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Abstract: We consider the smooth interpolation problem under cycli-
cal monotonicity constraint. More precisely, consider finite n-tuples X =
{x1, . . . , xn} and Y = {y1, . . . , yn} of points in Rd, and assume the ex-
istence of a unique bijection T : X → Y such that {(x, T (x)) : x ∈ X}
is cyclically monotone: our goal is to define continuous, cyclically mono-
tone maps T̄ : Rd → Rd such that T̄ (xi) = yi, i = 1, . . . , n, extending a
classical result by Rockafellar on the subdifferentials of convex functions.
Our solutions T̄ are Lipschitz, and we provide a sharp lower bound for
the corresponding Lipschitz constants. The problem is motivated by, and
the solution naturally applies to, the concept of empirical center-outward
distribution function in Rd developed in Hallin (2018). Those empirical
distribution functions indeed are defined at the observations only. Our in-
terpolation provides a smooth extension, as well as a multivariate, outward-
continuous, jump function version thereof (the latter naturally generalizes
the traditional left-continuous univariate concept); both satisfy a Glivenko-
Cantelli property as n → ∞.

1. Introduction

1.1. Smooth interpolation under cyclical monotonicity constraint

A subset S of Rd×Rd is said to be cyclically monotone if, for any finite collection
of points {(x1, y1), . . . , (xk, yk)} ⊆ S, denoting by 〈x, y〉 the scalar product of x
and y in Rd,

〈y1, x2 − x1〉+ 〈y2, x3 − x2〉+ . . .+ 〈yk, x1 − xk〉 ≤ 0. (1.1)

A mapping T from Rd to Rd is said to be cyclically monotone iff
{(
x, T (x)

)
| x ∈ Rd

}
is cyclically monotone.

1
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Note that a finite subset S = {(x1, y1), . . . , (xn, yn)} of Rd × Rd is cyclically
monotone if and only if (1.1) holds for k = n—equivalently, iff, among all
pairings of X := (x1, . . . , xn) and Y := (y1, . . . , yn), S maximizes

∑n
i=1〈xi, yi〉

(that is, maximizes an empirical correlation), or minimizes
∑n
i=1 ‖yi − xi‖2,

where ‖x‖ stands for the Euclidean norm of x ∈ Rd.
Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} denote two n-tuples of points

in in Rd. Assuming that there exists a unique bijection T : X → Y such
that

{(
x, T (x)

)
| x ∈ X

}
is cyclically monotone, there is no loss of general-

ity in relabeling Y so that yi = T (xi). Accordingly, we throughout, are making
the following assumption.

Assumption (A). The n-tuples X and Y are such that T : xi 7→ T (xi) = yi,
i = 1, . . . , n is the unique cyclically monotone bijective map from X to Y.

We consider, under Assumption (A), the smooth interpolation problem un-
der cyclical monotonicity constraint. More precisely, our goal is to construct
a smooth (at least, continuous), cyclically monotone map T̄ : Rd → Rd such
that T̄ (xi) = T (xi) = yi for i = 1, . . . , n.

It is well known that the subdifferential of a convex function Ψ from Rd
to R enjoys cyclical monotonicity. A classical result by Rockafellar (1966) estab-
lishes the converse: any cyclically monotone subset S = {(xi, yi)|i = 1, . . . , n}
of Rd × Rd is contained in the subdifferential of some convex function.

Our result reinforces this characterization by restricting to differentiable con-
vex functions. Note that a differentiable convex function Ψ is automatically
continuously differentiable, with unique (at all x) subgradient ∇Ψ(x) and subd-
ifferential {(x,∇Ψ(x))|x ∈ Rd}. When Ψ is convex and differentiable, the map-
ping x 7→ ∇Ψ(x) thus enjoys cyclical monotonicity. We show (Corollary 2.3)
that, conversely, any cyclically monotone subset S = {(xi, yi)|i = 1, . . . , n}
of Rd × Rd is the subdifferential (at xi, i = 1, . . . , n) of some (continuously)
differentiable convex function Ψ.

Note that Assumption (A) holds if and only if identity is the unique minimizer
of

1

n

n∑
i=1

‖xi − yσ(i)‖2 (1.2)

among the set of all permutations σ of {1, . . . , n}. The same condition can be
recast in terms of uniqueness of the solution of the linear program

min
π

n∑
i=1

n∑
j=1

ci,jπi,j

s.t.

n∑
i=1

πi,j =

n∑
j=1

πi,j =
1

n
,

πi,j ≥ 0, i, j = 1, . . . , n,

(1.3)

with ci,j = ‖xi − yj‖2: clearly, (1.2) holds if and only if πi,i = 1
n , πi,j = 0, j 6= i

is the unique solution of (1.3).
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1.2. Center-outward distribution functions in Rd

This cyclical monotone interpolation problem naturally arises in relation with
the measure transportation-based concept of center-outward distribution func-
tion considered in [5], which we now describe.

Denote by Pd the family of nonvanishing Lebesgue-absolutely continuous
probability measures over Rd, more precisely, define Pd as the set of proba-
bility distributions P with a density f such that, for all D ∈ R+, there ex-
ist 0 < λD;f ≤ ΛD;f < ∞ such that λD;f ≤ f(x) ≤ ΛD;f for all x such
that ‖x‖ ≤ D. Building on [3] and [4], [5] defines the center-outward distribution
function F± of P ∈ Pd as the unique gradient of a convex function pushing P
forward to the uniform Ud over the unit ball Sd in Rd. By uniform here we
mean the product measure of a uniform distribution over the directions (the
unit sphere Sd−1) and a uniform distribution over the distances to the origin
(the unit interval [0, 1]); this reduces to Lebesgue-uniformity for d = 1, but not
for d ≥ 2. The center-outward distribution function F± of P ∈ Pd is shown to
be a continuous bijective cyclically monotone mapping from Rd to Sd.

