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Abstract 

Approval voting allows voters to list any number of candidates. Their scores are obtained by 
summing the votes cast in their favor. Fractional voting instead follows the One-person-one-
vote principle by endowing voters with a single vote that they may freely distribute among 
candidates. In this paper, we show that to be fair, such a ranking requires a uniform 
distribution. It corresponds to Shapley ranking that was introduced to rank wines as the 
Shapley value of a cooperative game with transferable utility. We analyze the properties of 
these "ranking games" and provide an axiomatic foundation to Shapley ranking. We also 
analyze Shapley ranking as a social welfare function and compare it to approval ranking. 
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"Which candidate ought to be elected in a single-member constituency if all we take 

into account is the order in which each of the electors ranks the candidates? ... At 

the very outset of the argument we try to move from the is to the ought and to jump 

the unbridgeable chasm between the universe of science and that of morals."  

(Duncan Black, 1958, p. 55) 

 

Introduction 

Approval voting is a method that was first formally studied in the 1970's by Weber (1977) 

and Brams and Fishburn (1978).1 Given a set of candidates, voters have the possibility to list 

any number of candidates whom they consider as "good for the job." The method simply 

consists in assigning to each candidate a score equal to the number of voters who have listed 

him.2 The winners are those with the largest score. Beyond being a voting method, rational 

collective preferences are derived from approval voting, like in Borda count and other scoring 

methods.  

Approval voting has its supporters, starting with Brams and Fishburn, but also its 

opponents like Saari and van Newenhizen (1988).3 The fact is that approval voting has not been 

much implemented except in some large scientific societies such as the American Mathematical 

Society or the Institute of Electrical and Electronics Engineers. There are a few other exceptions 

such as the election of the UN Secretary General.4 Several experiments have been conducted, 

in particular by Baujard and Igersheim (2010) following the 2002 French presidential election. 

Approval voting in practice and in experiments, shows that the words used (approved vs 

disapproved, or simply yes or no) do matter.  

Although voters have preferences over candidates, what they actually reveal under 

approval voting is much simplified. Each voter orders the candidates from the most preferred 

to the least preferred and draws a line somewhere to partition the set of candidates into two 

sublists. We only know that the candidates above the line are strictly preferred to those below. 

Voting by approval inevitably introduces cardinal considerations into the analysis. Indeed, two 

voters with identical preferences may well draw the line at different places. Furthermore, the 

candidates listed by a voter are in some sense relatively "close" to each other and if a voter had 

incomplete preferences, the candidates that she cannot rank would just not be listed.5 Even if 

approval voting is compatible with incomplete preferences, we retain the assumption that 

                                                           
1 See also Brams and Fishburn (1983, 2005), Weber (1995), Brams (2008) and the Handbook of approval voting 

edited by Laslier and Remzi Sanver (2010).  
2 Convention: we use "she" for voters and "he" for candidates.  
3 See the ensuing discussion in the issue of Public Choice where their paper was published. See also Saari (2008) 

who turns out to be a strong advocate of the linear scoring method introduced by Borda (1781), known as Borda 

count.  
4 See Brams and Fishburn (2010).  
5 Alcantud and Laruelle (2014) study and characterize a voting rule that allows voters to divide candidates into 

three classes, approved, disapproved and indifferent, thereby allowing for incomplete preferences.  
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preferences are complete, leaving open the possibility of dichotomous preferences where voters 

are indifferent within and outside their approval sets.  

In what follows, we make a distinction between voting, ranking and ordering. Voting is 

the procedure that consists for voters to submit ballots. Ranking aggregates the voters' choices 

in order to associate a score to each candidate. Hence, ranking is cardinal and, in some context 

such as wine competitions, rankings matter. A ranking leads to an ordering and, in case of an 

election, the winners are the top candidates in the ordering. 

Under the extreme assumption of dichotomous preferences, approval voting induces a 

non-dictatorial social welfare function that satisfies the Pareto and Condorcet principles, as well 

as Monotonicity and Independence of irrelevant alternatives. It does not satisfy the axiom of 

Unrestricted domain, otherwise it would contradict Arrow's impossibility theorem.6 The 

assumption of dichotomous preferences is however far too strong. Assuming indifference is not 

plausible and this is even more the case when applied to the candidates that a voter does not 

list. In the present paper, we only assume that voters prefer the candidates they list to those they 

do not list, an assumption that is an integral part of the definition of a ballot. Notice that, under 

dichotomous preferences, approval voting is equivalent to the Borda method that gives 1 to a 

candidate that each voter has listed and 0 to the others. The absence of information on voters' 

preferences is a fundamental difficulty when voters are required to name candidates without 

ordering them. It is so for approval voting and for any method that limits the number of 

candidates a voter can list, including plurality voting.  

