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J̄ Current density [A/m2]

k, j, n Indexes for the discretization along x̂, ŷ, ẑ

K1, K2, K3 Splay, twist and bend elastic constants [N]

λ Wavelength [m]

l Thickness of the sample [m]

leff Confinement length due to the planar waveguide in the case of 1D soliton [m]

M̄ Magnetization [A/m]

M , N Number of points for the discretization along x̂ and ŷ
¯̄N Matrix describing the noise orthogonal to the propagation of the soliton

n̂ Liquid crystal director (unitary vector)

N Population density of an energy level [1/m3]

N Soliton order

n Refractive index

n0 Linear refractive index

n2 Nonlinear (Kerr) coefficient [cm2/W]

n‖,n⊥ Refractive indices parallel and orthogonal to the director, respectively

P̄ Polarization density [C/m3]

p,p0 Pitch and natural pitch of chiral nematic LC [m]

P0 Peak power of a beam [W]

q Wave vector [m-1]

S̄ Poynting vector [W/m2]

S Singlet state in an energy diagram of a molecule

σ Cross section relative to a radiative transition [cm2]

T Triplet state in an energy diagram of a molecule

τ Delay between the pump and the probe pulses [s]

T Transmission
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Tc Clearing temperature [K or °C]

Tm Melting temperature [K or °C]

x̂′, ŷ′, ẑ′ Nematicon frame of reference (unitary vectors)

x̂, ŷ, ẑ Laboratory frame of reference (unitary vectors)

x̂d, ŷd, ẑd Director frame of reference (unitary vectors), n̂0 ‖ ẑd

ξ Coherence length in nematic LC [m]

ω0 Angular frequency of the carrier of the optical electric field [Hz]

w0 Beam radius at 1/e2 of the intensity profile [m]

Symbols

ā Vector

â Unitary vector

F [a] Fourier transform of function a

∇ · ā Divergence operator on vector ā

∇× ā Curl operator on vector ā

∇a Gradient operator on a

∇2ā Laplacian operator on vector ā

4a Difference or anisotropy of a

Acronyms

ASE Amplified spontaneous emission

CLC Cholesteric or chiral nematic liquid crystal

CR Contrast ratio

GSB Ground state photo-bleaching

HA Helix axis

LC Liquid crystal

NA Numerical aperture

NLSE Nonlinear Schrödinger equation

OA Optic axis

PIA Photo-induced absorption

PL Photoluminescence

SE Stimulated emission

SHG Second harmonic generation

SLM Spatial light modulator
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TPP 2-photon photo-polymerization

ULH Uniform lying helix

USH Uniform standing helix

WLC White light continuum generation

wt% Concentration (percentage) in weight



Summary

In this work, we study the nonlinear propagation of light in liquid crystals (LCs) and the optical gain provided
by LCs when they are polymer- or dye-doped.

We will focus on nematic LCs, which are characterized by a mean orientation (also called director) of the
elongated molecules and by a subsequent birefringence. After a general introduction on LCs, we focus on the
nonlinear propagation of light in nematic LCs, and in particular the soliton-like propagation (nematicon). Indeed,
if the light injected in the cell is intense enough, it can create a waveguide that counteracts the diffraction of the
light. The light then propagates with an almost constant (or periodic) transverse profile.

Our contribution to the subject starts with the numerical modeling of the thermal noise that characterizes the
nematic LCs and the study of spatial instabilities of the soliton propagation caused by that noise. In Ch.3 we show
that, by explicitly implementing the spatial correlation of the director in the LC thermal noise, it is possible to
reproduce some of the features that characterize the LC response, such as the speckle generation or the fluctuating
trajectory of the spatial optical soliton in LCs. Indeed, when the nematicon diameter is of the same order of
magnitude as or smaller than the refractive index perturbations caused by the thermal noise, the nematicon
starts to fluctuate in space. These fluctuations are not present when the noise is not correlated, indicating that
the long-range interactions in LCs are crucial to explain the fluctuations. The model also allows us to introduce
the propagation losses experienced by the nematicon without the use of an ad-hoc term. The simulations are
in agreement with the experimental results. This method could also help the modeling of complex nonlinear
phenomena in LCs that rely on noise, such as modulation instabilities or filamentation.

Then, the optical gain is included in the LCs by dissolving photoluminescent polymers or dyes in it. In par-
ticular, we show that a particular polymer, the polyfuorene, when dissolved in nematic LCs, creates an intricate
supramolecular pattern composed by homogeneous LC-rich regions surrounded by polymer-rich boundaries.
The study of these structures through an ultra-fast spectroscopic technique (the pump-probe technique) and
confocal microscopy reveals that the boundaries are composed by ordered and isolated chains of polymers.
This particular morphology allows the observation of the optical gain from an oxidized unit of the polymeric
chain (keto defects). This signal is usually covered by the absorption caused by the chain aggregation in solid
state samples, while in LCs it is clearly visible. The optical gain from the keto defects appears also to be polarized
orthogonal to the LC director, which is also the orientation of most of the boundaries. When a dye, one of the
pyrromethenes, is dissolved in the LCs, the sample appears to be homogeneous. The optical gain from the dye is
polarized along the LC director and it shows an important spectral blue-shift (10 nm) passing from a polarization
parallel to orthogonal to the LC director. The amplified spontaneous emission (ASE) shows the same shift when
changing the direction of the sample excitation.

When the ASE and the nematicon are generated in the same sample, it is possible to study the interaction
between the two. In particular, the waveguide induced by the soliton can be used to guide another signal at
another wavelength. We show that the nematicon can collect the ASE generated in the same device and guide
it to the same fiber used to inject the nematicon in the LC cell. The extraction of the ASE from the device
increases almost one order of magnitude when the soliton is present. However, due to the nematicon spatial
fluctuations in LCs, an optimal nematicon power has to be found. Indeed, by increasing the soliton power, the
light guiding is improved since the refractive index contrast of the nematicon-induced waveguide is increased.
However, very high soliton powers have to be avoided, since the power-dependent soliton fluctuations prevent
an optimal collection of the light. The nematicon is also found to increase the spectral purity and the polarization
degree of the guided signal.

Another LC system is studied, the chiral nematic LCs. In this system, the molecules are disposed following
an helicoidal distribution. Due to their optical anisotropy and the periodic distribution, the system presents
an optical band-gap. If the LC is also dye-doped, the combination of optical band-gap and gain generates laser
emission. We are interested in a fast (sub-ms) reorientation of the helix, with the aim of studying the effect of this
reorientation on the laser emission. The first step is the alignment of the LC helix (without the dye) with its axis
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parallel to the glass plates that constitute the cell, which is difficult to obtain with a high optical quality. For this
reason, an innovative method is developed to align LCs through directional solvent evaporation. The solvent-
induced method allows us to obtain particularly homogeneous textures, with a contrast ratio between the bright
and the dark states that is a factor of 4 greater than that obtained with traditional methods. The LC samples
based on solvent-induced alignment are then stabilized via two-photon photo-polymerization. This technique
allows us to polymerize small regions of the device while the rest of the sample can be washed out in a solvent
bath. When an achiral material is used to refill the device, it assumes a chiral alignment in the polymerized
regions and an achiral nematic distribution in the rest. The first characterization of the laser emission is then
presented in the last Chapter, with the aim of achieving sub-ms electrical tuning in future works.

In this work a wide range of aspects have been investigated, leading to the realization of novel techniques for
the fabrication of liquid crystal devices, the demonstration of novel phenomena for light amplification in liquid
crystals and the experimental verification of new numerical modeling tools for light propagation in liquid crystals.
The three key aspects of the work are nonlinear propagation, optical amplification and electrical response of
different LC-based mixtures. Although the first few chapters deal with some of the aspects separately, in the last
chapter these aspects are combined, revealing interesting new phenomena and pointing out a number of new
aspects that could be part of future work. The results in this work have potential applications in fast tunable
lasers, optical communication systems and lab-on-chip components.



Résumé

Dans ce travail, nous étudions la propagation nonlinéaire de la lumière dans les cristaux liquides (CLs) et le gain
optique produit dans les CLs lorsque ceux-ci sont dopés par des polymères ou des colorants.

Notre travail se focalisera sur les CLs nématiques qui sont caractérisés par une orientation moyenne (appelée
directeur) des molécules allongées et par la biréfringence qui en découle. Après une introduction génŕale sur
les CLs, nous nous concentrerons sur la propagation nonlinéaire de la lumière dans les CLs nématiques et, en
particulier, sur la propagation de type soliton (nématicon). En effet, lorsque la lumière injectée dans la cellule est
suffisamment intense, elle peut créer un guide d’onde qui contrebalance la diffraction de la lumière. La lumière
se propage alors avec un profil transverse presque constant (ou périodique).

Notre contribution sur le sujet commence par une modélisation numérique du bruit thermique qui caractérise
les cristaux liquides nématiques et l’étude des instabilités spatiales de la propagation de type soliton causées par
ce bruit. Dans le Ch. 3 nous montrons que l’implémentation explicite de la corrélation spatiale du directeur
dans le bruit thermique des cristaux liquides permet de reproduire certaines des caractéristiques propres à la
réponse des CLs telles que la génération de speckle ou la trajectoire fluctuante du soliton spatial optique dans
les cristaux liquides. En effet, quand le diamètre du nématicon est du même ordre de grandeur ou plus petit
que les pérturbations de l’indice de réfraction causées par le bruit thermique, le nématicon commence à osciller
dans l’espace. Ces fluctuations ne sont pas présentes dans le cas d’un bruit non corrélé, ce qui indique que les
corrélations sur longue distance dans les CLs sont cruciales pour expliquer ce phénomène. Le modèle permet
aussi de reproduire les pertes de propagation subies par le nématicon sans l’introduction d’un terme ad hoc
de perted phénoménologiques. Les simulations sont en accord avec les résultats expérimentaux. Ce modèle
pourrait aussi aider à la modélisation de phénomènes nonlineaires complexes dans les CLs qui impliquent du
bruit, comme l’instabilité de modulation et la filamentation.

Ensuite, le gain optique est inclus dans les CLs en y dissolvant des polymères photoluminescent ou des
colorants. En particulier, nous montrons qu’un polymère particulier est dissous dans les cristaux liquides né-
matiques, le polyfluorène, il crée des structures supramoléculaires intriquées, composée de régions homogènes
riches en CL entourées de bords riches en polymère. L’étude des ces structures à l’aide d’une technique de
spectroscopie ultra-rapide (la technique pompe-sonde) et de la microscopie confocale révèle que les bords sont
composés par des chaînes de polymères ordonnées et isolées. Cette morphologie particulière permet l’observation
du gain optique venant d’une unité oxydée de la chaîne polymérique (défaut cétone ou fluorénone). Ce signal est
habituellement couvert par l’absorption causée par l’aggrégation des chaînes de polymère dans les échantillons à
l’état solide alors que dans les CLs, il est clairement visible. Le gain optique venant du défaut cétone est polarisé
orthogonalement au directeur du CL, qui correspond aussi à l’orientation de la majorité des bords. Quand un
colorant, un des pyromethenes, est dissous dans les CLs, l’échantillon apparaît comme étant homogène. Le
gain optique provenant du colorant est polarisé le long du directeur du cristal liquide et il montre un décalage
vers le bleue important (10 nm) passant d’une polarisation parallèle à une polarisation orthogonale au director
des cristaux liquides. L’émission spontanée amplifée (Amplified Spontaneous Emission - ASE) montre le même
décalage vers le bleue quand la direction de l’excitation de l’échantillon est changée.

Quand l’ASE et le nematicon sont générées dans le même échantillon, il est possible d’étudier l’interaction
entre ces deux phénomènes. En particulier, le guide d’onde induit par le soliton peut être utilisé pour guider
un autre signal à une autre longueur d’onde. Nous montrons que le nematicon peut collecter cette ASE générée
dans la cellule à CL et la guider dans la fibre utilisée pour y injecter le nématicon. L’extraction de l’ASE du
dispositif augmente quasiment d’un ordre de grandeur lorsque le soliton est présent. Cependant, à cause des
fluctuations spatiales du nématicon dans les CLs, une puissance optimale du nématicon doit être trouvée. En
effet, en augmentant la puissance du soliton, le guidage de la lumière est amélioré car le contraste d’indice de
réfraction du guide d’onde induit par le nématicon est augmenté. Cependant, des puissances trop importantes
de solitons sont à éviter vu que les fluctuations du soliton dépendant de la puissance empêchent une collecte
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optimale de la lumière. Le nématicon permet aussi d’augmenter la pureté spectrale et le dégré de polarisation
du signal guidé.

Un autre système à CLs est étudié dans ce travail: les CLs nématiques chiraux. Dans ce système, les molécules
sont disposées selon une distribution hélicoïdale. Du fait de leur anisotropie optique et de leur distribution
périodique, le système présente une bande intérdite optique. Si les cristaux liquides sont également dopés par
colorants, la combinaison de la bande intérdite optique avec le gain génère de l’émission laser. Nous nous sommes
intéressés à une réorientation rapide (sub-ms) de l’hélice dans le but d’étudier l’effet de cette réorientation sur
l’émission laser. La première étape est l’alignement des CLs en hélice (sans le colorant) avec un axe parallèle
à la plaque de verre qui constitue la cellule, ce qui est difficile à obtenir avec une bonne qualité optique. Pour
cette raison, une méthode innovante a été développée pour aligner les cristaux liquides grâce à l’évaporation
directionnelle du solvant. Cette méthode d’alignement induite par le solvant permet d’obtenir des textures
particulièrement homogènes avec un rapport de contraste entre les états brillant et noir quatre fois meilleur que
ce qui peut être obtenu par les méthodes traditionnelles. Les échantillons de cristaux liquides alignés par cette
méthode sont alors stabilisés par la photo-polymérisation à deux photons. Cette technique permet de polymériser
de petites régions, alors que le reste de l’échantillon peut être vidé dans un bain de solvant. Quand un matériau
achiral est utilisé pour remplir le dispositif, il adopte un alignement chiral dans les régions polymérisées et
achiral ailleurs. La première caractérisation de l’émission laser est ensuite présentée dans le dernier chapitre de
ce travail, dans l’optique d’arriver dans des travaux futurs à un dispositif accordable en champ électrique et avec
une réponse sub-ms.

Dans ce travail différents aspects ont été analysés, ce qui a conduit à la réalisation de nouvelles tech-
niques pour la fabrication des dispositifs à cristaux liquides, la démonstration des nouveaux phénomǹes pour
l’amplification de lumière dans les cristaux liquides et la vérification expérimentale des nouveaux outils pour
la propagation de la lumière dans les cristaux liquides. Les trois aspects clés de ce travail sont la propagation
nonlinéaire, l’amplification optique et la réponse électrique pour différents mélanges de CLs. Même si les pre-
miers chapitres traitent certains de ces aspects séparément, dans le dernier chapitre ces aspects sont réunis, en
révélant des nouveaux phénomènes et en mettant en avant nombreux nouveaux point qui pourraient être part de
travaux futurs. Les résultats de ce travail peuvent avoir des applications potentielles pour des lasers rapidement
accordables, des systèmes de communication optique et des composantes lab-on-chip.



Samenvatting

In dit werk wordt de niet-lineaire voortbeweging van licht in vloeibare kristallen (Liquid Crystals, LCs) en de
optische versterking door het LC-materiaal bestudeerd in het geval van polymeer- of kleurstof-gedoteerde LCs.

We richten ons vooral op nematische LCs die gekarakteriseerd worden door een gemiddelde oriëntatie van de
langwerpige moleculen (ook director genoemd) en als gevolg daarvan door een dubbelbreking. Na een algemene
inleiding over LCs kijken we naar de niet-lineaire voortbeweging van licht in nematische LCs en in het bijzonder
de soliton-achtige voortbeweging. Deze soliton-achtige voortbeweging wordt ook nematicon genoemd. Immers,
als de lichtbundel die geïnjecteerd wordt in de component intens genoeg is, dan wordt een golfgeleider gevormd
die de diffractie van het licht tegengaat. Het licht beweegt zich dan voort met een vrijwel constant (of periodiek)
transversaal profiel.

Onze bijdrage aan het onderwerp start met de numerieke modellering van de ruis die karakteristiek is voor
nematische LCs en de studie van de ruimtelijke instabiliteiten van de solitonvoortbeweging die veroorzaakt
wordt door deze ruis. In Hoofdstuk 3 tonen we aan dat het mogelijk is om enkele karakteristieke fenomenen van
de voortbeweging van licht in LCs numeriek te reproduceren, zoals de vorming van speckle of het fluctuerende
traject van ruimtelijke optische solitonen in LCs. Hiervoor is het nodig om de ruimtelijke correlatie van de director
van de thermische ruis in LCs expliciet numeriek te implementeren. Als de diameter van het nematicon van
dezelfde grootteorde is of kleiner dan de perturbaties van de brekingsindex, veroorzaakt door de thermische ruis,
dan start het nematicon ruimtelijk te fluctueren. Deze fluctuaties zijn er niet wanneer de ruis niet gecorreleerd is,
wat aantoont dat interacties in het vloeibaar kristal op lange afstand cruciaal zijn om de fluctuaties te begrijpen.
Dit model laat daarnaast ook toe om de voortbewegingsverliezen die het nematicon ondervindt te reproduceren
zonder een ad-hoc term in te voeren. De simulatieresultaten zijn namelijk in goede overeenstemming met de
experimentele resultaten. Deze methode kan ook helpen bij het modeleren van complexe niet-lineaire fenomenen
in vloeibare kristallen die gebaseerd zijn op ruis, zoals modulatie-instabiliteit of filamentatie.

Vervolgens wordt optische versterking in LCs bestudeerd door fotoluminescente polymeren of kleurstoffen in
het LC te mengen. In het bijzonder bekijken we een bepaald polymeer, polyfluoreen, dat intrinsieke supramolec-
ulaire patronen vormt wanneer het opgelost wordt in nematisch LC. Deze patronen worden gevormd door ho-
mogene regio’s rijk aan vloeibaar kristal, omgeven door polymeer-rijke grenzen. De studie van deze structuren
via ultra-snelle spectroscopische technieken (de pomp-probe techniek) en confocale microscopie toont aan dat
de grenzen bestaan uit geordende en geïsoleerde ketens van polymeer. Deze bijzondere morfologie leidt tot
de observatie van optische versterking van geoxideerde eenheden van de polymeerketen (keto defecten). Dit
signaal is normaal gezien niet zichtbaar wegens de absorptie die veroorzaakt wordt door de aggregatie van de
polymeerketens, terwijl in LCs dit duidelijk kan geobserveerd worden. De optische versterking van de keto
defecten blijken gepolariseerd loodrecht op de vloeibaarkristaldirector, min of meer gelijk aan de oriëntatie van
de grenzen. Als een kleurstof (bvb. van de klasse van de pyrromethenen) wordt opgelost in het LC, dan blijkt
de structuur homogeen te zijn. De optische versterking vanwege de kleurstof is gepolariseerd langs de LC di-
rector en vertoont een verschuiving naar het blauw (van ongeveer 10 nm) wanneer de polarisatie verandert van
parallel naar loodrecht op de LC director. De versterkte spontane emissie (amplified spontaneous emission of
ASE) vertoont dezelfde verschuiving wanneer de richting van de excitatie verandert.

Wanneer de ASE en het nematicon worden gegenereerd in hetzelfde sample is het mogelijk om de interactie
tussen de twee te bestuderen. In het bijzonder kan de golfgeleider die gegenereerd wordt door het soliton
worden gebruikt om een ander signaal te geleiden bij een andere golflengte. We tonen aan dat het nematicon
de gegenereerde ASE kan verzamelen en leiden naar een optische vezel die tegelijkertijd wordt gebruikt om het
nematicon te injecteren in de cel. De extractie van het ASE licht verhoogt met bijna 1 grootteorde wanneer
het soliton aanwezig is. Door het solitonvermogen te verhogen wordt de lichtgeleiding verbeterd aangezien het
brekingsindexcontrast van de nematicongolfgeleider stijgt. Maar te hoge solitonvermogens moeten vermeden
worden omdat de solitonfluctuaties bij hogere vermogens een optimale verzameling van het licht teniet doen.
Het nematicon verhoogt ook de spectrale zuiverheid en de polarisatiegraad van het signaal.
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Tot slot wordt nog een ander type LC materiaal bestudeerd, namelijk chiraal nematisch LC. In dit materiaal
ordenen de moleculen zich op een helicoïdale manier. Dankzij de optische anisotropie en de periodieke ordening
is er een optische verboden zone. Als het LC ook gedoteerd is met een kleurstof, dan is het mogelijk om via de
combinatie van een verboden zone en optische versterking laseremissie te verkrijgen. We zijn geïnteresseerd in
een snelle (sub-ms) reoriëntatie van de helix om zo het effect van de reoriëntatie op de laseremissie te kunnen
bestuderen. De eerste stap is om een goede alignering van de LC helix te bekomen met de as parallel aan de
glasplaten waartussen het LC zit. Het is vooral moeilijk en belangrijk om een zo hoog mogelijke optische kwaliteit
te verkrijgen van het LC. Om deze reden werd een innovatieve methode ontwikkeld die het LC aligneert via
het directioneel verdampen van solvent. Deze solvent-gebaseerde methode laat toe om zeer homogene texturen
te verkrijgen met een contrastverhouding tussen de lichte en de donkere toestand van een factor 4 groter dan
mogelijk met traditionele methoden. Het LC met solvent-geïnduceerde alignering is vervolgens gestabiliseerd
via twee-foton foto-polymerisatie. Deze techniek is interessant om kleine gebieden te polymeriseren, terwijl de
rest van het materiaal kan uitgewassen worden door de component in een solventbad te dompelen. De eerste
karakterisatie van laseremissie wordt voorgesteld in het laatste hoofdstuk, maar het sub-ms elektrisch schakelen
is helaas het onderwerp van toekomstig werk.

In dit werk werden verschillende fysische aspecten onderzocht en dit heeft geleid tot de realisatie van nieuwe
technieken voor de fabricage van vloeibaarkristalcomponenten, de demonstratie van nieuwe fenomenen voor
lichtversterking in vloeibare kristallen en de experimentele verificatie van nieuwe numerieke modelering van
lichtpropagatie in vloeibare kristallen. De rode draad doorheen dit werk zijn drie aspecten: niet-lineaire optische
voortbeweging van licht, optische versterking en elektrische respons van verschillende vloeibaarkristalmengsels.
Hoewel de eerste hoofdstukken deze aspecten afzonderlijk behandelen worden meerdere aspecten in het laatste
hoofdstuk gecombineerd, waarbij nieuwe fysische fenomenen aan het licht komen en waarbij ook enkele inter-
essante bevindingen worden vermeld die het onderwerp kunnen zijn van verder werk. De resultaten in dit werk
kunnen potentieel gebruikt worden voor toepassingen in snelle afstembare lasers, optische communicatiesyste-
men en lab-on-chip componenten.



Sommario

In questo lavoro studiamo la propagazione nonlineare della luce nei cristalli liquidi (CL) e il guadagno ottico da
essi fornito quando dopati con polimeri o coloranti.

Focalizzeremo la nostra attenzione sui CL nematici, caratterizzati da un’orientazione media (nota come diret-
tore) delle molecole di CL allungate e dalla birifrangenza che ne consegue. Dopo un’introduzione generale sui CL,
ci concentreremo sulla propagazione nonlineare della luce nei CL nematici e in particolare sulla propagazione di
tipo solitone (noto anche come nematicone). Infatti, la luce iniettata, se sufficientemente intensa, può creare una
guida d’onda che contrasta la diffrazione della luce, che si propaga quindi con un profilo trasverso quasi costante
(o periodico).

Il nostro contributo in quest’area inizia con un modello numerico del rumore termico che caratterizza i CL
nematici e con lo studio delle instabilità spaziali da esso causate sulla propagazione del solitone. Nel Cap.3
mostriamo che, costruendo esplicitamente la matrice di correlazione che descrive il rumore termico nei CL, è
possibile riprodurre alcuni degli aspetti che caratterizzano il loro comportamento, come la generazione di speckle
o le oscillazioni della traiettoria dei solitoni spaziali nei CL. Infatti, quando il diametro del nematicone è dello
stesso ordine di grandezza o più piccolo delle perturbazioni dell’indice di rifrazione causate dal rumore termico, il
nematicone inizia a oscillare nello spazio. Queste oscillazioni non sono presenti quando il rumore non è correlato,
segno del fatto che le interazioni a lunga distanza nei CL sono cruciali per l’esplicazione di tali oscillazioni. Il
modello inoltre permette di riprodurre la perdite di propagazione subite dal nematicone senza l’utilizzo di un
termine ad hoc per esse. Le simulazioni sono in accordo con i risultati sperimentali. Questo modello potrebbe
aiutare la modellizzazione di fenomeni nonlineari complessi nei CL che si basano sul rumore, come l’instabilità
di modulazione o la filamentazione.

Successivamente, il guadagno ottico è ottenuto dissolvendo nei CL polimeri o coloranti fotoluminescenti.
Mostreremo come un particolare polimero, il polifluorene, quando disperso nei CL, crei dei intricati motivi
supramolecolari composti da regioni omogenee ricche di CL, circondate da bordi ricchi in polimero. Lo studio
di queste strutture attraverso una tecnica di spettroscopia ultrarapida (tecnica di pump-probe) e la microscopia
confocale rivela che i bordi sono composti da catene di polimero ordinate e isolate. Questa morfologia parti-
colare permette l’osservazione del guadagno ottico da parte delle unità ossidate del polimero (difetti chetonici).
Questo segnale è in genere coperto dall’assorbimento causato dall’aggregazione –nello stato solido– delle catene
di polimero, mentre in CL è chiaramente visibile. Il guadagno ottico da parte di questi difetti è inoltre polarizzato
ortogonalmente alla direzione del direttore del CL, direzione che coincide anche con l’orientamento maggior
parte dei bordi. Quando un colorante, della famiglia dei pyrromethenes, è dissolto in CL, il campione ha un
aspetto omogeneo. Il guadagno ottico del colorante è polarizzato lungo la direzione del direttore e presenta uno
spostamento dello spettro verso il blu (10 nm) quando la polarizzazione passa da parallela a ortogonale al diret-
tore. L’emissione spontanea amplificata (ESA) mostra lo stesso tipo di spostamento spettrale quando si cambia
la direzione di eccitazione del campione.

Quando l’ESA e il nematicone sono generati nello stesso dispositivo, è possibile studiare l’interazione tra i
due. In particolare, la guida d’onda indotta dal solitone può essere usata per guidare un altro segnale ad un’altra
lunghezza d’onda. Il nematicone può raccogliere l’ESA generata nello stesso dispositivo e guidarla nella stessa
fibra utilizzata per iniettare il nematicone nella cella a CL. L’estrazione dell’ESA dal dispositivo aumenta di quasi
un ordine di grandezza quando il solitone è presente. Tuttavia, a causa delle fluttuazioni spaziali del nematicone,
la potenza ottimale di quest’ultimo deve essere trovata. Infatti, da un lato, grazie ad un aumento del contrasto
dell’indice di rifrazione della guida d’onda generata dal nematicone, il guidaggio della luce è migliorato quando
la potenza del solitone è aumentata. Dall’altro lato, potenze troppo elevate causano flutuazioni del solitone che
impediscono una raccolta ottimale della luce. Infine, osserviamo che che il nematicone migliora la purezza
spettrale e il grado di polarizzazione del segnale guidato.

Un altro tipo di CL studiato è il CL nematico chirale. In tale materiale, le molecole sono disposte secondo
una distribuzione elicoidale. A causa della loro anisotropia ottica e della loro distribuzione periodica, tale sistema

xii
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presenta un band gap ottico. Se il CL è anche dopato con del colorante, la combinazione di band-gap e guadagno
ottico genera emissione laser. Siamo interessati in particolare ad una riorientazione rapida (<ms) dell’elica del
CL chirale, con l’obiettivo di studiare l’effetto della riorientazione sull’emissione laser. Il primo passo verso tale
direzione è l’allineamento dell’asse del CL chirale (non dopato) parallelo ai vetri che costituiscono la cella, allinea-
mento particolarmente difficile ad ottenere con un’elevata qualità ottica. Per tale ragione abbiamo sviluppato un
metodo innovativo per allineare i CL attraverso l’evaporazione direzionale di un solvente. Tale metodo permette
di ottenere una struttura particolarmente omogenea, con un rapporto tra luminosità del bianco e luminosità del
nero quattro volte superiore a quello ottenuto per un allineamento conseguito con metodi tradizionali. Il campi-
one di CL allineato con l’evaporazione di solvente è stabilizzato attraverso la foto-polimerizzazione a due fotoni.
Tale tecnica permette di polimerizzare piccole regioni del dispositivo, mentre il resto del materiale può essere
eliminato con un bagno di solvente. Quando poi il dispositivo è riempito con un CL non chirale, quest’ultimo
assume un allineamento chirale nelle regioni polimerizzate e non chirale nel resto. Una caratterizzazione pre-
liminare dell’emissione laser è infine presentata nell’ultimo capitolo, con l’obiettivo di ottenere in lavori futuri
un’emissione che sia accordabile attraverso un controllo elettrico e con tempi di risposta inferiori al millisecondo.

In questa tesi sono stati affrontati diversi temi che hanno portato alla realizzazione di nuove tecniche per la
fabbricazione di dispositivi a CL, la dimostrazione di nuovi fenomeni di amplificazione ottica in CL e la verifica
sperimentale di nuovi metodi numerici per la modellizzazione della propagazione luminosa nei CL. I tre aspetti
chiave di questo lavoro sono la propagazione nonlineare della luce, l’amplificazione ottica e la risposta ai campi
elettrici di varie strutture a CL. Sebbene i primi capitoli trattino tali aspetti separatamente, questi sono combinati
nell’ultimo capitolo, portando all’analisi di nuovi fenomeni interessanti, utili per eventuali lavori futuri. I risultati
di questo lavoro potrebbero avere un umpatto in applicazioni come laser accordabili e a risposta rapida, sistemi
per le comunicazione ottiche e dispositivi lab-on-chip.



Introduction 1Chapter
Liquid crystals (LCs) are a particular phase of matter in between the liquid and solid states. In particular, they
possess a long-range order like crystals, while maintaining the possibility to flow like liquids. For this reason,
many devices take advantage of the propagation of light in LCs. Thanks to their high birefringence and large
response to external stimuli (electrical, mechanical, thermal, ...) they are the perfect candidates for applications
such as displays [1–4], smart windows [5, 6], photovoltaic cells [7], lasers [8–11] and spatial light modulators
(SLM) [12]. In all these applications the light beam is usually weak enough to not perturb the LC distribution.
In this thesis, however, we are interested in the nonlinear behavior that arises when an intense light beam is
propagating inside the LC.

When the light is propagating in a linear medium and it is focused into a small area, the beam tends to
diffract and its transverse profile tends to change during the propagation. However, if the propagation occurs
in a medium with a particular kind of nonlinearity, the beam itself can cause a local increase in the refractive
index. In this way, the beam creates its own waveguide during the propagation, counteracting the diffraction
and maintaining its (temporal or spatial) profile. This beam is called a (temporal or spatial) soliton.

In LCs, the electric field of the laser beam reorients the LC director causing a local increase of the refractive
index due to the birefringence of the LCs. This Kerr-like effect occurs at low powers (some mW) and causes
the transverse confinement of the light [13–22]. This soliton-like self-guiding is also called a nematicon when it
occurs in a particular LC phase called the nematic phase [23]. Since this kind of nonlinearity is non-resonant [16],
meaning that the molecular reorientation is not wavelength dependent, a huge variety of sources can been used,
ranging from UV [24] to IR laser sources [25], or even incoherent light sources [26, 27]. The description of
nematicons, together with the introduction of the LC properties, is the subject of Ch. 2.

Since the interactions in LCs are long-range, the perturbations in these materials extend over a distance
much larger than the molecular size (tens of micrometers) [28, Ch.1]. For this reason, the nematicon-induced
reorientation spreads over multiple times the size of the optical beam [29, 30]. This means that multiple solitons
can interact with each other even if they are much further away than the width of the optical field. In particular
they can deviate, intersect or merge their trajectories [31–33]. Since the nematicon-induced waveguide can be
used to transmit optical co-polarized signals at other wavelengths [16, 34–37], the interaction among nematicons
can be used to implement all-optical logical gates [38] or switching [39]. Also, due to the easy response of LCs to
external stimuli, nematicons can be deviated with the action of an electric field or other optical beams, in order
to build optical logical gates or re-configurable optical switches [25, 40, 41].

For these all-optical signal handling applications where nonlinear phenomena play a significant role, it is
important to keep the intensity of light as constant as possible along the propagation. However, the propagation
losses in LCs limit the soliton propagation and interaction distance to a few millimeters. Our work started with
the aim of sensibly increasing the propagation length of a nematicon.

The main contribution to the propagation losses in LCs is the scattering in the medium [42]. In particular,
the long-range orientational fluctuations of the LC mean distribution gives rise to a scattering that is six orders
of magnitude larger than in conventional isotropic fluids [28]. The effect of this long range thermal noise on the
nematicon propagation is particularly important since it causes both intensity attenuation and spatial fluctuations
of the nematicon intensity profile. Indeed, by increasing the nematicon power, the soliton suffers from thermal
instability and/or strong self-focusing [16, 29, 43, 44]. In Ch. 3 we propose a novel modeling scheme for the
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CHAPTER 1. INTRODUCTION 2

physical origin of these fluctuations and its comparison with the experimental results. We show how the
nematicon propagation is influenced by the physical quantities that characterize the LC phase, such as the
thermal fluctuations of the molecules in LCs, the temperature or the elastic forces among the molecules. We
also show that our model can explain the linear propagation of light in LCs, giving rise to the typical speckle
formation.

In order to increase the nonlinear propagation length, several attempts have been adopted in the literature
in order to overcome the issue of the propagation losses. One solution is to increase the nonlinear response
along the propagation in order to compensate for a decrease in the beam intensity [44]. Another option is to
compensate the losses via an optical amplification of the soliton. Distributed optical amplification in LCs can
easily be achieved by mixing the LC with photoemissive molecules (dyes or polymers) and exciting the system
with a pump light beam. However, even if this solution has been predicted theoretically [45], no experimental
evidence has been presented until now. The initial aim of our work was to explore this route.

The first step in this direction is an extensive study of the optical gain provided by photoluminescent media
dispersed in LCs. In Ch. 4 we analyze how ordered and anisotropic media such as a LC can modify the stimulated
emission of emitting dyes and polymers dispersed in it. The first study of the optical gain in LCs with the aid of
the pump-probe technique is presented. With the aid of this technique, which allows us to temporally resolve
the evolution of the excited states of a molecule or a system, we were able to demonstrate that photoluminescent
dyes or polymers dissolved in LCs can provide polarized optical gain. However, despite the different excitation
geometries and wavelengths we tried, it was not possible for us to obtain nematicon amplification. We believe
that the main reasons are twofold. Firstly, despite the fact that the dye shows a long-living optical gain (Ch. 4),
the excitation powers were not sufficient to amplify, even transiently, the continuous-wave beam that is used to
generate the nematicon. Secondly, the maximum excitation power was limited by the appearance of amplified
spontaneous emission (ASE) or random lasing, depending on the adopted pumping geometry.

The observation of narrow-band and directional emission such as ASE opens up new possibilities for inte-
grated narrow-band intense light sources. Due to its low degree of coherence, ASE is particularly suitable for
a range of applications. The low spatial coherence is useful for illumination purposes, due to the low speckle
production [46, 47], while the low temporal coherence is suitable for biomedical applications such as optical
coherence tomography [48–50]. A requirement for these applications is that the light is efficiently collected and
guided within the device. The method we propose is to exploit the nematicon-induced-waveguide for this pur-
pose. The case where the fluorescence is generated by the nematicon itself launched in a dye-doped material
was reported in the literature [24, 51]. However, the case where the nematicon was used to collect the light of
a laser-like source generated within the same cell had not been previously analyzed. This is the subject of the
first half of Ch. 6, where the ASE is generated in a dye-doped LC cell and collected by a nematicon injected in
the same device. We show that the nematicon increases the intensity, the spectral purity and the polarization
degree of the light extracted from the device. Later, it was shown that a nematicon is able to guide and even
tune others types of light sources, such as random lasing [36, 37].

The drawback of ASE is the fact that its wavelength is not tunable. Indeed, since there is no cavity feedback
to tune the emission wavelength, the emission peak is fixed at the wavelength with the lowest losses [52–55].
However, some applications need tunable sources, such as selective sample excitation in biology or medicine [56].
This is the reason why we focused our attention to other laser sources, whose emission is chosen to be in the
plane of the LC cell in order to eventually maximize the collection of the light from a nematicon propagating in the
same plane. There are different ways to obtain in-plane laser emission in LCs, such as the periodic modulation
of the gain [57–59] or of the refractive index [60–62] in dye-doped LCs. This last configuration is achieved when
a chiral nematic LC, which is characterized by a self-aligning helicoidal distribution of the LC orientation, is
aligned with the helix axis in the plane of the cell (uniform lying helix - ULH). Such a periodic distribution
generates an optical band-gap in the plane of the cell that can be used as feed-back for lasing emission.

As presented in Ch. 5, the ULH alignment presents a fast (sub-ms) reorientation of the optic axis of the
helix when an alternating electric field is applied orthogonal to the periodicity, known as the flexoelectro-optic
effect [63–67]. When the light is propagating orthogonal to the ULH axis, the medium acts as a birefringent
material whose optic axis can be reoriented with an external electric field. This is of particular interest for
technological applications requiring fast switching, such as next generation flat panel displays [68, 69]. In our case,
we are interested in the effect of this fast reorientation on the optical band-gap and on the laser emission. Towards



CHAPTER 1. INTRODUCTION 3

this aim, the first steps are the alignment of a high-quality ULH alignment and the doping of the structure in
order to obtain laser emission. In Ch. 5 we apply for the first time the solvent-induced self-alignment method to
obtain a high-quality ULH. The characterization of the flexoelectro-optic response in terms of reorientation angle
and response time is in agreement with what is found in the literature, indicating that the solvent technique does
not alter the ULH properties. The solvent-induced ULH presents an almost defect-free structure, making it a
better candidate to obtain laser emission than the ULH obtained with standard techniques. The laser emission
from the dye-doped structures is presented in the second half of Ch. 6. The ULH is photo-polymerized in order
to improve the stability of the alignment at high electric fields. The polymerization is obtained via two-photon
absorption in order to polymerize small areas of the sample. It is then possible to remove the non-polymerized
material and refill the cell with nematic LC. The sample obtained in this way presents narrow emission from
the polymerized ULH regions, while the surrounding shows a broader ASE at a higher threshold.

