definition of boost charge defined in standard field theo-

ries around Minkowski space-time. For example, the Noether current of a scalar

field of Lagrangian L =−1

2
∂µφ∂

µφ−V (φ) associated with xµ→ xµ−ξµ is

Jµ
ξ
= ∂L

∂(∂µφ)
δξφ−L ξµ. (8.35)

The boost charge along x is given by

Kx =
∫

d 3x x

(
φ̇2 +|∇φ|2

2
+V (φ)

)
+ t

∫
φ̇∇xφ=

∫
d 3x x H + t Px , (8.36)
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where H is the Hamiltonian density and Px is the total momentum along x. The

l = 1 mass multipole
∫

d 3x x H therefore equates the boost charge minus t times

the momentum charge. Our definition of mass multipole moments (8.33) is there-

fore totally natural in that respect.

8.4.3 Multipole charges at future null infinity

Let us now describe how to define the multipole moments from Noether charges

at future null infinity. We again assume the asymptotic stationarity hypothesis

(8.27) at both future and past of null infinity.

For an arbitrary retarded time u, the charges (8.26) are formally infinite. How-

ever, they can be regularized by the finite part prescription of Blanchet and Damour

(1986). After taking the finite part, we obtain in linearized Einstein gravity,

FP
u fixed

r→∞

(
Q lm

K −uQ l m
P

)
= 2(2l +1)!!

l !
I lm(u), (8.37)

FP
u fixed

r→∞
Q lm

L = −
√

l

l +1

(2l −1)!!

(l −1)!
(2(l +2)+α(l −1))Sl m(u). (8.38)

In other words, all terms proportional to r are dropped and only the r 0 term is

kept. This definition readily generalizes to an arbitrary theory of gravity.

Let us now contrast these definitions with the standard radiative multipole

moments. At linear order, one can switch to radiative (Bondi) coordinates (U ,R,θ,φ)

by a simple change of coordinates, U = u − 2GM
c3 log(r /r0), R = r . The radiative

mass and current multipole moments UAl (U ) and VAl (U ) are defined from the 1/R

fall-off of the metric in radiative coordinates. It turns out that they match with the

l -derivatives of the mass and current multipole moments, up to important non-

linear corrections of O (G) that encode tails, non-linear memory and further non-

linear terms (see the review of Blanchet (2014) and the latest update in Marchand,

Blanchet, and Faye (2016))

UAl (U ) = (l )IAl (U )+O

(
G

c3

)
, (8.39)

VAl (U ) = (l )SAl (U )+O

(
G

c3

)
. (8.40)

While the radiative multipole moments are proportional to the l -th derivative of

the source multipole moments (8.39), we notice from Eq. (8.37) that the Noether
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charges instead allow one to directly extract the source multipole moments with-

out any derivatives close to null infinity. This is mainly because the multipole sym-

metries are proportional to r l and therefore extract information about the sub-

leading r−l part of the metric. The multipole charges at null infinity are therefore

more elementary than the radiative multipole moments.

8.4.4 Conservation equation

The multipole moments in linearised Einstein gravity can be simply read off from

the components of the metric in canonical harmonic gauge. Now, it is advanta-

geous already in Einstein gravity to reformulate these multipole moments in terms

of Noether charges for the following reason. Canonical Noether charges obey a

conservation law which allows us to relate the multipole charges of the system

sourcing the linear solution at different times to the flux of multipole charges at

null infinity.

Let us derive this multipole moment conservation law. The generalized Noether

theorem for gauge or diffeomorphism invariant theories (Wald, 1993; Barnich,

Brandt, and Henneaux, 2000; Barnich and Brandt, 2002) implies that the surface

charges obey the conservation equation∫
S∞

t

kξ[h;η]−
∫

S0
t

kξ[h;η] =
∫
Σt

ω[h,Lξη;η], (8.41)

where Σt is a constant time hypersurface, whose boundary are two 2-spheres S∞
t

and S0
t . We choose S∞

t to be the 2-sphere at spatial infinity and S0
t to be close to

r = 0, which is the near zone limit of the radiation zone. Let us choose two such

hypersurfaces Σ+ and Σ−, respectively, at constant times t+ and t−, as shown in

the left-hand-side of Figure 8.1. Such constant time hypersurfaces are not boosted

with respect to each other at spatial infinity and, in that sense, approach the same

boundary sphere S∞. After fixing the ambiguity parameter α in the definition of

the covariant charges,ω is the Lee-Wald symplectic structure (Lee and Wald, 1990;

Wald and Zoupas, 2000) for α = 0, while ω is the invariant symplectic structure

(Barnich and Compère, 2008; Compère, 2007a) for α= 1.

By rearranging terms, one can write the above equation as

Qsource +Qrad =Q total, (8.42)
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Σ
−

Σ+

S0
−

S0
+

S1

S0
−

S0
+

S1

I+−

I−1

U
−

U+

FIGURE 8.1: (Left) Two constant time slices Σ± both asymptote to the
sphere S∞ at spatial infinity. The coloured region r ≤ a,
where a is the size of the source, is not described by the
linear solution and contains the source. The inner bound-
aries are denoted as S0

±. (Right) One can smoothly deform
Σ± such that the difference of Qrad

I+− between the two ad-
vanced times u+ and u− represents the multipole moment
flux through null infinity.

where

Qsource =
∫

S0
t

kξ[h,η] , Q total =
∫

S∞
t

kξ[h,η], Qrad =
∫
Σt

ω[h,Lξη;η] . (8.43)

The source charge is the actual multipole charge of the source, as the near zone

limit of the radiation zone matches with the far zone of the source zone (see, e.g.,

Blanchet, 2014). Under the hypothesis of asymptotic stationarity at initial retarded

times, the multipole charges are time-independent at spatial infinity,

d

d t
Qtotal = 0. (8.44)

The flux term is simply interpreted as the radiated multipole charge to future null

infinity. More precisely, one can smoothly deform the hypersurfaces Σ± as shown

in the right-hand-side of Figure 8.1, where we define Σ+ = U+ ∪ I+− ∪ I−∞ and

Σ− =U−∪ I−∞. Here U± are null hypersurfaces at constant retarded time u± and
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I+− is a surface at constant large r close to null infinity. We have the equality

Qsource
t+ −Qsource

t− =Qrad
I+− +Qrad

U+ −Qrad
U− . (8.45)

The left-hand-side is the finite difference between the source multipole charge at

time t+ and at time t−. The individual terms on the right-hand-side are diverg-

ing but the difference is finite. It is useful to again define the finite part FP of a

diverging expression in r as the r 0 term of the expression with u fixed. In fact, we

have

FP
u fixed

r→∞
Qrad

U± = 0. (8.46)

The reason is that from the generalized Noether theorem, this expression is the dif-

ference of charge between r →∞ and r = 0. From the explicit expression for the

charges (in the case of the mass multipole, a subtraction of two Noether charges is

necessary, as (8.33)), the only finite part is precisely the part at r = 0 which there-

fore cancels out. The remaining finite part of the right-hand side of (8.45) is the

finite radiation flux in between u+ and u−,

F+− ≡ FP
u fixed

r→∞
Qrad

I+− . (8.47)

The multipole charge conservation law can be finally written as

Qsource
t+ −Qsource

t− = F+−. (8.48)

It follows from the generalized Noether theorem.

8.5 Discussion and conclusions

We reformulated Thorne’s definition of mass and current multipole moments in

Einstein gravity in terms of Noether charges associated with multipole symme-

tries, which are residual transformations of the harmonic gauge; see Eqs. (8.9).

Since Noether charges are defined for any theory of gravity, it allows to define

in principle all mass and current multipole moments for such an arbitrary the-

ory. As an example, after overtaking the cumbersome task to reach the canoni-

cal harmonic gauge, it is possible to determine the multipole structure of the re-

cently constructed black hole with scalar hair in Herdeiro and Radu (2014) from

the Noether charge formula of Einstein gravity coupled to a scalar field (Barnich,

2002); see also appendix E.4.
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We expressed the multipole moments of General Relativity as conserved Noether

charges at spatial infinity. We also derived the conservation laws of multipole

charges under the hypothesis of no incoming radiation. With suitable junction

conditions between the past of future null infinity and the future of past null in-

finity (which would generalize Strominger, 2013; Hawking, Perry, and Strominger,

2017), one would relate the total change of source multipole moments between fu-

ture and past timelike infinity to the corresponding fluxes at past and future null

infinity. We expect that these conservation laws of canonical moments together

with the conservation of canonical BMS super-translation charges at spatial in-

finity (Troessaert, 2018; Henneaux and Troessaert, 2018a; Henneaux and Troes-

saert, 2018b) (see also (Compere and Dehouck, 2011; Virmani, 2012; Compère and

Fiorucci, 2017)) underly the conservation laws of the Bondi mass and angular mo-

mentum aspects obtained in Hawking, Perry, and Strominger (2017).

We mainly discussed in this chapter mass and current multipole moments. In

a generic diffeomorphism invariant theory of gravity coupled to matter, there will

be generically six independent STF tensors appearing in the linearised metric after

gauge fixing; see Eq. (8.17).3 Therefore, we would need to define six independent

sets of gravitational source multipole moments. In our approach, these would be

built from six multipole Noether charges associated with multipole symmetries.

Starting from our ansatz (8.2), we identified four sets of multipole symmetries,

which include the mass, current, and momentum multipole symmetries, but dis-

carded the irreducible harmonic vector V , since it does not play a role in Einstein

gravity. We expect that it might play a role in more general theories. Note that l = 0

and l = 1 harmonics of V are respectively the spatial scaling xi∂i and the vector

ξ( j ) = (
xi x j − 1

3 x2δi j
)
∂i which is not a standard symmetry. It is also straightfor-

ward to relax the ansatz (8.2), and consider as candidate multipole charges the set

of eight charges

Qε∂t+t ∇ε− t Q∇ε, Qr×∇ε, Q∇ε, QV i∂i
, (8.49)

Qtε∂t − t Qε∂t , Qtr×∇ε− t Qr×∇ε, Qt∇ε− t Q∇ε, QtV i∂i
− t QV i∂i

, (8.50)

where Qξ denotes the Noether charge associated with ξ. These linear combina-

tions ensure covariance under explicit time shifts, as for the mass multipole mo-

ments (8.33). It is not clear to us, however, whether the six independent multipole

3Also, in a generic diffeomorphism invariant theory of gravity with lightcone propagating planar
waves, there are six distinct polarization modes for the linearised perturbations (Eardley et al.,
1973), simply because the 1/r behaviour of the electric part of the Riemann tensor close to null
infinity admits a decomposition into six distinct STF tensors. This leads to six distinct radiative
multipole moments.
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moments can be identified from this set of eight combinations of Noether charges.

Let us now discuss the connection of our results with gravitational electric-

magnetic duality. In gauge theories, not every multipole moment might be asso-

ciated with a Noether charge. Indeed, in the case of electromagnetism, electric

multipole moments are Noether charges, but magnetic multipole moments can-

not be expressed as Noether charges associated with the original gauge symmetry

of Maxwell theory. In vacuo, it exists a dual formulation in terms of a dual gauge

field AD defined as ?F = d AD . The emergent gauge symmetry of the dual for-

mulation allows to define the magnetic multipole moments of the original formu-

lation in terms of Noether charges as a simple consequence of electric-magnetic

duality. Contrary to electromagnetism, it turns out that in Einstein gravity all mul-

tipole charges are Noether charges, as we have now demonstrated. In many in-

stances the structure of dualities in Maxwell and in Einstein theories is similar, but

not here. The reason of this asymmetry is that in Einstein gravity, the gauge pa-

rameter is a space-time vector which itself admits duality transformations. It has

been shown that, in the formulation of spatial infinity foliated by de Sitter slices

of unit normal nµ, rotations and boosts are dual to each other, and the second

sub-leading component of the electric part of the Weyl tensor is dual to its mag-

netic part (Mann et al., 2008; Compere, Dehouck, and Virmani, 2011). This is the

reason why the Lorentz charges can be expressed in two distinct but equivalent

ways (Ashtekar and Hansen, 1978; Mann, Marolf, and Virmani, 2006). In fact, it is

a matter of simple algebra to show that such a duality persists between the mass

multipole symmetries and the current multipole symmetries:

Lε = 1

2
εµνρσnµ∂νKε,ρ∂σ . (8.51)

We therefore are led to conjecture that the Noether l-multipole charges can be ex-

pressed from the (l +1)–subleading component of either the electric or the mag-

netic part of Weyl tensor, as its l = 1 Lorentz counterpart (Compere, Dehouck, and

Virmani, 2011).

To conclude, the mass and current multipole symmetries are associated with

an infinite number of conserved Noether charges. These outer symmetries pro-

vide a new concept to comprehend the asymptotic structure of gravity, or, after a

suitable generalisation, of general gauge theories.
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Conclusions and outlook

This thesis investigated applications of space-time symmetries to black holes and

gravitational radiation. We mainly focused on two classes of symmetries:

a) symmetries in the near-horizon region of rapidly rotating Kerr black holes;

b) residual gauge symmetries.

In the first case, we aimed to address questions in the context of force-free elec-

trodynamics and thin accretion discs. We exploited the presence of the isometry

group SO(2,1)×U (1) to investigate its consequences on the dynamics of electro-

magnetic fields and accreting matter in the region close to the event horizon of

Kerr black holes in the high-spin regime.