 In approval voting, there is no limit to the number of candidates a voter is allowed to list 

and there is no direct "cost" in listing additional candidates. Fractional voting, introduced by 

Nambiar (1989), follows the One-person-one-vote principle often use by those who advocate 

political equality by endowing each voter with a single unit vote that she can freely distribute 

among any number of candidates. For instance (1/5, 0, 2/5, 0, 1/10, 3/10) is an admissible ballot 

in the case of six candidates. Fractional voting differs from approval voting also because voters 

are allowed to rank candidates by attributing a score to each candidate. In this paper, we show 

that a fair ranking requires a uniform distribution. If a voter lists three candidates, each one gets 

1/3 instead of 1.  

 Under approval voting, the fact that a voter adds a candidate to her ballot has no impact 

on the scores of the other candidates and voters who list several candidates carry more power. 

This is no longer so under uniform fractional voting since their vote weights less if they list a 

larger number of candidates. They have an incentive to limit the size of their ballots because 

adding a candidate reduces the chance that those already present be elected. If the objective of 

                                                           
6 The reference is Arrow 1951's famous book. The 1963 edition reproduces the first edition and adds a chapter 

reviewing the developments in social choice theory since 1951.  
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a voter is to see elected one of the candidates that she places high in her preferences, she will 

tend to submit a limited list of candidates among which she is relatively indifferent.7  

Uniform fractional voting corresponds to the concept of Shapley ranking introduced by 

Ginsburgh and Zang (2012) in their paper on ranking wines. They show that it comes out as the 

Shapley value of a transferable utility game, called ranking game. Here, we extend their analysis 

by characterizing the set of ranking games. We then study the properties of Shapley ranking in 

two different ways. We first analyze the axioms that underlie the Shapley value and translate in 

terms of ballot profiles. This provides an axiomatic foundation to Shapley ranking where the 

axiom of Efficiency translates into the One-person-one-vote principle. We then move from 

ranking to ordering and look at the properties of Shapley ranking as a social welfare function 

that translate individual preferences into collective preferences.   

The paper is organized as follows. Approval and fractional ranking are introduced in 

Section 1 using the concept of ballot profile that specifies, for each subset of candidates, the 

number of voters who support it. Section 2 first covers transferable utility games, the Shapley 

value and its axiomatization. Ranking games are then defined and analyzed. In Section 3, we 

show that their Shapley value coincides with uniform fractional ranking. We then proceed with 

an axiomatization of Shapley ranking using axioms expressed in terms of ballot profiles. 

Section 4 looks at the properties of the ordering derived from Shapley ranking, from a social 

choice perspective. The last section is devoted to concluding remarks.  

1. Approval, fractional, plurality and majority voting  

Consider a set N of n candidates with 2.n  8 There can be any number of voters. Voters 

have preferences over candidates: hi j  reads "voter h prefers candidate i to candidate j" and 

hi j  reads "voter h is indifferent between candidates i and j." The weak preference relation 

h  represents the preferences of voter h. Preferences are assumed to be complete and rational: 

h  is a transitive and reflexive binary relation (a preorder) over N. A preference profile specifies 

a preference ordering for each voter.  

1.1 Approval voting 

Under approval voting, voters are asked to list the candidates they approve. We denote 

by hN N  the approval set or ballot of voter h, that is the set of candidates voter h lists. We 

assume that hN    and do not exclude .hN N  The choice of voter h can be identified to an 

n-tuple {0,1}n

hq   with 1ihq   if and only if .hi N  If M denotes the set of voters, a ballot 

profile can be arranged in a n m  matrix whose rows are attributed to candidates and columns 

                                                           
7 A variant of approval voting consists in limiting to the size of ballots. Actually, Condorcet (1788) proposed a 

form of approval voting, imposing a size to ballots, in which case, approval voting and uniform fractional voting 

coincide.   
8 Notation: Upper-case letters are used to denote finite sets and subsets, and the corresponding lower-case letters 

are used to denote the number of their elements.   
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to voters. A ballot profile is a mapping   that associates to each subset S N  of candidates, 

the number of voters whose approval set coincides with S:   

  ( ) .hS h M N S      (1) 

The set of all ballot profiles on the set N is given by 
2 1( )

n

N    and ( ) .
S N

S m


  

Example 1 Consider the voting situation with four candidates described by the following ballot 

profile: 9  

 

(1) (1,2) (2,3) (3,4) (2,3,4) 1,

(2) (3) (4) (1,3) (1,4) (2,4) 0,

(1,2,3) (1,2,4) (1,3,4) (1,2,3,4) 0.

