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Abstract This paper compares different representations (in the sense of computable
analysis) of a number of function spaces that are of interest in analysis. In particular
subspace representations inherited from a larger function space are compared to more
natural representations for these spaces. The formal framework for the comparisons
is provided by Weihrauch reducibility. The centrepiece of the paper considers several
representations of the analytic functions on the unit disk and their mutual translations.
All translations that are not already computable are shown to be Weihrauch equivalent
to closed choice on the natural numbers. Subsequently some similar considerations
are carried out for representations of polynomials. In this case in addition to closed
choice the Weihrauch degree LPO* shows up as the difficulty of finding the degree or
the zeros. As a final example, the smooth functions are contrasted with functions with
bounded support and Schwartz functions. Here closed choice on the natural numbers
and the lim degree appear.
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1 Introduction

In order to make sense of computability questions in analysis, the spaces of objects
involved have to be equipped with representations: A representation determines the
information that is provided (or has to be provided) when computing on these objects.
When changing from a more general to more restrictive setting, there are two options:
Either to merely restrict the scope to the special objects and retain the representation,
or to introduce a new representation containing more information.

As a first example of this, consider the closed subsets of [0, 1]2 and the closed con-
vex subsets of [0, 1]2 (following [12]). The former are represented as enumerations
of open balls exhausting the complement. The latter are represented as the intersec-
tion of a decreasing sequence of rational polygons. Thus, prima facie the notions of
a closed set which happens to be convex and a convex closed set are different. In this
case it turns out they are computably equivalent after all (the proof, however, uses the
compactness of [0, 1]%).

1.1 Summary of the results

This paper presents different examples of the same phenomenon: In Section 2 the
difference between an analytic function and a continuous functions that happens to
be analytic is investigated for functions on a fixed compact domain. It is known that
these actually are different notions. The results quantify how different they are using
the framework of Weihrauch reducibility. The additional information provided for
an analytic function over a continuous function can be expressed by a single natural
number. Thus, this is an instance of computation with discrete advice as introduced
in [35]. Finding this number is Weihrauch equivalent to Cy. This means that while
the number can be chosen to be falsifiable (i.e. wrong values can be detected), this
is the only computationally relevant restriction on how complicated the relationship
between object and associated number can be. The results are summarized in Fig. 4
on Page 13

Section 3 considers continuous functions that happen to be polynomials versus
analytic functions that happen to be polynomials versus polynomials. All translations
turn out to be either computable, or Weihrauch equivalent to one of the two well-
studied principles Cy and LPO*. The results are summarized in Fig. 5 on Page 18.

The last Section 4 changes the setting in that it swaps the compact subset of the
complex plane as domain for the real line. It contrasts the spaces of smooth functions,
Schwartz functions and bump functions. While going from smooth (or Schwartz) to
a bump function is equivalent to Cr, going from a smooth function that happens to
be Schwartz to a Schwartz function is equivalent to the Weihrauch degree lim. This
degree captures the Halting problem. In particular it follows that there is a function
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f € C*®(R) that decays faster than any polynomial (i.e. f € S) and is computable
as element of C*°(R), but as element of S is not only non-computable, but computes
the Halting problem.

We briefly mention two alternative perspectives on the phenomenon: First, recall
that in intuitionistic logic a negative translated statement behaves like a classical
one, and that double negations generally do not cancel. In this setting the difference
boils down to considering either analytic functions or continuous functions that are
not not analytic. Second, from a topological perspective, Weihrauch equivalence of
a translation to Cy implies that the topologies induced by the representations differ.
Indeed, the suitable topology on the space of analytic functions is not just the sub-
space topology inherited from the space of continuous functions but a direct limit
topology.

An extended abstract based on this paper can be found as [25].

1.2 Represented spaces

This section provides a very brief introduction to the required concepts from com-
putable analysis. For a more in depth introduction and further information, the reader
is pointed to the standard textbook in computable analysis [32], and to [21]. Also,
[28] should be mentioned as an excellent source, even though the approach differs
considerably from the one taken here.

Recall that a represented space X = (X, §x) is given by a set X and a partial
surjection 8x :C NN — X from Baire space onto it. The elements of 8)21 (x) should
be understood as encodings of x and are called the X-names of x. Each represented
spaces inherits a topology from Baire space: The final topology of the chosen rep-
resentation. We usually refrain from mentioning the representation of a represented
space in the same way as the topology of a topological space is usually not men-
tioned. For instance the set of natural numbers is regarded as a represented space
with the representation Sn(p) := p(0). Therefore, from now on denote by N not only
the set or the topological space, but the represented space of natural numbers. If
a topological space is to represented, the representation should be chosen such that
it fits the topology as good as possible. For instance for the case N above, the final
topology of the representation is the discrete topology.

If X is a represented space and Y is a subset of X, then Y can be turned into a
represented space by equipping it with the range restriction of the representation of
X. Denote the represented space arising in this way by X|y. We use the same notation
X|y if Y is a represented space already. In this case, however, no information about
the representation of Y is carried over to X]y.

Recall that a multivalued function f from X to Y (or X to Y) is an assignment that
assigns to each element x of its domain a set f(x) of acceptable return values. Mul-
tivaluedness of a function is indicated by f : X == Y. The domain of a multivalued
function is the set of elements such that the image is not empty. Furthermore, recall
that f :© X — Y indicates that the function f is allowed to be partial, i.e. that its
domain may be a proper subset of X.
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Definition 1 A partial function F :C NN — NN is a realizer of a multivalued
function f :C X =3 Y if S5y(F(p)) € f(6x(p)) forall p € Sgl(dom(f)) (compare
Fig. 1).

A (multivalued) function between represented spaces is called computable if it
has a computable realizer, where computability on Baire space is defined via oracle
Turing machines (as in e.g. [10]) or via Type-2 Turing machines (as in e.g. [32]).
We call a (multivalued) function between represented spaces continuous, if it has a
continuous realizer. For single valued functions on admissibly represented spaces (in
the sense of Schroder [29]), this notion coincides with topological continuity. All
representations discussed in this paper are admissible.

The remainder of this section introduces the represented spaces that are needed
for the content of the paper.