The empirical counterpart F
(n)
± of F± is defined as a cyclically monotone

(discrete) mapping from the (random) sample X
(n)
1 , . . . , X

(n)
n to a (nonran-

dom) “regular” grid over Sd. That grid is built as the intersection of the collec-
tion {0, 1

nR+1 , . . . ,
nR

nR+1}Sd−1 of (nR + 1) nested hyperspheres with a collection

of nS radii from the origin, where nR and nS are such that n0 := n− nRnS <
min(nR, nS) (the origin, in that grid, is given multiplicity n0; see Section 4.2

of [5] for details). Hence, F
(n)
± is defined at the observed points X

(n)
1 , . . . , X

(n)
n

only. A Glivenko-Cantelli theorem, of the form

max
1≤i≤n

‖F (n)
± (X

(n)
i )− F±(X

(n)
i )‖ a.s., as n→∞ (1.4)

is established (without any moment assumptions) for i.i.d. samples with prob-
ability distribution P ∈ Pd and center-outward distribution function F±.

The empirical center-outward distribution function F
(n)
± , irrespective of d,

carries the same information as the sample itself, and perfectly fulfills its sta-
tistical role as a sample summary. One may like, however, to define it as an
object of the same nature—a smooth cyclically monotone mapping from Rd
to Sd—as its population counterpart F±. This brings into the picture the prob-
lem of the existence and construction, within the class of gradients of convex

functions, of a continuous extension x 7→ F̄
(n)
± (x) of the discrete F

(n)
± , yielding

a Glivenko-Cantelli theorem of the form

sup
x∈Rd

‖F̄ (n)
± (x)− F̄±(x)‖ → 0, a.s., as n→∞. (1.5)

That problem, which is left open in [5], reduces to the smooth interpolation
problem considered here, and is discussed in Section 3.1.

Now, the traditional definition of an empirical distribution function in dimen-
sion one (d = 1) yields, in obvious standard notation, a right-continuous step
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function interpolation of the couples {(X(n)
1 , F (n)(X

(n)
1 )), . . . , (Xn, F

(n)(X
(n)
n ))}

(although any smooth, monotone nondecreasing interpolation would do the same
job—satisfying, in particular, a Glivenko-Cantelli result under sup form as in
(1.5)). That traditional definition actually is mapping the real line R to a regu-
lar grid of (n+ 1) points, {0, 1

n+1 , . . . ,
n
n+1} (the denominator n+ 1 is adopted

for convenience, and without any loss of generality, in order for F (n)(X
(n)
i ),

i = 1, . . . , n to take values in the open unit interval).
Due to the lack of a canonical ordering of Rd (d ≥ 2), the problem of extending

this step function version of F (n) to the center-outward d-dimensional situation
is much less obvious, the very concept of a step function being unclear. In
Section 3.2, we show how the smooth interpolation constructed in Section 3.1
allows for a natural definition of such a step function interpolation, yielding

cyclically monotone outward-continuous mappings F̄
(n)∗
± from Rd to the nested

collection {0, 1
nR+1 , . . . ,

nR

nR+1}Sd−1 of (nR+1) hyperspheres characterizing F
(n)
± .

Those mappings still enjoy a sup form of Glivenko-Cantelli (as in (1.5)); instead
of steps, they yield plateaux (hyperplateaux for d ≥ 3), the boundaries of which
are the continuous quantile contours or hypersurfaces(

F̄
(n)
±

)−1( r

n+ 1
Sd−1

)
=
(
F̄

(n)∗
±

)−1( r

n+ 1
Sd−1

)
, r = 1, . . . , nR.

Contrary to the univariate situation, however, F̄
(n)∗
± is not uniquely defined:

distinct smooth interpolations F̄
(n)
± (as described in Section 3.1) may produce

distinct versions of F̄
(n)∗
± , with distinct discontinuity contours; all of them of

course coincide at the observed points.

2. Cyclically monotone interpolation

We now turn back to the smooth interpolation problem described in Section 1.1,
where we refer to for notation and assumptions. Our solution is constructed
in two steps. First (Step 1), we extend T to a piecewise constant cyclically
monotone map defined on a set in Rd whose complementary has zero Lebesgue
measure. Being piecewise constant, that map cannot be smooth. To fix this
problem, we apply (Step 2) a regularization procedure yielding the required
smoothness while keeping the interpolation feature. For Step 1, we rely on the
following result.

Proposition 2.1. Assume that x1, . . . , xn ∈ Rd and y1, . . . , yn ∈ Rd are such
that i 6= j implies xi 6= xj and yi 6= yj. Then,
(i) the map T (xi) = yi, i = 1, . . . , n is cyclically monototone if and only if there
exist real numbers ψ1, . . . , ψn such that

〈xi, yi〉 − ψi = max
j=1,...,n

(〈xi, yj〉 − ψj), i = 1, . . . , n;

(ii) furthermore, T is the unique cyclically monototone map from {x1, . . . , xn}
to {y1, . . . , yn} if and only if there exist real numbers ψ1, . . . , ψn such that

〈xi, yi〉 − ψi > max
j=1,...,n,j 6=i

(〈xi, yj〉 − ψj), i = 1, . . . , n. (2.1)
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Proof. Duality yields, for the linear program (1.3),

min
π

n∑
i=1

n∑
j=1

ci,jπi,j = max
a,b

1

n

n∑
i=1

ai +
1

n

n∑
j=1

bj

s.t.

n∑
i=1

πi,j =

n∑
j=1

πi,j =
1

n
, s.t. ai + bj ≤ ci,j , i, j = 1, . . . , n.