In the second case, we provided a new definition of multipole moments of the

gravitational field. We showed that gravitational multipole moments are associ-

ated to a certain class of residual symmetries of the harmonic gauge and they are

expressed in terms of the Noether charges. Our definition of gravitational multi-

pole moments reproduces the results in General Relativity with the advantage that

it can be applied to an arbitrary metric theory of gravity.

Moreover, the thesis contains applications of the covariant phase space for-

malism. Such a formalism has been adopted to address the problem to compute

the total conserved mass of the Melvin-Kerr-Newman black hole and to write the

gravitational multipole moments as Noether charges associated to certain resid-

ual gauge symmetries.

Several interesting avenues are to take for future work.

First, it would be interesting to predict the existence of observational “smoking

guns” of the SO(2,1)×U (1) symmetry enhancement in the near-horizon geometry

of high-spin Kerr black holes. This research line is still under intensive work for

electromagnetic emission from accretion discs and gravitational radiation from

extreme mass ratio inspirals. Along the same line, work should be done to bet-

ter understand whether and how the symmetry enhancement can constrain the

physics of jets emission from AGNs. Another interesting avenue is to investigate

how the plasma and magnetic fields surrounding rapidly rotating black holes in-

teract with each other. Relativistic magnetic reconnection is a viable astrophysical
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phenomenon, beyond the force-free approximation, that might explain particle

acceleration and non-thermal emission observed around compact objects.

Second, force-free electrodynamics around black hole space-times lacks of ex-

act analytical solutions, with the exception of a few known results around both

Schwarzschild and Kerr black holes. The main reason lies in the non-linearity of

the equations of motion. It can be relevant for astrophysical purposes to study the

mathematical properties of the differential equations governing force-free elec-

trodynamics in order to develop new analytical methods to find exact solutions

and to study their physical properties.

Third, another interesting future work is to study the behaviour of accretion

discs in the near-horizon region. To this aim, one need more elaborated models

than thin accretion discs to make contact with observations. In particular, one

might point to investigate the physics near the physical edge of the accretion disc,

which is usually closer to the black hole than the ISCO location, where gravita-

tional effects in the strong gravity regime are present.

Finally, concerning the multipolar structure of the gravitational field, it is in-

triguing to apply our definition of gravitational multipole moments to other the-

ories of gravity. Moreover, because the novel definition of moments in terms of

Noether charges highlights the importance of a certain class of vector fields, it

may be of interest to apply this approach in the context of tidal deformations of

neutron stars with the hope to give an explanation for some “universal” relations

among certain multipole moments.
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Appendix A

Differential forms

The Levi-Civita symbol and tensor are, respectively, defined by

εµ1µ2...µn =


+1, (µ1,µ2, . . . ,µn) is an even permutation of (1, . . . , n),

−1 (µ1,µ2, . . . ,µn) is an odd permutation (1, . . . , n),

0 otherwise.

(A.1a)

εµ1µ2...µn =p−g εµ1µ2...µn , (A.1b)

where g is the determinant of the metric tensor gµν.

It is useful to recall the following formula

εµ1µ2...µpα1...αn−pεµ1µ2...µpβ1...βn−p = (−1)s p !(n −p)!δ[α1
β1

· · ·δαn−p ]
βn−p

. (A.2)

Here s is the number of negative eigenvalues of the metric tensor.

In a given coordinate system, a p-form can be written as

A = 1

p !
Aµ1µ2...µp d xµ1 ∧d xµ2 ∧·· ·∧d xµp . (A.3)

Let A be a p-form and B be a q-form.

The wedge product is defined as

(A∧B)µ1µ2...µp+q =
(p +q)!

p !q !
A[µ1...µp Bµp+1...µp+q ], (A.4)

where the square brackets denote antisymmetrization with respect all indices.

The exterior derivative is given by

(d A)µ1µ2...µp+1 = (p +1)∂[µ1 Aµ2...µp+1]. (A.5)
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It obeys the generalised Leibniz rule d(A∧B) = d A∧B + (−1)p A∧dB .

A contraction of a p +1-form with a vector reads as

(iv A)µ1...µp = (v · A)µ1...µp = vµAµµ1...µp . (A.6)

The Hodge operator maps a p-form to a (n−p)-form, where n is the dimension of

the space-time. It is defined as

?A = 1

(n −p)!
(?A)µ1...µn−p d xµ1 ∧·· ·∧d xµn−p , (A.7a)

(?A)µ1...µn−p = 1

p !
ε
ν1...νp

µ1...µn−p
Aν1...νp . (A.7b)

The Hodge operator obeys the relation ?(?A) = (−1)s+p(n−p) A.
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Appendix B

Kerr black hole

B.1 Line element

The Kerr line element in Boyer-Lindquist (BL) coordinates (t ,r,θ,φ) is given by

(Bardeen, Press, and Teukolsky, 1972)

d s2 =−Σ∆
A

d t 2 + sin2(θ)
A

Σ
(dφ−ωd t )2 + Σ

∆
dr 2 +Σdθ2, (B.1)

where the metric functions read

∆(r ) = r 2 −2Mr +a2, (B.2a)

Σ(r,θ) = r 2 +a2 cos2(θ), (B.2b)

A(r,θ) = (r 2 +a2)2 −a2∆sin2(θ), (B.2c)

ω(r,θ) = 2M ar

A
. (B.2d)

Here, M is the mass and a = J/M is the specific angular momentum of the Kerr

black hole, which we assume to be non-negative. The event horizon is located at

r+ = M + (
M 2 −a2

)1/2
. The Kerr black hole space-time is stationary and axisym-

metric. The Killing vectors corresponding to time and axial symmetry are, respec-

tively, η= δµt∂µ and ξ= δµφ∂µ.

B.1.1 Line element near and at the equatorial plane

In order to describe the region near the equatorial plane θ =π/2, we introduce the

cylindrical coordinate z = r cos(θ) and neglect corrections of order (z/r )2. The re-

sulting line element in the near-equatorial region of coordinates (t ,r, z,φ) is given

by

d s2 =−r 2∆

A
d t 2 + A

r 2
(dφ−ωd t )2 + r 2

∆
dr 2 +d z2 +O

(z

r

)2
. (B.3)
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Following Novikov and Thorne (1973), we define the dimensionless radial coordi-

nate x and the spin parameter as , respectively, by

x ≡
( r

M

) 1
2

, as ≡ a

M
(B.4)

Thus, at fixed spin parameter in the range as ∈ [0,1], x ≥ x+ = [
1+ (1−a2

s )1/2
]1/2

describes the Kerr space-time outside the event horizon. The ISCO is located at

x0 =
{
3+Z2 − [(3−Z1)(3+Z1 +2Z2)]1/2}1/2

, (B.5a)

Z1 = 1+ (
1−a2

s

)1/3 [
(1+as)1/3 + (1−as)1/3] , (B.5b)

Z2 =
(
3a2

s +Z 2
1

)1/2
. (B.5c)

Following the tradition, we define the dimensionless functions:1

A = 1+ a2
s

x4
+ 2a2

s

x6
, (B.6a)

B = 1+ as

x3
, (B.6b)

C = 1− 3

x2
+ 2as

x3
, (B.6c)

D = 1− 2

x2
+ a2

s

x4
, (B.6d)

F = 1− 2as

x3
+ a2

s

x4
, (B.6e)

G = 1− 2

x2
+ as

x3
, (B.6f)

R =C −1F 2 −a2
s x−2 (

C −1/2G −1
)

. (B.6g)

All functions in Eqs. (B.6) go to unity far from the black hole x À 1. The functions

A , B and R are monotonically decreasing, while the functions C , D, F and G are

monotonically increasing in their domains of definition. The radial coordinates

where C = 0 are given by

x1 = 2cos

[
1

3
arccos(as)− π

3

]
, (B.7a)

x2 = 2cos

[
1

3
arccos(as)+ π

3

]
, (B.7b)

x3 =−2cos

[
1

3
arccos(as)

]
, (B.7c)

1Note the typo in the exponent of as in Eq. (A4c) of Penna, Sadowski, and McKinney (2012).
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with x1 ≥ x2 ≥ x3. The last photon orbit is given by x = x1 and is placed between

the ISCO and the event horizon, x0 ≥ x1 ≥ x+. The function D is positive outside

the event horizon.

B.2 Circular equatorial geodesics

Circular equatorial geodesics have a four-velocity of the form

u = ut∂t +uφ∂φ = ut (η+Ωξ). (B.8a)

Here, we list the kinematic quantities characterizing the geodesic motion:

ut =BC −1/2, (B.9a)

uφ = M−1x−3C −1/2, (B.9b)

E = ηµuµ =C −1/2G , (B.9c)

L = ξµuµ = M xC −1/2F , (B.9d)

Ω= uφ/ut = M−1x−3B−1, (B.9e)

L 2
? = L2 −a2(E −1) = M 2x2R, (B.9f)

respectively, the time component ut , the azimuthal component uφ, the conserved

specific energy E , the conserved specific angular momentum L, the co-rotating

Keplerian angular velocityΩwith respect to a stationary observer and a conserved

quantity along the geodesic motion L 2
?, which appears in the thin disc vertical

equation.

It is useful to introduce the function P defined by

P ≡P0 + 1

M

∫ x

x0

(E −ΩL)L,x ′d x ′

=P0 +x −x0 − 3

2
as ln

(
x

x0

)
−

3∑
i=1

3(xi −as)2

xi (xi −xi+1)(xi −xi+2)
ln

(
x −xi

x0 −xi

)
. (B.10)

Here, P0 is a real constant to be fixed by imposing a boundary condition, as ex-

plained in section 7.2. In the above sum, we identify xi = xi+3. The function Q of

Page and Thorne (1974) can be expressed as Q = x−1BC −1/2P but we find more

economical and natural to use P .
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B.3 Observer frames for circular equatorial geodesics

We define three privileged observers.

1. The stationary observer frame with four-velocity

ust at = (−ηνην)−1/2η, (B.11)

which is locally rotating in the sense that Lst at = ξµuµ
st at 6= 0.

2. The locally non-rotating frame (LNRF), sometimes also called local inertial

frame or zero angular momentum observer (ZAMO), has four-velocity

uLN RF = (ω2ξµξµ−ηµηµ)−1/2(η+ωξ), (B.12)

with ω2ξµξµ−ηµηµ = A −1D. It has LLN RF = ξµuµ

LN RF = 0. With respect to

the LNRF observer, circular equatorial geodesics have four-velocity compo-

nents u(a) = uµe (a)
µ , where e (a)

µ is the orthonormal tetrad attached to the

LNRF, whose expression can be found in appendix (B.4) or in Eq. (3.2) of

Bardeen, Press, and Teukolsky (1972). The only two non-vanishing compo-

nents are

u(t ) = r∆1/2

A1/2
ut =A −1/2BC −1/2D1/2, (B.13)

u(φ) = A1/2

r
(Ω−ω)ut (B.14)

= x−1A 1/2C −1/2 −2as x−4A −1/2BC −1/2.

Therefore, the only non-vanishing component of the three-velocity relative

to the LNRF is

V (φ) = u(φ)

u(t )
= A

r 2∆1/2
(Ω−ω) = x−1B−1D−1/2F . (B.15)

We call V (φ) = R̃Ω̃ the linear velocity with respect to the LNRF , with R̃ =
A/(r 2∆1/2) being the gyration radius, Ω̃=Ω−ω the angular velocity with re-

spect to the local inertial frame and γ= u(t ) the Lorentz gamma factor corre-

sponding to this linear velocity. In other words, the four-velocity of circular

equatorial geodesics as measured by an LNRF observer is uµ = γ(uµ

LN RF +
V (φ)eµ(φ)).

3. The local rest frame (LRF) of the particle in the circular equatorial orbit,

whose orthonormal tetrad is defined in Eq. (5.4.5a) of Novikov and Thorne
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(1973). In this frame, the shear tensor σµ̂ν̂ of circular equatorial geodesics

has only one non-vanishing component

σr̂ φ̂ =σφ̂r̂ =
1

2

A

r 3
γ2Ω,r =−3

4
M−1x−3C −1D. (B.16)

B.4 LNRF tetrad

The orthonormal tetrad carried by a locally non-rotating frame (LNRF) is given by

e(t ) = eµ(t )∂µ =
(

A

Σ∆

)1/2 (
∂t +ω∂φ

)≈
√

A

D

(
∂t +ω∂φ

)
, (B.17a)

e(r ) = eµ(r )∂µ =
(
∆

Σ

)1/2

∂r ≈D1/2∂r , (B.17b)

e(θ) = eµ(θ)∂µ =
(

1

Σ

)1/2

∂θ ≈ ∂z , (B.17c)

e(φ) = eµ(φ)∂µ =
(
Σ

A

)1/2 1

sinθ
∂φ ≈ 1

M x2A 1/2
∂φ (B.17d)

and the corresponding one-forms are

e(t ) = e (t )
µ d xµ =

(
Σ∆

A

)1/2

d t ≈
√

D

A
d t , (B.18a)

e(r ) = e (r )
µ d xµ =

(
Σ

∆

)1/2

dr ≈D−1/2dr, (B.18b)

e(θ) = e (θ)
µ d xµ =Σ1/2dθ ≈ d z, (B.18c)

e(φ) = e (φ)
µ d xµ =

(
A

Σ

)1/2

sinθ(dφ−ωd t ) ≈ M x2A 1/2(dφ−ωd t ) (B.18d)

where ≈ means in the near-equatorial region.