The flexoelectro-optic effect is expected to influence the lasing emission. We believe that this would lead to
fast-switching in-plane lasing in samples in which also a nematicon could be injected for efficient extraction of
the emission.

If not explicitly expressed otherwise, I fabricated the samples, assembled the optical setup for the character-
ization, wrote the simulation code and analyzed the data.
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Liquid crystals and solitons 2Chapter
In this Chapter, thermotropic liquid crystals, and in particular the nematic phase, will be presented. The basis of
the continuum theory will be introduced, as it will be used in Ch. 3 for the numerical model and in Ch. 5 to explain
the flexoelectro-optic response. The optical properties of LCs will be analyzed, in particular those of chiral liquid
crystals. In the last part of the chapter, after a brief introduction about light propagation in dielectrics, the concept
of optical soliton will be introduced. Finally, the nonlinear propagation of light in nematics, in particular the
solitonic behavior, will be considered.

2.1 Thermotropic liquid crystals

One of the main reference books for LCs was written by Pierre Gilles de Gennes and Jacques Prost [28]. We
will be referring to this book for the general theory of thermotropic liquid crystals. Liquid crystals are a par-
ticular phase of matter in between the solid and the liquid phase. In particular, they preserve the possibility to
flow, like liquids, while maintaining a long-range order, like crystals. There are different ways to obtain this
phase (also called mesophase), the two most important ones are changing the relative concentration of the con-
stituents (lyotropic LCs) and changing the temperature (thermotropic LCs). In this thesis, we will use exclusively
thermotropic LCs, that will therefore be referred to simply as LCs.

The molecules that represent the liquid crystalline phase, calledmesogens, possess a pronounced geometrical
anisotropy, such as a disc or rod-shape. This anisotropy is then reflected onto their dielectric, elastic and viscous
properties, as seen in more detail in the next chapters. We will focus on rod-shaped molecules characterized
by a uniaxial birefringence. The average of the molecular long axis orientation over a significant number of
molecules is called the director (n̂), and it is a unit vector. The refractive indices in the direction parallel and
orthogonal to the director are called, respectively, n‖ and n⊥ (Fig. 2.1a). In Fig. 2.1b it is possible to see some
of the phases that can be observed when the temperature of a rod-like mesogen is increased. It goes from the
solid (crystalline) to the liquid (isotropic) phase, passing through one or more mesophases. The system passes
from the solid to the LC phase at the melting temperature (Tm), since at that point the medium acquires viscous

x̂d

n⊥

ŷd

n⊥

ẑd n‖

n̂ n̂

(a) (b)

Figure 2.1: (a) The revolution symmetry of an ensemble of molecules around the director n̂ and its uniaxial anisotropy; the
frame of reference x̂d,ŷd,ẑd is defined by the director (n̂ ‖ ẑd). (b) Schematic of the phase transition from the crystalline
phase to the liquid phase, passing through some of the LC phases, characterized by a decreasing degree of order when the
temperature is increased.
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CHAPTER 2. LIQUID CRYSTALS AND SOLITONS 6

properties. The first phase that is usually encountered is the smectic phase, characterized by an organization
into layers. The two most common smectic phases, smectic A and C, are characterized by two translational
degrees of freedom (within the layer) and by the director orientation that is orthogonal (smectic A) or at an angle
(smectic C) with respect to the layer.

The nematic phase is encountered when further increasing the temperature. Its only degree of order is
dictated by the director orientation. The molecules can freely rotate around the director and move along the
three directions.

It has to be noted that in all LC phases the long-range interactions tend to order the director orientation.
However, without the help of an external stimulus, like the appropriate boundary conditions, the organization
would be on a scale that is much larger than the molecular scale but shorter than macroscopic dimensions. This
is why when looking at a LC without macroscopic aligning boundary conditions, its appearance is milky. The
light is highly scattered by the µm-sized birefringent domains that constitute the bulk. When the system passes
to the liquid phase, the long-range interactions are destroyed by thermal agitation and the medium becomes
transparent. For this reason, the temperature at which the system passes to the isotropic phase is called the
clearing temperature (Tc).

The nematic phase, in both its achiral and chiral forms, is the one used in this work.

2.2 Nematics

Nematic LCs are characterized by the fact that the molecules have an average orientation (director) but they can
still move freely along the three directions. The average orientation is due to their long-range interaction, whose
origin will be discussed in more detail in Ch. 3. The molecules also usually present an electric dipole, even if,
macroscopically, no net polarization is present in the medium in the absence of external stimuli. On average,
the same number of molecules point in opposite directions. This impossibility to distinguish the head and the
tail of the molecule has to be reflected in the way the system is described. Therefore, the physical quantities that
describe the system have to be invariant under the transformation n̂(r̄)→ −n̂(r̄).

In the following, the optics and the response to an electric field of nematic LCs are described in the bulk,
without taking into account the contribution due to the boundary conditions.

2.2.1 Dielectric tensor

ŷ
ẑ

x̂

θ

ϕ

n̂

Figure 2.2: The generic frame of reference
x̂,ŷ,ẑ, where the director n̂ correspond to
the molecular axis for simplicity. The an-
gles ϕ and θ are positive as represented.

Due to their long-range order and molecular anisotropy, nematic LCs
can be treated as a birefringent medium.1 In the coordinate system
noted as x̂d,ŷd,ẑd, where the ẑd axis is defined by the director orien-
tation (Fig. 2.1a), and considering only a linear response, the relative
dielectric tensor takes a diagonal form

¯̄ε dr =

 ε⊥ 0 0
0 ε⊥ 0
0 0 ε‖

 , (2.1)

where ε⊥ and ε‖ are the relative permittivities (or dielectric constants)
orthogonal and parallel to the director, respectively. At optical frequen-
cies ε⊥ = n2

⊥ and ε‖ = n2
‖.

The relative dielectric tensor can be expressed in a generally ori-
ented frame of reference x̂,ŷ,ẑ (Fig. 2.2). The system x̂,ŷ,ẑ can be
obtained through a double rotation, the first one through an angle ϕ
around the axis ẑd and the second one through an angle θ around the
axis ŷ′d obtained with the first rotation. The rotation matrix associated
with this transformation is:
1This can always be done, at least locally.
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(a) (b) (c)

Figure 2.3: Splay (a), twist (b) and bend (c) deformations in nematic LCs.

¯̄R = ¯̄R(θ) ¯̄R(ϕ)

=

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 =

 cos θ sin θ sinϕ − sin θ cosϕ
0 cosϕ sinϕ

sin θ − cos θ sinϕ cos θ cosϕ

 . (2.2)

In this frame of reference, the dielectric tensor takes the form:

¯̄εr = ¯̄R¯̄ε dr
¯̄RT =

 ε⊥ +4ε sin2 θ 4ε sin θ cos θ sinϕ 4ε sin θ cos θ cosϕ
4ε sin θ cos θ sinϕ ε⊥ +4ε cos2 θ sin2 ϕ 4ε cos2 θ sinϕ cosϕ
4ε sin θ cos θ cosϕ 4ε cos2 θ sinϕ cosϕ ε⊥ +4ε cos2 θ cos2 ϕ

 , (2.3)

where 4ε = ε‖ − ε⊥ is the dielectric anisotropy of the LC. When ϕ = 0, Eq. (2.3) takes the simple form

¯̄εr =

 ε⊥ +4ε sin2 θ 0 4ε sin θ cos θ
0 ε⊥ 0

4ε sin θ cos θ 0 ε⊥ +4ε cos2 θ

 . (2.4)

In this case, it is possible to show that, if the light is polarized along x̂, the refractive index experienced by
the wave can be derived from the index ellipsoid [70, Ch.4]

n(θ) =
√
εr(θ) =

√
ε⊥ε‖

ε⊥ sin2 θ + ε‖ cos2 θ
=

√
εxx −

ε2
xz

εzz
. (2.5)

2.2.2 Free energy in the continuum theory

When the LC is perturbed at one location, it is deformed over a scale much larger than the molecular size.
The LC can therefore be described as a continuum, without referring to discrete details of the molecules. Using
the director as a continuous function of the space n̂(r̄), it is possible to define the energy associated with the
perturbation of the equilibrium distribution.

For a nematic LC, the state with the lowest energy is the one in which all the molecules are perfectly parallel
one to another. Any deviation from the equilibrium is associated with a distortion free energy density [J/m3]
that, in the Oseen-Frank theory [28, Ch.3.1], takes the form

fd =
1

2
K1 (∇ · n̂)2︸ ︷︷ ︸

splay

+
1

2
K2 (n̂ · (∇× n̂))2︸ ︷︷ ︸

twist

+
1

2
K3 (n̂× (∇× n̂))2︸ ︷︷ ︸

bend

, (2.6)

where K1, K2 and K3 are, respectively, the splay, twist and bend elastic constants, expressed in [N]. These
deformations are classified according to their geometry (Fig. 2.3). The splay deformation is the one for which
the lines traced by the orientation of the molecules are all exiting from one point (∇ · n̂ 6= 0). The twist and the
bend define rotations whose curl has a component orthogonal (n̂ · (∇× n̂) 6= 0) and parallel (n̂× (∇× n̂) 6= 0)
to the director, respectively. All these contributions are squared in order to have a centrosymmetric material
and to respect the invariance with the transformation n̂(r̄)→ −n̂(r̄).
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The values of the three constants are close enough to justify, in some cases, the assumption K1 = K2 =
K3 = K . Then the Eq. (2.6) takes the form

fd =
1

2
K
[
(∇ · n̂)2 + (∇× n̂)2

]
. (2.7)

This equation is much simpler to solve numerically and will be useful in Ch. 3.

2.2.3 Electric field responses

When an electric field Ē is applied to a dielectric material, it induces a polarization density P̄ that adds to the
electric field within the medium. The sum of these components is the electric displacement D̄

D̄ = ε0Ē + P̄ , (2.8)

where ε0 is the vacuum permittivity.
The polarization density groups all the different responses that the medium shows in the presence of an

electric field. In particular, for a nematic LC, there are usually at least two contributions:

P̄ = P̄L + P̄flexo = ε0 ¯̄χĒ + P̄flexo (2.9)

where ¯̄χ is the first order susceptibility tensor, which is assumed to be real. The first term is due to the dielectric
linear response of the medium and the second one is due to the elastic deformation of the medium.

The displacement field [Eq. (2.8) takes then the form

D̄ = ε0Ē + ε0 ¯̄χĒ + P̄flexo

= ε0 ¯̄εrĒ + P̄flexo, (2.10)

where ¯̄εr = ¯̄1 + ¯̄χ is the relative permittivity of the medium and the electric field Ē is assumed to have one
frequency (monochromatic).2

The potential free energy density fel associated with the electric field in the presence of the LC is therefore

fel = −1

2
Ē · D̄ (2.11)

= −1

2
ε0Ē ¯̄εrĒ −

1

2
Ē · P̄flexo (2.12)

= fdiel + fflexo. (2.13)

The first and the second terms are the dielectric and the flexoelectric contributions, respectively. They will be
analyzed separately in the following paragraphs.

Dielectric contribution

The dielectric contribution arises from the dielectric anisotropy of the medium. Indeed, the dielectric term can
be rewritten as a function of the independent variables Ē and n̂

fdiel = −1

2
ε0Ē ¯̄εrĒ (2.14)

= −1

2
ε0Ē

(
ε‖
(
Ē · n̂

)
n̂ + ε⊥

(
Ē − Ē · n̂

)
n̂
)
, (2.15)

where we decompose the electric displacement into its components that are parallel and orthogonal to the
director according to Eq. (2.1). Regrouping the terms we obtain

fdiel = −1

2
ε0ε⊥|E|2 −

1

2
ε04ε

(
Ē · n̂

)2
. (2.16)

2For a detailed discussion on the use of the notation for Eq. (2.10), see Appendix A.
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Depending on the sign of the anisotropy 4ε = ε‖ − ε⊥ of the LC, the molecules will tend to align themselves
parallel (4ε > 0, positive anisotropy) or orthogonal (4ε < 0, negative anisotropy) to the electric field, in order
to minimize the energy of the system.

In this configuration, where there are slightly more molecules aligned with the field than in the other direction,
the symmetry n̂(r̄) → −n̂(r̄) is broken by the field and a net dipole is created. The asymmetry is not large
enough, though, to justify the introduction of additional terms in the free energy expression [Eq. (2.6)], since the
continuum theory, as already stated, disregards the details of the molecules.

Flexoelectric contribution

The flexoelectric effect is a deformation of the uniform distribution of the director that arises when molecules
with a permanent dipole and a non-centrosymmetric geometry are subjected to an electric field. Conversely,
if a deformation of the director distribution is generated, a net macroscopic polarization is generated in the
material due to the permanent dipole of the molecules. The two molecular shapes that are usually referred to
when analysing the flexoelectric effect are the pear-shaped molecules (Fig. 2.4a), with a dipole parallel to the
axis of the molecules, and the banana-shaped molecules (Fig. 2.4b), with a dipole orthogonal to the axis of the
molecules.

In the absence of an external field, no net polarization is present in the material. Even for non-centrosymmetric
molecules, the n̂(r̄)→ −n̂(r̄) symmetry is still present and the net polarization of the medium is zero (Fig. 2.4a,b).

When an electric field is applied, it reorients the molecular dipole parallel to it. Due to the shape of the
molecules, a deformation is introduced in the molecular distribution. In the case of pear-shaped molecules, the
dipole is usually along the long axis of the molecules and it will be aligned along the electric field. Due to the
shape of the molecules, a splay deformation will be formed (Fig. 2.4c). In the case of banana molecules, the

(a) (b)

Ē

(c)

Ē

(d)

Ē

Γ (e)

Figure 2.4: (a,b) Molecular distribution with no net polarization for the case of the pear-shaped (a) and banana-shaped (b)
molecules, in the absence of an applied electric field. The small black arrows are the molecular dipoles. When an electric
field Ē is applied, the reorientation of the dipoles induces a splay (c) or a bend (d) deformation in the medium, respectively
for the pear and banana-shaped molecules. (e) Splay-bend configuration with a periodicity of Γ.
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dipole is usually orthogonal to the long axis. When it tends to align along the field, a bend deformation appears
in the material (Fig. 2.4d). In both cases the field breaks one of the symmetries in the system: for the pear-
shaped molecules, the n̂(r̄)→ −n̂(r̄) symmetry is broken, while the molecules are still free to rotate around the
direction defined by the director. For the banana-shaped molecules, the opposite happens: the molecules cannot
rotate around the director (orthogonal to the electric field), but the end-to-end symmetry is preserved.

The flexoelectric polarization, as it was introduced by Meyer [71], is defined as

P̄flexo = e1 (∇ · n̄) n̄+ e3 (∇× n̄)× n̄, (2.17)

where e1 and e3 [C/m] are the splay and the bend flexoelectric coefficient, respectively. In this sign convention,
the net polarization is pointing outwards the center of the deformation for the splay and inwards for the bend
deformation (Fig. 2.4).

The free energy for the flexoelectric term can be therefore written as

fflexo = −1

2
ε0 [e1 (∇ · n̄) n̄+ e3 (∇× n̄)× n̄] · Ē. (2.18)

The direction of the deformation will depend on the polarity of the electric field, since the free energy fflexo
depends linearly on the electric field Ē and it has to be minimized to find the equilibrium configuration.

In a general case, molecules can present both behaviors at the same time. In that case, a splay-bend defor-
mation takes place (Fig. 2.4e). The period Γ that characterizes the alternation of splay and bend deformations is
defined as [72]

Γ =
π (K1 +K3)

(e1 − e3)E
. (2.19)

The higher the electric field, the faster is the reorientation of the director in space and shorter is the period.

2.3 Chiral nematic LCs

The chiral nematic phase, also known as cholesteric (CLC) phase, is exhibited by chiral molecules. In this phase,
the LC molecules tend to arrange themselves at an angle to one another in the direction orthogonal to their long
axis, in a configuration of pure twist (Fig. 2.5a). Alternatively, a small quantity of chiral dopant can be added
to an achiral LC to obtain the CLC phase. The distance over which the molecule turns over an angle of 2π is
the period p0 of the helicoidal distribution along ẑ. In the planes orthogonal to ẑ, the molecules are parallel to
one another. We can therefore think of the medium as a series of nematic layers whose director rotates from
one layer to another, drawing a helix along ẑ. The rotation angle θ is defined as θ = (2π/p0)z, as reported in
Fig. 2.5b. The angle θ is taken to be positive according to the right hand rule. The rotation angle and therefore
the pitch are determined by the rotatory power of the molecule (or by the concentration of the chiral dopant).
The helix can be left- or right-handed, depending on the chirality of the molecule.

Due to the geometry of the system, the periodicity of the medium is one-dimensional, along the axis of the
helix. Due to the n̂(r̄)→ −n̂(r̄) symmetry, the period of the refractive index is half of the pitch p0.

2.3.1 Optical band-gap

The periodic structure that the molecules assume, due to their birefringence, gives rise to a periodic distribution
of the refractive index.

When the light is propagating along the ẑ axis, as for Bragg reflectors, the refractive index periodicity causes
a light reflection selective in wavelength (optical band-gap). In CLCs, however, the geometry of the system is
circular. For this this reason, the most appropriate polarization basis to describe light propagation in CLCs is
the circular one. By solving the propagation equation for a birefringent medium whose optic axis is rotating
orthogonally to the ẑ axis, it is possible to find the explicit form of the wavevectors of the fields propagating in
the two opposite directions along ẑ [73]. The field with a handedness opposite to the CLC helix has a wavevector
that takes real values for all wavelengths and propagates as in an isotropic medium. The field with the same



CHAPTER 2. LIQUID CRYSTALS AND SOLITONS 11

p0

ẑ
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ŷ
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Figure 2.5: (a) The molecules of a CLC rotate orthogonal to the ẑ axis forming a spiral of pitch p0. (b) The LC director
in each plane draws a spiral whose handedness depend on the chirality (left or right) of the molecule. (d) Example of
transmission spectrum of unpolarized light propagating along the CLC axis; the optical band-gap in this case is between
520 and 590 nm.

chirality as the CLC takes complex values for wavelengths around the Bragg wavelength3 λB = p0(n‖+n⊥)/2,
which cannot therefore propagate in the medium. The optical band-gap so-formed has a width that is defined
by the birefringence of the medium and takes the form [74]

n⊥p0 < λ < n‖p0 (2.20)

in the case of positive anisotropy. The typical transmission spectrum of unpolarized light propagating along
the CLC axis is reported in Fig. 2.5c. Outside the bandgap the light progatas unperturbed and the spectrum is
modulated only by the Fabry-Perot cavity formed by the two glass substrates that compose the cell. Within the
bandgap, half of the light is transmitted because it has a polarization with the opposite handedness as the CLC
helix, while the other half is reflected. For this reason, the reflected light is polarized with the same handedness
as the CLC helix.
3The period of the refractive index is half the helix period p0 due to the n̂(r̄)→ −n̂(r̄) symmetry.
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2.3.2 Free energy in the continuum theory

In an unperturbed CLC, the director orientation along the helix can be described with the system of equationsnxny
nz

 =

cos θ
sin θ

0

 (2.21)

where θ = 2π
p0
z is the angle between the director (in each plane orthogonal to ẑ) and the x̂ axis (Fig. 2.5b), and

p0 is the natural pitch of the CLC. In this configuration, the twist term of Eq. (2.6) takes the form

n̂ · (∇× n̂) = −n̂ · (x̂ cos θ + ŷ sin θ)
2π

p0
= −2π

p0
. (2.22)

Since the twisted configuration is the equilibrium distribution for a chiral system like the CLC, we subtract
this term from the free energy equation Eq. (2.6), obtaining

fd =
1

2
K1 (∇ · n̂)2 +

1

2
K2 (n̂ · (∇× n̂) + q0)2 +

1

2
K3 (n̂× (∇× n̂))2 , (2.23)

with q0 = 2π
p0
. This energy contribution is minimum for a chiral configuration such as the CLC case.

2.3.3 Electric field responses

When a CLC is submitted to an electric field applied orthogonal to the helical axis, two kinds of coupling can
happen, dielectric and flexoelectric coupling. Only alternating electric fields will be applied in the experiments,
with a frequency high enough to to prevent charge transport and electrohydrodynamic instabilities [28, Ch.6].

Dielectric coupling

Ē = 0

(a)
Ē < Ēc

(b)
Ē ∼ Ēc

(c)
Ē > Ēc

(d)

Figure 2.6: Evolution of the helix deformation
of CLC helix as the electric field intensity is in-
creased.

As we saw for nematics, the dielectric coupling will tend to align
the molecules parallel to the electric field (for positive anisotropy),
while the restoring elastic forces will try to preserve the helical
structure. In a CLC, if the electric field is applied orthogonal
to the helical axis, the regions of the helix with the molecules
aligned along the electric field will become larger (Fig. 2.6b) [75,
76]. This also causes a change in the birefringence of the medium
for the light propagating orthogonal to the helix and polarized
orthogonal to the helical axis. Eventually the pitch length starts
to increase (Fig. 2.6c) and, for electric fields above the critical field
value Ec [77]

Ec =
π2

p0

√
K2

ε04ε
, (2.24)

the helix is completely unwound. Eq. (2.24) has been obtained
by comparing the free energy density associated with the region of twist and the uniform region composed by
pure nematic in the presence of an electric field [28]. The first contribution is given by Eq. (2.23), the second one
by Eq. (2.6) and the electric field is taken into account through the term in Eq. (2.16).

When also the flexoelectric contribution is taken into account, the expression for the critical field becomes [63,
67, 68, 78]:

Ec =
π2

p0

√√√√ K2

ε04ε− π2(e1−e3)2

16(K1+K3)

, (2.25)

where the flexoelectric distortion effectively decreases the dielectric anisotropy and increases the critical field
for the helix unwinding.
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Figure 2.7: Helix deformation (a,c) when a field is applied orthogonal to the helical axis. Compared to the unperturbed
case (b), the optic axis (OA) is tilted with respect to helix axis (HA) when an electric field is applied. Depending on the
polarity of the electric field, the reorientation angle is positive (a) or negative (c).

Flexoelectro-optic response

If non-centrosymmetric molecules in a chiral nematic phase are subjected to an electric field orthogonal to the
helical axis, a deformation of the whole helix takes place due to flexoelectric coupling. The optic axis (OA) of
the CLC is tilted by an angle φ with respect to the helical axis (HA) (Fig. 2.7). The direction and the amplitude
of the tilt depend on the polarity and the amplitude of the electric field, due to the linear dependence of the
flexoelectricity on the electric field. Patel and Meyer first reported the observation and the theoretical model of
this effect, called the flexoelectro-optic effect [63, 79]. In the planes orthogonal to the OA, this configuration gives
rise to the same bend-splay deformation we presented for nematics (Sect. 2.2.3).

By evaluating the free energy density of the configuration in Fig. 2.7a and finding the equilibrium distribution
as a function of φ, it is possible to calculate the dependence of the tilt angle as a function of the electric field. In
the case of Fig. 2.7a, the CLC director distribution of Eq. (2.21) is modified intonx̂nŷ

nẑ

 =

 cos θ
sin θ cosφ
sin θ sinφ

 , (2.26)

where θ = q0z is the same as that defined previously and φ is the angle, independent of ẑ, that we want to
optimize to find the equilibrium configuration. Since the director is only a function of ẑ, its divergence and curl
are

∇ · n̂ = sinφ cos θ
∂θ

∂z
= sinφ cos θ q0 (2.27)

∇× n̂ =

− cosφ cos θ ∂θ∂z
− sin θ ∂θ∂z

0

 =

−q0 cosφ cos θ
−q0 sin θ

0

 (2.28)

We can then evaluate each term of the elastic deformation contribution [Eq. (2.23)] separately,

splay: fs =
1

2
K1 (∇ · n̂)2 =

1

2
K1 (q0 sinφ cos θ)2 =

1

2
K1q

2
0 sin2 φ cos2 θ, (2.29)

twist: ft =
1

2
K2 (n̂ · (∇× n̂) + q0)2 =

1

2
K2 (−q0 cosφ+ q0)2 =

1

2
K2q

2
0 (1− cosφ)2 , (2.30)

bend: fb =
1

2
K3 (n̂× (∇× n̂))2 =

1

2
K3 (q0 sin θ sinφ)2 =

1

2
K3q

2
0 sin2 θ sin2 φ. (2.31)

The flexoelectric contribution [Eq. (2.18)], in the case where the electric field is polarized along x̂, takes the
form

fflexo = −P̄ · Ē = −Ex
(
e1 sinφ cos2 θ − e3 sinφ sin2 θ

)
q0. (2.32)
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The total free energy density associated with the elastic distortion and the flexoelectric coupling is then
averaged over one period p0, in order to remove the spatial dependence given by θ = θ(z)

faver =
1

p0

∫ p0

0
(fs + ft + fb + fflexo) dz. (2.33)

This equation, with Eq. (2.29) - (2.32), becomes

faver =
K1

4
q2

0 sin2 φ+
K2

2
q2

0 (1− cosφ)2 +
K3

4
q2

0 sin2 φ− Ex (e1 − e3)
q0

2
sinφ. (2.34)

This is the equation that has to be minimized in order to find the equilibrium distribution. If we assume the
pitch p0 is constant [64, 78], we can differentiate Eq. (2.34) with respect to φ and set it to zero to find the angle
φ that minimizes the energy

K1 +K3

2
q2

0 sinφ cosφ+
K2

2
q2

0 (−2 cosφ sinφ+ 2 sinφ)− Ex
2

(e1 − e3) q0 cosφ = 0. (2.35)

Therefore, reorganizing the terms

tanφ =
p0

2π

(e1 − e3)

2K2
Ex −

K1 − 2K2 +K3

2K2
sinφ, (2.36)

where we substituted q0 = 2π/p0. From this equation it is possible to see that the tilt angle φ is linearly
dependent on the applied electric field, at small angles.

The system is also subjected, in general, to dielectric coupling. Since, for small tilt angles, the dielectric
coupling depends quadratically on the electric field, the flexoelectro-optic effect will be predominant at small
electric field amplitudes. Increasing the electric field, the dielectric coupling will take place, saturating the
switching angle and unwinding the helix.

2.4 Liquid crystal cells

As introduced above, LCs need macroscopic boundary conditions in order to present a macroscopic order. The
simplest geometry is represented by two large glass plates, assembled with a glue mixed with spacers that
provide the desired thickness (Fig. 2.8a). The glass plates have to be cleaned and then coated with a layer that
forces a definite orientation of the LC director at the interface. In the homeotropic alignment, the director is
aligned orthogonal to the glass plate, while in the planar case they are parallel to it (Fig. 2.8b). In this thesis both
uniform homeotropic and planar alignments are used.

2.4.1 Fréedericksz threshold

The glass plates do not only fix the orientation at the interfaces. Due to the elastic forces among the molecules,
they also modify the response to an electric field. Indeed, if an electric field is applied to the cell, the molecular
electrical reorientation is counteracted by the restoring elastic forces and the fixed orientation at the interfaces.

This introduces a threshold that depends on different factors, such as the cell thickness (the thinner the cell,
the smaller the reorientation freedom for the molecules) and the elastic constants of the LC [28, Ch.3]. Also,
varying the orientation of the electric field with respect to the initial LC director, the electric torque on the
molecular dipole can be modified and different elastic deformations (involving different elastic constants) can be
excited.

These considerations will dictate the choice of the cell geometry, notably for the nonlinear propagation, as
we will see in the next paragraphs.
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2.4.2 Cell fabrication

The glasses used in this thesis are either 1.1 mm thick glass covered with a ∼100 nm layer of indium-tin-oxide
(ITO, a transparent conductor) or a 100 µm thick glass substrate.

The homeotropic alignment layer is obtained with a commercial polyimide layer (SE-4811, Nissan Chemical).
The solution is spin-coated (2500 rpm, 15 seconds) on the substrate. Due to the viscosity of the solution and the
poor wettability of the substrate, the glass is immediately transferred to a pre-heated hot-plate (100°C) for a few
minutes, in order to have a fast solvent evaporation and avoid the breaking-down of the film [80, 81]. The film
is then processed in the oven for 1h at 180°C.

To obtain planar alignment, a solution of 1 wt% Nylon 6,6 in 2,2,2 trichloroethanol is spin coated on to
the glass (3500 rpm, 45 seconds) and cured in the oven at 180°C for 4 hours. The surface is then rubbed with
a rotating cylinder covered with a velvet wipe. The direction of the rubbing determines the direction of the
LC director on the surface. Due to the rubbing process, the molecules have a small tilt (a few degrees) at the
surface [82]. The two glasses are assembled with the rubbing direction in an antiparallel configuration, in order
to avoid a splay distortion across the thickness of the cell (Fig. 2.8b). For both kinds of alignment, the thickness
of the layer is of the order of some hundreds of nanometers.

The two glasses are assembled with UV-curable glue mixed with spherical spacers of a defined diameter.
The spacers define the thickness of the cell. The cell is then heated on a hot plate to some degrees Celcius above
the clearing temperature of the LC. A small quantity of LC is put at the entrance of the cell and the LC fills the
gap by capillary action.

In some of the samples, a non-commercial optical fiber is slid between the two glasses. The fiber has a
cladding diameter of 64.4 µm, a core diameter of 2.9 µm and a cut-off wavelength of 550 nm. This refractive
index profile supports a mode with a radius (at 1/e2) of 3.7 µm at 1064 nm. The fiber has to be adequately
prepared before the insertion. The polymeric coating is soften for 20 minutes in a dichloromethane bath and
then removed mechanically. Due to the nonstandard diameter of the fiber and its particularly fragile glass, it
has to be cleaved with an ultrasonic cleaver (Precision Fiber Optic Cleavers, Photon Kinetics). The quality of
the fiber facet is checked in an optical fiber splicer and only then the fiber is carefully inserted in the LC cell.
In this thesis we will use only one LC, the commercially available E7 (Merck). The chemical structure of the
components that constitute the E7 mixture are shown in Fig. 2.9 and the E7 properties are reported in Tab. 2.1.

Unless stated otherwise, we fabricated the cells used in this thesis in the clean room facilities at Ghent
University.

2.5 Optical solitons

The concept of soliton goes back to the year 1848 when John Scott Russel described a water wave propagating
in a canal [87]: "I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair
of horses, when the boat suddenly stopped - not so the mass of water in the channel which it had put in motion;
it accumulated round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled
forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined

(a) (b)

Figure 2.8: (a) Structure of a LC cell where it is possible to notice the alignment layer on the glass substrates and the
spherical spacers; (b) Homeotropic (left) and planar (right) alignment in a LC cell.
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5CB
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7CB
25 %wt

8OCB
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5CT
8 %wt

Figure 2.9: Chemical structures of the components of the E7
liquid crystal mixture.

Elastic Constants [83]
K1 10.7 pN
K2 6.5 pN
K3 16.0 pN

Viscosity [84] η 0.08 Pa·s

Optical properties at 1064 nm [85]
ε‖ 2.9204
ε⊥ 2.2681
4n 0.2029

Electrical properties [83] 4ε 13.7

Transition temperatures [86] Tm -9 °C
Tc 60 °C

Table 2.1: Characteristics of the E7 LC.

heap of water, which continued its course along the channel apparently without change of form or diminution of
speed." In this first description, Russel already describes the main characteristics of a soliton. He speaks about a
wave arising alone - solitary, that propagates without changing its shape and speed. Water wave solitons are not
the only ones observed in nature. In particular, soon after the invention of the laser (1960), the first optical soliton
was observed [88, 89]. They are described as self-trapped optical beams that maintain an invariant (temporal or
spatial) profile during their propagation.

In this section, after a brief introduction on light propagation, we will explain the concept of spatial soliton
in media that exhibit Kerr nonlinearity.

2.5.1 Light propagation in dielectric media

We start from the macroscopic formulation of Maxwell’s equations

∇ · D̄ = ρf , (2.37) ∇× Ē = −∂B̄
∂t
, (2.38)

∇ · B̄ = 0, (2.39) ∇× H̄ = J̄f +
∂D̄

∂t
, (2.40)

where ρf and J̄f are the free charge and current densities, Ē and B̄ are the electric and the magnetic field. The
electric displacement field D̄ and the magnetizing field H̄ are defined as

D̄ = ε0Ē + P̄ , (2.41)

H̄ =
B̄

µ0
− M̄, (2.42)

where µ0 is the vacuum permeability, P̄ is the polarization density and M̄ is the magnetization of the medium.
In our case, we will work in media with no magnetization (M̄ = 0) and no free charge or current densities
(ρf = 0 and J̄f = 0).

Taking the curl of Eq. (2.38) and combining it with Eq. (2.40) and Eq. (2.42), we obtain

∇×∇× Ē = −µ0
∂2D̄

∂t2
(2.43)

Using Eq. (2.37) and Eq. (2.41), and assuming that the average density of bound charges ρb is zero (so that
∇ · P̄ = −ρb = 0) or that P̄ is slowly varying in space, we obtain

∇2Ē − 1

c2

∂2Ē

∂t2
= µ0

∂2P̄

∂t2
. (2.44)
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This is the propagation equation for the electric field of an electromagnetic wave.
The electric susceptibility tensor ¯̄χ can be decomposed in to a linear and a non linear contributions.

¯̄χ = ¯̄χ(1) + ¯̄χ(2)Ē + ¯̄χ(3)ĒĒ (2.45)

where ¯̄χ(j) are the susceptibiliy tensors of the jth-order and the electric field Ē is assumed to be monochromatic.
In particular, we will focus on media with a Kerr (or cubic) nonlinearity, where the second-order term is

not present since the medium is supposed to be centrosymmetric [90, ch.1]. For a medium with a local and
instantaneous response, the polarization takes the form

P̄ = ε0 ¯̄χĒ = ε0 ¯̄χ(1)Ē + ε0 ¯̄χ(3)ĒĒĒ = P̄L + P̄NL, (2.46)

where P̄L and P̄NL are the linear and nonlinear contributions to the polarization. Eq. (2.41) becomes then

D̄ = ε0

(
¯̄1 + ¯̄χ(1) + ¯̄χ(3)ĒĒ

)
Ē (2.47)

= ε0 ¯̄εrĒ (2.48)

where ¯̄1 is the identity matrix and ¯̄εr(Ē) is the relative permittivity.
With this relation, Eq. (2.44) becomes

∇2Ē − µ0ε0 ¯̄εr
∂2Ē

∂t2
= 0, (2.49)

which is the well-known wave equation.
Associated with the electromagnetic wave is the so-called Poynting vector S̄, defined as [70, Ch.1]

S̄ = Ē × H̄. (2.50)

It gives the power density [W/m2] of the beam. The integral of this vector over a surface gives the optical power
flowing through that area.

2.5.2 Linear propagation

We start from the case of light propagation in a linear medium. This means that ¯̄χ(3) = 0 and the tensor ¯̄εr
does not depend on the electric field. In that case, one solution to the wave equation is the plane wave [70]

Ē(r̄, t) = Ē0e
iω0t−ik̄·r̄, (2.51)

where Ē0 is the amplitude of the plane wave, ω0 is the angular frequency, and k̄ is the wave vector. These last
two quantities follow the relation |k̄| = (ω0/c)n

k̄ = (ω0/c)
√
εk̄r , where nk̄ and εk̄r are the refractive index and

the relative permittivity seen by the wave of Eq. (2.51).
The plane wave, when injected into Maxwell’s equations Eq. (2.38) and Eq. (2.40), gives the orthogonality

relations

k̄ × Ē = −ω0B̄ ⇒

{
k̄ ⊥ B̄
Ē ⊥ B̄

(2.52)

k̄ × H̄ = ω0D̄ ⇒

{
k̄ ⊥ D̄
H̄ ⊥ D̄

(2.53)

The fields Ē and B̄ are always orthogonal, and so are the fields D̄ and H̄ . The displacement field D̄ is
orthogonal to the wavevector k̄, but the electric field Ē not necessarily, due to the permittivity tensor [Eq. (2.48)].
Indeed, when light propagates in a birefringent medium (and it is not polarized along one of the principal optic
axes), the displacement field D̄ and the electric field Ē are no longer parallel [Eq. (2.48)]. The angle between
them is called the walk-off angle δ and it can be calculated as

tan δ =
‖D̄ × Ē‖
D̄ · Ē

, (2.54)

where ‖ · ‖ indicates the norm of a vector.
Due to the relations of orthogonality derived above, δ is also the angle between the wavevector k̄ and the

Poynting vector S̄.



CHAPTER 2. LIQUID CRYSTALS AND SOLITONS 18

2.5.3 Optical Kerr soliton

In this section, we will follow Kivshar and Agrawal’s dissertation [91] on Kerr solitons, reporting only the principal
results and assumptions.

In our case, the medium is considered isotropic and the electric field is considered polarized along x̂. The
electric field can be written as

Ē(r̄, t) =
1

2
x̂
[
E(r̄)eiω0t + c.c.

]
, (2.55)

where r̄ = (x̂, ŷ, ẑ) is the frame of reference of the laboratory (Fig. 2.2) and E(r̄) is the spatial part of the optical
electric field. With these assumptions, the polarization and the displacement field take the form

P̄ (r̄, t) =
1

2
x̂
[
P(r̄)eiω0t + c.c.

]
, (2.56)

D̄(r̄, t) =
1

2
x̂
[
D(r̄)eiω0t + c.c.

