Contents

Nomenclature xix
Acronyms xxi
Roman Symbols xxii
Greek Symbols xxiii
Subscripts xxiii
I Humidification of micro gas turbines 1
1 Introduction 3
1.1 The micro gas turbine cycle and its main limitations 5
1.2 Water injection in micro gas turbines 7
1.3 Research objectives and methodology 7
2 Literature Review 9
2.1 State-of-the-art micro gas turbines 9
2.2 Advantage of humidifying the mGT cycle 11
2.3 Humidified mGT cycles 12
2.4 Limitations of the humidified mGT 20
2.5 Conclusion 24
II Numerical Analysis 25
3 First and second law analyses of mGT and mHAT 27
3.1 Methodology 28
3.2 Results 30
3.3 Conclusions 38
4 Transient Simulations 41
4.1 Methodology: the dynamic model in TRANSEO 42
4.2 Model validation with wet experimental data 43
4.3 Transient simulation results 48
4.4 Conclusions 56
III Experimental Analysis 57
5 The T100 mHAT facility at VUB 59
5.1 T100 mHAT setup 60
5.2 The T100 mHAT humidification unit 63
5.3 Start-up and shutdown procedures with water injection 65
5.4 Limitations of the T100 mHAT facility 65
6 EXPERIMENTAL RESULTS: WATER INJECTION AT FULL LOAD 67
6.1 Results at constant required power output 68
6.2 mHAT operation improvement 73
6.3 Results at constant rotational speed 75
6.4 Conclusions 81
IV Economic Analysis 83
7 The economic model 85
7.1 The three studied technologies 86
7.2 Demand sizing 88
7.3 Operation of the units in the model 88
7.4 Net Present Value and Internal Rate of Return 93
7.5 Definition of the costs and benefits for the evaluated technologies 94
7.6 Primary Energy Savings 96
8 Results for a range of electricity and gas price sce- NARIOS 97
8.1 The studied users and their demands 98
8.2 Price scenarios 99
8.3 Results 99
8.4 Conclusions 109
9 Results taking into account European cogeneration SUBSIDIES 111
9.1 The studied users and their demands 112
9.2 Electricity and gas prices 112
9.3 Policies 114
9.4 Results 119
9.5 Conclusions 127
10 Conclusions 129
10.1 Numerical analysis 129
10.2 Experimental analysis 131
10.3 Economic Analysis 131
10.4 Future work 132
10.5 Prospects of distributed cogeneration in Europe 133
List of Publications 138
References 152