πi,j ≥ 0, i, j = 1, . . . , n

(2.2)

Moreover, π = {πi,j | i, j = 1, . . . , n} is a minimizer for the left-hand side pro-
gram, and (a, b) = (a1, . . . , an, b1, . . . , bn) a maximizer for the right-hand side
one, if and only if they satisfy the corresponding constraints and

n∑
i=1

n∑
j=1

ci,jπi,j =
1

n

n∑
i=1

ai +
1

n

n∑
j=1

bj .

With the change of variables ai =: ‖xi‖2 − 2ϕi, bj =: ‖yj‖2 − 2ψj , the dual
programs (2.2) take the form

max
π

n∑
i=1

n∑
j=1

πi,j〈xi, yj〉 = min
ϕ,ψ

1

n

n∑
i=1

ϕi +
1

n

n∑
j=1

ψj

s.t.

n∑
i=1

πi,j =

n∑
j=1

πi,j =
1

n
, s.t. ϕi + ψj ≥ 〈xi, yj〉, i, j = 1, . . . , n

πi,j ≥ 0, i, j = 1, . . . , n

(2.3)

where π is a maximizer for the left-hand side program and (ϕ,ψ) a minimizer for
the right-hand side one if and only if they satisfy the corresponding constraints
and

n∑
i=1

n∑
j=1

πi,j〈xi, yj〉 =
1

n

n∑
i=1

ϕi +
1

n

n∑
j=1

ψj .

Let (ϕ,ψ) be a minimizer for the right-hand side program in (2.3). Then, replac-
ing ϕi with ϕ̃i := maxj=1,...,n(〈xi, yj〉−ψj) yields a new feasible solution (ϕ̃, ψ)
satisfying ϕi ≥ ϕ̃i. Optimality of (ϕ,ψ) thus implies that ϕi = ϕ̃i, so that, at
optimality,

ϕi = max
j=1,...,n

(〈xi, yj〉 − ψj), i = 1, . . . , n. (2.4)

Now, if condition (1.2) holds, then πi,i = 1/n, πi,j = 0, j 6= i is the unique
maximizer in the left-hand side linear program in (2.3). Therefore, (ϕ,ψ) is a
minimizer for the right-hand side program if and only if

1

n

n∑
i=1

(ϕi + ψi − 〈xi, yi〉) = 0.
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In view of (2.4) this implies that

〈xi, yi〉 − ψi = max
j=1,...,n

(〈xi, yj〉 − ψj), i = 1, . . . , n. (2.5)

Conversely, assume that the weights ψ1, . . . , ψn are such that (2.5) holds.
Then, letting ϕi = maxj=1,...,n(〈xi, yj〉 − ψj), we have that (ϕ,ψ) is a feasible
solution for which

1

n

n∑
i=1

(ϕi + ψi − 〈xi, yi〉) = 0,

which, in view of the discussion above, implies that the map T : xi 7→ T (xi) = yi
is cyclically monotone. This completes the proof of Part (i) of the lemma.

As for Part (ii) of the proposition, note that T is the unique cyclically mono-
tone map from {x1, . . . , xn} to {y1, . . . , yn} if and only if, for every choice of
indices {i0, i1, . . . , im} ⊆ {1, . . . , n}, we have

〈xi0 , yi0 − yi1〉+ 〈xi1 , yi0 − yi2〉+ · · ·+ 〈xim , yim − yi0〉 > 0, (2.6)

while (2.1) holds if and only if there exist real numbers ψ1, . . . , ψn such that

〈xi, yi − yj〉 > ψi − ψj for all i 6= j.

On the other hand, defining fi,j(ψ) := ψi − ψj − 〈xi, yi − yj〉 for i 6= j, we can
apply Farkas’ Lemma (see, e.g., Theorem 21.1. in [7]) to see that either there
exists ψ ∈ Rn such that fi,j(ψ) < 0 for all i 6= j (equivalently, (2.1) holds), or
there exist nonnegative weights λi,j , not all zero, such that∑

i 6=j

λi,jfi,j(ψ) ≥ 0 for all ψ ∈ Rn.

Consider the graph with vertices {1, . . . , n} and (directed) edges corresponding
to those pairs (i, j) for which λi,j > 0. There cannot be a vertex of degree one in
the graph since, in that case,

∑
i 6=j λi,jfi,j(ψ) could not be bounded from below.

Hence, the graph contains at least a cycle, that is, there exist i0, i1, . . . , im such
that λi0,i1 , λi1,i2 , . . ., and λim,i0 all are strictly positive. Part (i) of the lemma
then implies the existence of ψ̄1, . . . , ψ̄n such that fi,j(ψ̄) ≤ 0 for all i 6= j. But
then

0 ≤
∑
i 6=j

λi,jfi,j(ψ̄) ≤ 0,

which implies that fi,j(ψ̄) = 0 for each pair i, j with λi,j > 0, so that

fi0,i1(ψ̄) + fi1,i2(ψ̄) + · · ·+ fim,i0(ψ̄) = 0.

This in turn entails (observe that the sum ψ̄i− ψ̄j along a cycle i0, i1, . . . , im, i0
vanishes)

〈xi0 , yi0 − yi1〉+ 〈xi1 , yi1 − yi2〉+ · · ·+ 〈xim , yim − yi0〉 = 0. (2.7)
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But (2.7) contradicts (2.6), which implies that if T is the unique cyclically
monototone map from {x1, . . . , xn} to {y1, . . . , yn} then (2.1) holds. Conversely,
if (2.1) holds, then, for every cycle i0, i1, . . . , im, i0, we have

〈xi0 , yi0 − yi1〉+ 〈xi1 , yi0 − yi2〉+ · · ·+ 〈xim , yim − yi0〉

> (ψi0 − ψi1) + (ψi1 − ψi2) + · · ·+ (ψim − ψi0) = 0,

and T is the unique cyclically monototone map from {x1, . . . , xn} to {y1, . . . , yn}.
This completes the proof. �

Remark 2.1.1. While in Proposition 2.1 we have assumed that y1, . . . , yn are n
distinct points of Rd, similar versions of this lemma can be proved if we relax
this condition. For the applications in Section 3.1, it will be useful to consider
the case when y1 = · · · = yn0 and y1 and y1 6= yi for i > n0. In this case, the
proof above is easily adapted to show that the map T (xi) = yi, i = 1, . . . , n
is cyclically monotone if and only if there exist real numbers ψ1, ψn0+1, . . . , ψn
such that, setting ψi = ψ1, i = 2, . . . , n0,

〈xi, yi〉 − ψi = max
j=1,...,n

(〈xi, yj〉 − ψj), i = 1, . . . , n.