]
. (2.57)

The spatial component of the linear polarization can therefore be written as

PL(r̄) = ε0 ¯̄χ(1)E(r̄) (2.58)

while, by inserting Eq. (2.55) in Eq. (2.46) and neglecting the terms with the highest frequency (∝ ei3ω0t), we
obtain the following expression for the nonlinear polarization

PNL(r̄) ≈ ε0
3

4
χ(3)|E(r̄)|2E(r̄). (2.59)

The electric displacement [Eq. (2.48) ] can therefore be written as

D(r̄) ≈ ε0

(
1 + χ(1) +

3

4
χ(3)|E(r̄)|2

)
E(r̄). (2.60)

The term between parenthesis is the total relative permittivity εr = εL + εNL, which includes the linear and the
nonlinear contributions

εL = 1 + χ(1), (2.61)

εNL(r̄) =
3

4
χ(3)|E(r̄)|2. (2.62)

Since the refractive index n of a medium is defined as the square root of the relative permittivity and the
nonlinear contribution is supposed to be a perturbation of the linear response, we can write

n(r̄) =

√
1 + χ(1) +

3

4
χ(3)|E(r̄)|2 (2.63)

≈ 1 + χ(1) +
3

8n0
χ(3)|E(r̄)|2 (2.64)

= n0 + n2|E(r̄)|2, (2.65)

where n0 = 1 + χ(1) is the linear refractive index and n2 = 3
8n0

χ(3) is the cubic nonlinear, or Kerr, coefficient.
Both of them are assumed to be independent of r̄, and n2 is assumed to be very small so that we can limit the
development to the first order in n2.

With all these relations, it is possible to obtain the time-independent equation from Eq. (2.44)

∇2E(r̄) +
ω2

0

c2
E(r̄) = −ω

2
0

c2

(
χ(1) +

3

4
χ(3)|E(r̄)|2

)
E(r̄), (2.66)

Using Eq. (2.61) and (2.62) we obtain
∇2E(r̄) + k2

0εr (r̄)E(r̄) = 0 (2.67)
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where k0 = ω0/c. This equation is also known as the Helmholtz equation for the envelope of the electric field
of an electromagnetic wave.

The Equation 2.66, by introducing the Kerr coefficient of Eq. (2.65), becomes

∇2E(r̄) + k2
0

(
n0 + 2n0n2|E(r̄)|2

)2
E(r̄) = 0. (2.68)

Supposing a wave that is propagating along ẑ so that the wavevector has only one component (paraxial
approximation [92]), we can decompose the spatial part of the electric field [Eq. (2.55)] in to an envelope and a
carrier

E (r̄) = A (r̄) e−ik0n0z, (2.69)

where A (r̄) is the slowly varying envelope, k0 = 2π/λ is the wavevector in vacuum and λ = 2πc/ω0 is the
wavelength. The refractive index n0 used in the planar wave is the same uniform linear refractive index of
Eq. (2.65). Inserting Eq. (2.69) into Eq. (2.68), we obtain

2ik0n0
∂A(r̄)

∂z
= ∇2

⊥A(r̄) +
∂2A(r̄)

∂z2
+ 2k2

0n0n2|A(r̄)|2A(r̄), (2.70)

where ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2 is the transverse part of the Laplacian operator. Since the envelope is slowly

varying, the variations of the envelope derivative are slow along ẑ (therefore |∂2A/∂z2| � |2k0n0 ∂A/∂z|,
slowly varying envelope approximation [93]) and can be neglected. Eq. (2.70) becomes

2ik0n0
∂A(r̄)

∂z
= ∇2

⊥A(r̄) + 2k2
0n0n2|A(r̄)|2A(r̄). (2.71)

This equation is also know as cubic Nonlinear Schrödinger Equation (NLSE).
The solutions of this equation can be classified as a function of the dimensions of the problem. In the

case where the nonlinearity takes place only along one direction (x) and the confinement along the other
direction is provided, for example, by a planar waveguide, we can separate the variables in the envelope
A(r̄) =

√
I0u(x, z)v(y), where u and v are the normalized amplitudes and I0 is the peak intensity of the

beam. In this way, Eq. (2.71) takes the form [94]

i
∂u(x, z)

∂z
=

1

2k0n0

∂2u(x, z)

∂x2
+ k0n2

P0

leff
|u(x, z)|2u(x, z), (2.72)

where P0 is the peak power of the beam and leff is the confinement length due to the planar waveguide along
the ŷ. In order to better understand the properties of the solution of this equation, the diffraction and nonlinear
lengths are introduced

LD = k0n0w
2
0, LNL =

(
k0n2

P0

leff

)−1

, (2.73)

where w0 is the beam width. Introducing the dimensionless variables

Z = z/LD X = x/w0, (2.74)

Eq. (2.72) can be written as

i
∂u(X,Z)

∂Z
=

1

2

∂2u(X,Z)

∂X2
+

LD
LNL
|u(X,Z)|2u(X,Z). (2.75)

The ratio LD/LNL = N defines the parameter N, which is the order of the soliton. In the case LD = LNL, the
solution is the fundamental soliton (N = 1) [91]

u(X,Z) =
√
P0 sech (X) e

iZ
2 , (2.76)

or, in physical units

u(x, z) =
√
P0 sech

(
x

w0

)
e

iz
2LD . (2.77)



CHAPTER 2. LIQUID CRYSTALS AND SOLITONS 20

This electric field profile preserves its shape along the propagation and after the interaction with another soliton.
This solution has been found with the hypothesis that the characteristic length of diffraction LD corresponds to
the characteristic length of the nonlinear effect LNL. This means that the inclination of the beam to diffract is
exactly compensated by the self-focusing nonlinear effect. From this condition it is possible to extract the critical
beam power Pc necessary to excite a soliton of a definite size w0

LD = LNL, (2.78)

k0n0w
2
0 = (k0n2

Pc
leff

)−1, (2.79)

Pc = (k2
0n0n2

w2
0

leff
)−1 = (k0n2

LD
leff

)−1. (2.80)

For higher-order solitons (N > 1), the beam intensity is larger than this critical value. It is possible to show [95,
Ch.5] that in that case the profile of the beam is no longer constant, but its width and peak intensity follow an
oscillatory behavior along ẑ. If the initial profile is not a soliton, the system spontaneously evolves towards the
closest integer N.

It is possible to show that, for a medium that is instantaneous and local, the solution of the cubic (Kerr)
NLSE is stable only for the 1-D case [96]. In the 2- and 3-D cases, the nonlinear effect acts on more than one
dimension. This induces an over-focusing of the field causing the so-called catastrophic collapse, or the medium
is damaged. The collapse can be prevented including a mechanism for which the energy cannot concentrate
too tightly or the electric field cannot grow too much. In the 2-D case it has been demonstrated that the solution
is stable for a nonlocal medium [97, 98], for a saturable nonlinearity [99] or considering the non-paraxial term in
the propagation equation [100, 101].

2.6 Nematicons

The nonlinearities that we have analyzed until now have an electronic origin. In the case of nematic LCs, the
nonlinear response of the medium can have different causes.

In the case of intense laser illumination or in the presence of a dye absorbing the laser frequency, the LC
is heated by the incident light. This can cause a change in the temperature or in the density of the LC [102,
Ch.7], inducing in both cases a change in the refractive index. Another way to modify the refractive index is
through the reorientation of the birefringent LC. Indeed, when a laser beam is sent onto a LC sample, the optical
electric field can reorient the LC due to the dielectric interaction and locally increase the refractive index. These
intensity-induced refractive index modifications in LCs are called Kerr-like nonlinearities. In the following, we
will be focusing onto the light-induced LC reorientation to induce a change in the refractive index.

Due to the viscosity of the medium, the LC reorientation is slow (∼ms) [103] compared to the response
time of the electronic nonlinear responses (∼as) [90, Ch.4]. Moreover, due to the elastic interaction among the
molecules, a perturbation of the LC distribution in a point causes a molecular reorientation at long distances
(tens of micrometers). Finally, the increase of the refractive index is limited by the birefringence of the LC. This
saturable and non-local Kerr-like nonlinearity is responsible for the stable 2-D solitons observable in LCs [104].

However, the nonlocality of the LC response would add a spatial convolution between ¯̄χ and Ē in Eq. (2.46)
that would notably increase the difficulty of the study of the NLSE.4 For this reason, the nonlocality and the
saturation are taken into account with a second equation that describes the molecular distribution and interaction
with the optical electric field.

In the following, we will derive the propagation equation in the case of a non-homogeneous birefringent
material, while a second equation describes the LC distribution, its saturable and nonlocal response and inter-
action with the optical electric field. The solution of the coupled equations describes the propagation of light in
LCs. In particular, in the case where the nonlinearity compensates for the diffraction, we have the formation of
a solitary wave that, as it occurs in nematic LCs, is called nematicon.
4The non-instantaneous response is simplified due to the monochromatic approximation [Eq. (A.8)], since we are interested only in

the equilibrium regime and the transient evolution is not analyzed.
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Figure 2.10: (a) Geometry of the LC cell and the LC orientation in the laboratory frame of reference. (b) Soliton propagation
in the x̂ẑ plane; θ is the angle between the propagation vector k̄ and the director n̂, δ is the walk-off, which is the angle
between the Poynting vector S̄ and the vector k̄. (c) Soliton profile in the plane x̂ŷ. The director reorientation due to the
optical electric field takes place in the plane x̂ẑ.

2.6.1 Constitutive equations

The cell geometry adopted in this work is reported in Fig. 2.10a. The liquid crystal molecules lie in the plane
x̂ẑ, where the reorientation takes place. Their orientation can be described with only the angle θ.5 The LC
director has an initial orientation θ0 due to the rubbing direction. In this way, the torque induced by the electric
field is increased (compared to the case where the molecules lie along ẑ) and the Fréedericksz threshold for the
reorientation, presented in Sect. 2.4.1, is minimized [19, 22, 25].

We start from the Helmoltz equation [Eq. (2.67)] and, as before, we consider the case of light propagating
along ẑ and polarized along x̂. At the interface with the LC, the electric field is tilted towards the vector k̄ by
the walk-off angle δ, and the orthogonality between Ē and S̄ is maintained [Eq. (2.50)]. However, as a first
approximation in case of a small walk-off, the electric field can be considered parallel to the x̂ axis within the
LC. The scalar approximation developed in the previous paragraphs can therefore be maintained.

In contrast to the case explained in the previous section, LCs present a Kerr-like nonlinearity. This means
that, even if the Kerr coefficient n2 is negligible, they present an intensity-dependent refractive index modification,
which has however a non-electronic origin. In the case of LCs, the local increase of the refractive index is due
to the molecular reorientation induced by the optical electric field of the beam propagating in the medium. For
this reason, the relative permittivity can be written as a function of θ and r̄

εr(r̄, θ) = n2(r̄, θ), (2.81)

where the nonlinearity is hidden in the dependence of θ on the electric field. Due to the long-range interaction,
we can assume that the spatial variations of the permittivity are slow enough to allow the approximation used
for Eq. (2.44). The Equation 2.67 can therefore be written as

∇2E(r̄) + k2
0εr (r̄, θ)E(r̄) = 0. (2.82)

We assume an electric field profile like the one expressed in Eq. (2.69), where n0 is the unperturbed refractive
index seen by the incoming wave. Since the electric field is polarized along x̂, the unperturbed refractive index
is n0 =

√
ε⊥ +4ε sin2(θ0) (from Eq. (2.4)), where θ0 is the angle between the initial orientation of the director

and the wavevector k0. In the following, n0 will indicate the linear unperturbed contribution to the refractive
index, while ε(r̄, θ) (or n(r̄, θ)) will take into account the electric field-induced reorientation.

With the same assumption made before (paraxial approximation and slowly varying envelope A(r̄)), we
obtain

2ik0n0
∂A(r̄)

∂z
= ∇2

⊥A(r̄) + k2
0

(
εr(r̄, θ)− n2

0

)
A(r̄). (2.83)

In an homogeneous medium, it is possible to choose n2
0 = εr = εr(r̄, θ) for the carrier wave, making the last

term disappear.
5Referring to Fig. 2.2, we consider the case where the angle ϕ is negligible.
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Since the LC is a birefringent medium, the light experiences a walk-off when the vector k̄ is not parallel to
one of the principal optical axes of the LC. Due to the relation of Eq. (2.48) and Eq. (2.4), the walk-off angle of
Eq. (2.54) takes the form

tan δ(θ) =
4ε sin θ cos θ

ε⊥ +4ε cos2 θ
=
εxz(θ)

εzz(θ)
. (2.84)

Since we are treating a birefringent mediumwith a scalar approximation, we need to add a phenomenological
term in the propagation equation Eq. (2.83) that takes into account the walk-off effect during the propagation [91]

2ik0n0
∂A(r̄)

∂z
= ∇2

⊥A(r̄) +
[
k2

0

(
ε(r̄, θ)− n2

0

)]
A(r̄) + 2ik0n0 tan δ(θ)

∂A(r̄)

∂x
, (2.85)

as also reported in [19, 22, 105]. The last term in Eq. (2.85) takes into account the fact that the light, with a
wavevector k̄ at an angle θ with respect to the director, experiences a walk-off δ(θ) during its propagation
(Fig. 2.10b).

Until now the orientation of the LC has been taken into account only through the angle θ. We need now to
introduce the LC elastic forces among the molecules and the response to electric field. In order to do that, we
can write the total free energy for our configuration

F =

∫∫∫
ftot(θ) dx dy dy =

∫∫∫
(fd(θ) + fdiel(θ))dx dy dy, (2.86)

and minimize it to find the equilibrium position, with the angle θ as free parameter. The spatial distribution of θ
that gives the lowest energy is the one that the LC spontaneously adopts. The director distribution is described
by

n̂ = sin θ x̂+ cos θ ẑ, (2.87)

where the reorientation only takes place in the plane x̂ẑ. We also consider that the director distribution is slowly
varying along ẑ, therefore θ = θ(x, y).

The elastic contribution to the free energy density in the one-constant approximation [Eq. (2.7)] becomes

fd =
1

2
K
[
(∇ · n̄)2 + (∇× n̄)2

]
(2.88)

=
1

2
K

[(
cos θ

∂θ

∂x

)2

+

(
− sin θ

∂θ

∂y
x̂+ sin θ

∂θ

∂x
ŷ + cos θ

∂θ

∂y
ẑ

)2
]

(2.89)

=
1

2
K

[(
∂θ

∂x

)2

+

(
∂θ

∂y

)2
]
. (2.90)

The dielectric contribution is derived from Eq. (2.16), from which only the term dependent on θ is considered6

fdiel = −1

2
ε04ε

(
Ē · n̂

)2 (2.91)

= −1

2
ε04ε|E|2 sin2 θ (2.92)

= −1

2
ε04εA2 sin2 θ. (2.93)

The total energy F is a function of the variable θ and its derivatives, that are noted as

θi =
∂θ

∂ξi
, (2.94)

where ξi are the spatial coordinates (i = 1, 2, 3 for x, y and z, respectively).
6Note that in our frame of reference the angle between Ē (which is parallel to x̂) and n̂ is π − θ.
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Finding the minimum of the integral F for the total energy involves solving the Euler-Lagrange equation for
the integrand ftot [106, Ch.3]

3∑
i=1

∂

∂ξi

(
∂ftot
∂θi

)
− ∂ftot

∂θ
= 0. (2.95)

In our case, this last equation takes the form

K

[
∂2θ

∂x2
+
∂2θ

∂y2

]
+

1

2
ε04εA2 sin 2θ = 0. (2.96)

In our simple geometry, the surface interaction that induces the alignment at the interface is evaluated via
the boundary conditions used to solve the equation.

Indeed, due to the walk-off, the electric field Ē is tilted towards the vector k̄ and the torque is therefore
decreased. For this reason, in order to take into account the walk-off contribution, the angle δ(θ) is subtracted
from the angle θ [19, 107]

K

[
∂2θ

∂x2
+
∂2θ

∂y2

]
+

1

2
ε04εA2 sin 2(θ − δ(θ)) = 0. (2.97)

The walk-off angle can be subtracted directly in the last equation only because the molecular reorientation
takes place over a scale much larger than the beam size (as shown in Ch. 3). For this reason, δ(θ) is almost
constant across the field section and the derivative ∂δ/∂θ is negligible. As an alternative, the angle δ(θ) can be
considered as a constant during the propagation and it can be calculated at the beam peak [20, 108] or for the
initial orientation (rubbing direction) of the director [22].

The Equations (2.85) and (2.97) form a system of coupled equations that will be solved numerically in the
next Chapter. The numerical solution for the profile of the electric field is not an eigensolution of the propagation
equation. Indeed, the beam profile is not constant along the propagation, but it is continuously focusing and
defocusing with a periodicity that depends on the nematicon power, similar to the breathing behavior of high
order solitons [44, 109]. For this reason, nematicons are often referred to as soliton-like phenomena. However,
for simplicity, we will continue to use the word soliton and nematicon as synonyms.
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Spatial fluctuations of solitons in LCs 3Chapter
The aim of this chapter is the modeling of the thermal noise in nematic liquid crystals and the spatial fluctuations
of the soliton propagation. The results reported in this Chapter have been published in Physical Review A [110].

Since the thermal noise induces local variations of the director orientation, LCs are characterized only by an
average order. These fluctuations, which cannot be too abrupt in space due to elastic restoring forces between the
molecules, are well described by the de Gennes’ theory [28, 111]. Starting from the Oseen-Frank continuum theory
for LCs, de Gennes’ theory predicts the value of the spatial correlation of the director fluctuations. These long-
range fluctuations are responsible for optical scattering in liquid crystal materials. This scattering is six orders
of magnitude larger than in conventional isotropic fluids which are dominated by the Rayleigh scattering [28]. It
is also the main contribution to optical propagation losses in liquid crystals [42].

From the de Gennes’ theory, it is possible to extract the variance of the molecular fluctuations, which can
be used to predict nuclear spin fluctuations [112], asymmetry in electron resonance spectra [113] and to define
the order parameter that characterizes nematic LCs [28]. The off-diagonal elements of the covariance matrix
described by de Gennes take into account the long-range interactions of the molecules and the spatial correlation
of the director within the LC cell. These correlations are often neglected when considering director fluctuations
in liquid crystals.

The accurate modeling of the director fluctuations is of particular importance for the understanding of
phenomena that depend on noise, such as modulation instability [114, 115], filamentation [116], or speckle for-
mation [117, 118]. Also, the thermally-induced refractive index fluctuations are responsible for soliton spatial
fluctuations. Indeed, when the power is high enough to induce the nematicon diameter to be of the same order
of magnitude as or smaller than the refractive index grains, nematicon spatial fluctuations are observed [29,
43]. Different ways to quench the fluctuations have been proposed, ranging from applying an external electric
field [119] to the polymerization of the medium [120]. However, until now, no model has been proposed to explain
the physical origin of this behavior. This is the aim of this Chapter.

In the first part of this Chapter, the discussion of the numerical implementation of the solution of the coupled
equations described in Sect. 2.6 is presented. Then the theory of the director correlation in LCs and its numerical
implementation is introduced. Starting from the elastic constants of the LCs and the thermal energy of the system,
the correlation matrix is explicitly written in our simulations to generate a model of long-range correlated noise.
First, the linear propagation regime is considered in order to explain the origin of speckle formation. Then the
nonlinear propagation and the soliton formation are analyzed and our model is experimentally verified. The
results demonstrate that the consideration of the correlation is crucial to explain the origin of the nematicon
fluctuations.

3.1 Soliton propagation in LCs without noise

This section reports the description of the method used to numerically solve the propagation equation [Eq. (2.85)]
and the reorientation equation [Eq. (2.97)]. The geometry of the sample is the one described in Sect. 2.6 (Fig. 3.1).
The director lies in planes parallel to the glass plates, where the electric field-induced reorientation also takes
place. Its initial orientation is θ0 = 45°, defined by the rubbing direction, and the optical beam is polarized along

25
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Figure 3.1: Scheme of the discretization variables, the orientation of the glass plates and the liquid crystal.

x̂. The first equation is integrated with the beam propagation method (BPM) along ẑ, while the second one is
solved with the Newton-Raphson method [121]. Both Equations are discretized with a Crank-Nicholson method,
in order to conserve the energy of the propagating beam [121, Ch.19].

3.1.1 Propagation equation

In the case where the director is at 45°with the respect to the x̂ axis, a beam polarized along x̂ experiences a
walk-off δ ' 7.2°, defined according to Eq. (2.84). It can be demonstrated that for such an angle the paraxial
approximation introduces a relative error of just a few percent [122]. However, in order to minimize the numerical
error, a coordinate transformation is used which effectively tilts the frame of reference by an angle δ(θ0) with
respect to ẑ, in the same way that is usually done for the group velocity in the wave propagation equation [91,
pp.11-12] 

x′ = x+ tan δ (θ0) z

y′ = y

z′ = z .

(3.1)

The propagation equation Eq. (2.85) then becomes

2ik0n0
∂A (r̄′)

∂z′
= ∇2

⊥A
(
r̄′
)

+
[
k2

0

(
ε
(
r̄′, θ

)
− n2

0

)]
A
(
r̄′
)

(3.2)

+ 2ik0n0 [tan δ(θ)− tan δ(θ0)]
∂A (r̄′)

∂x′
, (3.3)

where the change of coordinates does not affect the transverse Laplacian ∇2
⊥ or the orientation of the electric

field polarization.
Introducing the parameters

η = 2ik0n0, (3.4)
γ(θ) = k2

0

(
ε(r̄′, θ)− n2

0

)
, (3.5)

ζ(θ) = 2ik0n0 [tan δ(θ)− tan δ(θ0)] , (3.6)

we obtain
η
∂A(r̄′)

∂z′
= ∇2

⊥A(r̄′) + γ(θ)A(r̄′) + ζ(θ)
∂A(r̄′)

∂x′
. (3.7)
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This is the equation that has to be solved numerically. The equation is discretized using the Crank-Nicholson
method [121, pp. 847-851]

A =
An+1

k,j + An
k,j

2
, (3.8)

∂A

∂z′
=

An+1
k,j −An

k,j

4z
, (3.9)

∂A

∂x′
=

1

24x

(
An+1

k+1,j + An
k+1,j

2
−

An+1
k−1,j + An

k−1,j

2

)
, (3.10)

∂2A

∂y′2
=

1

4y2


(
An+1

k,j+1 − 2An+1
k,j + An+1

k,j−1

)
+
(
An

k,j+1 − 2An
k,j + An

k,j−1

)
2

 , (3.11)

where the superscript n indicates the step number in the ẑ′ direction (with increment 4z), and the superscript
k, j are the indices along x̂′ and ŷ′, respectively (with a discretization grid 4x and 4y) (Fig. 3.1). In the plane
orthogonal to the propagation direction,M intervals are taken in the x̂′ direction and N in the ŷ′ one.

The Crank-Nicholson scheme is shown to be unconditionally stable and second-order accurate in ẑ′ [121,
pp. 847-851]. This method is also unitary, meaning that the integral of the square modulus of the function A

(i.e. the energy of the beam) is conserved during the propagation [121, pp. 851-853]. There is therefore no need
to normalize the energy of the beam at every step along ẑ′. This will be particularly important to evaluate the
propagation losses in Sect. 3.4.2.

The Equation (3.7) becomes for the point (k, j)

η
An+1

k,j −An
k,j

4z
=

1

24x2

(
An+1

k+1,j − 2An+1
k,j + An+1

k−1,j + An
k+1,j − 2An

k,j + An
k−1,j

)
+

1

24y2

(
An+1

k,j+1 − 2An+1
k,j + An+1

k,j−1 + An
k,j+1 − 2An

k,j + An
k,j−1

)
+ γ(θ)

An+1
k,j + An

k,j

2
+ ζ(θ)

1

44x

(
An+1

k+1,j + An
k+1,j −An+1

k−1,j −An
k−1,j

)
. (3.12)

Grouping the coefficients(
η

4z
− γ(θ)

2
+

1

4x2
+

1

4y2

)
︸ ︷︷ ︸

a

An+1
k,j +

(
− ζ(θ)

44x
− 1

24x2

)
︸ ︷︷ ︸

−b

An+1
k+1,j +

(
ζ(θ)

44x
− 1

24x2

)
︸ ︷︷ ︸

−c

An+1
k−1,j

+

(
− 1

24y2

)
︸ ︷︷ ︸

−d

An+1
k,j+1 +

(
− 1

24y2

)
︸ ︷︷ ︸

−d

An+1
k,j−1

=

(
η

4z
+
γ(θ)

2
− 1

4x2
− 1

4y2

)
︸ ︷︷ ︸

f

An
k,j +

(
ζ(θ)

44x
+

1

24x2

)
︸ ︷︷ ︸

b

An
k+1,j +

(
− ζ(θ)

44x
+

1

24x2

)
︸ ︷︷ ︸

c

An
k−1,j

+

(
1

24y2

)
︸ ︷︷ ︸

d

An
k,j+1 +

(
1

24y2

)
︸ ︷︷ ︸

d

An
k,j−1. (3.13)

In order to be able to write the equation in the form ȳ = ¯̄Ax̄, we need to re-number the elements of Eq. (3.13)
in a such a way that A can be written as a vector. The two indices k and j can be grouped in to new index
ind

ind = j +N(k − 1) (3.14)
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where
k = 1, . . . , M along x̂
j = 1, . . . , N along ŷ (3.15)

In this way the elements of the matrix are numbered line by line and Eq. (3.13) becomes

aAn+1
ind − bA

n+1
ind+1 − cA

n+1
ind−1 − dA

n+1
ind+N − dA

n+1
ind−N (3.16)

= fAn
ind + bAn

ind+1 + cAn
ind−1 + dAn

ind+N + dAn
ind−N (3.17)

This is the equation for the generic point (k, j). Writing this relation for all the points we can introduce the
matrices

¯̄A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a −b · · · −d
−c a −b · · · −d
... −c a −b · · · −d

−d
... −c a

. . .

−d
... . . . . . .
−d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and ¯̄B =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f b · · · d
c f b · · · d
... c f b · · · d

d
... c f

. . .

d
... . . . . . .
d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.18)

ūn+1 =

∣∣∣∣∣∣∣∣∣∣∣∣

...
An+1

ind−1

An+1
ind

An+1
ind+1

...

∣∣∣∣∣∣∣∣∣∣∣∣
. (3.19)

We obtain
¯̄Aūn+1 = ¯̄Būn (3.20)

and then
ūn+1 = ¯̄A−1 ¯̄B ūn. (3.21)

The graphical representation of the structure of the matrices ¯̄A and ¯̄B is reported in Fig.3.2a. The sparse nature
of these matrices is exploited in the numerical code to increase the efficiency of the program (Alg. B.1, Sect. B.5).

Cyclic boundary conditions

As already mentioned, light propagating in liquid crystals experiences losses due to the scattering induced by
the director fluctuations. The reorientation of the director (i .e. the variation of θ), and therefore the walk-off,
depends on the intensity of the electric field of the beam. Since the walk-off angle δ(θ) [Eq.(2.54)] is intensity
dependent, the soliton trajectory is expected to deviate from the initial walk-off δ(θ0). This means that the
soliton will not stay centered in the frame of reference that is shifting according to Eq. (3.1). Also, as it will be
presented in Sect. 3.4.2, the director fluctuations cause deviations in the nematicon propagation path. If we want
a soliton propagation over long distances, the walk-off drifting and the soliton oscillations imply that we should
adopt a large window in x̂, sensibly increasing the calculation time. Another solution is to implement cyclic
boundary conditions along x̂,1 which is the option adopted in the following.

From Eq. (3.10) and Eq. (3.11) we obtain

k = 1 ⇒ ∂2A

∂x′2
=

1

4x2

(
A2,j − 2A1,j + AM,j

)
,

∂A

∂x′
=

1

24x
(
A2,j −AM,j

)
(3.22)

k = M ⇒ ∂2A

∂x′2
=

1

4x2

(
A1,j − 2AM,j + AM−1,j

)
,

∂A

∂x′
=

1

24x
(
A1,j −AM−1,j

)
(3.23)

1This also implies that, if the beam is diffracting, there could be interferences between the beam going out from one side and the
beam that is entering. We will pay attention to avoid this situation, such as by limiting the propagation distance to 2.7 mm and by
analyzing the beam propagation for powers higher than the nematicon threshold, for which the beam is not diffracting.
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(a) (b)

Figure 3.2: Structure of the matrix ¯̄A, for a discretization (M,N) = (6, 4), in the case of open (a) and cyclic (b) boundary
conditions. The matrix ¯̄B has the same form as the matrix ¯̄A, but the terms a,−b,−c,−d are replaced with f, b, c, d
[Eq. (3.18)].

We do not need to implement these conditions along ŷ since all of the cell thickness is considered in the
simulations. The structure of the matrix is reported in Fig. 3.2b.

In the Appendix B we report the matlab code issued from our modeling. The function nematicon.m
(Sect. B.1) is where all the parameters and the variables are defined, while Propagation_Crank_Nich.m (Sect. B.2)
describes the soliton propagation. The function that writes the matrices ¯̄A and ¯̄B is reported in Sect. B.5, Alg. B.1.

When reporting the nematicon propagation, we will transform the frame of reference back to x̂ŷẑ with
Eq. (3.1) and we will unfold the soliton path in order to avoid discontinuities.

3.1.2 Reorientation equation

Now we have to take into account the fact that the LC is reoriented by the light propagating inside the medium.
At equilibrium, the electric field of the incoming light counterbalances the restoring elastic forces of LCs. In
the one-constant approximation and for the optical field in the x̂ direction, the equation that describes the
equilibrium state is Eq. (2.97), which is reproduced here for clarity

K

[
∂2θ

∂x2
+
∂2θ

∂y2

]
+

1

2
ε0 sin 2 (θ − δ(θ))4ε |E|2 = 0, (3.24)

where θ = θ (r̄). Since the transverse Laplacian is not affected by the change of coordinates, it is possible to
keep the coordinate system x̂ŷẑ. The equation, dicretized with Eq. (3.8) and Eq. (3.11), becomes

K

4x2

(
θk+1,j − 2θk,j + θk−1,j

)
+

K

4y2

(
θk,j+1 − 2θk,j + θk,j−1

)
︸ ︷︷ ︸

linear term

+
1

2
ε04ε

∣∣Ek,j∣∣2 sin 2
(
θk,j − δk,j(θk,j)

)
︸ ︷︷ ︸

nonlinear term

= 0. (3.25)

Using the same change of index of Eq. (3.14), we can write the equation in matrix notation
¯̄FLθ̄ + F̄NL

(
θ̄
)

= 0, (3.26)

where ¯̄FLθ̄ is the linear contribution and F̄NL
(
θ̄
)
is the nonlinear one.
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To solve this equation, the term on the left has to be minimized. The standard way to do that is the Newton-
Raphson optimization method. The complete theory of the method is reported in [121, Ch. 9.4], here only the
most important parts are reported. A general function F̄ (ḡ) of type

Fq (g1 ... gl ... gL) = 0, q = 1, ... Q (3.27)

can be written as a Taylor’s series

Fq(ḡ +4ḡ) = Fq(ḡ) +
L∑

l=1

(
∂Fq

∂gl

)
︸ ︷︷ ︸

Jql

4gl + O
(
4ḡ2

)
, (3.28)

where Jql is the element (q, l) of the Jacobian matrix ¯̄J . In matrix notation it becomes

F̄ (ḡ +4ḡ) = F̄ (ḡ) + ¯̄J4ḡ + O
(
4ḡ2

)
. (3.29)

Starting from a generic point ḡ, we want to find the variation 4ḡ so that [121, Ch. 9.4]

F̄ (ḡ +4ḡ) = 0. (3.30)

From Eq. (3.29) and Eq. (3.30)
¯̄J4ḡ = −F̄ (ḡ) (3.31)

and
4ḡ = − ¯̄J−1 F̄ (ḡ) . (3.32)

Starting from an initial guess ḡold of the parameters, this last equation gives the correction 4ḡ to add to the
parameter ḡ in order to satisfy Eq. (3.30)

ḡnew = ḡold +4ḡ. (3.33)

In our case
F̄ (θ̄) = ¯̄FLθ̄ + F̄NL(θ̄) (3.34)

and the Jacobian is

¯̄J =
∂F̄

∂θ̄
=
∂
(

¯̄FLθ̄ + F̄NL(θ̄)
)

∂θ̄
= ¯̄FL + diag

(
ε04ε |E|2 cos 2

(
θ̄ − δ̄(θ̄)

)(
2− 2

∂δ̄(θ̄)

∂θ̄

))
, (3.35)

where the operator diag(ḡ) produces a square diagonal matrix where the elements of the vector ḡ are on the
diagonal. The elements that compose the derivative of δ̄(θ̄) are

∂δ(θ)ind
∂θind

=
∂

∂θind

(
atan

(
εxz(θind)

εzz(θind)

))
=

1

1 +
(
εxz(θind)
εzz(θind)

)2

(∂εxz(θind)/εzz(θind))

∂θind
= (3.36)

=
1

1 +
(
εxz(θind)
εzz(θind)

)2

(
4ε
(
cos2 θind − sin2 θind

)
(ε⊥ +4ε cos2 θind)

2 +
(4ε sin θind cos θind)

2

(ε⊥ +4ε cos2 θind)
2

)
(3.37)

=
4ε ((4ε+ 2ε⊥) cos (2θind) +4ε)

4ε2 +4ε (4ε+ 2ε⊥) cos (2θind) + 2ε⊥4ε+ 2ε2
⊥
, (3.38)

where Eq. (2.84) has been used for the definition of δ(θ). The variation of θ̄ is

4θ̄ = − ¯̄J−1
(

¯̄FLθ̄ + F̄NL(θ̄)
)
. (3.39)

This correction is added to the angle θ̄ and a new 4θ̄ is calculated in the next iteration. This iterative process
is followed until the correction is smaller than a certain value (0.5 · 10−13 in our case), chosen in such a way
that a larger accuracy would not change significantly the solution.
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Boundary conditions

The boundary condition for the angle θ can be separated into two regions, along the glass plates of the LC cell
and along the thickness of the cell.

Along the thickness of the cell (k = 1 and k = M)), cyclic boundary conditions are adopted. Indeed,
since cyclic boundary conditions are implemented along the axis x̂ for the propagation equation, a continuum
behavior is needed along that direction also for the angle θ. The equations for the discretization of the linear
part of Eq. (3.25) are

k = 1 ⇒ K

4x2

(
θ2,j − 2θ1,j + θM,j

)
+

K

4y2
. . . = 0, (3.40)

k = M ⇒ K

4x2

(
θ1,j − 2θM,j + θM−1,j

)
+

K

4y2
. . . = 0. (3.41)

Along the glass plates (j = 1 and j = N ), the orientation of the molecules is assumed to be fixed by
the rubbing direction (θk,j = θ0). To model this behavior, the condition 4θ̄ = 0 is imposed for these points
(Alg. B.6).

In the simulation program, the optimization of θ̄ is done through the matlab function theta_opt.m (Alg. B.3),
where the linear and nonlinear part are discretized separately (respectively Alg. B.5 and Alg. B.6).

3.2 Numerical results

In this section the numerical results, obtained with the model explained until this point, are reported.
The system is a standard LC cell (75 µm thickness, planar alignment, rubbing at θ0 = 45° with respect to the

entrance window), filled with E7. The elastic constant K in the one-constant approximation is taken as 12 pN.
The laser beam is injected with the optical fiber described in Sect. 2.4.2 and the electric field profile is assumed
to be gaussian

A (r̄) = Â exp

(
− x2

w2
0x

− y2

w2
0y

)
, (3.42)

where the radius w0 (= w0x = w0y) is 3.7 µm at the wavelength 1064 nm. The phase front is assumed to be
planar at the exit of the fiber.

For the simulations, we adopt a window of 55 µm×75 µm in the x̂ŷ plane. The discretization is M=155
points along x̂ and N=211 points along ŷ, with 4x=4y=355 nm.

Figure 3.3: Nematicon trajectories for different step-sizes, before (orange, green and blue) and after (black and grey) the
change of coordinate. The soliton power is 3.7 mW.
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3.2.1 Importance of the frame of reference

We start by reporting on the importance of the moving frame of reference of Eq. (3.1).
The profile in the x̂ẑ plane (obtained by integrating the intensity of the beam along the ŷ axis) is reported in

Fig. 3.3 for different step-sizes, and for the cases before (orange, green and blue curves) and after (black and gray
curves) the change of variables of Eq. (3.1). The power of the beam is high enough to observe a soliton behavior,
with light confinement along the propagation. However, it is possible to see that, before the change of variables,
the large numerical error causes a curved propagation path for the nematicon. Passing from 4z =900 nm to
4z =90 nm the bending is decreased, but the computation time is increased from 1 hour to 8 hours (for a
propagation length of 3.6 mm).

When adopting a system of frame shifting with the walk-off [Eq. (3.1)], the propagation path is straight and
corresponds to the theoretical walk-off. This is the expected behavior for a soliton propagation in a medium
without losses, as was assumed here above. The intensity of the beam is constant along the propagation. The
LC reorientation and therefore the walk-off are constant too.

Using a step-size of the same order of magnitude as the wavelength (900 nm) or half of it (450 nm) gives a
difference for the output position that is less than a µm after 3.6 mm of propagation. The computation time is,
however, doubled. For these reasons, in the following, we use a step-size of 900 nm in the ẑ direction.

3.2.2 LC reorientation, beam profile and walk-off

In Fig. 3.4 we report the spatial distribution for the angle θ in a plane orthogonal to the light propagation (plane
x̂ŷ). The LC is reoriented by the electric field of the optical beam, increasing the value of θ in the center of
the section. The reorientation extends over a distance much larger than the beam size (Fig. 3.5), due to the
nonlocality of the LCs. The reorientation peak has no radial symmetry because along ŷ there are the boundary
conditions given by the glass plates (the director is pinned at θ0=45°), while along x̂ there are no constraints.

In Fig. 3.3 it is possible to see that the beam profile is not constant along the propagation, but it is continuously
focusing and defocusing with a periodicity that depends on the nematicon power, similar to the breathing
behavior of high order solitons [44, 109].

θ [°]

Figure 3.4: Spatial distribution of the angle θ on the plane x̂ŷ (at ẑ=0).
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|E|2 [V2/m2]

Figure 3.5: Intensity profile of the laser beam on the plane x̂ŷ (at ẑ=0).

δ [°]

Figure 3.6: Spatial evolution of the walk-off angle δ in a plane x̂ŷ (at ẑ=0).