    

     

   

    

     

   

 

There are five voters and their approval sets are 1 2 3 4{1}, {1,2}, {2,3}, {3,4}N N N N     

and 5 {2,3, 4}.N   The associated matrix Q is given by: 

 

1 1 0 0 0

0 1 1 0 1

0 0 1 1 1

0 0 0 1 1

Q    

The approval score of candidate i is the number of voters who have listed him:  

  
:

( , ) ( )i h

S i S

AR N h M i N S 


         (i = 1,..., n). (2) 

It is obtained by summing along each row of the representative matrix Q. In Example 1, the 

approval ranking is (2, 3, 3, 2). It leads to the following ordering 2 3 1 4.   

1.2  Fractional voting  

Fractional voting was introduced by Nambiar (1989). Each voter is endowed with one 

unit vote that she can freely distribute among candidates according to her preferences. This 

allows voters to grade candidates, a possibility we want to exclude. In what follows, we 

therefore restrict fractional voting to be uniform: The unit vote is uniformly distributed and 

each of the candidates listed by voter h receives a fraction 1/ .hn  This is actually the concept of 

Shapley ranking introduced by Ginsburgh and Zang (2012). The scores are obtained by 

summing the fractions allocated to each candidate:    

 
: :

1 1
( , ) ( )

h

i

S i S h i N h

SR N S
s n

 
 

       (i = 1,..., n). (3) 

                                                           
9 When there is no ambiguity, braces will be omitted.  
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Under fractional voting, candidates are strongly interdependent. The score of a candidate 

depends on the other candidates listed by voters. Table 1 shows the approval scores (AR) and 

Shapley scores (SR) obtained in Example 1.   

 

  

 

 

 

 

Table 1: Approval and Shapley scores of Example 1 

The resulting ordering 1 2 3 4  places candidate 1 on top and, not surprisingly, it differs 

from the ordering 2 3 1 4  that results from approval ranking. Approval and Shapley 

orderings obviously coincide in the case of two candidates. Example 1 shows that they may not 

coincide beyond two candidates. The following example illustrates a situation where the two 

orderings coincide.  

Example 2 Consider a voting situation involving three candidates and five voters whose 

approval sets are 1 2 3 4 5{1}, {1,2}, {2,3}, {1,3} and {1,2,3}.N N N N N      Approval and 

Shapley scores are given in Table 2. In both cases, candidate 1 comes first while the other two 

obtain the same score: 1 2 3.   

 

 

 

  

 

Table 2: Approval and Shapley scores of Example 2 

Notice that by normalizing Shapley scores, we obtain the probabilities that a particular 

candidate is elected if the random dictator procedure were adopted.10 Each of the m voters is 

asked to identify a subset of candidates, knowing that a voter will first be chosen at random and 

the winner will then be chosen at random in her approval set. The resulting probabilities are 

then proportional to the fractional scores: 

 
:

1 1 1
Prob[ is elected ] ( , ).

h

i

h i N h

i SV N
m n m




    

                                                           
10 This is the terminology used by Bogolmania et al. (2005).  

 1 2 3 4 5 AR SR 

1 1 1 0 0 0 2 1.50 

2 0 1 1 0 1 3 1.33 

3 0 0 1 1 1 3 1.33 

4 0 0 0 1 1 2 0.83 

 1 2 3 4 5 AR SR 

1 1 1 0 1 1 4 2.33 

2 0 1 1 0 1 3 1.33 

3 0 0 1 1 1 3 1.33 
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In Example 1 (see Table 1), the probabilities are given by (0.30, 0.27, 0.27, 0.17). In example 

3 (see Table 2), the probabilities are given by (0.47, 0.27, 0.27).   

1.3  Plurality and majority voting 

 A number of voting rules are special cases of approval (as well as fractional) voting in 

which each voter submits a single candidate i.e. 1hn   for all h. This is the case of plurality and 

majority voting. These methods are well defined only in the absence of indifference in 

individual preferences. Each voter has then a unique most preferred candidate and candidates 

are ordered according to their approval scores given by (2). In plurality voting, the winners are 

the candidates with the largest approval score. In majority voting, the winner is the candidate 

with an approval score exceeding half the number of voters. The latter is therefore not a decisive 

method. The following example shows that a candidate who appears first in a majority of voters' 

preferences may be defeated under approval voting and fractional voting. It illustrates how 

voting by approval reveals some information on voters' intensities of preferences.  

Example 3  Consider a voting situation with four candidates and five voters whose preferences 

are given by:  

 1 1 1 2 2 2 3 3 3 4 4 4 5 5 51 3 2 4,1 2 3 4,1 2 4 3,2 3 4 1and 2 4 1 3.   

