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Abstract—Iterative localization is arising as a promising
solution to determine the position of a mobile station in a
cellular network. We recently showed that in a perfect line-
of-sight environment, iterating between the conventional
delay estimation and multi-lateration steps allows to ap-
proach the performance of the direct localization based
on the observation of the received signals. In this paper
we extend our iterative localization method to operate in
rich multipath environments. Simulation results prove that
given some prior knowledge on the power delay profile of
the channel, the proposed iterative algorithm is robust to
harsh propagation environments and performs very close
to the direct localization approach.

I. INTRODUCTION

Cellular communication networks are continuously
evolving towards geo-located services [1]. In 4G, lo-
calization has even become an essential part of the
network and may replace the need for global navigation
satellite system (GNSS) positioning. In particular, 4G
includes a specific Positioning Reference Signal (PRS)
in its protocol to finely estimate the signal time-of-flight
(ToF) between a base station (BS) and a mobile station
(MS). This PRS is defined as an Orthogonal Frequency
Division Multiplexing (OFDM) signal spread in time
and frequency [2]. The signal ToF estimation constitutes
the first step of the conventional two-step localization
approach. A multi-lateration step then combines the ToF
measurements to determine the position of the Mobile
Station (MS) [3].

One of the main causes of inaccuracies in ToA-based
cellular localization systems is multipath propagation.
In urban environments, Line-of-Sight (LOS) condition
can often not be guaranteed between the MS and all
the BSs involved in the localization process and many
dense replicas of the transmitted signal are received. In
this case the delay estimation step generally consists
in estimating the arrival time of the first path and the
bias induced by a potential none-line of sight (NLOS)
propagation. Many delay estimation schemes have been
developed in the literature, such as the Generalized
Maximum Likelihood (GML) approach of [4] which
jointly estimates all multipath coefficients and their
arrival times in an iterative manner. Another approach
is the frequency domain super-resolution ToA estimation

of [5]. This subspace method uses an estimation of the
signal autocorrelation which requires a large number of
independent signal observations with the same time-of-
arrival. Papers [6], [7] rather rely on the central limit
theorem for random vectors to formulate an approx-
imate Maximum Likelihood delay estimator in dense
multipath. Given some prior knowledge on the shape of
the channel power delay profile, this approach is shown
to outperform super-resolution and GML methods in
practical environments [6].

Two-step localization is clearly suboptimal since in-
formation is lost by transferring only the time-of-arrival
estimates to the multi-lateration step. Another method-
ology to estimate the user position is the Direct Position
Estimation (DPE) that directly estimates the position
coordinates from the digitized received signal. Paper [8]
analytically demonstrates that DPE always outperforms
two-step positioning. At the time of writing, there are
only a few DPE algorithms designed to operate in a
frequency-selective multipath environment. In this paper,
we will use the DPE method developed in [9]. This
method relies on the same approximate Maximum Like-
lihood formulation as papers [6] and [7] and requires
some prior knowledge on the shape of the channel power
delay profile (PDP).

While DPE turns out to be the optimal localization
solution, it suffers from a significant complexity increase
and requires the full knowledge of the received signal at
the central fusion center. We recently demonstrated that
the performance of DPE can be approached by iterating
between the two conventional steps [10]. This iterative
approach allows to reduce the computational burden and
the communication overhead compared to DPE but is up
to now only designed for ideal line-of-sight propagation
conditions. In this paper, we therefore propose to extend
the iterative localization method of [10] to be able to
operate in a rich multipath environment, typical of dense
urban and indoor environments. We resort to the ap-
proach developed in [6], [7] to estimate the propagation
delay of the signal using some prior knowledge of the
channel PDP.

The rest of this paper is organized as follows. Sec-



tion II introduces the OFDM signal model. The iterative
positioning algorithm for rich multipath environments is
described in Section III. Section IV numerically assesses
the performance of the proposed algorithm and compares
it to DPE and two-step approaches. Throughout the text
vectors and matrices are identified by lowercase and
uppercase bold letters respectively. A vector containing
all elements of x excepting the kth one is written as xk.