Sets of natural numbers Let O(N) resp. A(N) denote the represented spaces of
open resp. closed subsets of N. The underlying set of both O(N) and A(N) is the
power set of N. The representation of O(N) is defined by

Soy(p)=0 & O={pm)—1|neN,pn) >0}

That is: A O(N)-name of a set of natural numbers is an enumeration of the set,
however the enumeration is allowed to not return an element of the set in each step
(otherwise no finite set would get a name). The closed sets A(N) are represented as
complements of open sets:

Sanm(p)=A & domw(p) = A€,

Le. a A(N)-name of a set of natural numbers is an enumeration of the complement.

Computable metric spaces, R, C, C(D) Given a triple M = (M, d, (x,)neN) such
that (M, d) is a separable metric space and x, is a dense sequence, turn M into a
represented space by equipping it with the representation

Smp)=x & VneN:idx, xpm) <27".
This is the canonical way of considering R, R? and C as represented spaces; the

dense sequences are standard enumerations of the rational elements.

Fig.1 A diagram
X—Y

o |

NN ——— NN
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The space C(D) of continuous functions on a compact subset D of R? is a separa-
ble metric space and thus a represented space. The metric is the one induced by the
supremum norm and the dense sequences are standard enumerations of the polyno-
mials with rational coefficients. The computable Weierstraf} approximation theorem
states that a function is computable as element of C([0, 1]) if and only if it is com-
putable in the sense of realizers as a function between the represented spaces [0, 1]
and R respectively.

Sequences in a represented space For a represented space X there is a canon-
ical way to turn the set of sequences in X into a represented space X: Let
() : N x N — N be a standard paring function (i.e. bijective, recursive with

recursive projections). Define a function (-) : (NN)N — NN by

((Pren)((m, n)) = pm(n).

For a represented space X define a representation of the set X' of the sequences in
the set X underlying X by

IxN({(PkeN)) = (X)ken & Vm € N1 8x(pm) = xim.

Le. p is a name of (x;;),en if for each fixed m the mapping n +— p({m, n)) is
a name of x,,. In particular the spaces RN and CN of real and complex sequences
are considered represented spaces in this way. For a partial, multivalued function
f:cX=2Ylet fN:c XN = YN denote the function defined by FN(xp)nen) =

(f (xn))neN.

1.3 Weihrauch reducibility

This section provides a brief introduction to Weihrauch reducibility. The research
programme of Weihrauch reducibility was formulated in [2], a more up-to-date
introduction can be found in [6].

Every multivalued function f :C X = Y corresponds to a computational task.
Namely: ‘given information about x and the additional assumption x € dom( f) find
suitable information about some y € f(x)’. What information about x resp. f(x) is
provided resp. asked for is reflected in the choice of the representations for X and Y.
The following example of this is very relevant for the content of this paper:

Definition 2 Let closed choice on the integers be the multivalued function Cy :C
A(N) = N defined on nonempty sets by

yeCn(A) & yeA.

The corresponding task is ‘given an enumeration of the complement of a set of
natural numbers and provided that it is not empty, return an element of the set’. Cy
does not permit a computable realizer: Whenever a machine decides that the name of
the element of the set should begin with 7, it has only read a finite beginning segment
of the enumeration. The next value might as well be n.

@ Springer



562 Theory Comput Syst (2018) 62:557-582

From the point of view of multivalued functions as computational tasks, it makes
sense to compare their difficulty by comparing the corresponding multivalued func-
tions. This paper uses Weihrauch reductions as formalization of such a comparison.
Weihrauch reductions define a rather fine pre-order on multivalued functions between
represented spaces.

Definition 3 Let f and g be partial, multivalued functions between represented
spaces. Say that f is Weihrauch reducible to g, in symbols f<wg, if there are com-
putable functions K :C NN x NN — NN and H :€ NN — NN guch that whenever
G is arealizer of g, the function F := (p — K(p, G(H(p)))) is a realizer for f.

H is called the pre-processor and K the post-processor of the Weihrauch reduc-
tion. This definition and the nomenclature is illustrated in Fig. 2. The relation <w is
reflexive and transitive. We use =w to denote that reductions in both directions exist
and < if this is not the case. The equivalence class of a multivalued function with
respect to the equivalence relation =w is called the Weihrauch degree of a func-
tion f and we denote it by [ f]. We still use <w for the induced partial order on the
Weihrauch degrees and by abuse of notations sometimes use it to compare multival-
ued functions and Weihrauch degrees. A Weihrauch degree is called non-computable
if it contains no computable function.

The Weihrauch degree corresponding to Cy has received significant attention, e.g.
in [3, 4, 6, 7, 15-19]. In particular, as shown in [23], a function between computable
Polish spaces is Weihrauch reducible to Cy if and only if it is piecewise computable
or equivalently is effectively Ag—measurable.

For the purposes of this paper, the following representatives of this degree are also
relevant:

Fig. 2 Weihrauch reductions name of some y € f(x)
T
l
K F

T name of g(z)

G

T name of z

H

name of x € dom(f)
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Lemma 1 ([24]) The following are Weihrauch equivalent:

—  Cn, that is closed choice on the natural numbers.
— max :C€ O(N) — N defined on the bounded sets in the obvious way.
— Bound :C O(N) = N, where n € Bound(U) iff Vm € U : n > m.

Given p € NN denote the support of p by supp(p) := {n € N | p(n) > O}.
Furthermore, for a finite set A denote the number of elements of that set by #A.

Lemma 2 The function Count :C NN & N, defined via
dom(Count) := {p € NN | supp(p) is finite} and Count(p) := #supp(p)

is Weihrauch equivalent to closed choice on the naturals Cy.

Proof First construct the Weihrauch reduction that proves Cy <w Count: Let the
pre-processor H be the function sending some p € dom(Cp) to the function that
returns 1 on input n whenever its support up to n has fewer elements than the least
element that has not been excluded from the set by the first n elements of the enu-
meration of the complement. This function is computable as can be seen from its
recursive definition:
) Vifmin{m [Vj<n:p(j)—1#m}>#j<n|H(p)(j) =1}
Hp) () = {0 otherwise.
H (p) has finite support, since the set described by p is nonempty: There is some
m never shows up as value of p and by definition the support of H(p) does not
outgrow that number. Applying a realizer of Count to H (p) returns an encoding of
the least element of the set encoded by p. To obtain a Weihrauch reduction just pass
this number on to be the output via K (p, g)(n) := ¢g(0).