The first candidate has a majority.11 Now assume that the voters submit the following ballots: 

1 {1,3},N  2 3 4{1,2}, {1,2,4}, {2,3}N N N    and 5 {2,4}.N   Table 3 shows the approval 

and Shapley scores. Candidate 2 gets the largest approval score as well as the largest Shapley 

score. 

 

 

 

 

 

 

Table 3: Approval and Shapley scores of Example 3 

When indifference between candidates is not ruled out, plurality and majority voting are 

not well defined because voters may have several most preferred candidates. If this is the case, 

voters have to make a selection. We could assume that the name a voter submits is drawn at 

random among her top candidates. Denoting by hN  the subset of most preferred candidates of 

voter h, each one is assigned a probability equal to 1/ hn  and the score of a candidate is given 

by the sum of the probabilities that his name is submitted. In this case, plurality voting and 

Shapley voting give rise to the same result.  

                                                           
11 He is therefore also the unique Condorcet winner (see Section 5).  

 1 2 3 4 5 AR SR 

1 1 1 1 0 0 3 1.33 

2 0 1 1 1 1 4 1.83 

3 1 0 0 1 0 2 1 

4 0 0 1 0 1 2 0.83 
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2. Ranking games and their Shapley value 

Before defining ranking games, we first recall the definition of a transferable utility game 

and various related concepts, including the Shapley value.  

2.1 Transferable utility games 

A cooperative game with side payments is defined by a finite set N of n players and a 

function v (called characteristic function) that associates a real number to each subset of 

players. ( )v S  is referred as the "worth" of coalition S. It could be a surplus or a cost that 

measures what a coalition can generate without the participation of the other players. ( )v N  

measures what the "grand coalition" can generate when all players best coordinate themselves.12 

By convention, ( ) 0.v    Because a characteristic function on N is defined by a list of 2n – 1 

real numbers, the set ( )G N  of all characteristic functions on N can be identified to 
2 1n 

 the 

real vector space of dimension 2n – 1. The dual of a characteristic function v is defined by  

 *( ) ( ) ( \ ),v S v N v N S    (4) 

i.e. *( )v S  is the contribution of coalition S to the grand coalition.13 Alternatively, it is what 

remains for coalition S once the complementary coalition has collected its worth. Given a subset 

,T N  the unanimity game ( , )TN u  is defined by:  

 
1 if ,

( )
0 otherwise.

T

T S
u S


 


  

The 2 1n   unanimity games form a basis of the vector space G(N). Given any characteristic 

function v on N, there exists a unique collection ( , )T T N T    of 2 1n   real numbers 

such that: 

 ( ) ( , ) ( ) ( , ).T T T

T N T S

v S N v u S N v 
 

     (5) 

The coefficients T  are known as the Harsanyi dividends (dividends for short).14 They are 

obtained from the following recursive formula deduced from (5), starting with 0 :   15  

 ( , ) ( ) ( , )T S

S T

N v v T N v     (6) 

As a consequence, there is a one-to-one relation between games and dividends.   

 For a given a game ( , ),N v  the marginal contribution of player i to a coalition S is defined 

by ( ) ( \ ).v S v S i  Players i and j are substitutable in a game ( , )N v  if their marginal 

                                                           
12 Games with transferable utility and the notion of characteristic function have been introduced by John von 

Neumann and Oskar Morgenstern in their 1944 book.  
13 It is easily verified that (v*)* = v.   
14 See Harsanyi (1959).  
15 Notation: The symbol  is used to denote a strict inclusion.  
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contributions to coalitions to which they both belong are identical. Equivalently, i and j are 

substitutable if:  

 ( \ ) ( \ )v S i v S j  for all such that , .S N i j S    

Obviously, players who are substitutable in a game are substitutable in the dual. Using (6), it is 

easily verified that players i and j are substitutable if \ \( , ) ( , )S i S jN v N v   for all S N  such 

that , .i j S  Player i is null in a game ( , )N v  if his marginal contributions are all equal to zero: 

( ) ( \ )v S v S i  for all .S N  Player i is dummy in a game ( , )N v  if he systematically 

contributes his worth: ( ) ( \ ) ( )v S v S i v i   for all such that .S N i S   A null (resp. dummy) 

player in a game is null (resp. dummy) in the dual. Player i is null if ( , ) 0T N v   for all .T i   

The sum of two games 1( , )N v  and 2( , )N v  on a common set of players is the game 

( , )N w  defined by 1 2( ) ( ) ( ).w S v S v S   The resulting dividends are equal to the sum of the 

dividends associated to the two games.  