B.5 General near-equatorial orbits

Let us consider a more general four-velocity vector field than that of circular equa-

torial orbits. In order to match our notation with the traditional literature, we

start by considering the most general four-velocity vector as measured by a LNRF,

whose form is given by

uµ = γ
(
uµ

LN RF +V (r )eµ(r ) +V (θ)eµ(θ) +V (φ)eµ(φ)

)
, (B.19)
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where uµ

LN RF = eµ(t ) and eµ(i ) are defined in (B.17), while V (i ) are the components of

the three-velocity as measured by the LNRF and γ is the Lorentz gamma factor and

it can be expressed as γ−2 = 1−(
V (r )

)2−(
V (θ)

)2−(
V (φ)

)2
. Thus, the components of

the four-velocity in the Boyer-Lindquist frame read

(ut ,ur ,uθ,uφ) = γ
√

A

D
,D1/2V (r ),

V (θ)

r
,ω

√
A

D
+ V (φ)

r A 1/2

 . (B.20)

The angular velocity with respect to the stationary observer is, as usual, defined

by Ω = uφ/ut . From this definition, we obtain that the azimuthal linear velocity

V (φ) = R̃Ω̃ is the product of the gyration radius R̃ = A/(r 2∆1/2) and the angular

velocity measured by the LNRF Ω̃ =Ω−ω. We call this the kinematic expression

of V (φ). An alternative useful expression can be derived from the specific angular

momentum L = uφ and one gets V (φ) = L/(γr A 1/2).

In order to describe the orbit, we need three variables. Following the tradi-

tional literature (see, e.g., Abramowicz et al., 1996; Gammie and Popham, 1998),

we choose (a) the rescaled radial velocity V , defined by

Vp
1−V 2

= γV (r ) =D−1/2ur , (B.21)

(b) the vertical velocity V (θ) = U cosθ (Abramowicz, Lanza, and Percival, 1997),

and (c) the specific angular momentum L = uφ. The four-velocity (B.20), in terms

of the variables V , U and L, is

(ut ,ur ,uθ,uφ) =
γ

√
A

D
,

V D1/2

p
1−V 2

,γ
U

r
cosθ,γω

√
A

D
+ L

r 2A

 , (B.22)

and the covariant components are given by

(ut ,ur ,uθ,uφ) =
−γ

√
D

A
−Lω,

V D−1/2

p
1−V 2

,γrU cosθ,L

 . (B.23)

Because the vertical velocity V (θ) is proportional to cosθ = z/r , we may write the

Lorentz gamma factor, at first order in z/r , as

γ2 = 1

1− (V (r ))2 − (V (φ))2
= 1

1−V 2
+ L2

r 2A
, (B.24)
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where we used the expressions of V (r ) in (B.21) and V (φ) = L/(γr A 1/2). An equiv-

alent expression of the Lorenz gamma factor can be obtained by using the kine-

matic expression of V (φ). From the very definition of γ, one finds that

γ2 = 1

1− (R̃Ω̃)2

1

1−V 2
≡ γ2

φγ
2
r , (B.25)

is the product of the Lorentz gamma factors relative to V (φ) and V . As pointed

in Abramowicz et al., 1996; Gammie and Popham, 1998, V is the radial velocity

measured by a frame co-rotating with the fluid at a fixed radial position.

As a remark, we notice that for the particular choice V = 0 =U , we get the four-

velocity of circular equatorial geodesics with L = M xC −1/2F andγ=A −1/2BC −1/2D1/2.

B.5.1 Properties of the four-velocity profile in Eq. (B.22)

Since Sµν ∝ σµν by the second law of thermodynamics, it is useful to know the

components of the shear tensor for the velocity profile (B.22). Here we list the

nonvanishing covariant derivatives evaluated in the equatorial plane2

ut ;t =−M

r 2

V D1/2

p
1−V 2

, ut ;r = dE

dr
+ur ;t , ut ;φ = aM

r 2

V D1/2

p
1−V 2

= uφ;t ,

(B.26a)

ur ;t = Mγ

r 2

√
A

D
(1−aΩ), ur ;r = dV /dr

D1/2(1−V 2)3/2
, ur ;φ =− γ

r 2

√
A

D
(aM −a2MΩ+ r 3Ω),

(B.26b)

uθ;θ = r
V D1/2

p
1−V 2

, uφ;r = dL

dr
+ur ;φ, uφ;φ = r

(
1− M a2

r 3

)
V D1/2

p
1−V 2

,

(B.26c)

where E = ut and its radial derivative is given by

−dE

dr
= 1

γ

√
D

A

[
V

(1−V 2)2

dV

dr
− L2

r 3A 2

(
1− a2M

r 3

)]
+ΩdL

dr
− ωL

r A

(
3+ a2

r 2

)
+

+ γ

r 2
p

A D

[
a2D

r A

(
1+ 3M

r

)
+M

(
1− a2

Mr

)]
. (B.27)

The expansion scalar is

θ = ur
(

2

r
+ 1

ur

dur

dr

)
= V D1/2

p
1−V 2

[
2

r
+ M

r 2D

(
1− a2

Mr

)
+ 1

1−V 2

1

V

dV

dr

]
. (B.28)

2We agree with the expressions of the covariant derivatives listed in appendix A of Gammie and
Popham (1998), except for ur ;r and uθ;θ.
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Notice that for V → 0, the only nonvanishing components are ut ;r , ur ;t , ur ;φ and

uφ;r and the velocity profile becomes divergence free.

From covariant derivatives, we might compute the components of the shear

tensor σµν. In particular, we need the following components:

σr r = ur ;r +ur ar − 1

3

(
(ur )2 + 1

D

)
ur

(
2

r
+ 1

ur

dur

dr

)
,

= D−1/2

(1−V 2)3/2

[
2+V 2

3(1−V 2)

dV

dr
− V

3

(
2

r
+ M

r 2D

(
1− a2

Mr

)
+3 fr

)]
; (B.29a)

σrφ = 1

2

(
2ur ;φ+ur aφ+ar L+ dL

dr

)
− 1

3
Lur ur

(
2

r
+ 1

ur

dur

dr

)
,

=− γ

r 2

√
A

D

[
aM + r 3

(
1− a2M

r 3

)
Ω

]
+ (B.29b)

+ 1

2

L

1−V 2

{
1

L

dL

dr
+ 1

3

V

1−V 2

dV

dr
− 2V 2

3

[
2

r
+ M

r 2D

(
1− a2

Mr

)]
− fr

}
;

The expression (B.29b) is the exact expression derived by the expression of the

four velocity (B.22) and by the definition of shear tensor, without any assumption

or further simplifications. The common approach in the literature (Lasota, 1994;

Abramowicz et al., 1996) is the following: from the Keplerian (exact) expression

σk
rφ = 1

2

γ3
k

r 3

A3/2

∆1/2

dΩk

dr
, (B.30)

one replaces the Keplerian gamma factor by the full gamma factor γk → γ and

the Keplerian angular velocity by the general angular velocity Ωk →Ω. Thus, the

expression of the (rφ) component of the shear tensor for non-Keplerian flows is

assumed to have the same functional form, as noted for the first time in Peitz and

Appl (1997).
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Appendix C

Near-Horizon Extreme Kerr

C.1 Line element

The four-dimensional NHEK line element can be written in a manifestly SL(2,R)×
U (1) invariant form

d s2
N HEK = 2M 2Γ(θ)

[
d s2

AdS2
+dθ2 +γ2(θ) (dΨ+Θ)2

]
, (C.1)

where d s2
AdS2

is the AdS2 line element, Θ is a left-invariant 1-form on AdS2 with

norm −1, Ψ ∈ [0,2π] is the azimuthal coordinate and θ ∈ [0,π] is the polar coordi-

nate. The two functions Γ and γ are, respectively,

Γ(θ) = 1+cos2(θ)

2
, γ(θ) = sin(θ)

Γ(θ)
. (C.2)

The NHEK line element has four Killing vector fields. The generators of its

isometry group obey the SL(2,R)×U (1) commutation relations

[H0, H±] =∓H±, [H+, H−] = 2H0, [Q0, H±] = 0 = [Q0, H0]. (C.3)

We define the highest weight scalarΦ(h,q) of weight h and charge q as

H+Φ(h,q) = 0, H0Φ(h,q) = hΦ(h,q), Q0Φ(h,q) = i qΦ(h,q), ∂θΦ(h,q) = 0, (C.4)

and we denoteΦ=Φ(1,0) and λ=Φ(0,1) so thatΦ(h,q) =Φhλq .
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C.2 Coordinate systems

C.2.1 Poincaré coordinates

Let (T,R,θ,Φ) be the Poincaré coordinates. The NHEK line element is

d s2
N HEK = 2M 2 Γ(θ)

[
−R2dT 2 + dR2

R2
+dθ2 +γ2(θ) (dΦ+RdT )2

]
, (C.5)

and the generators of its isometry group are

H+ =p
2∂T , (C.6a)

H0 = T∂T −R∂R , (C.6b)

H− =p
2

[
1

2

(
T 2 + 1

R2

)
∂T −T R∂R − 1

R
∂Φ

]
, (C.6c)

Q0 = ∂Φ. (C.6d)

Moreover,Φ= 1/R and λ= e iΦ.

C.2.2 Global coordinates

Let (τ, y,θ,ϕ) be the global coordinates. The NHEK line element is

d s2
N HEK = 2M 2 Γ(θ)

[
−(1+ y2)dτ2 + d y2

1+ y2
+dθ2 +γ2(θ)

(
dϕ+ ydτ

)2
]

, (C.7)

and the generators of its isometry group are

H+ = i
e iτ√
1+ y2

(−y∂τ+ i (1+ y2)∂y −∂ϕ
)

, (C.8a)

H0 = i∂τ, (C.8b)

H− =−i
e iτ√
1+ y2

(
y∂τ+ i (1+ y2)∂y +∂ϕ

)
, (C.8c)

Q0 = ∂ϕ. (C.8d)

Moreover,Φ= i
p

2e−iτ/
√

1+ y2 and λ= e iϕ+arctan(y).
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C.2.3 Black hole coordinates

Let (T,Y ,θ,ψ) be the global coordinates. The NHEK line element is

d s2
N HEK = 2M 2 Γ(θ)

[
−(−1+Y 2)dT 2 + dY 2

−1+Y 2
+dθ2 +γ2(θ)

(
dψ+Y dT

)2
]

,

(C.9)

and the generators of its isometry group are

H+ = e−T

p
−1+Y 2

(
Y ∂T + (−1+Y 2)∂Y −∂ψ

)
, (C.10a)

H0 = ∂T , (C.10b)

H− = eT

p
−1+Y 2

(
Y ∂T − (−1+Y 2)∂Y −∂ψ

)
, (C.10c)

Q0 = ∂ψ. (C.10d)

Moreover,Φ=p
2eT /

p
−1+Y 2 and λ= e iψ−i arctanh(Y ).

C.3 SL(2,R) covariant basis

C.3.1 Basis for 1-forms

We define a basis for 1-forms by demanding LH+µ= 0 =LH0µ. One has that

µ1 = γ2(θ)Q̂0 − 1p
2

1

Γ(θ)
ΦH+, (C.11a)

µ2 = (
1−γ2(θ)

)
Q̂0 + 1p

2

1

Γ(θ)
ΦH+, (C.11b)

µ3 = dθ

γ(θ)
, (C.11c)

µ4 = dΦ

Φ
. (C.11d)
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C.3.2 Basis for 2-forms

We define a basis for 2-forms by demanding LH+w = 0 and LH0 w = w . One has

that

w 1 =Φ µ4 ∧µ3, (C.12a)

w 2 =Φ µ1 ∧µ3, (C.12b)

w 3 =Φ γ2(θ)Q̂0 ∧µ3, (C.12c)

w 4 =Φ dQ̂0, (C.12d)

w 5 =Φ Q̂0 ∧µ4, (C.12e)

w 6 =Φ µ2 ∧µ1. (C.12f)

Moreover, they obey the following properties

d w i = 0 ∀i 6= 3, ?d w 3 = 1p
2

Φ2

Γ2(θ)
ΦH+, (C.13a)

?w 1 =−w 6, ?w 2 =−w 5, ?w 3 =−w 4. (C.13b)

C.3.3 Automorphism of the SL(2,R)×U (1) algebra

There is a large automorphism group of the SL(2,R)×U (1) algebra which allows

us to change basis while preserving the commutation relations (C.3). Continuous

automorphisms are parametrized by complex (α,β,γ,δ) and given by

H+ → e−γ [
(1+αβ)2H++2β(1+αβ)H0 +β2H−

]
, (C.14a)

H0 →α(1+αβ)H++ (1+2αβ)H0 +βH−, (C.14b)

H− → eγ
[
α2H++2αH0 +H−

]
, (C.14c)

Q0 → δQ0. (C.14d)

The rescaling of Q0 parametrized by δ can be absorbed into a rescaling of the angle

φ and we do not consider it any further. Note that when α = −β−1, eγ = β2, δ = 1

and in the limit β→ 0 one finds the discrete automorphism given by

H± → H∓, H0 →−H0, Q0 →Q0. (C.15)
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Appendix D

Solutions to force-free

electrodynamics in NHEK space-time

D.1 Relevant ordinary differential equations

In this section we list the five ordinary differential equations whose solutions are

present in section 5.5.4.