For the opposite direction, i.e. Count <y Cy use Lemma 1 and replace Cy by
max. Define the pre-processor H of a Weihrauch reduction Count<yw max as follows:

_|jn+1ifpn) >0
H(p)(n) = { 0 otherwise.

This means that H(p) is a O(N) name of supp(p). Applying max will give the
maximal element of the support.
Define the post-processor K to be the function

K(p,q)(n) :=#m | m < q(0) and p(m) > 0}.

This function is computable and since ¢ (0) will always be the maximal element of the
support of p, the composition counts the support of p and is a Weihrauch reduction.
O

In Section 3 another non-computable Weihrauch degree is encountered: LPO*.
Here, LPO is short for ‘limited principle of omniscience’. We refrain from stating
LPO* explicitly as it would need more machinery than we introduced. Instead we
characterize it by specifying the representative that is used in the proofs:
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Proposition 1 ([18, Korollar 3.1.4.6]) The function min : NN — N defined on all of
Baire space in the obvious way is a representative of the Weihrauch degree LPO*.

A third and final Weihrauch degree making an appearance as the degree of a
translation is the degree lim encountered in Section 4.

Definition 4 Let X be a computable metric space. Then limx :C XN — X maps a
converging sequence to its limit.

As shown in [3], limy =w Cy. In general, it holds that limx <w limygn =w
lim{o’ N and whenever Y is a subspace of X, then limy <w limx. As {0, 1}N embeds
into any computable metric space considered in this paper apart from N, it suffices
to consider the Weihrauch degree lim := [lim{o’l}N] corresponding to lim, jyn. The
degree lim is also complete for the effectively Eg -measurable functions [2, 22].

To give more intuition as to why the Weihrauch degrees LPO*, Cy and lim show
up in this paper, note the following: All three are derived from the maybe simplest
non-computable Weihrauch degree LPO via canonical closure operators defined on
the Weihrauch degrees. LPO the Weihrauch degree of the characteristic function of
the zero function in Baire space, namely LPO = [ o], where

1 if p is the zero function, i.e. Vn : p(n) = 0.
0 otherwise.

xo(p) == {

In computable analysis LPO shows up as the Weihrauch degree of the equality test
for real (or complex) numbers.

Now, LPO* corresponds to carrying out a fixed finite but arbitrary high number
of equality tests on the real or complex numbers via the operator © from [20]. The
operator © introduced in [17] captures using the given degree an arbitrary finite num-
ber of times (without the requirement that the number is fixed in advance), and it
holds that [Cn] = LPQO°. Define one last operator on the Weihrauch degrees by
setting [f] := [f N1, This operation was also investigated in [5] and corresponds
to a countable number of invocations of f* all performed in parallel. It holds that
LPO = [Cy] = lim.

It is known that idyy <w LPO <w LPO* <w Cn <w lim.

2 Analytic functions

2.1 Representations of analytic functions

Recall that a function is analytic if it is locally given by a power series:

Definition 5 Let D C C be a set. A function f : D — C is called analytic, if for

every xo € D there is a neighborhood U of xp and a sequence (ai)ixeN € CN such
that foreachx € U N D

f) =) ax - xo)t.

keN
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The set of analytic functions is denoted by C® (D). Each analytic function is con-
tinuous, i.e. C*(D) € C(D). If D is open, the analytic functions on D are smooth,
i.e. infinitely often differentiable. Any analytic function can be analytically extended
to an open superset of its domain.

Recall that a germ of an analytic function is a point of its domain together with the
series expansion around said point. As long as the domain is connected, an analytic
function is uniquely determined by each of its germs. The one to one correspon-
dence of germs and analytic functions only partially carries over to the computability
realm: It is well known that an analytic function on the unit disk is computable if and
only if the germ around any computable point of the domain is computable (see for
instance [9]). However, the proofs of these statements are inherently non-uniform.
The operations of obtaining a germ from a function and a function from a germ are
discontinuous and therefore not computable (see [14]).

There is a more suitable representation for the analytic functions than the restric-
tion of the representation of continuous functions. This representation has been
investigated by different authors for instance in [8, 11, 14]. For simplicity restrict to
the case of analytic functions on the unit disk. From now on let D denote the closed

unit disk. And let U,, denote the open ball B, (0) of radius r,, := 2#1 around zero.
Note that U,,+1 € U, and that the intersection of all U,, is the unit disk. Recall
from the introduction that the space C(D) of continuous functions is represented as a
metric space (where C is identified with R?).

Definition 6 Let C“ (D) denote the represented space of analytic functions on D,
where the representation is defined as follows: A function ¢ € N is a name of an
analytic function f on D, if and only if f extends analytically to the closure of Uy ),
the extension is bounded by ¢(0) and n — g(n + 1) is a name of f € C(D).

Note that the representation of C*(D) arises from the restriction of the repre-
sentation of continuous functions by adding discrete additional information. This
information is quantified by the advice function Advce :Z C(D) — N whose
domain are the analytic functions and that on those is defined by

Advce (f) :={q(0) | g is aC®(D) — name of f)}

= {m € N | f has an analytic cont. to U,, bounded by m}. (AC)

This function turns up in the results of this paper. In the terminology of [8], one would
say that C”(D) arises from the restriction C(D)|ce(p) by enriching with the discrete
advice Advco.

The topology induced by the representation of C* (D) is well known and used in
analysis: It can be constructed as a direct limit topology and makes C* (D) a so called
Silva-Space. For more information on this topology and its relation to computability
and complexity theory also compare [11].