Similarly, the map T (xi) = yi, i = 1, . . . , n is the unique cyclically monototone
map from {x1, . . . , xn} to {y1, yn0+1 . . . , yn} mapping n0 points in {x1, . . . , xn}
to y1 if and only if there exist real numbers ψ1, ψn0+1, . . . , ψn such that

〈xi, y1〉 − ψ1 > 〈xi, yj〉 − ψj , i = 1, . . . , n0, j = n0 + 1, . . . , n,

〈xi, yi〉 − ψi > 〈xi, yj〉 − ψj , i = n0 + 1, . . . , n, j = 1, n0 + 1, . . . , n, j 6= i.

This can be proved with straightforward changes to the proof of Proposition 2.1.
We omit details.

As a consequence of Proposition 2.1, we can extend T to a cyclically monotone
map from Rd to Rd as follows. Under Assumption (A), we can choose ψ1, . . . , ψn
such that (2.1) holds. Consider the convex map

x 7→ ϕ(x) := max
1≤j≤n

(〈x, yj〉 − ψj). (2.8)

Now the sets Ci = {x ∈ Rd| (〈x, yi〉 − ψi) > maxj 6=i(〈x, yj〉 − ψj)} are open
convex sets such that ϕ is differentiable in Ci, with ∇ϕ(x) = yi, x ∈ Ci. The
complement of

⋃n
i=1 Ci has Lebesgue measure zero. Thus, we can extend T

to
⋃n
i=1 Ci, hence to almost all x ∈ Rd, by setting

T̄ (x) := ∇ϕ(x), x ∈
n⋃
i=1

Ci.

By construction, xi ∈ Ci, hence T̄ is an extension of T . Rockafellar’s Theorem
(Theorem 12.15 in [8]) implies that T̄ is cyclically monotone. We could (in
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case
⋃n
i=1 Ci  Rd) extend T̄ from

⋃n
i=1 Ci to Rd while preserving cyclical

monotonicity, but such extension of T̄ cannot be continuous. Hence, we do not
pursue that idea and, rather, try to find a smooth extension of T . For this,
consider the Moreau envelopes

ϕε(x) := inf
y∈Rd

[
ϕ(y) +

1

2ε
‖y − x‖2

]
, x ∈ Rd, ε > 0 (2.9)

of ϕ (as defined in (2.8)): see, e.g., [8]. The following theorem shows that,
for sufficiently small ε > 0, ∇ϕε—the so-called Yosida regularization of ∇ϕ
(see [9])—provides the desired continuous, cyclically monotone interpolation
of (x1, y1), . . . , (xn, yn).

Summing up, we have the following theorem.

Theorem 2.2. Let Assumption (A) hold, and consider ϕ as in (2.8), with
ψ1, . . . , ψn satisfying (2.1). Let ϕε as in (2.9). Then, there exists e > 0 such
that for every ε ≤ e the map ϕε is continuously differentiable and Tε := ∇ϕε is
a continuous, cyclically monotone map such that

Tε(xi) = yi, i = 1, . . . , n

and ‖Tε(x)‖ ≤ maxi=1,...,n ‖yi‖ for all x ∈ Rd.

We note that the main conclusion of Theorem 2.2 remains true in the setup
of Remark 2.1.1 and we still can guarantee that there exists a convex, conti-
nously differentiable ϕ such that ∇ϕ(xi) = y1, i = 1, . . . , n0, ∇ϕ(xi) = yi,
i = n0 + 1, . . . , n in that case. More generally, the following corollary, which
heuristically can be interpreted as a discrete version of the fact that a smooth
convex function has a positive semi-definite second-order differential, is an im-
mediate consequence.

Corollary 2.3. Any cyclically monotone subset S = {(xi, yi)|i = 1, . . . , n}
of Rd × Rd with xi 6= xj if i 6= j is in the subdifferential (at xi, i = 1, . . . , n) of
some (continuously) differentiable convex function Ψ.

Proof of Theorem 2.2. The map ϕε is convex and continuously differentiable
since ϕ is convex (see, e.g., Theorem 2.26 in [8]). Hence Tε := ∇ϕε is a cyclically
monotone, continuous map for every ε > 0. Setting

ε̃0 = min
1≤i≤n

(
(〈xi, yi〉 − ψi)−max

j 6=i
(〈xi, yj〉 − ψj)

)
,

let ε0 = 1
2 ε̃0 min(1, 1/max1≤i≤n ‖yi‖); note that , by (2.1), ε̃0 is strictly positive,

hence also ε0. If x lies in the ε0-ball B(xi, ε0) centered at xi, then, if j 6= i,

〈x, yi〉 − ψi = 〈xi, yi〉 − ψi + 〈x− xi, yi〉 > 〈xi, yj〉 − ψj + ε̃0 − ε0‖yi‖

≥ 〈xi, yj〉 − ψj +
1

2
ε̃0 ≥ 〈x, yj〉 − ψj .