During the resolution of the three coupled nonlinear ODEs in θ as described

in section 5.5, we encountered the following nonlinear ODE for X (θ;h,c1,c2):

h2X 2
[

X (γ′X ′−γX ′′)−γ(h −1)(c2
2 +X 2 +X ′2)

]
+γ2γ′X X ′

[
(h −1)c1 +hk X

]2

+γ3
[

(h −1)c1 +hk X
]{

(h −1)
[

hX 2 (c1 +k X )+ [
(h −2)c1 +hk X

]
X ′2

]
+X

[
(h −1)c1 +hk X

]
X ′′

}
= 0. (D.1)

In the case c1 6= 0, one might substitute X = c1X3 and define ξ≡ c2
2

c2
1

. Then all the de-

pendence in c1 factors out. We then obtain the differential equation for X3(θ;h,ξ)

which is listed below. This ODE was also found in Zhang, Yang, and Lehner (2014).

Upon setting c1 = 0 one gets another non-linear ODE. When c2 6= 0, h 6= 0, c2 can be

factored out of the equation upon a rescaling of X . We denote the resulting func-

tion as X = c2X 1/h
4 (θ;∆(h)). The ODE for X4 is listed below. When both c1 = c2 = 0

and h 6= 0 we find a linear ODE that we denote as X = X 1/h
1 (θ;∆(h)).

Recall that the unphysical region beyond the velocity of light surface lies in

the range θ∗ ≤ θ ≤ π−θ∗. In the following, we will assume that all functions X (θ)

together with their first derivatives are finite in the physical region 0 ≤ θ ≤ θ∗ and

π−θ∗ ≤ θ ≤π, i.e., X (θ) <∞, X ′(θ) <∞.

For the extreme Kerr black hole k = 1 and γ,Γ are given in (C.2). In particular

it is useful to note that γ(π−θ) = γ(θ), γ(0) = γ(π) = 0, γ′(0) = 1, γ′(π) =−1 where

θ = 0 is the north pole and θ = π is the south pole. Also, θ∗ = arcsin[
p

3−1] is the



184 Appendix D. Solutions to force-free electrodynamics in NHEK space-time

lowest positive root of γ(θ)−1. All numerical solutions will be plotted only for the

extreme Kerr black hole.

1) X1(θ;∆(h))

ODE1[X1;∆(h)] ≡ X ′′
1 + γ′

γ

k2γ2 +1

k2γ2 −1
X ′

1 +∆(h)X1 = 0, (D.2)

where∆(h) = h(h−1). This ODE appears only in solution (5.65). From the physical

requirement that there should not be any singular magnetic flux at the north and

south poles (see Eq. (D.33)), we impose the boundary condition X1(0) = X1(π) = 0.

The equation is invariant under the transformations h → 1−h which leaves

∆(h) invariant: that is X1(θ;h) = X1(θ;1−h). Moreover, the equation is invariant

under the reflection θ→π−θ so that if X1(θ) is a solution, so is X1(π−θ).1

For the special case ∆= 0, i.e. h = 0 or h = 1, the solution is

X1(θ;0) =C1 +C2
5sinθ+ sin3θ

19−16k2 +4(3+4k2)cos2θ+cos4θ
. (D.3)

However, regularity at the velocity of light surface implies C2 = 0 and X1(θ,0) is

therefore constant which we fix to 0 by the boundary condition X1(0) = 0. There is

therefore no solution.

In general, the differential equations have regular singular points at the zeros

of γ and k2γ2 −1 which are located at θo = 0,θ∗,π−θ∗,π. Indeed, for each root θo

we have

γ′

γ

γ2 +1

γ2 −1
= 1

θ−θo
+ regular terms. (D.4)

Therefore, Frobenius’ method is applicable. In the generic case, the solution reads

close to the pole θo as a linear superposition of the power series solutions (θ−
θo)λ± ∑

n=0 an(θ−θo)n where λ± are the two roots of the indicial equation. In case

of double roots, a logarithmic branch appears. Frobenius’ series converges in the

open complex disk that contains only one root.

In the range 0 ≤ θ ≤ θ∗ we could start the series from the north pole or the ve-

locity of light surface. Now, the indicial roots are 0 and 2 around the north pole

while there is a double root 0 around the velocity of light surface which leads to

a logarithmically divergent solution. One might however question whether such

1The function solution to this ODE was denoted as Sh(θ) or Sh,m=0(θ) in Lupsasca and Ro-
driguez (2015) but was not explicitly solved.
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a logarithmic divergence is admissible. After all, the geometry around the veloc-

ity of light surface will be modified significantly when considering the asymptot-

ically flat extension of the geometry. If the logarithmic divergence at the velocity

of light is acceptable, one can simply write an expansion close to the north pole

X1 ∼ a0θ
0 + a2θ

2 +O(θ4) with the boundary condition a0 = 1 and the choice of

normalization a2 = 1. The solution then exists for all (complex) values of h and is

defined by a power series expansion.
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FIGURE D.1: Solutions to ODE1[X1;∆(h)] for the first discrete values of the
parameter ∆(h) which obey the boundary conditions X1(0) = 0,
X1(θ∗) = 1.

If one removes the logarithmic branch, there is only one constant of integra-

tion which we fix by setting X1(θ∗;∆(h)) = 1. The solution then takes the form

X1(θ;∆(h)) = 1+ ∑
n≥1

an(h)(θ−θ∗)n , (D.5)

where the coefficients an(h) can easily be obtained. Now, the physical boundary

condition X1(0) = 0 will be obtained only for a discrete spectrum of ∆(h). The first

real values of∆(h) together with the plot of the solution X1(θ;∆(h)) in the physical

domain are given in Fig. D.1.

2) X2(θ;∆(h, q),c1)

ODE2[X2;∆(h, q),c1] ≡ X ′′
2 + γ′

γ
X ′

2 +
[
∆(h, q)− c1

γ2

]
X2 = 0, (D.6)

where ∆(h, q) = h(h − 1)+k2q2. This equation appears in (5.89) with c1 = q2, in

(5.66) with c1 arbitrary and in (5.67) with c1 = 0. The equation is invariant under

all transformations of h, q that leave ∆(h, q) invariant. In the axisymmetric case
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q = 0 and when c1 6= 0 we require from the analysis around (D.34) the boundary

condition X2(0) = X2(π) = 0.

Let us first analyze the simplest case c1 = 0. This ODE2 generalizes the one

written in Lupsasca and Rodriguez (2015) [see their Eq. (4.9)] for q arbitrary. We

concentrate on solutions which are symmetrical around the equator and there-

fore we only consider the interval θ = [0, π2 ]. After performing the substitution

x = sin2(θ), ODE2 takes the form of the generalized Heun’s equation

X ′′
2 + (α+β+1)x2 − (α+β+1+a(γ+δ)−δ)x +aγ

x(x −1)(x −a)
X ′

2 +
αβx −b

x(x −1)(x −a)
X2 = 0,

where

a = 2, b =−∆
2

, αβ=−∆
4

, α+β=−1

2
, γ= 1, δ= 1

2
. (D.7)

Frobenius’ method can be applied. There are poles at the north and south poles

and at the fake pole x = 2. One could therefore expand in a power series at the

north pole and it will converge over the region x ∈ [0,1[. It is important to note

that the equator x = 1 (θ = π
2 ) is not included in the radius of convergence so care

should be taken. At the north pole we find 0 as a double root of the indicial equa-

tion. Removing the logarithmically divergent branch, we get the following regular

convergent power series in the domain θ ∈ [0, π2 [:

X2(θ;∆(h, q)) =
∞∑

n=0
dn(∆(h, q))sin2n(θ). (D.8)

The solution (D.8) behaves close to the north pole as X2(0) = d0 where d0 is arbi-

trary (which we fix to 1 by linearity of the equation) and X ′
2(0) = 0. The coefficients

obey the second-order recurrence relation dn+1 = Andn +Bndn−1 with d1 =−∆
4 d0

and

An = 6n2 −∆
4(n +1)2

, Bn =−2(n −1)(2n −3)−∆
8(n +1)2

. (D.9)

Now, a numerical convergence analysis reveals that the series expansion does not

converge at the equator x = 1 unless ∆ = 0. We interpret this by the presence of

a source at the equator for generic values of ∆. In Fig. D.2, we plot X2(θ,∆(h, q))

obtained from the series expansion truncated to order 20 for some real values of

the parameter∆(h, q) (the value of the function around π
2 for∆ 6= 0 should be taken

with a grain of salt since the series does not converge there).
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FIGURE D.2: Solutions to ODE2[X2;∆(h, q);0] for different values of the parame-
ter ∆(h, q).

Let us now analyze the more general case c1 6= 0. 2 The ODE2 is still only sin-

gular at the zeros of γ, i.e., at points θ = 0,π. After performing the substitution

z = sin2(θ), the ODE2 takes the following form

X ′′
2 (z)+ z2 −6z +4

2z(z −1)(z −2)
X ′

2(z)+ (z −2)2c1 −4∆z

16z(z −1)
X2(z) = 0. (D.10)

This makes it clear that z = 0,1 are regular singular points so that Frobenius’s

method applies. The two solutions of the indicial equation at the north pole are

λ± = ±
p

c1
2 . In order to avoid oscillations at the poles we enforce c1 > 0 from now

on. Only the solution λ+ is admissible since otherwise the solution will diverge at

the north pole. In the special case where λ+−λ− is an integer q which inciden-

tally occurs for c1 = q2, one independent solution contains a logarithmic branch

which again diverges. Again in this case, only the solution which behaves as zλ+ is

admissible.

In all cases, the regular solution is given for c1 > 0 by

X2(z) = zλ+
∞∑

n=0
an zn , (D.11)

where a0 is an arbitrary constant and

a1 =− ∆

4(1+p
c1)

a0, (D.12)

a2 =
∆2 −4∆(1+p

c1)+3c1 + (2+ c1)
p

c1

32(2+ c1 +3
p

c1)
a0. (D.13)

2In the case c1 = q2 this equation was considered in Lupsasca and Rodriguez (2015); see their
Eq. (5.23).
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For n ≥ 2, we have am+1 = Am am +Bm am−1 +Cm am−2 where

Am = 6m(m +p
c1)−∆

4(m +1)(m +1+p
c1)

, (D.14)

Bm = 2∆−4(m −1)(2m −3)+ c1 +2(9−4m)
p

c1

16(m +1)(m +1+p
c1)

, (D.15)

Cm =− c1

32(m +1)(m +1+p
c1)

. (D.16)

We fix a0 = 1 without loss of generality. In the case c1 = 0, we recover the recur-

rence relation (D.8). From (D.11) we directly see that for all c1 > 0, the function X2

obeys the boundary condition X2(0) = X2(π) = 0. We again observe numerically

that the series (D.11) does not converge at the equator θ = π
2 unless c1 is fixed as a

definite function of ∆(h),

c1 = c1(∆(h)), (D.17)

which asymptotes to 0 for ∆ = 0 and to ∞ for ∆→ ∞. For example, for c1(10) ≈
4.90, c1(20) ≈ 8.48, c1(40) ≈ 15.02, c1(80) ≈ 27.23. In Fig. D.3, we plotted the power

series solution truncated to order 20 to ODE2[X2;∆(h, q) = 15,c1] for different val-

ues of the parameter c1. Note that the boundary condition X2(0) = 0 is true only

for c1 > 0.
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FIGURE D.3: Solutions to ODE2[X2;∆(h, q),c1] for ∆(h, q) = 15 and different val-
ues of c1.

In Fig. D.4, we studied the behavior of solutions (except at θ = π
2 ) to ODE2[X2;∆(h, q),c1 =

3] by varying ∆(h, q) at constant c1 = 3.
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FIGURE D.4: Solutions to ODE2[X2;∆(h, q);c1] for c1 = 3 and different values of
∆(h, q).

3) X3(θ;h,ξ)

ODE3[X3;h,ξ] ≡ h2X 2
3

[
X3(γ′X ′

3 −γX ′′
3 )−γ(h −1)(ξ+X 2

3 +X ′2
3 )

]
+γ2γ′X3X ′

3

[
(h −1)+hk X3

]2 +γ3
[

(h −1)+hk X3

]{
(h −1)

[
hX 2

3 (1+k X3)

+ [
(h −2)+hk X3

]
X ′2

3

]
+X3

[
(h −1)+hk X3

]
X ′′

3

}
= 0.

This ODE appears in solution (5.63). According to the discussion around (D.30)

we require the boundary condition X3(0) = X3(π) = 0.

When h = 0, the equation reduces to

∂θ
(
γ∂θ(X −1

3 )
)= 0. (D.18)

When h = 1, the equation reduces to ODE1[X3(θ),∆= 0], therefore

X3(θ,h = 1,ξ) = X1(θ;∆= 0). (D.19)

We will not solve this nonlinear ODE here. When h 6= 0,1, the equation was con-

sidered in Zhang, Yang, and Lehner (2014); Lupsasca and Rodriguez (2015) and

solved in Zhang, Yang, and Lehner (2014) for the case h =−1.

