
Faculté des Sciences
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Thèse présentée en vue de l’obtention du grade de Docteur en Sciences





Contents

Table of Contents i

Acknowledgements iii

Introduction v

Chapter 1. Categories and monoidal structures 1
1.1. Categories and limits 1
1.2. Monoidal structures 9
1.2.1. Monoidal categories and monoidal functors 9
1.2.2. Lax monoidal categories 13

Chapter 2. Partial actions of groups 19
2.1. The classical definition of partial group actions 19
2.2. A categorical interpretation of partial actions 20
2.2.1. Lax and quasi partial actions 20
2.2.2. Partial actions and spans 21

Chapter 3. Hopf algebras and their partial (co)actions 31
3.1. Algebras and coalgebras 31
3.2. Bialgebras and Hopf algebras 34
3.3. Modules and comodules 38
3.4. Partial actions and coactions of Hopf algebras 42
3.5. Partial representations and partial modules 49

Chapter 4. Geometric partial comodules over a coalgbra 53
4.1. Geometrically partial comodules 53
4.2. Partial comodule morphisms 63
4.3. Coassociativity 66
4.4. Completeness and cocompleteness of the category of

partial comodules 70

Chapter 5. Partial comodules over a Hopf algebra and
Hopf-Galois theory 81

5.1. The lax monoidal category of geometric partial comodules
over a bialgebra 81

i



ii CONTENTS

5.2. Partial comodule algebras 88
5.2.1. Algebras in the category of partial comodules 89
5.2.2. Partial comodules in the category of algebras 91
5.3. Partial Hopf modules and partial Hopf-Galois theory 94
5.3.1. Partial Hopf modules 94
5.3.2. Hopf-Galois theory 96

Bibliography 109



Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Joost
Vercruysse for his knowledge and experience in mathematics as well
as helpfulness and kindness, which give me a huge help in writing this
thesis and researching, especially when I am new to this branch of
mathematics.

Then I deeply thank another supervisor of mine, Prof. Sheng-Li
Tan, who gives me a lot of advices mainly during my master’s study
and provides me a good chance to study abroad, which is really an
unforgettable experience.

My sincere thanks also go to jury members for their time and com-
mitments.

Next, I thank all my friends including colleagues and officemates for
the great discussion of mathematics and for the great joy after work.
Due to space limit, I won’t list all of your names. Thank you very
much again.

Besides, I thank China Scholarship Council for the financial support
of 3 years and Van Buuren Foundation for the financial support of 3
months, which make me live more comfortable in Belgium.

Last but not least, I give my best thanks to my beloved parents for
always supporting me in doing what I am interested in, which gives me
a huge confidence and a light heart.

iii





Introduction

The coordinate algebras of algebraic groups provide classical exam-
ples of Hopf algebras and the interaction between Hopf algebra theory
and algebraic geometry that arises from this construction has showed
to be very fruitful for both worlds. One of the most fascinating exam-
ples of this interaction are the beautiful theorems of Deligne concerning
Tannaka-Krein duality and the reconstruction of an algebraic group out
of its category of representations, which correspond to the categories
of comodules over the associated Hopf algebra (see [23, 24]). With the
rise of quantum groups in the 80s of the 20th century, deformations of
Hopf algebras associated to algebraic groups have inspired the field of
non-commutative (algebraic) geometry, where non-commutative alge-
bras play the role of non-commutative spaces and (non-commutative,
non-cocommutative) Hopf algebras coacting on these algebras play the
role of symmetry groups of these spaces, see [39].

The aim of the present thesis is to introduce a new type of sym-
metries in (non-commutative) algebraic geometry, that correspond to
partial group actions.

It is well-known that (usual) actions of a (discrete) group G on a
k-algebra A are in correspondence with semi-direct product structures,
or smash product structures, on A ⊗ kG. In order to describe certain
algebras (such as Toeplitz algebras) as a generalized smash product,
the notion of a partial group action was introduced about 25 years ago
in the setting of C∗-algebras by Exel [31]. Roughly, a partial action
of a group G on an object X associates to each element of G an i-
somorphism between two appropriate subobjects of X. In case these
subobjects always coincide with the whole object X, the action is a
usual (or as we will call them from now on: global) group action. Im-
mediate examples of these partial actions can be obtained by restricting
a (global) action to an arbitrary subobject of X. Since its introduction,
this notion of partial group action, has been investigated from a purely
algebraic point of view where one considers partial actions of a group
on an algebra. Many interesting results have been obtained, such as
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vi INTRODUCTION

the globalization of partial actions [1, 3], relations between partial ac-
tions and groupoids [2], a generalized Galois theory where the Galois
groups act only partially on field extensions [29]. Closely related to
partial actions is the notion of partial representations, which unify in
some sense classical group representations and partial actions on alge-
bras. It has been shown that these partial representations are not only
interesting to study partial actions, but earn a place in classical rep-
resentation theory. The study of partial representations, rather than
classical ones, allows to probe deeper into the internal structure of the
group. Indeed the associated “partial group algebra” is not only deter-
mined by the group itself, but also by its lattice of subgroups, which
allowed to proof a partial version of the famous isomorphism problem
for group algebras, see [27], [28]. A survey of the known results about
partial actions and representations of groups can be found in [25, 26]

The above mentioned Galois theory for partial group actions was
given an interpretation in terms of Galois corings in [19], motivated by
the fact that such an interpretation exists for classical Galois theory
[44]. Moreover, the formulation of Galois theory in terms of corings
[17, 18, 30, 20] covers also many other (Galois) theories, such as
the Galois theory of rings [22] and Hopf-Galois theory [40]. From the
geometric point of view, the interest of Hopf-Galois extensions is that
they describe (non-commutative) principle bundles [43]. This inspired
Caenepeel and Janssen in [21] to bring partial actions from the setting
of groups to the setting of Hopf algebras and to unify partial Galois
theory with Hopf-Galois theory. This approach has shown to be very
successful in the sense that many classical Hopf-algebraic results appear
to have a partial counterpart [5, 7], and many results from partial group
actions were given a Hopf-algebraic counter part [6]. For an overview
of the results of partial actions in the setting of Hopf algebras we refer
to the review [14]

However, in this initial approach, several aspects of the theory re-
mained unclear. For example, the definition of Caenepeel and Janssen
only allowed to describe partial (co)actions of Hopf algebras on other
(co)algebras. It was not possible to define partial actions on vector
spaces nor to define partial actions of algebras other than Hopf alge-
bras. A next step was made in [9], where it was shown that, in analogy
with classical actions of Hopf algebras, partial actions can be viewed
as internal algebras in an appropriate monoidal category. However,
in contrast to the classical case, the monoidal category in play is no
longer the usual monoidal category of representations (or modules) of
the Hopf algebra H, but rather the category of partial representation-
s which coincides with the category of representations over a newly
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constructed Hopf algebroid Hpar. Lately, it was shown in [10] how par-
tial representations can be globalized and the partial representations
of Sweedler’s 4-dimensional Hopf algebra were completely classified.

A recent development in the theory of partial actions, is the ap-
proach of [42], where the initial theory of parial actions over C∗-
algebras is merged with the Hopf-algebra setting, in the study of partial
actions of C∗-quantum groups, which leads to a theory of partial action
of multiplier Hopf algebras [13].

Despite the above described success of the theory of partial actions
and coactions in the sense of Caenepeel and Janssen, it turns out that
if one studies partial actions of Hopf algebras that arise from algebraic
groups, the partial actions are not what one would expect. Indeed, it
was observed in [15] that a partial coaction of a Hopf algebra O(G),
which is the coordinate algebra of an algebraic group G, on an alge-
bra O(X), which is the coordinate algebra of an algebraic space X,
is always global unless X is a disjoint union of non-empty subspaces.
The spirit of partial actions would however also ask for more involved
examples, where the elements of the algebraic group G act as an iso-
morphism between arbitrary algebraic subspaces of X. Indeed, as we
mentioned before examples of partial actions can be constructed by
restricting global actions. If the algebraic group G acts (globally) on
an algebraic variety X, we expect that the same group acts partially
on arbitrary subvarieties of X. For a more concrete example, one could
consider two circles in the real plane intersecting in two points. From
the global point of view, such a configuration has only few symmetries.
Nevertheless, each of the individual circles has a lot of symmetries.
Partial actions allow to describe at once the (few) global symmetries of
the pair of circles, and the (many) symmetries of the individual circles,
as well as combinations of these.

To overcome this problem, we propose an alternative definition
of partial (co)actions of Hopf algebras, that we call geometric par-
tial (co)actions and that also allows us to bring partial action into
the realm of non-commutative geometry as the algebraic structure to
describe partial symmetries.

To arrive at this goal, we will first give a detailed study of partial
actions of groups on sets, and provide a new approach to these. This
approach is motivated by category theory, where partial morphisms
have an interpretation as spans where one of the legs is a monomor-
phism. Given any category C, one can build this way a bicategory of
partial morphisms, which is a full subbicategory of the category of s-
pans over C. A partial action of a group G on on object X is then
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noting else than a lax functor from G into the endo-hom category of
partial morphisms from X to X.

Based on this viewpoint, we generalize the notion of partial action
of a group to partial (co)actions of (co)algebras in arbitrary categories
with pullbacks (respectively pushouts). More precisely, given a coalge-
bra H in the monoidal category C, a partial comodule datum for H is a
quadruple (X,X •H, π, ρ), where π : X⊗H → X •H is an epimorphis-
m and ρ : X → X •H is a morhpism in C. By considering 3 levels of
strictness for the coassociativity condition on a given partial comodule
datum, we consider then 3 versions of partial comodules: quasi, lax
and geometric partial comodules. The name for the latter version is
motivated by the fact that the above mentioned examples of partial
actions of algebraic groups arise exactly as those ‘geometric partial co-
modules’. The initial partial actions of groups coincide with geometric
partial actions of groups, viewed as coalgebras in the opposite of the
category of sets. In case of arbitrary (Hopf) algebras, this new notion
covers the one of Caenepeel and Janssen, but allows to go beyond the
notion of partial actions and partial representations as discussed above.
Finally, our definition allows to consider partial (co)modules over arbi-
trary (co)algebras, where before it was only possible to consider such
structures over Hopf algebras (with bijective antipode).

Although partial comodules are only a laxified version of classical
comodules, they share surprisingly many properties with classical mod-
ules. In particular, we show that a version of the fundamental theorem
for comodules is still valid for geometric partial comodules and the
category of partial comodules is complete and cocomplete.

As we have mentioned before, one of the key features of Hopf alge-
bras, is that their categories of (co)modules have a natural monoidal
structure, inherited by the monoidal structure of the base category
wherein the considered Hopf algebra is defined. At this point the the-
ory of (geometric) partial modules becomes different from the global
theory. Indeed, although the category of quasi partial comodules over
a bialgebra can be shown to posses a monoidal structure, the more
interesting category of geometric partial comodules has only a oplax
monoidal structure [36]. By definition an oplax monoidal structure
requires the existence of n-fold tensor products, along with suitable
coherence conditions. Where the tensor product of global comodules
over a Hopf k-algebra is given by the tensor product of the underlying
vector spaces, the vector space tensor product of two geometric partial
comodules is in general no longer a geometric partial comodule. There-
fore, their tensor product is defined as the biggest geometric quotient
of the underlying vector space product.
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Using this oplax monoidal structure, one can give meaning to an al-
gebra in the category of geometric partial comodules. We discuss these
‘geometric partial comodule algebras’ and initiate a Hopf-Galois theory
for them, which allows us to consider ‘partially principle bundles’.

The thesis is organized as follows. In Chapter 1 we recall sever-
al basic notions and theorems in category theory that will be used
throughout the thesis. We also study the monoidal structures on cat-
egories and in particular, we present some new observations about lax
monoidal categories. In Chapter 2 we recall the classical definition of
partial group actions, then we give a categorical interpretation of them
by means of spans. We introduce the concepts of lax and quasi partial
actions. In Chapter 3 we recall the basics of the theory of Hopf alge-
bras. We refer to Caenepeel and Janssen’s definition of partial actions
and coactions of Hopf algebras and we point out that their definition
can not describe the partial actions on spaces that can not be decom-
posed as a disjoint union of subspaces, which, as mentioned above,
is one of the motivations of this thesis. To overcome this problem,
in Chapter 4 we introduce the concepts of quasi, lax, and geometric
partial comodules over coalgebras. We study the properties of them
and talk about the completeness and cocompleteness of the category
of partial comodules. Furthermore in Chapter 5, we focus on partial
comodules over Hopf algebras, we discuss the monoidal structures on
the category of geometric partial comudules over Hopf algebras. Final-
ly, we will mention the geometrically partial Hopf-Galois theory which
can be studied using our new notions.

Most of the original results in this thesis are contained the paper
[33].





CHAPTER 1

Categories and monoidal structures

In this chapter, we will recall the basic notions from category theo-
ry with a lot of examples. Of course, it is not our aim to reproduce the
content of excellent text books such as [16] and [38] to which we refer
the reader for further information, but we will focus on results that will
be needed in the further parts of this thesis. We will recall the follow-
ing results: The existence of limits is equivalent with the existence of
products and equalizers; A cocomplete category that is well-copowered
with a generator is complete. Then we focus on monoidal categories
and present some new observations about lax monoidal categories.

1.1. Categories and limits

Definition 1.1.1. A category C consists of the following data:

• a class Ob(C) of objects whose elements is usually denoted by

X, Y , Z... ;

• a class Hom(C) of morphisms whose elements is usually de-

noted by f, g, h... . Each morphism f has a source object X

and a target object Y . We write f : X → Y and say “f is a

morphism from X to Y ”. HomC(X, Y ) denotes the class of all

morphisms from X to Y ;

• for any three objects X, Y and Z, there exists a binary oper-

ation called the composition of morphisms:

◦ : HomC(X, Y )× HomC(Y, Z)→ HomC(X,Z), (f, g)→ (g ◦ f)

such that the following axioms hold:

• (associativity) for any objects X, Y, Z, U and morphisms f ∈
HomC(X, Y ), g ∈ HomC(Y, Z), h ∈ HomC(Z,U), we have:

h ◦ (g ◦ f) = (h ◦ g) ◦ f

• (identity) for every object X, there exists a morphism idX :

X → X called the identity morphism of X, such that for every

morphism f : X → Y and every morphism g : Z → X, we

1



2 1. CATEGORIES AND MONOIDAL STRUCTURES

have:

f ◦ idX = f, idX ◦ g = g

Remarks 1.1.2. (1) HomC(X, Y ) is usually written as Hom(X, Y ) for

short and idX is usually denoted by 1X or X itself, if no confusion

can be made.

(2) Ob(C) and Hom(C) are not necessarily sets. A category C is called

a small category if both Ob(C) and Hom(C) are sets. A locally

small category is a category such that for any two objects X and

Y , Hom(X, Y ) is a set.

Definition 1.1.3. Let C be a category and f : C → D a morphism in

C.
We call f a monomorphism if for any morphisms g, h : X → C with

f ◦ g = f ◦ h, it follows that g = h.

We call f an epimorphism if for any morphisms g, h : D → Y with

g ◦ f = h ◦ f , it follows that g = h.

We call f an isomorphism if there exists a morphism f−1 : D → C

such that f ◦ f−1 = idD, f
−1 ◦ f = idC .

Remarks 1.1.4. (1) If f is an isomorphism, then f−1 is unique.

(2) An isomorphism is a monomorphism and an epimorphism. Con-

versely, a morphism which is simultaneously a monomorphism and

an epimorphism is not necessarily an isomorphism. For example,

ring morphism Z→ Q.

Examples 1.1.5. (1) Category Set. Objects are sets and morphisms

are functions between them.

(2) Category Grp. Objects are groups and morphisms are group mor-

phisms between them. Similarly, we have the category of rings

Ring.

(3) Let R be a commutative ring, then RM denotes the category whose

objects are (left) R-modules and whose morphisms are morphisms

between R-modules. If R = k is a field, we obtain the category of

vector spaces Vectk.

(4) Let R be a non-commutative ring, we can also consider the category

of left R-modules RM, the category of right R-modules MR and

the category of R-bimodules RMR.

(5) Algk is the category of k-algebras with k-algebras morphisms be-

tween them.
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Here are some ways to construct new categories.

Examples 1.1.6. (1) Trivial category. It has only one element ? as

object and one morphism id? as morphism.

(2) Discrete category. Let X be a set, then we can construct a category

whose objects are elements in X and morphisms are identity mor-

phisms of each element. This category is called a discrete category.

(3) Dual category. Let C be any category, then Cop is the dual category

of C obtained by taking the same objects as in C and morphisms

HomCop(X, Y ) = HomC(Y,X).

(4) Let M be a monoid, i.e. a set with an associative binary operation

and an identity element. Then we can construct a category whose

object is one element ? and morphisms Hom(?, ?) = M .

As in category we have morphisms between two objects, let us intro-
duce “morphisms” between two categories, which are called functors.

Definition 1.1.7. Let C and D be two categories. A (covariant) func-

tor F : C → D consists of the following data:

• for every object X ∈ C, we have an object F (X) ∈ D;

• for every morphism f : X → Y in C, we have a morphism

F (f) : F (X)→ F (D) in D;

such that the following conditions hold:

• for any f ∈ HomC(X, Y ) and g ∈ HomC(Y, Z), we have

F (g ◦ f) = F (g) ◦ F (f)

• for every object X ∈ C, we have

F (idX) = idF (X)

Remarks 1.1.8. (1) A contravariant functor F : C → D is a covariant

functor F op : Cop → D. Most of the functors we will encounter are

covariant, therefore when we say functors, we will always mean

covariant functors unless we specify explicitly.

(2) F (X) and F (f) are sometimes written as FX and Ff for short.

There exists an obvious way of composing two functors. If F :
C → D and G : D → E are functors, then G ◦ F : C → E is a
functor, where (G ◦ F )(X) = G(F (X)) for every object X ∈ C and
(G ◦ F )(f) = G(F (f)) for every morphism f : X → Y in Hom(C).
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Definition 1.1.9. Consider a functor F : C → D between locally small

categories. For any two objects X, Y ∈ C, we have a map:

FX,Y : HomC(X, Y )→ HomD(F (X), F (Y )), FX,Y (f) = F (f)

The functor F is called:

• faithful if FX,Y is injective for any two objects X, Y ∈ C;
• full if FX,Y is surjective for any two objects X, Y ∈ C;
• fully faithful if FX,Y is bijective for any two objects X, Y ∈ C;
• an isomorphism of categories if F is fully faithful and F induces

a bijection on the classes of objects in C and D.

For contravariant functors, these notions are defined similarly.

Examples 1.1.10. (1) The identity functor 1C : C → C, where 1C(C) =

C for every object C ∈ C and 1C(f) = f for every morphism

f ∈ Hom(C).
(2) The constant functor cD : C → D, assigns to every object of C the

same fixed object D ∈ D and assigns to every morphism of C the

identity morphism of D.

(3) Forgetful functor. A category C is called a concrete category if

there exists a faithful functor U : C → Set. U is often called a

forgetful functor. Thus Grp, Ring, Vectk, and Algk are all concrete

categories, where the forgetful functor is to take the underlying sets

as objects and the same morphisms as functions between sets.

Similarly, functor such as U : Algk → Vectk which takes the un-

derlying vector spaces as objects, is also called a forgetful functor.

In other words, forgetful functors “forget” or “drop” some of the

original structures.

(4) Hom functor. Let C be a locally small category, for any objects

X and Y in C, we can define two Hom functors (or representable

functors) Hom(X,−) and Hom(−, Y ) from C to Set as follows.

Hom(X,−) maps each object C ∈ C to the set of morphism-

s Hom(X,C) and each morphism f : A → B to the function

Hom(X, f) : Hom(X,A) → Hom(X,B), where Hom(X, f)(g) =

f ◦ g.

Hom(−, Y ) maps each object C ∈ C to the set of morphism-

s Hom(C, Y ) and each morphism f : A → B to the function

Hom(f, Y ) : Hom(B, Y ) → Hom(A, Y ), where Hom(f, Y )(g) =

g ◦ f .
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Note that Hom(X,−) is covariant and Hom(−, Y ) is contravari-

ant.

(5) Tensor product functor. The tensor product − ⊗ − : Vectk ×
Vectk → Vectk, associates two vector spaces V and W with their

tensor product V ⊗W , which is covariant in both arguments.

Definitions 1.1.11. Let F,G : C → D be two functors. A natural

transformation α : F → G, assigns to every object C ∈ C a morphism

αC : F (C) → G(C) in D, such that for every morphism f : C → C ′,

the following diagram commutes:

F (C)
F (f)

//

αC
��

F (C ′)

αC′

��
G(C)

G(f)
// G(C ′)

We also say that morphism αC : F (C)→ G(C) is natural in C.

If αC is an isomorphism in D for every C ∈ C, we say that α : F →
G is a natural isomorphism.

Let C,D, E be categories, F,G : C → D and H,K : D → E be
functors, α : F → G and β : H → K be natural transformations.
Then there is a natural transformation

β ∗ α : H ◦ F → K ◦G
where (β ∗α)X = βG(X) ◦H(αX) = K(αX) ◦ βF (X), for every object

X ∈ C. We call this natural transformation the Godement product of
α and β.

Examples 1.1.12. (1) Let F : C → D be any functor. Then 1F :

F → F , defined by (1F )X = 1F (X) : F (X) → F (X) is the identity

natural transformation on F .

(2) Let X be a k-vector space. The canonical injection ι : X →
X∗∗, ι(x)(f) = f(x), for all x ∈ X and f ∈ X∗, induces a natu-

ral transformation ι : 1Vectk → (−)∗∗. If X is a finite dimensional

vector space, then ι is a natural isomorphism.

(3) Let C be a locally small category and f : X → Y be a morphism

in C. Then there is a natural transformation between the Hom

functors:

Hom(f,−) : Hom(Y,−)→ Hom(X,−)
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where for every object C ∈ C,

Hom(f, C) : Hom(Y,C)→ Hom(X,C), g → g ◦ f.

There is also a natural transformation between the Hom func-

tors:

Hom(−, f) : Hom(−, X)→ Hom(−, Y )

where for every object C ∈ C,

Hom(C, f) : Hom(C,X)→ Hom(C, Y ), g → f ◦ g.

(4) Let A,B be rings, M,N ∈ BMA be bimodules and f be a B − A
bilinear map. Then f ⊗A − : M ⊗A − → N ⊗A − is a natural

transformation.

Definition 1.1.13. Let F : Z → C be a functor. A cone on F is a

couple (C, cZ), consisting of an object C ∈ C and a morphism cZ : C →
FZ for every object Z ∈ Z, such that for any morphism f : Z → Z ′,

the following diagram commutes:

C
cZ′ //

cZ !!

FZ ′

FZ

Ff

OO

A morphism between two cones (C, cZ) and (D, dZ) on F is a mor-

phism f : C → D such that dZ ◦ f = cZ for every object Z ∈ Z.

A limit of F is a cone (L, lZ) such that for any other cone (C, cZ),

there exists a unique morphism u : (C, cZ) → (L, lZ) such that cZ =

lZ ◦ u, for every object Z ∈ Z. If it exists, the limit of F is unique up

to isomorphisms in C, and we denote it by limF = (L, lZ).

Cocones and colimits are defined dually by inversing the arrow of

the morphism cZ .

Examples 1.1.14. (1) Let Z be a discrete category. For any functor

F : Z → C, the limit limF , if it exists, is called the product of all

F (Z) ∈ C, Z ∈ Z, and the colimit colimF , if it exists, is called the

coproduct of all F (Z) ∈ C, Z ∈ Z.

(2) Let Z be a category of two objects X and Y with Hom(X,X) =

idX ,Hom(Y, Y ) = idY ,Hom(X, Y ) = {f, g},Hom(Y,X) = ∅. For

any functor F : Z → C, the limit limF , if it exists, is called the

equalizer of the pair (F (f), F (g)), and the colimit colimF , if it

exists, is called the coequalizer of the pair (F (f), F (g)).
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(3) Let Z be a category with only three objects labeled by 0,1,2, apart

from identity morphisms, there are only two morphisms among

them, denoted by a1 : 1 → 0 and a2 : 2 → 0. Let F be a functor

F : Z → C with F (a1) : A → C and F (a2) : B → C. Then

there is a bijective correspondence between cones on F and triples

(M,mA,mB), where M is an object in C, mA : M → A and mB :

M → B, such that F (a1) ◦ mA = F (a2) ◦ mB. If limF exists,

it is called the pullback of pairs (F (a1), F (a2)). We can define

pushout similarly by taking the contravariant functor G : Z → C
and colimG with G(a1) : C → A and G(a2) : C → B.

Definition 1.1.15. A category C is said to be (co)complete when every

functor F : Z → C has a (co)limit, where Z is a small category. A

category is bicomplete if it’s both complete and cocomplete.

We state a criterion without proof for (co)completeness.

Theorem 1.1.16. A category is (co)complete if and only if it has all

(small) (co)products and (co)equalizers.

Remark 1.1.17. Since the equalizers may be constructed from pull-

backs, a category is complete if and only if it has pullbacks and prod-

ucts. Similarly, a category is cocomplete if and only if it has pushouts

and coproducts.

Examples 1.1.18. (1) The categories of sets, groups and rings are

bicomplete.

(2) The categories of modules over algebras and comodules over coal-

gebras are bicomplete.

(3) The categories of finite sets, finite groups and finite vector spaces

are neither complete nor cocomplete.

Definition 1.1.19. Let C and D be two categories, L : C → D and

D : D → C be two functors. We say that (L,R) is a pair of adjoint

functors, or L is a left adjoint to R, or R is a right adjoint to L, if for

any objects C ∈ C and D ∈ D, there is an isomorphism:

θC,D : HomD(LC,D) = HomC(C,RD)

which is natural both arguments C and D.

If there is adjoint pair of functors between two categories C and D,

we say it is an adjunction and denote it by (L,R) : C � D.
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Theorem 1.1.20. Consider functors L : C → D and D : D → C.

Then there is a bijective correspondence between natural isomorphisms

θC,D which turns (L,R) into a pair of adjoint functors, and pairs of

natural transformation (η, ε):

ηC : C → RLC ; εD : LRD → D

which makes the following diagrams commute (in which ∗ is the

Godement product):

RD
ηRD // RLRD

(1R∗ε)D
��

RD

LC
(1L∗η)C// LRLC

εLC
��

LC

Remark 1.1.21. The natural transformation η and ε associated to an

adjoint pair (L,R) are called respectively the unit and counit of the

adjunction.

Examples 1.1.22. (1) A forgetful functor usually has a left adjoint

given by a“free object functor”. For example, the forgetful functor

U : Grp → Set has a left adjoint F : Set → Grp which assigns to

every set the free group on this set. Similarly, let k be a field, the

forgetful functor U : Vectk → Set has a left adjoint functor which

assigns to every set the free k-vector space over a set.