This shows that B(xi, ε0) ⊂ Ci and ϕ(x) = 〈x, yi〉 − ψi in B(xi, ε0).
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Assume now that 0 < ε ≤ 1
2ε0 min(1, 1/max1≤i≤n ‖yi‖), and take x ∈ B(xi, ε).

The map y 7→ 〈y, yi〉−ψi+ 1
2ε‖y−x‖

2 attains its global minimum at y = x−εyi ∈
B(xi, ε0). For any y, we have

ϕ(y) +
1

2ε
‖y − x‖2 ≥ 〈y, yi〉 − ψi +

1

2ε
‖y − x‖2

≥ ϕ(x− εyi) +
1

2ε
‖x− εyi − x‖2 = 〈x, yi〉 − ψi −

ε

2
‖yi‖2.

This proves that

ϕε(x) = 〈x, yi〉 − ψi −
ε

2
‖yi‖2, x ∈ B(xi, ε).

In particular, we conclude that Tε(xi) = yi. For the last claim, we note that

Tε(x) =
1

ε
(x− y0),

where y0 is the unique minimizer of y 7→ ϕ(y) + ‖y−x‖
2

2ε (again by Theorem 2.26
in [8])). But y0 is such a minimizer if and only if 0 ∈ ∂ϕ(y0)+ 1

ε (y0−x), that is, if
and only if Tε(x) ∈ ∂ϕ(y0), where ∂ϕ(y0) denotes the subdifferential of ϕ at y0.
Now, for every x ∈ Rd, ∂ϕ(x) equals the closure of the convex hull of the set of
limit points of sequences of the type ∇ϕ(xn) with xn → x (this is Theorem 25.6
in [7]). The map ϕ is differentiable in the regions Ci, with gradient yi. Hence,
for every x, Tε(x) belongs to the convex hull of {y1, . . . , yn}. This completes the
proof, �

Remark 2.3.1. It is important to note that, in spite of what intuition may
suggest, and except in the one-dimensional case (d = 1), linear interpolation
does not work in this problem. Assume that n ≥ d+1 and that {x1, . . . , xn} are
in general position. Denoting by C the convex hull of {x1, . . . , xn}, there exists a
partition of C into d-dimensional simplices determined by points in {x1, . . . , xn}:
every point in C thus can be written in a unique way as a linear convex combi-
nation of the points determining the simplex it belongs to (with obvious mod-
ification for boundary points). Therefore, if x ∈ C, there exist uniquely defined
coefficients λxi ∈ [0, 1], i = 1, . . . , n, with

∑
i λ

x
i = 1 and #{i|λxi 6= 0} ≤ d + 1,

such that x =
∑k
i=1 λ

x
i xi. A “natural” linear interpolation of T on C would be

x 7→
k∑
i=1

λxi yi, x ∈ C.

For d = 1, this map is trivially monotone increasing, hence cyclically monotone.
Starting with d = 2, however, this is no longer true, as the following counterex-
ample shows. Let (for d = 2)

x1 = (0, 0), x2 = (0, 1), x3 = (1, 1) and y1 = (−.5,−.01), y2 = (.5, .01), y3 = (1, 0).
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It is easily checked that the map xi 7→ yi, i = 1, 2, 3 is the only cyclically
monotone one pairing those points. Now, let us consider the points

x0 = .8x1 + .1x2 + .1x3 and y0 = .8y1 + .1y2 + .1y3.

The computation of all possible 24 pairings shows that the only cyclically mono-
tone mapping between the sets {x0, . . . , x3} and {y0, . . . , y3} is

xi 7→

 yi if i = 1, 3
y0 if i = 2
y2 if i = 0

where obviously x0 is not paired with y0 (nor x2 with y2).

Remark 2.3.2. It is worth remarking at this point that the interpolating func-
tion Tε given by the proof of Theorem 2.2 is not only continuous but, in fact,
Lipschitz with constant 1/ε (see, e.g., Exercise 12.23 in [8]). Looking for the
smoothest possible interpolation we should, therefore, take the largest possible ε
for which the interpolation result remains valid. Let us assume that ‖yi‖ ≤ 1,
i = 1, . . . , n (note that this does not imply any loss of generality; we could
adequately normalize the data to get this satisfied, then backtransform the in-
terpolating function). Set

ε0 :=
1

2
min

1≤i≤n

(
(〈xi, yi〉 − ψi)−max

j 6=i
(〈xi, yj〉 − ψj)

)
. (2.10)

Then, arguing as in the proof of Theorem 2.2, we see that B(xi, ε0) ⊂ Ci.
Let ε > 0 and δ > 0 be such that ε + δ < ε0. Then, for x ∈ B(xi, δ), we
have x − εyi ∈ B(xi, ε0), and we can mimic the argument in the proof above
to conclude that, for x ∈ B(xi, δ), we have ϕε(x) = 〈x, yi〉 − ψi − ε

2‖yi‖
2,

and, consequently, Tε(xi) = yi for every ε < ε0 with ε0 given by (2.10). By
continuity of the Yosida regularization (see Theorem 2.26 in [8]), we conclude
that Tε0(xi) = yi, i = 1, . . . , n. We summarize our findings in the following
result.

Corollary 2.4. Let Assumption (A) hold. Assume further that ‖yi‖ ≤ 1,
i = 1, . . . , n. Let ϕ(x) := max1≤j≤n(〈x, yj〉−ψj) with ψ1, . . . , ψn as in (2.1), ϕε
as in (2.8), and ε0 as in (2.10). Then Tε0 := ∇ϕε0 is a Lipschitz continuous,
cyclically monotone map, with Lipschitz constant 1/ε0, such that Tε0(xi) = yi,
i = 1, . . . , n and ‖Tε0(x)‖ ≤ 1 for every x ∈ Rd.