4) X4(θ;∆(h))

ODE4[X4;∆(h)] ≡ X ′′
4 + γ′

γ

k2γ2 +1

k2γ2 −1
X ′

4 +∆(h)X4 + ∆(h)

1−k2γ2
X

h−2
h

4 = 0, (D.20)

where ∆(h) = h(h −1) which we can rewrite as

ODE1[X4;∆(h)]+ ∆(h)

1−k2γ2
X

h−2
h

4 = 0. (D.21)
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This ODE appears in solution (5.64). According to the discussion around (D.32)

we require the boundary condition X4(0) = X4(π) = 0.

We will not solve this nonlinear ODE here. Note that when h = 2 the equation

becomes linear with a nonhomogenous term.

5) X5(θ;h, q)

X ′′
5 + γ′

γ

[
1− 2h(h −1)γ2

(1−k2γ2)(∆(h, q)γ2 −q2)

]
X ′

5 +
[
∆(h, q)− q2

γ2

]
X5 = 0, (D.22)

where ∆(h, q) = h(h −1)+k2q2. This linear ODE appears in solution (5.61).

It admits the symmetries

X5(θ;h, q) = X5(θ;1−h, q) = X5(θ;h,−q) = X5(θ;1−h,−q). (D.23)

We note the special cases

X5(θ;h, q = 0) = X1(θ,∆(h)), (D.24)

X5(θ;h = 0, q) = X2(θ;∆= k2q2, q2), (D.25)

X5(θ;h = 1, q) = X2(θ;∆= k2q2, q2). (D.26)

Since the ODE for X1 was analyzed previously we concentrate on q 6= 0 only. 3

There are always two regular singular points in the range 0 ≤ θ ≤ π
2 : first at

θ = 0 (north pole), and then at θ = θ∗ = arcsin(
p

3−1) (velocity of light surface).

When h is real and for q 6= 0, there is a regular singular point at the real root of

∆γ2 = q2 which is always in the range 0 ≤ θ ≤ π
2 . There is also an imaginary root

which obeys sinθ ≥
√

1
2 (7+p

33) ≈ 2.52 (bound reached at h = 1
2 , q = 1) so it is

irrelevant for discussing convergence in the interval 0 ≤ sinθ ≤ 1.

The two independent solutions behave close to θ = 0 as θq and θ−q , while they

behave close to θ = θ∗ as log(θ−θ∗) and (θ−θ∗)0. If one only insists in having a

solution smooth at the north (and south) poles, a solution always exists but it will

be generically logarithmically divergent at the velocity of light surface. In order to

avoid singularities, we need to interpolate between the solutions θq (we assume

q > 0) at θ = 0 and (θ−θ∗)0 at θ = arcsin(
p

3−1). This involves a shooting method

which will discretize the possible values of h as a function of q . We then normalize

the solution with X5(θ∗) = 1. There is therefore no more free continuous constant

of integration. In the range 0 ≤ h ≤ 1 and q > 0 the other singularities are not in

the range between the north pole and the velocity of light surface. For h ≥ 1 and

3This ODE was also found in Lupsasca and Rodriguez (2015); see their Eq. (3.29) where X5 is
denoted as Sh,m . Our analysis of the ODE however slightly differs.
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h ≤ 0, they are but we checked that the indicial equation around the real pole and

imaginary pole has exponents 0 and 2 so an interpolating function between the

velocity of light surface and the north pole will be smooth. The regular solutions

for the first four real values of h are depicted on Fig. D.5 for q = 1.
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FIGURE D.5: Solutions to ODE5[X5;h; q = 1] for q = 1 and different values of h
such that X5(0) = 0.

D.2 Properties of all highest-weight solutions

In this section, we analyze the properties of all solutions listed in section 5.5.4. In

particular, for each vector potential we compute and list its field strength and its

current. These properties constitute the ID card of each solution. We also com-

pute the canonical Euler potentials (for definitiveness in Poincaré coordinates)

defined in section 5.3. We finally check for regularity of the solutions at the poles

in order to derive the relevant boundary conditions for the ODEs that the solutions

depend on.

We recall the definitions ∆(h) = h(h −1) and ∆(h, q) = h(h −1)+k2q2.

(h, q)-eigenstates

There are two classes of solutions with arbitrary nonvanishing highest-weight h

and U (1)-charge q , describing stationary and nonaxisymmetric field configura-

tions.
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Poincaré magnetic

A(h,q) =Φhλq
[

X5µ
2 − i qγ(1−k2γ2)

q2 −∆(h, q)γ2
X ′

5µ
3
]

F(h,q) = hΦh−1λq
[

γX ′
5

q2 −∆(h, q)γ2

(
− i q(1−k2γ2)w 1 + (1−h)kγ2w 2 − w 3

k

)
+X5(w 4 −w 5)

]
J(h,q) =−Φhλq hk

[
X5 + 2(1−h)γγ′

(1−k2γ2)(q2 −∆(h, q)γ2)
X ′

5

]
ΦH+p

2Γ2

where X5 = X5(θ;h, q). Since the current keeps its direction upon changing h, q ,

one might linearly superpose solutions with different h, q . The current J(h,q) and

its complex conjugate (J(h,q))
∗ are proportional to each other. Then, we can obtain

a real solution by adding up the vector potential A(h,q) and its complex conjugate.

We do not consider the trivial case h = 0, because it gives no field strength

F = 0. For h = 1, q 6= 0 the solution exists and the function X5 becomes X5(θ;1, q) =
X2(θ,k2q2, q2). In the case q = 0, h 6= 0,1, we recover the Poincaré magnetic solu-

tion (5.65) after using the identity X5(θ;h,0) = X1(θ;h).

In order to get physical insight, it is useful to derive the functional expression

of Euler potentials. We only consider Poincaré coordinates and q 6= 0. The field

strength describes a stationary and Q0-eigenstate configuration with i∂T F = 0 and

d f = 0 according to the analysis of section 5.3. Therefore it takes the form (5.34)

with

ψ(R,θ) = X5

Rh
, ∂θψ2(R,θ) =−i q

(
1−k2γ2

q2 −∆(h, q)γ2

)
X ′

5

X5
(D.27)

The Euler potential ψ is singular at the Poincaré horizon R = 0, unless h is neg-

ative. In the special case h = 1 and q 6= 0, we can easily integrate ψ2 and obtain

ψ2(θ) =− i
q ln(X5)+const.

Poincaré generic

A(h,q) =Φhλq
[

h(h −1)X2µ
1 −kq2X2µ

2 + i kqγX ′
2µ

3
]

F(h,q) =Φh−1λq h

[
γX ′

2(i kqw 1 − (h −1)w 2)+

+X2

(
−k2q2 + (h −1)2

k
w 4 +kq2w 5 + i (h −1)qw 6

)]
J(h,q) =Φhλq hk

Γ
X2

[
(h −1)2γ2Q̂0 +kq2ΦH+p

2Γ
− i q(h −1)µ4

]
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where X2 = X2(θ;∆(h, q),c1 = q2).

The case h = 0 is trivial since F = 0. The current is not proportional to its com-

plex conjugate, unless for the special cases q = 0 or h = 1 or h = 1+ iµ for any

real µ. The case q = 0 coincides with the solution (5.67) and it will be analyzed

below. The case h = 1 actually coincides with the solution (5.61) for h = 1. It was

just analyzed in the previous subsection. The third class is an independent real

solution.

In the generic case q 6= 0, h 6= 0,1, the field strength describes a stationary

and Q0-eigenstate configuration with i∂T F 6= 0. The canonical Euler potentials in

Poincaré coordinates can therefore be written as (5.22) where

χ1(R,θ) = h(h −1)
X2

Rh−1
, χ2(R) =− i kq

h −1

1

R
, κ(e i qΦχ1) = 0. (D.28)

(h 6= 0, q = 0)-eigenstates

Poincaré generic

A(h,0) = ch
1Φ

h
[
−X h−1

3 µ1 +X h
3 µ

2 ±
√
ξX h−1

3 µ3
]

, c1 6= 0

F(h,0) = ch
1Φ

h−1X h−2
3

[
±h

√
ξX3w 1 +γ((h −1)+hk X3)X ′

3w 2 − h

kγ
X ′

3X3w 3+

+
(
hX3 + (h −1)

k

)
X3w 4 −hX 2

3 w 5
]

J(h,0) = ch
1Φ

h X h−2
3

[
(h −1)A(θ;h,ξ)Q̂0 −hX3

hξ/Γ− A(θ;h,ξ)

γ2

ΦH+p
2Γ

∓ h(h −1)
√
ξ

Γ
X3µ

3 ± h(h −1)
√
ξ

γΓ
X ′

3µ
4
]

where A(θ;h,ξ) is given by

(Γ[γ2(h −1+hk X3)2 −h2X 2
3 ])A(θ;h,ξ) =

X3[h2ξ−γ2(h −1+hk X3)][−hX3 +kγ2(h −1+hk X3)]

+2hγX3(h −1+hk X3)γ′X ′
3 −h(h −1)γ2X ′2

3 , (D.29)

where X3 = X3(θ;h,ξ). In the case h,c1 ∈ R and ξ ≥ 0, the expression of the vec-

tor potential A(h,0) is real. For h = 1, we get the Poincaré generic solution (5.74)

[because X3(θ,1,ξ) = X1(θ;0) = constant].
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The Euler potentials for this stationary and axisymmetric configuration fall in

the category (5.4) where in Poincaré coordinates

ψ(R,θ) =
(

c1X3

R

)h

, I (ψ) =∓hc1

√
ξψ

h−1
h , Ω(ψ) = c1

h −1

h
ψ− 1

h (D.30)

Since 2πψ(R,θ) is the magnetic flux through the loop of revolution defined by

(r,θ), the requirement of having no singular magnetic flux at the north and south

poles is equivalent to the boundary conditions X3(0) = X3(π) = 0.

These potentials allow us to recognize the solution as the one described in

Zhang, Yang, and Lehner (2014) upon identifying their quantities in terms of ours

as

α=−h, f (θ) = (c1X3)h , g (θ) = h −1

h

1

X3
, C = c1

h −1

h
, D =± c1

2π

√
ξ.

Poincaré magnetic

A(h,0) = ch
2Φ

h
[

X4µ
2 ±X

h−1
h

4 µ3
]

F(h,0) = ch
2Φ

h−1
[
±hX

h−1
h

4 w 1 +kγX ′
4w 2 − 1

kγ
X ′

4w 3 +hX4(w 4 −w 5)

]
J(h,0) = ch

2
Φh

Γ

[
h(h −1)X

h−2
h

4 Q̂0 −k X4
C (θ;h)

γ(k2γ2 −1)

ΦH+p
2Γ

∓h(h −1)X
h−1

h
4 µ3

± h(h −1)

γ
X

− 1
h

4 X ′
4µ

4
]

where C (θ;h) is given by

C (θ;h) = hγ
(
(h −1)X −2/h

4 −1
)
− 2γ′X ′

4

X4
+hk2γ3. (D.31)

Since ∂T F = 0, the Euler potentials for this stationary and axisymmetric con-

figuration are given by (5.4) where in Poincaré coordinates

ψ(R,θ) =
(

c2

R

)h

X4, I (ψ) =∓hc2ψ
h−1

h , Ω(ψ) = 0 (D.32)

Since 2πψ(R,θ) is the magnetic flux through the loop of revolution defined

by (R,θ), the requirement of having no singular magnetic flux at the north and

south poles is equivalent to the boundary conditions X4(0) = X4(π) = 0. In turn,

regularity of the current at the poles then requires h ≥ 2.
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Poincaré magnetic

A(h,0) =Φh X1µ
2

F(h,0) =Φh−1
[

kγX
′
1w 2 − 1

kγ
X

′
1w 3 +hX1(w 4 −w 5)

]
J(h,0) =Φh−1 2kγ′X ′

1 +hkγX1(1−k2γ2)

(−1+k2γ2)γΓ

ΦH+p
2Γ

where X1 = X1(θ;∆(h)). Currents with different values of h are collinear so one

might linearly superpose such solutions.

The Euler potentials for this stationary and axisymmetric configuration are

ψ(R,θ) = X1

Rh
, I (ψ) = 0, Ω(ψ) = 0 (D.33)

Since 2πψ(R,θ) is the magnetic flux through the loop of revolution defined by

(R,θ), the requirement of having no singular magnetic flux at the north and south

poles is equivalent to the boundary conditions X1(0) = X1(π) = 0.

Poincaré nontoroidal

A(h,0) =Φh X2

[
hµ1 ±p

c1µ
3
]

F(h,0) = hΦh−1X2

(
±pc1w 1 −γX ′

2

X2
w 2 − (h −1)

k
w 4

)
J(h,0) =Φh hX2

γ2Γ

[
kγ2[(h −1)γ2 − c1]Q̂0 + c1

ΦH+p
2Γ

∓ (h −1)γ2pc1µ
3

±γpc1
X ′

2

X2
µ4

]
where X2 = X2(θ;h,c1).

For h = 0 this solution has vanishing field strength so is pure gauge. For c1 = 0

we get a Poincaré electric and nontoroidal solution, which has the special property

to admit descendants solutions. The solution is real in Poincaré coordinates for

c1 ≥ 0, h ∈R.

Since iΦF = 0, the electromagnetic field in terms of Euler potentials takes the

special form (5.8) where in Poincaré coordinates,

χ(R,θ) = h
X2

Rh−1
, I (χ) =∓pc1χ (D.34)

We observe that in order to prevent singular line currents we need to enforce a

vanishing polar current I at north and south poles, which requires the existence of
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the boundary conditions X2(0) = X2(π) = 0 for c1 6= 0. For c1 = 0 the polar current

vanishes but the electrostatic potential χ is constant on the north and south poles.