2.2 The Shapley value 

The central question addressed by the theory of cooperative games is the allocation among 

players of the amount resulting from their cooperation. A solution of a game ( , )N v  specifies a 

payoff ix  for each player i and an allocation rule is a mapping : ( ) nG N   that associates 

solutions to games. The Shapley value is the rule that allocates uniformly the dividends of every 

coalition to its members:  

 
:

1
( , ) ( , )i T

T i T

SV N v N v
t




      (i = 1,..., n). (7) 

Shapley (1953) proves that there is a unique allocation rule : ( ) nG N   that satisfies the 

following four axioms.  

Efficiency: The worth of the grand coalition is exactly allocated, not more nor less.  

Anonymity: If players' names are permuted, the solution should be permuted accordingly. 

Null player: A zero amount is allocated to null players.  

Additivity: The value of a sum of games is the sum of the values.  

Anonymity is sometimes replaced by Symmetry, an axiom requiring that an identical amount 

should be allocated to players who are substitutable. The Null player axiom can be replaced by 

the Dummy player axiom that requires that dummy players get their stand alone worth. The 

Shapley value has many other properties. In particular, it is a self-dual concept. The value of a 

game coincides with the value of its dual: ( , *) ( , ).SV N v SV N v   
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2.3  Ranking games and their duals 

In a voting context, the candidates are the players although we don't view voting as games 

properly speaking. Given a ballot profile ( , )N   as defined in (1), we look for a definition of a 

characteristic function v that is an equivalent representation of that ballot profile and such that 

( )v N  equals the number of voters. To each subset S of candidates, we associate the number of 

voters whose approval set is included in S :  

  ( ) .hv S h M N S     (8) 

The function v  defines a cooperative game with side payments ( , )N v  such that ( )v N m  

and ( )v i  is the number of voters who have only listed candidate i: { }.hN i  It is the concept 

of ranking game introduced by Ginsburgh and Zang (2012). A solution of a ranking game 

provides a ranking of candidates by specifying for each of them a score equal to a fraction of 

the total number of voters. The characteristic function associated to Example 1 is given by: 

 

(1) 1, (2) 0, (3) 0, (4) 0,

(1,2) 2, (1,3) 1, (1,4) 1, (2,3) 1, (2,4) 0, (3,4) 1,

(1,2,3) 3, (1,2,4) 2, (1,3,4) 2, (2,3,4) 3,

(1,2,3,4) 5.

v v v v

v v v v v v

v v v v

v

   

     

   



 

We observe that a ranking game can be written as the sum of the unanimity games associated 

to voters:  

 ( ) ( )
hNh

v S u S  (9) 

where the game ( , )
hNN u  can be viewed as the ranking game associated to voter h. (8) can 

alternatively be written in terms of the ballot profile: 

 ( ) ( )
T S

v S T


  (10) 

Following (5) and (10), there is a one-to-one relationship between ballot profiles and ranking 

games.  

Proposition 1 The dividends of the ranking game ( , )N v  coincide with its underlying ballot 

profiles: ( , ) ( ) for all .T N v T T N    

 The subset ( ) ( )RG N G N  of all ranking games on a set N generated by the set of ballot 

profiles ( )N  forms a remarkable class of games. The characteristic functions defining ranking 

games are monotonic (increasing) and take values in .  They are sums of unanimity games 

and, because unanimity games are convex, they are convex. 16 Ranking games are positive in 

                                                           
16 Convex games have been introduced and studied by Shapley (1971). 
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the sense that their dividends are non-negative.17 Furthermore, the set ( )RG N  is closed under 

addition. Starting from any two voting situations ( , )N    and ( , )N    on a common set of 

candidates, and their associated ranking games ( , )N v  and ( , ),N v  the ranking game 

( , )N v v   is associated to the voting situation ( , ).N      

 Counting the number of voters whose approval set intersects S leads to another 

characteristic function:  

  ( ) .hv S h M N S     (11) 

It is such that ( )v N m  and ( )v i  equals the number of voters who have included candidate i 

in their approval set i.e. ( ) iv i AV  as defined by (2). The characteristic functions v  associated 

to Example 1 is given by:   

 

(1) 2, (2) 3, (3) 3, (4) 2,

(1,2) 4, (1,3) 5, (1,4) 4, (2,3) 4, (2,4) 4, (3,4) 3,

(1,2,3) 5, (1,2,4) 5, (1,3,4) 5, (2,3,4) 4,

(1,2,3,4) 5.

v v v v

v v v v v v

v v v v

v

   

     

   



 

The following proposition states that there is a one-to-one relationship between the games 

( , )N v  and ( , ).N v  Comparing the two games, we observe that ( ) ( )v S v S  for all .S N  

While ( )v S  is the number of voters who are exclusively supporting some candidates in S, ( )v S  

is the number of voters who are supporting some candidates in S and it can be seen as the 

approval score of coalition S. 