To conclude, let us turn to the choice of the weights ψi that satisfy condi-
tion (2.1), as required by our construction. In view of Corollary (2.4) and the
discussion in Remark 2.3.2, choosing the weights that maximize ε0 in (2.10)
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results in smoother interpolations. This maximization problem can be recast as
the linear program

max
ψ,ε

ε/2

s.t. 〈xi, yi − yj〉 ≥ ψi − ψj + ε, i, j ∈ {1, . . . , n}, i 6= j,
(2.11)

the dual of which is

min
zi,j ,i6=j

1

2

∑
i,j=1,...,n; i 6=j

zi,j〈xi, yi − yj〉

s.t.
∑

j=1,...,n; j 6=i

(zi,j − zj,i) = 0, i = 1, . . . , n

∑
i,j=1,...,n; i 6=j

zi,j = 1, zi,j ≥ 0.

(2.12)

Note that (2.12) is a variation of a constrained transportation problem in
which the constraint is that the first and second marginals of the joint distribu-
tion with probability weights zi,j are the same. In the particular case n = 2, we
see that the optimum in (2.12) (hence in (2.11)) is ε0 = 1

4 〈x1 − x2, y1 − y2〉 > 0.
The optimal weights can be chosen as ψi = 1

2 〈(x1 +x2), yi〉, i = 1, 2. In the one-
dimensional case, if n = 2, uniqueness of T holds iff x1 < x2 and y1 < y2. A
simple computation then yields

Tε(x) = y1 if
1

ε

(
x− x1 + x2

2

)
≤ y1,

Tε(x) = y2 if
1

ε

(
x− x1 + x2

2

)
≥ y2,

while

Tε(x) =
1

ε

(
x− x1 + x2

2

)
if y1 ≤

1

ε

(
x− x1 + x2

2

)
≤ y2.

We see that Tε is an extension of the map xi 7→ yi, i = 1, 2 if and only

if x2 − x1 ≥ −2εy1 and x2 − x1 ≥ 2εy2, which implies that ε ≤ x2−x1

y2−y1 or,

equivalently, 1
ε ≥

y2−y1
x2−x1

(note that y2−y1
x2−x1

is the minimal Lipschitz constant

of any Lipschitz extension of the map xi 7→ yi). For y1 = −1, y2 = 1, we

get ε0 = x2−x1

2 = y2−y1
x2−x1

and we see that the interpolating function Tε0 is the

Lipschitz extension of xi 7→ yi with minimal Lipschitz constant.

3. Application to empirical center-outward distribution functions

3.1. Continuous center-outward empirical distribution functions

In this section, we deal with the smooth extension of the empirical center-
outward distribution functions introduced in [5]. We briefly recall the setup.
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Factorizing the sample size into n = nRnS + n0 with nR, nS , n0 ∈ N such
that 0 ≤ n0 < min(nR, nS), assume that nR → ∞ and nS → ∞ as n → ∞.
Consider a regular nS-tuple of unit vectors (meaning that the sequence of uni-
form discrete measures on {u1, . . . , unS

} converges weakly as n → ∞ to the
uniform measure over the unit sphere in Rd). Finally, consider the grid of nRnS
points that can be obtained intersecting the rays starting at the origin with
directions in {u1, . . . , unS

} with the hyperspheres centered at the origin with
radii 1

nR+1 , . . . ,
nR

nR+1 plus n0 copies of the origin. Then, given a (random) sam-

ple Z
(n)
1 , . . . , Z

(n)
n , the empirical center-outward distribution function F

(n)
± is

defined as a cyclically monotone mapping from Z
(n)
1 , . . . , Z

(n)
n to the above con-

structed grid. If Z
(n)
1 , . . . , Z

(n)
n are i.i.d. realizations from P ∈ Pd (as in subsec-

tion 1.2, we write Pd for the family of probability measures with a nonvanishing
density over Rd), then with probability one this empirical center-outward distri-
bution function is uniquely defined. Now, using Theorem 2.2 (and subsequent

comments for the case n0 > 0), we can extend F
(n)
± to a Lipschitz continuous

gradient of convex function over Rd, which we denote by F̄
(n)
± .

Our main result in this section is an extension of the Glivenko-Cantelli re-
sult (1.4) to those empirical center-outward distribution functions F̄

(n)
± defined

over Rd. We recall from Subsection 1.2 that, for P ∈ Pd, F± denotes the center-
outward distribution function of P , that is, the unique continuous gradient of
a convex function pushing P forward to Ud, (the product measure of a uniform
distribution over the unit sphere Sd−1 and a uniform distribution over the unit
interval [0, 1]); it follows from [4] that F± is a homeomorphism from Rd\F−1± ({0})
to Sd\{0}, where F−1± ({0}) has Lebesgue measure zero.

Theorem 3.1. (Glivenko-Cantelli for center-outward distribution functions)
With the above notation,

sup
x∈Rd

‖F̄ (n)
± (x)− F±(x)‖ → 0

with probability one.

Proof. Denote by U
(n)
d the discrete probability measure that gives mass n0

n
to the origin and 1

n to the remaining points in the regular grid used for the

definition of F
(n)
± , and note that U

(n)
d converges weakly to Ud. Also write P (n) for

the empirical measure on Z
(n)
1 , . . . , Z

(n)
n . Over a probability one set Ω0, say, P (n)

converges weakly to P . In the remainder of this proof, we assume, without loss of

generality, that Ω0 is the whole space. We note that F̄
(n)
± = ∇ϕn, F± = ∇ϕ for

some ϕn, ϕ convex and continuously differentiable over Rd, and recall that by

construction ∇ϕn maps P (n) to U
(n)
d . Now, the convex potential ϕ is uniquely

defined up to an additive constant. By Theorem 2.8 in [1], there exist constants
an such that, if ϕ̃n = ϕn−an, then ϕ̃n(x)→ ϕ(x) for every x ∈ Rd (we note that,
while the statement of the cited result assumes convergence in transportation
cost metric rather than weak convergence, the proof depends only on the fact
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that, in that case, πn = (Id×∇ϕn)]P (n) converges weakly to π = (Id×∇ϕ)]P ,
which holds in the setup considered here, see, Lemma 8.5 in [5]). But then (see