(h = 0, q 6= 0)-eigenstates

Poincaré electric

A(0,q) =λq e±∫ q
γdθ

µ1,

F(0,q) =λq e±∫ q
γdθ

(
∓qw 1 + 1

k
w 4 + i qw 6

)
J(0,q) =λq k

Γ
e±∫ q

γdθ
[
−(q2 +γ2)Q̂0 + i q(±qµ3 −µ4)

]
The field strength is singular at either the north or south pole depending upon the

sign. The solution might however be interesting if it is split at the equator with

regular north and south branches.

In terms of Euler potentials and in Poincaré coordinates, we are in the case

(5.22) where

χ1(R,θ) = Re±∫ q
γdθ, χ2(R,θ) = 0, κ(φ1) = 0 (D.35)

The vanishing of χ2 is related to the absence of magnetic field.

(h = 1, q 6= 0)-eigenstates

Poincaré electric - admitting descendants

A(1,q) =Φλq e±∫ q
γdθ

µ1

F(1,q) = qλq e±∫ q
γdθ(∓w 2 + i w6)

J(1,q) =Φλq e±∫ q
γdθ kq2

Γ
(−Q0 ± iµ3)

The field strength is again singular at either the north or south pole depending

upon the sign. The solution might however be interesting if it is split at the equa-

tor with regular north and south branches. The direction of the current does not

depend upon q and therefore one can linearly superpose solutions with different

q’s. The solution admits descendants.

In terms of Euler potentials and in Poincaré coordinates, we are again in the

case (5.22) where

χ1(θ) = e±∫ q
γdθ, χ2(R,θ) = 0, κ(φ1) = 0 (D.36)



D.2. Properties of all highest-weight solutions 197

(h(q) =±i kq, q 6= 0)-eigenstates

The two following classes of solutions feature a charge-dependent weight h.

Poincaré generic

A(h(q),q) =Φhλq e s2
∫ dθ

γ

(
i kqµ1 + i qµ2 + s2µ

3
)
, s2 =−1 or 1

F(h(q),q) = i kqΦh−1λq e s2
∫ dθ

γ

(
±s2w 1 − s2w 2 + 1

k
w 4 ∓ i qw 5 + i qw 6

)
J(h(q),q) =Φhλq kq

Γ
e s2

∫ dθ
γ

(
[∓q + i k(q2 −1)−k(i ±kq)γ2]Q̂0

+ [±kq − i (q2 −1)

γ2
]
(ΦH+p

2Γ
±µ4

)
± i s2µ

3
)

The solution is pure gauge when q = 0. In terms of Euler potentials and in Poincaré

coordinates, we are in the case (5.22) where

χ1(R,θ) = i kq

Rh−1
e s2

∫ dθ
γ , χ2(R) =∓ 1

R
, κ(φ1) = 0 (D.37)

Poincaré generic

A(h(q),q) =Φhλq
[

kµ1 +µ2
]

F(h(q),q) =Φh−1λq
(
w 4 + i kq(∓w 5 +w 6)

)
J(h(q),q) =Φhλq k

Γ
(±q + i kγ2)

(
(i ±kq)Q0 + q

γ2

(
∓ΦH+p

2Γ
−µ4

))
In terms of Euler potentials and in Poincaré coordinates, we are in the case

(5.22) where

χ1(R) = k

Rh−1
, χ2(R) =± 1

R
, κ(φ1) = 0 (D.38)

(h(q) = 1± i kq, q 6= 0)-eigenstates

Poincaré generic - null

A(h(q),q) =Φhλq
[

ha1(θ)µ1 ± i qa1(θ)µ2 ±γa′
1(θ)µ3

]
F(h(q),q) = hΦh−1λq

[
γa′

1(θ)(±w 1 −w 2)+ i qa1(θ)(∓w 5 +w 6)
]

J(h(q),q) =Φhλq (1± i kq)[q2a1 −γ∂θ(γa′
1)]

γ2Γ

(
kγ2Q̂0 − ΦH+p

2Γ
∓µ4

)
where a1(θ) is an arbitrary function. It is a null solution (FµνFµν = 0). The current

is nonvanishing for q 6= 0. Indeed, the current vanishes when a1(θ) obeys a′′
1 +

γ′
γ

a′
1 − q2

γ2 a1 = 0. After a closer look at this differential equation, we conclude that
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a solution is given by X2(θ;∆(h(q), q) = 0,c1 = q2). The constraint ∆(h(q), q) = 0

however implies q = 0 in contradiction to our assumption q 6= 0.

In terms of Euler potentials and in Poincaré coordinates, we are in the case

(5.22) where

χ1(R,θ) = ha(θ)

Rh−1
, χ2(R) =± 1

R
, κ(φ1) = 0 (D.39)

(h = 1, q = 0)-eigenstates

Poincaré nontoroidal - null

A(1,0) =Φ
[

a1(θ)µ1 ±
√

c3 + [γa′
1(θ)]2µ3

]
F(1,0) =±

√
c3 + [γa′

1(θ)]2w 1 −γa′
1(θ)w 2

J(1,0) =Φ
∂θ(γa′

1)

Γ

[
−kγQ̂0 + ΦH+p

2Γ
± a′

1√
c3 + [γa′

1(θ)]2
µ4

]

It is a null solution (FµνFµν = 0). This class of solutions does not overlap with the

class above. The current is vanishing when ∂θ(γa′
1) = 0, i.e., when a1 = c2+

∫ c1
γ dθ,

where c1 and c2 are two real constants. Regularity fixes c1 = 0 so only constant a1

solutions obey Maxwell’s equations.

In terms of Euler potentials, the field strength reads as (5.8) where

χ(R,θ) = a1(θ), I (χ) =∓
√

c3 + [γχ′]2 (D.40)

We see that we need c3 = 0 in order to have a regular configuration (no polar cur-

rent on the θ = 0 axis). We also impose that a1(θ) must be regular at the poles.

(h = 0, q = 0)-eigenstates

Poincaré generic - admitting descendants

A(0,0) =
(
c1 + c3

∫
dθ

γ

)
µ1

F(0,0) =Φ−1
(
−c3w 2 +

c1 + c3
∫ dθ

γ

k
w 4

)
J(0,0) =−kγ2

Γ

(
c1 + c3

∫
dθ

γ

)
Q0

The solution with c3 6= 0 is singular at the poles. Indeed,∫
dθ

γ
= cos(θ)

2
+ ln

[
tan

(θ
2

)]
. (D.41)
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Therefore we fix c3 = 0. The solution then becomes electric without toroidal fields.

In fact, it is just the maximally symmetric solution. It is related to (5.75) by a gauge

transformation.
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Appendix E

Spherical harmonics, multipole

moments and surface charges

E.1 Notation and conventions

Throughout this appendix, we use the conventions in Thorne (1980). We adopt

geometric units, G = 1, c = 1, and Minkowski metric with mostly plus signature,

η= diag(−1,+1,+1,+1), to raise and lower space-time indices. Space-time indices

are denoted by Greek letters, while spatial indices are denoted by Latin letters.

Multi-index tensors are abbreviated as

TAl ≡ Ta1a2...al . (E.1)

Round brackets stand for symmetrization T(ab) = 1
2 (Tab+Tba), while squared brack-

ets stand for antisymmetrization T[ab] = 1
2 (Tab −Tba). The unit radial vector in

the xi direction is denoted as ni = xi /r , where r = |x| = √
x2 + y2 + z2, and NAl =

na1 . . .nal . The transverse projection tensor Pi j = δi j −ni n j is used to construct

the transverse (T) part of a tensor field

[Ta1a2...al ]T = Pa1a′
1
Pa2a′

2
. . .Pal a′

l
Ta′

1a′
2...a′

l
. (E.2)

The transverse-traceless (TT) part of a rank-two tensor field is defined as

[Ti j ]T T = Pi aP j bTab −
1

2
Pi j (PabTba) . (E.3)

The symmetric-transverse-traceless (STT) part of a tensor field of rank-two [Ti j ]ST T

is the symmetric part of [Ti j ]T T . Finally, we denote by capital script letters those
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tensor fields that are fully symmetric and trace-free (STF):

TAl ≡ [TAl ]ST F =
[l/2]∑
n=0

anδ(a1a2 . . .δa2n−1a2n Sa2n+1...al ) j1 j1... jn jn ,

an = (−1)n l !(2l −2n −1)!!

(l −2n)!(2l −1)!!(2n)!!
,

(E.4)

where S Al = [TAl ]S is the fully symmetric tensor field constructed from TAl . As an

explicit example of a tensor of rank-2, one has Ti j = [Ti j ]S − 1
3δi j Tkk .

E.2 Spherical harmonics

In this Appendix, we recall the definitions and the main properties of spherical

harmonics used throughout this thesis and strictly necessary for our computation.

We refer the reader to Thorne (1980) for further properties.

E.2.1 Scalar spherical harmonics

The pure-orbital scalar spherical harmonics Y l m(θ,φ) are eigenfunctions of the

squared orbital angular momentum operator L2, which is defined as the angular

part of the Laplacian operator ∇2 in spherical coordinates (r,θ,φ):

∇2 = 1

r 2

∂

∂r

(
r 2 ∂

∂r

)
− L2

r 2
, L2 =−

[
1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+ 1

sin2θ

∂2

∂φ2

]
. (E.5)

The minus sign in the definition of L2 is taken in order to have positive eigenvalues

l (l +1). Explicitly, the pure-orbital scalar spherical harmonics are given by

Y l m(θ,φ) =C lme i mφP lm(cos(θ)), (E.6)

where P l m(x) are the associated Legendre polynomials

P lm(x) = (−1)m (
1−x2)m/2 d mP l (x)

d xm
, (E.7)

and C lm are the normalization factors

C l m = (−1)m

√
2l +1

4π

(l −m)!

(l +m)!
. (E.8)

Scalar spherical harmonics are orthonormal on the two-sphere S2

∫
Y lmȲ l ′m′

dΩ= δl l ′δmm′ , (E.9)
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where Ȳ lm = (−1)mY l −m is the complex conjugate of Y l m and dΩ= sinθdθdφ.

Any smooth scalar function f (θ,φ) can be expanded either in pure-orbital scalar

spherical harmonics with complex coefficients or in terms of tensor product of l

unit radial vectors with STF-l tensor coefficients:

f (θ,φ) =
∞∑

l=0

m=l∑
m=−l

F lmY l m =
∞∑

l=0
FAl NAl . (E.10)

In the main text we sometimes switch between Y lm and Ylm for the ease of nota-

tion.

For practical applications, it is convenient to expand functions in terms of the

real spherical harmonics Y m
l which we define in terms of standard complex spher-

ical harmonics Ylm as

C lmY m
l ≡


ip
2

(Yl ,m − (−1)mYl ,−m) m < 0,

Yl ,0 m = 0,
1p
2

(Yl ,−m + (−1)mYl ,m) m > 0.

(E.11)

Note that we have removed the normalization factor for the real harmonics. For

example, the first few real harmonics will be

Y 0
0 = 1, Y 1

1 = x

r
, Y −1

1 = y

r
, Y 0

1 = z

r
. (E.12)

E.2.2 Vector spherical harmonics

The pure-spin vector spherical harmonics of magnetic (B−), electric (E−) and ra-

dial (R−) type are defined as (Thorne, 1980)

B Yl m = 1p
l (l +1)

i LY lm = n×E Ylm , (E.13a)

E Yl m = 1p
l (l +1)

r∇Y lm =−n×B Yl m , (E.13b)

R Yl m = nY lm . (E.13c)

Here, ∇ is the Euclidean gradient operator, L = −i r×∇ is the orbital angular mo-

mentum operator, and n is the unit radial vector. The B- and E-type vector spher-

ical harmonics are defined for l ≥ 1 and are identically zero for l = 0. All of them

are orthonormal, i.e.,∫
J Ylm · J ′Ȳl ′m′

dΩ= δJ J ′δl l ′δmm′ , ∀J = B , E , R (E.14)
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where J Ȳlm = (−1)m J Yl −m is the complex conjugated.