From the angle θ it is possible to calculate the spatial evolution of the walk-off through Eq. (2.54). The result
is reported in Fig. 3.6. Since the beam size is much smaller than the region where the LC is reoriented, the beam
is expected to have a walk-off close to the minimum value reached at the center of the beam.
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3.3 Correlated thermal noise in LCs

As it was introduced in the first Chapter, nematic LCs are characterized by a mean orientation of the LCmolecules,
called the director and represented by the unitary vector n̂. The director is a statistical concept: it takes into
account volumes that are much larger than the molecular size and that includes a significant number of molecules.
If the molecules were not interacting (and in the absence of structured external stimuli), this local average would
be constant all over the sample and it would be enough to characterize the system macroscopically.

However, LC molecules interact with one another due to the elastic forces that connect them. This means
that a perturbation in one point will cause a perturbation at a distance much larger than the size of the molecule.
The average over a volume much larger than a molecule but smaller than the macroscopic sample, as it is the
case for the vector n̂, can therefore vary in space due to these long range fluctuations.

It is convenient to define the director as composed of two contributions2

n̂(r̄d) = n̂0 +4n̄(r̄d), (3.43)

where n̂0 is the macroscopic average of the director, 4n̄(r̄d) = nx̂d(r̄d)x̂d + nŷd(r̄d)ŷd defines the director
fluctuations and r̄d = (x̂d, ŷdẑd) designates the frame of reference of the director, where ẑd is parallel to n̂0.
The macroscopic average of these fluctuations is zero.

3.3.1 Director correlation

As presented by de Gennes in [28, Ch3.4] and [111], the director fluctuations can be evaluated in terms of
correlation between two points at a distance R̄. Here, we report the main points of de Gennes’ theory before
introducing our contribution to the model in Sect. 3.3.2.

The free energy of the system is composed of

F = F0 + Fd + Fdiel, (3.44)

where F0 is a constant contribution independent of (nx̂d(r̄d), nŷd(r̄d)), Fd is the distortion energy and Fdiel is
the contribution due to the dielectric coupling with an external electric field Ēext. These last two terms can be
evaluated to the second order in terms of the variation of the director. The elastic contributionFd takes the form

Fd =
1

2

∫ {
K1

(
∂nx̂d
∂x̂d

+
∂nŷd
∂ŷd

)2

+K2

(
∂nx̂d
∂ŷd

−
∂nŷd
∂x̂d

)2

+K3

[(
∂nx̂d
∂ẑd

)2

+

(
∂nŷd
∂ẑd

)2
]}

dr̄d (3.45)

and Fdiel

Fdiel =
1

2
ε0

∫
4ε |Eext|2

(
n2
x̂d

+ n2
ŷd

)
. (3.46)

The Fourier coefficients are defined as

~nx̂d(q̄) =

∫
nx̂d(r̄d)e

iq̄·r̄ddr̄d, (3.47)

where the components of q̄ are qβ = 2π/β with β = xd, yd, zd. The Fourier transforms of the fluctuations are

F = F0 +
1

2Ω

∑
q

{
K1 |~nx̂d(q̄)qx̂d + ~nŷd(q̄)qŷd |

2 +K2 |~nx̂d(q̄)qŷ − ~nŷ(q̄)qx̂d |
2

+
(
K3q

2
ẑd

+ ε04ε |Eext|2
) [
|~nx̂d(q̄)|2 + |~nŷd(q̄)|2

]}
, (3.48)

where Ω is the sample volume. It is possible to find a new coordinate system (~n1 (q̄), ~n2 (q̄)) where Eq. (3.48)
is diagonalized in the form [28, (pp.141-150)]

F = F0 +
1

2Ω

∑
q

∑
ι=1,2

|~nι (q̄)|2
(
K3q

2
‖ +Kιq

2
⊥ + ε04ε |Eext|2

)
, (3.49)

2Note that in this work we analyze only the spatial behavior of the director, and not its temporal dynamics.
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where q‖ = qz and q⊥⊥q‖. Since the formulation is now diagonalized, the equipartition theorem can be applied
to each degree of freedom〈

1

2Ω
|~nι (q̄)|2

(
K3q

2
‖ +Kιq

2
⊥ + ε04ε |Eext|2

)〉
=

1

2
kBT ι = 1, 2 (3.50)

and, in the one-constant approximation for LC, we have〈
|ñι(q̄)|2

〉
=

ΩkBT

K (q2 + ξ−2)
ι = 1, 2 (3.51)

where ξ = K/
(
ε04ε |Eext|2

)
.

Since the average of the fluctuations in the coordinate system x̂dŷdẑd is zero, the correlation of nx̂ between
two different points is 〈nx̂d(r̄d,1)nx̂d(r̄d,2)〉. Developing in series the components

nx̂d(r̄d) = Ω−1
∑
q

~nx̂d (q̄) e−iq̄·r̄d , (3.52)

it is possible to write

〈nx̂d(r̄d,1)nx̂d(r̄d,2)〉 =
1

Ω2

〈(∑
q

ñx̂d(q̄) e−iq̄·r̄d,1

)∑
q′

~nx̂d(q̄′) e−iq̄
′·r̄d,2

∗〉

=
1

Ω2

∑
qq′

〈
ñx̂d(q̄)~n∗x̂d(q̄′)

〉
ei(q̄

′·r̄d,2−q̄·r̄d,1). (3.53)

Since the Fourier coefficient ñx̂d(q̄) and ñx̂d(q̄′) are orthogonal if q 6= q′, the last equation takes the form

〈nx̂d (r̄d,1) nx̂d (r̄d,2)〉 =
1

Ω2

∑
q

〈
|ñx̂d(q̄)|2

〉
e(iq̄·R̄), (3.54)

where R̄ = r̄d,2 − r̄d,1 is the distance between the two points. Since the norm of the fluctuation vector is
conserved in the change of variables, i.e. |ñx̂d(q̄)|2+|ñŷd(q̄)|2 = |ñ1(q̄)|2+|ñ2(q̄)|2, and the average fluctuations
on the two axis are the same, i.e.

〈
|ñx̂d(q̄)|2

〉
=
〈
|ñŷd(q̄)|2

〉
, it is possible to write

〈nx̂d(r̄d,1)nx̂d(r̄d,2)〉 =
1

2Ω2

∑
q

〈
|ñ1(q̄)|2 + |ñ2(q̄)|2

〉
eiq̄·R̄ (3.55)

and then, with Eq. (3.51)

〈nx̂d(r̄d,1)nx̂d(r̄d,2)〉 =
1

Ω

∑
q

kBT

K (q2 + ξ−2)
eiq̄·R̄. (3.56)

Going from the sum to the integral (
∑

q →
∫

Ω
(2π)2

dq̄) we have finally

〈nx̂d(r̄d,1)nx̂d(r̄d,2)〉 =
kBT

K

1

(2π)3

∫
1

q2 + ξ−2
eiq̄·R̄dq̄. (3.57)

The lower and the upper bounds of the integral are respectively zero and a certain qmax = 2π/a, where a is
the smallest size below which the continuum theory is no longer valid.

Equation (3.57) describes the covariance matrix that characterizes the nematic director fluctuations. The
off-diagonal elements of the matrix are obtained from Eq. (3.57) in the limit R� a

〈nx̂d(r̄d,1)nx̂(r̄d,2)〉 =
kBT

4πKR
e−R/ξ. (3.58)
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(a) (b)

Figure 3.7: (a) Evolution of the correlation over a grid size, according to Eq. (3.58) and Eq. (3.59); (b) evolution of the
correlation over a scale much larger than the grid size and in the case where the diagonal is defined according to Eq. (3.63).

The correlation expressed by Eq. (3.58) depends, through the coefficient ξ, on the applied electric field and the
distanceR between the two considered points. In the absence of the electric field, the correlation is considered as
long range since it is slowly decreasing (∝ 1/R). Indeed, in that case, it is not possible to define a characteristic
distance above which the fluctuations decrease fast enough to be considered negligible [28, Ch.3]. The effect of
an electric field is to exponentially dump the fluctuations, which then take place over the coherence length ξ.

The diagonal of the correlation matrix (the variance) cannot be calculated with Eq. (3.58), since the coefficient
diverges for R→ 0. A method to estimate the variance is to truncate the integral at qmax, obtaining [28, p.148]〈

n2
x̂d

〉
' kBT

2π2K

(
qmax −

π

2ξ

)
(3.59)

As qmax = 2π/a, the proper choice of a is crucial in order to evaluate the amplitude of the fluctuations and it
is usually taken to be of the order of magnitude of the intermolecular [28, 113] or intermicellar [112] distance (a
few nm), values below which the continuum theory of LCs is no longer valid.

3.3.2 Director correlation on the discretization grid

In our case the correlation function is not a continuous function, but the values of R in Eq. (3.57) are limited to
the points on the discretization grid. Since this grid (4x = 4y = 355 nm, 4z = 900 nm) is much larger than
the intermolecular distance (a few nm) due to computing memory limitations, the correlation is greatly decreased
over the grid length scales 4x, 4y and 4z. In Fig. 3.7a it is possible to see that the correlation passes from a
value of ∼ 4 · 10−2 to ∼ 7 · 10−5 over 4x =355 nm.

As explained above, we should take the maximum value, given by Eq. (3.59), as the diagonal element and
therefore the representative value over the grid length scale. Such an almost-diagonal matrix would then describe
a largely uncorrelated system, and we would lose the benefit of our approach, as will be shown later.

This approximation overestimates the value of the diagonal, for this reason we take as diagonal elements
the average E of the correlation function [Eq. (3.57)] over one grid unit size, i.e. along x̂:

E [〈nx̂d(r̄d,1)nx̂d(r̄d,2)〉] =
kBT

K (2π)3

1

4x

∫ 4x
0

∫ qmax

0

1

(q2 + ξ−2)
eiq̄·R̄dq̄ dR, (3.60)

where r̄d,2 − r̄d,1 = R < 4x. Since in our case the limit of the continuum theory is given by the grid size, it is
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possible to take qmax = 2π/4x

E [〈nx̂d (r̄d,1) nx̂d (r̄d,2)〉] =
kBT

2Kπ2

1

4x

∫ 4x
0

∫ 2π/4x

0

q2

(q2 + ξ−2)

sin (qR)

qR
dq dR

=
kBT

2Kπ2

1

4x

∫ 2π/4x

0

q2

(q2 + ξ−2)

∫ 4x
0

sin (qR)

qR
dRdq. (3.61)

Introducing the definition of the sine integral

Si (x) =

∫ x

0

sin t

t
dt, (3.62)

Eq. (3.61) takes the form

E [〈nx̂d(r̄d,1)nx̂d(r̄d,2)〉] =
kBT

2Kπ2

1

4x

∫ 2π/4x

0

q

(q2 + ξ−2)
Si (q4x) dq, (3.63)

which constitutes the value on the diagonal elements (the variance) of the covariance matrix

E [〈nx̂d(r̄d,1)nx̂d (r̄2)〉] =
〈
n2x̂d(r̄d)

〉
. (3.64)

The evolution of the correlation, defined by Eq. (3.58) and Eq. (3.63), is reported in Fig. 3.7b. It is possible to
see that now the values of the correlation at the peak and at several micrometers from it are only one order of
magnitude different, which is different from the case of Fig. 3.7a. The function average.m (Alg. B.8) calculates
this integral, while the function correlation_plane_xy.m (Alg. B.8) writes the correlation matrix.

3.3.3 Generate a correlated noise

Using Eq. (3.63) and Eq. (3.58) respectively for the diagonal and off-diagonal elements, it is possible to generate the
correlation matrix ¯̄C . An uncorrelated random variable ¯̄N normally distributed is generated and the correlation
is forced through the relation [123]

¯̄Ncorr = ¯̄U ¯̄N (3.65)

where ¯̄Ncorr is the correlated noise and ¯̄U is the upper triangular form of the Cholesky decomposition of the
correlation matrix ( ¯̄C = ¯̄U ¯̄U †, with ¯̄U † the conjugated transpose).

(a) (b)

Figure 3.8: (a) Uncorrelated normally distributed random noise on θ; (b) Correlated noise on θ obtained by forcing the
correlation ¯̄C on the noise reported in (a) with Eq. (3.65).
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(a) (b)

Figure 3.9: Profile of |E|2 of the transmitted visible light (532 nm) through a 50 µm thick cell for the case of uncorrelated
(a) and correlated (b) thermal noise. The beam power is 3.7 mW and its radius is w0=25µm.

The matrix ¯̄Ncorr therefore describes the spatial distribution of nx̂d , characterized by a correlation ¯̄C . Since
the variable that describes the LC is θ, we choose one of the two fluctuation components, nx̂d , to lie in the plane
x̂ẑ. In this way, the angular variation dθ can easily be calculated with

dθ = arctan(nx̂d). (3.66)

In order to show the effect of the correlation on the fluctuation distribution, in Fig. 3.8 we report the uncorrelated
(a) and the correlated (b) noise generated in the x̂ŷ plane. The uncorrelated noise ¯̄N is generated with the formula

¯̄Nuncorr =
√
〈n2x̂d(r̄d)〉 ¯̄N, (3.67)

where only the variance is forced on the noise. This is done in order to have the same amplitude oscillations
for both ¯̄Ncorr and ¯̄Nuncorr and to be able to evaluate the effect on light propagation due only to the grain size
of the director fluctuation.

The uncorrelated noise presents a uniform random distribution, while in the correlated case the slowly
varying oscillations of the angle θ occurring over tens of µm can clearly be seen. This result is in agreement
with the experimental observation of the director fluctuations reported in the literature [118].

Due to the large volume covered by the soliton propagation and the finite availability of computational
memory, it is not possible to write the complete 3-dimensional correlation matrix, as it scales with the square of
the number of points. Given the geometry of the system (BPM and one-constant approximation), we generate
the correlated noise in planes x̂ŷ orthogonal to the soliton propagation.

The x̂ŷ-correlated noise is not generated at every step, since it would mean a completely uncorrelated noise
along ẑ, but every 10 µm, which is the same order of magnitude as the grains in the correlated noise pattern.
The noise is then linearly interpolated along ẑ, in order to have a noise profile slowly varying along ẑ, with an
appropriate level of correlation in this direction. Finally, since we do not apply a homogeneous electric field
to the cell and since the peak of the optical electric field is too small to induce a significant quenching of the
director fluctuations [124], in the simulations we consider Eext null and hence ξ infinite.

The so-generated noise dθ is added to the angle θ at every propagation step after the optimization of Eq. (3.25).

3.4 Light propagation in LCs

In this section the results of the simulations are presented, for both linear and nonlinear regimes. The comparison
between experimental and numerical results is presented for the case of the nematicon propagation.
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3.4.1 Linear propagation and speckle formation

The first step is to analyze the light propagation for powers low enough to avoid any nonlinear effects. We
thus expect to reproduce by numerical simulations the observed speckle pattern produced when a laser-beam
propagates through a liquid crystal device. In order to compare the results with the literature [117, 118], we
simulate the propagation of visible light (532 nm) through a planar aligned 50 µm cell filled with E7.

The effect of the spatial correlations is highlighted in Fig. 3.9 by comparing the propagation through LC
with uncorrelated and correlated noise. For the uncorrelated case, the noise is randomly generated at every step
along the propagation. The resulting output is an almost unperturbed beam profile (Fig. 3.9a). Since the noise
grain size equals the simulation grid, which is smaller than the wavelength, the light cannot be locally focused. It
therefore follows a homogeneous output profile without any speckle pattern. Also, the noise induced diffraction
is averaged along ẑ: since the director fluctuation is generated at every simulation step, this effectively removes
any correlated-like pattern along the propagation.

For the case of noise which is correlated (Fig. 3.9b), the smooth variation of the director distribution (and
therefore of the refractive index) causes a local (random) focusing and defocusing of the light as it propagates.
The characteristic speckle pattern is therefore generated.

The spatial correlation of the LC director is therefore essential to account for the characteristic speckle
generation in LCs.

3.4.2 Nematicon propagation, numerical and experimental

In this section, the experimental measurements and the numerical results will be presented for the nonlinear
propagation regime. We will compare the nematicon fluctuations and the propagation losses obtained in the
two cases.

Experimental measurement

The sample geometry is the one used for the numerical simulations described in Sect. 3.2. A standard LC cell
is employed (thickness defined by 75 µm spacers, planar alignment, rubbing at θ0 = 45° with respect to the
entrance side of the cell). It is filled with a solution of 1 wt.% of pyrromethene 597 dye (PM597, Sigma-Aldrich) in
E7, since this same cell will be used in Ch. 6 for amplified spontaneous emission together with soliton generation.

CCD
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Figure 3.10: (a) Scheme of the setup for the nematicon injection and (b) schematic of the nematicon injection into the LC
cell through an optical fiber; (c) propagation of the IR beam (1.7 mW) for a polarization parallel to the ŷ axis (above) or to
the x̂ axis (below), for the same exposure time; the scale bar is 500 µm.
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(a)

z [mm]
0 0.5 1 1.5 2 2.5

x 
[7

m
]

400

300

200

100

0

z [mm]
0 0.5 1 1.5 2 2.5

x 
[7

m
]

400

300

200

100

0

(b)

Figure 3.11: Experimental measurement of the nematicon profile. (a) Example of two nematicon profiles observed for a
beam of 1.1 mW (above) and 3.7 mW (below) at 23 °C; the scale bar is 500 µm; (b) three frames of the experimental soliton
trajectory for an input power of 1.1 mW (top) and 3.7 mW (bottom).

Note that for this study the presence of the dye is not relevant since, as it will be shown in the next Chapter,
the dye does not absorb the CW 1064 nm infrared light of the laser used to excite the nematicons. Through
a microscope objective (f=8.0 mm, numerical aperture 0.5), the IR beam is injected into an optical fiber slid
between the two glasses (Fig. 3.10b). The fiber, whose characteristics are reported in Sect. 2.4.2, supports a
mode with a radius (at 1/e2) of 3.7 µm at 1064 nm.

If the beam polarization is along ŷ, the torque of the optical electric field on the LC director is minimum.
The director does not reorient, and the beam diffracts. If the input beam is polarized along x̂, the optical torque
is maximized, and the nematicon is created [19, 22, 25]. This behaviour is reported in Fig. 3.10c.

In Fig. 3.11a two intensity profiles acquired for two different powers are shown. At low power, the trajectory
of the soliton is stable and straight. A weak ordinary beam is visible, probably due to the perturbation of the LC
due to the optical fiber and the consequent depolarization of the light [125]. The soliton propagates over a few
millimeters with almost no diffraction. However, by increasing the power, the nematicon starts to deviate from
the straight path and starts to oscillate in space.

In order to quantify these oscillations, the trajectories at different times are compared. The soliton trajectory
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Figure 3.12: (a) Position of the beam after 2.7 mm of propagation as a function of time for a soliton of 1.1 mW (stars) and
of 3.7 mW (empty circles); (b) oscillation amplitudes (blue triangles, right axis) and losses (red circles, left axis) as a function
of the power.

along the propagation distance is estimated by interpolating, at a different ẑ position, the measured intensity
profile along x̂ with a Gaussian function. Three frames of the soliton propagation paths for two powers are
shown in Fig. 3.11b. It is possible to see that the oscillation amplitude increases with the soliton power.

Since the LC molecules fluctuate due to thermal noise, the refractive index profile and therefore the soliton
path vary in time. Plotting the soliton position as a function of time after 2.7 mm of propagation for 2 different
powers (Fig. 3.12a) shows that the soliton oscillates around a mean value and that the largest oscillations appear
at the highest power. In Fig. 3.12b we plot the amplitude of the oscillations as a function of the power. The
oscillations increase almost by a factor 3 from 1.1 mW to 3.7 mW. It has been demonstrated that the intrinsic
breathing behavior of nematicons, where the beam becomes overfocused periodically, has an oscillation pe-
riod that decreases by increasing the nematicon power [30, 126]. Indeed, when the soliton diameter becomes
smaller than the director fluctuation grain size, the nematicon, instead of being diffracted and destroyed, is rather
refracted [127] and hence its propagation path deviates.

From the gaussian fit to the measured intensity profile along x̂ it is also possible to compute the integral of
the intensity profile, in order to obtain the evolution of the energy as a function of ẑ. The exponential decay is
fitted with a function ∝ exp(−αz), where α represents the loss coefficient. The evolution of α as a function of
the power is also shown in Fig. 3.12b. Increasing the power, and therefore the focusing of the soliton, we observe
a decrease of the loss coefficient as the photons are less scattered. This is consistent with the fact that the soliton
is refracted (leading to propagation path deviation), rather than scattered, by the refractive index perturbations.

Numerical results

We performed 50 simulations of the propagation of solitons for input powers ranging from 1.1 mW to 3.7 mW.
The number of simulations is high enough to obtain a reliable statistics, without requiring a too large computa-
tional time (every simulation takes around one hour). For every simulation, a different correlated director noise
pattern is generated every 10 µm, as described in Sect. 3.3. In Fig. 3.13a examples of soliton trajectories at the
two different powers are reported. Even if abrupt changes in the path direction are not present, the spatial
oscillations obtained in the numerical simulations are in good agreement with the experimental results.

In order to evaluate this behavior, the nematicon position after 2.7 mm of propagation is shown in Fig. 3.13b
for 1.1 mW and 3.7 mW. Since our model does not describe the temporal behavior of the system, every simulation
is independent of previous ones. For this reason, when the oscillation amplitudes at different times (referred
to as frames here) are presented, we do not observe a continuous evolution as in the experiments. However,
comparing the maximum deviation of the soliton from the straight path, it is possible to observe larger oscillations
for increasing powers, which is consistent with the experimental observations.

Importantly, comparing models of the soliton oscillations at high power for cases where the modeled noise
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Figure 3.13: Numerical simulations of the nematicon profile. (a) Three of the numerical simulations of the soliton trajectory
with a soliton power of 1.1 mW (top) and 3.7 mW (bottom); (b) position of the beam after 2.7 mm of propagation for 50
generations of the noise for a soliton of 1.1 mW (stars), 3.7 mW (empty circles) and 3.7 mW for the case of uncorrelated
noise (full circles); (c) oscillation amplitudes (blue triangles, right axis) and losses (red circles, right axis) as a function of the
power. The losses are plotted for the case of correlated (circles) and uncorrelated (stars) noise.

is correlated and uncorrelated (Fig. 3.13b), we observe a drop in the nematicon oscillation amplitudes from
∼120 µm to ∼15 µm in the latter case. Without the spatial correlation of the director fluctuations, the length-
scale of the refractive index variations is much smaller than the soliton diameter. In practice, the length-scale of
these variations is then defined by the discretization grid used for the simulations. In that limit, the soliton only
slightly deviates during propagation even at high powers. The spatial correlation of the director fluctuations is
therefore an important phenomenon to take into consideration for the proper modeling of the spatial instabilities
of soliton propagation in LCs.

The correlated noise in the numerical modeling causes a power-dependent behavior of the oscillation am-
plitudes (Fig. 3.13c, blue triangles) that is in good agreement with the experimentally observed behavior. The
difference between the experimental results and the simulations with correlated noise can be explained by the
fact that in practice, when the fiber is slid into the LC cell, it causes a perturbation in the LC director profile that
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is not taken into account in our model. This perturbation extends over a distance that is a multiple times the
thickness of the cell [125] and therefore causes a delay in the formation of the soliton equilibrium profile. For this
reason, in the experiment, the nematicon does not oscillate from the beginning of its propagation (Fig. 3.11b).
The oscillation amplitudes are therefore measured at a distance that is effectively shorter than 2.7 mm. The
amplitudes experimentally measured are therefore smaller than the ones obtained from the simulations, where
the soliton starts to oscillate close to the injection. Also, in our one-constant approximation, the correlation is
assumed to be isotropic. However, along the ẑ axis, a dominant bend-splay deformation takes place, which may
be associated with a larger elastic constant (K3). Since the correlation is inversely proportional to the elastic
constant K , we are overestimating the correlation and therefore the scattering as the nematicon propagates.

In Fig. 3.13c (red circles), the loss coefficient α is showed as a function of the input power for the case of
correlated noise. The values and the power-dependent behavior of α, ranging from 6.3 cm−1 to 3.8 cm−1 over
our range of powers, are in good agreement with the experiments. The factor of 2 difference may be due to the
overestimation of the scattering in the one-constant approximation. The same order of magnitude for the loss
coefficient can be found in the literature [20, 109], even if no dependence on the nematicon power is reported.

On the same graph, as a comparison, the losses obtained for the case of uncorrelated noise are also shown, for
which almost no dependence on the nematicon power is observed. The losses are substantially less (∼1.5 cm−1)
when the director fluctuation noise is uncorrelated, compared to the case of correlated noise. Indeed, when the
noise is uncorrelated, the size of the noise grains is defined by the discretization grid, which is much smaller
than the nematicon diameter at all powers. The nematicon is therefore not scattered or deviated by the director
fluctuations, since the soliton does not experience the effects of speckle formation (as observed in Fig. 3.9).
There is consequently no loss of energy in the central part of the beam, independently on the soliton power and
its focusing. This is not what happens in the case of correlated noise, where the nematicon diameter at high
powers becomes comparable or smaller than the noise grain size. The soliton is refracted and therefore deviated,
rather than scattered by the refractive index perturbations. This shows once again how taking into account the
correlation in director fluctuations improves the description of soliton propagation in liquid crystalline systems.

3.5 Conclusions

In this Chapter, we have demonstrated a new method to properly include the thermal fluctuations of the director
in LCs when modelling nematicon propagation, starting from the common parameters of LCs and without the
need for an ad hoc loss term in the propagation equation. In such systems, the long range interaction among
the molecules must be taken into account when generating the thermal noise, through the spatial correlation
of the director fluctuations. The computed correlated noise allows us to explain the experimentally observed
spatial fluctuations of nematicons at high powers and the propagation losses experienced by the nematicons.
Further improvements could be added to our model, for example through the introduction of full modeling of
the correlation along the ẑ direction, the temporal evolution of the director orientation, the power dependence
of the loss coefficient or the introduction of the three elastic constants. However, the oscillation amplitudes
obtained with our model are in good agreement with the values experimentally measured. We believe that this
method could also help the modeling of both linear phenomena involving speckle generation and more complex
nonlinear behavior in LCs, such as modulation instabilities or filamentation. In Ch. 6, the power dependent
soliton fluctuations, will be particularly important to understand the optimization of the soliton collection of light
generated within the same dye-doped LC cell.



CHAPTER 3. SPATIAL FLUCTUATIONS OF SOLITONS IN LCS 44



Optical gain in liquid crystals 4Chapter
In this Chapter, we will focus on the optical gain that dye-doped and polymer-doped LCs can provide. This gain
will be used in the next Chapters for amplification and lasing or for the interaction with the soliton propagation.

Part of this work, the one related to the polymer-doped LC, was performed as a continuation of my Master
thesis at the Politecnico di Milano [128], conducted in collaboration with the Université libre de Bruxelles and
the Ghent University. Some of the figures and the descriptions used for the theoretical introduction have been
published in that Master thesis [128], but all the results reported here are original. The results presented in this
Chapter have been published in Chemical Communications [129], Journal of Polymer Science Part B [130] and
Optics Letters [131].

There are different ways to obtain optical gain from LC-based devices. It is possible, for example, to
synthesize photoluminescent molecules that also present a mesophase [132–135]. Another way is to dope a
standard non-emitting LC with materials that provide optical gain. These materials can have different origins,
ranging from dyes [57, 136–139] to quantum dots [140, 141]. Different geometries can be adopted, for example
the gain medium can be uniformly dispersed [10, 142–144] or separated in to layers [145–147] within the device.

In this work, we will focus on the case where the photoemitting molecules (dyes or polymers) are dispersed
in the LC. One of the advantages of this configuration is that, in most cases, it is quite easy to dissolve small
quantities of organic molecules in the LC. The cell can then be filled by capillarity with the doped mixture in the
same way as presented in Ch. 2. Elongated molecules, like dyes or polymers, that are dispersed in nematic LCs
show the tendency to align themselves along the director [148, 149]. When such a mixture is introduced in a cell,
the dye/polymer assumes a well defined macroscopic orientation together withe the LC. The transition dipole of
the fluorescent molecules is also well aligned in the samples, which therefore exhibits polarized absorption and
photoluminescence (PL) spectra [136, 150]. Also, since the LC can be reoriented by an external electric field and
the guest organic molecules are reoriented with it, it is possible to switch the polarization of the emitted light [151,
152]. These remarkable features are particularly interesting for applications such as displays [3] or to increase
the laser pump efficiency [153]. Usually, such well-aligned samples are obtained in solid state samples through
mechanical, thermal or solvent treatment [154–156]. On the other hand, in the case of LC-dispersed organic
molecules, the alignment of the dye or the polymer is spontaneously obtained thanks to the LC self-alignment.

What we are interested in is not only the photoluminescence, but the optical gain provided by these
molecules. The optical gain is the capacity of the medium to amplify the light that is traversing it. This is
the result of a positive balance between the amplification, provided by the polymer or the dye, and the prop-
agation losses mainly due to scattering and absorption. The main technique employed to study the temporal
evolution of the optical gain is the pump-probe spectroscopy. This technique spectrally and temporally charac-
terizes the optically-induced excited states of the system. It is possible to study the formation and evolution of
the excited states, and how they provide gain or losses for the light traversing the material. The pump-probe
technique is therefore used for the photophysical characterization of the medium.

The first two Sections of this Chapter will be devoted to the introduction of both the physics of organic
molecules and the pump-probe spectroscopy. This technique will then be used in the second part of the Chapter
to characterize two different systems, the dye- and the polymer-doped LC.

In Sect. 4.3, the properties of a dye-dispersed LC will be analyzed. The dye is easily dissolved in the
LC matrix. Also, the slightly elongated dye molecules are aligned by the nematic liquid crystals, giving rise
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(a) sp3 (b) sp2 + pz (c) sp + pz + py

Figure 4.1: Possible hybridizations of the Carbon atom.

to polarized emission [136, 157]. Indeed, the spectral properties of an organic molecule can be modified by
the solvent that is used to disperse it [158, Ch.7]. In particular, the anisotropy and the alignment provided by
the LC induces the polarization of the dye spectrum [136]. The optical gain provided for such a system has
been exploited for different purposes, such as pulse amplification [159, 160], lasing [8, 10, 11, 58] or amplified
spontaneous emission [161, 162]. Surprisingly, no pump-probe spectroscopy had been conducted on this kind of
system before our work. In Sect. 4.3 we will present the polarized pump-probe spectra of a particular dye, the
PM597, mixed with the E7 LC. The dye molecules are not randomly oriented as in a liquid solution, but they
are well aligned by the LC matrix. It is therefore possible to separate the contribution of the gain parallel and
orthogonal to the long axis of the dye. A particular kind of emission, the amplified spontaneous emission, will
then be studied in dye-doped LC.

In Sect. 4.4 the photophysical properties of a polymer, the polyfluorene, dispersed in a LC matrix will
be discussed. Indeed, longer molecules are better aligned by LCs than shorter ones [148] and they present the
advantage to increase the order of a LC molecular distribution [153]. We will also study the complex morphology
induced by the polymer in the LC with the aid of a particular kind of confocal microscopy. The combined study
of the morphology and the photophysics of the sample provides a useful insight in to the optical properties of
the sample.

4.1 Organic semiconductors

In this Section we give a general introduction about semiconducting organic materials. For a detailed dissertation
on the subject we refer to the literature [163, 164].

Organic molecules are carbon-based structures. The electronic configuration of the ground state of the
Carbon atom is 1s22s22p2. The four electrons in the external shell contribute to chemical bonds, while the two
electrons in the 1s shell have an ionization potential that is too high to interact with other atoms. We will then
focus on the outer shell, responsible for the chemical interactions and the optical excitation.

It is possible to represent the three different hybridizations sp3, sp2 and sp as a combination of the s and p
orbitals (Fig. 4.1) [165, Ch.10.2].

If three p orbitals and one s orbital combine, they form four identical orbitals sp3 in which the electron
cloud points at the vertexes of a tetrahedron (4.1a), where the nearest atoms are located. The overlap of the
orbitals responsible for the chemical bonding is localized between the two atoms and it has an even symmetry
with respect to the plane of the molecule (σ bond). In this case, the carbon atom forms four single covalent
bonds with four different atoms, as for example ethane (CH3 − CH3).

If two p and one s orbitals combine, they give rise to three sp2 lying in the plane of the molecules. The
remaining p orbital (for convention the pz ) stays orthogonal to that plane. The sp2 orbitals give rise to σ bonds.
The pz orbitals, when overlapping, generate chemical bonds with an odd symmetry with respect to the plane
and a node in that plane (π bonds). In order to have the maximum overlap, the molecule has to be planar and
the pz orbitals have to point in the same direction.

In the case of sp hybridization, the p and the s orbitals combine in two sp with σ symmetry. Together with
the remaining p orbitals, they form a triple bond between the two atoms.
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(a) (b)

Figure 4.2: Resonance structures in the case of 1,3-butadiene (a) and benzene (b).

(a) (b)

Figure 4.3: Chemical structures of the PM597 dye (a) and PFO (b).

We consider a sequence of sp2 hybridized carbon atoms. This is the case for example of the 1,3-butadiene
(H2C = CH− CH = CH2). The electrons forming a σ bond need higher energy than the π electrons to be
excited, since σ electrons are well localized between two atoms. They will not be considered in the excitation
process hereafter.

The π bonds have the electronic density that is not localized between the two atoms, but pointing orthogonal
to direction of the bond. When the molecules is planar, adjacent π bonds overlap and the electrons are delocalized
over all the atoms sharing a π electron. This delocalization, called π conjugation, allows the electrons to move
freely along the conjugation, making the molecule behave as a semiconductor. When the conjugation takes place
in an cyclic molecule, it is called aromaticity.1 The sharing of π electrons is represented as an alternation of
single and double bonds, while in reality all the bonds are equivalent and the pz orbitals are not simply localized
at the position of the double bond. For this reason, it is possible to draw different resonance structures for the
same molecule (Fig. 4.2), while the actual structure is in-between all of them.

The rigorous way to study the energy levels is to build the molecular orbitals starting from the atomic orbitals
that we just described [167, Ch.1]. Indeed, it is possible to show that that their combination forms energy bands,
in the same way as the atomic orbitals combine to form the conduction and the valence band of a crystal [168,
Ch.8]. However, the rigorous discussion of the process goes beyond the scope of this work.

A simplified but extremely useful way to understand the behavior of π energy levels is to think of the π
electrons that compose the conjugation as particles in a quantum well of finite height [169, Ch.9]. The larger
the well (i.e. the longer the conjugation), the less confined are the particles and the more the energy levels
become closer together [170, Ch.2]. This means that, by increasing the conjugation of a molecule, the energy
required to excite an electron is decreased and the absorption and the photoluminescence are shifted towards
red wavelengths.

This means that their fundamental state is when the lowest energetic levels are filled and there is an energy
gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
1An aromatic molecule, in addition to exhibit conjugated π electrons, be planar and cyclic, also has to have a number of π electrons

that is even, but not multiple of 4. The analysis of these features, and the way they confer enhanced chemical stability to aromatic
molecules [166, Ch.4], lies outside the aim of the dissertation.
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Figure 4.4: Perrin-Jablonski representation of the states of the system and the possible phenomena that can occur: radiative
recombinations (straight arrows) and non radiative recombinations (undulating arrows), such as intersystem crossing (ISC)
and internal conversion (IC). Figure from [158, Ch.3].

(LUMO). If the conjugation is extended enough, the energy gap falls in the range of wavelengths in the visible
and the molecule is considered an organic semiconductor.2

The chemical structures of the pyrromethene 597 dye (PM597) and Poly(9,9-dioctylfluorene) (PFO) are re-
ported in Fig. 4.3, both are aromatic structures. These are the molecules employed in this work.

The Perrin-Jablonski diagram (Fig. 4.4) is an instructive and clear way to look at the different processes that
can occur during the excitation of a molecule. The diagram reports the electronic states of the molecules. Since,
as we said, they usually have an even number of electrons, the total spin S is S = 0 and the spin multiplicity is
2S+ 1 = 1. This state is called the singlet state and the fundamental state is denoted by S0. For each electronic
level there is a set of vibrational and rotational levels, that are populated according to the Boltzmann law.

The Perrin-Jablonski diagram reports these electronic and vibro-rotational levels. If an electron is excited
through a radiative transition, the spin is conserved and the system stays in the singlet state. In the Perrin-
Jablonski diagram the radiative transitions (excitations or disexcitation) are represented by straight arrows; the
non-radiative transitions are represented with undulating arrows.

What we observe if we send a white light beam through the sample is the absorption of a part of the light.
The absorption is represented by the blue part of the Fig. 4.4. We cannot resolve the rotational levels but we can
distinguish the vibrational levels if they are sufficiently separated (as for the polyfluorene, as it will be analyzed
in Sect. 4.4).

The system can follow different paths for the disexcitation, depending also on which state the system reaches
after the excitation. If the system is in the S1 state, it quickly thermalizes (vibronical relaxation, vertical undulating
arrows) towards the least energetic vibronical state and then it decays in a radiative way towards the ground
2Note that the energy gap is larger than in inorganic semiconductors (1-2 eV). Indeed, in order to be semiconductors, the molecules

have to be doped with the injection of charges [163]. However, we are only interested in the fact that the optical band-gap falls in the
visible region, therefore we will not investigate the electric properties of organic molecules.
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state. These emitted photons are called fluorescence emission. The fluorescence is also usually specular to the
absorption due to the similarity of the vibrational levels for the ground and for the excited state. Since part of
the energy is dissipated into non-radiative processes, the emitted photon has a lower energy than the absorbed
photon. The distance between the maximum of the absorption and the emission bands is called the Stokes
shift. The presence of a solvent can also influence the relaxation of the molecule and change the amplitude of
the Stokes shift. The larger the Stokes shift, the smaller the self-absorption (i.e. the superposition between the
absorption and the emission spectra).

Mechanism Timescale [s]
Absorption . 10−15

Vibronical relaxation 10−14 − 10−11

Fluorescence 10−12 − 10−6

IC 10−14 − 10−11

ISC 10−12 − 10−4

Phosphorescence 10−6 − 1

Table 4.1: Timescales of the different phenomena that can
take place in an organic system [164].