(2) Let ϕ : R → S be a ring morphism. This induces a functor

Fϕ :MS →MR from right S-module category to right R-module

category, which gives right S-modules a right R-module structure

by the formula:

m · r = m · ϕ(r), m ∈MS, r ∈ R

This functor has a left adjoint, given by −⊗R S :MR →MS.

(3) Let R, S be two rings and M a R − S-bimodule. Then the Hom

functor HomS(M,−) : MS → MR has a left adjoint − ⊗R M :

MR → MS. Note that the previous example is a special case of

this one.
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Definition 1.1.23. Let C and D be two categories. If there exists

two functors F : C → D and G : D → C, such that we have natural

isomorphisms FG ∼= 1D and GF ∼= 1F , we say that F and G induce an

equivalence of categories.

Theorem 1.1.24. Given a functor F : C → D, then F induces an

equivalence of categories if and only if one of the conditions holds:

(1) F is fully faithful and has a fully faithful left adjoint;

(2) F is fully faithful and has a fully faithful right adjoint;

(3) F has a left adjoint such that the unit and counit of the adjunction

are natural isomorphism;

(4) F has a right adjoint such that the unit and counit of the adjunction

are natural isomorphism;

(5) F is fully faithful and each object D ∈ D is isomorphic to an object

of the form FC with C ∈ C.

Examples 1.1.25. (1) Let R and S be two rings and M be a R− S-

bimodule. Consider the adjoint functors (− ⊗R M,HomS(M,−)).

These functors induces an equivalence of categories if and only if

M is finitely generated and projective as a right R-module.

1.2. Monoidal structures

1.2.1. Monoidal categories and monoidal functors.

Definition 1.2.1. A monoidal category is given by the data C =

(C,⊗, k, a, l, r) where

• C is a category;

• k is an object of C;
• − ⊗− : C × C → C is a functor;

• a : ⊗ ◦ (⊗× id)→ ⊗ ◦ (id×⊗) is a natural isomorphism;

• l : ⊗ ◦ (k × id)→ id is a natural isomorphism;

• r : ⊗ ◦ (id× k)→ id is a natural isomorphism. Thus we have

a family of isomorphisms:

aM,N,P : (M ⊗N)⊗ P →M ⊗ (N ⊗ P )

lM : k ⊗M →M ; rM : M ⊗ k →M
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such that the following diagrams commute for all objects M,N,P,Q ∈
C:

((M ⊗N)⊗ P )⊗Q
aM⊗N,P,Q//

aM,N,P⊗Q
��

(M ⊗N)⊗ (P ⊗Q)
aM,N,P⊗Q// M ⊗ (N ⊗ (P ⊗Q))

(M ⊗ (N ⊗ P ))⊗Q
aM,N⊗P,Q // M ⊗ ((N ⊗ P )⊗Q)

aM,N⊗P,Q

OO

(M ⊗ k)⊗N
aM,k,N //

rM⊗N ''

M ⊗ (k ⊗N)

M⊗lNww
M ⊗N

a is called the associativity constraint, l and r are called respectively

the left and right unit constraints of C. If a, l, r are identities, the

monoidal category C is called strict.

Examples 1.2.2. (1) ((Set),×, ?) is a monoidal category, where ? is

a fixed set with only one element;

(2) Let R be a commutative ring, then (RM,⊗, R) is a monoidal cat-

egory.

(3) Let G be a monoid. Then (kGM,⊗, k) is a monoidal category.

Definition 1.2.3. Let C andD be two monoidal categories. A monoidal

functor from C → D is a triple (F, ϕ0, ϕ) where

• F is a functor from C → D;

• ϕ0 : kD → F (kC) is a morphism in D;

• ϕ : ⊗ ◦ (F, F ) → F ◦ ⊗ is a natural transformation between

functors from C×C → D, thus we have a family of morphisms:

ϕM,N : F (M)⊗ F (N)→ F (M ⊗N)

such that the following diagrams commute for all objects M,N,P,Q ∈
C:

(F (M)⊗ F (N))⊗ F (P )
αF (M),F (N),F (P )//

ϕM,N⊗F (P )

��

F (M)⊗ (F (N)⊗ F (P ))

F (M)⊗ϕP,Q
��

F (M ⊗N)⊗ F (P )

ϕM⊗N,P
��

F (M)⊗ F (N ⊗ P )

ϕM,N⊗P
��

F ((M ⊗N)⊗ P )
F (aM,N,P )

// F (M ⊗ (N ⊗ P ))
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kD ⊗ F (M)
lF (M) //

ϕ0⊗F (M)
��

F (M)

F (kC)⊗ F (M)
ϕkC,M // F (kC ⊗M)

F (lM )

OO

F (M)⊗ kD
rF (M) //

F (M)⊗ϕ0

��

F (M)

F (M)⊗ F (kC)
ϕM,kC // F (M ⊗ kC)

F (rM )

OO

If ϕ0 is an isomorphism and ϕ is a natural isomorphism, we say F

is a strong monoidal functor. If ϕ0 and ϕM,N are identity morphisms

for all M,N ∈ C, we say F is a strict monoidal functor.

Examples 1.2.4. (1) Let k be a field. Consider the functor k− :

Set → Vectk, which assigns to a set X ∈ Set a k-vector space kX

with base X. For every map f : X → Y , the k-linear map kf is

given by:

kf(
∑
x∈X

axx) =
∑
x∈X

axf(x)

ϕ0 : k → k? given by ϕ0(a) = a? is an isomorphism.

ϕX,Y : kX ⊗ kY → k(X × Y ) is given by ϕX,Y (x ⊗ y) = (x, y)

for any x ∈ X, y ∈ Y .

Hence the functor k− is a strong monoidal functor.

(2) Let G be a monoid. The forgetful functor U : kGM → kM is

strong monoidal. Moreover, ϕ0 : k → U(k) = k and ϕM,N : U(M)⊗
U(N) = M ⊗N → U(M ⊗N) = M ⊗N are identity maps for all

M,N ∈ kGM, thus U is strictly monoidal.

(3) Hom(−, k) : Setop → kM is a monoidal functor.

Definition 1.2.5. Let C = (C,⊗, k, a, l, r) be a monoidal category. If

there exists a natural isomorphism

γ = (γX,Y : X ⊗ Y → Y ⊗X) : ⊗ → ⊗ ◦ τ

for all X, Y ∈ C, where τ is the flip functor, such that lX ◦ γX,k = rX
for all X ∈ C and the following two hexagonal diagrams commute for
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all X, Y, Z ∈ C:

X ⊗ (Y ⊗ Z)
γX,Y⊗Z// (Y ⊗ Z)⊗X

aY,Z,X

((
(X ⊗ Y )⊗ Z

aX,Y,Z
66

γX,Y ⊗1Z ((

Y ⊗ (Z ⊗X)

(Y ⊗X)⊗ Z aY,X,Z
// Y ⊗ (X ⊗ Z)

1Y ⊗γX,Z

66

(X ⊗ Y )⊗ Z
γX⊗Y,Z// Z ⊗ (X ⊗ Y )

a−1
Z,X,Y

((
X ⊗ (Y ⊗ Z)

a−1
X,Y,Z

66

1X⊗γY,Z ((

(Z ⊗X)⊗ Y

X ⊗ (Z ⊗ Y )
a−1
X,Z,Y

// (X ⊗ Z)⊗ Y
γX,Z⊗1Y

66

Then we call γ a braiding on C. A monoidal category with a braiding

is called a braided monoidal category.

If in addition, the braiding γ satisfies γY,X ◦ γX,Y = X ⊗ Y for all

X, Y ∈ C, then we call it a symmetry and the category a symmetric

monoidal category.

A monoidal functor F = (F, ϕ0, ϕ) : C → D between two monoidal

categories is called a braided monoidal functor if moreover, the following

diagram commutes for all X, Y ∈ C:

F (X)⊗ F (Y )
γF (X),F (Y )//

ϕX,Y

��

F (Y )⊗ F (X)

ϕY,X

��
F (X ⊗ Y )

F (γX,Y )
// F (Y ⊗X)

A braided monoidal functor between symmetric monoidal categories

is called a symmetric monoidal functor.

Examples 1.2.6. (1) Set is a symmetric monoidal category, where

the symmetry is given by the flip map γX,Y : X × Y → Y ×
X, γX,Y (x, y) = (y, x).

(2) Mk is a symmetric monoidal category, where the symmetry is given

by γX,Y : X⊗Y → Y ⊗X, γX,Y (x⊗y) = y⊗x (then linearly extend

it).
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(3) In general, there is no braiding on the category of A-bimodules

AMA.

1.2.2. Lax monoidal categories. A category C is called lax monoidal
[36] if

• for each n ∈ N there exists an n-fold tensor functor

⊗n : C × · · · × C︸ ︷︷ ︸
n

→ C;

• for each for each (k1, . . . , kn) ∈ Nn, there exists a natural trans-
formation

γk1,...,kn : ⊗n ◦ (⊗k1 × . . .×⊗kn)→ ⊗k1+...+kn

• there exists natural transformation

ι : idC → ⊗1,

that satisfy the following associativity and unitality conditions.

⊗n ◦ (⊗k1 × . . .×⊗kn) ◦ ((⊗`11 × . . .×⊗`1k1
)× . . .× (⊗`n1 × . . .×⊗`nkn )

⊗k1+...+kn ◦ ((⊗`11 × . . .×⊗`1k1
)× . . .× (⊗`n1 × . . .×⊗`nkn )

⊗n ◦ (⊗`11+...+`1k1
× . . .×⊗`n1+...+`nkn)

⊗`11+...+`1k1
+...+`n1+...+`nkn

γk1,...,kn∗id

uu
id∗(γ`11,...,`1k1×...×γ`n1,...,`nkn )

%%

γ
`11,...,`1k1

,...,`n1,...,`nkn

%% γ
`11+...+`1k1

,...,`n1+...+`nknuu

⊗n
id⊗n∗(ι,...,ι) // ⊗n ◦ (⊗1, . . . ,⊗1)

γ1,...,1

��
⊗n

⊗n
ι∗idιn // ⊗1 ◦ ⊗n

γn

��
⊗n

Remark that the last two conditions imply in particular that the functor
⊗1 is idempotent.

There is an obvious notion of oplax monoidal categories, where the
direction of the natural transformations γ and ι is reversed. If the
natural transformations γ and ι are invertible, then a lax monoidal
category is just a monoidal category.

A (lax) monoidal functor between lax monoidal categories is a func-
tor F : C → D that comes equipped with natural transformations

ζn : ⊗DnF n → F⊗Cn : Cn → D



14 1. CATEGORIES AND MONOIDAL STRUCTURES

for each n ∈ N, satisfying the following compatibility conditions with
γ and ι

⊗Dn (⊗Dk1
× . . .×⊗Dkn)F k1+...+kn

γ
k1,...,kn
D Fk1+...+kn

//

⊗n(ζk1
×...×ζkn )

��

⊗Dk1+...+kn
F k1+...+kn

ζk1+...+kn

��

⊗DnF n(⊗Ck1
× . . .×⊗Ckn)

ζn(⊗k1
×...×⊗kn )

��
F ⊗Cn (⊗Ck1

× . . .×⊗Ckn)
Fγ

k1,...,kn
C // F⊗Ck1+...+kn

F
FιC //

ιDF !!

F⊗C1

⊗D1 F
ζ1

<<

Similarly, a functor G : C → D is called oplax monoidal if there are
natural transformations

δn : F⊗Cn → ⊗DnF n Cn → D.

satisfying appropriate compatibility conditions with γ and ι.
The following result might be well-known, but as we didn’t found a

reference we state it and give a sketch of the proof, which is quite ele-
mentary, but because of notational problems becomes quite technical.
This result allows to construct many lax monoidal categories.

Theorem 1.2.7. (i) Let D be a lax monoidal category and consider

a pair (L,R) of adjoint functors

C
L // D
R

oo

then C is also a lax monoidal category such that R is a monoidal

functor and L is an opmonoidal functor.

(ii) Let D be an oplax monoidal category and consider a pair (L,R)

of adjoint functors

D
L // E
R

oo

then E is also an oplax monoidal category such that R is a monoidal

functor and L is an opmonoidal functor.
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Proof. We only give a sketch of the proof of part (i), the second

follows by duality.

Denote the n-fold tensor products in D by ⊗Dn and its associativity

and unity constraints by γD and ιD.

For any n-tuple (c1, . . . , cn) of objects in C, define the n-fold tensor

product in C as

⊗Cn(c1, . . . , cn) = R(⊗Dn (Lc1, . . . , Lcn)).

More precisely, the n-fold tensor product in C is defined as the following

composition of functors

⊗Cn = R ◦ ⊗Dn ◦ Ln : Cn → C.
Let us denote by η : idC → RL and ε : LR → idD the unit and

counit of the adjunction (L,R). For any n-tuple (c1, . . . , cn) in C, we

can consider the morphism

δc1,...,cnn = ε⊗n(Lc1,...,Lcn) : (1.1)

L⊗Cn (c1, . . . , cn) = LR⊗Dn (Lc1, . . . , Lcn)→ ⊗Dn (Lc1, . . . , Lcn)

which is natural in each of the entries ci, defining in this way for each

n ∈ N a natural transformation

δn = ε⊗Dn Ln : L⊗Cn = LR⊗Dn L→ ⊗DnLn : Cn → D.
Similarly, for each n-tuple (d1, . . . , dn) in D we put

ζd1,...,dn
n = R⊗Dn (εd1 , . . . , εdn) : (1.2)

R⊗Dn (LRd1, . . . LRdn) = ⊗Cn(Rd1, . . . Rdn)→ R⊗D (d1, . . . , dn)

which defines a natural transformation

ζn = R⊗Dn εn : ⊗CnRn = R⊗Dn (LR)n → R⊗Dn : Dn → C.
To define the associativity constraint of C, first remark that

⊗n ◦ (⊗k1 × . . .×⊗kn) = (R⊗Dn Ln) ◦ ((R⊗Dk1
Lk1)× . . .× (R⊗Dkn L

kn))

= R⊗Dn (LR)n(⊗Dk1
× . . .×⊗Dkn)Lk1+...+kn

We now define the associativity constraint γC of C as the following

composition

R⊗Dn (LR)n(⊗Dk1
× . . .×⊗Dkn)Lk1+...+kn R(⊗Dk1+...+kn

))Lk1+...+kn = ⊗Ck1+...+kn

R⊗Dn (⊗Dk1
× . . .×⊗Dkn)Lk1+...+kn

(ζn(⊗Dk1
×...×⊗Dkn )Lk1+...+kn )

((
(Rγ

k1,...,kn
D Lk1+...+kn )

66
γ
k1,...,kn
C //
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The unitality constraint of C is defined as the composition

ιC = (RιDL) ◦ η : idC → R⊗D1 L = ⊗C1 .
The associativity conditions for the lax monoidal structure on C

then follow directly from the naturality of ε and the associativity in D.

The unitality conditions in C follow from the unit-counit condition of

the adjunction (L,R) and the unitality conditions in D.

The monoidal structure on the functor R is given by (1.2), the

op-monoidal structure on L is given by (1.1). �

The previous proposition can be applied in particular to a monoidal
category category D and allows to produce in this way many natural
examples of (op)lax monoidal categories.

As an intermediate notion between lax monoidal categories and
monoidal categories, one can consider a monoidal category with lax
unit. This is a category C endowed with a monoidal tensor product
⊗ : C × C → C, endowed with an associativity constraint

αC,C′,C′′ : (C ⊗ C ′)⊗ C ′′ → C ⊗ (C ′ ⊗ C ′′)
which is a natural isomorphism that satisfies the usual pentagon con-
dition. A lax unit I for such an associative tensor product is an object
I in C such that for any C ∈ C there are natural transformations

`C : I ⊗ C → C, r : C ⊗ I → C

satisfying the usual compatibility constraints with α:

(C ⊗ I)⊗ C ′

''

αC,I,C′ // C ⊗ (I ⊗ C ′)

ww
C ⊗ C ′

The following is now an easy observation.

Lemma 1.2.8. If (C,⊗, I) is a monoidal category with lax unit, then

C is a lax monoidal category by defining

• ⊗0 = I, ⊗1 = idC, ⊗2 = ⊗;

• for all n > 2, ⊗n = ⊗ ◦ (id×⊗n−1);

• ι = id : idC → ⊗1;

• for all (k1, . . . , kn) ∈ Nn
0 , γk1,...,kn is canonically obtained from

combinations of α and identities and are therefore invertible;

• for any (k1, . . . , kn) ∈ Nn, where ki1 = . . . = kim = 0 (m < n),

γk1,...,kn is canonically obtained from combinations of `, r, α

and identities and are not invertible;
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Similarly, one introduces the notion of a monoidal category with an
oplax unit, which gives rise to an oplax monoidal category.





CHAPTER 2

Partial actions of groups

In this chapter, we will first recall the classic definition of partial
actions of groups. Then we will give a new result that characterizes
the partial actions of groups in terms of category of spans.

2.1. The classical definition of partial group actions

Let G be a group and X a set. A partial action datum of G on X
is a couple (Xg, αg)g∈G, where

• {Xg}g∈G, a family of subsets of X indexed by the group G;
• {αg : Xg−1 → X}g∈G a family of maps indexed by the group
G;

Recall from [31] that a partial action α of G on X is a partial action
datum (Xg, αg)g∈G that satisfies the following axioms

(PA1) Xe = X and αe = idX , where e denotes the unit of G;
(PA2) αg(Xg−1 ∩Xh) ⊂ Xg ∩Xgh;
(PA3) αh ◦ αg = αhg on Xg−1 ∩X(hg)−1 .

Remark that thanks to the second axiom (PA2), the third axiom (PA3)
makes sense, since

αh ◦ αg(Xg−1 ∩X(hg)−1) ⊂ αh(Xg ∩Xh−1) ⊂ Xhg ∩Xh

and

αhg(Xg−1 ∩X(hg)−1) ⊂ Xh ∩Xhg.

Furthermore, combining (PA2) and (PA3), we find that

Xg ∩Xgh = αg ◦ αg−1(Xg ∩Xgh) ⊂ αg(Xg−1 ∩Xh)

and therefore, we can deduce the stronger axiom

(PA2’) αg(Xg−1 ∩Xh) = Xg ∩Xgh.

If we take in particular h = e, then we find that αg(Xg−1) = Xg.
Moreover, since αg ◦αg−1(x) = x for all x ∈ Xg, we find that each map
αg induces a bijection αg : Xg−1 → Xg. This last fact is often supposed
as part of the definition of a partial action.

Many examples of partial actions have been observed in recent lit-
erature. It makes no sense to repeat them here, however, we will gave

19
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a few exemplary ones, which will make the transition to some of the
new results in this paper more easy.

Examples 2.1.1. (1) Consider a (global) action of the group G

on a set Y , and let X ⊂ Y be any (non-empty) subset of

Y . Then G acts partially on X, by defining Xg := {x ∈
X | g−1 · x ∈ X} and defining αg : Xg−1 → Xg, αg(x) = g · x.

(2) As a particular case of the previous one, we consider the fol-

lowing geometric example. Let G = (A2,+) be the group

of 2-dimensional affine translations. This group acts strictly

transitive on the affine plane A2. Consequently, this group

acts partially on any subset of A2. In one of the next sections,

we will discuss in more detail the case of the partial action of

this group on two intersecting lines.

(3) Consider the additive group Z. For any z ∈ Z with z ≥ 0 we

define its domain X−z = N and its action αz : Z → Z, x 7→
x+ z. On the other hand for each z < 0 we define its domain

X−z = {x ∈ Z | x ≥ −z} and its action αz : Z→ Z, x 7→ x+z.

Then one easily verifies this defines a partial action which is

obtained by restricting the action of Z on itself to N.

2.2. A categorical interpretation of partial actions

2.2.1. Lax and quasi partial actions. As we explained, the ax-
iom (PA2) in the definition of partial actions is designed to make sense
of axiom (PA3) which expresses the associativity. However, this axiom
can be weakened further.

Definition 2.2.1. Let G be a group, X a set and α = (Xg, αg) be

a partial action datum. We say that α is a lax partial action of the

following axioms hold

(LPA1) Xe = X and αe = idX , where e denotes the unit of G;

(LPA2) Xg−1 ∩ α−1
g (Xh−1) ⊂ X(hg)−1 .

(LPA3) αh ◦ αg = αhg on Xg−1 ∩ α−1
g (Xh−1).

Axiom (LPA2) tells that if x ∈ Xg−1 and αg(x) ∈ Xh−1 , then x ∈
X(hg)−1 and therefore axiom (LPA3) makes sense. As one can easily
verify, any partial action is a lax partial action and the converse holds
if and only if αg(Xg−1) ⊂ Xg. The following example shows that lax
partial actions are a proper generalization of partial actions.
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Example 2.2.2. This example is a variation of Example 2.1.1 (3).

Consider the additive group Z. For any z ∈ Z with z ≥ 0 we define its

domain X−z = Z and its action αz : Z → Z, x 7→ x + z. On the other

hand for each z < 0 we define its domain X−z = {x ∈ Z | x ≥ −z}
and its action αz : X−z → Z, x 7→ x+ z. Then one can verify that this

is indeed a lax partial action and moreover it is not a partial action,

since ρz : X−z → Xz = Z is not a bijection for any z < 0.

For sake of completeness, we also state another weakening of the
definition of partial action, which is, by our opinion, naturally the most
general version of a partial action.

Definition 2.2.3. Let G be a group, X a set and α = (Xg, αg) be a

partial action datum. We say that α is a quasi partial action of the

following axioms hold

(QPA1) Xe = X and αe = idX , where e denotes the unit of G;

(QPA2) αh ◦ αg = αhg on Xg−1 ∩ α−1
g (Xh−1) ∩X(gh)−1 .

Remark that in this definition, we ask associativity to hold exactly
there where both αh ◦ αg and αhg make sense. The following construc-
tion shows that quasi partial actions properly generalize lax and usual
partial actions.

Example 2.2.4. Let G be a group acting (globally) on a set X. For

any g ∈ G consider an arbitrary subset Xg ⊂ X and let αg : Xg−1 → X

be the restriction of the action of g on X. Then this defines a quasi

partial action of G on X.

2.2.2. Partial actions and spans. We will now reformulate the
definition of a partial action, making no explicit reference to the ele-
ments of the set or the group, but stating everything internally in the
category Set of sets. This way, the definition can be easily lifted to any
(monoidal) category (with pullbacks). As we will show, quasi and lax
partial actions arise naturally in this context.

Recall that in any category C, a span from X to Y is a triple
(A, f, g), where A is an object of C and f : A → X and g : A → Y
are two morphisms of C. If C has pullbacks and (A, f, g), (B, h, k) are
spans from X to Y and from Y to Z respectively, then one constructs
a new span, called the composition span, from X to Z by the following
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pullback construction:

P
p

��

q

  

??��

A
f

~~

g

��

B
h

��

k

��
X Y Z

which we will denote as (B, h, k)•(A, f, g). Given two spans (A, f, g), (B, h, k) :
X → Y , a morphism of spans α : (A, f, g) → (B, h, k) is a map
α : A→ B such that the following diagram commutes

A
f

~~
α

��

g

  
X Y

B
h

``

k

??

In this way, we obtain a bicategory Span (C), whose 0-cells are the
objects of C, 1-cells are spans and 2-cells are morphisms of spans. We
can also consider the (usual) category span(C), whose objects are the
objects of C and whose morphisms are isomorphism classes of spans.

In what follows, we will use the following variation on the usual
category of spans.

Definition 2.2.5. By a partial morphism from X to Y in a category

C, we mean a morphism (A, f, g) in the category Span (C), with the

additional property that f : A → X is a monomorphism. By Par(C)
we denote the subbicategory of Span (C), with the 0-cells as Span (C)
(and C), whose 1-cells are given by partial morphisms in C. By par(C)
we denote the corresponding subcategory of span(C).

Remark that the above definition of Par(C) makes sense since the
pullback of a monomorphism is a monomorphism. Moreover, if α, β :
(A, f, g)→ (B, h, k) are 2-cells in Par(C) then α = β since h ◦ α = f =
h◦β and h is a monomorphism. Hence Par(C) is locally a poset. In the
particular case of Par(Set), there is a morphism of spans α : (A, f, g)→
(B, h, k) if and only if A is a subset of B and g is the restriction of k
to A.

We will denote a partial morphism from X to Y by a dotted arrow

X // Y . When we consider a partial map as a triple (A, f, g), we
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will often omit to write explicitly the first map f , as it is an inclusion
and supposed to be known if we know the object A, ie. we will write
(A, f, g) = (A, g) = g.

Lemma 2.2.6. Let G be a group and X a set. Then there is a bijective

correspondence between

(1) partial action data of G on X;

(2) partial morphisms G×X → X;

(3) Maps G→ Par(X,X).

Proof. (1)⇔ (2). Let (Xg, αg)g∈G be a partial action datum of G

on a set X. Then we can construct the set

G •X = {(g, x) | x ∈ Xg−1} ⊂ G×X, (2.1)

which is the set of all “compatible pairs” in G×X. Clearly, the partial

action then induces a well-defined map α : G•X → X,α(g, x) = αg(x).

Hence we obtain a partial morphism G×X // X ,

G •XK k

ιX

yy

α

##
G×X // X

Conversely, consider any partial morphism α = (G•X, ι, α) : G×X →
X, where G•X is a subset of G×X, ι : G•X → G×X is the canonical

inclusion and α : G • X → X is a map. Then for any g ∈ G, we can

define Xg−1 = {x ∈ X | (g, x) ∈ G •X} and we recover formula (2.1).

(1)⇔ (3). Let (Xg, αg)g∈G be a partial action datum, then for any

g ∈ G we have that

Xg−1
N n

ιg

||

αg

""
X // X

where ιg : Xg → X is the canonical inclusion, is a partial endomorphism

of X which defines a map G→ Par(X,X). Conversely, any map G→
Par(X,X) gives in the same way a family (Xg, αg)g∈G, i.e. a partial

action datum. �

The natural question that now arises is what are the conditions on
a partial morphism α : G × X → X for the associated partial action
datum to become an actual partial action. A first naive guess would be
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to impose the usual associativity and unitality conditions of an action
expressed in the category par(C), or equivalently to impose that the
map G→ par(X,X) is a morphism of monoids (where the the later is
the endomorphism monoid of X in the (1-)category par(Set)). However,
as we will point out now, this leads to a global action.

Lemma 2.2.7. Let G be a group with multiplication m : G × G →
G, m(g, h) = gh and the unit e : {∗} → G, e(∗) = e. Consider a

partial action datum (Xg, αg)g∈G.

(1) the following assertions are equivalent

(i) The partial action datum satisfies axiom (PA1);

(ii) The associated partial morphism α : G×X → X satisfies

α • (e×X) ' X in Par(Set).

(iii) The associated map α′ : G → Par(X,X) preserves the

unit.