Theorem 25.7 in [7]), F̄
(n)
± (x) = ∇ϕn(x) → ∇ϕ(x) = F±(x) (uniformly over

compact sets). It only remains to show that uniform convergence holds over Rd.
For this, it suffices to show that, for every w ∈ Rd,

sup
x∈Rd

∣∣〈(F̄ (n)
± (x)− F±(x)

)
, w〉
∣∣→ 0. (3.1)

Let us assume that, on the contrary, there exist ε > 0, w ∈ Rd\{0} and xn ∈ Rd
such that ∣∣〈(∇ϕn(xn)−∇ϕ(xn)

)
, w〉
∣∣ > ε (3.2)

for all n. The sequence xn must be unbounded (otherwise (3.2) cannot hold).
Hence, using compactness of the unit sphere and taking subsequences if neces-
sary, we can assume that xn = λnun with 0 < λn →∞, ‖un‖ = 1 and un → u for
some u with ‖u‖ = 1. Again by compactness, we can assume that ∇ϕ(xn)→ y
and ∇ϕn(xn) → z. By Lemma 3.2 below, we have that y = u. On the other
hand, by monotonicity, for every x ∈ Rd,

〈∇ϕn(xn)−∇ϕn(x), xn − x〉 ≥ 0.

Taking τ > 0 and x = τun we obtain that, if n is large enough (to en-
sure λn > τ), then

〈∇ϕn(xn)−∇ϕn(τun), un〉 ≥ 0.

We conclude that, for every τ > 0

〈z −∇ϕ(τu), u〉 ≥ 0.

Now, we can take τn →∞ with∇ϕ(τnu) converging to some limit. By Lemma 3.2,
the limit must be u and, from the last inequality, we see that 〈z − u, u〉 ≥ 0,
that is, 〈z, u〉 ≥ ‖u‖2 = 1. But this implies that z = u = y and contradicts (3.2),
which completes the proof. �

Lemma 3.2. Assume ϕ : Rd → R is a differentiable convex function such
that ∇ϕ is a homeomorphism from Rd to the open unit ball. If we take xn = λnun
with 0 < λn →∞, ‖un‖ = 1 and un → u, then, ∇ϕ(xn)→ u.

Proof. By monotonicity we have that

〈xn − x,∇ϕ(xn)−∇ϕ(x)〉 ≥ 0

for every x ∈ Rd or, equivalently,

〈xn − (∇ϕ)−1(w)),∇ϕ(xn)− w〉 ≥ 0

for every w with ‖w‖ < 1. But this means that

〈un − 1
λn

(∇ϕ)−1(w),∇ϕ(xn)− w〉 ≥ 0

and, taking limits, that 〈u, y − w〉 ≥ 0 for every w with ‖w‖ ≤ 1. From this we
conclude that 〈u, y〉 ≥ ‖u‖. But, since ‖y‖ ≤ 1, this only can happen if y = u. �
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3.2. A step-function version of center-outward empirical
distribution functions

Although a smooth monotone increasing interpolation of the n-tuple of points

(X
(n)
i , F (n)(X

(n)
i )) in general provides a better approximation, empirical dis-

tribution functions, in dimension d = 1, are traditionally defined as right-
continuous step functions—the exact opposite of smooth functions. Such step
function interpolation yields some interpretational advantages in terms of the
empirical measure of regions of the form (−∞, x], x ∈ R. Still for d = 1, an
outward-continuous center-outward counterpart can be defined in a very nat-
ural way, with an interpretation in terms of the empirical measure of central

regions of the form [x−, x+] where [x−, x
(n)
1/2) and (x

(n)
1/2, x

+] (x
(n)
1/2 an empirical

median) contain the same number of observations: see Figure 1 in [5].

With the same notation as in the previous section, let F̄
(n)
± be some smooth

interpolation of F
(n)
± . For any r ∈ [0, 1] and u on the unit sphere Sd−1, define

brucnR
:=
b(nR + 1)rc
nR + 1

u :

ru 7→ brucnR
maps a outward-open, inward-closed spherical annulus comprised

in between two hyperspheres of the grid onto its inner boundary sphere while
preserving directions. Then, a “multivariate step function” version of the em-

pirical center-outward distribution function F
(n)
± , continuous from outward, can

be defined as
F̄

(n)∗
± := bF̄ (n)

± cnR
. (3.3)

Instead of steps, those functions yield plateaux or hyperplateaux, the boundaries
(equivalently, the discontinuity points) of which are the continuous quantile con-

tours or hypersurfaces characterized by F̄
(n)
± . Those “quantile contours” present

an obvious statistical interest.
In contrast with the univariate case, this “step function version” (3.2) of the

empirical center-outward distribution function F
(n)
± , however, is not unique, and

depends on the smooth interpolation F̄
(n)
± adopted. However, all its versions

enjoy cyclical monotonicity and obviously satisfy the sup form of Glivenko-
Cantelli: with probability one,

sup
x∈Rd

‖F̄ (n)∗
± (x)− F±(x)‖ → 0.

4. Some numerical results

In this section, we provide some two-dimensional numerical illustrations of the
results we established in this paper. The codes we used were written in R, and
can handle sample sizes as high as n = 2000 (with nR = 50 and nS = 40) on a
computer with 16Gb RAM. The algorithm consists of three main steps:
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(step 1) Determine the optimal assignment between the sample points and
the regular grid. For this, we used the cubic implementation of the Hungar-
ian algorithm included in the ’clue’ R package (for a detailed account of the
Hungarian algorithm and the complexity of different implementations, see, e.g.,
Chapter 4 in Burkhard et al. (2009)). Faster algorithms are available, as for
instance, the ‘assignment’ function in the ‘adagio’ package, but they apply only
to integer-valued cost matrices.