The set O of germs around zero, i.e. of power series with radius of convergence
strictly larger than 1 can be made a represented space in a very similar way:
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Definition 7 Let O denote the represented space of germs around zero with radii of
convergence greater than 1, where the representation is defined as follows: A function
q € N is a name of a power series (ax)reN, if and only if

k
Vk € N: |ag| <27 4@+ ¢(0)

and n — ¢g(n + 1) is a name of the sequence (ax)ren as element of CN,

As above, this representation is related to the restriction of the representation of
cN by means of an advice function Advp :C CN = N whose domain are the
sequences with radius of convergence strictly larger than one and that is defined on
those by

Advo((ar)ken) = {q(0) | g is a O — name of (ax)keN}

__k_ (AG)
={neN|VkeN:|a| <2 1 -n}

Again, the topology induced by this representation is well known and used in analy-
sis: It is the standard choice of a topology on the set of germs and can be introduced
as a direct limit topology.

Proofs that the following holds can be found in [8] or [14]:

Theorem 1 (computability of summation) The assignment

O — C%(D), (ax)ien — (x — Zakxk>

k

is computable.

A proof of the following can be found in [8]:
Theorem 2 Differentiation is computable as mapping from C® (D) to C®(D).
2.2 Summing power series

Summing a power series is not computable on CY. Recall that Advp was the advice
function of the representation O of germs around zero of analytic functions on the
unit disk. The computational task corresponding to this multivalued function is to
find from a sequence that is guaranteed to have radius of convergence bigger than one
a constant witnessing the exponential decay of the absolute value of the coefficients
(compare (AG) on page 10). Theorem 1 states that summation is computable on O.
Therefore, the advice function Adv can not be computable. The following theorem
classifies the difficulty of summing power series and Adv in the sense of Weihrauch
reductions.

Theorem 3 The following are Weihrauch-equivalent:

—  Cu, that is: Closed choice on the naturals.
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—  Sum, that is: The partial mapping from CN to C(D) defined on the sequences
with radius of convergence strictly larger than one by

Sum((a)ren)(x) =Y agx*.

keN

Le. summing a power series.
— Advp, that is: The function from (AG) on page 10. l.e. obtaining the constant
from the series.

Proof Build a Weihrauch reduction circle:

Cn <w Sum: Lemma 2 permits us to replace Cy by Count.
The Weihrauch reduction Count <w Sum can be constructed as follows: Let
the pre-processor be a realizer of the computable mapping that assigns to p € NV
the sequence (ax)ren € CN defined by

b |1 iR >0
=00 if ptk) =0 -

Note that p € dom(Count) means that p has a finite support, and the radius of con-
vergence of (ay)reN is strictly bigger than one (it is infinite). Applying a realizer
of Sum will result in a name of the corresponding function f. From the definition
of (ay)ken it is clear that f(1) = Count(p). Therefore, the post-processor can be
chosen as the second projection composed with a realizer of the evaluation in 1,
which is well known to be computable on the continuous functions.

Sum <w Advp: Let the pre-processor be the identity. Note that an element of
Advo ((ap)ken) and a CN-name of (ay)ren can easily be put together to an O-
name of (ax)ren. Thus the post-processor can be chosen to be the composition of
this mapping and a realizer of the summation mapping on O, which is computable
by Theorem 1.

Advp <w Cn: Let the pre-processor be the function that maps a given name p of
(ap)ren € C¥ to an A(N)-name of the set Advp ((ax)xren). Note that an enumera-
tion of the complement of this set can be extracted from p as follows: For all k£ and

k
m € N dovetail the test |ax| > 2~ m+Im. If it holds for some k, return m as an ele-
ment of the complement. This procedure indeed produces a list of the complement

of Advp ((ar)ken): If the above does not hold for any k, then |ai| < 2_m%lm for
all k and m is an element of Advp ((ak)keN)-

Applying closed choice to this set will give result in a valid return value. Thus,
choose the post-processor to be the second projection.

O
2.3 Differentiating analytic functions
In Subsection 2.1 we remarked that it is not possible to compute the germ of an

analytic function just from a name as continuous function. The proof in [14] that
this is in general impossible, however, argues about analytic functions on an interval.
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The first lemma of this chapter proves that for analytic functions on the unit disk it
is possible to compute a germ if its base point is well inside of the domain. We only
consider the case where the base point is zero, but the proof works whenever a lower
bound on the distance of the base point to the boundary of the disk is known.

Lemma 3 Germ, that is: The partial mapping from C(D) to CN defined on analytic
functions by mapping them to their series expansion around zero, is computable.

Proof Remember that the Cauchy integral formula states that for an analytic function
f on the closed unit disk:

k! 2
f(k)(o) - f (eit) e—it(k-‘rl)dt
2mwi 0
It is well known that the integral is computable from a name of the function f €
C(D). This works uniformly in k. O

The next theorem is very similar to Theorem 3. Both the advice function Advce
and computing a germ around a boundary point are shown to be Weihrauch equiva-
lent to Cn. Note that the coefficients of the series expansion (aj)ren of an analytic
function f around a point xq are related to the derivatives f®) of the function
via klay = f®(xq). Therefore, computing a series expansion around a point is
equivalent to computing all the derivatives in that point.

Theorem 4 The following are Weihrauch equivalent:

—  Cu, that is closed choice on the naturals.
— Diffy, that is the partial mapping from C(D) to C defined on analytic functions
by
Diff; () := f'(1).
Le. evaluating the derivative of an analytic function in 1.
—  Advce, that is the function from (AC). Le. obtaining the constant from the
function.

Proof By building a circle of Weihrauch reductions:

Cn <w Diff;: Use Lemma 2 to show Count < Diff; instead. Let p be from the
domain of Count. That is: supp(p) = {n € N | p(n) > 0} is finite. Define a
sequence of analytic functions f, : D — C by

on+l

fo(x) = —x0)" 7,

where
n+1

Xp =1+ 22141

(see Fig. 3). The sequence is carefully chosen such that f; (1) = 1 and
VxeD:|f(x)] <27".
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Fig. 3 The functions f, / f
0

Furthermore, it is computable as a sequence of functions from C(D).
Consider the function

[ =Y ful).

nesupp(p)

Note that this function can be computed from p: To approximate f by a
polynomial it suffices to approximate those f, whose index is small. Let the
pre-processor be a realizer of this assignment.