(2) The following assertions are equivalent

(i) The partial action datum defines a global action of G on

X;

(ii) The associated partial morphism α : G×X → X satisfies

the following identities in par(Set) (i.e. isomorphism of

spans)

α • (e×X) ' X

α • (G× α) ' α • (m×X)

(iii) The associated map α′ : G → Par(X,X) is a morphism

of monoids.

Proof. (1). Let us compute the composition of spans α • (e×X).

This leads to the following pullback

{∗} •X
I i

ιX

vv

e•X

((

??��

X ∼= {∗} ×X
∼=

vv

e×X

((

G •XH h

ιX

vv

α

((
X // G×X // X

where {∗} • X = {x ∈ X | x ∈ Xe} ∼= Xe. Hence α ◦ (e × X) is the

identity morphism on X in the category Par(Set), if and only if Xe = X

and αe = idX , which is exactly axiom (PA1). Furthermore, it is clear
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that this is equivalent to saying that α′(e) = (Xe, ιe, αe) is the span

(X, idX , idX).

(2). By part (1), we only have to prove the equivalence of the associa-

tivity constraints. Let us compute the composition of spans α•(G×α)

in Par(Set), which is given by the following pullback.

G • (G •X)
G•α

((

I i

vv

??��

G× (G •X)
G×α

((

I i

G×ι

vv

G •X
α

((

I i

ιvv
G×G×X // G×X // X

Explicitly we find

G • (G •X) = {(h, g, x) ∈ G×G×X | x ∈ Xg−1 , α(g, x) ∈ Xh−1}.

Similarly, we can compute the composition α • (m × X) in Par(Set),

which is again given by a pullback

(G×G) •X
I i

ι′

vv

m•X

((

??��

G×G×X
m×X

((

G •XI i

ι

vv

α

((
G×G×X // G×X // X

where now

(G×G) •X = {(h, g, x) ∈ G×G×X | x ∈ X(hg)−1}.

We then find that (g, g−1, x) ∈ G • (G • X) if and only if x ∈ Xg

(and α(g−1, x) ∈ Xg−1). On the other hand, (g, g−1, x) ∈ (G×G) •X
if and only if x ∈ Xe = X. Hence, we obtain that the action is global

if and only if G • (G •X) and (G×G) •X are isomorphic spans.

In the same way, if the action is global, then clearly α′ is a mor-

phism of monoids. Conversely, if α′ is a morphism of monoids then

we obtain in particular that α′(g−1) • α′(g) = α′(e) = (X, idX , idX).

Since the underlying set of the span of α′(g−1) • α′(g) is given by

{x ∈ Xg−1 | α(g, x) ∈ Xg}, we find that α′(g−1) • α′(g) = α′(e) implies

that Xe = Xg for all g ∈ G and hence we have a global action. �
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As we have just observed, partial actions are not just actions in the
category of partial morphisms. The monoid morphism G→ par(X,X)
can also be viewed as a functor between 2 one-object categories. How-
ever, since the Par(Set) is a bicategory, the Par(X,X) becomes a (monoidal)
category, or a one-object bicategory. Consequently, there is a natural
laxified version of a partial action considering only a lax functor be-
tween G and Par(X,X). In the next proposition, we show that this
coincides exactly with with the lax partial actions we introduced above.

Recall that a lax functor F : B → B′ between 2 bicategories consists
of

• a map from the 0-cells of B to the 0-cells of B′,
• for any pair of 0-cells X, Y of B, a functor FX,Y : B(X, Y ) →
B′(X ′, Y ′)
• for any 0-cell X in B a 2-cell uX : idFX → F (idX)’
• for any two 1-cells a ∈ B(X, Y ) and b ∈ B(Y, Z) a 2-cell
αa,b : F (b) • F (a) → F (b • a) (where • denotes the horizontal
composition), which in natural in a and b;

satisfying the usual coherence axioms. If the category B′ is locally a
poset, then these coherence conditions follow automatically from the
above information.

Proposition 2.2.8. Let G be a group with multiplication m : G×G→
G, m(g, h) = gh and the unit e : {∗} → G, e(∗) = e. Consider a partial

action datum (Xg, αg)g∈G. The following assertions are equivalent

(i) The partial action datum defines a lax partial action of G on X;

(ii) For the associated partial morphism α : G ×X → X, there exist

morphisms of spans u : X → α • (e ×X) and θ : α • (G × α) →
α • (m×X);

(iii) The associated map α′ : G→ Par(X,X) is a lax functor where G

is considered as a locally discrete 2-category with one 0-cell.

Proof. (i)⇔ (ii). As we have shown in Lemma 2.2.7, α • (e×X)

is given by the span (Xe, ιe, αe) : X → X. The existence of a morphism

of spans u : X → α•(e×X), means that X ⊂ Xe ⊂ X, hence X = Xe,

and αe = idX .

Furthermore, we also know from Lemma 2.2.7 the explicit form of

α • (G × α) and α • (m × X). The existence of the morphism θ then

means that G • (G •X) ⊂ (G×G) •X, which is exactly axiom (LPA2)

and the restriction of the partial action αhg to Xg−1 ∩ α−1
g (Xh−1) coin-

cides with αh ◦ αg, which is exactly axiom (LPA3).
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(i)⇒ (iii). Recall that the map α′ : G → Par(X,X) is given by

α′(g) = (Xg−1 , ιg, αg). Both G and Par(X,X) are considered as one-

object bicategories and moreover G has only trivial 2-cells, Par(X,X)

is a poset. Hence, α′ : G → Par(X,X) induces a lax functor if and

only if there exists morphism of spans u′ : (X, idX , idX)→ (Xe, ιe, αe)

and θ′ : α′(h) • α′(g) → α′(hg). As in the first part of the proof, the

existence of u′ is equivalent to axiom (LPA1). Furthermore, remark

that α′(h) • α′(g) is given by the span

Xg−1 ∩ α−1
g (Xh−1)

H h

uu

αg

))
Xg−1G g

ιg

tt

αg

**

Xh−1G g

ιh

tt

αh

**X X X

Hence the existence of θ′ means that axioms (LPA2) and (LPA3) hold.

�

As we have pointed out before, partial actions are a special in-
stance of lax partial actions. In the next result we provide equivalent
conditions for a lax partial action to be partial.

Let us first make the following observation. Given a partial action
datum, we can consider the pullback

(G •G) •X
I i

vv

� u

((
G× (G •X)� u

((

(G×G) •X
I i

vv
G×G×X

which is nothing else than the intersection G×(G•X)∩(G×G)•X. If
the partial action datum defines a lax partial action, then the existence
of the morphism of spans θ : α • (G× α) → α • (m×X) implies that
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the following diagram commutes

G • (G •X)
I i

vv

G•α

((

θ

��

G× (G •X)
I i

vv

G •X
α

((
G×G×X X

G •X
α

66

(G×G) •X
5 U

hh

m•X

66

and therefore the image of θ lies in (G •G) •X, i.e. we can corestrict
θ to a morphism θ̄ : G • (G •X)→ (G •G) •X.

Proposition 2.2.9. Let α be a lax partial action of the group G on

the set X. Then the following statements are equivalent

(i) α is a partial action;

(ii) θ̄ : G • (G •X)→ (G •G) •X is an isomorphism;

(iii) for each g ∈ G, we have that αg : Xg−1 → Xg.

Proof. (ii)⇔ (i)⇒ (iii). By definition, partial actions and lax

partial actions only differ in their second axiom. From the above dis-

cussion, we know that

(G •G) •X = G× (G •X) ∩ (G×G) •X
= {(h, g, x) ∈ G×G×X | x ∈ Xg−1 ∩X(gh)−1}

Therefore, θ̄ is an isomorphism we obtain that if

(h−1g−1, g, x) ∈ (G •G) •X, i.e. x ∈ Xg−1 ∩Xh

then also

((gh)−1, g, x) ∈ G • (G •X), i.e. x ∈ Xg−1 and gx ∈ Xhg

Hence we find that αg(Xg−1 ∩Xh) ⊂ Xgh. In particular, taking h = e,

then we find that αg(Xg−1) ⊂ Xg. Combining both, we recover exactly

axiom (PA2).
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(iii)⇒ (i). For any g ∈ G and x ∈ Xg we find that g−1x ∈ Xg−1 ,

we can apply g on g−1x and find that x = g · g−1x. So x ∈ Xg if and

only if x = gy for some y ∈ Xg−1 .

Now take any x ∈ Xg−1 ∩Xh. Then by the above, we can write x =

hy for some y ∈ Xh−1 . Since we have that y ∈ Xh−1 and x = hy ∈ Xg−1 ,

it follows by axiom (LPA2) that y ∈ X(gh)−1 and gh · y = g · (hy) = gx.

In particular, we find that gx = gh · y ∈ Xgh. Hence we obtain exactly

axiom (PA2). �

Finally, we also restate the definition of quasi partial action in terms
of spans, the proof of which is clear.

Proposition 2.2.10. A partial action datum (Xg, αg) defines a quasi

partial action of G on X if and only if the equivalent statements of

Lemma 2.2.7 (1) hold and the associativity constraint αh ◦ αg = αhg
holds on all elements of the following pullback

Θ
θ1

vv

θ2

((
G • (G •X)� u

((

(G •G) •X
I i

vv
G×G×X

Consequently, a quasi partial action is lax if and only if the span

(Θ, θ1, θ2) : G • (G • X) → (G • G) • X is induced by a morphism,

and the quasi partial action is a partial action if and only if Θ is an

isomorphism.

Proof. Let us just remark that the associativity on Θ means that

the following diagram commutes

Θ
θ1

vv

θ2

((
G • (G •X)

G•α
��

(G •G) •X
m•X
��

G •X
α
��

G •X
α
��

X X

�





CHAPTER 3

Hopf algebras and their partial (co)actions

This chapter is the only one which does not contain any original
results. However, as the notions recalled here are essential for the fol-
lowing chapters, we take the needed time to discuss them here. Firstly,
we will recall the definition of algebras, coalgebras, modules and co-
modules with a lot of examples. We remark that all of these concepts
can also be defined directly in monoidal categories. We will then recall
the definition of bialgebras and Hopf algebras and their relations with
monoidal categories. These results can for example be found in [8],
[35]. Next, we will recall the notion of partial actions and coactions of
Hopf algebras in the sense of Caenepeel-Janssen. And finely, we will
recall the notion of partial representations.

3.1. Algebras and coalgebras

Let k be a field. Recall that an algebra is given by a triple (A,mA, η)
where A is a k-vector space, mA : A⊗A→ A and η : k → A are linear
maps such that the following diagrams commute:

A⊗ A⊗ A mA⊗id //

id⊗mA
��

A⊗ A
mA
��

A⊗ A mA // A

k ⊗ A η⊗id //

∼=
%%

A⊗ A
mA
��

A⊗ kid⊗ηoo

∼=
yy

A

Denote mA(a⊗ a′) = aa′ and η(1k) = 1A. Then we have (aa′)a′′ =
a(a′a′′) and 1Aa = a1A = a, for all a, a′, a′′ ∈ A.

31
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An algebra is said to be commutative if, in addition, the following
diagram commutes:

A⊗ A τ //

mA
%%

A⊗ A
mA
��
A

where τ is the flip map: τ(a⊗ a′) = a′ ⊗ a.
A morphism between two algebras (A,mA, ηA) and (B,mB, ηB) is a

linear map f : A→ B such that mB ◦(f⊗f) = f ◦mA and f ◦ηA = ηB,
i.e.

f(aa′) = f(a)f(a′) , f(1A) = 1B

for all a, a′ ∈ A, or equivalently, the following diagrams commute:

A⊗ A f⊗f //

mA
��

B ⊗B
mB
��

A
f // B

A
f // B

k

ηA

__

ηB

OO

Example 3.1.1. Group algebra kG. kG is the free k-module generated

by the elements {σ}σ∈G of a group G (or a monoid G). The multiplica-

tion in kG is defined on the base elements {σ}σ∈G by the multiplication

of G and then linear extended to all the elements.

By reversing all the arrows of the above commutative diagrams, we
get the definition of coalgebras.

Definition 3.1.2. A coalgebra is a triple (C,∆, ε) where C is a k-vector

space, ∆ : C → C ⊗ C and ε : C → k are linear maps such that the

following diagrams commute:

C
∆ //

∆
��

C ⊗ C
id⊗∆
��

C ⊗ C ∆⊗id // C ⊗ C ⊗ C



3.1. ALGEBRAS AND COALGEBRAS 33

k ⊗ C C ⊗ Cε⊗idoo id⊗ε // C ⊗ k

C

∼=
ee

∆

OO
∼=

99

The map ∆ is called the comultiplication and ε the counit of the

coalgebra.

A coalgebra is said to be cocommutative if, in addition, the follow-

ing diagram commutes:

C ⊗ C τ // C ⊗ C

C
∆

ee

∆

OO

To make equations easy to write, we now introduce the Sweedler-

Heyneman’s notation:

∆(c) =
∑
(c)

c(1) ⊗ c(2)

It can be simplified further by omitting the summation symbol:

∆(c) = c(1) ⊗ c(2)

Note that the right hand side is not a monomial in general, but a

finite sum of monomials. We will keep using this notation throughout

the thesis.

Then we have (c(1)(1) ⊗ c(1)(2)) ⊗ c(2) = c(1) ⊗ (c(2)(1) ⊗ c(2)(2)) and

ε(c(1))c(2) = c = c(1)ε(c(2)).

A morphism between two coalgebras (C,∆C , εC) and (D,∆D, εD)

is a linear map f : C → D such that (f ⊗ f) ◦ ∆C = ∆D ◦ f and

εC = εB ◦ f , i.e.

f(c(1) ⊗ c(2)) = f(c)(1) ⊗ f(c)(2) , εD(f(c)) = εC(c)

for all c ∈ C, or equivalently, the following diagrams commute:

C
f //

∆C

��

D

∆D

��
C ⊗ C f⊗f // D ⊗D
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C
f //

εC   

D

εD
��
k

It’s easy to check that the composition of two morphisms of coal-
gebras is again a morphism of coalgebras. Here are some examples of
coalgebras.

Examples 3.1.3. (1) The field k has a natural coalgebra structure

with ∆(1) = 1 ⊗ 1 and ε(1) = 1. For any coalgebra (C,∆, ε), the

counit ε : C → k is a morphism of coalgebras.

(2) For any coalgebra (C,∆, ε), define

∆op = τ ◦∆

Then (C,∆op, ε) is also a coalgebra called the opposite coalgebra

of C and denote by Ccop.

(3) Let S be a set. X is the k-vector space generated by S. Then X has

a coalgebra structure if we define ∆(x) = x ⊗ x and ε(x) = 1, for

every x ∈ X. In particular, group algebra kG is also a coalgebra.

3.2. Bialgebras and Hopf algebras

Let H be a k-vector space equipped with an algebra structure
(H,mH , η) and coalgebra structure (H,∆, ε). We giveH⊗H an algebra
structure by:

mH⊗H((h1 ⊗ h2)⊗ (h′1 ⊗ h′2)) = h1h
′
1 ⊗ h2h

′
2 , 1H⊗H = 1H ⊗ 1H

for all h1, h2, h
′
1, h
′
2 ∈ H. We give H ⊗H a coalgebra structure by:

∆H⊗H = (id⊗ τ ⊗ id) ◦ (∆⊗∆) , εH⊗H = ε⊗ ε
that is

∆(h⊗ h′) = h(1) ⊗ h(2) ⊗ h′(1) ⊗ h′(2) , ε(h⊗ h′) = ε(h)⊗ ε(h′)
for all h, h′ ∈ H.
With these structures, we have

Theorem 3.2.1. The following statements are equivalent:

(1) The maps mH and η are morphisms of coalgebras;
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(2) The maps ∆ and ε are morphisms of algebras.

Proof. By definition, mH is a morphism of coalgebras is equivalent

to the following commutative diagrams

H ⊗H mH //

(id⊗τ⊗id)(∆⊗∆)
��

H

∆
��

(H ⊗H)⊗ (H ⊗H)
mH⊗mH // H ⊗H

H ⊗H ε⊗ε //

mH
��

k ⊗ k
id
��

H
ε // k

where τ : A⊗B → B ⊗ A, τ(a⊗ b) = b⊗ a is the flip morphism.

η is a morphism of coalgebra is equivalent to the following commu-

tative diagrams

k
η //

id
��

H

∆
��

k ⊗ k η⊗η // H ⊗H

k
η //

∼=

��

H

ε
��
k

Similarly, by the definition of algebra morphisms ∆ and ε, we write

exactly these four commutative diagrams, which shows that they are

equivalent. �

This leads to the following definition.

Definition 3.2.2. A bialgebra is a quintuple (H,mH , η,∆, ε) where

(H,mH , η) is an algebra and (H,∆, ε) is a coalgebra such that they

satisfying one of the conditions in the previous theorem. A morphism of

bialgebras is a morphism of both the underlying algebra and coalgebra

structures.

Examples 3.2.3. (1) We know that group algebra kG is both an alge-

bra and a coalgebra. It’s easy to check that kG is also a bialgebra.

It is also true when G is a monoid.
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(2) Let Mn(k) = k[x11, x12, ..., xnn] be the polynomial algebra of n2

variables. For all xij, 1 6 i, j 6 n define

∆(xij) =
n∑
k=1

xik ⊗ xkj ; ε(xij) = δij

These formulas make Mn(k) into a bialgebra.

Given an algebra (A,mA, η) and a coalgebra (C,∆, ε) with linear
maps f and g from C to A, we can define another map f ? g from C
to A as follows:

f ? g : C
∆−→ C ⊗ C f⊗g−−→ A⊗ A mA−−→ A

that is

(f ? g)(c) = f(c(1))g(c(2))

? is called the convolution of maps f and g.

Remark 3.2.4. Homk(C,A) is a monoid with convolution as product

and ηA ◦ εC as unit. In particular, the dual vector space of a coalgebra

is an algebra.

Definition 3.2.5. Let (H,mH , η,∆, ε) be a bialgebra. An endomor-

phism S of H is called an antipode of the bialgebra if

S ? idH = idH ? S = η ◦ ε

or

S(h(1))h(2) = h(1)S(h(2)) = η(ε(h))

for all h ∈ H.

A Hopf algebra is a bialgebra with an antipode. A morphism of

Hopf algebras is a morphism of the underlying bialgebras.

Remark 3.2.6. A bialgebra does not need to have an antipode, once

it does, it is unique. Indeed, if S and S ′ are both antipodes of H, then

S = S ? (ηε) = S ? (idH ? S
′) = (S ? idH) ? S ′ = (ηε) ? S ′ = S ′.

There are some important properties of antipodes that are very
useful for calculation.

Theorem 3.2.7. Let (H,mH , η,∆, ε) be a Hopf algebra. Then we have

(1) S(hk) = S(k)S(h);
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(2) ∆(S(h)) = (S ⊗ S)τ∆(h), for all h ∈ H, where τ is the flip mor-

phism;

(3) S(1H) = 1H ;

(4) ε(S(h)) = ε(h), for all h ∈ H.

Examples 3.2.8. (1) Group algebra kG becomes a Hopf algebra if we

define S(g) = g−1 for all g ∈ G.

(2) Hopf algebra coming from affine algebraic group. Let G be an affine

algebraic group (i.e. an algebraic set with a group structure) over

k, and let O(G) be the coordinate ring. If we define

∆ : O(G)→ O(G)⊗O(G) ∼= O(G×G),∆(f)(x, y) = f(xy)

for all x, y ∈ G, and

ε : O(G)→ k, ε(f) = f(1G)

and the antipode

S : O(G)→ O(G), Sf(x) = f(x−1)

for all x ∈ G. Then the coordinate ring O(G) is a Hopf algebra

Remark 3.2.9. Conversely, if O(G) is the coordinate ring of an

affine algebraic set G and O(G) is a Hopf algebra, then G is an

algebraic group. Moreover, the functor G → O(G) defines a con-

travariant equivalence of categories: (affine algebraic groups over

k, their morphisms) → (affine commutative semiprime Hopf k-

algebra, Hopf algebra morphisms).

(3) G = k is an algebraic group with usual addition as group operation.

O(G) = k[X] and X(a) = a for all a ∈ k. Then

ε(X) = X(0) = 0

and

∆(X) = X ⊗ 1 + 1⊗X
and

S(X)(a) = X(−a) = −a
which implies S(X) = −X.
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(4) G = k\{0} is an algebraic group with usual multiplication as group

operation. O(G) ∼= k[X,X−1]. Then

ε(X) = X(1) = 1

and

∆(X)(a⊗ b) = X(ab) = ab

which implies ∆(X) = X ⊗X, and

S(X)(a) = X(a−1) = a−1 = (X(a))−1 = X−1(a)

which implies S(X) = X−1.

3.3. Modules and comodules

Let (A,mA, η) be an algebra. Recall that a left A-module is a couple
(M,mM), where M is a k-vector space and mM : A ⊗M → M is a
linear map such that the following diagrams commute:

A⊗ A⊗M mA⊗id //

id⊗mM
��

A⊗M
mM
��

A⊗M mM // M

k ⊗M η⊗id //

∼= %%

A⊗M
mM
��
M

Denote mM(a⊗m) = a ·m or simply am. Then we have a ·(b ·m) =
ab ·m and 1A ·m = m.

A morphism between two A-modules (M,mM) and (N,mN) is a
linear map f : M → N such thatmN◦(id⊗f) = f◦mM , or equivalently,
f(a ·m) = a · f(m), for all a ∈ A,m ∈M .

We can define right A-modules similarly.

Example 3.3.1. (1) Let A be an algebra and U, V be A-modules.

Then U ⊗ V is a A⊗ A-module by:

(a1 ⊗ a2)(u⊗ v) = a1u⊗ a2v
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where a1, a2 ∈ A, u ∈ U and v ∈ V . If, in addition, A is

bialgebra (A,mA, η,∆, ε), the A ⊗ A-module U ⊗ V has an A-

module structure by:

a(u⊗ v) = ∆(a)(u⊗ v) =
∑
(a)

a(1)u⊗ a(2)v

.

(2) Representations of a group G over k are in one-to-one correspon-

dence with kG-modules.

Dually, we have the definition of comodules over coalgebras.

Definition 3.3.2. Let (C,∆, ε) be a coalgebra. A left C-comodule is

a couple (N,∆N), where N is a k-vector space and ∆N : N → C ⊗N
is a linear map such that the following diagrams commute:

N
∆N //

∆N

��

C ⊗N
idC⊗∆N

��
C ⊗N ∆⊗idN // C ⊗ C ⊗N

k ⊗N C ⊗Nε⊗idoo

N

∼=

ee

∆N

OO

Denote ∆N(n) = n(−1) ⊗ n(0). Then we have (n(−1)(1) ⊗ n(−1)(2)) ⊗
n(0) = n(−1) ⊗ (n(0)(−1) ⊗ n(0)(0)).

We will also say C coacts on N .

A morphism between two C-comodules (N,∆N) and (L,∆L) is a

linear map f : N → L such that (f ⊗ id) ◦∆N = ∆L ◦ f .

The composition of two morphisms of comodules is again a mor-

phism of comodules.

We can define right C-comodules similarly.

Examples 3.3.3. (1) Let (C,∆, ε) be any coalgebra, then (C,∆) is a

C-comodule.

(2) Let (H,mH , η,∆, ε) be a bialgebra and M,N both H-comodules.

We can give a H-comodule structure on M ⊗N by:

∆M⊗N = (mH ⊗ idM⊗N)(idH ⊗ τ ⊗ idN)(∆M ⊗∆N)
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(3) Representations of an affine algebraic group G are in in one-to-one

correspondence with O(G)-comodules.

Theorem 3.3.4. Let A be a k-algebra. Then there is a one-to-one

correspondence between

(1) A coalgebra structure on A such that A becomes a bialgebra;

(2) A monoidal structure on AM such that the forgetful functor AM→
kM is strict monoidal.

Proof. (2)⇒(1):Assume we have a monoidal structure on AM
such that the forgetful functor AM → kM is strict monoidal. This

means in particular, after forgetting the A-module structure, the unit

object ofM is equal to k, and the tensor product in AM is the same as

in kM. Moreover, it follows from the commuting diagrams in the defi-

nition of monoidal functors that the associativity and unit constraints

in AM are the same as in kM.

A ∈ AM via left multiplication, thus A ⊗ A ∈A M. Define a

k-linear map

∆ : A→ A⊗ A,∆(a) = a(1⊗ 1)

for all a ∈ A, we denote ∆(a) = a(1) ⊗ a(2).

Once ∆ is known, we can define an A-action on M ⊗ N , for all

M,N ∈ AM as in example3.3.1(1). Consider two A-linear maps:

fm;A→M, fm(a) = am ; gn : A→ N, gn(a) = an

From the functoriality of tensor product, it follows that fm ⊗ gn is

A-linear as a morphism in AM, thus:

a(m⊗ n) = a((fm ⊗ gn)(1⊗ 1)) = (fm ⊗ gn)(a(1⊗ 1))

= (fm ⊗ gn)(∆(a)) = (fm ⊗ gn)(a(1) ⊗ a(2))

= a(1)m⊗ a(2)n

Using this equation, let us consider the associativity constraint

aA,A,A : (A ⊗ A) ⊗ A → A ⊗ (A ⊗ A), which is also a morphism in

AM. Hence

a((1⊗ 1)⊗ 1) = a(1) ⊗ a(2)(1⊗ 1) = a(1) ⊗∆(a(2))

On the other hand, it’s also equal to



3.3. MODULES AND COMODULES 41

a(aA,A,A((1⊗ 1)⊗ 1)) = aA,A,A(a((1⊗ 1)⊗ 1)))

= aA,A,A(a(1)(1⊗ 1)⊗ a(2))

= aA,A,A(∆(a(1))⊗ a(2))

We conclude that a(1)⊗∆(a(2)) = ∆(a(1))⊗ a(2), which can also be

expressed as

(A⊗∆) ◦∆ = (∆⊗ A) ◦∆

It’s nothing but the first commutative diagram in the definition of

coalgebras!

Next, we also know k ∈ AM, define a map:

ε : A→ k, ε(a) = a · 1k
Since the left unit map lA : k ⊗ A → A, lA(x ⊗ a) = xa is left

A-linear, we have:

a = alA(1k ⊗ 1A) = lA(a(1k ⊗ 1A)) = lA(ε(a(1) ⊗ a(2))) = ε(a(1))a(2)

Similarly, from the left A-linearity of rA, we have a = a(1)ε(a(2)).

Thus

ε(a(1))a(2) = a(1)ε(a(2))

It is nothing but the second commutative diagram in the definition

of coalgebras!

Moreover, we can compute:

∆(ab) = (ab)(1⊗ 1) = a(b(1⊗ 1)) = a(b(1) ⊗ b(2)) = a(1)b(1) ⊗ a(2)b(2)

∆(1) = 1(1⊗ 1) = 1⊗ 1

ε(ab) = (ab) · 1k = a · (b · 1k) = a · ε(b) = ε(a)ε(b)

ε(1) = 1 · 1k = 1k

In other words, ∆ and ε are algebra maps. Thus A becomes a

bialgebra.