The B- and E-type are transverse, while the R-type is radial:

n · B Ylm = 0, n · E Ylm = 0, n · R Ylm = Y lm . (E.15)

A useful property of the pure-spin vector spherical harmonics is their divergence

∇· B Yl m = 0, ∇· E Ylm =−
√

l (l +1)
Y l m

r
, ∇· R Ylm = 2

Y l m

r
. (E.16)

The magnetic type pure-spin vector spherical harmonics are eigenvectors of L2,

while the electric and radial type are not. Explicit computations give

L2 B Ylm = l (l +1) B Ylm , (E.17a)

L2 E Ylm = l (l +1) E Ylm −2
√

l (l +1) R Ylm , (E.17b)

L2 R Ylm = (l (l +1)+2) R Ylm −2
√

l (l +1) E Ylm . (E.17c)

The STF version of the pure-spin vector spherical harmonics are obtained by in-

serting the decomposition of the scalar spherical harmonics Y lm in terms of STF-l

tensorsYl m
Al

(defined in Eq. (2.12) of Thorne, 1980), Y l m =Ylm
Al

NAl , in the defining

equations (E.13). The result is given by Thorne (1980)

B Y lm
i =

√
l

l +1
εi pq npY

l m
q Al−1

NAl−1 , (E.18a)

E Y lm
i =

√
l

l +1

[
Yl m

i Al−1
NAl−1

]T
, (E.18b)

R Y lm
i = niY

lm
Al

NAl . (E.18c)

For completeness, we also write the STF version of the pure-orbital vector spherical

harmonics that are eigenvectors of L2 with eigenvalues l ′(l ′+1) and l ′ = (l −1, l , l +
1):

Y l−1,lm
i =

√
l

2l +1
Ylm

i Al−1
NAl−1 , (E.19a)

Y l ,lm
i =−i

√
l

l +1
εi pq npY

l m
q Al−1

NAl−1 , (E.19b)

Y l+1,lm
i =−

√
2l +1

l +1

[
niY

lm
Al

NAl −
(

l

2l +1

)
Yl m

i Al−1
NAl−1

]
. (E.19c)
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Any spatial vector field vi can be expanded either in pure-spin vector harmonics

or in pure-orbital vector harmonics:

vi =
∞∑

l=0

l∑
m=−l

R l m R Y l m
i +

∞∑
l=1

l∑
m=−l

(
B lm B Y lm

i +E lm E Y l m
i

)
, (E.20a)

=
∞∑

l=0
niRAl NAl +

∞∑
l=1

(
εi pq npBq Al−1 NAl−1 +

[
Ei Al−1 NAl−1

]T
)

, (E.20b)

from which one deduces, by using the STF decomposition of the pure-spin vector

harmonics in Eqs. (E.18), the relations between the STF coefficients and the vector

harmonic coefficients (Thorne, 1980)

BAl =
√

l

l +1

l∑
m=−l

B lmYlm
Al

, (E.21a)

EAl =
√

l

l +1

l∑
m=−l

E lmYlm
Al

, (E.21b)

RAl =
l∑

m=−l
R lmYlm

Al
. (E.21c)

E.2.3 Tensor spherical harmonics

The pure-spin tensor spherical harmonics are defined as (Thorne, 1980)

L0Tlm = n⊗nY lm , (E.22a)

T 0Tlm = 1p
2

PY lm , (E.22b)

E1Tlm =
√

2

l (l +1)
r
[

n⊗∇Y lm
]S

, (E.22c)

B1Tlm =
√

2

l (l +1)

[
n⊗ i LY lm

]S
, (E.22d)

E2Tlm =
√

2
(l −2)!

(l +2)!
r 2

[
∇∇Y lm

]ST T
, (E.22e)

B2Tlm =
√

2
(l −2)!

(l +2)!
i r

[
∇LY lm

]ST T
. (E.22f)

The longitudinal (L0) and transverse (T0) spin-0 tensor harmonics are defined for

l ≥ 0, the E1- and B1-type spin-1 tensor harmonics for l ≥ 1, and the transverse



206 Appendix E. Spherical harmonics, multipole moments and surface charges

and traceless (E2 and B2) spin-2 tensor harmonics for l ≥ 2. All of them are or-

thonormal, in the sense that∫
Tr

(
JSTl m J ′S′

T̄l ′m′)
dΩ= δJ J ′δSS′δl l ′δmm′ , (E.23)

where JK T̄lm = (−1)m JK Tl −m is the complex conjugated. Pure-spin tensor har-

monics obey the following directional properties

n · L0Tl m = R Yl m , n · T 0Tl m = 0, n · E1Tlm = 1p
2

E Ylm , (E.24a)

n · B1Tl m = 1p
2

B Ylm , n · E2Tl m = 0, n · B2Tlm = 0. (E.24b)

The trace of the pure-spin tensor harmonics read as

Tr
(

L0Tlm
)
= Y l m , (E.25a)

Tr
(

T 0Tlm
)
=p

2Y l m , (E.25b)

Tr
(

JSTlm
)
= 0, JS = (E1,E2,B1,B2) (E.25c)

and their divergence is given by

∇· L0Tlm = 2
R Yl m

r
, (E.26a)

∇· T 0Tlm = 1p
2

[√
l (l +1)

E Yl m

r
−2

R Ylm

r

]
, (E.26b)

∇· E1Tlm = 1p
2

[
3

E Ylm

r
−

√
l (l +1)

R Ylm

r

]
, (E.26c)

∇· B1Tlm = 3p
2

B Ylm

r
, (E.26d)

∇· E2Tlm =−
√

(l +2)!

2(l −2)!

1

l (l +1)

E Ylm

r
, (E.26e)

∇· B2Tlm =−
√

(l +2)!

2(l −2)!

1

l (l +1)

B Ylm

r
. (E.26f)



E.2. Spherical harmonics 207

The STF version of the pure-spin tensor spherical harmonics are derived in

Eqs. (2.39) of Thorne (1980)

L0T lm
i j = ni n jY

lm
Al

NAl , (E.27a)

T 0T lm
i j = 1p

2
Pi jY

lm
Al

NAl , (E.27b)

E1T lm
i j =

√
2l

l +1

(
n(iY

lm
j )Al−1

NAl−1 −ni n jY
lm
Al

NAl

)
, (E.27c)

B1T lm
i j =

√
2l

l +1
n(iε j )pq npY

l m
q Al−1

NAl−1 , (E.27d)

E2T lm
i j =

√
2(l −1)l

(l +1)(l +2)

[
Yl m

i j Al−2
NAl−2

]T T
, (E.27e)

B2T lm
i j =

√
2(l −1)l

(l +1)(l +2)

[
npεpq(iY

lm
j )q Al−2

NAl−2

]T T
. (E.27f)

It is useful to notice that the pure-spin tensor spherical harmonics of type E2 and

B2 are proportional to the TT part of the following pure-orbital tensor spherical

harmonics (Thorne, 1980)

T 2 l−2,lm
i j =

√
(l −1)l

(2l −1)(2l +1)
Yl m

i j Al−2
NAl−2 , (E.28a)

T 2 l−1,l m
i j = i

√
2(l −1)l

(l +1)(2l +1)
npεpq(iY

lm
j )q Al−2

NAl−2 , (E.28b)

that are eigenfunctions of the squared angular momentum operator L2 with eigen-

values l ′(l ′+1) with l ′ = l −2 for T 2 l−2,lm
i j and l ′ = l −1 for T 2 l−1,lm

i j . These pure-

orbital tensor harmonics can be rewritten as linear combination of pure-spin ten-

sor harmonics as follows (Thorne, 1980):

T 2 l−2,l m
i j =

√
(l −1)l

(2l −1)(2l +1)
L0T l m

i j −
√

(l −1)l

2(2l −1)(2l +1)
T 0T lm

i j

+
√

2(l −1)(l +1)

(2l −1)(2l +1)
E1T lm

i j +
√

(l +1)(l +2)

2(2l −1)(2l +1)
E2T l m

i j , (E.29a)

T 2 l−1,l m
i j = i

√
l −1

2l +1
B1T lm

i j + i

√
l +2

2l +1
B2T lm

i j . (E.29b)
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E.3 Proofs

E.3.1 The linearised radiating configuration (4.13) in terms of spher-

ical harmonics

The linearised perturbation hµν in Eqs. (4.13) can alternatively be expanded in

terms of scalar, vector and tensor harmonics as follows

h00 =
∞∑

l=0

l∑
m=−l

2

l !

l∑
k=0

1

2k k !

(l +k)!

(l −k)!

(l−k)I l m(u)Y lm

r k+1
, with I 1m ≡ 0, (E.30a)

h0 j =
∞∑

l=1

l∑
m=−l

4l

(l +1)!

l∑
k=0

1

2k k !

(l +k)!

(l −k)!

(l−k)Slm(u) B Y lm
j

r k+1
+ (E.30b)

−
∞∑

l=2

l∑
m=−l

4

l !

l−1∑
k=0

1

2k k !

(l −1+k)!

(l −1−k)!

(l−k)I lm(u)

r k+1

E Y lm
j +

√
l

l +1
R Y lm

j

 ,

hi j = h00δi j+ (E.30c)

−
∞∑

l=2

l∑
m=−l

8l

(l +1)!

l−1∑
k=0

1

2k k !

(l −1+k)!

(l −1−k)!

(l−k)Sl m(u)

r k+1

√
l −1

l +2
B1T lm

i j + B2T lm
i j

+
+

∞∑
l=2

l∑
m=−l

4

l !

l−2∑
k=0

1

2k k !

(l −2+k)!

(l −2−k)!

(l−k)I lm(u)

r k+1
×

×
√

2(l −1)l

(l +1)(l +2)
L0T l m

i j −
√

(l −1)l

(l +1)(l +2)
T 0T l m

i j +2

√
l −1

l +2
E1T lm

i j + E2T lm
i j

 .

The main elements of proof of the equivalence of STF tensor decomposition (4.13)

and the spherical harmonic decomposition (E.30) are presented below. The ex-

pression (E.30) has been useful in chapter 8.

The multi-index derivative of a STF-l tensor, which is function of the retarded

time u = t − r , can be expanded in terms of its derivatives as (Thorne, 1980)

∂Al

(
AAl (u)

r

)
= (−1)l

l∑
k=0

ckl

(l−k)AAl (u)NAl

r k+1
, ckl =

1

2k k !

(l +k)!

(l −k)!
(E.31)

where (l−k)AAl (u) is the (l−k)-th derivative of AAl (u) with respect to the retarded

time coordinate u. In particular, we have

∂Al

(
1

r

)
= (−1)l (2l −1)!!

r l+1
NAl . (E.32)

The relations between the STF-l coefficients (and their derivatives) and the har-

monic coefficients can be read from the STF-l version of the scalar, vector and
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tensor harmonics in Eqs. (E.10)-(E.18)-(E.27):

(l−k)IAl =
l∑

m=−l

(l−k)I lmYlm
Al

, (E.33a)

(l−k)Ij Al−1 =
√

l

l +1

l∑
m=−l

(l−k)I lmYlm
j Al−1

, (E.33b)

(l−k)Sj Al−1 =
√

l

l +1

l∑
m=−l

(l−k)Sl mYl m
j Al−1

, (E.33c)

(l−k)Ii j Al−2 =
√

2(l −1)l

(l +1)(l +2)

l∑
m=−l

(l−k)I lmYlm
i j Al−2

, (E.33d)

(l−k)Si j Al−2 =
√

2(l −1)l

(l +1)(l +2)

l∑
m=−l

(l−k)SlmYlm
i j Al−2

. (E.33e)

The proof then uses the definitions of the pure-orbital vector harmonics (Yl−1,l m ,Yl ,lm ,Yl+1,lm)

in Eqs. (E.19) and their relations with the pure-spin vector harmonics ( B Ylm , E Ylm , R Ylm)

in Eqs. (E.13). Along the same lines, we use the definitions of the pure-orbital ten-

sor harmonics (T2 l−1,lm ,T2 l−2,l m) in Eqs. (E.28) and their relations with the expres-

sions of the pure-spin vector harmonics (L0Tl m , T 0Tlm , B1Tlm , E1Tlm , B2Tlm , E2Tlm)

in Eqs. (E.29).

After tedious but straightforward algebra, we get the harmonic decomposition

in Eq. (E.30). Notice that the harmonic decomposition contains all the the degrees

of freedom of a spin-two symmetric tensor field, namely the pure-longitudinal

and the pure-transverse spin-zero modes (L0Tlm , T 0Tlm), the mixed transverse

and longitudinal spin-one modes (B1Tlm , E1Tlm), and the physical transverse and

traceless modes (B2Tlm , E2Tl m).

E.3.2 General residual transformations

We want to find the most general class of solutions to äηξ
µ = 0 in terms of scalar

and vector harmonics. We shall not use a Fourier transformation since linear

modes in t are important solutions. Let us start with the most general vector field

ξ decomposed in terms of scalar spherical harmonics Y lm and pure-spin vector

spherical harmonics (B Ylm , E Ylm , R Yl m),

ξ(t ,r,θ,φ) =
∞∑

l=0

l∑
m=−l

(
Slm(t ,r ) Y l m(θ,φ)∂0 +Rlm(t ,r ) R Y lm

i (θ,φ)∂i

)
+

+
∞∑

l=1

l∑
m=−l

(
Blm(t ,r ) B Y lm

i (θ,φ)+Elm(t ,r ) E Y lm
i (θ,φ)

)
∂i ,

(E.34)
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where the angular dependence is encoded in the spherical harmonics and the

time and radial dependence is encoded in the coefficients of the linear combi-

nation.