Note that applying Diff; to the function f results in

Diff; (f) = /()= Y fu(1) =#supp(p).

nesupp(p)

Therefore, the post-processor K (p, g) := q results in a Weihrauch reduction.
Diff; <w Advce: Let the pre-processor be the identity.

An appropriate post-processor can be described as follows: Combine the return
value of Advce on the function f and the C(D)-name of f to an C*(D)-name of
f. Afterwards apply a realizer of the differentiation operator on C* (D) which can
be chosen computable by Theorem 2. Finally, obtain a C(D)-name of f’ from the
C®(D)-name and evaluate it in 1.

Advce <w Cn:  Combine computable Germ : C(D) — CV, the classification
Advp=w Cy from Theorem 3 and the computability of summation from Theorem 1.

O
Recall from the introduction that C(D)|ce(p) resp. CN|p denote the represented

spaces obtained by restricting the representation of C(D) resp. CN to C®(D), resp.
O. Theorems 1, 3, 4 and Lemma 3 are illustrated in Fig. 4.

3 Polynomials

3.1 Polynomials as finite sequences

Consider the set C[X] of polynomials with complex coefficients in one variable X.
There are several straightforward ways to represent polynomials. The first one that
comes to mind is to represent a polynomial by a finite list of complex numbers. One

can either demand the length of the list to equal the degree of the polynomial or just
to be big enough to contain all of the non-zero coefficients. Since the first option
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Fig. 4 The results of Theorems 1 3, 4 and Lemma 3

fails to make basic operations like addition of polynomials computable, we choose
the second option.

Definition 8 Let C[X] denote the represented space of polynomials, where the
representation is defined as follows: p € NN is a C[X]-name of P if p(0) > deg(P)
and n — p(n + 1) is a CPO+_pame of the first p(0) + 1 coefficients of P.

Let C,,[X] denote the set of monic polynomials over C, i.e. the polynomials with
leading coefficient equal to one. Make C,,[ X] a represented space by restricting the
representation of C[X]. Monic polynomials are important because it is possible to
compute their roots — albeit in an unordered way. To formalize this define a represen-
tation of the disjoint union C* := ][], C" as follows: A function p is a name of
x € C*ifand only if x € CP© and n — p(n + 1) is a C”© name of x. Note that
the construction of the representation of C[X] is very similar. The only difference
being that in C* vectors with leading zeros are not identified with shorter vectors.

Now, the task of finding the zeros in an unordered way can be formalized by
computing the multivalued function that maps a polynomial to the set of lists of its
zeros, each appearing according to its multiplicities:

deg(P)
Zeros :C C[X] =2 C*, P> {(at,...,adegp)) | I: P =2 ]_[ (X — ay)
k=1

The importance of C,,[X] is reflected in the following well known lemma:

Lemma 4 Restricted to C,,[X] the mapping Zeros is computable.

Proof (Proof sketch) This is well known. A nice description of an algorithm to do
this can for instance be found in [13], although algorithms were known a lot longer.
We only sketch how to find out the degree, which is the number of zeros of the
polynomial and therefore the first step towards computing the set of zeros as element
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of C*. Get an approximation to each of the coefficients with precision % Since the
highest coefficient will be one, it can be found from this approximation. O

The main difficulty in computing the zeros of an arbitrary polynomial is to find its
degree. A polynomial of known degree can be converted to a monic polynomial with
the same zeros by scaling. On C[X] consider the following functions:

— deg: The function assigning to a polynomial its degree.
— Dbnd: The multivalued function where an integer is a valid return value if and
only if it is an upper bound of the degree of the polynomial.

Dbnd is computable by definition of the representation of C[X]. deg is not com-

putable on the polynomials, however, from the proof of Lemma 4 it follows:

Lemma 5 The degree mapping is computable when restricted to the monic polyno-
mials.

The next result classifies finding the degree, turning a polynomial into a monic
polynomial and finding the zeros to be Weihrauch equivalent to LPO*.

Proposition 2 The following are Weihrauch-equivalent to LPO*:

— deg, that is the mapping from C[X] to N defined in the obvious way.
— Monic, that is the mapping from C[X] to C,,[X] defined on the non-zero
polynomials by

deg(P) deg(P)
k k
P = ar X* xk,

—  Zeros :C C[X] — C*, mapping a non-zero polynomial to the set of its zeros,
each appearing according to its multiplicity.

Proof Note that LPO* is Weihrauch equivalent to the function min : NY¥ — N by
Proposition 1. Proceed by building a chain of Weihrauch equivalences:

min =w deg: To show! min <w deg, note that given p € NNandn < p(0), we can
compute a, defined by a, = 2~ MnilPO=r®=n} ywhere we understand a, = 0
if {i | p(0) — p(i) = n} = (. Subsequently we can compute the polynomial
P =" a;x', and find that min p = p(0) — deg P.
On the other hand to see deg <w min let p be a C[X]-name of a polynomial
P. Set H(p)(0) := p(0) and let H(p)(n) be the minimal number such that the
27"+ _approximation of the polynomial is consistent with deg(P) = p(0) — m.
Apply min to this function to get p(0) — deg(P). Thus, the post-processor K can
be chosen as K (p, g) = p(0) — g (0)
deg =w Monic: For deg <w Monic let the pre-processor be the identity. Applying
Monic to the input will result in a monic polynomial of the same degree. Let the

IThis direction of the proof was simplified based on a suggestion by an anonymous referee.
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post-processor be the second projection composed with a realizer of the degree
mapping on the monic polynomials that can be chosen computable by Lemma 5.
Monic <w deg is obvious since division by a non-zero number is computable.
Monic =w Zeros: To see that Monic <w Zeros note, that from approximations to
a vector (yo, ¥1, - - -, yn) of all the zeros of a polynomial P approximations to the
coefficients of Monic(P) can be computed via

Monic(P) = [ [(X = yo.

k<n

For the opposite direction note, that P and Monic(P) have the same set of zeros
and that the set of zeros can be computed from Monic(P) by Lemma 4.