(1)⇒(2):Conversely, suppose A has a coalgebra structure (A,∆, ε)

which makes A into a bialgebra, we can define an A-module structure

on M ⊗N for all M,N ∈ AM as following:

a(m⊗ n) = a(1)m⊗ a(2)n

k also has a A-module structure by the formula:
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a · x = ε(a)x; x ∈ k
It’s straightforward to check AM becomes a monoidal category with

these structures such that the forgetful functor AM → kM is strict

monoidal.

�

For Hopf algebras, we have the following Tannaka reconstruction
theorem, which we just state out the result.

Theorem 3.3.5. There is a one-to-one correspondence between

(1) Hopf algebra over k;

(2) Rigid monoidal category C together with a strict monoidal functor

U : C → Vect that preserves duals.

Remarks 3.3.6. (1) We can also define algebras (or monoids) in

monoidal categories. Given a monoidal category (A,⊗, I), an

algebra (or a monoid) in A is a triple (A,mA, η), where A ∈ A,

mA : A⊗A→ A and η : I → A are morphisms in A such that

the following diagrams commute:

A⊗ A⊗ A mA⊗id //

id⊗mA
��

A⊗ A
mA
��

A⊗ A mA // A

I ⊗ A η⊗id //

∼=

%%

A⊗ A
mA
��

A⊗ Iid⊗ηoo

∼=

yy
A

We can define coalgebras (or comonoids) similarly. Further-

more, we can define modules and comudules in this way.

3.4. Partial actions and coactions of Hopf algebras

Caenepeel and Janssen defined partial actions and coactions of Hopf
algebras on unital algebras in [21], which was motivated by examples
of partial actions of groups on algebras.

Definition 3.4.1. A partial action of a Hopf algebra H on a unital

algebra A is a linear map

· : H ⊗ A → A

h⊗ a 7→ h · a
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satisfying the following identities for all a, b ∈ A and h, k ∈ H:

(PHA1) 1H · a = a;

(PHA2) h · (ab) = (h(1) · a)(h(2) · b);
(PHA3) h · (k · a) = (h(1) · 1A)(h(2)k · a).

In this case, the algebra A is called a (left) partial H-module algebra.

The partial action is called symmetric if in addition

(PHA4) h · (k · a) = (h(1)k · a)(h(2) · 1A).

A morphism between two partial H-module algebras A and B is an

algebra map f : A→ B such that for every h ∈ H and a ∈ A we have

h ·B f(a) = f(h ·A a).

One can define the right partial actions of H on A, or the right
partial H-module algebras in a similar way.

Given a partial action of a Hopf algebra H on a unital algebra A,
one can define an associative product on A⊗H by:

(a⊗ h)(b⊗ k) = a(h(1) · b)⊗ h(2)k

for all a, b ∈ A and h, k ∈ H. Then we can construct a new unital
algebra called the partial smash product as A#H = (A⊗H)(1A⊗ 1H).

This algebra is generated by typical elements of the form

a#h = a(h(1) · 1A)⊗ h(2)

One can then prove that a#h = a(h(1) ·1A)#h(2) and (a#h)(b#k) =
a(h(1) · b)#h(2)k.

Definition 3.4.2. A partial coaction of a Hopf algebra H on a unital

algebra A is a linear map

ρ̄ : A → A⊗H
a 7→ ρ̄(a) = a[0] ⊗ a[1]

satisfying the following identities for all a, b ∈ A:

(PHCA1) ρ̄(ab) = ρ̄(a)ρ̄(b);

(PHCA2) (I ⊗ ε)ρ̄(a) = a;

(PHCA3) (ρ̄⊗ I)ρ̄(a) = [(I ⊗∆)ρ̄(a)](ρ̄(1A)⊗ 1H).

In this case, the algebra A is called a (right) partial H-comodule

algebra.

The partial coaction is called symmetric if in addition

(PHCA4) (ρ̄⊗ I)ρ̄(a) = (ρ̄(1A)⊗ 1H)[(I ⊗∆)ρ̄(a)].

A morphism between two partial H-comodule algebras A and B is

an algebra map f : A→ B such that ρ̄B ◦ f = (f ⊗ I) ◦ ρ̄A
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Of course, one can also define the left partial coactions of H on A,
or the left partial H-comodule algebras in a similar way.

Denoting the partial coaction in Sweedler’s notation

ρ̄(a) = a[0] ⊗ a[1]

we can rewrite the above axioms for partial coactions as:

(PHCA1) (ab)[0] ⊗ (ab)[1] = a[0]b[0] ⊗ a[1]b[1];
(PHCA2) a[0]ε(a[1]) = a;

(PHCA3) a[0][0] ⊗ a[0][1] ⊗ a[1] = a[0]1
[0]
A ⊗ a

[1]
(1)1

[1]
A ⊗ a

[1]
(2);

(PHCA4) a[0][0] ⊗ a[0][1] ⊗ a[1] = 1
[0]
A a

[0] ⊗ 1
[1]
A a

[1]
(1) ⊗ a

[1]
(2).

Let A be a k-algebra. An A-coring is a coalgebra object in the
category of A-bimodules, i.e. it is a triple (C,∆, ε) where C is an A-
bimodule, comultiplication ∆ : C → C ⊗AC and counit ε : C → A are
A-bimodule maps that satisfying the usual coassociativity and counit
conditions.

Given a (right) partial H-comodule algebra A, we can give the
reduced tensor product A⊗H = (A ⊗H)ρ̄(1A) an A-coring structure.
The bimodule structure, comultiplication and counit are given by:

b · (a1[0] ⊗ h1[1]) · b′ = bab′[0] ⊗ hb′[1]

∆̃(a1[0] ⊗ h1[1]) = a1[0] ⊗ h(1)1
[1] ⊗A 1[0′] ⊗ h(2)1

[1′]

ε̃(a1[0] ⊗ h1[1]) = aε(h)

Remarks 3.4.3. (1) It is easy to see that an H-module algebra is a

partial H-module algebra. In fact, one can prove that a partial

action is global if and only if for every h ∈ H we have h · 1A =

ε(h)1A.

(2) As the partial coaction ρ̄ is a morphism of non-unital algebras,

ρ̄(1A) is an idempotent in the algebra A⊗H. For every a ∈ A, we

have ρ̄(a) = ρ̄(a)ρ̄(1A) = ρ̄(1A)ρ̄(a). However, ρ̄(1A) is only central

in Im ρ̄, not in the whole of A ⊗ H. The image of the coaction is

contained in the unitary ideal (A⊗H)ρ̄(1A).

Examples 3.4.4. (1) We say that a group G acts partially on an alge-

bra A if G acts partially on the underlying set of the algebra such

that each Ag is an ideal of A and each αg is multiplicative. If G

acts partially on a set X with data {αg, Xg}g∈G, then G acts par-

tially on the algebra A = Fun(X, k) with data Ag = Fun(Xg, k) and

βg(f)(x) = f(αg−1(x)), where f ∈ Ag−1 and x ∈ Xg. In this exam-

ple, the ideals Ag are unital algebras. Partial actions of the group
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algebra kG on any unital algebra A are one-to-one correspondence

with partial actions of the group G on an algebra A in which Ag
are unital ideals, that is, Ag has the form 1gA where 1g ∈ A is

a central idempotent, and αg are unital algebra isomorphisms for

each g ∈ G.

(2) Let H be a Hopf algebra and A be an H-module algebra. If e is a

central idempotent in A, then there exists a partial action of H on

the ideal B = eA by:

h · b = e(h · b)
where h ∈ H, b ∈ B and the right hand side action is the global

action of H on A.

(3) Let H be a Hopf algebra and A a right H-comodule algebra with

coaction ρ : A→ A⊗H. If B ⊂ A is a unital ideal, then B is a right

partial H-comodule algebra with coaction ρ̄ : B → B ⊗H, ρ̄(b) =

(1B ⊗ 1H)ρ(b).

As we will now point out, Caenepeel and Janssen’s definition of
partial (co)actions can only describe the actions on spaces which are the
disjoint union of subspaces. This observation is the main motivation
for our work and was made in [15].

For our purpose, in the rest of this section, k will denote an alge-
braically closed field and An the n-dimensional affine space over k. By
an affine algebraic set we mean a subset of points in An which are zeros
of a finite set of polynomials p1, . . . , pk in k[x1, . . . , xn].

We will first list the definition and some results in [15].

Definition 3.4.5. Let G be an affine algebraic group and M an affine

algebraic set. A partial action ({Mg}g∈G, {αg}g∈G) of G on the under-

lying set M is said to be algebraic if

(1) for all g ∈ G, Mg and its complement M ′
g = M \Mg are affine

algebraic sets;

(2) for all g ∈ G, the maps αg : Mg−1 →Mg are polynomial;

(3) the set of “compatible couples” G•M := {(g, x) ∈ G×M | x ∈
Mg−1} ⊂ G×M is an algebraic set and the map α : G •M →
M,α(g, x) = αg(x) is polynomial.

Proposition 3.4.6 ([15],4.12). Let G be an affine algebraic group and

M be an affine algebraic set. Then each algebraic partial action of G

on M defines a (symmetric) partial coaction of the commutative Hopf

algebra H = O(G) on the commutative algebra A = O(M).
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Proposition 3.4.7 ([15],4.13). Let H be a commutative Hopf alge-

bra and A be a commutative right partial H comodule algebra. Then

there is a (symmetric) partial action of the affine algebraic group G =

HomAlg(H, k) on the affine algebraic set M = HomAlg(A, k).

Corollary 3.4.8 ([15],4.14). Let H be a commutative Hopf algebra

and G = HomAlg(H, k) the corresponding algebraic group, then there

is an equivalence between the category of commutative right partial H-

comodule algebras and the category of algebraic partial actions of the

group G.

Next, we prove a well-known lemma that will be used quite often.

Lemma 3.4.9. Let R be a ring. Then there is a one-to-one correspon-

dence between

• a decomposition R = I1 ⊕ · · · ⊕ In as a direct sum of ideals;

• orthogonal idempotents e1, . . . , en such that e1 + · · ·+ en = 1.

Proof. Suppose R = I1 ⊕ · · · ⊕ In, and write 1 = e1 + · · · + en
where ei ∈ Ii, i = 1, . . . , n, then

ei = ei · 1 = ei(e1 + · · ·+ en) = eie1 + · · ·+ eien

note that eiej ∈ Ij, and R is a direct sum of ideals, we have eiej =

0 (i 6= j), ei = e2
i for i = 1, . . . , n, i.e. these are orthogonal idempotents.

Conversely, for every idempotent ei, define Ii = Rei, which is an

ideal of R. Then R = I1 + · · · + In since 1 = e1 + · · · + en. We

can show that Ii ∩
∑n

i 6=j=1 Ij = 0. Indeed, if riei =
∑n

i 6=j=1 rjej, then

rie
2
i =

∑n
i 6=j=1 rjeiej = 0 since eiej = 0 (j 6= i). Hence R = I1⊕· · ·⊕In.

Furthermore, the two constructions are mutually inverse. Given

R = I1⊕· · ·⊕ In and write 1 = e1 + · · ·+en, we need to show Ii = Rei,

i = 1, . . . , n. On one hand, Rei ⊆ Ii. On the other hand, for every

x ∈ Ii, write x = x · 1 =
∑

j xej, where xej ∈ Rej ⊆ Ij and x ∈ Ii, the

direct sum tell us xej = 0(j 6= i), hence x = xei ∈ Rei and Rei ⊇ Ii.

So Ii = Rei, i = 1, . . . , n.

Finally, given orthogonal idempotents e1, · · · , en such that e1+· · ·+
en = 1, define Ii = Rei, clearly we can only write 1 = e1 + · · · + en in

this way.

�

Now here comes the phenomenon that we really want to point out.
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Lemma 3.4.10. Let X be an affine algebraic set, A = O(X) be its

coordinate ring. Then X is the disjoint union of two algebraic subsets

X1

⊔
X2 if and only if the unit of A can be decomposed as a sum of

two orthogonal idempotents: 1 = e + f . In this case O(X1) = fO(X)

is an ideal of O(X) and f can be viewed as the characteristic function

on X1.

Proof. Suppose X is an algebraic subset of An and X = X1

⊔
X2.

Then O(X), O(X1) and O(X2) are quotients of the polynomial algebra

k[x1, x2, . . . , xn]. Denote the respective ideals by I, J,K, then V(J +

K) = X1 ∩ X2 = ∅ and it follows from Hilbert’s Nullstellensatz that

J + K = k[x1, x2, . . . , xn]. So there exist j ∈ J and k ∈ K such that

j + k = 1. Denote respectively the classes of j, k modulo JK by e and

f , then e and f are orthogonal idempotents of O(X), indeed,

e2 = j̄2 = j̄2 + jk = j̄(j + k) = j̄ = e

ef = j̄k̄ = jk = 0

the same argument works for f . It follows from Lemma 3.4.9, O(X1) =

fO(X).

Conversely, if 1 = e + f is a sum of two orthogonal idempotents,

again from Lemma 3.4.9 we have O(X) = eO(X) ⊕ fO(X), where

eO(X) and fO(X) are ideals of O(X), and moreover O(X)
eO(X)

∼= fO(X),
O(X)
fO(X)

∼= eO(X). Since O(X) is reduced, eO(X) and fO(X) are re-

duced and therefore radical ideals. Denote by X1 and X2 the corre-

sponding algebraic subsets, we have X = X1

⊔
X2.

�

Theorem 3.4.11. Let G be an affine algebraic group, X be an algebraic

set. If G acts partially on X, or equivalently, O(G) coacts partially on

O(X) (in the sense of Caenepeel and Janssen), then X = Xg

⊔
X ′g for

all g ∈ G, where Xg and X ′g are certain algebraic subsets of X indexed

by g.

Proof. If O(G) coacts partially on O(X), that is, there exists a

linear map

ρ̄ : O(X)→ O(X)⊗O(G)

Denote ρ̄(1O(X)) = 1[0] ⊗ 1[1]. For each g ∈ G, denote 1g =

1[0]1[1](g) ∈ O(X), then 1g is an idempotent, Indeed,
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1g1g = 1[0]1[0′]1[1](g)1[1′](g) = 1[0]1[0′]1[1]1[1′](g) = 1[0]1[1](g) = 1g

Note that 1− 1g is also an idempotent, and 1 = 1g + (1− 1g), from

the above lemma we know that X = Xg

⊔
X ′g. �

Examples 3.4.12. Let M be the algebraic set in R3 which is the union

of two horizontal circles of radius 1, one centered at (0, 0, 0) and the

other at (0,0,1). This is an affine algebraic set whose coordinate algebra

is given by

A = k[x, y, z]/(x2 + y2 − 1, z2 − z)

Let G be the affine algebraic group S1 o Z2. Geometrically, the

group G can be thought as the union of two disjoint circles in R3: the

circle G1 whose elements are of the form g = (x1, x2, 1) and the circle

G2 whose elements are of the form (x1, x2,−1). The group operation

is given by

(x1, x2, λ)(y1, y2, µ) = (x1y1 − λx2y2, y1x2 + λx1y2, λµ)

where λ and µ are equal to +1 or −1. The coordinate algebra of G is

given by

H = k[x1, x2, x3]/(x2
1 + x2

2 − 1, x2
3 − 1)

For g ∈ G1, we have Mg = M , and the action is given by

α(x1,x2,1)(x, y, z) = (xx1 − yx2, xx2 + yx1, z) z = 0, 1

For g ∈ G2, Mg is only the circle centered at (0, 0, 0), and the action

is given by

α(x1,x2,−1)(x, y, z) = (−xx1 − yx2,−xx2 + yx1, z) z = 0

If a space is not a disjoint union of subspaces, how to describe the
partial actions on it? Here we just provide an example. We will look
into more details of it in the following chapters.

Examples 3.4.13. Let

• A2 be the usual plane with coordinates (x, y);

• X be the set {(x, y) | xy = 0} ⊂ A2;

• G = A2 be the usual additive group.
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The (global) action of G on A2 is the usual translation, i.e.

(g1, g2) : (x, y) 7→ (x+ g1, y + g2).

Restricting this action on X, we get a partial action.

•
P0

•
A

•B

x

y

//

OO

//

OO

3.5. Partial representations and partial modules

The concept of partial representations is closely related to partial
actions. Here we recall some definitions and important properties of
partial representations from [9], which will be discussed further using
our new notions in the next chapters.

Definition 3.5.1. Let H be a Hopf algebra and B be a unital k-

algebra. A partial representation of H on B is a linear map π : H → B

such that

(PR1) π(1H) = 1B;

(PR2) π(h)π(k(1))π(S(k(2))) = π(hk(1))π(S(k(2)));

(PR3) π(h(1))π(S(h(2)))π(k) = π(h(1))π(S(h(2))k);

(PR4) π(h)π(S(k(1)))π(k(2)) = π(hS(k(1)))π(k(2));

(PR5) π(S(h(1)))π(h(2))π(k) = π(S(h(1)))π(h(2)k).

A morphism between two partial representations (B, π) and (B′, π′)

of H is an algebra map f : B → B′ such that π′ = f ◦ π.

Definition 3.5.2. Let H be a Hopf algebra and T (H) be the tensor

algebra of the vector space H. The partial Hopf algebra Hpar is the

quotient of T (H) by the ideal I, where I is generated by elements of

the form (for all h, k ∈ H)

(1) 1H − 1T (H);

(2) h⊗ k(1) ⊗ S(k(2))− hk(1) ⊗ S(k(2));

(3) h(1) ⊗ S(h(2))⊗ k − h(1) ⊗ S(h(2))k;

(4) h⊗ S(k(1))⊗ k(2) − hS(k(1))⊗ k(2);

(5) S(h(1))⊗ h(2) ⊗ k − S(h(1))⊗ h(2)k.

Denoting the class of h ∈ H by [h], it’s easy to see that the map
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[−] : H → Hpar

h 7→ [h]

satisfies the following conditions (for all h, k ∈ H)

(1) [−] is a linear map;
(2) [1H ] = 1Hpar ;
(3) [h][k(1)][S(k(2))) = [hk(1)][S(k(2))];
(4) [h(1)][S(h(2))][k] = [h(1)][S(h(2))k];
(5) [h][S(k(1))][k(2)] = [hS(k(1))][k(2)];
(6) [S(h(1))][h(2)][k] = [S(h(1))][h(2)k].

Thus the linear map [−] is a partial representation of the Hopf
algebra H on Hpar.

The partial Hopf algebra Hpar has the following universal property.

Theorem 3.5.3 ([9],4.2). Given a partial representation π : H → B,

there is a unique morphism of algebras π̂ : Hpar → B such that π =

π̂ ◦ [−]. Conversely, given an algebra morphism φ : Hpar → B, there is

a unique partial representation πφ : H → B such that φ = π̂φ.

In other words, the following functors establish an isomorphism be-

tween the category of partial representations ParRepH and the category

of the co-slice category Hpar/Algk

ParRepH
L−−−−⇀↽−−−−
R

Hpar/Algk

where L((B, π)) = (B, π̂) and R((B, φ)) = (B, πφ).

Definition 3.5.4. Let H be a Hopf algebra. A (left) partial module

over H is a pair (M,π), where M is a k-vector space and π : H →
Endk(M) is a (left) partial representation of H.

A morphism between two partial modules (M,π) and (M ′, π′) is a

linear map f : M →M ′ such that f ◦ π(h) = π′(h) ◦ f for all h ∈ H.

Using the classical Hom-Tensor relations, a k-vector space M is a
partial H-module if and only if there exists a k-linear map • : H⊗M →
M such that the following axioms hold for all m ∈M and h, k ∈ H
(PM1) 1H •m = m;
(PM2) h • (k(1)(S(k(2)) •m)) = (hk(1))(S(k(2)) •m);
(PM3) h(1) • (S(h(2)) • (k •m)) = (h(1))(S(h(2))k •m);
(PM4) h • (S(k(1)) • (k(2) •m)) = hS(k(1)) • (k(2) •m);
(PM5) S(h(1)) • (h(2) • (k •m)) = (S(h(1))) • (h(2)k •m).

Now we list some results from [9].
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Theorem 3.5.5. Let H be a Hopf algebra, then there exists a partial

action of H on the subalgebra A = {[h(1)][S(h(2))] | h ∈ H} ⊆ Hpar

such that Hpar
∼= A#H.

Corollary 3.5.6. Let H be a Hopf algebra, then there is an isomorphis-

m between the category of partial H-modules HMpar and the category

of Hpar-modules HparM

HMpar ∼= HparM
These categories are both equivalent to the category of left A#H-

modules.

Moreover, as Hpar has a structure of a Hopf algebroid over A,

HMpar is a closed monoidal category that admitting a strict monoidal

functor which preserves internal homs

U : HMpar → AMA.

Lemma 3.5.7. Let B be an algebra object in the monoidal category

HMpar, then H acts partially on B with a symmetric action.

Lemma 3.5.8. Let B be a k-algebra on which H acts partially with a

symmetric action, then B is an algebra object in the monoidal category

(HMpar,⊗A, A).

These lemmas lead immediately to the following theorem.

Theorem 3.5.9. There is an isomorphism between the category of

symmetric partial H-module algebras and the algebra objects in the cat-

egory of partial H-modules, i.e. ParActH ∼= Alg(HparM).





CHAPTER 4

Geometric partial comodules over a coalgbra

This chapter is the heart of the thesis. We will introduce 3 kinds
of partial comodules over arbitrary coalgebras in monoidal categories,
and study their basic properties such as coassociativity and the com-
pleteness of the category of geometric partial comodules. These results
will be published in [33].

Let C be a braided monoidal category with pullbacks that are pre-
served by all endofunctors on C of the form −⊗X and X ⊗−. Then
the observations from Chapter 2 allow us to define partial actions of a
Hopf algebra in C on any object in C such that taking C = Set we re-
cover the classical definition of partial actions of groups on sets. Since
we will rather be interested in examples inspired by algebraic geome-
try, hence in coactions rather than actions, we will take a dual point
of view and consider from now on a braided monoidal category C with
pushouts that are preserved by all endofunctors of the form − ⊗ X
and X ⊗ −, and Hopf algebras mentioned below are Hopf algebras in
C. Remark that in such a category, the tensor product of two epimor-
phisms is an epimorphism. Since pushouts are colimits, any braided
closed monoidal category will serve as an example, in particular any
category of modules over a commutative ring k. In what follows the
latter will be our standard example, and we in fact mostly will restrict
to the case where k is a field. Inspired by this example we will denote
the unit of the monoidal category C by k.

4.1. Geometrically partial comodules

In [9], the notion of a “partial module” over a Hopf algebra H was
introduced, by means of partial representations of Hopf algebras. In
this section, we introduce alternative notions of partial (co)module over
any (co)algebra. To prevent a clash of terminologies in case C = H,
we will call our notions (in rising order of generality) quasi, lax and
geometric partial (co)modules. We show that in the case of Hopf alge-
bras, the partial modules of [9], and in particular, the partial actions of
[21], appear as special cases of our quasi partial comodules. Examples

53
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arising from (usual) partial actions of (algebraic) groups on (algebraic)
sets give rise to geometric partial comodules.

Definition 4.1.1. Let (H,∆, ε) be a coalgebra in a monoidal category

C. A partial comodule datum is a quadruple X = (X,X • H, πX , ρX),

where X and X • H are objects in C, πX : X ⊗ H � X • H is an

epimorphism and ρX : X → X •H is a morphism in C.

Remark that a partial comodule datum can be viewed as the fol-
lowing cospan in C

X //

ρX

&&

X ⊗H
πX

xxxx
X •H

Suppose now that the category C has pushouts. Then any partial
comodule datum induces canonically four pushouts, that we denote by
X •k, (X •H)•H, X • (H⊗H) and (X •H)•H, and that are defined
respectively by the following diagrams:

X ⊗H
πX

yyyy

X⊗ε

%%
X •H

X•ε %%

X ⊗ k

πX,εyyyy
X • k
��?
?

X ⊗H
πX

vvvv

ρX⊗H

((
X •H

ρX•H ((

(X •H)⊗H

πX•Hvvvv
(X •H) •H

��?
?
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X ⊗H
πX

vvvv

X⊗∆

((
X •H

X•∆ ((

X ⊗H ⊗H

πX,∆vvvv

πX⊗H

(( ((
X • (H ⊗H)

π′X ((

��?
?

(X •H)⊗H

π′X,∆vvvv
X • (H •H)

��?
?

Finally, we consider a last pushout that we denote as Θ and that is
given by the following diagram

(X •H)⊗H
πX•H

vvvv

π′X,∆

(( ((
(X •H) •H

θ1 (( ((

X • (H •H)

θ2
vvvv

Θ

��?
?

We are now ready to state the exact definitions of a partial comod-
ule.

Definition 4.1.2. Let (H,∆, ε) be a coalgebra in a monoidal category

with pushouts C. A quasi partial comodule is a partial comodule datum

(X,X •H, πX , ρX) that satisfies the following conditions

[QPC1] (X •ε)◦ρX = πX,ε◦rX : X → X •k are identical isomorphisms.

I.e. the following diagram commutes

X //

idX

$$

ρX

%%

X ⊗H
πX

yyyy

X⊗ε

%%

// X

rX

∼=

yy

idX

zz

X •H

X•ε %%

X ⊗ k

πX,εyy
X • k

∼=
��

��?
?

X
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[QPC2] θ1 ◦ (ρX •H) ◦ ρX = θ2 ◦ π′X ◦ (X •∆) ◦ ρX , i.e. the following

diagram commutes

X •H ρ•H // (X •H) •H
θ1

%%
X

ρ
;;

ρ
##

Θ

X •H
X•∆

// X • (H ⊗H)
π′X

// X • (H •H)

θ2

99

A quasi partial comodule will be called a lax partial comodule when the

cospan ΘX : X • (H •H) 99K (X •H) •H is induced by a morphism θ

(in C). Furthermore a lax partial comodule is called a geometric partial

comodule if θ is an isomorphism.

Remarks 4.1.3. (1) The property [QPC2] can be expressed in a

larger diagram using the composition of spans, as one can see

on the next page.

(2) Remark that by uniqueness of colimits, the pushout ΘX =

(Θ, θ1, θ2) is unique up to isomorphism and hence is not part

of the structure of a quasi partial comodule. Similarly, if ΘX

is induced by a morphism θX , then this morphism is uniquely

determined by its property θX ◦ πX•H = π′X,∆ since πX•H is

an epimorphism. Also, whenever there exists a morphism θX
with this property, then Θ ∼= (X •H) •H.

(3) We will often denote a (quasi) partial comodule by (X, πX , ρX)

or just by X.

(4) Of course, one can state dual definitions of a quasi, lax and

geometric partial module over an algebra. We leave the details

to the reader, it suffices to apply the above definition to the

opposite category Cop.