If the system is excited into S2, it thermalizes to-
wards the lowest vibronical state, and can then follow
two paths. The first one is to decay radiatively (usu-
ally this process has a low probability of occurring, so
it is not reported in Fig. 4.4). The second way is to
undergo internal conversion (IC): it is a mechanism in
which the system passes to a state with the same en-
ergy and spin multiplicity of the initial state, but that is
at a higher vibro-rotational level of the lower excited
electronic system S1. It is a non-radiative mechanism.
After that, it thermalizes and then contributes to fluo-
rescence. This same internal conversion can also hap-
pen between the S1 and the S0, but in that case we
have a full non-radiative path from the excited to the ground state, and so the fluorescence will be decreased.

Another non-radiative process is the intersystem crossing (ISC), in which the spin is flipped for one of the
electrons and the system changes the multiplicity. This transition occurs between two levels of the same energy,
and then the system undergoes thermalization. The system can decay radiatively from the lowest energetic
triplet level T1, but since this transition is not electric-dipole allowed, its decay time is much longer than that of
fluorescence. This last radiative decay is known as phosphorescence.

All these mechanisms act on different timescales, reported in Tab. 4.1. As it will be explained later, the
pump-probe technique allows for the study of the temporal evolution of the system through these levels.

4.1.1 Excited species in organics

In this Section, we analyze in further detail how the excitations in organic materials look like. When an electron
is excited to the LUMO level, a hole is created in the HOMO level. The Coulomb attraction keeps the electron
and the hole together and they form a neutral species called an exciton. The distance between the hole and the
electron distinguishes between excitons, polarons and free charges [164, Part I, Ch. D].

In organic materials the dielectric constant is usually lower than for inorganic crystals and the interaction
between the electron and the hole tends to be stronger. Due to their linear structure, the system is also susceptible
to structural distortions that tends to stabilize the excited state [163, Ch. 2] (what we previously called "vibronical
relaxations"). This is the Frenkel exciton, which is localized to the local distortion of the organic material and
usually has a radius of the same order as the intermolecular distance.

If the distance between the electron and the hole increases, the coulombic interaction between the two
decreases and becomes comparable to the thermal energy [164, Part II, Ch. B]. If they still feel each other, we
speak about polaron pairs. The polarons are usually accompanied by a local deformation of the molecule. If the
thermal fluctuations are high enough, the two charges become free single charge carriers. All these excitations
can move along the conjugation and, eventually, from one molecule to another, if the molecules are close enough.

All these species present their own absorption spectra, which can overlap with the emission spectrum and
decrease the optical gain. This will be of particular importance for the study of the polyfluorene pump-probe
spectra in Sect. 4.4.
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Figure 4.5: Scheme of the setup for the femtosecond pulse generation. Figure from [128].

4.2 Pump-probe technique

In this Section we introduce one of the main methods employed to resolve the temporal dynamics of an excited
system: the pump-probe technique. The setup used in this work is located in the optical laboratories of the
Physics Department at the Politecnico di Milano, in the Center for Ultrafast Science and Biomedical Optics
(CUSBO).

I familiarized myself with the setup and the technique during my Master thesis [128]. During my PhD, I
spent two weeks as a visiting researcher at Politecnico di Milano (Milano, Italy) with a Laserlab Europe grant
(Ref. CUSBO 002033) in order to refine the polarized pump-probe technique and to take the measurements on
the PFO samples. I was hosted by Dr. Tersilla Virgili, who later took the measurements on the PM597 sample
together with Dr. Sai Kiran Rajendran.

In the pump-probe technique two pulses are sent to the sample, the first one excites the molecules while
the second one probes the levels of the system for different wavelengths and at different time delays from the
pump. In this Section, after a brief introduction on the setup for the generation of the pulses, we will focus on
the analysis of the signals that the technique can provide.

4.2.1 The experimental setup

Fig. 4.5 shows the setup used to obtain suitable pulses for the pump-probe measurements. The Nd:YVO4 (Verdi)
laser, doubled in frequency, pumps a Ti:sapphire rod that is placed in a cavity for a classical Kerr-lens mode
locking laser [169]. The cavity emits pulses of around 100 fs at 83 MHz repetition rate centered at 780 nm. The
energy of these pulses is however quite low (∼5 nJ/pulse) and they need to be amplified. To avoid damaging the
amplifying medium, the pulses are first dispersed with a gratings pair (the stretcher), in order to lower their peak
power. The isolator at the output of the Ti:Sa cavity prevents back-reflections from destroying the mode-locking
regime. The regenerative amplifier then amplifies the pulses in the following way. First, a Pockels cell lets one
pulse enter the amplifier cavity. The pulse is sent onto a Ti:sapphire rod pumped by a Q-switched Nd:YAG
laser at 1 kHz repetition rate. The pulse circulates inside the cavity until the rod is able to provide gain. Then
the Pockels cell lets the pulse exit the cavity. The Q-switched laser and the Pockels cell are synchronized by a
driver triggered on the pulses that have to be amplified. At the output of the amplifier, the pulses are of around
750 µJ at 1 kHz repetition rate. A grating compressor compresses them to their Fourier transform limit (around
150 fs).

The pulse is then split in two pulses, the pump and the probe (Fig. 4.6). The probe is focused on a sapphire
plate for the white light continuum (WLC) generation. The white light has the same polarization as the incident
monochromatic light. With a broadband probe pulse, all the wavelengths are probed at the same time. The
pump wavelength has to be in the spectral range of the sample absorption, in order to induce the excitation
of the molecules. If the sample absorbs in the UV region, the pump is focused on a beta-barium borate (BBO)
crystal for the second harmonic generation (390 nm). This will be the case of PFO. If the sample absorbs in the
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Figure 4.6: Scheme for the pump-probe measurement. BS: beam splitter; SHG: second harmonic generation; WLG: white
light generation; S: spectrometer. Figure from [128].

visible, the pump pulse is sent onto an optical parametric amplifier (OPA) in order to obtain pulses centered at a
tunable wavelength [171, Ch.5]. This will be the case for PM597, for which the excitation wavelength is 550 nm.

The pump and the probe beams are focused on the sample on a circular spot (radius ≈75 µm). The two
pulses have to be spatially overlapped on the sample in order to observe a signal, while the temporal delay τ
between the two pulses can be varied with the delay line. The temporal resolution of the system is given by the
convolution between the pump and the probe pulse, and in our case is of around 250 fs.

In order to study the optical anisotropy induced by the LC matrix, the polarization of the probe is set either
parallel or orthogonal to the LC director. This is obtained by rotating the polarization of the IR beam before
the WLC generation, which has the same polarization as the incoming pulse. A polarizer is also placed before
the sample, to get rid of eventual depolarizations of the probe. Another polarizer, always parallel to the probe
polarization, is placed after the sample, to filter out the depolarization due to the LC scattering.

Finally, the chopper stops one pump pulse over two, in order to measure the transmission of the probe
through both the excited (T ex) and the ground state (T gr) of the sample.

4.2.2 The pump-probe signal

The collected signal is the differential transmission spectra 4T/T (λ, τ) of the probe through the sample

|4T
T

(τ, λ)| = T pump − T nopump

T nopump (τ, λ), (4.1)

where T pump and T nopump are the transmissions of the probe through the sample that has been excited and
which is in its ground state, respectively. The modulus is due to the fact that the cross section is defined as
a positive quantity, but the signal ∆T/T can be positive or negative since the transmission of the probe can
be increased or decreased compared to the unexcited sample case. It is a function of the delay τ between the
pump and the probe and of the wavelength λ of the probe. This definition allows us to get rid of the constant
contributions from the unexcited sample and to look only at the excited system. It is possible to demonstrate [171,
Ch.9] that

4T
T

(τ, λ) = N (τ)σ(λ)l, (4.2)

where N (τ) is the population density of the excited state, σ(λ) is the cross section of the transition and l is the
thickness of the sample. For a fixed wavelength, we can extract the temporal dynamics of the population of the
excited state N (τ).

Here we present some examples of dynamics that it is possible to observe. Imagine a molecule whose states
are those seen in the previous section (Fig. 4.7a). Since the thermalization is much faster than the pulse duration,
we suppose that the system immediately thermalizes to the bottom of the S1 band after the absorption of the
pump photon (with frequency ω0).
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(a) (b)

Figure 4.7: (a) Perrin-Jablonski diagram of the states of the system; (b) dynamics of the ∆T/T signal for the frequency ω0

(GSB), ω1 (SE), ω2 (PIA) and ω3 (PIA). Figure from [128].

If we send a photon of energy ~ω1 on to the sample at a delay τ after the pump, the incoming photon induces
stimulated emission (SE) and a second photon of the same energy is emitted. The signal is therefore increased
and the 4T is positive. If we increase the delay, this contribution decreases with a time constant given by the
lifetime of the excited level (Fig. 4.7b).

If a photon of frequency ω0 arrives on the sample, it has a lower probability to be absorbed since there are
fewer molecules in the ground state that can be excited. The signal is therefore increased with respect to a probe
passing through an unexcited sample, and this contribution is known as ground state photo-bleaching (GSB).
The lifetime of this contribution is equal or higher than SE, since it will be present until there are molecules in
some excited levels (ω0 dynamic in Fig. 4.7b). Both SE and GSB cause an increase of the4T , but only the SE is
a true amplification of the signal, while the GSB is only a decrease in the absorption. The distinction between
these two contributions is done with the help of the absorption-PL spectra. Indeed, the SE takes place in the
spectral region of the fluorescence, while the GSB is localized in the region of the absorption. By comparing the
absorption-PL spectra with the pump-probe traces, it is possible to identify the spectral region where the optical
gain is located.

If the excited sample is illuminated with a photon of energy ~ω2, this will be absorbed in the transition
S1 → S2 and the 4T is negative. This contribution is called photo-induced absorption (PIA) and has the
lifetime of the S1 level (as the SE signal), since it will go to zero when the S1 level is completely depopulated.

If the system has also triplet states, the molecules can pass from S1 to T1 level through the ISC process and
then they can absorb a photon of frequency ω3 to reach the T2 state. This is still a PIA term but its growing
time is given by the rate of ISC, while its decay constant is the lifetime of the T1 state. These dynamics are
reported in Fig. 4.7b.

4.3 Dyes in LCs

We start applying this technique to a small molecule, the PM597 dye (Sigma-Aldrich, Fig. 4.3a), mixed in nematic
LC E7 (Merck). Short molecules are less aligned by LCs [148] , but they are often easier to dissolve in the LC
matrix.

The solution of 1 wt.% of PM597 in E7 is prepared mixing it with a stirring magnet on a hot plate above the
clearing temperature of E7 (∼70 °C) until homogeneity is reached (several minutes).
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Figure 4.8: Normalized absorbance polarized orthogonal to the LC director (left axis) and unpolarized PL spectra (right
axis) for the PM597 dissolved in nematic E7 (after the subtraction of the constant background).

4.3.1 Photophysical characterization

A commercial cell (Instec), with a thickness of 6.8 µm, and a planar antiparallel alignment is filled with the
solution of PM597 and E7. We use thinner samples than those used for the nematicon generation in order to
limit the depolarization of the beams during the propagation in such a scattering medium such as LCs. Also, the
absorption of the pump and the probe through the sample is minimized.

In order to interpret the pump-probe signal, we need to know the spectrum of the absorption and the
photoluminescence of the dye dispersed in the LC. Indeed, this is essential to distinguish between SE and GSB,
as they both give rise to a positive pump-probe signal only in different spectral regions. Depending on the
solvent, the maximum of the absorption of the PM597 is between 520 nm and 530 nm, while the maximum of
the PL emission is centered between 560 nm and 570 nm [172]. We need therefore to characterize the absorption
and the emission of the dye in the LC matrix.

The normalized absorbance of PM597 in E7 is measured with a UV-Vis spectrometer (Perkin-Elmer) and
reported in Fig. 4.8. The absorbance A is defined as

A(λ) = log10

Iin0 (λ)

Iout0 (λ)
, (4.3)

where Iin0 , Iout0 are the input and output peak intensities of the optical beam traversing the medium, respectively.
Only the contribution orthogonal to the LC director is reported, since the one parallel to the director was saturated
even if the sample was thin. In the same Figure, the normalized unpolarized PL spectrum is reported. It is
obtained exciting the sample with a Q-switched frequency doubled Nd:YAG laser (532 nm, 400-ps pulses at
100 Hz). A fiber spectrometer (Ocean Optics USB2000), synchronized with the pump laser, is placed close to the
excited spot to collect the emitted light.

In Fig. 4.9 we report the pump-probe spectra for the polarizations of the probe beam parallel (a) and orthog-
onal (b) to the LC director. For all the measurements, the pump is at 550 nm and it is polarized parallel to the
LC director, with an energy of 10 nJ/pulse. The spectra are taken at different time delays from the excitation
pulse, in order to show the temporal evolution of the excited states.
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The contribution polarized parallel to the rubbing is twice as large as the orthogonal one. This indicates
that the dye molecules are mainly aligned along the LC director. Both signals are instantaneous within the
time resolution of the setup. The parallel signal is monotonously decreasing in time, while the orthogonal one
increases at large delays. This is due to the fact that there is a depolarization of the excited molecules in time.
Indeed, at the beginning, the molecules with an electric dipole parallel to the pump polarization are excited more
than the others. With time, the excitons migrate from molecule to molecule, eventually reaching molecules with
the dipole oriented in a different direction. This is why, at larger delays, the orthogonal contribution grows
while the parallel decreases.

The pump-probe spectrum for the PM597 presents one positive band from 500 nm to 700 nm. It is composed
of two positive bands. The first one is in the same spectral range as the absorption (530 nm) and it is therefore
due to the GSB. The second contribution is at around 575 nm, where the PL is centered, and it is due to the SE.
The two bands merge and they are not really distinguishable. The slight periodic modulation of the spectrum
is due to a Fabry-Perot cavity effect generated by the two glasses composing the LC cell. There is no formation
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Figure 4.9: Pump-probe spectra for the PM597 in E7 in the case where the probe is parallel (a) or orthogonal (b) to the
director and for a pump of 10 nJ/pulse. (c) Comparison of the spectra for the two polarizations taken at 400 ps delay. The
parallel spectrum (solid) is around two times higher than the orthogonal one (dashed).
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of PIA over the visible, allowing for a long-living (>400 ps) optical gain in the red part of the spectrum where
the SE is present.

Since we aim to use the optical gain of the system for the soliton (CW) or with long pulses excitation
(400 ps), we compare the spectra at large delays. In Fig. 4.9c the spectra parallel and orthogonal to the director
are reported for a delay of 400 ps. The parallel contribution of both GSB (below 550 nm) and SE (above 550 nm)
is shifted towards the longer wavelengths by around 10 nm compared to the orthogonal contribution. This
could be due to the anisotropy of the LC host. Indeed, the spectral position of the absorption and the emission
of a molecule depends on the physical properties of the solvent used to disperse it. The effect is also known as
solvatochromism [173]. In the case of an anisotropic solvent such as the LC, the transition dipole experiences a
different environment depending on its orientation with the respect to the director orientation, which could lead
to a spectral anisotropy between the two polarizations [174]. The complex details of this phenomenon are, even
though interesting, beyond the aim of this work. Finally, we believe that the anistropy of the scattering [125, 175]
plays a minor role, since it would not explain a spectral shift of the GSB.

A way to further characterize the optical gain of the molecules is to measure the amplified spontaneous
emission of the sample, since it occurs at the wavelength with the highest optical gain.

4.3.2 Amplified spontaneous emission

Amplified spontaneous emission (ASE) arises in gain media that are excited over a long and thin volume, as in
fiber amplifiers or bulk amplifying materials. Photons that are emitted spontaneously along the long axis of the
excited volume are amplified more than those emitted in other directions. The ASE is therefore directional and
narrow-band, since during the propagation the wavelength with the highest optical gain emerges from the photo-
luminescence broadband spectrum [52–55]. The absence of feedback simplifies the architecture of the device
with respect to lasers and is also responsible for a low spatial coherence. ASE is therefore a better candidate for
illumination purposes than broadband and narrow-band lasers, which are impaired by speckle [46, 47].

ASE has been widely studied in solid state films [176–180], microfluidic devices [181, 182] and only recently
in dye-doped nematic liquid crystals (LCs) [161, 162]. In our case we analyze how the anisotropy of the gain
measured in the pump-probe spectra affects the ASE characteristics.

A non-commercial 75 µm-thick cell, with planar antiparallel alignment (see Sect. 2.4.2), is filled with the
same mixture used above. Such a thick cell is employed because we want to observe optical amplification in
the same sample that we use for the nematicon generation, in order to study the interaction of the two at the
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Figure 4.10: (a) Scheme of the ASE generation in the dye-doped nematic LC cell; (b) normalized ASE spectra taken for a
pump intensity of 7.6 µJ/pulse (100 Hz) for the cases where the electric field Ē of the emission is parallel, orthogonal or at
45° to the rubbing direction. Inset: scheme of the ASE measurement in two of the configurations.
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same time. The optical setup used for the ASE generation is reported in Fig. 4.10a. A Q-switched frequency
doubled Nd:YAG laser (532 nm, 400-ps pulses, 100 Hz) is used to pump the dye. On the laser path, the ensemble
of the half-wave plate and the polarizing beam splitter allows to control the beam power, while the second
half-wave plate turns the polarization angle with respect to the LC director. The polarization is set parallel to
the LC director and then slightly turned (few degrees) in order to compensate small misalignment of the rubbing
directions and maximize the fluorescence. The beam is focused with a spherical achromatic lens (f=60 mm)
and a cylindrical lens (f=60 mm) in order to obtain an elliptical spot of around 20 µm × 7 mm on the cell.
The ASE threshold is as low as 0.4 µJ/pulse, and all the measurements presented here are taken well above the
threshold.

The pump stripe is oriented into three different directions in the cell, parallel, orthogonal or at 45° to the
LC director. Indeed, since the ASE emission is mainly polarized in the plane of the cell due to the LC-induced
dye orientation and to the geometry of the sample [183], the orientation of the stripe within the cell determines
the orientation of the ASE polarization with respect to the LC director. In particular, when the pumping stripe
is parallel (orthogonal) to the rubbing, the ASE is polarized mainly orthogonal (parallel) to the director (inset of
Fig. 4.10b).

In Fig. 4.10b the ASE spectra are reported for the different orientations of the pump stripe with respect to the
rubbing direction. The scattered light is collected at the edge of the stripe through the glass plate. Changing the
emission polarization from orthogonal to parallel with respect to the director, the ASE peak shifts from 577nm to
588nm. The tunability of the ASE wavelength has been demonstrated changing the thickness of the amplifying
film [177, 179, 183, 184]. This happens when the thickness of the gain medium is close to the cut-off thickness
for the ASE propagation (∼100 nm), which is not our case. Since the ASE red-shift is of the same order of
magnitude as the shift observed in the pump-probe spectra, we believe that the large red-shift of the ASE is
mostly due to the optical gain anisotropy of PM597 dissolved in LC.

4.4 Polymers in LCs: PFO

In this Section, we are going to exploit Onsager’s old prediction [148, 185] that long molecules are better aligned
in a nematic environment than short molecules. Therefore, instead of using a dye, we are going to use a
photoluminescent polymer. Previous works show that the liquid crystalline solvent can unwind the polymer
bundle into a rod-like configuration with the axis aligned with the director of the nematic [149, 185]. Increasing
the polymer weight, the anisotropy of absorption and emission of the photoluminescent polymer increases [186,
187]. Since the macroscopic alignment of LC is given by the boundary conditions of the cell, the LC solvent can
provide an aligned polymer over a large scale. This method is easier compared to the techniques used to obtain
oriented solid-state films, which usually require thermal cycling or mechanical treatments [156, 188].

Photoluminescent polymers present, however, two main drawbacks that limit their use as photonic devices:
creation of free charges or polaron pairs after pump excitation [189] and easy degradation in air [190].

In polymeric samples, the photo-induced charges, due mainly to inter-chain interactions, produce self-
absorption in the material since their absorption band partially overlaps with the emission and gain spectral
region of the excitons [191]. Different approaches have been explored to quench photoinduced charges in organic
materials, such as tailored synthesis of molecules [180, 192] or dispersion of the polymer in an inert matrix [193].
In particular, it has been shown that the dispersion of PFO, the most studied polyfluorene derivative, in an inert
matrix allows us to isolate the PFO chains, preventing the formation of inter-chain photoinduced charges and
therefore allowing the formation of a large SE band up to 600 nm [191, 194]. Indeed it has been demonstrated
that, by isolating the molecules, it is still possible to observe intrachain charge formation, while the interchain
charges are inhibited [191, 195]. However, the poor miscibility of the PFO and the host used in these works is
responsible for the large sample inhomogeneity [193].

The second issue is that PFO easily reacts with oxygen creating a defect along its polymeric chain, the so-
called keto defect (also known as fluorenone) [196–198], which degrades the color purity of the emission band
and decreases the device efficiency and stability [199]. Photoluminescence and electroluminescence (EL) studies
indicate that Förster energy transfer to, and charge carrier trapping on, fluorenone defects (with subsequent
fluorenone emission) are responsible for color degradation [200, 201], i.e. the characteristic blue emission is
replaced by a green-whitish one [202]. This process is so efficient that it becomes significant at a very low
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Figure 4.11: Chemical structure of the 6CHBT liquid crystal.

Optical properties [207]
n‖ 1.68
n⊥ 1.52
4n 0.16

Transition temperatures [207] Tm 12.5 °C
Tc 43.0 °C

Table 4.2: Characteristic of the 6CHBT LC.

fluorenone fraction [203]. Whether the green emission from this defect is due to a single-chain defect [202, 203]
or to an aggregation effect [204–206] has been the subject of a long debate. In any case, the presence of high
transient charge concentrations in degraded polyfluorene makes it difficult to obtain optical gain (stimulated
emission), hindering applications of this material in photonic devices such as optical amplifiers or lasers.

We discovered that a large polarized SE band from isolated polyfluorene keto defects is obtained in a mixture
of polyfluorene with a nematic low molecular weight LC, shedding new light on the single-chain nature of the
keto defect. In this blend a peculiar phase separation generates an ordered network of LC-rich micro-domains
with most of the polyfluorene chains isolated on the boundaries of the micro-domains.

In this Section we present both the morphological and the photophysical study of the PFO in LC. Indeed, the
pump-probe spectra can be fully understood only through the study of the morphology of the sample, while this
last one was guided by the features observed in the pump-probe, such as the linear polarization and the spectral
position of the bands. The study of the morphology is done by means of polarized confocal photoluminescence
microscopy, which was performed by Dr. Michele Celebrano and Lavinia Ghirardini in the laboratories of
Politecnico di Milano. The data presented in this chapter are the result of the strong interaction between the
two groups and the combination of the two techniques. For this reason, even if I did not perform myself the
confocal measurements, the technique will be briefly introduced and the confocal maps of the sample presented,
in order to provide a complete analysis of the samples.

4.4.1 Preparation of the sample

The polymer used in this work is the PFO (American Dye Society, ADS129BE, molecular weight: 40 000 −
120 000). It is mixed in 6CHBT (4-(trans-40-n-hexylcyclohexyl)-isothiocyanatobenzene; Military University of
Technology, Warsaw, molecular weight: 301, synthesis details in [207]), since it presents a better miscibility than
in the E7 LC. The 6CHBT chemical structure is shown in Fig. 4.11 and its characteristics are reported in Tab. 4.2.

The polymer-LC mixture is obtained by first dissolving PFO in toluene (10 mg·ml-1) and then adding the
LC. The solvent is evaporated by heating the solution at about 110 °C for some hours and then commercial
cells (Instec), with a thickness of 9 µm and a planar antiparallel alignment, are filled at the constant temperature
of 70 °C. Two samples with different PFO concentrations are investigated: Low Concentration Sample (LCS,
0.26 wt% of PFO) and High Concentration Sample (HCS, 0.61 wt% of PFO).

4.4.2 Morphology, absorption and photoluminescence of the samples

The morphology of the sample is strictly correlated to the concentration of the PFO that is dissolved in the
LC host. For low concentrations (0.26 wt% of PFO), the polymer is dispersed uniformly. However, larger
concentrations of polymers are needed in order to have an optical gain large enough to observe amplification or
lasing, typically of the order of 1 wt% or higher [142, 153, 208]

When increasing the concentration of the PFO, a complex pattern appears in the LC cell. In this section
we will present the study of this pattern through the polarized optical microscopy and the polarized confocal
microscopy techniques.
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Polarized optical microscopy

Figure 4.12 shows the bright-field polarized optical microscopy (POM) images for the LCS (a) and HCS (b)
samples. The first cell (LCS) shows a homogeneous texture indicating a good dispersion of the polymer in
the LC matrix. Differently, the HCS shows a much more complex structure extending all over the cell. In
Fig. 4.13 are reported the bright (a) and the dark (b) states for the HCS, obtained with the rubbing at 45° and
parallel to one of microscope polarizers. Long filaments (structures of tens of micrometers) define small domains
that present a homogeneous alignment of the LC. From these images, however, it is not possible to define the
nature of these boundaries, if they are due to a misalignment of the LC or to a polymer aggregate. The confocal
photoluminescence microscopy will clarify the origin of these filaments.

Absorption and photoluminescence

The polarized absorption and emission spectra for the two samples are reported in Fig. 4.14. The photolumi-
nescence is obtained by exciting the sample with pulses at 400 nm (60 fs, 1 kHz) polarized along the LC director.
The LC matrix is transparent at this wavelength [209], therefore we do not expect to observe a contribution from
the LC.

The LCS (Fig. 4.14a) shows an absorption characterized by a broad peak for wavelengths shorter than
400 nm, while the PL spectrum is characterized by a series of vibronic peaks (440 nm, 467 nm and 502 nm). A
pronounced anisotropy is present in both the absorption and PL spectra.

The small peak at around 430 nm in the absorption spectrum indicates the presence of a particular confor-
mation of the PFO chain. Indeed, the PFO can assume different phases, mainly the α and the β phase. The
PFO in the α phase takes an helicoidal conformation and it presents one broad absorption peak at 390 nm. In
the β phase, the fluorine units lie almost in the same plane: in addition to increase the packing of the molecules,
the conjugation length of the molecules is increased and a lower energy level is created [132, 210]. This gives
rise to two additional absorption peaks at 400 nm and 430 nm (Fig. 4.14a), that are respectively the 0-0 and
the 0-1 vibrational peaks of the β phase of the PFO [211, 212]. The photoluminescence of the β phase is also
characteristic, showing more resolved vibronical peaks [211, 213], while the peak at 420 nm is decreased due to
the self-absorption with the new absorbing peak.

The LC matrix can indeed flatten the PFO, inducing some of the chains to take the β phase. However, the
distinction between α and β or other conformations is not always simple, often requiring other analysis such as
X-rays diffraction or PL at extremely low temperatures [211, 214–216]. In this case, we are not interested in the
conformation of the PFO as much as we are in the presence of oxidized units in the chain, the so-called keto
defects. Our aim is to show that the keto defects, often associated with a degradation of the optical properties

(a) (b)

Figure 4.12: POM images of the LCS (a) and the HCS (b), obtained for uncrossed polarizers. The scalebar is 200 µm.
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Figure 4.13: Bright (a) and dark (b) POM images of the HCS under a cross-polarized light microscope. The red arrow
indicates the rubbing direction, the scalebar is 50 µm.

of the polymer, can provide optical gain when the polymer chains are isolated.
The presence of even a small fraction of keto defect causes the emission of an intense and broad band

centered at 550 nm [196, 217]. This band, slightly visible for the LCS (Fig. 4.14a), becomes more intense for
the HCS (Fig. 4.14b). It is important to note that the concentration of keto defects in polyfluorene chains is still
very low, as the blue emission from the polyfluorene backbone is quite intense and not completely depleted by
the efficient energy transfer to the keto defect. Also, the HCS displays a less pronounced anisotropy in both the
absorption and in the PL spectra with respect to the LCS, as expected from the POM images.

Polarized photoluminescence confocal microscopy

To better understand the complex microscopic organization in the HCS, we recorded diffraction-limited confocal
PL maps (shared objective numerical aperture NA = 0.8). This is achieved by exciting the sample with a
circularly-polarized 405 nm diode laser and recording the total PL intensity-maps, with linear polarizations both
parallel (Ip) and orthogonal (Io) to the LC director. The details of the technique are presented in [130].

Fig. 4.15 shows four confocal PL maps (80 µm×80 µm). The first one (Fig. 4.15a) displays the total emission
intensity collected from the sample and shows that most of the PL intensity comes from the boundaries of the
micro-domains, while elsewhere just a few emitting spots are detected. The other three maps instead show
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Figure 4.14: The absorption and the emission parallel and orthogonal to the LC director (after Savitzky-Golay filtering and
the subtraction of the constant background) for the LCS (a) and the HCS (b).
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the normalized linear PL dichroism. The linear PL dichroism D is defined as the difference between the two
polarization maps: D = (Ip − Io). Fig. 4.15b represents the map of parameter D obtained by taking into
account the overall fluorescence emission from the sample, while Fig. 4.15c and Fig. 4.15d show the isolated
contributions from the defect-free PFO and from the keto defect, respectively. These last two are collected with
10 nm pass filters centered at 440 nm and 560 nm, respectively.

In these PL maps, the red color represents the emission polarized parallel to the LC director (the rubbing
direction is horizontal in the images), while the blue color is associated with the one polarized mainly orthogonal
to it (see arrows in Fig. 4.15). All four maps show a similar supramolecular structure, as already seen via a
bright field microscope (Fig. 4.12b), composed of a matrix of domains separated by rather thick boundaries.
Fig. 4.15c and Fig. 4.15d demonstrate that there are polyfluorene chains with keto defects all over the sample,
in particular on the cell boundaries. Moreover, the measured polarized emission reveals that the low energy
emission (generated by the keto defects) is polarized along the same axis as the high-energy blue emission,
showing that the transition dipole moment of the green emission band lies basically parallel to the chain direction,
as previously reported [218].

The orientation of the boundaries defines the polarization of their emission: boundaries orthogonal (parallel)
to the LC director display an emission orthogonal (parallel) to the director. In our case the majority of the bound-
aries are orthogonal to the LC director. Inside the domains a few polymeric chains, also containing keto defects
and all aligned parallel to the LC director, are responsible for the weak photoluminescence visible in Fig. 4.15a.
The organization of the phase-separated sample closely resembles the network lattice formation observed in
mixtures with high-molecular-weight (HMW) polymer LC and low-molecular-weight (LMW) LC [219, 220]. In
these systems, phase separation results in a well-ordered honeycomb network structure wherein the LMW-rich
phase is accommodated in micro-domains surrounded by walls constituted by the HMW polymer-rich phase.
In our case, during the filling procedure of the cell (where the temperature is kept constant at ∼70 °C) the PFO
can be considered as a HMW LC, as its glass-transition temperature is around 80 °C, [154] so phase separation
appears. The anchoring effect from the boundary becomes so significant that the polymeric chains are forced to
align parallel to its surface [219] despite the LC director orientation, as observed in our case. Since the presence
of this structure depends on the composition of the mixture, we assume that in the LCS the PFO concentration
is too low to induce it.

4.4.3 Photophysical characterization

For the photophysical characterization, we have set the pump (λ=390 nm) polarization orthogonal (excitation
density 2.6 mJ/cm2, equivalent to 150 nJ/pulse) to the LC director, to increase the signal from the PFO chains
placed on the boundaries of the micro-domains.

In Fig. 4.16a and Fig. 4.16c the polarized pump-probe spectra of the LCS are reported. The transient signal
appears strongly polarized along the direction parallel to the LC director. The 4T/T (λ) spectra coincide with
those of aggregated PFO, showing a SE band extending up to 500 nm and a PIAc band centered at around
560 nm attributed to the absorption of the inter-chain photo-induced charges [191, 221]. It is also known from
the literature that there is another PIA1 band centered around 700 nm that is due to the absorption from the first
singlet state S1 [193, 222].

In the LCS case, the spectra reveal that the polyfluorene chains are mainly aligned along the LC director,
The anisotropy between the contribution parallel and orthogonal to the director is larger than that found for the
PM597, in agreement with Onsager’s prediction. This results in the pinning of the polarization of the SE and of
the charge-induced PIA band. Comparing the spectra parallel and orthogonal to the LC director (Fig. 4.16e), it
is possible to observe a red-shift (∼5 nm) that is smaller than the case of PM597 (∼10 nm), even if the emission
anisotropy is two times higher. This is probably due to the fact that the conjugation length of a long chain (such
as the PFO) is less affected by environmental changes than a small molecule (such as the PM597).

The anisotropy factor is defined as

r(τ) =
Ip(τ)− Io(τ)

Ip(τ) + 2Io(τ)
, (4.4)

where Ip(τ), Io(τ) are the temporal dynamics 4T/T (τ), for the same wavelength, for a polarization parallel
or orthogonal to the LC director, respectively. It is a measure of the anisotropy of the spectra as a function of the
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Figure 4.15: Confocal fluorescence maps. (a) Total PFO fluorescence emission; (b) normalized linear dichroism (D) of the
total PL from PFO. Both are collected using a long pass color filter cutting wavelengths below 455 nm. Normalized D
from the defect-free PFO collected using a 10-nm band pass filter centered at 440 nm (c) and from the keto defect collected
using a 10-nm band pass filter centered at 560 nm (d). The red and blue colors indicate an emission polarized parallel and
orthogonal to the LC director, respectively. The scalebar is 20 µm.

time. For the LCS the absolute value of the anisotropy factor remains constant over more than 10 ps (Fig. 4.16f),
meaning that the excitons and charges do not experience migration along differently oriented polymeric chains
on that time scale [191].

Moreover, since the absorption band associated with inter-chain photoexcited charges is typically character-
ized by a long lifetime [189], similar to the one we measured for the LCS (PIAc), our data also demonstrate that
the polyfluorene chains are not isolated but packed or aggregated, despite the low concentration.

Figure 4.16b and Fig. 4.16d show the transient transmission spectra of the HCS with probe polarization either
parallel or orthogonal to the LC director, respectively. When the probe is polarized along the LC director, the
pump-probe spectra for the HCS and the LCS are very similar. On the other hand, when the probe polarization
is rotated by 90°, a completely new feature appears: in the spectral region of the keto defect fluorescence, an
intense SE band (SEk), which has never been seen before and is not present in the spectra of the LCS.

Our pump spot area is almost three times larger than the whole area shown in the confocal images (spot
radius ∼75 mm), so our transient 4T/T signal is an average of signals coming from many micro-domains
comprising homogeneous areas and boundaries. However, thanks to the confocal fluorescence maps, it is possible
to distinguish the origin of the two contributions. Indeed, the main contributions to the PL parallel to the
director comes from the homogeneous regions. For this reason, we assume that the pump-probe signal shown
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Figure 4.16: Transient absorption spectra of the LCS (a, c) and the HCS (b, d). For each sample we distinguish between
a probe linear polarization parallel (a, b) or orthogonal (c, d) to the LC director. In (e) the comparison between the spectra
at 0.2 ps for the LCS case are reported. The normalization is obtained as follows: the spectrum polarized parallel to the
LC director is divided by the maximum; the other spectrum is divided by the same value as the other one and then it
is multiplied by the factor 5.3. In (f) we report the temporal dynamics,for the LCS, of the anisotropy factor r at different
wavelengths.

in Fig. 4.16b, similar to the one of the LCS Fig. 4.16a, is due to a few aggregated polymeric chains placed inside the
micro-domains and aligned parallel to the LC director. Instead, the micro-domain boundaries, composed mainly
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Figure 4.17: Comparison of the dynamics for the two polarizations of the probe (parallel and orthogonal to the LC director)
and for different wavelengths in the case of LCS (a) and HCS (b); (c) comparison of the dynamics at 670 nm parallel to the
LC director in the two samples.

of polymeric chains orthogonally aligned with respect to the LC director, are responsible for the signal shown
in Fig. 4.16d. Interestingly, this 4T/T (λ) signal does not present a PIAc band due to inter-chain photoinduced
charges, indicating that the polyfluorene chains (with and without keto defects) on the boundaries are mainly
isolated. The fact that the PFO chains at the domain boundaries are mainly isolated is not surprising since their
concentration in the LC matrix is very low.

A further analysis of the species present in the samples can be achieved through the temporal dynamics
4T/T (τ) of the different spectral regions (Fig. 4.17). Figure 4.17a reports the normalized 4T/T (τ) dynamics
for the LCS case. The dynamics at 670 nm are the same for the probe set parallel or orthogonal to the director.
The other wavelengths of the spectrum present the same behavior (not reported). This means that the same
species are visible in the two signals, but that they are polarized mainly along the LC director (and therefore
along the polymer chain for the LCS) [223]. In the same figure the dynamic at 445 nm is reported. The temporal
decay is different from the 670 nm case, probably since the charge-induced PIAc is overlapping the signal at a
shorter wavelength.

Figure 4.17b shows the dynamics for the HCS. The two temporal dynamics (parallel and orthogonal to the
director) at 445 nm (SE) and at 550 nm (SEk, signal orthogonal to the director) have an instantaneous rise time.
No competition with an underlying PIA negative signal is visible, at least within our time resolution, as typically
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observed for isolated chains [194]. For the signal orthogonal to the director, the fact that the two wavelengths
are characterized by a different temporal evolution confirms that the two bands are originating from different
transition dipole moments: one from the defect-free polyfluorene and one from the fluorenone. The comparison
with the dynamics at 445 nm parallel to the LC director underlines the effect of the charge-induced PIA at long
delays. The gain is no longer present at 10 ps and the signal becomes negative. For light polarized orthogonal
to the director, the optical gain is still present after 100 ps.

The dynamics at 670 nm for the two samples are characterized by the same decay time (Fig. 4.17c), indicating
that the same species is present in the two cases. Indeed, the confocal maps of Fig. 4.15 show that, for the HCS,
the main contribution to the signal parallel to the LC director is coming from the homogeneous small regions of
the sample. These regions are very similar to the LCS. Also, the fact that the two samples show the same PIA1
despite the larger PIAc contribution for the HCS (due to the higher concentration of PFO) means that mainly the
contribution from the exciton is present at this wavelength.