II. SIGNAL MODEL

We consider a cellular system operating in OFDM.
We assume that the mobile station is simultaneously
connected and strictly time synchronized to K neigh-
boring base stations. It operates on a communication
bandwidth B centered around the carrier frequency
fc. The OFDM modulation splits the communication
bandwidth in Q orthogonal sub-carriers allocated to data
or pilot symbols. A cyclic prefix (CP) is inserted in
each multi-carrier block. This CP allows to maintain
orthogonality among the sub-carriers when the signal
undergoes a time dispersive channel. We assume a rich
multipath channel between the MS and BS k. As long as
the duration of the channel impulse response is shorter
than the cyclic prefix, the signal received on the sub-
carrier q at the base station k can be expressed as:

rkq = sqhkq + wkq (1)

for k = 1 · · ·K and q = 0 · · · Q − 1. In (1), sq is
the data/pilot symbol transmitted on the sub-carrier q
and wkq is the noise corrupting sub-carrier q at base
station k. Additive white Gaussian noise (AWGN) of
variance σ2

wk
is assumed. The frequency domain channel

coefficient hkq affecting sub-carrier q at base station k
given by:

hkq =

L−1∑
l=0

αkle
−j2πq(τk+νkl)/QT . (2)

where T = 1/B is the sample duration and τk + νkl
is the delay of the lth path at BS k. We choose to
set ν0k = 0 such that the delay of the first path is
the propagation delay τk = dk(x, y)/c where c is the
speed of light and dk(x, y) =

√
(x− xk)2 + (y − yk)2.

Coordinates {x, y} and {xk, yk} respectively denote the
position of the MS and of base station k. Coefficient αkl
denotes the complex gain associated to the lth path of the
channel impulse response for base station k. Complex
channel gains αkl are circular random variables and are
conditionally independent. Those coefficients are of zero
mean and their conditional second order moments are
given by:

E {αklα∗l′k| νklνl′k} =

{
σ2
αk

(νkl) l = l′

0 otherwise
(3)

where operator E {} denotes the statistical expectation.
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Fig. 1. Principle of the iterative localization algorithm.

Gathering the received signal on the set of pilot sub-
carriers P = {q1, · · · qP }, we have the following vector
model for the received signal:

rk =

L−1∑
l=0

αklΓτk+νkl
s+wk (4)

where

rk = [rkq1 , · · · , rkqP ]
T (5)

s = [sq1 , · · · , sqP ]
T (6)

wk = [wkq1 , · · · , wkqP ]
T (7)

and

Γν = diag
{
e−j2πνq1/QT , · · · , e−j2πqP ν/QT

}
. (8)

Introducing the vector xk =
∑L−1
l=0 αklψ(s, νkl)

with ψ(s, νkl) = Γνkl
s, expression (4) can be more

compactly written as:

rk = Γτkxk +wk. (9)

III. ITERATIVE POSITIONING

The principle of the iterative localization system is
very similar to [10]. The algorithm relies on the Bayes
framework [11] to take into account prior knowledge
from the previous iteration. As illustrated in Fig. 1, delay
and position estimates are transmitted together with an
estimate of their variance between the two steps. The
position computed during a step of the algorithm is
translated to a delay used as prior information by the
next iteration.

A. Time-of-arrival Estimation

We resort to a Bayesian delay estimator to take
prior knowledge on the time-of-arrival into account. The



idea is to deduce the time-of-arrival together with its
reliability from the posterior distribution

p(τk|rk) =
p(rk|τk)p(τk)∫ +∞

−∞ p(rk|τk)p(τk)dτk
. (10)

In (10), we assume the prior distribution of the delay to
be normally distributed:

p(τk) = Cτk exp

(
− 1

2σ2
τk

(τk − µτk)
2

)
. (11)

where Cτk is a constant.
To obtain the likelihood p (rk|τk), we adopt the

approach developed in [6], [7], [9].
Assuming that the impulse response of the channel

has many dense arrivals, we realize from (4) that the
received signal vector rk is a sum of a large number
of statistically independent vectors. Under such assump-
tions, we can apply the Central Limit Theorem for
random vectors [12] and approximate rk as Gaussian:

p (rk|τk) ≈ Crk
exp

(
−rHk Σ−1

rk
(τk)rk

)
(12)

where Crk
is a constant.