X
//

ρ
X

((

X
⊗
H

//

π
X

vv vv
ρ
X
⊗
H

((

X
⊗
H
⊗
H

π
X
⊗
H

vv vv

X
⊗
H

X
⊗

∆
oo

X
⊗

∆
vv

π
X

(( ((

X

ρ
X

vv

oo

X
•
H

ρ
X
•H

((

(X
•
H

)
⊗
H

π
X
•H

vv vv

X
⊗
H
⊗
H

π
X
⊗
H

vv vv
π
X
,∆

(( ((

X
•
H

X
•∆

vv
(X
•
H

)
•
H

��
??

(X
•
H

)
⊗
H

π
X
•H

vv vv
π
′ X
,∆

(( ((

��
??

X
•

(H
⊗
H

)

π
′ X

vv vv

��
??

(X
•
H

)
•
H

θ 1
((

��
??

X
•

(H
•
H

)

θ 2
vv

��
??

Θ��
??
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(5) When working in the base category C =Mk We will sometimes

use the following Sweedler notation for quasi partial comod-

ules. For any x⊗h ∈ X⊗H, we write πX(x⊗h) = x•h ∈ X•H.

Remark that X•H is no longer a tensor product (see below for

an interpretation of X •H as a monoidal product when H is a

bialgebra). Hence x • h represents a certain class of tensors in

X⊗H and by the surjectivity of πX , any element of X •H can

be represented in such a way, although non-uniquely. We then

write ρ(x) = x[0] • x[1], which means that there exists an ele-

ment x[0]⊗x[1] ∈ X⊗H such that ρ(x) = π(x[0]⊗x[1]). Again,

the element x[0] ⊗ x[1] ∈ X ⊗H is not unique, so some care is

needed in this notation. However, the class x[0]•x[1] ∈ X •H is

well-defined since ρX is a proper map. Axiom [PPC1] tells us

then that, as for usual coactions, x[0]ε(x[1]) = x for all x ∈ X,

and in particular this expression makes sense. We will treat

axiom [PPC2] in a similar way by the expression

x[0][0] • x[0][1] • x[1] = x[0] • x[1](1) • x[1](2)

However, this expression now holds in the pushout Θ, and by

definition, the left hand side in the above expression is the

notation for θ1 ◦ (ρX • H) ◦ ρX(x) and the right hand side is

θ2 ◦ π′X ◦ (X •∆) ◦ ρX(x), for the same x ∈ X.

A first class of examples is obtained from the results of the previous
section by taking C = Setop. Indeed, quasi, lax and (usual) partial
actions of a group coincide in this way with quasi, lax and geometric
partial (co)modules. Remark that in the above formation, these notions
also allow to consider partial actions of arbitrary monoids rather than
groups.

Before we give some more examples, let us first state the following
(well-known) lemma that will be useful for our purposes.

Lemma 4.1.4. Consider vector spaces U , V , W and linear maps f :

U → V , g : U → W , where g is surjective. Then the pushout of the pair

(f, g) is given by P = V/f(Ker g), where g : V → P is the canonical

surjection and f : W → P is given by f(w) = f(u), where u is any

element of U such that g(u) = w ∈ W .

Let us now provide some examples.

Example 4.1.5 (Quotient of a global comodule). Consider a global

H-comodule X with coaction ρ : X → X ⊗ H and any epimorphism
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π : X → Y in C. Then we can define a partial comodule datum over

Y by taking the pushout of the pair (π, (π ⊗H) ◦ ρ)

X

π

yy

ρ

&&
X ⊗H

π⊗id

%%
Y

ρY
**

Y ⊗H

πY
tt

Y •H
��?
?

Considering the diagram

X

π

����

ρ // X ⊗H

π⊗H

����

ρ⊗H // X ⊗H ⊗H

π⊗H⊗H

����

X ⊗H

π⊗H

����

X⊗∆oo X
ρoo

π

����
Y //

((

Y ⊗H //

vvvv

ρY ⊗H

((

Y ⊗H ⊗H

πY ⊗Hvvvv

Y ⊗Hoo

vv (( ((

Yoo

vv
Y •H

��?
?

((

(Y •H)⊗H
��?
?

vvvv

Y ⊗H ⊗H
��?
?

vvvv (( ((

Y •H
��?
?

vv
(Y •H) •H

��?
?

(Y •H)⊗H

vvvv (( ((

��?
?

Y • (H ⊗H)

vvvv

��?
?

(Y •H) •H
��?
?

Y • (H •H)

��?
?

By composing pushouts in the diagram, we see that (Y •H) •H is the

pushout of the pair (π, (ρY ⊗ H) ◦ (π ⊗ H) ◦ ρ). Moreover, diagram

chasing and the coassociativity of (X, ρ) tells us that

(ρY ⊗H) ◦ (π ⊗H) ◦ ρ = (πY ⊗H) ◦ (π ⊗H ⊗H) ◦ (ρ⊗H) ◦ ρ
= (πY ⊗H) ◦ (π ⊗H ⊗H) ◦ (X ⊗∆) ◦ ρ
= (ρY ⊗H) ◦ (Y ⊗∆) ◦ (π ⊗H) ◦ ρ

And hence (Y •H) •H has to be isomorphic to Y • (H •H), which is

exactly the pushout of (π, (ρY ⊗H) ◦ (Y ⊗∆) ◦ (π ⊗H) ◦ ρ). We can

conclude that (Y, ρY , πY ) is a geometric partial comodule.

Performing this construction in C = Setop, we recover Example 2.1.1

(1)

Example 4.1.6 (Quotient of a partial comodule). The previous exam-

ple can be generalized in the following way. Let (X,X •H, πX , ρX) be

a partial H-comodule datum, and p : X → Y an epimorphism. Then
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consider the pushout P of the pair (πX , p⊗H):

X ⊗H
πX

yy

p⊗H

%%
X •H

p1
%%

Y ⊗H

p2
yy

P

Moreover, we can then define a partial comodule datum (Y, Y •H, πY , ρY )

by considering the following pushout

X

p

xx

ρX

&&
X ⊗H

p1

&&
Y

ρY
**

P

π′Ytt
Y •H

��?
?

and taking πY = π′Y ◦ p2. Similar to the previous example, one can

show that Y is a quasi or geometric partial comodule if X is so.

Example 4.1.7 (Partial action in the affine plane). Since the affine

group (A2,+) acts strictly transitive on the affine plane, the algebra

A = k[x, y] is a Galois object over the bialgebra H = k[x, y]. In partic-

ular, A is an H-comodule with coaction ρ : k[x, y]→ k[x, y]⊗ k[x, y] ∼=
k[x, y, x′, y′], ρ(f)(x, y, x′, y′) = f(x+x′, y+y′) where f ∈ k[x, y]. Con-

sidering the quotient B = k[x, y]/(xy) we find by the previous example

that B is a partial H-comodule with B • H = k[x, y, x′, y′]/ρ((xy)).

Remark that ρ((xy)) is not an ideal in k[x, y, x′, y′], hence B •H is not

an algebra quotient of B ⊗H. Furthermore, ρB : B → B •H given by

ρB(f)(x, y, x′, y′) = f(x+ x′, y + y′) for all f ∈ B.

Example 4.1.8 (A partial action on the quantum plane). By a similar

construction as in the previous example, we obtain a partial action on

the quantum plane. Consider the tensor algebra T (V ) where V is a

2-dimensional vector space. Then this tensor algebra is known to be

a Hopf algebra and it coacts on itself by the comultiplication. We

can view T (V ) as the free algebra k 〈x, y〉 with two generators x, y
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and the coaction is then given by the comultiplication ∆ : k 〈x, y〉 →
k 〈x, y〉⊗k 〈x, y〉 , ∆(x) = x⊗1+1⊗x,∆(y) = y⊗1+1⊗y. Now consider

the quantum plane kq[x, y] = k 〈x, y〉 /(xy − qyx). By Example 4.1.5,

the quantum plane is a partial comodule over the tensor algebra.

Example 4.1.9. Consider a partial coaction in the sense of Caenepeel-

Janssen [21]. This means that H is a Hopf algebra, A is an algebra

and

ρ : A→ A⊗H, ρ(a) = a[0] ⊗ a[1]

is a linear map satisfying the following axioms:

(CJ1) (ab)[0] ⊗ (ab)[1] = a[0]b[0] ⊗ a[1]b[1]

(CJ2) a[0][0] ⊗ a[0][1] ⊗ a[1] = a[0]1[0] ⊗ a[1](1)1[1] ⊗ a[1](2)

(CJ3) a[0]ε(a[1]) = a

Then we define e = 1[0] ⊗ 1[1] ∈ A ⊗ H, which is an idempotent,

because of the first axiom. Then we get that

A⊗H = (A⊗H)e⊕ (A⊗H)e′

where e′ = 1− e. If we put A •H = (A⊗H)e, then we have that the

map

π : A⊗H → A •H, a⊗ h 7→ a1[0] ⊗ h1[1]

is surjective with right inverse the inclusion map and kernel (A⊗H)e′ =

{a⊗ h− a1[0] ⊗ h1[1] | a⊗ h ∈ A⊗H} = N and A •H = (A⊗H)/N .

This allows us to define the partial action datum over A:

A

ρ=π◦ρ ##

ρ // A⊗H

πyy
A •H

To check the coassociativity, we consider the diagram

A
ρ //

ρ ((

A⊗H ρ⊗H //

πvvvv ρ⊗H ((

A⊗H ⊗H

π⊗Hvvvv

A⊗H
A⊗∆

oo

A⊗∆vv π (( ((

A

ρvv

ρoo

A •H

ρ•H ((

(A •H)⊗H

πA•Hvvvv

A⊗H ⊗H

π⊗Hvvvv πA,∆ (( ((

A •H

A•∆vv
(A •H) •H

��?
?

(A •H)⊗H

πA•Hvvvv π′A,∆ (( ((

��?
?

A • (H ⊗H)

π′Xvvvv

��?
?

(A •H) •H

θ1
((

��?
?

A • (H •H)

θ2
vv

��?
?

Θ

��?
?
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Using Lemma 4.1.4, we find that (A • H) • H ∼= ((A • H) ⊗ H)/K,

A• (H •H) = ((A•H)⊗H)/L and Θ = ((A•H)⊗H)/(K+L) where

K = {a[0] ⊗ a[1] ⊗ h− a[0]1[0][0] ⊗ a[1]1[0][1] ⊗ h1[1]|a⊗ h ∈ A⊗H}

and

L = {a1[0]⊗h(1)1[1]⊗h(2)−a1[0]1[0′]⊗h(1)1[1](1)1[1′]⊗h(2)1[1](2)|a⊗h ∈ A⊗H}

Although in general K and L are not necessarily isomorphic subspaces

of (A•H)⊗H, we see because of axiom (CJ2) that (π⊗H)◦ (ρ⊗H)◦
ρ(a) = (π ⊗ H) ◦ (A ⊗ ∆) ◦ ρ(a) in (A • H) ⊗ H. Hence the coasso-

ciativity holds in particular in the quotient Θ. We can conlude that a

Caenepeel-Janssen partial action induces a quasi (and not geometric)

partial comodule.

Example 4.1.10. In a similar way as the previous example, partial

corepresentations [11] also lead to examples of quasi partial comodules.

Example 4.1.11. Let (X,X•H, πX , ρX) be a quasi partialH-comodule.

We know that X ⊗ H is a (global) right H-comodule with coaction

X ⊗ ∆. By applying the result of Example 4.1.5, we find that the

epimorphism πX : X ⊗H → X •H induces X •H with the structure

of a geometric partial H-comodule under the partial coaction

X •H

π′X◦X•∆ ((

(X •H)⊗H

π′X,∆vvvv
X • (H •H)

which is geometric by Example 4.1.5. Therefore, we obtain that the

following pushouts are isomorphic, where we denote X •∆ = π′X ◦X •
∆.

(X •H)⊗H
π′X,∆

tttt

X•∆⊗H

**
X • (H •H)

X•(∆•H) **

(X • (H •H))⊗H

π′X,∆,Htttt
X • ((H •H)) •H)

(4.1)
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(X •H)⊗H
π′X,∆

tttt

(X•H)⊗∆

**
X • (H •H)

X•(H•∆) **

(X •H)⊗H ⊗H

πX,H,∆tttt

π′X,∆⊗H

** **
X • (H • (H ⊗H))

π′′X,1 ** **

(X • (H •H))⊗H

π′X,H,∆tttt
X • (H • (H •H))

(4.2)

Denote (X • (H •∆)) = π′′X,1◦(X •(H •∆)). Then we find that the fol-

lowing morphisms are identical up-to-isomorphism of their codomains.

(X • (H •∆)) ◦ (X •∆) ' (X • (∆ •H)) ◦ (X •∆)

When X itself is a geometric partial comodule, one can use the

isomorphism θ : X • (H • H) ∼= (X • H) • H to rewrite the above

pushouts as

(X • (H •H)) •H ∼= X • ((H •H)) •H)

∼= (X •H) • (H •H) ∼= X • (H • (H •H))

we will explain this in more detail in Section 4.3.

4.2. Partial comodule morphisms

Definition 4.2.1. If (X, πX , ρX) and (Y, πY , ρY ) are two partial H-

comodule data, then a morphism of partialH-comodule data is a couple

(f, f •H) of morphisms in C, where f : X → Y and f •H : X •H →
Y •H such that the following two squares commute

X
f //

ρX
��

Y

ρY
��

X •H f•H // Y •H

X ⊗H f⊗H //

πX

OOOO

Y ⊗H

πY

OOOO

A morphism of a quasi, lax or geometric partial comodule is a morphism

of the underlying partial comodule data. We denote the categories of

quasi, lax and geometric partial H-comodules respectively by qPModH ,
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lPModH and gPModH . When we denote PModH , we mean any of the

three partial comodule categories, without specifying which one.

If H is an algebra in C, then H is a coalgebra in Cop and one defines

the categories of partial modules as the opposite of the corresponding

categories of partial comodules over the coalgebra H in Cop

Remark 4.2.2. If (f, f •H) is a morphism of partial comodule data,

then f • H is determined by f . Indeed, suppose that both (f, f •
H), (g, g • H) : X → Y are morphisms of comodule data with f = g,

then using the fact that πX is an epimorphism, it follows that f •H =

g•H. This justifies that from now on we will denote a partial morphism

(f, f •H) just as f .

If moreover πX is a regular epimorphism (that is, it is a coequalizer)

in C, then one can express the property of the existence of f •H more

explicitly. We spell this out in the abelian case (where all epimorphisms

are regular) in the next lemma.

Lemma 4.2.3. Suppose that the category C is abelian. Let (X, πX , ρX)

and (Y, πY , ρY ) be partial H-comodule data in C. If a morphism f :

X → Y satisfies (f ⊗H)(Ker πX) ⊂ Ker πY , then there exists a unique

morphism f •H : X •H → Y •H such that πY ◦(f⊗H) = (f •H)◦πX .

Proof. The existence and uniqueness of f •H follows directly by

universal property of (X • H, πX) = coker (Ker (πX)) in the abelian

category C. �

Remark 4.2.4. In case C = Vect, one then finds that a map f : X →
Y between two geometric partial modules is a morphism of partial

comodules if and only if the following conditions hold:

(1) f(x) • h = 0 if x • h = 0;

(2) f(x[0]) • x[1] = f(x)[0] • f(x)[1];

where we used the notation introduced in Remark 4.1.3, and where the

second condition make sense thanks to the first one.

Lemma 4.2.5. If f : (X, πX , ρX , θX)→ (Y, πY , ρY , θY ) is a morphism

of quasi partial H-comodules, then there exist unique morphisms (f •
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H) •H, f • (H •H) and θf such that the following diagrams commute

X •H ρX•H //

f•H
��

(X •H) •H

(f•H)•H
��

(X •H)⊗HπX•Hoo

(f•H)⊗H
��

Y •H ρY •H // (Y •H) •H (Y •H)⊗HπY •Hoo

X •H
π′X◦(X•∆)

//

f•H
��

X • (H •H)

f•(H•H)

��

(X •H)⊗HπX•Hoo

(f•H)⊗H
��

Y •H
π′Y ◦(Y •∆)

// Y • (H •H) (Y •H)⊗HπY •Hoo

(X •H) •H
θX1 //

(f•H)•H
��

ΘX

θf
��

X • (H •H)
θX2oo

f•(H⊗H)

��
(Y •H) •H

θY1 // ΘY Y • (H ⊗H)
θY2oo

If moreover X and Y are lax, then the following diagram commutes as

well.

(X •H) •H
(f•H)•H

//

θX
��

(Y •H) •H

θY
��

X • (H •H)
f•(H•H)

// Y • (H •H)

Proof. This follows by the universal property of the considered

pushouts. For example, (f • H) • H : (X • H) • H → (Y • H) • H
is defined as the unique morphism that makes the following diagrams

commute, where the inner and outer diamond are pushouts

X ⊗H

πX

vv

ρX⊗H

((

f⊗H
��

Y ⊗H
πY

vv

ρY ⊗H

((
X •H

ρX•H

((

f•H // Y •H

ρY •H ((

(Y •H)⊗H

πY •Hvv

(X •H)⊗H

πX•H

vv

(f•H)⊗H
oo

(Y •H) •H

(X •H) •H

(f•H)•H

OO

�
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4.3. Coassociativity

For a usual H-comodule (M,ρ), it is well-known that the coassocia-
tivity condition implies a generalized coassociativity condition saying
that all morphisms from M to M ⊗ H⊗n that is constructed out of a
combination of ρ, ∆ and identity maps are identical. Our next aim
is to prove a similar theorem for partial comodules. To this end, let
consider the following compositions of partial mappings from X to
X ⊗H ⊗H ⊗H. Let us first construct

ρ1 = ((ρ •H) •H) ◦ (ρ •H) ◦ ρ : X → ((X •H) •H) •H
which is done in the following diagram, where all quadrangles are
pushouts.

X
ρ //

ρX
��

X ⊗H

πXtttt
ρX⊗H **

ρ⊗H // X ⊗H ⊗H ρ⊗H⊗H //

πX⊗Htttt ρX⊗H⊗H **

X ⊗H ⊗H ⊗H
πX⊗H⊗H����

X •H

ρX•H **

(a) (X •H)⊗H

(ρX•H)⊗H **πX•Htttt

(X •H)⊗H ⊗H

πX•H⊗Htttt
(X •H) •H

(ρX•H)•H **

((X •H) •H)⊗H

π(X•H)•Htttt
((X •H) •H) •H

In the same way, we can construct

ρ2 : ((ρ •H) •H) ◦ (X •∆) ◦ ρ : X → (X •H) • (H •H),

where we denote as before X •∆ = π′X ◦ (X •∆) and which is defined
by the following diagram.

X
ρ //

ρX
��

X ⊗H

πXtttt
X⊗∆ **

X⊗∆ // X ⊗H ⊗H

πX⊗H

����

ρ⊗H⊗H //

ρX⊗H⊗H **

X ⊗H ⊗H ⊗H
πX⊗H⊗H����

X •H

X•∆ **

(b) X ⊗H ⊗H

πX⊗H ** **πX,∆tttt

(X •H)⊗H ⊗H

πX•H⊗H

����

X • (H ⊗H)

π′X ** **

(c) (X •H)⊗H

π′X,∆tttt (ρX•H)⊗H **
X • (H •H)

ρX•(H•H) **

((X •H) •H)⊗H

π′′X,∆tttt
(X •H) • (H •H)

Since we know by the coassociativity onX that the pushouts (X•H)•H
given by the diagram (a) is isomorphic to the pushout X•(H•H) which
is the combinination of diagrams (b) and (c). Therefore it follows that
the pushouts ((X •H)•H)•H and (X •H)•(H •H) constructed above
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are isomorphic as well, in such a way that the constructed maps ρ1 and
ρ2 from X into these pushouts are identical up to this isomorphism.

Next, we construct a morphism

ρ3 : ((X •H) •∆) ◦ (ρ •H) ◦ ρ : X → (X •H) • (H •H)

denoting ((X •H) •∆) = π′X•H ◦ ((X • H) • ∆), as in the following
diagram.

X
ρ //

ρX
��

X ⊗H

πXtttt
ρX⊗H **

ρ⊗H // X ⊗H ⊗H X⊗H⊗∆ //

πX⊗Htttt X⊗H⊗∆ **

X ⊗H ⊗H ⊗H

X •H

ρX•H **

(a) (X •H)⊗H

(X•H)⊗∆ **πX•Htttt

X ⊗H ⊗H ⊗H

πX⊗H⊗Htttt
(X •H) •H

(X•H)•∆ **

(X •H)⊗H ⊗H

πX•H,∆tttt

πX•H⊗H

** **
(X •H) • (H ⊗H)

π′X•H ** **

((X •H) •H)⊗H

π′X•H,∆tttt
(X •H) • (H •H)

Let us first remark that the constructed pushout is the same as the one
from the previous diagram. Indeed, we had constructed (X•H)•(H•H)
as the pushout of πX with

((ρX •H)⊗H) ◦ (πX ⊗H) ◦ (X ⊗∆)

= (πX•H ⊗H) ◦ (ρX ⊗H ⊗H) ◦ (X ⊗∆)

= (πX•H ⊗H) ◦ ((X •H)⊗∆) ◦ (ρX ⊗H)

It follows that the morphism ρ3 is identical to ρ2 (and to ρ1).
Furthermore, one sees that the pushout (a) appears again in the

last diagram, by a same argument as before, this can be replaced by
the combination of the pushouts (b) and (c), since θX : X • (H •H)→
(X •H) •H is an isomorhpism. This leads us to the map

ρ4 : ((X •H) •∆) ◦X •∆ ◦ ρ : X → X • (H • (H •H))
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X
ρ //

ρX
��

X ⊗H

πXtttt

(πX⊗H)◦(X⊗∆)

**

ρ⊗H // X ⊗H ⊗H X⊗H⊗∆ //

πX⊗Htttt X⊗H⊗∆ **

X ⊗H ⊗H ⊗H

X •H

X•∆ **

(b) + (c) (X •H)⊗H

(X•H)⊗∆ **π′X,∆tttt

X ⊗H ⊗H ⊗H

πX⊗H⊗Htttt
X • (H •H)

X•(H•∆) **

(X •H)⊗H ⊗H

πX,H,∆tttt

π′X,∆⊗H

** **
X • (H • (H ⊗H))

π′′X,1 ** **

(X • (H •H))⊗H

π′X,H,∆tttt
X • (H • (H •H))

Remark that (X•H)•(H•H) is the pushout of the pair (πX•H , (πX•H⊗
H) ◦ ((X •H)⊗∆) and X • (H • (H •H)) is the pushout of the pair
(π′X,∆, (π

′
X,∆ ⊗H) ◦ ((X •H)⊗∆). Since πX•H = θX ◦ π′X,∆ and θX is

an isomorphism, it follows that both pushouts are isomorphic and φ3

and φ4 are identical up to this isomorphism.
Let us now consider the morphism

ρ5 : ((X •∆) •H) ◦ (ρ •H) ◦ ρ : X → (X • (H •H)) •H

where ((X •∆) •H) = (π′X •H) ◦ ((X •∆) •H) and that is given by
the following diagram

X
ρ //

ρX
��

X ⊗H

πXtttt
ρX⊗H **

ρ⊗H // X ⊗H ⊗H X⊗∆⊗H //

πX⊗Htttt X⊗∆⊗H **

X ⊗H ⊗H ⊗H

X •H

ρX•H **

(a) (X •H)⊗H

(X•∆)⊗H **πX•Htttt

X ⊗H ⊗H ⊗H

πX,∆⊗Htttt
(X •H) •H

(X•∆)•H **

(X • (H ⊗H))⊗H

πX•(H⊗H)tttt

π′X⊗H

** **
(X • (H ⊗H)) •H

π′X•H ** **

(X • (H •H))⊗H

πX•(H•H)tttt
(X • (H •H)) •H

And again, by replacing the pullback (a) by the pullback (b)+(c), we
obtain a map that is the same up-to-isomorphism the same as ρ5:

ρ6 : (X • (∆ •H)) ◦X •∆ ◦ ρ : X → X • ((H •H) •H)



4.3. COASSOCIATIVITY 69

where (X • (∆ •H)) = π′′X,2 ◦ (X • (∆ •H)). This map ρ6 is defined by
the following diagram.

X
ρ //

ρX
��

X ⊗H

πXtttt

(πX⊗H)◦(X⊗∆)

**

ρ⊗H // X ⊗H ⊗H X⊗∆⊗H //

πX⊗Htttt X⊗∆⊗H **

X ⊗H ⊗H ⊗H

X •H

X•∆ **

(b) + (c) (X •H)⊗H

(X•∆)⊗H **π′X,∆tttt

X ⊗H ⊗H ⊗H

πX,∆⊗Htttt
X • (H •H)

X•(∆•H) **

(X • (H ⊗H))⊗H

πX,∆,Htttt

π′X⊗H

** **
X • ((H ⊗H) •H)

π′′X,2 ** **

(X • (H •H))⊗H

π′X,∆,Htttt
X • ((H •H) •H)

By Example 4.1.11, we know that X•((H•H))•H) ∼= X•(H•(H•H))
and the maps ρ4 and ρ6 are identical up to this isomorphism.

Hence we have hereby proven that the all above constructed pushout-
s are isomorphic and the maps ρi (i = 1, . . . , 6) are identical up to these
isomorphisms. All this is summarized in the following result.

Theorem 4.3.1 (generalized coassociativity). Let (X, πX , ρX , θX) be

a geometric partial comodule. Then the pushouts introduced above are

all isomorphic

X • (H • (H •H)) ∼= (X •H) • (H •H)

∼= ((X •H) •H) •H ∼= (X • (H •H)) •H
∼= X • ((H •H) •H)

Moreover up to these isomorphisms, the following morphisms X →
X •H •H •H are identical

(X •H •∆) ◦ (X •∆) ◦ ρ ' (ρ •H •H) ◦ (X •∆) ◦ ρ '
(X •H •∆) ◦ (ρ •H) ◦ ρ ' (ρ •H •H) ◦ (ρ •H) ◦ ρ '
(X •∆ •H) ◦ (ρ •H) ◦ ρ ' (X •∆ •H) ◦ (X •∆) ◦ ρ

Corollary 4.3.2. If (X, πX , ρX) is a geometrically partial H-comodule,

then (X •H, (X •H) •H, πX•H , ρX •H) is a geometrically partial H-

comodule.

Corollary 4.3.3. All higher coassociativity conditions follow now by

an induction argument from the previous two results.
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Remarks 4.3.4. (1) A lax version of the above results on gen-

eralized coassociativity can be proven in the same way. In-

deed, analysing the reasoning at the start of this section, each

of the isomorphisms between the pullbacks obtained in The-

orem 4.3.1 follows from the isomorphism θ : X • (H • H) →
(X•H)•H at appropriate places. When θX is only assumed to

be a morphism (not an isomorphism), then we also obtain only

morphisms (and not isomorphisms) between the constructed

pullbacks. The coassociativity will then hold up to composi-

tion with the induced morphisms onto ((X •H) •H) •H.