Proposition 2  The games ( , )N v  and ( , )N v  whose characteristic functions are defined by (8) 

and (11) are dual of each other: *v v  and *.v v   

Proof. To show that *,v v  consider some subset S. The two sets  hh M N S   and 

 hh M N S   form a partition of M where 

    ( \ ) .h hh M N S h M N N S        

Hence, we have    ( \ ) .h hh M N S m h M N N S        The proposition thne 

follows from the definition of dual games (4).    

As a consequence, a ballot profile ( , )N   can be described in two equivalent ways, by a ranking 

game ( , )N v  or by its dual ( , ).N v  The two characteristic functions coincide for n = 2. 

Considering the two extreme voting situations where voters list either a single candidate or all 

candidates, the ranking game and its dual coincide in the first situation while in the second 

situation, ( )v S m  for all ( ),S N S   and ( )v S  0 for all .S N  

                                                           
17 Positive games form a particular subclass of convex games on which the core coincides with the Harsanyi set, 

the set of all distributions of dividends and with the Shapley set, the set of all weighted Shapley values. See Dehez 

(2017) for details.  
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3. Shapley ranking  

 We first confirm that uniform fractional ranking associated to a ballot profile coincides 

with the Shapley value of the corresponding ranking game. We then proceed with an 

axiomatization expressed in terms of ballot profiles.  

3.1 The Shapley value of a ranking game 

Using the axioms that underlie the Shapley value and the additive decomposition of 

ranking games given by (9), Ginsburgh and Zang (2012) prove that the Shapley value of a 

ranking game is given by the uniform fractional ranking defined by (3).  

Proposition 3  The Shapley ranking associated to a ballot profile ( , )N   is the (common) 

Shapley value of the corresponding dual games ( , )N v  and ( , ) :N v  

 ( , ) ( , ) ( , )i i iSR N SV N v SV N v       (i = 1,...,n). (12) 

Proof.  The Shapley value is additive. Hence, using (9), the Shapley value of the game ( , )N v  

is the sum of the values of unanimity games ( , ).
hNN u  Candidates outside hN  receive zero by 

the Null player axiom and candidates inside hN  receive an equal amount by the axiom of 

Anonymity. Hence, by the axiom of Efficiency, we have:  

 

1
if

( , )

0 if
h

h

hi N

h

i N
nSV N u

i N




 
 

  

Adding these values results in (3) and (12) follows by self-duality.   

This is the original proof given by Ginsburgh and Zang (2012). It is confirmed by (7).  

3.2  Axiomatization of Shapley ranking 

A candidate is null if he is included in no ballot: ( ) 0S   for all coalition S of which he 

is a member. His approval score is then equal to zero. A candidate is dummy if he is null or, if 

some voters list him, they only list him: 1.h hi N n    Approval score and Shapley score 

then coincide for dummy candidates. The sum of two ranking games on a common set of 

candidates is the ranking game associated to the sum of the ballot profiles.  

Example 4  Consider the voting situation involving three candidates and five voters whose 

approval sets are 1 2 3 4 5{1}, {4}, {3,4}, {2,4} and {2,3}.N N N N N      Here, candidate 1 

is dummy while candidates 2 and 3 are substitutable. Indeed, we have:  

 (1,3) (1,4) 0, (2,3) (2,4) 1 and (1,2,3) (1,2,4) 0.             

The approval and Shapley scores are given in Table 4.  
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Table 4: Approval and Shapley scores associated to Example 4 

The original Shapley's uniqueness proof applies to the set ( )G N  of all games on N. Because 

ranking games are sums of unanimity games and the set of ranking games RG(N) is closed 

under addition, we can actually restrict the axioms to the set of ranking games and express them 

in terms of ballot profiles:   

One-person-one-vote The scores add-up to the number of voters.  

Neutrality  If candidates' names are permuted, scores are permuted accordingly. 

Null candidate  Candidates appearing in no ballot get a zero score.    

Additivity  Given two ballot profiles ' and ", the scores associated to ' + " are equal to 

the sum of the scores associated to ' and ". 

These four axioms are natural requirements and characterize Shapley ranking.  

Proposition 4 Shapley ranking (3) is the unique ranking rule : ( ) nN    that satisfies  

One-person-one-vote, Neutrality, Null candidate and Additivity.  