To our knowledge this is the first time that optical gain from fluorenone and its temporal decay are reported.
So far, the appearance of the keto defect along the polyfluorene chain has been considered always detrimental
for any photonic application, due to the fact that its presence in aggregated films induces a higher concentration
of inter-chain photoinduced charges. Conversely, in our system we were able to isolate it and, by reducing
inter-chain interactions, we were able to detect its transient optical gain. Our results demonstrate that the
fluorenone emission originates from a single-chain defect, since sizable polymer aggregation at the boundaries
of the microdomains can be excluded by the absence of the photo-induced absorption band typically associated
with inter-chain photoinduced charges in aggregated samples.

4.5 Conclusion

In this Chapter we showed that it is possible to obtain optical gain from two different organic species mixed in
a LC, a dye and a polymer. In both cases, when the photoluminescent molecule is homogeneously mixed in the
LC host, the optical gain is polarized along the LC director.

In the case of the dye, the sample presents a homogeneous texture and a broad long-living optical gain
polarized along the LC director. The dye-doped sample also supports ASE when excited with an elongated
beam. Both the optical gain and the ASE peak present a red-shift of around 10 nm when their polarization
changes from orthogonal to parallel to the LC director.

In the case of the polymer, by increasing the concentration in order to reach a larger gain, the sample
becomes non homogeneous. Thanks to the LC nature of polyfluorene and by mixing it with a low molecular
weight nematic LC matrix, we obtain a supramolecular structure where polyfluorene chains with keto defects
are isolated and aligned. The peculiar phase separation between the LC and polyfluorene produces well-defined
phase boundaries, with an anchoring effect so strong that the polymeric chains are forced to align parallel to
these boundaries regardless of the direction of the nematic LC director induced by the rubbing layers. The
optical gain studied in this Chapter is for light propagating across the thickness of the cell. When the ASE
configuration was tested, no results were obtained both for the low concentration and the high concentration
samples. Probably, in the first case the gain was too low, while in the second case the scattering due to the
boundaries was too high to obtain ASE.

Since in this work we are interested in the optical gain in the plane of the cell, where the soliton is propagating,
the PFO as amplifying medium will not be considered any further in the next chapters. Only the dye will be
used in the rest of the work: it can be uniformly mixed in the LC host, it provides large and long-living optical
gain, supports ASE and, as we will see in Ch. 6, in-plane lasing.



Chiral nematic liquid crystals for tuning
and feedback 5Chapter
This Chapter is dedicated to the study of the electrical response of chiral nematic liquid crystals (CLCs), and in
particular to the flexoelectro-optic effect presented in Sect. 2.3.3. A new technique for aligning LCs will also be
presented, the solvent-induced self-alignment. The particular alignment obtained in this way, together with the
optical gain from the dye studied in the previous Chapter, will be used in Ch. 6 to obtain in-plane lasing from
the cell.

This study has been carried out under the supervision of Prof. Stephen M. Morris and Prof. Steve J. Elston
from the Soft Matter Photonics group, University of Oxford, where I was able to spend six months as a visiting
student thanks to a Research grant from the PhilippeWiener - Maurice Anspach Foundation. The results reported
here have been published in Liquid Crystals [224].

5.1 Uniform lying helix

As explained in Sect. 2.3.3, flexoelectro-optic switching is a fast in-plane rotation of the optic axis of CLCs and
it can be observed when an electric field is applied perpendicular to the helix axis [63, 67, 79, 225].

Two different geometries can be adopted (Fig. 5.1). In the first one (Fig. 5.1a), the CLC helix is orthogonal
to the cell glasses and the electric field is in the plane of the cell. Such a CLC distribution can be easily achieved
with a planar alignment on the glass plates, which promotes a uniform standing helix (USH) configuration. The
in-plane electric field orthogonal to the helix has to be generated with interdigitated electrodes. The advantage
of this configuration is that it is quite easy to obtain a uniform alignment, since the boundary conditions match
well the helix distribution. The drawback is the use of interdigitated electrodes, which can result in highly
non-uniform electric fields [68, 226–228].

Ē

(a)

Ē

(b)

Figure 5.1: (a) Uniform standing helix (USH) configuration. The planar alignment on the glasses induces a Grandjean
texture of the CLC helix, while the planar electrodes generate an electric field orthogonal to the helix that is not perfectly
uniform over the cell. (b) Uniform lying helix (ULH) configuration. The electric field generated by the planar electrodes is
uniform over all the cell, however both the planar (right side) and the homeotropic (left side) alignments do not match the
helical distribution of the CLC in some points.
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In the second geometry (Fig. 5.1b), the electric field is homogeneously applied throughout the cell with planar
electrodes. In this configuration, the CLC has to have its axis lying in the plane of the cell in the uniform lying
helix (ULH) alignment. However, both planar and homeotropic alignments do not match the helical distribution
at some points. This causes defect formation [229, 230] and difficulty in the alignment. Therefore, despite the
obvious benefits in the cell fabrication for a ULH configuration, achieving a high quality alignment still remains
a challenge [66, 83, 229, 231]. To date, a number of techniques have been considered to induce a ULH alignment:
for example, shear flow through the application of mechanical stress to the glass substrates [231], the application
of an electric field with [83] or without [232] thermal cycling, bespoke surface anchoring conditions [233, 234],
periodic structured templating [235, 236] and, recently, polymer network structuring by two-photon photo-
polymerization [237]. Even though many of these reports have shown promising results, such techniques either
require complex fabrication procedures to form the lying helix alignment or they result in a relatively low optical
contrast between the bright and dark states.

In this Chapter, we present an easy to implement technique that allows for the formation of a high quality
ULH configuration, the solvent evaporation technique. Solvent evaporation methods have been widely studied
as an effective way of self-aligning patterns of nanoparticles: the solvent screens the weak forces among the
nanoparticles that slowly start to interact as the solvent evaporation process begins [238–246]. In these systems,
the interaction force among the particles is stronger than the thermal fluctuations, but, at the same time, weak
enough to allow the system to reach the lowest energy equilibrium configuration [241, 245]. The weak interactions
among the nanoparticles drive the self-assembly and they can be of different origins, ranging from van der Waals
attraction to electrostatic interactions and hydrogen bonding [242].

x̂

ẑ
ŷ

Figure 5.2: Scheme of the LC cell, composed by two
thick glass plates coated with homeotropic alignment
and a thin side window coated with planar alignment
(the blue arrow is the rubbing direction). The standard
glue is distributed along the edges and the highly vis-
cous glue is used at the bottom side of the side window.

The self-assembled structures can be of one-, two- and
three-dimensions [239, 245, 247]. The packing, and there-
fore the type of lattice, can be determined by the shape of
the nanoparticles [239], the interactions among the nanopar-
ticles [239, 248] and by the boundary conditions that are
used in the growth process [249]. The evaporation rate de-
termines the regularity of the structure [250, 251], while the
choice of the solvent can change the interaction among the
nanoparticles, inducing aggregates or uniform layers [252,
253]. Finally, by carefully choosing the geometry of the sam-
ple, it is possible to control the direction of evaporation and
therefore the direction of the growth of the lattice [249, 254].

In this work we apply this technique to LCs, in partic-
ular to obtain a highly defect-free ULH alignment. In LCs,
the interactions among the nanoparticles are replaced by the
weak elastic forces among the LC molecules. The freedom
of movement provided by the solvent allows the molecules
to reach the lowest energy configuration, which is dictated
by the boundary conditions. In our case, the homeotropic alignment on the glass plates and at the interface with
the solvent gives rise to a ULH alignment. This is the case for the different kinds of CLC, either composed by
E7 and chiral dopant (as it will be the case for this Chapter) or for mixtures with a high (∼30%wt) concentration
of reactive polymer monomer (Ch. 6), indicating that this technique has a high potential for effortless defect-free
LC self-alignment.

In the first part of the Chapter, the solvent evaporation technique is described in detail, together with the
shear-flow one. The two ULH alignments are then characterized in terms of optical properties and electric
response, the results are then compared.

5.2 Sample preparation

The cells are fabricated as described in Sect. 2.4.2, by assembling two glass plates that are spin-coated with
the homeotropic alignment layer SE4811 (Nissan). The LC layer thickness is defined by 10 µm spacers. A thin
(∼100 µm) glass plate coated with a planar alignment layer (rubbed Nylon 6,6) is then glued onto one edge of
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Figure 5.3: Polarized optical microscopy (POM) images (transmission mode) of the as-filled cell at room temperature (a)
and shear-flow-induced ULH at 55 °C (b), 54 °C (c), 49 °C (d), 45 °C (e) and 36 °C (f). The red arrow indicates the helix
axis orientation (scale bar: 100 µm).

the cell. The geometry of the cell is reported in Fig. 5.2. The glue is mixed with 3 µm spacer beads, in order
to prevent a complete filling of the cell gap when gluing the side glass. The glue distribution on the side glass
window is arranged so that it is not continuous, but instead consists of gaps to allow for a relatively slow and
directional evaporation of the solvent. Finally, to add mechanical stability to the side glass wall, a highly viscous
glue (Norland Optical Adhesive 68T) is used to fix the side window.

One of Chloe C. Tartan’s mixtures was used to fill the cells, consisting of 3.86%wt BDH1281 chiral dopant
(Merck KGaA) in E7 (Merck). The mixture exhibits a reflection band in the range 530 nm - 605 nm and,
consequently, a pitch of ∼350 nm. Two kinds of ULH alignments are grown in the same glass cell, first the
shear-flow in one side of the cell and then the solvent-induced one in the other side. This is done in order
to have a direct comparison between the well-known shear-flow technique with the solvent-induced method
proposed here, when all the other parameters are the same (mixture and cell parameters).

5.2.1 Shear-flow technique

Fig. 5.3 reports the steps of the ULH formation with the shear-flow technique. The pristine state of the cell
presents a focal conic texture (Fig. 5.3a), due to the fact that the cell is filled with the CLC above the clearing
temperature and then cooled without any particular precaution. The helix axis is therefore randomly oriented
in the cell, due to the mismatch of the boundary conditions on the glass substrates.

The sample is heated above the clearing temperature (62 °C). The cell is then slowly cooled in the presence
of a voltage of ±5 V at 1kHz while mechanically shearing the cell to induce an oscillatory flow. The electric
field promotes the ULH over the Grandjean texture, while the shear flow establishes the orthogonality of the
helix axis relative to the direction of the flow [66, 231, 255]. The shear-flow action is particularly important
during the transition between the isotropic and the nematic phase, when the molecular mobility is still quite
high and one direction for the helix axis has to emerge among all the others in the plane of the cell. Once the
ULH is established, the sample is slowly cooled. Fig. 5.3 reports the evolution of the ULH texture decreasing
the temperature. The change in color is due to the temperature-induced change in the birefringence and in the
pitch of the CLC [256].
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5.2.2 Solvent evaporation technique

The solvent-induced ULH is then grown at room temperature by depositing a small quantity (few µl) of acetone
onto the entrance/opening of the cell which was pre-filled with the CLC mixture. The small amounts of acetone
that enters the cell by capillary action is not enough to displace the LC from the cell but instead it diffuses into
the LC, in a sufficient quantity to cause a transition from the liquid crystalline to the isotropic state. In Fig. 5.4, it
is possible to observe the as-filled CLC texture that is not directly influenced by the solvent (top right of Fig. 5.4),
together with the interface between the isotropic state (larger concentration of acetone, black region) and the LC
phase (low concentration of acetone, colored region). The color sequence adjacent to the black isotropic region
towards the center of the cell is indicative of an increase in the birefringence. This arises due to a gradient in
the diffusion of the acetone inside the cell and a consequent gradient of the LC concentration in the direction of
the diffusion. Due to the confinement provided by the two glass plates forming the cell, the acetone gradually
evaporates from the edge of the cell. Depending on the region we are looking at, the solvent can evaporate from
the side window or from the open entrance of the cell. The evaporation process leads to a progression in the
acetone concentration gradient and is therefore visualized by the progress of the colors over time.

Only a very small flow of the LC is associated with this process. In fact, flow alignment, and similarly diffu-
sion, both tend to align CLCs with their helical axis perpendicular to the flow direction because flow/diffusion
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Figure 5.4: POM images (transmission mode) of the formation of the ULH alignment over time. The black areas are the
isotropic regions induced by the acetone, while the rainbow colors in the ULH are due to a birefringence gradient dictated
by an increasing concentration of acetone towards the black region. The red arrow indicates the helix axis orientation
(scale bar: 100 µm).
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Figure 5.5: POM images (transmission mode) of the bright (a) and dark (b) states of the solvent-induced ULH growth in
the case where the diffusion/evaporation is not unidirectional. The helix axis is parallel to the curved front between the
isotropic and LC phases (scale bar: 100 µm).

along the helical axis is hindered [231].
A way to evaluate the importance of the flow-induced alignment is the Ericksen number [257]

Er =
ηvL

K
(5.1)

where v is the flow velocity (v ' 0.6× 10−6 µm/s, extracted from the image sequence shown in Fig. 5.4), L is
the characteristic length scale of the system (L = 10 µm, the thickness of the cell), η=0.08 Pa·s is the viscosity
of the LC and K = K3 = 16 pN is the highest of the three elastic constants of the LC (see Tab. 2.1 for the
E7 coefficients). With these values, we obtain Er ' 0.03 � 1, indicating that the effect of flow is probably
insignificant for the alignment of the LC in our case [257]. Also note that v is evaluated with the velocity of
the phase transition front, which is only the upper bound for the actual LC velocity, so the flow effect is likely
to be rather small. Indeed, the few defects which are present in regions where the ULH has formed do not
change position while the birefringence colors change as the acetone diffuses from the cell, indicating that the
acetone concentration is low and it slowly decreases without significant flow of the LC. However, if the flow
does contribute to the alignment, it is such that the helix axis would form parallel to the evaporation front and
orthogonal to the shear flow. From Fig. 5.4 it is possible to see that the ULH texture is formed over the course
of several minutes. However, the slow color progression indicates that an amount of solvent may remain in the
sample. For this reason we left the solvent to completely evaporate (and the cell to acquire a uniform color) over
a period of two days before the device characterization was carried out.

Due to the slow evaporation rate of the acetone coupled with the high mobility of the LC molecules in
the solvent-induced isotropic state, the LC molecules at the isotropic/nematic interface are able to rearrange
themselves in a lower energy configuration, which is dictated by the chirality of the mixture, the spin-coated
homeotropic surface on the two glasses and the homeotropic alignment at the interface with the acetone (a polar
solvent) [258]. For these reasons, the helix is lying in the plane of the cell at the interface, with its axis parallel to
the evaporation boundary. The orientation of the helix axis has been verified with a Berek compensator.

In Fig. 5.5 we show that, when the evaporation/diffusion process takes place far from the side window, the
isotropic-nematic interface front can be curved and the helix axis orientation follows the shape of the phase-
transition front. It is also possible to see that the ULH alignment is reached independently of the initial conditions
of the LC alignment (focal conic texture in our case, as can be seen in the left part of the Fig. 5.5). Indeed, the
LC self-assembly, starting from an isotropic-like phase where the LC molecules are randomly oriented in the
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Figure 5.6: POM images (transmission mode) of the bright (a,c) and dark (b,d) states of the solvent-induced ULH growth in
the case where the diffusion and evaporation is controlled by the side window. The color sequence, indicating a gradient
of the birefringence, is present during the solvent diffusion and evaporation (a,b), while a uniform sample is obtained when
no acetone is left in the sample (c,d). The ghost image in the upper part of the figures is due to the reflection from the side
glass window, while the glue used to fix the glass also leads to a blurry dark shadow close to the edge. The red arrow
indicates the helix axis orientation (scale bar: 100 µm).

solvent, is only dictated by the interaction among the molecules, the boundary conditions and the direction of
the solvent diffusion. It is for this reason that the side glass mentioned above was added to the cell, in order to
control the solvent evaporation and hence diffusion direction within the cell.

In Fig. 5.6 we show the result of the self-assembly close to the side window, during (a-b) and after (c-d)
the complete evaporation of the solvent. In this region the highly homogeneous ULH alignment extends over
several hundreds of micrometers. Its extent is only limited by the fact that, after initial evaporation of the solvent
close to the edge, the acetone tends to be trapped in the central region of the cell, where it tends to diffuse in
all directions at the same time, generating the rather scrambled alignment texture visible in the lower region
of the images. Close to the edge of the device, the evaporation/diffusion is almost unidirectional and the ULH
grows into much larger homogeneous regions (Fig. 5.6). Indeed, the diffusion direction is orthogonal (or close to
orthogonal) with respect to the side window. The almost flat front of the phase transition then causes the helix
axis orientation to be homogeneous over large regions.
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5.3 Contrast ratio

In this Section, we analyze the optical quality of the ULH alignments obtained with the two methods. In both
cases, the images are taken with no voltage applied and at room temperature (∼23 °C).

Fig. 5.7 reports the bright (a,b) and dark (c,d) states for the respective shear flow and solvent-induced ULH
alignments (in the region toward the side window). The ULH sample acts as a uniaxial material for wavelengths
larger than the CLC pitch, as it is in this case. The ordinary refractive index experienced by the light linearly
polarized along the helix axis is n⊥, while the light polarized orthogonal to it experiences an effective refractive
index given by the average of n‖ and n⊥.

The bright state of the shear flow induced ULH exhibits some striping in the direction of the helix axis, which
is comparatively non-existent in the solvent-induced alignment. Enhancing the acquisition time of the camera
(Fig. 5.7e,f), it is possible to visualize the defects in the dark state images, where the elongated domains from the
shear-flow case are much more evident, and the homogeneous texture for the solvent case is highlighted. Some
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Figure 5.7: POM images (transmission mode) of the bright and dark states for the shear-flow (a,c,e) and solvent (b,d,f)
induced ULH alignment; (e,f) enhanced brightness images of the dark states. The red arrow indicates the helix axis
orientation (scale bar: 20 µm).
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defect points of a few µm in diameter are still visible in the solvent-induced ULH, but the improvement in the
alignment is evident.

In order to quantify the quality of the ULH texture, we measured the contrast ratio (CR), defined as the ratio
of the intensity of the bright state to the intensity of the dark state. The images of the bright and the dark states
for the same ULH are taken with the same integration time, in order to be able to compare the transmission
for the two states. The intensity is averaged over an area of around 100 µm2 and, for both the dark and the
bright state, the dark level for the camera is subtracted. The CR is measured with a broad-spectrum white
light source focused on the sample with the condenser of the microscope set to a numerical aperture (NA) of 0.8,
and collected with a 50x objective (Nikon, NA=0.7). For the shear flow case, a large amount of micro-domains
can be seen in Fig. 5.7e. The difference in the orientation of the optic axis between each sub-domain leads to
optical scattering that degrades the overall quality of the dark state, resulting in a CR of ∼ 30. However, for the
solvent-induced ULH alignment case we obtain a CR of ∼ 120, on account of the largely defect-free structure
that results from the latter technique. For this reason, the CR increases by a factor of four for the solvent-induced
case, demonstrating the higher quality of the ULH alignment. For comparison, using the same measurement
technique, the CR for a planar nematic E7 device of 5 µm thickness was found to be ∼ 160. Therefore, the
contrast ratio of the solvent-induced ULH aligned device is approaching that of a planar aligned nematic device
with a similar optical retardation. This underlines the highly uniform ULH alignment that is possible to obtain
with this technique.

5.4 Flexoelectro-optic effect

In this Section, after a brief introduction on the method used to measure the reorientation angle of the CLC optic
axis, the flexoelectro-optic responses for the two ULH alignments are compared.

5.4.1 Measurement of the tilt angle

A square-wave electric field is applied to the LC cell to characterize the flexoelectro-optic response. As presented
in Ch. 2, for small angles, the tilt of the CLC optic axis induced by the flexoelectro-optic response is a near-linear
function of the amplitude of the electric field. In the case of a helix with a pitch fixed at the natural pitch p0, the
tilt angle follows the relation given by Eq. (2.36), rewritten here for clarity

tanφ =
p0

2π

(e1 − e3)

2K2
E − K1 − 2K2 +K3

2K2
sinφ, (5.2)

where, as a reminder, φ is the tilt angle of the optic axis with respect to the helix axis, E is the magnitude of the
applied electric field, K1, K2 and K3 are the splay, twist and bend elastic coefficients, respectively, and e1 and
e3 are the splay and bend flexoelectric coefficients, respectively.

The reorientation angle due to the flexoelectro-optic response is measured using the following standard
technique [233, 237]. The cell is placed on the microscope with the collected transmitted light passing to a
photo-diode connected to an amplifier to measure the intensity of the light transmitted by the cell (measured
in [V]). No electric field is applied at this stage. Since the pitch of the ULH is shorter than the wavelength of
visible light, the ULH layer acts as an optically uniaxial material. The transmission is therefore described by
T = Tmax sin2 (2η), where η is the angle between the ULH field-dependent optic axis and the transmission
axis of one of the polarizers, and Tmax is the difference in transmission between the bright and the dark states.
Tmax is measured in the sample. Then, the ULH is placed with the helix axis at 22.5° from the polarizer axis,
in the linear regime of the transmission response. In that case, the amplitude 4η of small fluctuations in the
optic axis orientation angle is related to the amplitude 4T of the modulated transmission through the relation

4η = 4T/ (2Tmax) . (5.3)

A square wave of amplitude E is then applied to the cell. After an equilibrium is reached, the transmitted
intensity for the reorientation of the ULH is recorded as a function of time (Fig. 5.8a). From the measurement
of the amplitude of the modulation it is possible to obtain the reorientation angle 4η [Eq. (5.3)], which is the
electric field dependent tilt angle φ in Eq. (5.2).
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5.4.2 Flexoelectro-optic characterization

Both the shear-flow-induced and solvent-induced ULH alignments exhibit a flexoelectro-optic response when an
a.c. electric field is applied. The temporal dynamics of the transmitted intensity for both ULH states is shown in
Fig. 5.8a. In the Figure, the offset of every curve has been subtracted to simplify the comparison. For low voltages,
both textures tend to show the same dynamic behavior, while, for higher voltages, we observe a drop in the
response for the solvent-induced alignment. The response time, defined as the time required for the transmission
to increase from 10% to 90%, decreased from 70 µs to 50 µs when the electric field increased from 1.5 V/µm to
5 V/µm for both textures. From the amplitudes of the data shown in Fig. 5.8a we can extract the tilt angle φ
as a function of the electric field as explained above. Fitting Eq. (5.2) to the experimental data, it is possible to
find the value for the flexoelectric difference e1 − e3 that provides the best-fit, as shown in Fig. 5.8. Using the
values for the elastic constants reported in Tab. 2.1 and p0 =350 nm, we obtain e1 − e3 = 12.1±1.0 pC/m for
both the shear-flow-induced and solvent-induced alignment, indicating that no solvent or impurities are left in
the sample, as this would tend to influence the flexoelectro-optic response. Also, the value for e1− e3 is in good
agreement with the values reported in the literature [83, 233].

0 1 2 3- 0 . 0 2

- 0 . 0 1

0 . 0 0

0 . 0 1

0 . 0 2

 

�

V ou
t [V

]

��������	

��
�
���������������
��
�
�������������
�����������������
���������������

(a)

0 1 2 3 4 50
1
2
3
4
5
6
7
8

�

 

���
��

E  [ V /µm ]

�
�
@
@
P

A
-�

-�

(b)

0 1 2 3 4 50
1
2
3
4
5
6
7
8

�

 

���
��

E  [ V / µm ]

-�

-�

(c)

Figure 5.8: (a) Temporal dynamics of the transmitted light through the ULH CLC between two crossed polarisers, for both
types of alignment at two different voltages; the offset of every dynamic plot has been subtracted. (b-c) Experimental values
(symbols) and fit based on Eq. (5.2) (line) of the tilt angle of the optic axis as a function of electric field for the shear-flow
(b) and the solvent (c) induced ULH. The frequency of the square-wave electric field was 300 Hz. Insets: POM images
(transmission mode) of the alignment at E =2.5 V/µm (top left) and E =5.0 V/µm (bottom right) for the shear flow (b) and
the solvent (c) induced ULH. The red arrow indicates the helix axis orientation (scale bar: 50 µm).
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Increasing the field amplitude, the tilt angle of the shear-flow-induced ULH remains approximately linear
over the entire electric field regime considered here, with a small deviation at 5 V/µm. The shear-flow-induced
ULH texture also appears to remain homogeneous for all field strengths (insets Fig. 5.8b).

On the other hand, the tilt angle for the solvent-induced ULH deviates substantially from linear behavior
for electric fields greater than around 4 V/µm. Interestingly, above this field strength, defect lines are observed
propagating orthogonal to the helix axis (insets Fig. 5.8c). Of course, some distortion in the helix may be expected
for applied fields approaching the critical field Ec [259]. However, importantly, here it seems that unwinding is
taking place through the propagation of the defect lines for fields greater than around 4 V/µm. The critical field
for the unwinding of the helix, including the flexoelectric contribution, is given by Eq. (2.25), which is rewritten
here for simplicity of reading:

Ec =
π2

p0

√√√√ K2

ε04ε− π2(e1−e3)2

16(K1+K3)

. (5.4)

For the values of the physical constants for E7 reported in Tab. 2.1 and for the value of e1 − e3 obtained above,
the critical electric field is Ec = 6.9 V/µm.

When the applied electric field approaches this value, the constrained pitch of the helix is somewhat different
from its equilibrium value. There is therefore a tendency for the helix pitch to change through an unwinding
process. In principle, two unwinding mechanisms are possible, one where the pitch changes continuously, and
one where the pitch changes discontinuously (through defect formation/growth). In general, we do not expect
the first of these to take place in ULH devices due to surface and bulk helix pinning interactions. However,
helix unwinding through defect formation/growth is possible. Interestingly, we observe this to be much more
prevalent in the high quality solvent-induced ULH alignment (inset of Fig.5.8c) than in the lower quality shear-
flow induced alignment. It therefore appears that the high concentration of domain edges in the latter case tends
to block the growth of the unwinding lines (i.e. growth of defects and dislocations are pinned). In the unwound
portions of the helix, the dielectric interaction tends to suppress the flexoelectro-optic tilt angle and therefore
we observe a drop in the electro-optic response at higher fields for the solvent-induced ULH alignment where
significant helix unwinding takes place (Fig. 5.8c). This indicates that in practice structural stabilization, using
for example a polymer network, is very important to ensure electric field-stability of the solvent-induced ULH
structure [237]. This is crucial in the case where the ULH is used to provide the feedback for lasing, since in
that case a disruption of the periodicity would deteriorate the laser emission. The polymer-stabilized ULH will
be the subject of Sect. 6.2.

5.5 Spatial instabilities

Finally, the high degree of homogeneity in the solvent-induced ULH allows for the observation of an apparent
periodic buckling instability in some regions of the device. Even if the details of the instability and its origin
are not clear and even if further investigation is not possible for lack of time, we decided to report here the
experimental observations for sake of completeness.

The wave-vector of the instability occurs in planes containing the nematic director, which are perpendicular
to the helix axis of the ULH alignment (Fig. 5.9). The period, Γ, of this instability is independent of the frequency
of the applied electric field in the range of 40 Hz to 100 kHz and it decreases by increasing the amplitude of the
electric field.

The period of the observed instability appears to follow the behavior normally expected for flexoelectric
instabilities in achiral nematics described by Eq. (2.19), reported here for simplicity of reading

Γ =
π (K1 +K3)

(e1 − e3)E
, (5.5)

where the electric field E is applied along the director of the nematic and the bend-splay periodic deformation
takes place orthogonal to it (see Fig. 2.4e). In Fig. 5.10 we report the experimental evolution of the period and
the fit given by Eq. (5.5), where e1 − e3 = 12.1 pC/m as found in the previous section.

Experimentally, the period appears to reach a plateau at low electric fields, which is not taken into account
in the theory. Indeed, it seems that the maximum period length is limited to one or two times the thickness
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Figure 5.9: POM images (transmission mode) of the equilibrium states of the instabilities in the ULH for electric fields of
0 V/µm, 0.15 V/µm, 0.75 V/µm, 1 V/µm, 1.75 V/µm, 3 V/µm, (a)-(f). The white arrow indicates the helix axis orientation
(scale bar is 50 µm).
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Figure 5.10: Experimental and theoretical evolution of the period Γ as a function of the applied electric field.

of the cell. Of course, a systematic study of the instability for different cell thicknesses should be performed to
support this theory.

The basis of Eq. (5.5) is a d.c. field induced bend-splay instability in a nematic, whereas the signal applied to
our device is a.c. (square wave) - it is therefore not entirely clear why it might be applicable here. Normally, the
flexoelectrically induced tilt angle given by Eq. (5.2) is associated with bend-splay structures in planes containing
the reoriented nematic director, but instabilities of the form observed here are not generally seen in chiral
nematics in a ULH state. Indeed, further investigation is required to fully understand the origin of this behavior.

5.6 In-plane characterization

Until now, the side window was exploited to induce a slow and directional evaporation of the solvent. Originally,
this same side window should have allowed the observation of the ULH optical band-gap in the plane of the
cell. However, it was not possible to completely fill the cell, as a thin air bubble was always present between
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Figure 5.11: POM images (reflection mode) of the cell filled close to the side window in the case where (a) no field and (b)
an electric field of 2.5 V/µm (1 kHz) is applied (scale bar: 20 µm).

the LC and the side glass. We believe that this was due to the fact the E7 LC tends to form large contact angles
at the interface with the Nissan SE4811 alignment layer compared to other alignment layers [260]. Close to the
side window, the formation of a meniscus at the LC interface is also promoted by the very small gap due to
the spacers (∼3 µm), the roughness of the side facets of the large glass plates and the small thickness of the
cell (10 µm). This air gap is very difficult to avoid, even with repeated thermal cycles or by filling the cell in
vacuum. Since the cells were fabricates in the UGent facilities, it was not possible to change the alignment layer
to improve the filling during my six-month stay in Oxford.

Even if the interface towards the side window always presented defects, it is possible to observe some light
reflection from the side window. Fig. 5.11 reports the light reflected from the side window for no field and an
electric field of 2.5 V/µm. The images are taken with the optical microscope in reflection mode, since we are
looking at the reflection due to the optical band-gap of the CLC. If a uniform ULH was present, with the HA
along the ẑ axis, we should be able to see a uniform reflective region corresponding to the reflection of the ULH.
However, in our case, the distribution is not homogeneous enough to measure the reflection spectrum, however,
it is possible to observe a change in the color when an electric field is applied.

5.7 Conclusion

In this Chapter we have demonstrated how a solvent-induced self-assembly technique can be applied to LC
alignments. The slow and directional diffusion/evaporation of the solvent allows the system to reach the minimal
energy configuration, which corresponds to the ULH state in our case. The ULH obtained with this technique
exhibits an extremely homogeneous alignment that translates into a high optical quality and a larger contrast
ratio than is typically observed using conventional alignment procedures, with the advantage that no external
stimulus is needed to obtain the alignment. The flexoelectro-optic response shows that the technique does not
alter the electric response (at low fields), while increasing the optical quality of the alignment. We believe that
this technique could provide new opportunities for defect-free self-assembly of LC textures and phases, with
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particular interest for templated and structured devices, where LC defects are difficult to avoid.
Even though these regions are only a few hundreds of micrometers across, they can be of interest for

applications such as thin film lasers [261] and spatial light modulator technology [69], where small high-quality
areas of alignment are required. Indeed, in the next Chapter, this technique will be applied to other mixtures with
photo-polymerizable polymer dissolved in it and we will demonstrate lasing from polymer-stabilized dye-doped
solvent-induced ULH.
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Interplay between gain, nonlinearities
and feedback 6Chapter
The aim of this Chapter is to combine the different concepts and phenomena presented in this thesis. In the
first part of the Chapter, the nonlinear propagation in LCs (Ch. 3) will be combined with the ASE observed in
dye-doped LC samples (Ch. 4). We will show how the waveguide induced by the soliton can be used to collect
and extract the ASE generated in the same sample. These results have been published in Optics Letters [131].

In the second part of the Chapter, the optical gain provided by the dye will be combined with the feedback
provided by the CLC to induce laser emission. In particular, the ULH alignment configuration will be exploited
in order to observe in-plane laser emission. The aim of that Section is to use the flexoelectro-optic effect in order
to have sub-ms tuning or switching of the lasing emission. Even if this last aspect is only outlined in this Chapter,
we decided to report here the results since they are the preliminary interesting steps towards a fast-switching
in-plane laser.

6.1 ASE and nematicon

In Ch. 4 we presented some of the advantages of dispersing photoluminescent materials in LCs, such as polarized
emission or suppression of charge formation. The main drawback of LC as a host for photoluminescent materials
is their need to be integrated onto macroscopic aligning substrates, in order to have a macroscopic order of the
LC. In the case where the emission is orthogonal to the substrates, there is no particular issue with the extraction
of the light. However, when the emission is in the plane of the cell, such as for ASE or (as it will be seen in the
next Section) for in-plane lasing, the collection and the extraction of the light can be more difficult. The edges
of the cell are either sealed with glue or left open; in both cases a depolarization and a de-focusing of the beam
take place. Also, in the case of ASE, the divergence of the source is quite high. This implies that the excitation
stripe has to be close to the edge of the cell in order to be able to efficiently collect the light at the output of the
device. This configuration would also cause the scattering of the pump beam due to the cell edges, deteriorating
the beam output profile and making necessary a color filtering at the output of the device.

In this Section a new way to efficiently collect and extract the ASE from a LC cell is proposed, through the
combined action of a nematicon and an optical fiber slid into the cell. The nematicon waveguide induced at the
fiber end collects the ASE and guides it back into the fiber, and then outside of the device where it can be used
for applications, such as incoherent lighting or optical coherent tomography [47–49]. The ASE guided by the
nematicon does not diffract along the propagation direction, in this way it is better injected into the fiber than
a diffracted beam. We demonstrate that the presence of the soliton increases the intensity of the ASE collected
by the fiber by one order of magnitude. Finally, also referring the ultra-fast spectroscopy technique presented in
Ch. 4, we show that the ASE wavelength tunability, obtained as a function of the soliton power, depends mainly
on the interaction with the nematicon rather than on the gain anisotropy of the dye molecules.

6.1.1 The optical setup

The 75-µm-thick LC cell is the same as that used for the nematicon observation in Ch. 3. The cell glass substrates
are coated with nylon and then rubbed in order to induce a preferential orientation of the LC director on these
two surfaces. The rubbing direction is at 45° with respect to the cell edges. Once assembled, the cell is infiltrated
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Figure 6.1: (a) Scheme of the nematicon injection and the ASE generation in the dye-doped nematic LC cell. The light
extracted from the cell is sent either to a CCD camera or a spectrometer. Inset: Scheme of the cell with the fiber slid inside
it and the stripe-shaped pump coming orthogonal to the cell surface. (b) Picture of the dye-doped LC cell, with the optical
fiber slid from the right and the green laser beam focused on a stripe.

by capillarity with a solution of 1 wt.% of pyrromethene 597 dye (PM597, Sigma-Aldrich) in E7 LC (Merck). A
non-standard optical fiber (see Sect. 2.4.2 for details) is slid inside the cell along the ẑ direction (Inset of Fig. 6.1a).

The optical setup and a picture of the LC cell are reported in Fig. 6.1. The two optical sources used to
create the nematicon and to excite the dye are, respectively, a continuous wave Nd:YAG laser (1064 nm) and a
Q-switched frequency doubled Nd:YAG laser (532 nm, 400-ps pulses at 10 or 100 Hz). On both arms, the first
half-wave plate and the polarizing beam splitter allow us to control the beam power while the second half-wave
plate defines the input polarization angle with respect to the LC director. We set the polarization of the green
beam (pump) to maximize the fluorescence and we align the polarization of the IR beam (soliton) along x̂.

With the aid of a microscope objective (f=8.0 mm, NA=0.5), the IR beam is injected into the optical fiber
slid into the cell. As seen in Ch. 3, the nematicon propagates with a walk-off with respect to the ẑ axis due to the
rubbing direction at 45° with respect to the fiber and to the optical anisotropy of the LC. The stripe-shaped green
beam is therefore also tilted to maximize the overlap with the nematicon (Inset of Fig. 6.1a). This beam is focused
with a spherical achromatic and a cylindrical lens in order to obtain an elliptical spot of around 20 µm × 7 mm
on the cell. The pump stripe is aligned to form a gap of around 2 mm between the pumping area and the end of
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the fiber. The ASE threshold, measured ad the power at which the ASE peak arises from the broad fluorescence
spectrum, is as low as 0.4 µJ/pulse, and all the measurements presented here are taken for a pump power above
this value.

The ASE beam is emitted at both ends of the stripe, due to the symmetry of the system. Some of the ASE
enters the fiber and is guided outside the cell. The beam is then collimated with the same microscope objective
used to inject the IR into the fiber, then reflected on to a beam splitter for the visible light. This light is then
characterized spatially, with the ensemble of 532 nm notch/IR filters and a monochromatic CCD camera (JAI
AM-800 GE-C, case A in Fig. 6.1a), and spectrally, using a spectrometer (Ocean Optics USB2000, case B in
Fig. 6.1a).

In the following Section, we will show how the waveguide generated by the soliton collects and guides the
ASE towards the fiber, increasing the fraction of light coupled outside the device trough the fiber.

6.1.2 Results and discussion

The ASE collected by the nematicon and exported from the sample is analyzed in terms of spatial profile,
collected power, and spectral properties.

Collected ASE intensity

Using the configuration reported in Fig. 6.1a (case A), the far field intensity profiles of the ASE light collected
by the nematicon and coming out of the fiber are shown in Fig. 6.2. In these measurements we separate the
emission polarized along x̂ (parallel to the substrate surface, Inset of Fig. 6.1a) from that one polarized along
ŷ (orthogonal to the substrate surface). Due to its high directionality, a small amount of the ASE is coupled
into the fiber even if the soliton is not present (Fig. 6.2a). The power ratio between the two linear polarization
components is ∼5.1. A similar ratio (∼4.4) is obtained if the end of the pump stripe is placed close to the fiber
and the ASE does not travel inside the unexcited LC. The ASE is therefore mainly polarized in the plane of the
substrate. This is due to the geometry of the waveguide where the ASE is generated, as also reported for solid
state films [183], and to the anisotropy of the dye emission, mainly polarized along the axis of the molecule and
therefore the LC director.