(2) As the isomorphisms between the respective pullbacks are con-

structed by applying the universal property of the pullback,

one can moreover easily see, that these isomorphisms are com-

patible in a way that the following diagram commutes

X • (H • (H •H)) //

��

(X •H) • (H •H) // ((X •H) •H) •H

X • ((H •H) •H) // (X • (H •H)) •H

OO

where all arrows are isomorphisms in the geometric case, and

just morphisms in the lax case. The commutativity of this

diagrams seems to suggest that there is an underlying (skew)

monoidal structure with tensor product − • −. In the next

section, we will show that in case H is a bialgebra, there is

at least a lax monoidal structure on the category of geometric

partial modules, which coincides with the •-product that we

encountered so far.

4.4. Completeness and cocompleteness of the category of

partial comodules

It is known that the category of comodules over a coalgebra over
a field is complete and cocomplete, see e.g. [37], [41]. We will prove
the same result for geometric partial comodules, and use for this the
approach of [4], which relies on the fundamental theorem of comodules,
for which we also provide a proof in the partial case.

For global comodules, the forgetful functor U : ModH → C allows
a right adjoint given by the free functor − ⊗ H : C → ModH . Since
every global comodule is also a partial module, the free functor −⊗H :
C → PModH still makes sense, however it no longer serves as a right
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adjoint for the forgetful functor U : PModH → C, which is defined as
U(X, ρX , πX , θX) = X on objects and U(f, f •H) = f on morphisms.
We now show that the forgetful functor still has a right adjoint.

Proposition 4.4.1. Let V be any object in C, then V can be endowed

with a partial H-comodule structure putting V • H = V , π = V ⊗ εH
and ρ = idV . We call this the “trivial partial comodule structure” on

V .

Moreover a trivial partial comodule is always geometric and the

functor T : C → PModH that assigns to each C-object the trivial partial

comodule structure, is fully faithful and a right adjoint for the forgetful

functor U : PModH → C.

Proof. It can be easily verified that (V, V, V ⊗ εH , 11V ) is a geo-

metric partial H-comodule with (V •H) •H = V • (H •H) = V .

Given a partial comodule (X,X•H, πX , ρX), we find that TU(X) =

(X,X,X ⊗ εH , idX) and we define the unit of the adjunction as ηX =

(idX , X • εH) : X → TU(X). For any object V in C, we see that

UT (V ) = V . Then the unit-counit conditions become trivial. Since

the counit is the identity, we obtain that T is fully faithful. �

Since the forgetful functor has a right adjoint, it preserves all col-
imits that exist in PModH . The main aim of this section is to show
that colimits and limits indeed exist in PModH . Let us first show that
thanks to the observation of the previous proposition, the category
PModH is well-copowered.

Recall that a category is called well-copowered if and only if for any
object X, there exist up-to-isomorphism only a set of epimorphisms
f : X → Y .

Corollary 4.4.2. A morphism f ∈ PModH is an epimorphism if and

only if U(f) = f is an epimorphism in C. Furthermore, the category

PModH is well-copowered if C is so.

Proof. Since the forgetful functor U : PModH → C has a right ad-

joint, U preserves epimorphisms. Conversely, if f : X → Y in PModH

is such that U(f) is an epimorphism, then f is an epimorphism as

well. Indeed, suppose that we have g, h : Y → Z in PModH such that

g ◦ f = h ◦ f . Then also U(g) ◦ U(f) = U(g) ◦ U(f) in C and hence

U(g) = U(h). But in Remark 4.2.2, we remarked that for a morphism

g ∈ PModH , g • H is completely determined by g (or by U(g) to be

precise). Hence we find that g = h in PModH .
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Let (X,X •H, ρ, π) be a partial comodule datum. Since C is well-

copowered, there exists up-to-isomorphism only a set of epimorphisms

f : X → Y in C. Moreover, for each Y , there exist again since C is

well-copowered, only a set of epimorphisms Y ⊗H → Y •H, hence also

only a set of partial comodule data over Y . We conclude that there

will be only a set of epimorphisms f : X → Y in PModH and hence

PModH is also well-copowered. �

Theorem 4.4.3. Suppose that the endofunctor − ⊗ H : C → C pre-

serves colimits. Then the following statements hold.

(i) If the category C is k-linear then PModH is also k-linear and the

forgetful functor is k-linear.

(ii) If the category C has all colimits of a shape Z, then PModH also

has colimits of shape Z. Hence, if C is cocomplete then PModH

is cocomplete and the forgetful functor U : PModH → C preserves

colimits.

(iii) If the category C is additive, then PModH is also additive.

Proof. (i) Let X = (X, ρX , πX , θX) and (Y, ρY , πY , θY ) be a two

partial comodule data and (f, f•H), (g, g•H) : X → Y two morphisms.

Let us verify that (f + g, f •H + g •H) is again a morphism. Then we

have

ρY ◦ (f + g) = ρY ◦ f + ρY ◦ g
= (f •H) ◦ ρX + (g •H) ◦ ρX
= ((f •H) + (g •H)) ◦ ρX

And similarly, ((f • H) + (g • H)) ◦ πX = πY ◦ ((f ⊗ H) + (g ⊗ H)).

Hence (f + g, f •H + g •H) is indeed a morphism in PModH .

Similarly, for any a ∈ k, we define a(f, f •H) = (af, af •H). One

easily verifies that this is again a morphism, and using this addition

and scalar multiplication, the Hom-sets in PModH are k-modules and

composition is k-bilinear.

(ii) Let Z be any small category and F : Z → PModH a functor,

where we denote for each Z ∈ Z, FZ = (FZ, FZ • H, ρFZ , πFZ), i.e.

we denote UFZ = FZ for short. Consider the functor UF : Z → C
and denote (C, γZ) = colimUF , where γZ : FZ → C are such that

γZ = γZ′ ◦ Ff for any f : Z → Z ′ in Z. Consider now the functor

UFH : Z → C given by UFHZ = FZ ⊗ H. Then by assumption we

have that colimUFH = (C ⊗H, γZ ⊗H). Finally consider the functor
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UF • : Z → C given by UF •Z = FZ • H for all Z ∈ Z, and denote

colimUF •Z = (C •H, δZ) where δZ : FZ •H → C •H are such that

δZ = δZ′ ◦ Ff •H. Let us verify that (C •H, δZ ◦ ρFZ) is a cocone for

UF . Indeed, for any morphism f : Z → Z ′ in Z, Ff is a morphism in

PModH and hence the following diagram commutes

FZ
Ff //

ρFZ
��

FZ ′

ρFZ′
��

FZ •H Ff•H //

δZ &&

FZ ′ •H

δZ′xx
C •H

By the universal property of the colimit colimUF , we then obtain a

unique morphism ρC : C → C •H such that δZ ◦ ρFZ = ρC ◦ γZ for all

Z ∈ Z. In the same way, one shows that (C •H, δZ ◦ πFZ) is a cocone

for UFH , and hence there exists a morphism πC : C⊗H → C •H such

that δZ ◦ πFZ = πC ◦ γZ for all Z ∈ Z. The situation is summarized in

the next diagram.

FZ
γZ //

ρFZ
��

C

ρC
��

FZ •H δZ // C •H

FZ ⊗H

πFZ

OO

γZ⊗H // C ⊗H

πC

OO

Let us show that (C,C • H, ρC , πC) is a partial comodule datum, i.e.

that πC : C⊗H → C •H is an epimorphism in C. To this end, consider

f, g : C •H → X in C such that f ◦ πC = g ◦ πC . Then for all Z ∈ Z
we have that

f ◦ πC ◦ (γZ ⊗H) = f ◦ δZ ◦ πFZ
= g ◦ πC ◦ (γZ ⊗H) = g ◦ δZ ◦ πFZ

Since each πFZ is epi, we find f ◦ δZ = g ◦ δZ for all Z and since the

δZ are jointly epi, we obtain that f = g and therefore πC is indeed an

epimorphism.

Furthermore, by the interchange law for colimits, it follows that the

pushouts C • (H • H), (C • H) • H and ΘC can be computed as the

colimits of the respective functors Z → C that construct the pushouts
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Z •H(•H), (Z •H) •H and ΘZ . Hence, it follows that if all FZ are

quasi, lax or geometric comodules, then Z will be such as well.

(iii). By part (i) we know already that PModH is pre-additive if C is

so and by part (ii) we know that PModH has binary coproducts if C
has so. It remains to prove that binary coproducts in PModH are also

products. Consider two object (X,X•H, ρX , πX) and (Y, Y •H, ρY , πX)

in PModH and consider their coproduct which we know by part (ii) is

of the form (X
∐
Y, (X •H)

∐
(Y •H), ρX

∐
ρY , πX

∐
πY ). Moreover,

we know that X
∐
Y (X • H)

∐
(Y • H) are biproducts in C. Hence

we have the projections pX : X
∐
Y → X, πY : X

∐
Y → Y , pX•H :

(X•H)
∐

(Y •H)→ X•H and pY •H : (X•H)
∐

(Y •H)→ Y •H. Then

by the properties of the coproduct in C, we know that the following

diagram commutes

X
∐
Y

ρX
∐
ρY
��

// X

ρX

��
(X •H)

∐
(Y •H) // X •H

(X ⊗H)
∐

(Y ⊗H)

πX
∐
πY

OO

// X ⊗H

πX

OO

Hence we find that (pX , pX•H) : X
∐
Y → X is a morphism in PModH ,

and the same is true for (pY , pY •H) and we obtain that (X
∐
Y, (X •

H)
∐

(Y •H), ρX
∐
ρY , πX

∐
πY ) is indeed a biproduct in PModH . �

As we will show further in this section, there exist monomorphisms
f in PModH such that U(f) is not a monomorphism in C. In particular,
U does not have a left adjoint. Nevertheless, we have the following
result.

Lemma 4.4.4. Consider a morphism f : X → Y in PModH . If Uf :

UX → UY is a monomorphism in C, then f is also a monomorphism

in PModH .

Proof. Consider two morphisms g, h : Z → X in PModH such

that f ◦ g = f ◦ h. Since Uf is a monomorphism, we obtain Ug = Uh.

Then by Remark 4.2.2, we find that also g •H = h •H, i.e. g = h in

PMod. �



4.4. COMPLETENESS AND COCOMPLETENESS 75

Definition 4.4.5. A subcomodule of a partial comodule (X,X•H, ρX , πX)

is a partial comodule datum (Y, Y • H, ρY , πY ), together with a mor-

phism f : Y → X for which both f and f •H are monomorphisms in

C.

From now on, we restrict to our case of interest C = Vectk where k
is a commutative ring.

Proposition 4.4.6. Let (X,X•H, ρX , πX) be a partial comodule datum

and j : Y → X a subobject of X in Vectk. Consider the epi-mono

factorization of πX ◦ (j ⊗ H) : Y ⊗ H → X • H, which we denote as

follows:

Y ⊗H πY // // Y •H � � j•H // X •H

Then

(i) Ker πY ∼= j(Y )⊗H ∩ Ker πX ;

(ii) Denote as usual by Y • (H • H) the pushout of (πY , (πY ⊗ H) ◦
Y ⊗∆). Then Y • (H •H) is isomorphic to the image of the map

π′X,∆ ◦ (j •H)⊗H;

If moreover Y allows a partial comodule datum of the form (Y, Y •
H, ρY , πY ) such that j is a morphism of partial comodule data, then

(iii) Y is a partial subcomodule of X.

(iv) (Y •H)•H is isomorphic to the image of the map πX•H◦(j•H)⊗H;

(v) if X is a lax (resp. geometric) partial comodule, then Y is as well

a lax (resp. geometric) partial comodule.

Proof. (i). By construction we have the following commutative

diagram

Y ⊗H
πY
��

� � j⊗H // X ⊗H
πX����

Y •H � � j•H // X •H
Hence y⊗ h ∈ Ker πY iff 0 = (j •H) ◦ πY (y⊗ h) = πX ◦ (j ⊗H)(y⊗ h)

iff (j ⊗H)(y ⊗ h) ∈ Ker πX . I.e. j(y)⊗ h ∈ Ker πX ∩ j(Y )⊗H.

(ii). As in the case of partial comodules, we know by Lemma 4.1.4 that

Y • (H •H) can be computed as the quotient of (Y •H) ⊗H by the

subspace (πY ⊗H) ◦ (Y ⊗∆)(Ker πY ). Furhtermore, the statement is

true if and only if the canonical morphism j • (H •H) : Y • (H •H)→
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X • (H •H) is injective. Consider the following diagram.

Y ⊗H Ker πY? _oo

(πY ⊗H)◦(Y⊗∆)
����

� � j⊗H // Ker πX

(πX⊗H)◦(X⊗∆)
����

Ker π′Y,∆� _

��

Y •ε⊗H

II

� � (j•H)⊗H
// (Ker π′X,∆)

� _

��

X•ε⊗H

II

(Y •H)⊗H � �
(j•H)⊗H

//

Y •ε⊗H

^^

π′Y,∆ ����

(X •H)⊗H
π′X,∆����

Y • (H •H)
j•(H•H)

//

��

X • (H •H)

��
0 0

Consider any y•(h•h′) ∈ Y •(H •H), i.e. y•(h•h′) = π′Y,∆((y•h)⊗h′)
for some (y • h)⊗ h′ ∈ (Y •H)⊗H and (y • h)⊗ h′ = πY (y ⊗ h)⊗ h′
with y ⊗ h ⊗ h′ ∈ Y ⊗ H ⊗ H. Suppose that j(y) • (h • h′) = 0, i.e.

(j(y) • h) ⊗ h′ ∈ Ker π′X,∆ = (πX ⊗ H) ◦ (X ⊗ ∆)(Ker πX). Hence,

(j(y) • h)⊗ h′ = (xi • hi(1))⊗ hi(2) for some xi⊗ hi ∈ Ker πX . Applying

(X • ε)⊗H to the last identity, we obtain by part (i) that

xi ⊗ hi = j(y)⊗ ε(h)h′ ∈ j(Y )⊗H ∩ Ker πX

Hence, y ⊗ ε(h)h′ ∈ Ker πY . Then we find

(πX ⊗H) ◦ (X ⊗∆) ◦ (j ⊗H)(y ⊗ ε(h)h′)

= (xi • hi(1))⊗ hi(2)

= (j(y) • h)⊗ h′

= ((j •H)⊗H) ◦ (πY ⊗H) ◦ (Y ⊗∆)(y ⊗ ε(h)h′)

= j(y) • ε(h)h′(1) ⊗ h′(2)

Since (j•H)⊗H is injective, we have that (y•h)⊗h′ = y•ε(h)h′(1)⊗h′(2)

which is in Ker π′Y,∆ since y⊗ ε(h)h′ ∈ Ker πY . Therefore y • (h•h′) = 0

and j • (H •H) is injective.

(iii). It is clear by construction that (j, j •H) is a morphism of partial

comodule data and j •H is injective.

(iv). This is proven in the same way as in part (ii). We have to show

that (j•H)•H : (Y •H)•H → (X•H)•H is injective. So suppose that

(y •h) •h′ ∈ (Y •H) •H is such that (j(y) •h) •h′ = 0 in (X •H) •H.

Since πY •H is surjective, we find that (y • h) • h′ = πY •H((y • h)⊗ h′)
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and (j(y) • h)⊗ h′ ∈ Ker πX•H = ρX(Ker πX). Hence, (j(y) • h)⊗ h′ =
(xi[0] • xi[1]) ⊗ hi for some xi ⊗ hi ∈ Ker πX . Applying (X • ε) ⊗H to

the last identity, we obtain by part (i) that

xi ⊗ hi = j(y)⊗ ε(h)h′ ∈ j(Y )⊗H ∩ Ker πX ∼= Ker πY .

Hence (j(y)•h)⊗h′ = (xi[0] •xi[1])⊗hi ∈ (j •H)⊗H ◦ρY ◦ (Ker πY ) ∼=
Ker πY •H , so (y • h) • h′ = 0.

(v). Suppose that X is a lax partial module. Then by part (iii) and

(iv) above, we can restrict and corestrict θX to obtain a morphism

θY : Y • (H •H)→ (Y •H) •H. If moreover X is geometric, than we

can also restrict and corestrict θ−1
X to obtain an inverse θ−1

Y of θY and

Y is again geometric. �

The following corollary describes a phenomenon that was also ob-
served in [10] for the case of partial representations.

Corollary 4.4.7. Any partial subcomodule of a global comodule is a-

gain global.

Proof. By Proposition 4.4.6, we know that for partial subcomod-

ule Y of partial comodule X that Ker πY ⊂ Ker πX . Moreover, if X is

global then Ker πX = 0 and therefore also Ker πY = 0 so Y is global. �

We are now ready to prove the ‘fundamental theorem for partial
comodules’.

Theorem 4.4.8 (Fundamental theorem for partial comodules). Let

X = (X,X • H, ρX , πX) be a geometric partial comodule over the k-

coalgebra H, and consider any x ∈ X. Then there exists a finite di-

mensional (geometric) partial subcomodule Y ⊂ X such that x ∈ Y .

Proof. Take x ∈ X and write ρ(x) =
∑

i yi • hi = π(
∑
yi ⊗ hi),

where hi is a base of H. Denote Y the (finite dimensional) subspace of

X generated by the yi. We by coassociativity in the partial comodule

X, we have the identity

θ−1
X ◦ (ρ •H)(ρ(x)) = π′X,∆ ◦ (X •∆)(ρ(x))

in X • (H •H). But since ρ(x) ∈ Y •H, by Proposition 4.4.6 we know

that the above expressions are in fact in Y • (H •H). Therefore there

exists π(yij ⊗ hij)⊗ hi in Ker π′Y,∆ such that

ρ(yi)⊗ hi =
∑

π(yk ⊗
∑

akjihj)⊗ hi + π(yij ⊗ hij)⊗ hi
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in (Y • H) ⊗ H where we denoted ∆(hi) =
∑
aijkhj ⊗ hk for certain

aijk ∈ k. Since the hi are linearly independent, we get ρ(yi) =
∑
π(yk⊗∑

akjihj) + π(yij ⊗ hij) ∈ Y •H. Hence, it follows by Proposition 4.4.6

that Y is a geometric partial subcomodule of X. �

Corollary 4.4.9. The category of geometric partial comodules has a

generator.

Proof. Let I be the set of isomorphism classes of finite dimen-

sional geometric partial comodules over H. Since there exists clearly

only a set of partial comodule structures over a given finite dimensional

vector space, it follows that I is indeed a set. For any i ∈ I choose

one comodule Mi and denote by G the coproduct
∐

i∈IMi. Then the

fundamental theorem implies there is a surjective morphism G → X

for any geometric partial comodule X. Hence, G is a generator for

gPModH . �

Corollary 4.4.10. The category of geometric partial comodules is com-

plete and cocomplete.

Proof. This follows from the known fact that a cocomplete well-

copowered category with a generator is complete. �

Remark 4.4.11. Although the category PModH is complete, its limits

are not preserved by the forgetful functor U to Vect. More precisely,

if L is a limit of a diagram D in PModH , then it is clear that U(L)

is a cone for the diagram U(D) in Vect. Hence there is a morphism

u : U(L) → L′ in Vect where L′ is the limit in Vect of U(D). In

general however, this morphism u is not a bijection. Rather, L can

be understood as the biggest partial comodule inside L′ that allows a

cone on D. Remark however, that in order to be able to speak about

the ‘biggest’ partial comodule inside L′, we already use implicitly the

existence of limits in PModH . This can be seen more explicitly by

considering the kernel of a morphism f : X → Y in PModH which

can be understood as the biggest partial subcomodule K of X such

that U(K) is contained in the vector space kernel of f . Thanks to the

completeness and cocompleteness of PModH , we can construct from

two partial subcomodules v : V → X and w : W → X the pushout

of the pullback of v and w, which is then a partial subcomodule of X

containing both V and W .

The following result will be important in the next section.
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Corollary 4.4.12. The forgetful functor gPModH → PCD (PCD de-

notes the category of partial comodule data), is fully faithful and has a

left adjoint B.

Proof. Let X be a partial comodule datum. Then BX is the

biggest partial subcomodule of X which is geometric. As we explained

in the previous remark this construction makes sense. It is easily veri-

fied that this provides a left adjoint to the forgetful functor. �

In the remaining part of this section, we will show that the category
of Partial modules is not abelian. To this end, we will construct an
example of a morphism f such that Ker coker f and coker Ker f are not
isomorphic.

Consider a global comodule X and Y a linear subspace of X which
is not a (global) subcomodule (recall that by Corollary 4.4.7 any subco-
module of global module is global). We can then construct the induced
partial comodule X/Y as in Example 4.1.5 and consider the canonical
projection p : X → X/Y which is a morphism of partial comodules.
Then the vector space kernel of p is just Y . However as we assumed
that Y was not a subcomodule of X, Y is also not a partial subcomod-
ule of X and hence it can not be the kernel of p in PModH . Rather,
this kernel is the biggest (global) subcomodule of X contained in Y .
Suppose that Y was a one-dimensional subspace of X, then it follows
that the kernel of p has to be 0. Then p is both a monomorphism
(as morphisms with a zero kernel in additive categories are monomor-
phisms) and an epimorphism (as p is surjective and Corollary 4.4.2)
but not an isomorphism. Hence PModH is not abelian. We also see as
mentioned earlier that there exist monomorphisms that are not induced
by monomorphisms.





CHAPTER 5

Partial comodules over a Hopf algebra and

Hopf-Galois theory

In this chapter we study the notions of partial comodules and in-
troduced in the previous chapter in case the coalgebra has moreover a
bialgebra structure. Similar to the global case, we prove that the cat-
egory of quasi partial comodules is monoidal, although with an oplax
unit. The category of geometric partial comodules over a bialgebra is
shown to be an oplax monoidal category. This is then used to study
in the next section partial comodule algebras, partial relative Hopf
modules and a partial Hopf Galois theory.

5.1. The lax monoidal category of geometric partial

comodules over a bialgebra

The following result is essentially due to Johnstone [34], who formu-
lated the proof in case of cartesian closed categories, but the argument
easily generalizes to closed monoidal categories.

Let us recall first that a monoidal category is called left closed
monoidal if for each object X in C, the endofunctor X⊗− : C → C has
a right adjoint, that we denote by [X,−] and that is called the internal
hom. In other words, if C is right closed, then for any triple of objects
X, Y, Z in C we have isomorphisms

HomC(X ⊗ Y, Z) ∼= HomC(X, [Y, Z])

for any f ∈ HomC(X ⊗ Y, Z) we denote the corresponding element in

HomC(Y, [X,Z]) by f̂ , and conversely for any g ∈ HomC(Y, [X,Z]), we

have ĝ ∈ HomC(X ⊗ Y, Z) with
ˆ̂
f = f and ˆ̂g = g. If one considers the

evaluation and coevaluation maps

evXY : X ⊗ [X, Y ]→ Y ; coevXY : Y → [X,X ⊗ Y ],

then we can write

f̂ = [X, f ] ◦ coevXY ;

ĝ = evXZ ◦ (X ⊗ g).

81
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Suppose that C is moreover right closed, and where the right internal
hom denoted by {−,−}. Then we find for any three objects X, Y, Z in
C that

HomC(X, [Y, Z]) ∼= HomC(X ⊗ Y, Z) ∼= HomC(Y, {X,Z})

Hence

HomCop([Y, Z], X) ∼= HomC(Y, {X,Z})
and the (contravariant) functor [−, Z] : C → Cop has a right adjoint
{−, Z}, and therefore [−, Z] : C → C sends epimorphisms to monomor-
phisms.

Lemma 5.1.1. Let C be a bi-closed monoidal category, f : A→ B and

epimorphism and g : C → D a regular epimorphism. Then the pushout

of the pair (f ⊗ C,A⊗ g) is given by (B ⊗D,B ⊗ g, f ⊗D).

A⊗ C
f⊗C

yy

A⊗g

%%
B ⊗ C

B⊗g %%

h

!!

A⊗D

f⊗Dyy

k

}}

B ⊗D
��?
?

u
��
T

Proof. Suppose that g is the coequalizer of the pair r, s : R→ C.

Consider any object T and maps h : B ⊗ C → T , k : A ⊗ D → T

such that ` = h ◦ (f ⊗ C) = k ◦ (A ⊗ g) : A ⊗ C → T . Using the

left closure on C, we find that ` corresponds uniquely to a morphism
ˆ̀∈ Hom(C, [A, T ]) and one checks that

ˆ̀= [A, k] ◦ coevAD ◦ g = [f, T ] ◦ [B, h] ◦ coevBC .

D
coevAD //

û

��

[A,A⊗D]
[A,k]

&&
R

r //
s
// C

g
:: ::

coevAC $$

[A, T ]

[B,B ⊗ C]
[B,h]

// [B, T ]
88 [f,T ]

88
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Since g coequalizes the pair (r, s), it follows from the first equality that ˆ̀

also coequalizes the pair (r, s). Furthermore, since f is an epimorphism,

[f, T ] is a monomorphism and we find that

[B, h] ◦ coevBC ◦ r = [B, h] ◦ coevBC ◦ s.

Therefore, the universal property of the coequalizer g leads to a unique

morphism û : D → [B, T ] such that

û ◦ g = [B, h] ◦ coevBC : C → [B, T ].

Moreover, since g is an epimorphism, û also satisfies

[f, T ] ◦ û = [A, k] ◦ coevAD
Consequently the induced morphism ˆ̂u = u : B ⊗D → T satisfies

u ◦ (B ⊗ g) = h, u ◦ (f ⊗D) = k

and is unique in this sense, which proves the universal property of the

pushout (B ⊗D,B ⊗ g, f ⊗D). �

Let C be a braided monoidal category with pushouts and consider a
bialgebra H in C. Let (X,X •H, πX , ρX) and (Y, Y •H, πY , ρY ) be two
partial comodule data over H. Then we can construct a new partial
comodule datum (X ⊗ Y, (X ⊗ Y ) • H, πX⊗Y , ρX⊗Y ) in the following
way. Consider the map µX,Y = (X ⊗Y ⊗µH) ◦ (X ⊗σH,Y ⊗H), where
σ denotes the braiding of the category. Then define (X ⊗ Y ) •H and
πX⊗Y by the following pushout.

X ⊗H ⊗ Y ⊗H
µX,Y

))

πX⊗πY

tttt
(X •H)⊗ (Y •H)

µ ))

X ⊗ Y ⊗H

πX⊗Yvvvv
(X ⊗ Y ) •H

��?
?

By taking ρX⊗Y = µ◦(ρX⊗ρY ), we obtain the desired partial comodule
datum.

This construction leads to the following result.

Proposition 5.1.2. Let C be a braided closed monoidal category where

all epimorphisms are regular and let H be a bialgebra in C.

Then by the above defined tensor product, the category of partial

comodule data over H is a monoidal category with an op-lax unit, such
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that the following is a diagram of strict monoidal functors.