Proof   Shapley ranking obviously satisfies the four axioms. Now, consider a ranking rule  

satisfying all four axioms. Any ballot profile  on N can be decomposed as a sum of elementary 

ballot profiles T  where  

 
( ) ( ) if

0 if

T S T S T

S T

  

 
  

By the Null candidate axiom, we have: 

  ( , ) 0 for all .TN i T      

and by the Neutrality axiom, we have: 

 
( )

( , ) for all .T

T
N i T

t


     

We then recover Shapley ranking using Additivity.    

 1 2 3 4 5 AR SR 

1 1 0 0 0 0 1 1 

2 0 0 0 1 1 2 1 

3 0 0 1 0 1 2 1 

4 0 1 1 1 0 3 2 
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4. From ranking to ordering 

Approval and Shapley orderings are derived from approval and Shapley rankings and 

they generally differ, as in Example 1. They coincide in the two extreme voting situations where 

either 1hn   for all h or hn n  for all h. In the first situation, analogous to plurality voting,  the 

game ( , )N v  is additive and i iAR SR  for all i. In the second situation, iAR m  and 

/iSR m n  for all i where m is the number of voters.  

Referring to the underlying individual preferences, approval and Shapley orderings are 

two social welfare functions that assign collective preferences to individual preferences. What 

are their properties and how do they compare to each other? Not surprisingly, we will see that 

little can be said outside the particular case of dichotomous preferences.  

4.1  Individual preferences 

Concerning individual preferences, several assumptions are however possible:  

A1 andh hi N j N     implies   hi j   

A2 , hi j N    implies   hi j  

A3 , \ hi j N N    implies   hi j  

A1 is part of the definition of approval voting. The other two assumptions are less natural and 

far too restrictive, especially A3. The three assumptions together characterize dichotomous 

preferences. Voters are then indifferent between candidates within their approval sets as well 

as outside.18  

4.2  From individual to collective preferences 

The validity of four axioms will be considered, Pareto, Independence of irrelevant 

alternatives, Condorcet and Monotonicity on the basis of the approval sets 1( ,..., )mN N  

submitted by voters.  

The Pareto principle requires that unanimity should be reflected in collective preferences. 

It requires that if a candidate i is preferred to candidate j by all voters, then i must be collectively 

preferred to j. If preferences are dichotomous, candidate i is preferred to candidate j by all voters 

if and only if andh hi N j N  for all .h M  Clearly, approval and Shapley ranking both 

satisfy the Pareto principle under dichotomous preferences. Assuming only A1 requires a 

modified version of the Pareto principle that allows for a situation where i and j both end up on 

top of the collective preferences.  

Pareto principle  If candidate i is preferred to candidate j by all voters, j cannot be collectively 

preferred to i.  

                                                           
18 See Maniquet and Mongin (2015) for a complete analysis of approval voting under dichotomous preferences.  
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Proposition 5  Under A1, approval and Shapley orderings satisfy the modified Pareto principle.  

Proof  Consider two candidates i and j such that hi j  for all .h M  For each voter h, there 

are three cases that define a partition of the set of voters:  

(a) 1and ,h hi N j N h M      

(b) 2, ,hi j N h M    

(c) 1 2, \ ( )hi j N h M M M     

The difference in approval scores is then equal to 1 0.m   Indeed, nothing excludes a situation 

where M1 is empty. The difference in Shapley scores is non-negative as well. Indeed, referring 

to the representative matrix Q that describes voter's ballots, we have:  

 
1

hi
i j

h M h

q
SR SR

b

     

where 0 for allh hl

l N

b q h M


    by assumption.    

Arrow (1951) introduced the axiom of independence of irrelevant alternatives (IIA for 

short), a property that appears to be a natural requirement although it is generally not satisfied 

in the absence of restrictions on individual preferences. Consider two preference profiles with 

a common set of candidates and a common set of voters, and two candidates i and j.  

IIA If voters have the same preferences regarding i and j in both profiles, the collective 

preferences regarding i and j derived from the two profiles must be identical.  

Arrow's impossibility theorem states that, without restrictions on preferences (axiom of 

Unrestricted domain), dictatorship is the only social welfare function that satisfies the Pareto 

principle and IIA. If preferences are dichotomous, it is easy to show that approval voting 

satisfies IIA.19 Consider two ballot profiles 1( ,..., )mN N   and 1( ,..., ),mN N   and the associated 

representative matrices Q' and Q". If voters have the same preferences regarding i and j, the 

rows i and j of the matrices Q' and Q" are identical and therefore i iAR AR    and .j jAR AR    

This does not contradict Arrow's theorem simply because preferences are assumed to be 

dichotomous: Unrestricted domain is not satisfied. Shapley ranking instead does not satisfy 

IIA, whether preferences are dichotomous or not, because of the strong interdependence that 

characterizes it, as the following example confirms.  