O
3.2 Polynomials as functions

As polynomials induce analytic functions on the unit disk, the representations of
C®(D) and C(D) can be restricted to the polynomials. The represented spaces that
result from this are C”(D)|c[x], resp. C(D)|cyx)- Here, the choice of the unit disk D
as domain seems arbitrary: A polynomial defines a continuous resp. analytic func-
tion on the whole space. The following proposition can easily be checked to hold
whenever the domain contains an open neighborhood of zero and, since translations
are computable with respect to all the representations we consider, if it contains any
open set.

Denote the degree resp. degree bound functions on the continuous resp. analytic
functions by degc(p), Dbnde(p) resp. degeo(py, Dbndce(py. When polynomials are
regarded as functions, resp. analytic functions, these maps become harder to compute.

Theorem S The following are Weihrauch-equivalent:

—  Cn, that is: Closed choice on the naturals.

— Dbndge(py, that is: Given an analytic function which is a polynomial, find an
upper bound of its degree.

— degeco(py, that is: Given an analytic function which is a polynomial, find its
degree.

Proof Build a circle of Weihrauch reductions:

Cn <w Dbndce(p):  Use Lemma 1 and reduce to Bound instead. Thus, let p be an
enumeration of some bounded subset of the natural numbers. Define a polynomial
P as follows:

P(X) := Z o= (n+pm) x p(n)
neN

One readily verifies that a C”(D)-name of the function f corresponding to P can
be computed from p: A C(D)-name of f is easy to get hold of as the coeffi-
cients fall fast enough with 7, and it is easy to check that 2 is an allowed value of
Advce (f). Let the pre-processor H be a realizer of this assignment.
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Obviously Dbnd¢e(py(f) is an upper bound of the set enumerated by p. This
means that the choice K (p, q) := g for the post-processor results in a Weihrauch
reduction.

Dbndce(p) <w degew(py: Is trivial: Using the identity as pre-processor and the
second projection as post-processor will do.

degcw( D) =W Cn: By Lemma 1 replace Cy with max. Let p be a C*(D)-name of
the function corresponding to some polynomial P. Shifting the name will result
in a C(D)-name of P and by Lemma 3 a CN-name ¢ of the series of coefficients
of P can be computed from this. Let d,, denote the enumeration of the rational
elements of C that was fixed for the definition of the representation of C. Define
the pre-processor H as follows:

m+1if |d > 27"
H(p)((m,n)) := {0 ottJef\i;in;g))i

This pre-processor is computable and H (p) enumerates the set of indices k such
that ax is not zero. Therefore, applying max will result in the degree of the
polynomial and K (p, g) := ¢ can be chosen as post-processor of a Weihrauch
reduction.

O

From the proof of the previous theorem it can be seen that stepping down from
analytic to continuous functions is not an issue. For sake of completeness we add a
slight tightening of the third item of Theorem 4 and state this as theorem:

Theorem 6 The following are Weihrauch-equivalent to Cy:

— dege(py, that is: Given a continuous function which happens to be a polynomial,
find its degree.

— Dbndg(p), that is: Given an analytic function which happens to be a polynomial,
find an upper bound of its degree.

— Advcelcrx), that is: Given a continuous function which happens to be a
polynomial, find the constant needed to represent it as analytic function.

Proof Weihrauch equivalence of the first two bullets to Cy follows directly from
the proofs of Theorem 5. For the last item first note, that the Weihrauch reduction
Advce<w Cy constructed in Theorem 4 is also a Weihrauch reduction showing
Advee|cx1<w Cn. This is generally true for restrictions. On the other hand, the
sequence f, of analytic functions in the proof of the reduction Cy<w Advce
in the same theorem may be replaced by rational polynomials that approximate
the functions and their derivative well enough. This way, the constructed func-
tion f is a polynomial and the reduction a Weihrauch reduction to the restriction
AdV(Cw|(C[ X]- O]

Dbndge(py may be regarded as the advice function of C[X] over C“(D): The
representation where a function p is a name of a polynomial P if and only if p(0) =
Dbndge(py and n — p(n + 1) is a C®(D)-name of P is computationally equivalent
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to the representation of C[X]. The same way, Dbnd¢(p) can be considered an advice
function of C[X] over C(D).
Figure 5 illustrates Lemma 4, Proposition 1 and Theorems 6, 5.

4 Test function spaces

This section considers three spaces of test functions as a final example.
4.1 The spaces £, S and D

Consider the spaces

£ = C®°(R)

of smooth functions,

S:={fe&|V¥n,m 3C Vx:

)| = )

of Schwartz functions and
D := C;°(R)

of bump functions, i.e. those smooth functions that are zero outside some compact set.
We use the slightly less common name ‘bump functions’ for D instead of the standard
name ‘test functions’ as all three spaces are called in ‘spaces of test functions’ and
D C S C &. The standard example of a function from D is listed in Example 1 below.

These spaces are in particular relevant as their dual spaces with respect to the
topologies introduced below are the space D’ of distributions, S’ of tempered dis-
tributions and &’ of distributions with compact support. The spaces D, S and &
are complete locally convex spaces. Recall that a topological vector space is called
locally convex if its topology is the initial topology of a family (|| - ||;)ie; of
semi-norms. Set / := N x N. In the case of £ the semi-norms

1 F 15mi= sup [ )|
[x|<N

can be used. For S use the semi-norms defined via

I £ 1G i= sup x4 £ ().
xeR

line: = idyy dots: =w LPO* dash: =w Cy

Cm[X]

NIOHiCA Jid

L Clx]

deg N o id) lid = N Dbnd
R T C“’(b)\c[x] - -7

R idT lid -

s CD)eixy T

Fig. 5 The result of Lemma 4, Proposition 1 and Theorems 6, 5
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Finally note that D can be regarded as the union of all the spaces Dg of smooth func-
tions with support contained in the compact set K. The Spaces Dk can be regarded
topological vector spaces as the space £ above. Define a collection of semi-norms on
D as follows: A semi-norm || - || on D is contained in the collection if and only if it
restricts to a continuous semi-norm on each of the spaces Dg.