ModH //

""

PCDH

||
C

Proof. Let us first verify the associativity of the defined tensor

product for PCD. Consider 3 partial comodule data X, Y , Z and con-

sider the following diagram.

X ⊗H ⊗ Y ⊗H ⊗ Z ⊗H
µX,Y ⊗Z⊗H

((

πX⊗πY ⊗Z⊗H

vvvv
(X •H)⊗ (Y •H)⊗ Z ⊗H

µ⊗Z⊗H ((

X•H⊗Y •H⊗πZ

vvvv

X ⊗ Y ⊗H ⊗ Z ⊗H

πX⊗Y ⊗Z⊗Hvvvv

µ(X⊗Y ),Z

((
(X •H)⊗ (Y •H)⊗ (Z •H)

µ⊗(Z•H) ((

(X ⊗ Y ) •H ⊗ Z ⊗H
��?
?

((X⊗Y )•H)⊗πZvv

X ⊗ Y ⊗ Z ⊗H

vv

((X ⊗ Y ) •H)⊗ (Z •H)

��?
?

((
((X ⊗ Y )⊗ Z) •H

��?
?

The upper square is a pushout by definition of the tensor product and

the fact that the functor −⊗ Z ⊗H preserves pushouts since it has a

right adjoint. The down square is a pushout by definition of the tensor

product. The left square is a pushout by the Lemma 5.1.1. hence,

by combining these pushouts we find that ((X ⊗ Y ) ⊗ Z) • H is the

pushout of (X •H⊗Y •H⊗πZ)◦ (πX⊗πY ⊗Z) ' πX⊗πY ⊗πZ along

µ(X⊗Y ),Z ◦(µX,Y ⊗Z⊗H). In the same way, (X⊗(Y ⊗Z))•H is shown

to be the pushout of πX⊗πY ⊗πZ and µX,Y⊗Z◦(X⊗H⊗µY,Z). One can

easily verify that by the properties of the braiding in C and associativity

of the multiplication of H, the maps µ(X⊗Y ),Z ◦ (µX,Y ⊗ Z ⊗ H) and

µX,Y⊗Z ◦ (X ⊗H ⊗ µY,Z) are the same up-to-isomorphism. Hence we

find that ((X ⊗ Y )⊗ Z) •H ∼= (X ⊗ (Y ⊗ Z)) •H, which induces the

associativity constraint for the monoidal product in PCD.

Next, let us verify that the partial comodule datum k = (k,H, idH , η)

is an oplax unit for this monoidal product. Consider any partial comod-

ule datum X = (X,X • H, πX , ρX) and construct the tensor product

X ⊗ k. We know that the underlying C object is just X ⊗ k ∼= X via
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the isomorphism rX : X → X⊗k. Futhermore, the object (X⊗k)•H
is constructed by the following pushout.

X ⊗H ⊗H
X⊗µ

''

πX⊗H

vvvv
(X •H)⊗H

µ ((

X ⊗H

πX⊗kxxxx
(X ⊗ k) •H

��?
?

Then consider the map rX •H := µ◦(X •H)⊗η : X •H → (X⊗k)•H.

One easily verifies that rX •H ◦πX = πX⊗k and therefore (rX , rX •H) :

X → X ⊗ k is a morphism of partial comodule data. �

Let us remark that the category of partial comodule data can not
have a (strong) monoidal unit. Indeed, since the forgetful functor is
strict monoidal, the underlying C-object of the monoidal unit needs
to be the monoidal unit k of C. Hence the monoidal unit should be
of the form (k,K, π, ρ), where K is a quotient of H. However, when
computing the pushout

X ⊗H ⊗H
X⊗µ

''

πX⊗π

vvvv
(X •H)⊗K

µ ((

X ⊗H

πX⊗kxxxx
(X ⊗ k) •H

��?
?

In case C = Vect, we can compute this pushout explicitly via Lem-
ma 4.1.4 and we see that (X ⊗ k) • H is the quotient of X ⊗ H with
respect to (X⊗µ)(Ker πX⊗H+X⊗H⊗Ker π). However, this last set is
strictly larger then Ker πX , so we can never get that (X⊗k)•H ∼= X•H.
Nevertheless, the oplax monoidal unit from Proposition 5.1.2 becomes
a strong unit for a suitable subcategory that we will define now.

Definition 5.1.3. We call a partial comodule datum X over a bialge-

bra H-equivariant if the kernel of the morphism πX : X ⊗H → X •H
is an H sub-bimodule of X ⊗H (hence X •H is an H-bimodule and

πX is H-bilinear). More explicitly, in case C = Vectk, this means that

if x⊗ h ∈ Ker πX , then also x⊗ h′hh′′ ∈ Ker πX for all h′, h′′ ∈ H.
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Corollary 5.1.4. The category of equivariant partial comodule data

over a k-bialgebra H is monoidal.

Proof. Consider the diagram

X ⊗H ⊗H
X⊗µ

''

πX⊗H

vvvv
(X •H)⊗H

σ ((

X ⊗H

πXwwww
X •H

��?
?

Then we see that under the stated assumptions, Ker πX is a right H-

submodule of X ⊗ H and hence (X ⊗ µ)Ker (πX ⊗ H) = Ker πX and

therefore the above diagram is a pushout, which implies that X⊗k ∼= X

in PCD. Similarly, using that Ker πX is a left H-submodule of X ⊗H,

we find that k is a left unit for the monoidal structure on PCD. �

The result from Proposition 5.1.2 leads to the natural question
whether the full subcategories of the category of partial comodule da-
ta, consisting of quasi, lax and geometric partial comodules inherit
a monoidal structure. To answer this question, let us compute the
pushout (X ⊗ Y ) • (H •H), which is given by the following composi-
tion of pushouts

X ⊗H ⊗ Y ⊗H
πX⊗πY

��

µX,Y // X ⊗ Y ⊗H X⊗Y⊗∆//

πX⊗Y
��

X ⊗ Y ⊗H ⊗H
πX⊗Y ⊗H//

πX⊗Y,∆
��

((X ⊗ Y ) •H)⊗H
π′X⊗Y,∆
��

(X •H)⊗ (Y •H)
µX,Y

// (X ⊗ Y ) •H
(X⊗Y )•∆

// (X ⊗ Y ) • (H ⊗H)
π′X⊗Y

// (X ⊗ Y ) • (H •H)

Furthermore, checks that the composition of the upper morphisms can
be rewritten as

(πX⊗Y ⊗H) ◦ (X ⊗ Y ⊗∆) ◦ µX,Y =

(µX,Y ⊗H) ◦ µX•H,Y •H ◦ (πX ⊗H ⊗ πY ⊗H) ◦ (X ⊗∆⊗ Y ⊗∆)

In the same way, the pushout ((X⊗Y )•H)•H is given by the following
composition of pushouts

X ⊗H ⊗ Y ⊗H
πX⊗πY

��

µX,Y // X ⊗ Y ⊗HρX⊗ρY ⊗H//

πX⊗Y
��

(X •H)⊗ (Y •H)⊗H
µX,Y ⊗H// ((X ⊗ Y ) •H)⊗H

π(X⊗Y )•H
��

(X •H)⊗ (Y •H)
µX,Y

// (X ⊗ Y ) •H
ρX⊗Y •H // ((X ⊗ Y ) •H) •H
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and again we can rewrite the composition of the upper morphisms

(µX,Y ⊗H) ◦ (ρX ⊗ ρY ⊗H) ◦ µX,Y =

(µX,Y ⊗H) ◦ µX•H,Y •H ◦ (ρX ⊗H ⊗ ρY ⊗H)

Hence, to study the relation between (X ⊗ Y ) • (H • H) and ((X ⊗
Y ) •H) •H, we have to compare the following pushouts

X ⊗H ⊗ Y ⊗H
πX⊗πY

��

X⊗∆⊗Y⊗∆ // X ⊗H ⊗H ⊗ Y ⊗H ⊗H πX⊗H⊗πY ⊗H// (X •H)⊗H ⊗ (Y •H)⊗H
p2

��
(X •H)⊗ (Y •H)

p1 // P

and

X ⊗H ⊗ Y ⊗H
πX⊗πY

��

ρX⊗H⊗ρY ⊗H // (X •H)⊗H ⊗ (Y •H)⊗H
q2

��
(X •H)⊗ (Y •H)

q1 // Q

Using Lemma 4.1.4, we find that P and Q are isomorphic to quotients
of (X •H)⊗H ⊗ (Y •H)⊗H by the respective subspaces

(πX ⊗H ⊗ πY ⊗H) ◦ (X ⊗∆⊗ Y ⊗∆)(Ker (πX ⊗ πY )) =

(πX ⊗H ⊗ πY ⊗H) ◦ (X ⊗∆⊗ Y ⊗∆)(Ker πX ⊗ Y ⊗H +X ⊗H ⊗ Ker πY )

and

(ρX ⊗ ρY )(Ker (πX ⊗ πY )) = (ρX ⊗ ρY )(Ker πX ⊗ Y ⊗H +X ⊗H ⊗ Ker πY )

Since in general (πX⊗H)◦(X⊗∆)(X⊗H) 6∼= (ρX⊗H)(X⊗H), we find
that P and Q are non-isomorphic, and therefore also (X⊗Y )• (H •H)
and ((X⊗Y )•H)•H are non-isomorphic (even ifX and Y are geometric
partial comodules).

Hence, we can conclude that when X and Y are geometric (respec-
tively lax) partial comodules, then X ⊗ Y is in general no longer a
geometric (respectively lax) partial comodule. However, when X and

Y are both quasi comodules, then θ1 ◦ (ρX • H) and θ2 ◦ (X •∆) do
have identical images when restricted to the image of ρX , we find that
X ⊗ Y is still a quasi partial comodule. We can then conclude on the
following.

Theorem 5.1.5. The category of quasi partial comodules over a bialge-

bra is monoidal with an oplax monoidal unit, and the forgetful functor

to vector spaces is strict monoidal.
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The category of equivariant quasi partial comodules over a bialgebra

is a monoidal category.

Although the above introduced tensor product is not well-defined
on the category geometric partial comodules, in case of working with
a bialgebra over a field, we can combine Proposition 5.1.2 with Theo-
rem 1.2.7 and obtain immediately the following result.

Theorem 5.1.6. The category of geometric partial comodules over a

bialgebra H over a field k is an op-lax monoidal category and the for-

getful functor U : gPModH → Vectk is monoidal.

Remark 5.1.7. Let us describe the oplax tensor product of the cate-

gory gPModH a bit more explicitly. Consider two geometric partial co-

modules M and N , and let M⊗N be the tensor product partial comod-

ule datum (which we know is a quasi partial comodule). Then M •N is

the geometric partial comodule that is uniquely defined by the follow-

ing universal property. There exists a morphism p : M ⊗N → M •N
and for every other geometric partial comodule T with a morphism

M ⊗N → T , there exists a unique morphism u : M •N → T such that

t = u ◦ p.
Since the zero module is a geometric partial comodule that is a

minimal solution for the above problem, M •N will always exist. Given

two p : M ⊗N → P and q : M ⊗N → Q, Let R be the pullback of the

pushout of p and q, i.e. firstly take the pushout of p, q and then take

the pullback of the maps induced by this pushout (both exist since we

proved that geometric partial comodules are bi-complete). Then there

is a unique morphism M ⊗N → R compatible with both p and q. In

this way, we can construct the “biggest” quotient M • N of M ⊗ N

that is still a geometric partial comodule.

Remark that if one of the geometric partial comodules X and Y is

global, then X • Y = X ⊗ Y .

5.2. Partial comodule algebras

In the partial case, it turns out that there are two kinds of ‘comod-
ule algebras’: those which arise as partial comodules in the category of
algebras, and those that arise as algebras in the (oplax monoidal) cat-
egory of partial comodules. While these notions coincide in the global
case, for partial coactions they differ, as a consequence of the fact that
pushouts in the category of algebras are different from pushouts in the
category of vector spaces.



5.2. PARTIAL COMODULE ALGEBRAS 89

5.2.1. Algebras in the category of partial comodules. Let C
be an oplax monoidal category and denote⊗0(∅) = I and⊗n(X1, . . . , Xn) =
(X1⊗ . . .⊗Xn). An algebra C, is an object A endowed with morphisms
m : (A⊗ A)→ A and u : I → A satisfying the following conditions

((A)⊗ (A⊗ A))
ι⊗m // (A⊗ A)

m

))(A⊗ A⊗ A)

γ
55

γ ))

A

((A⊗ A)⊗ (A))
m⊗ι // (A⊗ A)

m

55

(A⊗ I)
(A⊗u)

// (A⊗ A)
m

##
(A)

γ ##

γ
;;

ιA // A

(I ⊗ A)
(u⊗A)

// (A⊗ A)

m

;;

Then we obtain the following natural definitions.

Definition 5.2.1. Let H be a k-bialgebra. A quasi (resp. geomet-

ric) partial H-comodule algebra is a an algebra in the oplax monoidal

category of quasi (resp. geometric) partial H-comodules.

Since the forgetful functors gPModH → qPModH → Vectk are
monoidal, each geometric partial comodule algebra is also a quasi par-
tial comodule algebra and a quasi or geometric partial comodule alge-
bra is also a k-algebra. More precisely, we have the following result.

Proposition 5.2.2. Let C be a category satisfying the conditions of

Proposition 5.1.2 and H a Hopf algebra in C. If (A,A •H, πA, ρA) be

an algebra in the monoidal category with oplax unit qPModH , then A

and A •H are algebras in C and the morphisms πA and ρA are algebra

morphisms.

Proof. We already remarked that A is an algebra in C, since the

forgetful functor qPModH → C is monoidal. To see that A • H is an

algebra consider the following, which expresses that the multiplication
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µ : A⊗A→ A is a morphism of partial comodules, and the construction

of (A⊗ A) •H as pushout.

A⊗ A µA //

ρA⊗A
��

ρA⊗ρA

tt

A

ρA
��

(A •H)⊗ (A •H)
µA,A // (A⊗ A) •H µA•H // A •H

A⊗H ⊗ A⊗H
µA,A //

πA⊗πA

OO

A⊗ A⊗H µA⊗H //

πA⊗A

OO

A⊗H

πA

OO

One can then easily verify that the morphism (µA •H) ◦ µA,A defines

an associative multiplication on A •H, and by construction πA and ρA
are then multiplicative. In a similar way, the unit morphism u : k → A

is a morphism of partial comodules if the following diagram commutes

k

ηH
��

u // A

ρA
��

H
u•H // A •H

H
u⊗H // A⊗H

πA

OO

which means in Sweedler notation that

ρA(1A) = 1A • 1H (5.1)

Then ρA ◦ u : k → A • H is a unit for the algebra A • H and the

morphisms πA and ρA are unital. �

Again, since the functor gPModH → qPModH is monoidal, it follows
that for a geometric partial comodule algebra A, the vectorspace A•H
is naturally a k-algebra and piA is a k-algebra morhpism. This implies
that Ker πA is a two-sided ideal in A⊗H.

Remark 5.2.3. In contrast to what might think naively, the C-objects

(A•H)•H, A•(H •H) or ΘA do not posses a natural algebra structure

in general. The main reason for this, is that these objects are defined

as pushouts in C without any interaction with the multiplication µA.

This is the main motivation to introduce a second type of comodule

algebras in the next section.

Examples 5.2.4. Consider the example of geometric partial k[x, y]-

comodule from Example 4.1.7, whose underlying object isB = k[x, y]/(xy).
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ThenB has a natural algebra structure, howeverB•H = k[x, y, x′, y′]/ρ((xy))

is not an algebra since ρ((xy)) is not an ideal. Hence, (B,B•H, πB, ρB)

is not a partial comodule algebra. However, consider k[x, y, x′, y′]/(ρ(xy)),

where (ρ(xy)) is the ideal generated by ρ((xy)), then this is an ideal

and there is a canonical projection π : B •H → k[x, y, x′, y′]/(ρ(xy)).

Then the partial comodule datum (B′, B′ •H, πB′ , ρB′), where B′ = B,

B′•H = k[x, y, x′, y′]/(ρ(xy)), πB′ = π◦πB and ρB′ = π◦ρB is a partial

k[x, y]-comodule algebra. Since the partial comodule B′ is geometric

(being a quotient of a global one), B′ is also a geometric comodule

algebra.

In the same way, one can turn the partial comodule from Exam-

ple 4.1.7 into a geometric partial comodule algebra and the partial

comdoule from Example 4.1.8 into quasi partial comodule algebra.

5.2.2. Partial comodules in the category of algebras. Recall
that the category of algebras Alg(C) in a braided monoidal category C,
is again a monoidal category. Furthermore, a coalgebra H in Alg(C) is
exactly a bialgebra in C and a comodule over H in Alg(C) is exactly an
H-comodule algebra in C. Following this point of view, we introduce
the following definitions.

Definition 5.2.5. Let H be a bialgebra in the braided monoidal cate-

gory C, and consider H as a coalgebra in the category Alg(C). A quasi

(resp. lax, geometric) partial algebra-comodule over H is a quasi (resp.

lax, geometric) partial H-comodule (A,A •H, πA, ρA) in Alg(C).

Remark 5.2.6. In the global case, algebra-comodules and comodule-

algebras are identical structures. In the partial setting this however

is no longer the case. Firstly, given a partial comodule datum (A,A •
H, πA, ρA) in Alg(C), then applying the forgetful functor U : Alg(C)→ C
yields a partial H-comodule datum UA = (A,A • H, πA, ρA) in C,
provided that U(πA) is an epimorphism in C. This last condition is

not necessarily the case if we take C = Modk where k is an arbitrary

commutative ring, but it holds if k is a field. However, even in case of

C = Vectk, the forgetful functor U : Algk → Vectk does not preserve

pushouts. In other words, the canonical morphism ΘUA → U(ΘA)

is not an isomorphism in general. If A is a quasi partial H-comodule

algebra, then coassociativity holds in UΘA, but not necessarily in ΘUA,

and UA is not necessarily a quasi partial H-comodule.
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The next result tells however that conversely, partial comodule-

algebras are still algebra-comodules.

Proposition 5.2.7. If (A,A•H, πA, ρA) is a quasi partial H-comodule

algebra, then (A,A •H, πA, ρA) is also a quasi partial algebra-comodule

over H.

Proof. It follows from Proposition 5.2.2 that (A,A •H, πA, ρA) is

a partial comodule datum in the category Alg(C). If A is a quasi partial

comodule, then the coassociativity holds in the sense that

θ1 ◦ (ρA •H) • ρA = θ2 ◦X •∆ ◦ ρA (5.2)

where (ΘA, θ1, θ2) is the coassociativity pushouts in C. On the oth-

er hand, we can also consider the coassociativity pushout (Θ′A, θ
′
1, θ
′
2)

in Alg(C). Since the forgetful functor Alg(C) → C does not preserve

pushouts, ΘA and Θ′A can be non-isomorphic objects in C, but by the

universal property of the pushouts (A •H) •H, A • (H •H) and ΘA,

we will obtain a morphism π : ΘA → Θ′A. By composing both sides of

(5.2) with π, we find that the coassociativity also holds in Alg(C), and

hence A is a quasi partial algebra-comodule. �

The difference between the pushouts in Alg(C) and C can be un-
derstood very well in the situation where C = Vectk. Indeed, consider
k-algebra morphisms

R
a

��

b

��
A B

where b is surjective. Then we know from Lemma 4.1.4 that the
pushout of a and b in Vect is given by the quotient A/a(Ker b). In
general (or more precisely, when a is not surjective) a(Ker b) is not an
ideal in A, and hence A/a(Ker b) is not an algebra. However, if we
denote by I the ideal generated by a(Ker b), then one can easily see
that A/I is the pushout of (a, b) in Algk.

As a consequence, we find the following.

Corollary 5.2.8. If (A,A•H, πA, ρA) is a geometric partial H-comodule

k-algebra, then (A,A • H, πA, ρA) is also a geometric partial algebra-

comodule over H.

Proof. By Proposition 5.2.7 we know already that A is a quasi

partial algebra-comodule. On the other hand, since A is geometric as
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comodule algebra, we find that the pushouts (A•H)•H and A•(H•H)

are isomorphic in Vectk. Because of the explicit description of these

pushouts recalled above, this means that the following subspaces of

(A •H)⊗H are isomorphic (even identical):

(ρA ⊗H)(Ker πA) = (πA ⊗H) ◦∆(Ker πA)

Hence the ideals generated by these subspaces will also be the same,

and therefore the corresponding coassociativity pushouts in Algk will

be isomorphic, which means exactly that A is geometric as a partial

algebra-comodule. �

As the following examples illustrate, the converse of the previous
corollary does not hold.

Examples 5.2.9. All examples from Example 5.2.4 will give rise to

examples of algebra-comodules. Since the examples obtained from Ex-

ample 4.1.7 and Example 4.1.8 are geometric as comodule-algebra, they

are by the previous proposition also geometric as algebra-comodules.

We remarked before that the example from Example 4.1.9 is not geo-

metric as comodule-algebra, however we will show now that is does

become geometric as algebra-comodule.

Let A be a partial coaction of a Hopf algebra H in the sense

of [21]. Consider as in Example 4.1.9 the partial comodule datum

(A,A • H, π, ρ), where A • H = {a1[0] ⊗ h1[1]} = (A ⊗ H)e, which is

a direct summand of A ⊗H and the left A ⊗H-module generated by

the idempotent e = ρ(1) = 1[0] ⊗ 1[1] and which can be seen as the

quotient of A⊗H by the left ideal (A⊗H)e′ where e′ = 1⊗1H− e (we

denote 1 = 1A the unit of A). As explained in Example 5.2.4, in order

to obtain a partial comodule algebra one has to consider an alternative

partial comodule datum, where A •′H is the quotient of A⊗H by the

two-sided ideal (A⊗H)e′(A⊗H).

The ideal in A⊗H ⊗H generated by (ρ⊗H)((A⊗H)e′(A⊗H))

is then nothing else than the ideal generated by (ρ⊗H)(e′). Similarly,

the ideal in A⊗H ⊗H generated by the image of (A⊗H)e′(A⊗H)

under (π⊗H) ◦A⊗∆ is the ideal generated by (π⊗H) ◦ (A⊗∆)(e′).

Using axiom (CJ2), we find

(ρ⊗H)(e′) = (ρ⊗H)(1⊗ 1H − e) = 1[0] ⊗ 1[1] ⊗ 1H − 1[0][0] ⊗ 1[0][1] ⊗ 1[1]

= 1[0] ⊗ 1[1] ⊗ 1H − 1[0]1[0′] ⊗ 1[1](1)1[1′] ⊗ 1[1](2)

= (π ⊗H) ◦ A⊗∆(e′)
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Hence it follows that both elements generate the same ideals, which

implies that A is geometric as a partial algebra-comodule.

5.3. Partial Hopf modules and partial Hopf-Galois theory

5.3.1. Partial Hopf modules. Let C be an oplax monoidal cat-
egory and denote as in Section 5.2.1 ⊗0(∅) = I and ⊗n(X1, . . . , Xn) =
(X1 ⊗ . . . ⊗Xn). Let (A,m, u) be an algebra in C. Then a (right) A-
module in C is an object M endowed with a morphism µM : (M⊗A)→
M satisfying the following conditions

((M)⊗ (A⊗ A))
ι⊗m // (M ⊗ A)

µM

))
(M ⊗ A⊗ A)

γ
55

γ ))

M

((M ⊗ A)⊗ (A))
µM⊗ι // (A⊗ A)

µM

55

(M ⊗ I)
(A⊗u)

// (M ⊗ A)
µM

$$
(M)

γ
::

ιA // M

Then we obtain the following natural definitions.

Definition 5.3.1. Let H be a Hopf k-algebra and (A,A • H, πA, ρA)

a quasi (resp. geometric) partial H-comodule algebra, i.e. an alge-

bra in the lax monoidal category of quasi (resp. geometric) partial

H-comodules. A quasi (resp. geometric) partial (A,H)-relative Hopf

module is a right A-module in the lax monoidal category of quasi (resp.

geometric) partial H-comodules.

We will denote by PModHA the category whose objects are quasi par-

tial (A,H)-relative Hopf modules and whose morphisms are morphism

of partial H-modules that are at the same time A-linear.

As it is the case for partial comodule-algebras, since the forgetful
functors gPModH → qPModH → Vectk are monoidal, each geometric
partial relative Hopf module is also a quasi partial relative Hopf module
and a quasi or geometric partial relative Hopf module is also a module
for the k-algebra A.

Let us make the previous definition a bit more explicit.
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Lemma 5.3.2. Let (A,A • H, πA, ρA) be a quasi partial H-comodule

algebra. A quasi partial (A,H)-relative Hopf module is a quasi partial

H-comodule (M,M •H, πM , ρM) endowed with an A-module structure

µM : M⊗A→M such that the following compatibility conditions hold:

[PRHM1] Ker (πM ⊗ πA) ⊂ Ker (πM ◦ µM⊗H);

[PRHM2] (ma)[0]•(ma)[1] = m[0]a[0]•m[1]a[1] for all m ∈M and a ∈ A.

where

µM⊗H : M ⊗H⊗A⊗H →M ⊗H, µM⊗H((m⊗h)(a⊗k)) = ma⊗hk.

is the induced A⊗H-module on M ⊗H.

Under these conditions, M •H is a right A •H-module.

Proof. Similarly as in the proof of Proposition 5.2.2, consider the

following diagram which expresses that the A-action µM : M⊗A→M

is a morphism of partial comodules, and the construction of (M⊗A)•H
as pushout.

M ⊗ A µM //

ρM⊗A
��

ρM⊗ρA

tt

M

ρM
��

(M •H)⊗ (A •H)
µM,A // (M ⊗ A) •H µM•H // M •H

M ⊗H ⊗ A⊗H
µM,A //

πM⊗πA

OO

M ⊗ A⊗H µM⊗H //

πM⊗A

OO

M ⊗H

πM

OO

By construction, we know that

Ker πM⊗A = µM,A(Ker (πM ⊗ πA))

Then by Lemma 4.2.3, in order for the linear map µM to be a mor-

phism of partial H-comodules it is needed that (µM⊗H)(Ker πM⊗A) ⊂
Ker πM . Since µM⊗H = (µM ⊗H) ◦ µM,A, this means furthermore that

πM ◦ (µM ⊗H)(Ker πM⊗A) = πM ◦ µM⊗H(Ker (πM ⊗ πA)) = 0

or equivalently, Ker (πM⊗πA) ⊂ Ker (πM ◦µM⊗H), i.e. [PRHM1] holds.