The co-variance matrix of the received signal com-
putes:

Σrk
(τk) = E

{
rkr

H
k |τk

}
(13)

= ΓτkΣxk
ΓHτk + σ2

wk
I. (14)

In (14), I denotes the identity matrix and
Σxk

= E
{
xkx

H
k

}
is the P × P co-variance

matrix of the time-of-arrival independent part of the
channel. Using the relation ΓτkΓ

H
τk

= ΓHτkΓτk = I,
we get:

Σ−1
rk

(τk) = Γτk
(
Σxk

+ σ2
wk

I
)−1

ΓHτk . (15)

Defining the matrix D =
(
Σxk

+ σ2
wk

I
)−1

, the argu-
ment of the exponential of the likelihood function (12)
reads:

−rHk Σ−1
rk

(τk)rk = −rHk ΓτkDΓHτkrk (16)

= −γHτkCγτk (17)

where γτk is the vector composed by the diagonal ele-
ments of Γτk and C = RH

k DRk with Rk = diag {rk}.
It is shown in [6] that (17) can be efficiently computed
for all the delays on the search grid as:

2R{IFFT ([0.5u1, u2, · · · , uP ])} (18)

where the ui is the the sum of the ith diagonal of C
and R{} denotes the real part operator. The search grid
for τk is refined by zero-padding the argument of the
Inverse Fast Fourier Transform (IFFT).

To determine the co-variance matrix Σxk
, we assume

similarly to [6] the multipath arrivals to be confined to

a finite grid with a sufficiently fine resolution ∆. Under
this assumption, xk can be expressed by:

xk = Ψαk (19)

where

Ψ = [ψ(s, 0),ψ(s,∆), · · · ,ψ(s, TD)] (20)

and
αk = [α0k, α∆k, · · · , αTDk]

T
. (21)

In the previous expressions, TD denotes the maximum
delay spread of the channel. Substituting (19) into the
definition of Σxk

, we get:

Σxk
= E

{
xkx

H
k

}
(22)

= ΨΛkΨ
H (23)

where Λk = diag
{
σ2
αk

(0), σ2
αk

(∆), · · · , σ2
αk

(TD)
}

.
The diagonal of Λk is the channel power delay profile.

Inserting expressions (17) and (23) into (12) gives
the approximate likelihood function p(rk|τk). The only
required knowledge is the channel power delay profile
σ2
αk

(ν) which can be available from an appropriate
channel model1. This likelihood function can be used
to deduce the posterior distribution (10) from which it
is possible to numerically compute the mean and the
variance of the time-of-arrival τk:

µτk|rk
=

∫ +∞

−∞
τkp(τk|rk)dτk (24)

and

σ2
τk|rk

=

∫ +∞

−∞
(τk − µτk|rk

)2p(τk|rk)dτk. (25)

The mean and variance of the posterior distribution (10)
respectively provide the Minimum Mean Square Error
(MMSE) delay estimate [11] together with an indication
of its reliability. Delay mean and variance are then
converted into a distance information by scaling them
by the speed of light:

µdk|rk
= cµτk|rk

(26)

σ2
dk|rk

= c2σ2
τk|rk

. (27)

Those values are transmitted to the fusion center to
deduce the user position.

B. Position Estimation

The position estimation step is very similar to the
one developed in [10]. One instance of the position
estimation block is implemented per base station at
the fusion center. It generates an estimate of the user
position together with its reliability based on the distance
information provided by all base stations but the current

1If such a channel model is not available, a good approximation of
the channel PDP can also be obtained from the observation of pilot
sub-carriers spread on successive OFDM symbols (e.g [13]).



one. This allows to make the deduced prior information
independent from the received signal at the current base
station. If we gather the distance estimates used for
the position estimation block of the kth BS we get the
following model:

d̂
k

= dk(x, y) + ek (28)

with

d̂
k

=
[
d̂1, ..., d̂k−1, d̂k+1, ..., d̂K

]T
(29)

dk(x, y) =[d1(x, y), ..., dk−1(x, y), (30)

dk+1(x, y), ...dK(x, y)]T

ek = [e1, ..., ek−1, ek+1, ..., eK ]
T (31)

where superscript k indicates that BS k is excluded from
the vector. Elements of the error vector ek are assumed
of zero mean and variance σ2

ek
= σ2

dk|rk
. Distance

estimates in (29) are given by d̂k = µdk|rk
. Position

mean terms µ
x|d̂k , µ

y|d̂k and (co)variance terms σ2

x|d̂k ,

σ2

y|d̂k and Γ
xy|d̂k are deduced from the posterior PDF

of the coordinates:

p(x, y|d̂
k
) =

p(d̂
k
|x, y)p(x, y)∫ +∞

−∞ p(d̂
k
|x, y)p(x, y)dxdy

(32)

where p(d̂
k
|x, y) is a Gaussian PDF with mean dk(x, y)

and covariance matrix Cek = diag{σ2
e1 , ..., σ

2
eK}. Coor-

dinates are assumed uniformly distributed on [xmin, xmax]
and [ymin, ymax]. We obtain the final coordinate estimates
(x̂, ŷ) at each iteration by averaging the position esti-
mates available from the K instances of the position
estimation block:

x̂ =
1

K

K∑
k=1

µ
x|d̂k , ŷ =

1

K

K∑
k=1

µ
y|d̂k . (33)

C. Position to Time-of-arrival

To extract information about distances from the posi-
tion estimator, we rely on a first order approximation of
the relation between true distance and user coordinates:

µdk ≈ dk(x̂, ŷ) (34)

σ2
dk
≈ 1

d2k(x̂,ŷ)

[
xk − x̂
yk − ŷ

]T
·

[
σ2

x|d̂k Γ
xy|d̂k

Γ
xy|d̂k σ2

y|d̂k

]
·
[
xk − x̂
yk − ŷ

]
. (35)

It is then converted into delay mean and variance:

µτk = µdk/c, σ2
τk

= σ2
dk
/c2. (36)

Those two first order moments are fed back into the
Bayesian delay estimator and used as prior information
in order to refine the time-of-arrival estimation.

IV. NUMERICAL RESULTS

To estimate the performance of our iterative local-
ization scheme, we assume a system composed of four
base stations at the corners of a 100 m sided square.
The mobile station lies at arbitrary positions inside the
square and communicates with the base stations over a
bandwidth of 20 MHz. At each base station, the time-
of-arrival is estimated using a single OFDM symbol
containing 64 equispaced pilot sub-carriers among 1024.
Algorithm performances are averaged over 1000 MS
position, channel and noise realizations.

We assume that the base stations have a perfect knowl-
edge of the noise variance σ2

wk
. The channel between

the MS and the BSs is generated from the 5G TDL-C
channel model of [14] with a root mean square delay
spread of 350 ns. This delay spread is indicated in [14] to
characterize a normal delay spread for the Urban Macro-
cell scenario at a carrier frequency of fc = 2 GHz. The
PDP of this channel model is illustrated in Fig. 2. The
base stations have a prior knowledge of the power delay
profile of the channel defined at the rate (1/T ) of the
system.
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Fig. 2. Power delay profile of the ETSI TDL-C channel model [14].

Fig. 3 depicts the average localization error as a
function of the SNR. Our iterative algorithm is compared
to the conventional two-step and direct approaches.
After a few iterations, the performance of the iterative
estimation comes very close to the performance of the
optimal direct position estimation. At the first iteration,
the iterative estimation performs slightly worse than the
two-step approach. This is due to the fact that at the first
iteration, the estimate is obtained with the four possible
sets of three base stations, while the four base stations
are directly used in case of the two-step estimation.
The implemented delay estimation method allows all
methods to perform very well at medium to high SNRs
despite the harsh propagation conditions.

The convergence of the iterative solution is illustrated
in Fig. 4. The performance gain becomes negligible after
six iterations.

Fig. 5 finally compares the performance of the iter-
ative approach developed in this paper with the one of
[10] designed for strong LOS conditions only. Under



the considered ETSI TDL-C channel [14], the iterative
approach of [10] severely suffers from the multipath
propagation and the average distance error remains
above 35 m even at high SNR.
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Fig. 3. Comparison of the positioning algorithm performances.
Average distance error as a function of the SNR.
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Fig. 4. Convergence of the iterative multi-lateration algorithm. Aver-
age distance error as a function of the SNR.
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Fig. 5. Comparison of the iterative algorithm for rich multipath and
the iterative approach of [10] under the ETSI TDL-C channel [14]
after convergence.

V. CONCLUSION

In this paper, we propose a time-of-flight based
iterative localization method robust to rich multipath
propagation channels. Provided that the base stations
have a good knowledge of the power delay profile of
the channel, our iterative estimation scheme performs
very well at medium to high SNRs. We showed by
simulation that it outperforms the conventional two-step
approach and performs very close to the optimal direct
estimation.
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