When an IR beam of 2.0 mW is injected into the cell through the fiber, it creates a nematicon that captures
the ASE light and efficiently couples it into the fiber. The intensity profiles of the collected ASE at the exit of
the fiber are modified as reported in Fig. 6.2b-d for different nematicon powers. Initially, increasing the soliton
power, the intensity of the collected ASE increases too. The peak of the collected light polarized along x̂ for
the case of 2.0-mW soliton power is one order of magnitude (∼9.0) higher than the case without nematicon.
This factor is almost double than what was obtained by Henninot and co-workers with a thermal soliton in LC
collecting non-directional fluorescence [262]. The power ratio between the two polarizations is also significantly
increased (∼7.0), due to the fact that the waveguide profile is created only for the light polarized in the plane
x̂ẑ [16]. By further increasing the soliton power, however, we observe a drop in the collected ASE.

In order to evaluate the variation of the collection efficiency of the ASE as a function of the soliton power,
the intensity profile at the end of the fiber is integrated as a measure of the collected ASE power. The results
are reported in Fig. 6.3. At powers below 0.7 mW, the nematicon is not formed. The ASE beam is therefore
not guided along a preferential direction resulting in a small amount of ASE coupled into the fiber. Above this
threshold, the nematicon is created. The ASE is guided by this self-induced waveguide up to the fiber, allowing
an efficient coupling and causing an important increase of the intensity of the collected ASE. As the refractive
index contrast of the waveguide increases with the soliton power, due to a stronger LC reorientation, the guiding
efficiency increases also. Therefore, the intensity of the collected ASE increases with the nematicon power and
reaches a maximum at around 2 mW. Above this value, the soliton spatial fluctuations studied in Ch. 3 start to
play an important role. By increasing the power of the IR beam, the soliton starts to overfocus: the beam waist
becomes of the same order of magnitude as the thermal fluctuations of the refractive index and the nematicon
is deviated from its path [29, 43]. The spatial oscillations induce a rapid decrease in the efficiency of the ASE
collection and waveguiding. The optimum ASE collection is therefore obtained as a trade-off between a higher
waveguiding due to a stronger director reorientation and the minimization of the nematicon fluctuations.
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(a)
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Figure 6.2: Intensity profiles of the collected ASE at the output of the fiber for the case without nematicon (a), and for a
nematicon of 1.1 mW (b), 2.0 mW (c) and 3.7 mW (d). The spatial scale indicates the real size of the image on the CCD
camera. The two polarizations, orthogonal (left column) or parallel (rigth column) to the substrate surface, are shown. The
images are taken at 35 cm from the microscope objective and the pump delivers pulses of 2.0 µJ/pulse at 10 Hz; each profile
is an average of 100 images, and all the images are taken with the same integration time. The presence of the nematicon
increases both the polarization ratio and the intensity of the collected ASE.
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Spectral properties

Using the configuration reported in Fig. 6.1a (case B), we analyze the spectrum of the light collected by the
nematicon and guided into the optical fiber (Fig. 6.4). The normalized spectra are acquired for the same pump
intensity (2.0 µJ/pulse) and for different nematicon intensities. Quite interestingly, we observe a blue-shift of the
ASE peak (∼3 nm) at high soliton powers for which the collected power is also decreasing due to the nematicon
fluctuations.

This blue-shift cannot be due to the combination of the director reorientation and the anisotropy of the
optical gain of the dye. Indeed, as we presented in Sect. 4.3, the optical gain polarized parallel to the LC director
is red-shifted with respect to the other polarization, as reported in Fig. 4.9 and Fig. 4.10b. Since the electric
field of the nematicon tends to align the LC (and therefore the dye) molecules parallel to its direction, we should
observe a red-shift instead of the blue-shift reported in Fig. 6.4.

If the reason of the spectral shift is not the gain anisotropy of the dye, then its origin can be considered in
terms of the change in the environment. Indeed, at high nematicon powers, the soliton beam starts to oscillate
in space due to thermal fluctuations, inducing wavelength-dependent bend losses [263]. The observed blue-shift
could therefore be due to the change in the waveguiding properties of the soliton as a function of the power.
The oscillations of the nematicon at high powers can be seen as a bending of the waveguide. Since the bend
losses are higher for the longer wavelengths [263], the soliton oscillations could act as a spectral filter, inducing
a blue-shift in the collected ASE.

Other contributions should be taken into account for a complete model of the system. Indeed, the scat-
tering coefficient parallel to the director is higher than the one orthogonal to it, increasing therefore the losses
experienced by the light polarized along the LC director [125, 157, 175, 264]. Their wavelength dependence is
expected to be different, since the spectral evolution of the ordinary and extraordinary refractive indices is not
the same [85], which would cause a change in the balance between the gain provided by the dye and the losses
due to the scattering and therefore a change in the ASE wavelength.

It is, however, difficult to decouple experimentally these two contributions in our device. Indeed, even if the
pump stripe is placed right next to the entrance of the fiber, the ASE is not generated only at the edge of the stripe
but along most of the length of the stripe [265]. Therefore, the nematicon-induced waveguide could therefore
influence the spectrum of the collected ASE both through the waveguide properties (post-ASE generation) and
through the change in the medium losses (during the ASE generation).

Finally, it is important to notice that both the nematicon waveguiding and the injection into the optical fiber
act as filters for the non-directional and non-polarized light, eliminating the broad-band photo-luminescence
spectrum present in Fig. 4.10b and leaving only the ASE peak (Fig. 6.4).
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Figure 6.3: ASE collected power as a function of the IR beam power. The ASE power is obtained integrating the intensity
profiles like those reported in Fig. 6.2. The pump delivers pulses of 2.0 µJ/pulse at 10 Hz.
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Figure 6.4: Normalized spectra collected at the output of the fiber at different IR beam powers; each spectrum is an average
of 200 scans. The pump delivers pulses of 6.6 µJ/pulse at 100 Hz.

6.2 Investigation of lasing from dye-doped solvent-induced polymerized ULH

As it was explained in Sect. 2.3, chiral nematic LCs present an optical band-gap. The feedback provided by this
selective reflection gives rise to laser emission when coupled to the optical gain provided by a dye dissolved in
it [8–11, 137, 139], in the same way it is observed in distributed feedback lasers.

The periodic structure affects the way the molecules spontaneously decay and does not simply spectrally filter
the emission [266]. Indeed, if the emission curve of the dye overlaps the band-gap of the CLC, the spontaneous
emission of the molecule is suppressed inside the band-gap, since these wavelengths cannot propagate inside
the medium, and enhanced at the edges where the density of photon states is higher [267]. The two edges of
the band-gap are not equivalent: if the dye dipole moment is parallel (or orthogonal) to the LC director, the
density of states is higher at the longer- (or shorter-) wavelength edge of the band-gap [267]. The laser threshold
is minimum if the band-gap edge with the highest density of states is centered under the peak of the PL curve
of the dye [10]. CLC lasers are interesting for their simple fabrication and the possibility to tune the emission
wavelength by shifting the CLC band-gap under the emission curve of the LC. Due to the large response of LC
to external stimuli, a tuning of some tens of nanometere can be achieved via mechanical [268], thermal [153, 256,
269], electrical [256, 270] or photochemical [271–273] stimuli.

In the previous Chapter we introduced the ULH alignment, where the helix axis lies parallel to the glass plate.
If a dye is added in to the system, the laser emission takes place in the plane of the cell when the dye is excited [60–
62, 261]. This configuration presents a lower threshold compared to the case of Grandjean alignment [60, 61].
Indeed, the cavity length (and therefore the feedback from the CLC) is increased from some tens to some hundreds
of micrometers, while the pumping is kept uniform over the cavity length since the laser is focused orthogonal
to the glass plates. The drawback of this configuration is the difficulty to obtain a homogeneous defect-free
ULH. In Ch. 5, we presented the solvent-induced method to achieve highly homogeneous ULH alignment. The
solvent-induced ULH, however, presented discrete helix unwinding when high electric fields were applied (see
Ch. 5). For this reason, in this Section, the ULH alignment is stabilized via 2-photon photo-polymerization.

The 2-photon photo-polymerisation (TPP) technique allows us to write three-dimensional polymer structures
with a high spatial resolution due to the nonlinear 2-photon absorption from the photo-initiator mixed with the
reactive monomer in the LC [274]. Indeed, adding a photo-initiator and a reactive mesogen to the LC, it is
possible to photo-induce a polymer network that freezes the LC molecular orientation. Using the TPP technique
instead of the traditional UV polymerisation, it is possible to pin µm-sized structures or defects in the LC host,
while the surrounding preserves the mobility and the responsiveness to electric fields typical of LCs [237, 275,
276].

When the sample is then left in an acetone bath for several hours, the non-reacted monomers and the LC
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molecules are washed out of the cell, while the polymer network stays in the sample. The cell can then be
refilled with other materials. In particular, it has been demonstrated that, when the polymerization is induced
by UV light and the cell is refilled with achiral nematic LC, the chiral polymer network forces the nematic LC
to follow the chiral distribution assumed by the CLC before the polymerization [277, 278]. As it will be shown
later, this is also the case for the 2-photon-polymerized network.

When the cell is filled with achiral nematic LC, only the polymerized regions assume a chiral distribution.
When a dye-doped LC is introduced in the cell, in order to have the optical gain needed for the laser emission,
the optical feedback is localized in polymerized regions while the rest of the cell exhibits a uniform homeotropic
distribution. This could be particularly interesting for the study of the interaction between the lasing emission
generated from the polymerized structures and a nematicon injected in the achiral nematic regions of the same
cell.

Finally, the flexoelectro-optic response of the medium is less hindered when the medium is photo-polymerized
via TPP than with UV absorption [237]. Since the final aim is the electrical control of these structures, the TPP
technique is preferred. These structures are therefore the perfect candidates for the study of the influence of the
flexoelectro-optic sub-ms switching on lasing emission. In this Chapter, we report the first characterization of
the lasing emission from these structures, leaving the study of the electric switching for further works.

6.2.1 Sample preparation via two-photon photopolymerization

The mixture used for these samples is the one prepared by Chloe C. Tartan for [237] and it consists of 68.5
wt% E7, 4.1 wt% of the chiral dopant BDH1281 (Merck), 26.8 wt% RM257 reactive mesogen (Merck), and 0.6
wt% IRG819 photoinitiator (Merck). The mixture has a pitch p0 ∼ 400 nm and an optical band-gap between
600 nm and 680 nm. We decided to center the left edge of the band-gap under the PL curve, even if it is the
less efficient one, in order to be able to eventually distinguish between a LC director tilting and a change in
the periodicity of the ULH. Indeed, if the pitch is fixed but the molecules are reoriented by the electric field
via dielectric coupling, we observe a decrease of the effective extraordinary refractive index of the helix, which
defines the long-wavelength edge of the band-gap [Eq. (2.20)]. On the other hand, if the periodicity changes
due to a tilt of the optic axis of the ULH, both edges should shift accordingly. This mixture is introduced by
capillarity in a 10-µm cell composed by glass substrates coated with homeotropic alignment SE4811 (Nissan)
(see Sect. 2.4.2).

The two-photon polymerization is performed in the homogeneous regions of the ULH. The photo-polymerization
of the structures presented in this Section have been performed by Dr. Patrick S. Salter within the facilities at
the University of Oxford. The setup used for the polymerization is reported in Fig. 6.5a. The details of the setup
are described in the literature [237, 279], while here only the main features are reported. The laser used for the
polymerization is a mode-locked Ti:Sapphire laser (790 nm wavelength, 100 fs pulse width and 80 MHz repeti-
tion rate) with a maximum power of 300 mW. A spatial light modulator (SLM) pre-compensates the aberrations
introduced by the sample surface, before focusing the laser onto the sample (10× Zeiss objective, NA=0.3). In
particular, the SLM corrects the aberrations caused by the thick glass plates that constitute the cell and allows
us to write 3-dimensional structures within the thickness of the cell with a resolution of some microns [237, 276].
The sample is translated with respect to the laser beam with the aid of a precision translation stage.

The solvent-induced ULH is grown in the cell as described in Ch. 5 (Fig. 6.5b). The photoinitiator and
the reactive mesogen, when illuminated with intense laser light, generate a polymer network that locally pins
the LC distribution (Fig. 6.5c). It is possible to monitor the polymerization during the writing thanks to a light
emitting diode, a CCD and a lens system mounted on the same setup [237, 279]. The intensity of the beam is
set empirically on the sample and it is typically some tens of milliwatts [237]. It has to be high enough to see
a stable shade forming in the LC due to the polymerization (as it will be shown later), but low enough not to
burn the sample. The sample is then continuously moved with respect to the laser beam, in order to write lines.
Alternatively, the sample is fixed and the laser is switched on and off to write pillars. The writing speed in the
first case and the exposure time in the second one are the key parameters for the fabrication. However, this
being only a preliminary demonstration of lasing from such structures, the optimization of these parameters is
not the subject of this work.

The cell can then be washed out in acetone and refilled with achiral nematic LC. This is particularly important
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since the laser wavelength (790 nm) corresponds to the 2-photon absorption of both the photoinitiator and the
PM597 dye, since both of them present a quite strong absorption in the UV range. The structures are therefore
polymerized without the dye, in order to minimize the losses of the laser along the thickness of the cell. The cell
is then washed out for 4 days in acetone at room temperature and refilled with a solution of 1.0 wt.% PM597 in
E7. The dye-doped ULH alignment is present only in the polymerized regions, while the rest of the cell shows
a homeotropic alignment (Fig. 6.5d).

Figure 6.6 reports microscope images of the fabrication steps for different structures. When the laser lines
are almost superposed, a filled polymerized square is formed (F1,F2 and F3). Alternatively, the lines written by
the laser can be spaced and periodic walls are generated (W1,W2 and W3). Finally, if the cell is kept fixed
instead of continuously in movement with respect to the laser, it is possible to form pillars that can be disposed
in regular arrays (P1 and P2).

The as-generated structures are reported in the first column of Fig. 6.6. As it is possible to see comparing
the polymerized regions with the surroundings, the TPP process and the high power of the laser beam perturb
the LC and introduce defects in the ULH alignment. A faster writing speed seems to generate less perturbed

(a)

- x̂

6

ŷ
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Figure 6.5: (a) Setup used for the TPP process (image from [237]). (b)-(d) Fabrication of the structures via TPP (not to scale).
(b) A solvent-induced ULH alignment is obtained in a homeotropic cell filled with a mixture of LC and photo-reactive
material. (c) When the laser is focused within the cell, a photo-polymerization takes place only at the focus of the beam and
a direct writing of the structures is possible. In these regions the LC orientation is locked-in. (d) When the cell is washed
out and refilled with achiral dye-doped nematic, the LC assumes a ULH alignment in the regions where the polymerized
network is present.
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Figure 6.6: Microscope images of the fabrication steps via TPP for different geometries. The first two lines of the table
report structures where the laser draws a filled square (F1, F2, F3), the third and the fourth lines report walls written with
different periodicity (W1, W2, W3) and the last two lines report arrays of pillars (P1, P2). The writing parameters are F1,
F2: 30 µm/s; F3: 100 µm/s; W1, W3: 200 µm/s; W2: 100 µm/s; P1, P2: 50 ms of exposure. The first column shows the
structures right after the polymerization (crossed polarizers at 45°with respect to helix axis); the second column shows the
washed out cell (uncrossed polarizers); the third and the fourth columns show the bright and the dark states of the cell
refilled with the dye-doped mixture (crossed polarizers at 45°and parallel to the helix axis, respectively). The blue arrow
indicates the helix axis orientation (scale bar: 100 µm).
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Figure 6.7: Scheme of the setup for the lasing emission from the dye-doped TPP structures. The green laser is focused
orthogonal to the cell surface. The white light is sent onto the cell and then on to the CCD camera in order to have an
image of the region illuminated by the pump. Two crossed polarizers are inserted in the white light path to increase the
contrast between the structures and the non-polymerized surrounding.

polymerized structures. Also, the perturbation appears to decrease when the filling factor of the structures is
decreased. From this point of view, the pillar arrays seem to give the better results.

When the cell is washed out (second column of Fig. 6.6), however, the pillar arrays appear to be more fragile
while the filled squares are less deteriorated by the action of the solvent. In our case, since all the structures
were written in the same cell, it was not possible to adapt the duration of the acetone bath for the different
filling factors. Indeed, in future works, the acetone bath duration should be optimized as a compromise between
a complete removal of the non-reacted mesogen (to avoid the deterioration of the sample under utilization in
ambient light) and the smallest damage possible of the polymer network.

Finally, the cell is filled with a dye-doped LC (1 wt% PM597 in E7) and observed under cross-polarized
microscope light. The bright and the dark states are reported in the third and the fourth columns, respectively,
of Fig. 6.6. The sample W3 and the pillar arrays show almost no birefringence, since the dark and the bright
states are very similar. This indicates that in these structures the polymer network is not able to induce the ULH
alignment when the cell is filled with the nematic LC. A small anisotropy is however visible for W1, W2 and
the filled square structures. In particular F3 and W2 present quite large homogeneous regions, making them the
better candidates for the observation of the lasing emission.

The black regions around the structures are due to the homeotropic alignment of the LC, while the scrambled
regions indicate that the LC is not well aligned. This could be due to the fact that there is some polymer left in
the cell, or that the homeotropic alignment layers on the glass plates have been damaged. An optimization of
the washing procedure would notably decrease this problem. In the following Section we analyze the difference
in the PL emission between the non-polymerized regions and from the polymerized ULH structures, where the
emission is influenced by the CLC optical band-gap.

6.2.2 Investigation of laser emission

The setup for the spectral characterization of the lasing emission is reported in Fig. 6.7. A Q-switched Nd:YAG
doubled in frequency (532 nm, 400 ps, 10 Hz) is focused in the sample with a diameter smaller than the structure
sizes (some tens of micrometers). A white light source and a CCD are used to image the region of the cell
illuminated by the laser, in order to distinguish the different structures. The two polarizers on the white light
path are orthogonal, in order to have better contrast between the structures (birefringent) and the surrounding
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(isotropic since in homeotropic configuration). A fiber spectrometer (Ocean Optics USB2000) is placed close to
the illuminated area of the cell to collect the laser emission. The white light is switched off during the spectral
measurements.

The collected spectra are reported in Fig. 6.8. When the pump beam is focused in to a region without
polymerized structures, the emission spectra present a peak only at high pulse energies (>4.0 µJ/pulse). The
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Figure 6.8: Example of emission from the non-polymerized regions (a) and structures (b) at different excitation powers.
A peak arises from the florescence broad spectra by increasing the power. The presence of the polymerized structures
considerably decreases the width of the peak. (b-d) Emission from the polymerized structures for the different geometries:
filled square (b), walls (c) and pillars (d). For the polymerization structures the excitation pump is 4.0 µJ/pulse.



CHAPTER 6. INTERPLAY BETWEEN GAIN, NONLINEARITIES AND FEEDBACK 90

peak is quite broad (∼15 nm), even compared to the case of ASE studied in Sect. 4.3. The differences in both the
threshold and the spectrum compared to the ASE case presented in Sect. 4.3 could be due both to the defects in
the cell and to differences in the pumping geometry. Indeed, the quite small circular spot is not optimal for the
wavelength selection that occurs in ASE [52–55].

When the laser is focused on the polymerized ULH structures, the peak is narrower (∼5 nm) and centered
at different wavelengths, all compatible with the position of the left band-gap edge of the CLC. An example
of the evolution of the spectra for a polymerized structure is showed in Fig. 6.8b. Indeed, the ULH alignment
appears to generate a narrower emission than the case without the polymerized structure. Moreover, in these
structures, the peak threshold appears to be lower: ∼2.9 µJ/pulse for the pillars, ∼2.1 µJ/pulse for the walls, and
∼2.4 µJ/pulse for the filled squares. The lowest threshold is observed for the more homogeneous structures.
Further characterizations are needed to claim that what we observe is lasing emission, such as the input-output
power relation, the coherence of the light and the beam intensity profile [280, 281]. Indeed, the threshold for
the spectral narrowing is an encouraging result that indicates the interest in pursuing the study of light emission
from these structures.

The next step would be the study of the flexoelectro-optic coupling of the lasing emission. Indeed, by
applying a modulated electric field with peaks and dips and return to zero between them, it should be possible
to see a difference in the wavelength emission between the peak/dip case (when the helix optic axis is tilted)
and the zero voltage case. If the modulation frequency is high enough, it should be possible to exclude dielectric
coupling and obtain flexoelectrically-driven sub-ms wavelength tuning.

6.3 Conclusion

We have demonstrated experimentally that the ASE collection from a LC device can be increased by one order
of magnitude with the help of a nematicon that acts as a waveguide between the pump stripe where the ASE is
generated and the fiber input face. The nematicon waveguiding property improves the spectral purity and the
polarization degree of the collected light and it also introduces a small spectral shift, which does not come from
the gain anisotropy. Once the polarized ASE light is collected into the fiber, it can easily be used for applications
that require integrated and compact incoherent light sources, like lab-on-chip sources.

In the second part of the Chapter, we have looked for another kind of source that could be potentially tuned.
We have shown how the polymerized structures in the solvent-induced ULH alignment give rise to in-plane
narrowband emission in the presence of optical gain. Even if some of the fabrication parameters, such as the
polymerization speed or the washing out procedure, need to be optimized, it is possible to observe an in-plane
narrow spectral emission, not visible outside the structures. We hope to have set in this way the starting point
for sub-ms tunable integrated light source, where the injection of a nematicon could improve the light collection
and extraction.



Conclusions 7Chapter
In this thesis, we have studied the nonlinear nematicon propagation in LCs, the optical gain and the electrical
switching of chiral nematic LCs. In the beginning, these three aspects are analyzed separately.

The nematicon regime is firstly analyzed, with a particular attention to the spatial fluctuations observed at
high powers. We propose a way to model the fluctuations based on the spatial correlation of the thermal noise
in nematic LCs. This allows us to explain the power-dependent behavior of the fluctuation amplitudes and the
scattering-induced losses in nematicon propagation. We believe that this will help the modeling of both linear
phenomena involving speckle generation and more complex nonlinear behavior in LCs, such as modulation
instabilities or filamentation.

Secondly, the optical gain is analyzed in the case of PM597 and PFO dispersed in LCs. The PM597 dye
dispersed in LC provides an optical gain that is polarized along the LC director and that shows a blue-shift
when the polarization passes from parallel to orthogonal with respect to the director. For this reason, the ASE
wavelength can be tuned over a range of 10 nm changing the orientation of the pump stripe in the sample. When
the PFO is dispersed at high concentrations in LCs, it presents a complex morphology, composed of homogeneous
domains separated by polymer-rich boundaries. Within the boundaries, the isolation and orientation of the
polymeric chains allows the observation of polarized optical gain from the oxidized units of the PFO, the keto
defects. For the first time the keto defects are not associated with the degradation of the sample, but they
provide optical gain. This kind of sample cannot be employed for the soliton propagation due to the high
scattering provided by the domain boundaries and experienced by the light propagating in the plane of the cell.
The PM597 dye is therefore used in this work to provide optical gain.

Thirdly, the solvent-induced self-assembly method is presented for chiral nematic LCs in order to obtain a
ULH alignment, which presents sub-ms flexoelectro-optic switching. This solvent-evaporation method allows
us to obtain high-quality textures associated with the same flexoelectro-optic response observed in samples
obtained with traditional methods. We believe that this alignment method could be useful not only for the ULH
alignment, but also for other geometries or phases that usually present a difficulty in the alignment.

These three aspects are combined in the last Chapter. A soliton and ASE are generated in the same dye-doped
nematic LC device. The nematicon is used to collect the ASE and inject it into the fiber used to generate the
soliton. The nematicon waveguiding improves the spectral purity, the polarization degree of the collected light,
and the intensity of the signal extracted from the cell. The optical gain combined with the feedback provided by
the ULH is also tested and in-plane emission is observed. The two-photon polymerization technique allows us to
pin the ULH alignment only in a confined region of the cell, while the surroundings can assume a uniform nematic
alignment. In such a sample it would eventually be possible to combine the in-plane narrowband emission
from the ULH regions with the nematicon propagation in the nematic surrounding, opening opportunities for
electrically-tuned integrated laser sources.

7.1 Outlook

During this thesis many different subjects have been analyzed. There is also indeed also space for some im-
provements and developments that, due to the limited time duration of this thesis, have not been pursued.

We propose a numerical modeling for thermal fluctuations in LCs and we apply it to linear and nonlinear
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propagation, showing a good agreement with the experimental results. There are however improvements that
could be implemented to the code, such as the modeling of the correlation in three dimensions or the introduction
of the three elastic constants. The introduction of the temporal evolution of the director orientation would also
help to model the temporal oscillations of the nematicon and improve the statistical analysis of the phenomenon.
The model could be applied to other noise-induced phenomena in LCs, such as the spatial modulation instability
and the subsequent filament formation [25, 114–116]. These phenomena spontaneously appear for beams with
an elongated profile in the plane orthogonal to the propagation and high powers. The speckle formation reported
in Ch. 3, should cause filament formation when occurring in high power beams. In this way, the modulation
instability would not be artificially seeded by the initial condition of the launched beam, but it would arise from
the physical propertied of the considered LC. The matlab program reported in Appendix B could be easily
adapted for this kind of elongated profile, but the use of a supercomputer for the calculations would however be
necessary, since a much larger simulation window (several hundreds of micrometers) and a finer grid (to resolve
the filaments) would be required.

With the help of ultra-fast spectroscopy, it was showed how the LC anisotropy as a host can polarize the
optical gain in both polymers and dyes in LC dispersed in it, and how, in particular situations, the charge gen-
eration can be inhibited and therefore the optical gain uncovered. Interestingly, not a lot of work has been done
in this area, despite the interest that polarized and switchable light sources can have in display technology or
biomedical applications. If, on one hand, the dyes are easy to dissolve in LCs, on the other hand, semiconducting
polymers are of particular interest since they can exhibit electroluminescence. Indeed, with the careful engi-
neering of the solubility of the dissolved polymer and the conducting properties of the LC host, it is possible to
obtain an electroluminescent LC film [135]. The study of these materials via the pump-probe technique would
help the optimization of the optical properties of these systems.

We developed a new method for the alignment of LCs. LCs are characterized, as we already explained in
different points of this work, by a long-range interaction. This is particularly interesting when the boundary
conditions provided by the cell match the distribution of minimal energy of the LC, as the LC naturally disposes
itself in that configuration without the need of an external driving force. This is the case, for example, of CLCs
in Grandjean configuration or nematic LCs in planar and homeotropic cells. However, in the case of particular
geometries, the mismatch from the boundary conditions can generate defects that decrease the optical quality
of the sample. In particular, the technique could be used to align highly viscous bi-mesogen LC, particularly
interesting for display applications due to their large flexoelectro-optic response [65, 66, 282], or in templated
and structured devices, where LC defects are difficult to avoid. In this work, the solvent-induced alignment was
tested only for a few mixtures, one cell thickness and one LC geometry (the ULH alignment). A more systematic
study of this technique on different samples and geometries would highlight the advantages as well as the
limitations of this technique. Also, the high-quality solvent-induced ULH seems to show a new flexoelectrically-
driven instability. A more complete theory would help to understand the origin and the director distribution of
these instabilities. Also, their observation in cells of different thicknesses would help to evaluate the contribution
of the surface interaction, in particular for the threshold in the evolution of the period as a function of the applied
electric field.

Finally, only the prelude to the polymerized fast-switchable laser sources has been outlined here. Indeed,
a spectral narrowing is observed in the polymerized regions by increasing the pump power. However, a more
thorough characterization is needed in order to claim that we are observing lasing emission [280, 281]. Also, the
fabrication parameters have to be tuned in order to obtain defect-free two-photon polymerized ULH structures
and achieve efficient lasing. The following step should be the observation of flexoelectro-optically tuned in-plane
lasing. The interest would be twofold. Firstly, the laser tuning would be faster compared to other reorientation
mechanisms in LCs, such as those due to the dielectric coupling (typically, µs instead of ms). Secondly, it would
be possible to study the evolution of the optical band-gap in ULH alignment during the flexoelectrically-driven
tuning through the evolution of the lasing wavelength. To be able to study this phenomenon, the pumping, the
electric field for the flexoelectric driving and the acquisition instruments have to be synchronized and their fre-
quency has to be high enough to exclude slow dielectric coupling. After the laser characterization, the fabrication
of a thicker cell, able to sustain the propagation of a nematicon, should be considered. The nematicon would
then be injected in the nematic regions and its interaction with the emission from the polymerized structures
would be studied, with the aim to obtain an integrated source that is possible to electrically switch/tune.



Notation for the permittivity AAppendix
It is worth spending a few words on the notation used to express the relative permittivity, for example in
Eq. (2.10). The response of the medium to a generic stimulus is described, in the temporal domain, through the
convolution (⊗) of the function describing the stimulus with the function that characterizes the local response of
the material. Using, for example, the polarization, the electric field and the susceptibility, it is possible to write

P̄ (r̄, t) = ε0 ¯̄χ(t)⊗ Ē(r̄, t). (A.1)

The quantities that describe the response of a medium to an external stimulus, such as the relative permittivity
¯̄εr , the susceptibility tensor ¯̄χ (of all order) and the refractive index n, are usually defined in the frequency
domain. Taking the Fourier transform (in time) F of Eq. (A.1)

˜̄P (r̄, ω) = ε0
˜̄̄χ(ω) ˜̄E(r̄, ω), (A.2)

where the tilde indicates the Fourier transform ˜̄E(r̄, ω) = F [Ē(r̄, t)].
From now on, the approximation of a monochromatic wave will be assumed. The (real) field Ē(r̄, t) can

therefore be written as
Ē(r̄, t) =

1

2

[
Ē(r̄)eiω0t + c.c.

]
, (A.3)

composed by the single carrier frequency ω0. Replacing only the first term of this equation in Eq. (A.1), and not
the complex conjugate in order to simplify the notation, we obtain

P(r̄, t) = ε0 ¯̄χ(t)⊗
(
Ē(r̄)eiω0t

)
(A.4)

= ε0Ē(r̄)F−1
[
F
[
χ̄(t)⊗ eiω0t

]]
(A.5)

= ε0Ē(r̄)F−1
[

˜̄̄χ(ω)δ(ω − ω0)
]

(A.6)

= ε0Ē(r̄)F−1
[

˜̄̄χ(ω0)δ(ω − ω0)
]

(A.7)

= ε0
˜̄̄χ(ω0)Ē(r̄)eiω0t (A.8)

where δ(ω−ω0) is the delta distribution centered in ω0. The equivalence of Eq. (A.4) and Eq. (A.8) justifies the
substitution of the temporal convolution of the function ¯̄χ(t) with its Fourier transform evaluated at the carrier
frequency ω0. In this way we are able to work exclusively with the fields in the temporal domain and, at the
same time, to express the quantities that describes the response of the medium as a function of the frequency,
without the need for the temporal convolution.1 From now on, in order to simplify the notation, we will drop for
¯̄εr , ¯̄χ and n the tildes that indicate the frequency dependence, as these variables will not be defined otherwise
in our work. This explains the notation used in Eq. (2.9) and Eq. (2.10) and in the rest of this dissertation.

1This result is more general than the monochromatic case. Indeed, in the case of a non-continuum wave electromagnetic beam, if
the response of the medium is fast compared to the duration of the pulse, it is possible to truncate the response to the first order, that
corresponds to Eq. (A.8). [283]
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Matlab code BAppendix
B.1 Main section

The main matlab code used for soliton propagation in LC is reported in this section.

1

2

3 %% Propagation of the beam

4 % SCHEME: the position of the glasses is rotated

5 %

6 %

7 % ^

8 % x, ¦ ¦ ¦ glass ¦ ¦ glass

9 % M points ¦ ¦ ¦ ¦ ¦

10 % ¦ ¦ ¦ <--j--> ¦ ¦

11 % ¦ ¦ ¦ ¦ ¦

12 % ¦ ¦ ¦ ^ ¦ ¦

13 % ¦ ¦ ¦ /-\ ¦ ¦ ¦

14 % ¦ ¦ ¦ \-/ k ¦ ¦

15 % ¦ ¦ ¦ ¦ ¦ ¦

16 % ¦ ¦ ¦ v ¦ ¦

17 % ¦ ¦ ¦ ¦ ¦

18 % ¦ z ¦ ¦ ¦ ¦

19 % ¦ / ¦ ¦ ¦ ¦

20 % ¦ / ¦ ¦ ¦ ¦

21 % ¦/-------------------------------------------->

22 % y, N points

23 %

24 % !!!!!!!!!!!! SIZE(MATRIX) = (M,N) !!!!!!!!!!!!!!!!!

25 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

26

27 % function [Output ,Param] = nematicon(Param)

28 function [Output ,Param] = nematicon(Param ,num_sim) % [corr ,delta_theta] = nematicon

(Param)

29

30

31 %% INPUT PARAMETERS STRUCTURES

32 % if a structure does not exist , we create it

33 if nargin ==0; Param = struct; end

34

35 if ~isfield(Param ,'cell'); Param.cell = struct; end

36 if ~isfield(Param ,'soliton '); Param.soliton = struct; end

37 if ~isfield(Param ,'pump'); Param.pump = struct; end

38 if ~isfield(Param ,'dye'); Param.dye = struct; end

39 if ~isfield(Param ,'E7'); Param.E7 = struct; end

40

41 %% CELL PARAMETERS

42

43 if ~isfield(Param.cell ,'M');
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44 Param.cell.M = 155; % raws %155;

45 end

46

47 if ~isfield(Param.cell ,'x_size ')

48 Param.cell.x_size = 55e-6; % 55e-6 [m] "wideness" of the cell

49 end

50

51 if ~isfield(Param.cell ,'N')

52 Param.cell.N = 211; % columns %211;

53 end

54

55 if ~isfield(Param.cell ,'y_size ')

56 Param.cell.y_size = 75e-6; % 75e-6 [m] thickness of the cell SQUARED PIXELS !!!

57 end

58

59 if ~isfield(Param.cell ,'dz')

60 Param.cell.dz = 0.9e-6; % 0.4e-6; % [m] stepsize along z

61 end

62

63 if ~isfield(Param.cell ,'z_step_number ')

64 Param.cell.z_step_number = 4000;

65 end

66

67 if ~isfield(Param.cell ,'theta_boundary ')

68 Param.cell.theta_boundary = 45*pi/180; % [radiant] rubbing direction with the

respect to the nematicon propagation

69 end

70

71 if ~isfield(Param.cell ,'step_optim ')

72 Param.cell.step_optim = 1; % nb of steps between two optimization of

theta

73 end

74

75 if ~isfield(Param.cell ,'step_noise ')

76 Param.cell.step_noise = 47; % nb of steps between two generation of

the noise 33 - 67 - 100

77 end

78

79 % if ~isfield(Param.cell ,'dist_noise ')

80 % Param.cell.dist_noise = Inf; % nb of steps until which I generate

the noise

81 % end

82

83

84 %% SOLITON PARAMETERS

85

86 if ~isfield(Param.soliton ,'P_inj')

87 Param.soliton.P_inj = 3.7e-3; % [W] Power of the injected Nd/YAG

88 end

89

90 if ~isfield(Param.soliton ,'w_0x')

91 Param.soliton.w_0x = 3.7e-6; % 25e-6; % [m] radius at 1/e^2 of the intensity

92 end

93

94 if ~isfield(Param.soliton ,'w_0y')

95 Param.soliton.w_0y = 3.7e-6; % 25e-6; % [m] radius at 1/e^2 of the intensity

96 end

97

98 if ~isfield(Param.soliton ,'lambda ')

99 Param.soliton.lambda = 1064e-9; % [m]

100 end

101

102 if ~isfield(Param.soliton ,'R_phase ')

103 Param.soliton.R_phase = Inf; %50e-6; % [m], radius of the quadratic phase
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of the injected beam

104 end

105

106 %% E7 PARAMETERS

107

108 % refractive index: from Li et al. 2005, IR refractive index of LC

109 % n_i = A_i + B_i/( lambda ^2) + C_i/( lambda ^2), and lambda is in µm

110 % we take 25 °C [avant c'était eps_o =1.5212^2 et delta_eps =1.7137^2 - Param.E7.eps_o

=0.6227

111 if ~isfield(Param.E7,'eps_o ')

112 Param.E7.eps_o = (1.4998+0.0067/(( Param.soliton.lambda *10^6) ^2) +0.0004/(( Param.

soliton.lambda *10^6) ^4))^2; % ordinary dielectric constant

113 end

114

115 if ~isfield(Param.E7,'delta_eps ')

116 Param.E7.delta_eps = (1.6993+0.0085/(( Param.soliton.lambda *10^6) ^2) +0.0027/((

Param.soliton.lambda *10^6) ^4))^2-Param.E7.eps_o;

117 end

118

119 if ~isfield(Param.E7,'K')

120 Param.E7.K = 12e-12; % [N] one constant approximation

121 end

122

123 if ~isfield(Param.E7,'alpha ')

124 Param.E7.alpha = 0; % -100; % we modeled the scattering !!! % [m

^-1]; - -> losses due to the scattering of the LC (-830m-1 @ 633nm (Beeckman

2009)); see also Wu and Lim on LC scattering

125 end

126

127 if ~isfield(Param.E7,'rho_E7 ')

128 Param.E7.rho_E7 = 1.03e3 ; % [g/dm^3] density of E7 [Kim et al.,

Nat. Comm., 3, 1133 (2012)]

129 end

130

131 if ~isfield(Param.E7,'corr_dR ')

132 Param.E7.corr_dR = 0*1.4*880*10^ -9 ; % 880*10^ -9 [m] minimal distance

over which the continuum theory is valid (for a 155 x211 matrix), see notes of

31/03/2016

133 end % I put the max value to have definite

positive corr (it changes changing dx and dy !!)