This condition implies that the map

µM•H = (µA •H) ◦ µA,A : (M •H)⊗ (A •H)→M •H,
µM•H((m • h)(a • k)) = ma • hk

is well-defined and defines an action of A •H on M •H. Furthermore,

µM will be a morphism of partial H-modules if and only if moreover

ρM ◦ µM = µM•H ◦ (ρM ⊗ ρA)



96 5. PARTIAL HOPF-GALOIS THEORY

which gives exactly condition [PRHM2]. �

Example 5.3.3. Clearly any algebra in a lax monoidal category is a

module over itself, hence any quasi partial H-comodule algebra (A,A•
H, πA, ρA) is also a quasi partial (A,H)-relative Hopf module.

The following observation will be useful later.

Lemma 5.3.4. If M is a quasi partial (A,H)-relative Hopf module,

then

πM(ma⊗ h) = 0

for all

(i) m⊗ h ∈ Ker πM and a ∈ A;

(ii) m ∈M and a⊗ h ∈ Ker πA.

Proof. Since Ker (πM ⊗πA) = Ker πM ⊗A⊗H+M ⊗H⊗Ker πA,

we know that for all m ⊗ h ∈ Ker πM and a ∈ A, m ⊗ h + a ⊗ 1H ∈
Ker (πM ⊗πA). Hence by axiom (PRHM1), we find that πM(ma⊗h) =

0. Similarly, for m ∈M and a⊗h ∈ Ker πA, we have m⊗ 1H + a⊗h ∈
Ker (πM ⊗ πA) and we can follow the same reasoning. �

5.3.2. Hopf-Galois theory.

Definition 5.3.5. Let H be a Hopf k-algebra, (A,A•H, πA, ρA) a quasi

partial H-comodule algebra and (M,M•H, πM , ρM , µM) a quasi partial

(A,H)-relative Hopf module. The H-coinvariants of M are defined as

the following equalizer in Vectk

M coH // M
ρM //

πM◦(M⊗ηH)
// M •H (5.3)

I.e. M coH = {m | ρM(m) = m • 1H}.

Proposition 5.3.6. Let H be a Hopf k-algebra, (A,A • H, πA, ρA) a

quasi partial H-comodule algebra.

(i) The coinvariants AcoH of A form a subalgebra of A;

(ii) The coinvariants M coH of a quasi partial (A,H)-relative Hopf

module M form a module over AcoH ;

(iii) This induces a functor (−)coH : PModHA →ModAcoH .

Proof. (i). Since ρA and πA◦(A⊗ηH) are both algebra morphisms

and the forgetful functor U : Algk → Vectk creates limits, AcoH is a

subalgebra of A. Alternatively, this follows by a direct computation
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similar to the next part.

(ii). Consider the restriction of the multiplication map ρM : M coH ⊗
AcoH →M, ρM(m⊗ a) = ma. Then

ρ(ma) = m[0]a[0]•m[1]a[1] = (m[0]•m[1])(a[0]•a[1]) = (m•1H)(a•1H) = (ma•1H)

hence ρM(ma) ∈M coH .

(iii). This part is easily verified. �

Let us remark that the coinvariant functor is representable.

Lemma 5.3.7. For any quasi partial (A,H)-relative Hopf module, we

have that

M coH ∼= HomH
A (A,M),

the set of partial H-comodule morphisms from A into M that are right

A-linear.

Proof. Let f : A → M be a right A-linear morphism of partial

H-comodules. Then the following diagram commutes

A

ρA
��

f // M

ρM
��

A •H f•H // M •H

A⊗H

πA

OO

f⊗H // M ⊗H

πM

OO

Since we know that ρA(1A) = πA(1A ⊗ 1H), it follows from the com-

mutativity of this diagram that f(1A) ∈ M coH . Conversely, given any

m ∈ M coH we clearly have that the map fm : A→ M, fm(a) = ma is

right A-linear. Moreover, thanks Lemma 5.3.4(ii), we also know that

(fm ⊗ H)(Ker πA) ⊂ Ker πM . Hence the morphism fm • H : A • H →
M • H, fm(a • h) = ma • h is well-defined. Finally, we find for any

a ∈ A that

ρM(fm(a)) = ρM(ma) = ρM(m)ρA(a)

= (m • 1H)(a[0] • a[1]) = ma[0] • a[1]

= fm •H(a[0] • a[1])

I.e. fm ∈ HomH
A (A,M). Therefore the above constructions provide

well-defined mutual inverses between M coH and HomH
A (A,M). �
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Proposition 5.3.8. For any AcoH-module N , the right A-module N⊗AcoH
A can be endowed with the structure of a quasi partial (A,H)-relative

Hopf module by means of the following partial H-comodule structure

πN⊗
AcoH

A = N ⊗AcoH πA : N ⊗AcoH A⊗H → N ⊗AcoH (A •H) =: (N ⊗AcoH A) •H
ρN⊗

AcoH
A = N ⊗AcoH ρA : N ⊗AcoH A→ N ⊗AcoH (A •H)

Moreover, this construction yields a functor − ⊗AcoH A : ModAcoH →
PModHA that is a left adjoint to the coinvariant functor (−)coH : PModH →
ModAcoH .

Proof. The construction of the functor − ⊗AcoH A : ModAcoH →
PModHA is clear from the statement. To verify the adjunction property,

we will define a counit ζ and a unit ν. For any quasi partial (A,H)-

relative Hopf module M we define

ζM : M coH ⊗AcoH A→M ζM(m⊗AcoH a) = ma

Clearly, ζM is a right A-linear map. Let us check that it is also a

morphism of partial H-comodules. Firstly, we need to verify that

πM ◦ (ζM ⊗ H)(Ker πMcoH⊗
AcoH

A) = 0 (see Lemma 4.2.3). Since by

construction Ker πMcoH⊗
AcoH

A = M coH⊗AcoH Ker πA, this follows direct-

ly by Lemma 5.3.4(ii). Secondly, we should check that ρM ◦ ζM =

(ζM •H)◦ (M coH ⊗AcoH ρA), where we know that ζM •H is well-defined

by the first part. Indeed, take any m⊗ a ∈M coH⊗AcoHA then

ρM(ζM(m⊗ a)) = (ma)[0] • (ma)[1] = (m[0] •m[1])(a[0] • a[1])

= (m • 1H)(a[0] • a[1]) = ma[0] • a[1]

= ζM(m⊗AcoH a[0]) • a[1] = (ζM •H)(m⊗AcoH ρA(a)).

On the other hand, for any AcoH-module N , we define

νN : N → (N ⊗AcoH A)coH , νN(n) = n⊗ 1A.

Since A is an algebra in the category of partial H-modules we have

that ρA(1) ∈ AcoH (see (5.1)). It is now easily verified that ζ and ν are

indeed the counit and unit for this adjunction. �

Remark 5.3.9. Let ι : B → AcoH be any ring morphism, then of

course the adjunction from Proposition 5.3.8 can be combined with

the extension-restriction of scalars functors, to obtain a pair of adjoint

functors

−⊗B A : ModB � PModHA : (−)coH .
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In what follows we will only consider the case B = AcoH , but our results

can be easily generalized to this slightly more general setting.

Definition 5.3.10. Let A be a quasi partial H-comodule algebra and

B → AcoH a ring morphism. We call the morphism ι : B → A a partial

Hopf-Galois extension if and only if the following canonical map is

bijective

can : A⊗B A→ A •H, can(a⊗B a′) = aa′[0] • a′[1]

Remark that here aa′[0] • a′[1] denotes the product (a • 1H)(a′[0] • a′[1])

which is well-defined since m : A ⊗ A → A is a morphism of partial

H-comodules.

The following examples show how partial Hopf-Galois extensions
can be interpreted as “partial principle bundles”.

Example 5.3.11. Let A be a global H-comodule algebra, and suppose

that A/AcoH is Galois, i.e. the canonical map A ⊗AcoH A → A ⊗ H is

bijective. Consider a surjective algebra morphism p : A → B and

endow B with the induced structure of a partial comodule algebra.

Then we obtain a canonical algebra morphism AcoH → BcoH and in

fact BcoH ∼= AcoH/(AcoH ∩ Ker p). We obtain then that the following

diagram commutes

A⊗AcoH A
p⊗p
����

canA // A⊗H
πB◦(p⊗H)
����

B ⊗BcoH B
canB // B •H

If canA is an isomorphism, it is clear that canB is surjective. Moreover,

consider any b ⊗ b′ ∈ Ker canB. Since p ⊗ p is surjective, we can write

b ⊗ b′ = p(a) ⊗ p(a′), such that can(a ⊗ a′) ∈ Ker πB ◦ (p ⊗ H), but

this means exactly that can(a ⊗ a′) = u[0] ⊗ u[1] for some u ∈ Ker p.

Since can is bijective, this implies that a ⊗ a′ = 1 ⊗ u and therefore

b⊗ b′ = p(1)⊗ p(u) = 0. So canB is bijective as well, i.e. B is partially

Hopf Galois.

Example 5.3.12. It is known that if an algebraic group G acts strictly

transitive on an algebraic space X (i.e. X is a principal homogeneous

G-space), then the coordinate algebra A = O(G) is O(G)-Galois with

trivial coinvariants. If we take any subvariety Y ⊂ X then we know
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that O(Y ) will be a partial O(G)-comodule algebra. Applying the pre-

vious example, we find that that O(Y ) will be partially Hopf-Galois.

For example, the partial comodule algebras from Example 4.1.7, Ex-

ample 4.1.8 (see Example 5.2.4) provide examples of partial principle

homogeneous G-spaces (where G is respectively k[x, y] and k 〈x, y〉).
More generally, X is a principal O(G)-bundel if and only if O(X) is

an O(G)-Galois extension (with possible non-trivial coinvariants), see

e.g. [43]. Again, any subvariety Y of the principle bundle X will give

rise to a partial principle bundle.

In the global case, we know that if A/AcoH is Hopf-Galois and A
is faithfully flat as left AcoH-module (this condition is in fact known
to be too strong, see e.g. [18]), then the category of relative (A,H)-
Hopf modules is equivalent to the category of AcoH-modules. Since in
the partial setting it follows from earlier observations in this paper that
the category of partial comodules is not abelian, the category of partial
relative (A,H)-Hopf modules cannot be expected to be equivalent with
a module category. Nevertheless, let us show that under the same mild
conditions as in the global case, we can characterize when the functor
− ⊗AcoH A : ModAcoH → PModHA is fully faithful. The following is an
adaptation of the approach from [18] (see also [20]).

Recall that a morphism of left B-modules f : N →M is called pure
if and only if for any right B-module P , the map P ⊗B f : P ⊗B N →
P ⊗B M is injective. In particular, if ι : B → A be a ring morphism,
then ι is said to be pure (as left B-module morphism) if for any right
B-module P the map ιP : P → P ⊗B A, ιP (p) = p⊗B 1A is injective.

Lemma 5.3.13. Let ι : B → A be a ring morphism. Then the following

statements are equivalent:

(i) f is pure as left B-module morphism

(ii) For any right B-module N , the fork

N
ιN // N ⊗B A

ιN⊗BA //

N⊗BιA
// N ⊗B A⊗B A (5.4)

is an equalizer in ModB.

In particular, if A is faithfully flat as left A-module, then A is left pure.

Proof. (i)⇒ (ii) Denote by E the equalizer of (5.4), and define

P = E/ιN(N). Take any e ∈ E, the we can write e = ni ⊗B ai and

ni ⊗B 1A ⊗B ai = ni ⊗B ai ⊗B 1A. Apply π ⊗B A to this identity, then

we have that ιP (π(e)) = π(e) ⊗B 1A = π(ni ⊗B ai) ⊗B 1A = π(ni ⊗B
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1A)⊗B ai = 0, since ni ⊗B 1A ∈ ιN(N). Since ιP is injective, it follows

that π(e) = π(ni ⊗B ai) = 0 in P = E/ι(N), hence ni ⊗B ai ∈ ι(N).

(ii)⇒ (i). Since (5.4) is an equalizer, we have in particular that ιN is

injective. �

Proposition 5.3.14. Let ι : B → A be a partial H-Galois extension,

then the functor −⊗B A : ModB → PModHA is fully faithful if and only

if ι is pure.

Proof. Consider the following commutative diagram

N
N⊗Bι //

νN

��

N ⊗B A
N⊗Bι⊗BA //

N⊗BA⊗Bι
// N ⊗B A⊗B A

N⊗Bcan

��
(N ⊗B A)coH // N ⊗B A

ρN⊗BA=N⊗BρA //

N⊗BA•ηH
// N ⊗B A •H

The lower row is an equalizer by the definition of the coinvariants (N⊗B
A)coH . Since can is an isomorhpism, it then follows that the upper row

is an equalizer if and only if νN is an isomorphism. The upper row in

the above diagram is exactly (5.4). By the previous lemma, this means

that ι : B → A is pure if and only if the unit ν of the adjunction

from Proposition 5.3.8 is a natural isomorphism, i.e. − ⊗B A is fully

faithful. �

As we have remarked before, since partial comodules do not pro-
vide an abelian category, one cannot expect that the functor −⊗B A :
ModAcoH → PModHA is an equivalence in general. The following obser-
vation shows that as soon as H is non-trivial, this functor will never
be an equivalence. Indeed, it is clear by construction that any induced
partial Hopf module M = N ⊗AcoH A satisfies M •H = M ⊗A (A •H).
It follows however from Lemma 5.3.2 that in general we only have an
inclusion M ⊗A (A •H) ⊂M •H. This motivates the following defini-
tion.

Definition 5.3.15. A partial relative Hopf moduleM is called minimal

iff M •H = M ⊗A (A •H).

Example 5.3.16. Let A be a partial H-coaction as in Example 4.1.9,

considered as a partial comodule algebra, see Example 5.2.4. Let M

be a relative Hopf module in the sense of [21], that is M is a right A-

module, endowed with a coaction ρ : M →M ⊗H, ρ(m) = m[0]⊗m[1]

satisfying
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• m = m[0]ε(m[1]);

• ρ(m[0])⊗m[1] = m[0]1[0] ⊗m[1](1)1[1] ⊗m[1](2);

• ρ(ma) = m[0]a[0] ⊗m[1]a[1].

Then by defining M •H = {m1[0]⊗h1[1] | m⊗h ∈M⊗H} we find that

M can be endowed with the structure of a relative partial Hopf module

in the sense defined here. Moreover, one then easily checks that this

partial Hopf module is minimal.

Lemma 5.3.17. Let A be a partial H-comodule algebra.

(i) There is a canonical epimorphism (A•H)•H → (A•H)⊗A(A•H);

(ii) For any minimal relative partial Hopf module M , we have a canon-

ical epimorphism pM : (M •H) •H → (M •H)⊗A (A •H).

Consequently, C = A • H is an A-coring and there is a functor from

the category of geometric minimal relative partial Hopf modules to the

category of C-comodules.

Proof. (i). Consider the following diagram.

(A •H)⊗H ∼=
πA•H //

φ
��

(A •H) •H // 0

(A •H)⊗A (A⊗H)
(A•H)⊗AπA // (A •H)⊗A (A •H) // 0

where φ is the isomorphism given by φ((a•h)⊗h) = (a•h)⊗A (1A⊗h).

One easily sees that Ker ((A • H) ⊗A πA) = (A • H) ⊗A Ker πA. On

the other hand, we know from the earlier sections that Ker πA•H =

ρA ⊗H(πA). Consider any a⊗ h ∈ Ker πA. Then we find that

(a[1] • a[1])⊗A (1A ⊗ h) = (1A • 1H) · a⊗A (1A ⊗ h) = (1A • 1H)⊗A (a⊗ h)

Hence we find that φ(Ker πA•H) ⊂ Ker ((A •H)⊗A πA). Consequently,

φ induces an epimorphism (A •H) •H → (A •H)⊗A (A •H).

(ii). By part (i), we know that the following diagram commutes

A⊗H

vvvv ))
A •H

((

(A •H)⊗H

uuuu
(A •H)⊗A (A •H)
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Applying the functorM⊗A− to this diagram, and usingM⊗A(A•H) =

M •H, we find that the following diagram commutes as well

M ⊗H

vvvv ))
M •H

((

(M •H)⊗H

uuuu
(M •H)⊗A (A •H)

Hence, by the universal property of the pushout, we obtain an epimor-

phism (M •H) •H → (M •H)⊗A (A •H).

For the last statement, it is enough to remark that for a geometric

relative partial Hopf module, the coassociativity holds in M •H •H.

If M is minimal then by the above (M •H) ⊗A (A •H) is a quotient

of M •H •H, so coassociativity also holds there. �

Remark 5.3.18. Given a comodule M over the coring A •H, one can

construct a relative partial comodule datum (M,M ⊗A (A •H),M ⊗A
πA, ρM). However, it is unclear if any such comodule datum provides

a (geometric) partial H-comodule.

If A is flat as left B-module, then the functor − ⊗B A preserves
all equalizers. Recall from [18] (see [20] for a corrected version of this
theorem) that the functor −⊗B A preserves the equalizers of the form
(5.3) provided A is pure as left A-module and B lies in the center of A.

Proposition 5.3.19. Let M be a relative partial Hopf module M .

(i) If ζM (counit of the adjunction Proposition 5.3.8) is an isomor-

phism, then M is minimal.

(ii) If A/B is Hopf-Galois and ζM is a monomorphism, then M is

minimal.

(iii) If M is minimal and geometric, A is partially Hopf Galois and the

functor −⊗BA preserves in partial the equalizers of the form (5.3)

(e.g. A is flat as left B-module, or A is pure as left A-module and

B ⊂ Z(A)), then ζM is an isomorphism.

Proof. (i) If ζM is an isomorphism of partial Hopf modules, then

we find a composition of isomorphisms

M ⊗A (A •H)
ζ−1
M ⊗A(A•H)

// (M coH ⊗B A)⊗A (A •H) ∼= M coH ⊗B (A •H) = (M coH ⊗B A) •H ζM•H // M •H
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and hence M is minimal.

(ii). Consider the following commutative diagram

M coH ⊗B A //

ζM
��

M ⊗B A

��
M

ρM // M •H
If A is flat as left B-module then the upper horizontal arrow is injective,

and the lower horizontal arrow is injective as it has a left inverse M • ε.
Since M ⊗B A ∼= M ⊗A (A⊗B A) ∼= M ⊗A (A •H), we also know that

the right vertical arrow is an epimorphism (see Lemma 5.3.2). Hence

if ζM is injective, we find that M ⊗B A → M •H is an isomorphism,

i.e. M is minimal.

(iii). Since A/B is Hopf-Galois, we find obtain an isomorphism

M ⊗B A
∼=// M ⊗A (A⊗B A)

M⊗Acan // M ⊗A (A •H)

And therefore, if M is minimal we find that M⊗BA ∼= M⊗A (A•H) =

M •H. Consider now the following diagram

M coH ⊗B A //

ζM
��

M ⊗B A
∼=
��

ρM⊗BA //

πM◦(M⊗ηH)⊗BA
// M •H ⊗B A

M
ρM //

ζ′M

OO

M •H
ρM•H //

M•∆
// M •H •H

pM

OOOO

By assumption, the upper row in this diagram is an equalizer. Since

M is geometric, the fork on the lower row splits and hence is also an

equalizer. The surjective morphism pM is obtained from Lemma 5.3.17

and induces the morphism ζ ′M . Then a diagram chasing argument

shows that ζM and ζ ′M are mutual inverses. �

The following result subsumes the Hopf-Galois theory for partial
coactions in the sense of Caenepeel-Janssen [21].

Corollary 5.3.20. Suppose that A a partial H-comodule algebra that

is geometric as partial comodule. If A/B is a partial Hopf-Galois ex-

tension and either

• A is pure as left B-module and B ⊂ Z(A);

• A is faithfully flat as left B-module;

then ModAcoH is equivalent to the category full subcategory of PModHA
consisting of minimal geometric relative partial Hopf modules.
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Proof. Since A is geometric as partial comodule, the functor −⊗B
A : ModAcoH → PModHA lands in the category of minimal geometric

parial Hopf modules. By Proposition 5.3.14 and Proposition 5.3.19 we

then obtain the stated equivalence of categories. �

As we have remarked before, the functor − ⊗B A : ModAcoH →
PModHA cannot be expected to become an equivalence of categories.
More precisely, it follows from Proposition 5.3.19 that we cannot expect
that the functor (−)coH is full whenever it is applied to non-minimal
partial Hopf modules. We will finish our work by characterizing under
which conditions this functor remains however faithful.

Proposition 5.3.21. Under the same conditions as in Corollary 5.3.20,

A is a generator in PModHA if and only if the functor (−)coH : PModHA →
ModAcoH is faithful.

Proof. Recall that A is a generator in PModHA if and only if for

any object M in PModHA the canonical morphism

φM :
∐

HomHA (A,M)

A→M,φ(af ) =
∑
f

f(af )

is surjective. Here
∐

HomHA (A,M) A denotes a coproduct of copies of A

indexed by the set HomH
A (A,M).

Recall from Lemma 5.3.7 that M coH = HomH
A (A,M) for any object

M in PModHA . Hence we obtain a well-defined morphism

αM :
∐

HomHA (A,M)

A→M coH ⊗AcoH M, αM(af ) = f(1A)⊗AcoH af ,

which is clearly surjective.

One now easily sees that φM = ζM ◦ αM . Hence φM is surjective if

and only if ζM is surjective. Finally, it is well-know that a right adjoint

functor is faithful if and only if the counit of the adjunction is a natural

epimorphism. �

Remark 5.3.22. Suppose that the conditions of Proposition 5.3.21,

we know that for an object M in PModHA , the partial Hopf module

morphism ζM : M coH⊗BA→M is surjective. Hence, we find that M ∼=
M ⊗B A/Ker ζM as right A-module. However, as we remarked earlier,

Ker ζM is not necessarily a partial H-comodule. We then know from

Example 4.1.6 that M ⊗B A/Ker ζM is a geometric partial comodule.

Then ζM induces a morphism of partial Hopf modules ζ ′M : M ⊗B
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A/Ker ζM → M , such that the underlying A-module morphism is an

isomorphism. However, ζ ′M is not necessarily an isomorphism of partial

Hopf modules, since in general (M ⊗B A/Ker ζM) •H and M •H can

be different. Therefore consider the following definition.

Definition 5.3.23. Let (X,X • H, πX , ρX) and (Y, Y • H, πY , ρY ) be

two partial H-comodule data. Let f : X → Y be a morphism in C.
Then consider the pushout

X ⊗H
πX
��

f⊗H // Y ⊗H πY // Y •H
pY
��

X •H pX
// PX,Y

With this notation, f is said to be a weak morphism of partial comod-

ules, if the following diagram commutes

X
f //

ρX

��

Y

ρY
��

Y •H
pY
��

X •H pX
// PX,Y

Then the A-linear inverse of ζ ′M will be a weak morphism of partial

comodules that is moreover a 2-sided inverse of the (strong) morphism

ζ ′M . This motivates that weak morphisms of (geometric) partial comod-

ules might be better behaved that the strong morphisms we studied in

this work. We will investigate this further in future work.

Let us finish by proving result which completely characterizes the
image of the functor −⊗AcoH A : ModAcoH → PModHA .

Theorem 5.3.24. (i) If A and A • H are flat as left AcoH-module

(e.g. A is flat as left AcoH-module and A/AcoH is H-Galois), then

the functor −⊗AcoH A : ModAcoH → PModHA preserves equalizers.

(ii) If A is faithfully flat as left AcoH-module then the functor −⊗AcoH
A : ModAcoH → PModHA reflects isomorphisms.

(iii) If A is faithfully flat as left AcoH-module and A/AcoH is partially

Hopf-Galois, then the category of AcoH-modules is equivalent to

the Eilenberg-Moore category (PModHA )C, where C is the comonad

associated to the adjoint pair of Proposition 5.3.8.
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Proof. (i). Consider the following equalizer diagram in ModAcoH :

E
e // N

f //
g

// M

By the flatness of A as a left AcoH-module, we then know that (E⊗AcoH
A, e⊗AcoHA) is the equalizer of the pair (f⊗AcoHA, g⊗AcoHA) in ModA.

However, we have to show that this is also an equalizer in PModHA . To

this end, consider any partial relative Hopf module T with a morphism

t : T → E ⊗AcoH A such that (f ⊗AcoH A) ◦ t = (g ⊗AcoH A) ◦ t.
Then we can apply the forgetful functor PModHA → ModA and we find

that there exists a unique right A-linear map u : T → E ⊗AcoH A

such that t = e ⊗AcoH A ◦ u. We will be done if we can show that

u is a morphism of partial H-comodules. Firstly we will verify that

πE⊗
AcoH

A ◦ (u⊗H)(Ker πT ) = 0 (cf. Lemma 4.2.3). Since A •H is flat

as a left A-module and e is an injective map (being an equalizer in a

module category), it is equivalent to check that

(e⊗AcoH (A •H)) ◦ πE⊗
AcoH

A ◦ (u⊗H)(Ker πT ) = 0.

Since (e⊗AcoH (A •H)) = (e⊗AcoH A) •H (functoriality of −⊗AcoH A :

ModAcoH → PModHA ) and e is a morphism of partial comodules we can

rewrite the left hand side of the last equality as

πX⊗
AcoH

A◦(e⊗AcoHA⊗H)◦(u⊗H)(Ker πT ) = πX⊗
AcoH

A◦(t⊗H)(Ker πT ) = 0

where the second equality is the defining property of u and the last

equality follows from the fact that t is a morphism of partial comodules.

Hence the map u • H : T → E ⊗AcoH (A • H) is well defined and the

unique map satisfying u • H ◦ πT = πE⊗
AcoH

◦ u ⊗ H. Then using

t = e⊗AcoH A ◦u and the surjectivity of πT , we find that also (t •H) =

(e ⊗AcoH A •H) ◦ (u •H). For u to be a partial comodule morphism,

it remains to check that (u •H) ◦ ρT = ρE⊗
AcoH

A ◦ u. Again, using the

flatness of A •H a left A-module and the injectivity of e it is sufficient

to check that the compositions of the se maps with e⊗AcoH (A •H) are

equal. Using the fact that t and e are partial module morphisms, we

can indeed prove that

(e⊗AcoH (A •H)) ◦ (u •H) ◦ ρT = (t •H) ◦ ρT = ρX⊗
AcoH
◦ t

= ρX⊗
AcoH
◦ e⊗AcoH A ◦ u

= (e⊗AcoH (A •H)) ◦ ρE⊗
AcoH

A ◦ u
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Hence u lives already in PModHA and therefore (E ⊗AcoH A, e⊗AcoH A)

satisfies the universal property of the equalizer in PModHA .

(ii). Let f : M → N be a morphism in ModAcoH such that f ⊗AcoH A
is an isomorphism in PModHA . Then f ⊗AcoH A is also an isomorphism

in ModA, and since A is faithfully flat as left A-module, we find that f

is an isomorphism in ModAcoH .

(iii). This follows immediately from the previous two parts by the dual

of Beck’s monadicity theorem, see e.g. [32, Theorem 2.7] �

Remark 5.3.25. The proof of part (i) in the previous theorem can

be adapted to show that the functor − ⊗AcoH A : ModAcoH → PModHA
preserves arbitrary limits.
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