With respect to the locally convex topologies defined above the inclusions L% :
D < S and cg : § — & are continuous. The corresponding subspace topologies,
however, are strictly coarser. The index set of the families of semi-norms on £ and
S are both N x N and can be identified with N using the pairing function from the
introduction. This makes these spaces Fréchet spaces. Note that a Fréchet space can
always be equipped with a translation invariant metric by setting

27 lx = yll;
dix,y)=) —————*
S x =yl +1

where (]| - ||;)ien is a countable family of semi-norms inducing the topology. On D
there does not exist a countable family of semi norms that induces the right topology:
It is not metrizable.

4.2 Representing test functions

For representing these spaces first turn to £ and S, which can be handled as met-
ric spaces. For the space £ of smooth functions choose as dense sub sequence
the polynomials with rational coefficients. Equip £ with the corresponding metric
representation.

Lemma 6 An element of £ is computable if and only if the mapping
NxR—>R, (mx)— f™(x)

is computable.

Proof First assume that the mapping is computable. To approximate f by polyno-
mials in the translation invariant metric up to precision 27" first note that N, m <
(N, m). Therefore it suffices to approximate all up to the m-th derivatives of f on
the interval [— N, N] in supremum norm. Use the computable Weierstral Approxi-
mation Theorem to find polynomial approximations of £ on [—N, N] to precision
(2N)™™27". By the Intermediate Value Theorem f™~D(x) — f=D(y) <|
£ oo |x — y| < 2N)™™F127" and analogously none of the derivatives up to m
can vary by more than 27",

For the other direction just get an upper bound N for x, read polynomial
approximations to the derivatives from the name of the function f and evaluate
them. O

The above can seen to be uniform in the sense that it proves the metric represen-
tation is computably equivalent to the following one:

@ Springer



576 Theory Comput Syst (2018) 62:557-582

Definition 9 Let £ denote the represented space of smooth functions, where the
representation is defined as follows: A function ¢ € NI is a name of a smooth
function f if for all N, m € Nitholds thatn — ¢({(N,m, n))isa C([—N, N])-name
of fm,

Computability on the space S of Schwartz functions is investigated in [34]%. Note
that the rational polynomials are not contained in the space S, thus they have to be
replaced by truncating rational polynomials to rational intervals in a smooth way.
Writing the corresponding sequence down explicitly is cuambersome, however, it can
be done. An alternative approach to obtain a representation of S is to effectivize the
definition directly.

Definition 10 Let S denote the represented space of Schwartz functions, where
the representation is defined as follows: A function ¢ € N is a name of a Schwartz
function f if for all d, m, k < n it holds that

Vi eR: x| >q2n) = ‘xdf(m)(x)) <ok

andn — g(2n+ 1) isaname of f € &.

A proof that this representation is computably equivalent to the metric representa-
tion of S can be found as Lemma 5.3 (2) in [34]. This representation adds information
to an £-name of a function. However, in contrast to the other cases we encountered
so far the information added is an element of Baire space and not discrete.

Finally turn to the bump functions: The space D not being metrizable does not
prohibit the existence of a well behaved representation. For instance also the space
C®(D) of analytic functions is also not metrizable. The topology of D is, however,
also not sequential. Thus, a representation can not be expected to induce the topology
itself but at most its sequentialization. The question of how to represent D is for
instance studied in [11, 34].

Definition 11 Let D denote the represented space of bump functions, where the
representation is defined as follows: A function g € NN is a name of a bump function
f if and only if the support of f is contained in [—¢(0), g(0)] and n — g(n + 1) is
aname of f € £.

The representation of D arises from subspace representation of £ by enriching
with discrete advice. The advice function is given by

AdvE(f) = {k | supp(f) C [k, kI}.

2Prior to [34], in [31] computability on S was studied in the style of Pour-El and Richards [28].
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Example 1 Consider the function

x2

F(x) = {exz—l if [x] <1

0 otherwise

(compare Fig. 6). We need the following:

Lemma 7 The function f from Example 1 is computable as element of D. For its
shifts f,.(x) := f(x — A) it is true that

LANS e < (2 + DI ATm)*™,
This can be pieced together from [34] or [8]. We give a direct proof.

Proof That f is computable is clear from its definition. A proof that f is infinitely
often differentiable is an standard exercise and left to the reader. A direct computation
of f” and an easy induction show that for |x| < 1

FP@) = paf )1 =27,
where p, are integer polynomials recursively defined as follows:
po=1 and pu41:=01- xz)zp;, +2(2n — 1)x — 2nx3)pn.

These formulas show that the mapping (m, x) — f“(x) is computable. The com-
putability of f in £ now follows from Lemma 6 and to find a computable D-name it
suffices to add 1 to the front of the computable £-name.

Further computations show that deg(p,,) = 3n, that for n > 0 the absolute value
of each of its coefficients is bonded by (17n — 7)". From applying I’Hospital’s rule it

can be seen that (1 — x2)~2" f(x) — 0 for |x| — 1. Thus the suprema can be found
by searching for zeros of the derivative. They are

1 1 1 1
=4 —+1 and ;= — [ — +1
i 2n + 4pn? t1 and x 2n 4n? +

with (1 — xf/z)—z" f(x12) <n* + 1.1t follows that

1™l < 30170 = 1" (0* 4+ 1) < (17n)*"
and thus

L5 = sup [x9 7 = 2| = sup|ee 0 r )| < (21 + DY A7)
xeR xel-1,1]

O

Fig. 6 The bump function f
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4.3 Inclusions

We are now ready to investigate the inclusion maps and their inverses between these
spaces. Follow [34, Proposition 5.4] to see that the inclusion L% : D — §Siscom-
putable: Given a D-name g of F obtain the values of an S-name of f (compare
Definition 10) on even numbers by 2n +— ¢(0) and the values on odd numbers by
2n + 1 — g(n + 1). That the map Lg : § — & is computable follows from com-
paring the metric representations. Note that L% and Lg are injective thus they have
unique partial sections ng and ng with domains D C S resp. S € €. As mentioned
before the subspace topologies are strictly finer, thus the sections are not continuous.

Proposition 3 The following are Weihrauch-equivalent to Cy:

- ng :C S — D, the partial inverse of the embedding D — S.

- ngp = n? o 71:5 :C & — D, the partial inverse of the embedding D — E.