(step 2) Compute the optimal value ε0 of the regularization parameter. This
is achieved by solving a linear program via the simplex method; it is the slowest
part of our algorithm, and, most likely, much computational time can be saved
here via sophisticated linear programming methods.

(step 3) Compute the Yosida regularization based on a projected gradient
descent method.

For higher sample sizes (n = 5000, for instance), our code is in trouble unless
larger memory space (at least 64 Gb RAM) is available. The problem originates
in step 2 from the fact that the simplex implementation that we use in R does
not allow to take advantage of the sparsity of the constraint matrix in the linear
program (2.11); that issue can be overcome by using a commercial solver like
xpress, which we did for the large sample cases (n = 5000) below.

The sections below investigate the convergence of our method (Section 4.1),
and its ability to recover the “shape” of a distribution (Sections 4.2 and 4.3).
For obvious graphical reasons, we only consider bivariate observations.

4.1. Convergence

In this section, we illustrate the convergence (as formulated by the Glivenko-
Cantelli result of Theorem 3.1), of empirical contours to their population coun-
terparts as the sample size increases. The problem is that analytical expres-
sions for the population contours are not easily derived, except for spherical
distributions. We therefore investigate the case of i.i.d. observations with bi-
variate N (0, Id) distributions, and increasing samples sizes n =100, 200, 500,
1000, 2000, 5000.

Inspection of Figure 1 clearly shows the expected consistency. The empirical
contours are nicely nested, as they are supposed to be. For sample sizes as
big as n = 500, and despite the fact that the underlying distribution is light-
tailed, the .90 empirical contour still exhibits significant “spikes” out and in
the theoretical circular contour; those spikes, however, rapidly and uniformly
disappear from n = 1000 on.

4.2. Gaussian mixtures

Gaussian mixtures generate a variety of alternative and possibly multimodal
and non-convex empirical dataclouds. In Figure 2, we simulated n = 2000 ob-
servations from a symmetric mixture of two spherical Gaussians. Figure 2 clearly
demonstrates the quantile contour nature of our interpolations, as opposed to
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n=100 n=200 n=500

n=1000 n=2000 n=5000

Fig 1. Smoothed empirical center-outward quantile contours (probability contents .50 (green),
.75 (red), .90 (black)) computed from n = 100, 200, 500, 1000, 2000, 5000 i.i.d. observations
from a bivariate N (0, Id) distribution, along with their (spherical) theoretical counterparts.
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level contours. Level contours in the right-hand panel clearly would produce
disconnected regions separating the two modes of the mixture. Here, the con-
tours remain nested—a fundamental monotonicity property of quantiles. The
low-probability region between the two component populations is characterized
by a “flat profile” of empirical quantile contours: the whole region in between
the two modes is “quite central”, and one can move, for instance, from one mode
to the other without crossing the .5 contour.

Figure 3 similarly considers a mixture of three Gaussian distributions, pro-
ducing, in the central and right panels, a distinctively nonconvex data cloud.
Picking that nonconvexity is typically difficult, and none of the traditional depth
contours (halfspace depth contours, for instance, are intrinsically convex) are
able to do it. Our interpolations do pick it, the inner contours much faster than
the outer ones, as n increases. The very idea of a smooth interpolation indeed
leads to bridging empty regions with nearly piecewise linear solutions. This is
particularly clear with the .90 contour in the right-hand panel: the banana shape
of the distribution is briefly sketched at the inception of the concave part, but
rapidly turns into an essentially linear interpolation in the “central part of the
banana”. That phenomenon, though, disappears as n tends to infinity and the
“empty” regions eventually fill in.

1
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Fig 2. Smoothed empirical center-outward quantile contours (probability contents .02 (yellow),
.20 (cyan), .25 (light blue) .50 (green), .75 (dark blue), .90 (red)) computed from n = 2000
i.i.d. observations from mixtures of two bivariate Gaussian distributions.

4.3. Bounded supports

Although the results have been derived in the general context of nonvanish-
ing densities, they also hold under absolutely continuous compactly supported

imsart-generic ver. 2014/10/16 file: CMInterpolation_June:2018.tex date: June 3, 2018



del Barrio, Cuesta Albertos, Hallin and Matrán/Cyclically Monotone Interpolation 18

3
8
N
((

0

0

)
,

(
5−4

−4 5

))
+ 3

8
N
((

0

0

)
,

(
5 4

4 5

))
3
8
N
((
−3

0

)
,

(
5−4

−4 5

))
+ 3

8
N
((

3

0

)
,

(
5 4

4 5

))
3
8
N
((
−8

0

)
,

(
5−4

−4 5

))
+ 3

8
N
((

8

0

)
,

(
5 4

4 5

))
+ 1

4
N

((
0

0

)
,
(
4 0

0 1

))
+ 1

4
N
((

0

− 5
2

)
,

(
4 0

0 1

))
+ 1

4
N

((
0

−5

)
,
(
4 0

0 1

))
Fig 3. Smoothed empirical center-outward quantile contours (probability contents .02 (yellow),
.20 (cyan), .25 (light blue) .50 (green), .75 (dark blue), .90 (red)) computed from n = 2000
i.i.d. observations from mixtures of three bivariate Gaussian distributions.

distributions—the assumption made in [3]. Figure 3 provides simulations for uni-
forms with triangular and squared supports (sample size n = 2000, with nR = 50,
nS = 40), and shows how the contours evolve from nested circles in the center
to nested triangles and squares in the vicinity of support boundaries.
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