For definiteness, let us study the solutions to äηξ
0 = 0 in full detail. The har-

monic gauge condition amounts to the following partial differential equation for

the coefficients Sl m(t ,r )

r 2 (−∂2
t Slm +∂2

r Slm
)+2r∂r Slm − l (l +1)Slm = 0, (E.35)

where we used the property that L2Y lm = l (l +1)Y lm . Since ∂t is a Killing vector,

we can assume the separation of variables Slm(t ,r ) = flm(t )glm(r ). Then Eq. (E.35)

may be written as (we drop the labels l and m for ease of notation)

f (t )
[
r 2∂2

r g (r )+2r∂r g (r )− (
l (l +1)−ω2r 2)g (r )

]− r 2g (r )
[
∂2

t f (t )+ω2 f (t )
]= 0,

(E.36)

and it splits into two ordinary differential equations for f (t ) and g (r ):

∂2
t f (t )+ω2 f (t ) = 0, r 2∂2

r g (r )+2r∂r g (r )− (
l (l +1)−ω2r 2)g (r ) = 0. (E.37)

There are two classes of solutions that are qualitatively different:

1. Oscillatory modes (ω 6= 0). In this case the solution is a linear combination

of the spherical Bessel functions of the first and second kind

Slm(t ,r ) = e±iωt (c1 Jl (ωr )+ c2Yl (ωr )
)
; (E.38)

2. Zero modes (ω= 0). In this case the solution is expressed as linear combina-

tion of 4 modes:

Sl m(t ,r ) = (c1t + c2)r l + (c3t + c4)r−l−1. (E.39)

Outer symmetries are defined from the zero mode class alone. Moreover, the solu-

tion ∼ r−l−1 is a gauge mode which is discarded. We therefore focus our attention

to the class of solutions given by the linear combination of the regular solid scalar

harmonics r l Y lm

ξ0 = (c1t + c2)r l Y lm . (E.40)

The coefficients Blm in (E.34) obey the same constraint as in Eq. (E.35), be-

cause the vector harmonic B Ylm is an eigenvector of the operator L2. Hence, the

coefficients Blm are again given by the above form for Slm and the solutions of
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interest read as
Bξi = (c1t + c2)r l B Y l m

i . (E.41)

For the electric and the radial components of the vector field (E.34), the har-

monic gauge conditions are not satisfied independently. Therefore, we demand

that their linear combination is a solution to the D’Alembertian equation and we

find four linearly independent solutions:

Ylm
1 = c1t + c2p

2l +1

1

r l+2

(p
l E Yl m −

p
l +1 R Ylm

)
= c1t + c2p

(l +1)(2l +1)
∇

(
Y lm

r l+1

)
, (E.42a)

Ylm
2 = c1t + c2p

2l +1

1

r l

(p
l +1 E Ylm +

p
l R Yl m

)
= c1t + c2p

l (2l +1)

1

r 2l−1
∇(r l Y lm), (E.42b)

Ylm
3 = c1t + c2p

2l +1
r l−1

(p
l +1 E Ylm +

p
l R Ylm

)
= c1t + c2p

l (2l +1)
∇(r l Y l m), (E.42c)

Ylm
4 = c1t + c2p

2l +1
r l+1

(p
l E Yl m −

p
l +1 R Ylm

)
= c1t + c2p

(l +1)(2l +1)
r 2l+3∇

(
Y lm

r l+1

)
.

(E.42d)

Again the first two solutions are pure gauge and are discarded. The vector Ylm
1

is parallel to Ylm
4 and the vector Ylm

2 is parallel to Yl m
3 . The vectors Yl m

1 and Ylm
3

are manifestly solenoidal and irrotational, because they are proportional to the

gradients of solid harmonic functions. Instead, the divergence and the curl of Ylm
2

and Ylm
4 read as

∇·Ylm
2 =−(c1t + c2)(2l −1)

√
l

2l +1

Y l m

r l+1
, ∇×Ylm

2 =−(c1t + c2)(2l −1)

√
l +1

2l +1

B Yl m

r l+1
,

(E.43a)

∇·Ylm
4 =−(c1t + c2)(2l +3)

√
l +1

2l +1
r l Y lm , ∇×Ylm

4 = (c1t + c2)(2l +3)

√
l

2l +1
r l B Ylm .

(E.43b)

The vector field V in the main text is indeed the time independent part of Y4:

Vl m = 1p
(l +1)(2l +1)

r 2l+3∇
(

Y lm

r l+1

)
= 1p

2l +1
r l+1

(p
l E Yl m −

p
l +1 R Ylm

)
.

(E.44)

E.4 Canonical surface charges

In four-dimensional General Relativity, the infinitesimal canonical surface charge

associated to a vector field ξ and a linearised metric hµν around the background
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ḡµν is given by

kξ[h; ḡ ] =√−ḡ kµν
ξ

[h; ḡ ]
(
d 2x

)
µν , (E.45)

where
(
d 2x

)
µν = 1

4εµναβd xα∧d xβ and

kµν
ξ

= ξν (∇̄µh −∇̄σhµσ
)+ξσ∇̄νhµσ+ 1

2
h∇̄νξµ−hρν∇̄ρξµ+ α

2
hσν

(∇̄µξσ+∇̄σξµ
)

.

(E.46)

Here, the background metric is used to lower and to raise indices, e.g., hµν =
ḡµαḡνβhαβ and h = ḡµνhµν. The symbol ∇̄µ stands for the background covariant

derivative.

The corresponding linearised charges Qξ[h; ḡ ] associated to the vector field

ξ are obtained by integrating the space-time 2-form kξ over a two-dimensional

sphere S

Qξ[h; ḡ ] = 1

8πG

∫
S

kξ[h; ḡ ]. (E.47)

The parameter α reflects the ambiguity at adding a boundary form of the form

E ∼ (
d 2x

)
µν (δg )µα∧(δg ) να to the Lee-Wald symplectic form of Einstein gravity (Lee

and Wald, 1990). Forα= 0, one has the Iyer-Wald charge (Iyer and Wald, 1994) and

the Lee-Wald symplectic structure (Lee and Wald, 1990; Wald and Zoupas, 2000).

For α= 1, one has the Abbott-Deser (Abbott and Deser, 1982) or, equivalently, the

Barnich-Brandt charge (Barnich and Brandt, 2002) and the invariant symplectic

structure (Compère, 2007a; Barnich and Compère, 2008).

We take the background metric to be the Minkowski metric ḡµν = ηµν and we

adopt Cartesian coordinates (t , x, y, z) = (t , xi ). Background covariant derivatives

reduce to partial derivatives ∇̄µ = ∂µ. Simple algebra reduces Eq. (E.46) to the ex-

pression

2k [0i ]
ξ

= ξi (
∂ j h0 j − ḣ − ḣ00

)+ξ j (
ḣi j −∂i h0 j

)−ξ0 (
∂i h +∂i h00 −∂ j hi j

)+
+ 1

2
h

(
∂iξ

0 + ξ̇i
)
+h00ξ̇

i +h0i ξ̇
0 −h0 j∂ jξ

i −hi j∂ jξ
0+ (E.48)

+ α

2

[
h00

(
∂iξ

0 − ξ̇i
)
+h0 j

(
∂iξ j +∂ jξi

)−2h0i ξ̇
0 +hi j

(
∂ jξ

0 − ξ̇ j
)]

,

where ξi = ξi , but ξ0 = −ξ0. The dot stands for time derivative, i.e., ḣµν = ∂0hµν.

For higher curvature theories or for a large class of matter theories (see e.g. Iyer

and Wald, 1994; Compère, Murata, and Nishioka, 2009; Azeyanagi et al., 2009, for

the explicit expression of kξ).
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E.4.1 Coefficients of the surface charges

The coefficients appearing in (8.26a)-(8.26b)-(8.26c) are given by

CL (p, l ) =− 2

(l −1)!

√
l

l +1

2p−l

p !

(2l −p)!

(l −p +1)!
× (E.49a)

×
α

2
(l −1)(l −p +1)+ l (l −p +3)−2(p −1)+ (p −1)p

2

1−
√

2(l −1)

l +2

 ,

CK (p, l ) = 2

l !

2p−l

p !

(2l −p −2)!

(l −p +1)!
× (E.49b)

×
[

1

2

(2l −p +2)!

(2l −p −2)!
−

√
l (l −1)

2(l +1)(l +2)
p(p −1)

[
2+4l (1+2(l −p))+p(p −1)

]]
,

CP (p, l ) = 2

l !

2p−l

p !

(2l −p −2)!

(l −p +1)!

{
− l (2l −p)!

(2l −p −2)!
+ (1−δ1l )

√
l (l +1)× (E.49c)

×
2l −p(p +1)+ 2(l −p)

l +1

[
2(l 2 −2l −1)−α(2l +1)(l −1)

]+p(p −1)
2l +1

l +1

√
2(l −1)

l +2

}
.

For the sake of completeness, we write the charge associated to V = r l+1
(p

l E Yl m −p
l +1 R Ylm

)
.

It reads as

8πG Q l m
V =

l+1∑
p=1

CV (p, l )r p+1 (p)I lm(u), (E.50)

with the coefficient CV (p, l ) being

CV (p, l ) = 1

l !

2p−l

(p −1)!

(2l −p −1)!

(l −p +1)!
× (E.51)

×
[p

l +1(2l −p +1)(2l −p)− (1−δ1l )
p

l
[
p(p −8l −7)+4l (2l +3)+6− (2l +3)(l −p +1)α

]]
.

From (E.50), we clearly see that the associated charge is vanishing at spatial infin-

ity. Moreover, the surface integral in the near zone which could in principle corre-

spond to a multipole moment is also vanishing. Accordingly we have ignored this

vector in this thesis, although it might be important in more general theories of

gravity, as discussed in section 8.5.

E.4.2 Multipole charges of a harmonic gauge perturbation

The multipole charges discussed in this thesis are computed in canonical har-

monic gauge. As explained in section 8.2.3, the term “canonical” refers to the

extra conditions that are met by the metric configurations in addition to respect-

ing the harmonic or de Donder gauge. Assuming asymptotically flat boundary
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conditions, the canonical conditions amount to reaching mass-centred frame and

reaching (8.19). The purpose of this section is to investigate whether one can relax

the last condition (8.19).

To this end, we compute the variation of multipole charges Qξ under a vari-

ation in the metric of the form δζgµν = Lζηµν
1 that preserves de Donder gauge,

asymptotically flat boundary conditions and the mass-centred frame but violates

(8.19). The most general form of such vector is given in STF harmonics in Section

VIII Eq. (8.9) of Thorne (1980), while its spherical harmonic expansion turns out

to be

ζ0 =
∞∑

l=0

l∑
m=−l

(−1)l
l∑

k=0

1

2k k !

(l +k)!

(l −k)!

(
1

2
(l−k+1)K lm(u)− (l−k)D lm(u)

)
Y l m

r k+1
, (E.52a)

ζi =−1

2

∞∑
l=0

l∑
m=−l

(−1)l
l∑

k=0

1

2k k !

(l +k)!

(l −k)!
× (E.52b)

×
[

(l−k)K lm(u)

r k+2

(√
l (l +1) E Y lm

i − (k +1) R Y lm
i

)
−

(l−k+1)K lm(u) R Y l m
i

r k+1

]
+

− 1

2

∞∑
l=1

l∑
m=−l

(−1)l
[ l∑

k=0

1

2k k !

(l +k)!

(l −k)!

(l−k)N lm(u) B Y lm
i

r k+1
+

−
l−1∑
k=0

1

2k k !

(l −1+k)!

(l −1−k)!

(l−1−k)H lm(u)

r k+1

E Y l m
i +

√
l

l +1
R Y lm

i

]
.

The four components of the vector field ζµ are harmonic functions and depend

upon four arbitrary functions of the retarded time u. They must satisfy the same

behaviour as (8.27). We now compute the charge variationδζQξ = 1
8πG

∫
S kξ[Lζη;η]

where ξ is one of the multipole symmetries (8.9). Explicit computation shows that

the charges computed at a surface S of radius r are given by

8πG δζQ
lm
L = (−1)l (l −1)

√
l (l +1)

α

8

l∑
p=0

2p−l

p !

(2l −p)!

(l −p)!
r p (p+1)N lm , (E.53a)

8πG δζQ
lm
K =−(−1)l (l −1)l

l∑
p=0

2p−l

p !

(2l −p −2)!

(l −p −1)!
r p

[
2l +1p
l (l +1)

(p)H lm +(p+2) K lm
]

+8πG t δζQ
lm
P , (E.53b)

8πG δζQ
lm
P = (−1)l (l −1)l

l∑
p=0

2p−l

p !

(2l −p −2)!

(l −p −1)!
× (E.53c)

× r p
(
(α−2)(p+2)D l m +(p+3) K l m + α

2

2l +1p
l (l +1)

(p+1)H lm
)

.

1Note that δζgµν = Lζηµν+Lζhµν but the latter term is vanishing in linearised theory as both
ζ and hµν are infinitesimal.
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Now we send S to spatial infinity. As a result, all the charge variations vanish,

except the mass multipole charge variation δζQ
lm
K − tδζQ

lm
P , due to the function

H lm . These gauge transformations correspond to functions ζi = ∂iε with ε har-

monic.

For the sake of completeness, the charge associated to Vlm = r l+1
(p

l E Ylm −p
l +1 R Ylm

)
is given by

8πG δζQ
l m
V = 1

2
(−1)l

p
l +1

{ l+1∑
p=0

2p−l

p !

(2l −p +1)!

(l −p +1)!
r p

[
d(p, l ) (p)D lm(u)+k(p, l ) (p+1)K lm(u)

]
+

+
l+1∑
p=1

2p−l

p !

(2l −p +1)!

(l −p +1)!
h(p, l )r p (p−1)H lm(u)

}
, (E.54)

where

d(p, l ) =− 1

2(2l −p +1)

{
2+4l 3 +2l (6−5p)+2l 2(7−2p)+p(p −3)+ (E.55a)

+α[2+2l 3 + l 2(5−2p)+ l (p2 −4p +5)+p(p −3)]
}

,

k(p, l ) = 1

2
(l +2)[2(l +1)−p], (E.55b)

h(p, l ) = 1

4

√
l

l +1
(2l +3)

(
1− α

2

) p(p −1)

2l −p +1
. (E.55c)
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