Proof Exhibit a cycle of Weihrauch reductions:

Cy <w ng: Recall, that by Lemma 1 the function Cy may be replaced the function
Bound:C O(N) =2 N defined on the finite sets in the obvious way.
Recall the function f from Example 1 and its shifts f; (x) := f(x — )). Let the
pre-processor H be a realizer of the function mapping a string function p to the
function

g=2.27"71@p@) + DT ATH ™ f2p0-
ieN

Let g; denote the k-th partial sum of g. Thus

_ lg — gl§
dg.ge) = Y 27m_—— o

it lg — gkllF,, +1

< > g -, Y 2
<d’m>€N <d,m>EN
d <kandm <k d>korm >k

Here the latter sum is obviously smaller than 27%~! and the first can be estimated
to be smaller by using the definition of g; and the estimate of the semi-norms of
f». from Lemma 7. Now the sequence ( f;);cN is a computable element of DN and
therefore also of S and the sequence g; can be computed from this sequence and
p- This suffices to compute a S-name of g from p.

From the definition of g it is clear that any bound on the support of g is also
a bound for the values of p and therefore a valid return value of Bound. The
post-processor K can be chosen as the second projection.

ng <w ngD: Follows from the computability of ng.

715D <w Cn: Assume we are given an £-name of some f € D. Let (¢,)nen be a
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standard enumeration of the rationals. Let the pre-processor H map f to the set
the set

H(p) := (K | 3n¥m : f(gn) > 27" = qu < K}.

This set is not empty since any bound on the support of f fulfills the condition for
all n. On the other hand, if the condition is violated by some m, then we can get
a polynomial w-approximation valid on [—g,, gn] from the £-name and
evaluate it on g, with this the same precision to witness the violation. Therefore
H is computable.

Applying Cy to the set returns a bound of the support and thus the post-

processor K can be chosen to be the projection to the second argument.

O

Theorem 7 For the partial inverse ng :C & — S of the inclusion S — & it holds
that [8] = lim, i.e. that T8 =wCX.

Proof First prove ng <w Cg. To obtain a S-name of f from a £-name it necessary

to find a sequence a, such that for all d, m, k < n it holds that |xdf(’”)(x) < 2_k|
for all x with |x| > 2%. Each a, can be found using one instance of Cy: Note that
the inequalities above are fulfilled for all real numbers if and only if they are fulfilled
for all rational numbers. Therefore, it is possible to enumerate those natural numbers
b for which the condition is not fulfilled by searching for a rational counterexample.
It follows that computing the sequence a,, and therefore also an S-name of f, from
an £-name of f is Weihrauch reducible to CE.

For the other direction by Lemma 2 it suffices to prove Bound" <y ng. Note

that Bound" produces from p € NN such that
Vm € N : max{p({(n, m)) | n € N}

a g € NN such that ¢(m) is a bound of the maximum above.

Let f be the function from Example 1 and f; its integer shifts. For i, k € N let
m; . denote the smallest integer such that p({m; «, k)) = i. Consider the following
sequence of functions:

gi= y max{x, 2} fu,
i€img(p)

A EN-name of this function sequence is computable from p since (f;) is computable
in DY and each restriction of g; to [—N, N] only depends on the first N values of p.
Let the preprocessor H be a realizer of this mapping.

Due to the assumption p € dom(Bound") the functions g; have compact support.
Furthermore, from the bounds from Lemma 7 it is easy to see that the function

gi=Y g fulfills [glF, < Y (I+mix+d?0Tm)* < oo
keN ieimg(p)

and is therefore contained in S.
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On the other hand all the values of the gj are positive and therefore

gmix + p((i, k) > ge(mix + p((i, k) > 27%

Therefore, if g is an S-name of g, then for all i it holds that ¢(2k) > p({i, k)) and
¢(2-) is a valid return value for Bound". O

Another important representative of the degree lim is the Turing jump J
{0, )N — {0, 13N mapping p to the Halting problem relative to p. As shown in [5],
J=w lim (essentially by a uniform version of Shoenfields Limit Lemma). This has
the important consequence that whenever T=w lim, then there is some computable
point x € dom(T') such that 7T (x) computes the Halting problem [1].

Corollary 1 There exists a function f : R — R which is computable as an element
of €, and which also is an element of S, but as the latter, computes the Halting
problem.

5 Conclusions & Outlook

We have seen that some care is required when formulating statements about com-
putability with respect to some more complicated function spaces in analysis:
Computing a continuous function (that happens to be analytic) is easier than comput-
ing the same function as an analytic function, etc. For most the distinctions we have
investigated, these differences are rather small: As the degree of Cy preserves com-
putability of points, an individual analytic function is a computable analytic function
iff it is a computable continuous function. For Schwartz functions, however, the sit-
uation is different, and crucial distinctions already appear at the level of individual
functions.

The relevance of the choice of function spaces for computable analysis has been
very prominent in the discussion of the computability of the wave equation: In
[26, 27], computable parameters were exhibited that forced the solution to take
non-computable values at time 1. This constituted a significant challenge for the
philosophical discussion about computability and physics. A resolution was then
offered in [33] by demonstrating that the solution operator for the wave equation is
computable after all — if one chooses the correct function spaces.

The examples we have studied in this paper are by far not all that deserve attention.
Based partially on the results in Section 4, one could contrast continuous functions,
distributions and tempered distributions. Similarly, the relationship between contin-
uous functions and £! functions that happen to be continuous should be clarified.
It is known, however, that translating from a continuous real function that has a
continuous derivative to a C!(R) function is equivalent to lim [30].

We should point out that many of the results proved in Section 2 work for more
general domains: Lemma 3 generalizes to any computable point of the interior of an
arbitrary domain. It can be made a uniform statement by including the base point of a
germ. In this case for the proof to go through computability of the distance function
of the complement of the domain of the analytic function is needed.
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Another example is the part of Theorem 4 that says finding a germ on the boundary
is difficult. In this case a disc of finite radius touching the boundary in a computable
point is needed. Alternatively, a simply connected bounded Lipshitz domain with a
computable point in the boundary can be used. Also in this case it seems reasonable
to assume that a uniform statement can be proven.
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