Example 5 Consider two ballot profiles on a set of three candidates and five voters, represented 

by the matrices Q' and Q".  Assume that there are five voters who have the same preferences 

regarding candidates 1 and 2.  

                                                           
19 This is acknowledged by Brams and Fishburn (2007, p.137).  
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1 1 1 0 0

0 0 1 1 1

1 1 1 0 0

Q   

1 1 1 0 0

0 0 1 1 1

0 0 1 1 1

Q   

In Q', candidate 2 has a higher Shapley score than candidate 1. The order is reversed in Q". 

The Condorcet principle is a property that is often considered to be desirable. A candidate 

is a Condorcet winner if he never loses in pairwise contests. There may be no Condorcet winner 

and, if such a candidate exists, one could argue that he should be elected.    

Condorcet principle  Condorcet winners, if any, should be on top of the collective preferences.  

In general, no aggregation method satisfies this principle. Of course, if individual preferences 

were known (like in Borda count), one could first check whether there is a Condorcet winner 

and elect him if he exists. If preferences are assumed to be dichotomous, there may be several 

winners and the result of a pairwise contest between two candidates depends on their approval 

scores. A candidate is then a Condorcet winner if he has the highest approval score.20 Shapley 

ranking instead does not satisfy the Condorcet principle, as shown in Example 1 where 

candidates 2 and 3 are Condorcet winners but none of them is elected under Shapley ranking. 

Remember that in case of duels, the two rankings coincide.  

What happens to collective preferences when the preferences of a single voter change? 

This is the object of the Monotonicity axiom.  

Monotonicity  Consider a preference profile such that candidate i is collectively preferred 

to j. If a voter who prefers j to i changes his mind in favor of candidate i, candidate i must 

remain collectively preferred to candidate j.   

Proposition 6 Under assumption A1 both approval ordering and Shapley ordering satisfy 

Monotonicity.  

Proof.  Assume that i j  while kj i  for some .k M  There are three possible cases:  

(a) and ,k kj N i N    

(b) , ,ki j N   

(c) , .ki j N  

Assume that voter k changes his mind and now prefer i to j. We denote by kN   his modified 

approval set. In case (a), we have three possible cases:  

(a1) \ ,k kN N j    

(a2) ,k kN N i    

(a3) ( ) \ .k kN N i j    

                                                           
20 This is Theorem 3.1 in Brams and Fishburn (2007).  
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In case (b), there are two possible cases: 

(b1) \ ,k kN N j   

(b2) .k kN N   

In case (c), there are also two possible cases: 

(c1) ,k kN N i    

(c2) .k kN N   

Consider first approval voting. Initially, we have ARi > ARj. In cases (b2) and (c2), ARi and ARj 

remain unchanged. In cases (a1) and (b1), ARi is unaffected while ARj decreases by 1. In cases 

(a2) and (c1), ARj is unaffected while ARi increases by 1. In case (a3), ARi increases by 1 and 

ARj decreases by 1. Hence, .i jAR AR   Consider now Shapley ranking. Initially, we have 

SRi > SRj.  In cases (b2) and (c2), SRi and SRj remain unchanged. In cases (a1), SRi is unaffected 

while SRj decreases by 1/ .kn  In case (a2), SRj decreases by 1/ (1 )k kn n  while SRi increases 

by 1/ (1 ).kn  In case (b1), SRj decreases by 1/ kn  while SRi increases by 1/ ( 1).k kn n   In case 

(c1), SRj is unaffected while SRi increases by 1/ (1 ).kn  In case (a3), SRi increases by 1/ kn  and 

SRj decreases by 1/ .kn  Hence, .i jSR SR    

5. Concluding remarks  

Approval ranking has its advantages and drawbacks like any other preference aggregation 

methods, although most of its advantages cannot be formalized. The same applies to Shapley 

ranking. In particular both methods fail to satisfy the Independence of irrelevant alternatives 

and the Condorcet principle. However, we have shown that Shapley ranking comes naturally 

out of approval voting as the Shapley value of a transferable utility game that is an equivalent 

representation of voters' ballots: Uniform vote splitting is the correct aggregation method under 

the One-person-one-vote principle. Our analysis extends to the case where a maximum size is 

imposed to ballot sizes. In the case where a ballot size is imposed, approval and Shapley ranking 

coincide.  

Under Shapley voting, voters know that they have a single vote to distribute among 

candidates. As a consequence, they will tend to limit the number of candidates they submit, 

maybe only one, and if a voter retains several candidates, it is likely that they will be "close" to 

each other. Assumption A2 then becomes more plausible.  
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