134

135 if ~isfield(Param.E7,'r_par ')

136 Param.E7.r_par = 0.605 ; % order factor of the LC , see notes on

17/10/2014

137 end

138

139 if ~isfield(Param.E7,'r_ort ')

140 Param.E7.r_ort = 0.198 ; % order factor of the LC , see notes on

17/10/2014

141 end

142

143 if ~isfield(Param.E7,'err_theta_opt ')

144 Param.E7.err_theta_opt = 0.5e-13; % before 17/05/2016 it was

ALWAYS 1e-13 !!!

145 end

146

147

148 %%

149 tic

150

151 %% Discretization geometry: NEW COORDINATES!

152 % axis: THE DELTAx AND y DO NOT CHANGE!

153 dx = Param.cell.x_size /(Param.cell.M-1); % [m]

154 dy = Param.cell.y_size /(Param.cell.N-1); % [m]
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155 z_size = Param.cell.z_step_number*Param.cell.dz; % [m] propagation length of the

simulation

156

157

158 %% PREALLOCATION

159

160 E_x_vect = zeros(Param.cell.N*Param.cell.M,Param.cell.z_step_number +1); % Electric

field (VECTOR !!), AT ALL Z!!!!

161 Poynt = zeros(Param.cell.z_step_number +1,1); % Energy

162 % Sections INTENSITIES !!!

163 I2_plane_zy = zeros(Param.cell.z_step_number +1,Param.cell.N);

164 I2_plane_zx = zeros(Param.cell.z_step_number +1,Param.cell.M);

165

166

167 %% INITIAL VALUES

168

169 % Definition of the injected field (polarized along x)

170 amplitudeE = sqrt ((2*4* pi *10^ -7*3*10^8* Param.soliton.P_inj)/(pi*Param.soliton.w_0x*

Param.soliton.w_0y)); % P = Area I = Area (E)^2/(2 c mu_0), we take w0 to

calculate the area , mu_0 =4*pi*10^-7

171

172 n_0 = sqrt(Param.E7.eps_o+Param.E7.delta_eps*sin(Param.cell.theta_boundary).^2); %

Fissato , è quello iniziale

173 E_x_0 = create_Ex(Param.soliton ,n_0 ,amplitudeE , Param.cell.M,Param.cell.N,Param.

cell.x_size ,Param.cell.y_size); % matrix

174

175 E_x_vect_0 = matrix2vect(E_x_0 ,Param.cell.M,Param.cell.N); % we put the E_x matrix

into a vector

176

177 % HOMOGENEOUS DISTRIBUTION OF THETA

178 theta_0 = zeros(size(E_x_0))+Param.cell.theta_boundary; % matrix

179 theta_0_vect = matrix2vect(theta_0 ,Param.cell.M,Param.cell.N);

180 n_0 = sqrt(Param.E7.eps_o+Param.E7.delta_eps*sin(theta_0).^2); % Fissato , è quello

iniziale

181

182 %% NOISE CORRELATION IN ONE PLANE xy

183

184 % I leave mu and sigma for the comprehension

185 mu = 0; % variation around the equilibrium

186 sigma = 1; % variance is already in the corr matrix

187

188 [corr] = correlation_plane_xy(Param ,0); % (M*N, M*N)

189

190 U = chol(corr);

191

192 random_mtrx = randn(Param.cell.M,Param.cell.N); % matrix

193 random_mtrx (:,1)=0;

194 random_mtrx (:,Param.cell.N)=0;

195 random = matrix2vect(random_mtrx ,Param.cell.M,Param.cell.N); % vector

196

197 err_n_x = mu + sigma*U*random; % error on the variable n_x (fluctuations of the

director), also (mu + sigma*prova '*U)', but U is symmetric! :D

198 % clear random

199 delta_theta = atan(err_n_x); %%% % I leave the angle in radians

200

201 delta_theta_mtrx = vect2matrix(delta_theta ,Param.cell.M,Param.cell.N); % radians [M

, z_step_number]

202

203

204 %% INITIAL (OPTIMIZED) value of the angle theta

205 eps12vect = matrix2vect(Param.E7.delta_eps*sin(theta_0).*cos(theta_0), Param.cell.M

, Param.cell.N);

206 eps22vect = matrix2vect(Param.E7.eps_o + Param.E7.delta_eps*cos(theta_0).^2, Param.

cell.M, Param.cell.N);
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207 theta_0_vect = theta_opt(E_x_vect_0 , theta_0_vect , eps12vect , eps22vect , Param); %

theta_0 in matrix form!

208 theta_0 = vect2matrix(theta_0_vect ,Param.cell.M,Param.cell.N);

209

210 % storage of theta

211 theta_storage (:,1) = theta_0_vect;

212

213 % new dielectric constants

214 eps11 = Param.E7.eps_o + Param.E7.delta_eps*sin(theta_0).^2; % NB theta_0 already

optimized for the field , theta_0 is a matrix!

215 eps12 = Param.E7.delta_eps*sin(theta_0).*cos(theta_0); % NB theta_0 already

optimized for the field , theta_0 is a matrix!

216 eps22 = Param.E7.eps_o + Param.E7.delta_eps*cos(theta_0).^2; % NB theta_0

already optimized for the field , theta_0 is a matrix!

217 % versione precedente

218 % eps12 = vect2matrix(eps12vect ,Param.cell.M,Param.cell.N); % eps12vect obtained

from theta_opt

219 % eps22 = vect2matrix(eps22vect ,Param.cell.M,Param.cell.N); % eps22vect obtained

from theta_opt

220

221 % H_y_0 = (1/(4e-7*pi*3e8))*sqrt(eps11 -( eps12 .^2)./eps22).*E_x_0; % Magnetic field

% matrix % I use the E_x inside the materials: we take into account the part that

is reflected

222 H_y_0 = (1/(4e-7*pi*3e8)).* E_x_0;

223

224 % fields/intensities at the step zero

225 E_x_vect (:,1) = E_x_vect_0;

226 I2_plane_zy (1,:) = sum(abs(E_x_0).^2 ,1); % NB SUM!!

227 I2_plane_zx (1,:) = sum(abs(E_x_0).^2 ,2); % NB SUM!

228

229 Poynt (1,1) = sum(sum(abs(E_x_0 .*H_y_0*dx*dy)))+... % Poynt vector : [W/m^2]; this

is an integral! -> [W]

230 -0.5*sum(abs(E_x_0 (1: Param.cell.M,1).* H_y_0 (1: Param.cell.M,1))*dx*dy) -...

231 0.5* sum(abs(E_x_0 (1: Param.cell.M,Param.cell.N).*H_y_0 (1: Param.cell.M,Param.

cell.N))*dx*dy); %%% FATTO con gli n-1 punti! % [W/m^2]

232

233

234 %% ***** PROPAGATION ***** %%

235 %%

236 % [Poynt ,I2_plane_zx ,I2_plane_zy ,theta_storage ,E_x_vect ,Pump_profile_storage] =

Propagation_Crank_Nich(delta_theta_mtrx ,U,theta_storage ,n_0 ,E_x_vect ,Flux ,Poynt ,

I2_plane_zx ,I2_plane_zy ,P_pump ,conc_mol ,Param);

237 [Poynt ,I2_plane_zx ,I2_plane_zy ,theta_storage ,E_x_vect] = Propagation_Crank_Nich(

random ,delta_theta_mtrx ,U,theta_storage ,n_0 ,E_x_vect ,Poynt ,I2_plane_zx ,

I2_plane_zy ,Param);

238 %%

239 %% *********************** %%

240

241 %%

242 delta = 100*( Poynt(max(size(Poynt)) ,1)-Poynt (1,1))/Poynt (1,1); % losses in %

243

244 toc

245

246 %% OUTPUT PARAMETERS STRUCTURE

247 Output = struct;

248 Output.delta = delta;

249 Output.z_size = z_size;

250 Output.fwhm = fwhm ((0: Param.cell.M-1) '*dx,I2_plane_zx(Param.cell.z_step_number +1,:)

'); % [m]

251 Output.max_E = max(abs(E_x_vect(:,Param.cell.z_step_number +1)));

252 Output.theta = theta_storage; % theta_storage (: ,1:40: Param.cell.z_step_number +1); %

every 40 steps

253 Output.Poynt = Poynt;

254 Output.I2_plane_zx = I2_plane_zx;
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255 Output.I2_plane_zy = I2_plane_zy;

256 Output.E_x_vect = E_x_vect (: ,1:1: Param.cell.z_step_number +1); % every 40 steps

257

258

259 %% Images

260 % walk -off parameter

261 eps12 = Param.E7.delta_eps*sin(Param.cell.theta_boundary).*cos(Param.cell.

theta_boundary);

262 eps22 = Param.E7.eps_o + Param.E7.delta_eps*cos(Param.cell.theta_boundary).^2;

263 tan_delta_0 = eps12/eps22;

264

265 % Energy evolution

266 h1=figure ();

267 plot ((0: Param.cell.z_step_number)*Param.cell.dz*10^6 , Poynt , 'g*'); % transversal

section of the beam , for cycle

268 xlabel('z [\mum]')

269 ylabel('Power [W]')

270

271 % Side view

272 [Y_sect ,Z] = meshgrid ((0: Param.cell.N-1)*dy*10^6 ,(0: Param.cell.z_step_number)*Param

.cell.dz *10^6); % in microns !!!

273 h2=figure ();

274 surf(Y_sect ,Z,I2_plane_zy); colorbar

275 shading flat

276 view (0 ,90); %axis equal

277 title('Intensity zy')

278 xlabel('y [\mum ]')

279 ylabel('z [\mum]')

280

281 % Top view

282 [X_sect ,Z] = meshgrid ((0: Param.cell.M-1)*dx*10^6 ,(0: Param.cell.z_step_number)*Param

.cell.dz *10^6); % in microns !!!

283 h3=figure ();

284 surf(X_sect -tan_delta_0 .*Z,Z,I2_plane_zx); colorbar

285 shading flat;

286 view (0 ,90);

287 caxis([min(min(I2_plane_zx)) max(max(I2_plane_zx))]);

288 title('Intensity zx')

289 xlabel('x [\mum ]')

290 ylabel('z [\mum]')

291

292 % Entry profile: no need to change the coordinates

293 [Y_sect ,X_sect] = meshgrid ((0: Param.cell.N-1)*dy*10^6 ,(0: Param.cell.M-1)*dx *10^6);

% in microns !!!

294 h4=figure ();

295 surf(Y_sect ,X_sect ,abs(E_x_0)); colorbar

296 shading flat

297 view (0 ,90); axis equal

298 title('Input abs(field)')

299 xlabel('y thickness [\mum ]')

300 ylabel('x glass [\mum]')

301

302 % Exit profile: no need to change the coordinates

303 % [Y_sect ,X_sect] = meshgrid ((0: Param.cell.N-1)*dy*10^6 ,(0: Param.cell.M-1)*dx *10^6)

; % in microns !!!

304 h5=figure ();

305 surf(Y_sect ,X_sect ,abs(vect2matrix(E_x_vect(:,Param.cell.z_step_number +1),Param.

cell.M,Param.cell.N))); colorbar

306 shading flat

307 view (0 ,90); axis equal

308 title('Output abs(field)')

309 xlabel('y thickness [\mum ]')

310 ylabel('x glass [\mum]')

311
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312 % % correlation

313 % h6=figure ();

314 % surf(Y_sect ,X_sect ,vect2matrix(corr (:,1),Param.cell.M,Param.cell.N)); colorbar

315 % shading flat

316 % view (0,90);

317 % title('Correlation ')

318 % xlabel('y thickness [\mum ]'); ylabel('x glass [\mum]')

319

320 % % Initial random variable

321 % h7=figure ();

322 % surf(Y_sect ,X_sect ,random_mtrx)

323 % shading flat

324 % view (0,90); axis equal

325 % title('Initial random variable ')

326 % xlabel('y thickness [\mum ]'); ylabel('x glass [\mum]'); colorbar

327

328 % Error on theta

329 % [Y_sect ,X_sect] = meshgrid ((0: Param.cell.N-1)*dy*10^6 ,(0: Param.cell.M-1)*dx *10^6)

; % in microns !!

330 h8=figure ();

331 surf(Y_sect ,X_sect ,delta_theta_mtrx *180/pi); colorbar

332 shading flat

333 view (0 ,90); axis equal

334 %caxis ([ -0.05 0.05]);

335 title('Noise on \theta [°]')

336 xlabel('y thickness [\mum ]'); ylabel('x glass [\mum]');

337

338

339

340 %% SAVING

341

342 directory = strcat(pwd ,'\Simulations ');

343 name = strcat('P_inj_ ',num2str(Param.soliton.P_inj *10^3) ,'mW_',num2str(Param.cell.M

),'x',num2str(Param.cell.N),'_' ,...

344 num2str(Param.cell.z_step_number),'x',num2str(Param.cell.dz *10^6) ,

'_um_steps_aver_1_8618e -4 _noise_every_ ',num2str(Param.cell.

step_noise),'_steps_ ',num2str(num_sim));

345

346

347 mkdir(directory ,name)

348

349

350 % IMAGES

351 print(h1 ,'-dpng',strcat(directory ,'\',name ,'\Energy.png'),'-r300'); close (h1)

352 print(h2 ,'-dpng',strcat(directory ,'\',name ,'\Intensity_Profile_zy.png'),'-r300');

close (h2)

353 print(h3 ,'-dpng',strcat(directory ,'\',name ,'\Intensity_Profile_zx.png'),'-r300');

close (h3)

354 print(h4 ,'-dpng',strcat(directory ,'\',name ,'\Field_section_Input.png'),'-r300');

close (h4)

355 print(h5 ,'-dpng',strcat(directory ,'\',name ,'\Field_section_Output.png'),'-r300');

close (h5)

356 print(h8 ,'-dpng',strcat(directory ,'\',name ,'\Noise_on_theta.png'),'-r300'); close (

h8)

357 save(strcat(directory ,'\',name ,'\Output.mat'),'-struct ','Output ','-v7.3')

358 save(strcat(directory ,'\',name ,'\Param.mat'),'-struct ','Param','-v7.3')

359

360

361 end
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B.2 Propagation equation

In this section we report the code of the function that describes the propagation of the beam.

1 function [Poynt ,I2_plane_zx ,I2_plane_zy ,theta_storage ,E_x_vect] =

Propagation_Crank_Nich(random_1 ,delta_theta_mtrx ,U,theta_storage_mtrx ,n_0 ,

E_x_vect_0 ,Poynt ,I2_plane_zx ,I2_plane_zy ,Param)

2

3 %% discretization

4 dx = Param.cell.x_size /(Param.cell.M-1);

5 dy = Param.cell.y_size /(Param.cell.N-1);

6

7 %% INITIAL values of the dielectric constant

8 theta_0 = vect2matrix(theta_storage_mtrx (:,1),Param.cell.M,Param.cell.N);

9 delta_theta = matrix2vect(delta_theta_mtrx ,Param.cell.M,Param.cell.N);

10

11 % we add the noise ()

12 theta_0 = theta_0 + delta_theta_mtrx; %%% !!! add delta_theta !!!!!!!!!!! %%%

13

14 eps11 = Param.E7.eps_o + Param.E7.delta_eps*sin(theta_0).^2; % NB theta_0 already

optimized for the field , theta_0 is a matrix!

15 eps12 = Param.E7.delta_eps*sin(theta_0).*cos(theta_0);

16 eps22 = Param.E7.eps_o + Param.E7.delta_eps*cos(theta_0).^2;

17

18 %% INITIAL propagation parameters

19 k_0 = 2*pi/Param.soliton.lambda;

20 tan_delta_0 = eps12 (1,1)./ eps22 (1,1); % initial value of the walk -off , calculated

with the rubbing angle

21 etha = 2*1i*k_0*n_0;

22 gamma = k_0 ^2*( eps11 -n_0 .^2)+1i*k_0*n_0*Param.E7.alpha;

23 zeta = 2*1i*k_0.*n_0.*( eps12./eps22 -tan_delta_0);

24

25 a = etha/Param.cell.dz -gamma /2+1/ dy^2+1/dx^2; % it depends on theta

26 b = ( zeta /(4*dx)+1/(2* dx^2)); % it depends on theta

27 c = (-zeta /(4*dx)+1/(2* dx^2)); % it depends on theta

28 d = ones(size(a))*(1/(2* dy^2));

29 f = (etha/Param.cell.dz+gamma /2-1/dy^2-1/dx^2); % it depends on theta

30

31 [A,B] = discret(Param.cell.M,Param.cell.N,a,b,c,d,f);

32

33 theta_n_vect = matrix2vect(theta_0 ,Param.cell.M,Param.cell.N);

34 E_x_vect = E_x_vect_0;

35

36 %% New noise generation

37 random_mtrx_2 = randn(Param.cell.M,Param.cell.N); % matrix

38 random_mtrx_2 (:,1)=0;

39 random_mtrx_2 (:,Param.cell.N)=0;

40 random_2 = matrix2vect(random_mtrx_2 ,Param.cell.M,Param.cell.N); % vector

41

42 ang_coeff = (random_2 -random_1)/(Param.cell.step_noise -1); % I calculate the

angular coefficient between each correspondent pixel of 2planes , the distance

along z is in PIXELS !!!

43

44

45 %% propagation loop

46 % preallocation: già fatta!

47 theta_storage = zeros(Param.cell.N*Param.cell.M,Param.cell.z_step_number +1);

48 theta_storage (:,1) = theta_n_vect;

49

50 for z_step = 1 : Param.cell.z_step_number

51 E_x_vect(:,z_step +1) = A\(B*E_x_vect(:,z_step));

52 E_x = vect2matrix(E_x_vect(:,z_step +1),Param.cell.M,Param.cell.N);

53

54 % Theta optimization for this new field
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55 if (mod(z_step ,Param.cell.step_optim)==0 || z_step ==1) % not at every step

56 eps12vect = matrix2vect(eps12 , Param.cell.M, Param.cell.N);

57 eps22vect = matrix2vect(eps22 , Param.cell.M, Param.cell.N);

58 theta_n1_vect = theta_opt(E_x_vect(:,z_step +1), theta_n_vect , eps12vect ,

eps22vect ,Param);

59 end

60

61 % New noise generation for the interpolation , , the first one is already

calculated!

62 if (z_step ==1)

63 random = random_1; % for the first step :)

64

65 elseif (mod(z_step ,Param.cell.step_noise)==0) % not at every step

66 random_1 = random_2;

67

68 random_mtrx_2 = randn(Param.cell.M,Param.cell.N); % matrix

69 random_mtrx_2 (:,1)=0;

70 random_mtrx_2 (:,Param.cell.N)=0;

71 random_2 = matrix2vect(random_mtrx_2 ,Param.cell.M,Param.cell.N); % vector

72

73 ang_coeff = (random_2 -random_1)/(Param.cell.step_noise -1); % I calculate

the angular coefficient between each correspondent pixel of 2planes , the

distance along z is in PIXELS !!!

74

75 random = random_1;

76 else

77 random = ang_coeff*mod(z_step ,Param.cell.step_noise) + random_1; % NB mod(

z_step ,Param.cell.step_noise)=dz in the formula y_2 = ang_coeff*dz + y_1 ,

only because z is in pixel!!

78

79 end

80

81

82 err_n_x = U*random; % error on the variable n_x (fluctuations of the director),

also (mu + sigma*prova '*U)', but U is symmetric! :D; mu=0; sigma=1

83 delta_theta = atan(err_n_x); %%%% I leave the angle in radians ; it is a

vector

84

85 theta_n1_vect = theta_n1_vect + delta_theta; %%% !!! add delta_theta

!!!!!!!!!!! %%%

86

87 % new dielectric constants

88 eps11 = vect2matrix(Param.E7.eps_o + Param.E7.delta_eps*sin(theta_n1_vect).^2,

Param.cell.M,Param.cell.N); % NB theta_n1 already optimized for the field

89 eps12 = vect2matrix(Param.E7.delta_eps*sin(theta_n1_vect).*cos(theta_n1_vect),

Param.cell.M,Param.cell.N); % NB theta_n1 already optimized for the field

90 eps22 = vect2matrix(Param.E7.eps_o + Param.E7.delta_eps*cos(theta_n1_vect).^2,

Param.cell.M,Param.cell.N); % NB theta_n1 already optimized for the field

91

92 % Magnetic field and Energy

93 H_y = (1/(4*10^ -7* pi *3*10^8)).*E_x;

94 Poynt(z_step +1,1) = sum(sum(abs(E_x.*H_y*dx*dy)))+...

95 -0.5*sum(abs(E_x(1: Param.cell.M,1).*H_y(1: Param.cell.M,1))*dx*dy) -0.5*sum(

abs(E_x (1: Param.cell.M,Param.cell.N).*H_y(1: Param.cell.M,Param.cell.N))*

dx*dy); %%% FATTO con gli n-1 punti!

96

97 % Section of the field

98 I2_plane_zy(z_step +1,:) = sum(abs(E_x).^2,1);

99 I2_plane_zx(z_step +1,:) = sum(abs(E_x).^2,2) ';

100

101 % theta storage

102 theta_storage (:,z_step +1) = theta_n1_vect;

103

104 % new A and B matrix
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105 etha = 2*1i*k_0*n_0;

106 gamma = k_0 ^2*( eps11 -n_0 .^2)+1i*k_0*n_0*Param.E7.alpha;

107 zeta = 2*1i*k_0.*n_0 .*( eps12 ./eps22 -tan_delta_0);

108 a = etha/Param.cell.dz -gamma /2+1/ dy^2+1/dx^2; % it depends on theta

109 b = (zeta /(4*dx)+1/(2* dx^2)); % it depends on theta

110 c = (-zeta /(4*dx)+1/(2* dx^2)); % it depends on theta

111 d = ones(size(a))*(1/(2* dy^2));

112 f = (etha/Param.cell.dz+gamma /2-1/dy^2-1/dx^2); % it depends on theta

113 [A,B] = discret(Param.cell.M,Param.cell.N,a,b,c,d,f);

114

115 theta_n_vect = theta_n1_vect;

116

117 end

118

119 end

B.3 Optimization of the moleculer orientation

1 function [theta_final_vect] = theta_opt(E_x_vect_0 , theta_0_vect , eps12vect ,

eps22vect , Param)

2

3

4 %% Discretization geometry

5 %axis

6 dx = Param.cell.x_size /(Param.cell.M-1);

7 dy = Param.cell.y_size /(Param.cell.N-1);

8 % coordinates of the glasses (for the VECTORIZED matrix !!)

9 glass_left = (1: Param.cell.N:(( Param.cell.M-1)*Param.cell.N+1));

10 glass_right = (Param.cell.N:Param.cell.N:Param.cell.M*Param.cell.N);

11

12 eps_zero = 8.854e-12; % F/m % vacuum dielectric constant

13

14 %% Definition of the matrix

15 a = -2*Param.E7.K/dx^2-2* Param.E7.K/dy^2;

16 b = (Param.E7.K/(dy^2));

17 d = (Param.E7.K/(dx^2));

18 A = discret_NR(Param.cell.M,Param.cell.N,a,b,d); % A is fixed! A is a sparse matrix

M*NxM*N

19

20 noto = zeros(size(theta_0_vect));

21 noto(( glass_left) ,1) = Param.cell.theta_boundary;

22 noto(( glass_right) ,1) = Param.cell.theta_boundary;

23

24 % equation

25 F_n1 = F_bound(A,theta_0_vect ,noto ,E_x_vect_0 , eps12vect , eps22vect ,Param.E7.

delta_eps); % F is a funtion!

26

27 theta_n1 = theta_0_vect;

28

29 while (norm(F_n1)/(Param.cell.N^2* Param.cell.M^2)) > Param.E7.err_theta_opt

30

31 % re -indexing

32 F_n = F_n1;

33 theta_n = theta_n1;

34

35 % Jacobian calculus:

36 coeff = 0.5* eps_zero*Param.E7.delta_eps*abs(E_x_vect_0).^2.* cos (2*( theta_n -atan

(eps12vect ./ eps22vect))).*...

37 (2-(2* Param.E7.delta_eps *(( Param.E7.delta_eps +2* Param.E7.eps_o)*cos(2*

theta_n)+Param.E7.delta_eps)./... % numeratore deriv delta

38 (Param.E7.delta_eps ^2+ Param.E7.delta_eps *(Param.E7.delta_eps +2* Param.E7.

eps_o)*cos (2* theta_n)+2* Param.E7.delta_eps*Param.E7.eps_o +2* Param.E7.
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eps_o ^2))); % denomin deriv delta

39 coeff(( glass_left) ,1) = 0; % coordinates of the glass in the VECTORIZED matrix

40 coeff(( glass_right) ,1) = 0;

41 NL = discret_NR_diag(Param.cell.M,Param.cell.N,coeff); % on the glasses the

element is zero

42 NL(( glass_left) ,1) = 0;

43 NL(( glass_right) ,1) = 0;

44

45 J = A + NL; %(=0 on the glasses)

46

47 d_theta = -J\(F_n); % correction the theta (no correction on the glasses)

48

49 theta_n1 = theta_n + d_theta; % new theta , vector

50

51 % we have to "update the values of eps also!!

52 eps12vect = Param.E7.delta_eps*sin(theta_n1).*cos(theta_n1); % vector

53 eps22vect = Param.E7.eps_o + Param.E7.delta_eps*cos(theta_n1).^2; % vector

54

55 F_n1 = F_bound(A,theta_n1 ,noto ,E_x_vect_0 , eps12vect , eps22vect , Param.E7.

delta_eps);

56

57 end

58

59 theta_final_vect = theta_n1;

60

61 % figure ();

62 % [X,Y] = meshgrid ((0:N-1)*dy*10^6 ,(0:M-1)*dx *10^6);

63 % surf(X,Y,theta_final *180/pi);

64 % % surf(theta_final *180/pi);

65 % axis equal

66 % shading flat

67 % view (0,90); colorbar

68 % title('Theta (final)')

69 % xlabel('y [\mum ]')

70 % ylabel('x [\mum]')

71

72 end

B.4 Correlation matrix

Function that calculates the correlation matrix in the plane x̂ŷ (Eq.(3.58) and (3.63))
1 %% definition of the matrix (De Gennes , pp. 141 -143)

2 % corr = (M*N, M*N) = corr(s,p)

3 % p,s are the indexes !! p,s = j + N*(k-1)

4

5 function [corr] = correlation_plane_xy(Param , E_external)

6

7 M = Param.cell.M; % number of raws

8 N = Param.cell.N; % number of columns

9 dx = Param.cell.x_size /(Param.cell.M-1); % [m]

10 dy = Param.cell.y_size /(Param.cell.N-1); % [m]

11 K = Param.E7.K; % [N]

12

13 % physical constant

14 k_B = 1.38064852*10^( -23); % [J/K] Boltzmann constant

15 T = 300; % [K]

16 eps_zero = 8.854187817*10^( -12); % [F/m]

17

18 % applied electric field

19 % E_external = 0; %10^ -12;

20

21 % Field coherence lenght (De Gennes p.142)
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22 Xi = (Param.E7.K)/( eps_zero*Param.E7.delta_eps*E_external);

23

24 % empty matrix

25 corr = zeros(M*N,M*N);

26

27 % dR = Param.E7.corr_dR; %sqrt(dx^2+dy^2);

28 aver = 1.8618e-4; % average(Param ,Xi ,dx); % aver =1.8618e-4 for 155 x211 (55 x75um ^2)

29

30

31 %% versione pedissequa: i cicli for sono luuuunghissimi !!!

32

33 for s = 1:M*N % we go along the COLUMN

34

35 raw_s = floor(s/N)+1;

36 col_s = mod(s,N);

37

38 for p = s:M*N % we go along the ROW

39

40 raw_p = floor(p/N)+1;

41 col_p = mod(p,N);

42

43 if (s==p) % the diagonal is "by hand"

44 corr(s,p) = 0.5* aver; %0.5*( k_B*T)/(pi*K*dR); % After I make corr +

corr ': we have 2 times the diagonal

45 elseif (abs(raw_p -raw_s) <(M/2)) % the smaller vertical distance between

the two points is "the usual"

46 R = sqrt((abs(raw_s -raw_p)*dx)^2+( abs(col_s -col_p)*dy)^2);

47 corr(s,p) = ((k_B*T)/(4*pi*K*R))*exp(-R/Xi);

48 else % the smaller vertical distance between the two points is "across the

boundary"

49 R = sqrt ((( abs(raw_s -raw_p)-M)*dx)^2+( abs(col_s -col_p)*dy)^2);

50 corr(s,p) = ((k_B*T)/(4*pi*K*R))*exp(-R/Xi);

51 end

52

53 end

54 end;

55

56 corr = corr + corr ';

B.5 Auxiliary functions

Algorithm B.1 Function that builds the matrices A and B, as described in paragraphs Sect. 3.1.1.
1 % Generates discretization of equation

2 % etha*u_z = u_xx + u_yy + gamma*u + zeta*u_x

3 % using Crank Nicholson discretisation

4 %

5 %

6 % ^

7 % x, ¦ ¦ ¦ glass ¦ ¦ glass

8 % M points ¦ ¦ ¦ ¦ ¦

9 % ¦ ¦ ¦ <--j--> ¦ ¦

10 % ¦ ¦ ¦ ¦ ¦

11 % ¦ ¦ ¦ ^ ¦ ¦

12 % ¦ ¦ ¦ /-\ ¦ ¦ ¦

13 % ¦ ¦ ¦ \-/ k ¦ ¦

14 % ¦ ¦ ¦ ¦ ¦ ¦

15 % ¦ ¦ ¦ v ¦ ¦

16 % ¦ ¦ ¦ ¦ ¦

17 % ¦ z ¦ ¦ ¦ ¦

18 % ¦ / ¦ ¦ ¦ ¦

19 % ¦ / ¦ ¦ ¦ ¦
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20 % ¦/-------------------------------------------->

21 % y, N points

22 %

23 % !!!!!!!!!!!! SIZE(MATRIX) = (M,N) !!!!!!!!!!!!!!!!!

24 %

25 % with M grid pts in x, N grid pts in y

26 % The ordering (y first , then x) is used. (RIGA x COLONNA)

27 % dx ,dy : stepsize of the discretization along x and y

28 % function A = ellprob(M,N,dx,dy)

29

30 %% all the variables are in the SI !!!!!!!!!!

31

32 function [A,B] = discret(M,N,a,b,c,d,f) %#codegen

33

34

35 %% definition of the matrix

36

37 tot = 2*N*(M-1)+M*(N+2*(N-1)); % total number of elements different from zero

38 K = complex(zeros(tot , 1), zeros(tot ,1));

39 J = K;

40 S_A = K;

41 S_B = K;

42

43 counter = 0;

44

45 for k = 1:M % we go along the COLUMN

46 for j = 1:N % we go along the ROW

47 ind = j + N*(k-1);

48 counter = counter +1; K(counter ,1) = ind; J(counter ,1) = ind; S_A(counter

,1) = a(k,j); S_B(counter ,1) = f(k,j);

49 if (j > 1),

50 counter = counter +1; K(counter ,1) = ind; J(counter ,1) = ind -1; S_A(

counter ,1) = -d(k,j); S_B(counter ,1) = d(k,j); end;

51 if (j < N),

52 counter = counter +1; K(counter ,1) = ind; J(counter ,1) = ind+1; S_A(

counter ,1) = -d(k,j); S_B(counter ,1) = d(k,j); end;

53 if (k == 1), % cyclic boundary conditions

54 counter = counter +1; K(counter ,1) = ind; J(counter ,1) = ind+N*(M-1);

S_A(counter ,1) = -c(k,j); S_B(counter ,1) = c(k,j);

55 counter = counter +1; K(counter ,1) = ind; J(counter ,1) = ind+N; S_A(

counter ,1) = -b(k,j); S_B(counter ,1) = b(k,j);

56 elseif (k == M), % cyclic boundary conditions

57 counter = counter +1; K(counter ,1) = ind; J(counter ,1) = ind -N*(M-1);

S_A(counter ,1) = -b(k,j); S_B(counter ,1) = b(k,j);

58 counter = counter +1; K(counter ,1) = ind; J(counter ,1) = ind -N; S_A(

counter ,1) = -c(k,j); S_B(counter ,1) = c(k,j);

59 else

60 counter = counter +1; K(counter ,1) = ind; J(counter ,1) = ind -N; S_A(

counter ,1) = -c(k,j); S_B(counter ,1) = c(k,j);

61 counter = counter +1; K(counter ,1) = ind; J(counter ,1) = ind+N; S_A(

counter ,1) = -b(k,j); S_B(counter ,1) = b(k,j);

62 end

63 end

64 end;

65

66 A = sparse(K,J,S_A);

67 B = sparse(K,J,S_B);

68

69 % [outmax_file ,outmax_path] = uigetfile ('*.txt ','Select Data to Open ','C:\ Program

Files\Geo -information\Reliability\input_copied \');

70 % outmax_user_input_data = fullfile(outmax_path ,outmax_file);

Algorithm B.2 Function that creates the initial field Ex.
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1 % creation of the field E_x

2

3 function [E_x] = create_Ex(Param_soliton ,n_0 ,amplitudeE ,M,N,x_size ,y_size) %#

codegen

4

5 x = linspace ( -0.5*x_size , 0.5* x_size , M); % better , due to numerical approximation

6 y = linspace ( -0.5*y_size , 0.5* y_size , N);

7

8 % attenzione meshgrid inverte linee e colonne !!!

9 [X,Y] = meshgrid(y,x);

10

11 beta_0 = 2*pi*n_0/Param_soliton.lambda;

12

13 E_x = amplitudeE*exp ((1i*beta_0 /(2* Param_soliton.R_phase) -1/ Param_soliton.w_0x ^2)*X

.^2+ ...

14 (1i*beta_0 /(2* Param_soliton.R_phase) -1/ Param_soliton.w_0y ^2)*Y.^2);

Algorithm B.3 Function vect2matrix for the re-indexing of a vector and transform it in a matrix.
1 %% re -indexing of the vector , in order to have a matrix A

2 % we read the matrix "line by line"

3 % [1 2 3; 4 5 6] -> [1 2 3 4 5 6]

4

5 function [A] = vect2matrix(u,M,N)

6

7 A = complex(zeros(M,N),zeros(M,N));

8

9 for k = 1:M

10 for j = 1:N

11 ind = j + N*(k-1) ;

12 A(k,j) = u(ind ,1);

13 end

14 end;

Algorithm B.4 Function matrix2vect for the re-indexing of a matrix and transform it in a vector.
1 %% re -indexing of the matrix A, in order to have a vector

2 % we read the matrix "line by line"

3 % [1 2 3; 4 5 6] -> [1 2 3 4 5 6]

4

5 function [u] = matrix2vect(A,M,N)

6

7 u = zeros(N*M,1);

8

9 for k = 1:M

10 for j = 1:N

11 ind = j + N*(k-1) ;

12 u(ind ,1) = A(k,j);

13 end

14 end;

Algorithm B.5 Function that discretizes the Eq. (3.25).
1 % Generates discretization of equation

2 % etha*u_z = u_xx + u_yy + gamma*u + zeta*u_x

3 % using Crank Nicholson discretisation

4

5 %% Propagation of the beam

6 % SCHEME: the position of the glasses is rotated

7 %

8 %

9 % ^
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10 % x, ¦ ¦ ¦ glass ¦ ¦ glass

11 % M points ¦ ¦ ¦ ¦ ¦

12 % ¦ ¦ ¦ <--j--> ¦ ¦

13 % ¦ ¦ ¦ ¦ ¦

14 % ¦ ¦ ¦ ^ ¦ ¦

15 % ¦ ¦ ¦ /-\ ¦ ¦ ¦

16 % ¦ ¦ ¦ \-/ k ¦ ¦

17 % ¦ ¦ ¦ ¦ ¦ ¦

18 % ¦ ¦ ¦ v ¦ ¦

19 % ¦ ¦ ¦ ¦ ¦

20 % ¦ z ¦ ¦ ¦ ¦

21 % ¦ / ¦ ¦ ¦ ¦

22 % ¦ / ¦ ¦ ¦ ¦

23 % ¦/-------------------------------------------->

24 % y, N points

25 %

26 % !!!!!!!!!!!! SIZE(MATRIX) = (M,N) !!!!!!!!!!!!!!!!!

27 %

28 % with N grid pts in x, M grid pts in y

29 % The ordering (y first , then x) is used. (RIGA x COLONNA)

30 % dx ,dy : stepsize of the discretization along x and y

31 % function A = ellprob(M,N,dx,dy)

32

33 %% all the variables are in the SI !!!!!!!!!!

34

35 function [A] = discret_NR(M,N,a,b,d) %#codegen

36

37

38 %% definition of the matrix

39

40 % tot = 2*N*(M-1)+M*(N+2*(N-1)); % total number of elements different from zero ,

the "-2*N" is because we do not have the equation on the glasses

41

42 K = complex(zeros (100, 1), zeros (100 ,1));

43 J = K;

44 S_A = K;

45

46 counter = 0; % solo per incrementare la posizione nei vettori che diamo in pasto a

sparse

47

48 for k = 1:M

49 for j = 1:N

50 ind = j + N*(k-1);

51

52 if (j==1 || j==N), counter = counter +1; K(counter ,1) = ind; J(counter ,1) =

ind; S_A(counter ,1) = 1; % glass boundary conditions

53 else

54 counter = counter +1; K(counter ,1) = ind; J(counter ,1) = ind; S_A(

counter ,1) = a;

55 counter = counter +1; K(counter ,1) = ind; J(counter ,1) = ind -1; S_A(

counter ,1) = b;

56 counter = counter +1; K(counter ,1) = ind; J(counter ,1) = ind+1; S_A(

counter ,1) = b;

57

58 if (k == 1), % cyclic boundary conditions

59 counter = counter +1; K(counter ,1) = ind; J(counter ,1) = ind+N;

S_A(counter ,1) = d;

60 counter = counter +1; K(counter ,1) = ind; J(counter ,1) = ind+N*(M

-1); S_A(counter ,1) = d;

61 elseif (k == M), % cyclic boundary conditions

62 counter = counter +1; K(counter ,1) = ind; J(counter ,1) = ind -N;

S_A(counter ,1) = d;

63 counter = counter +1; K(counter ,1) = ind; J(counter ,1) = ind -N*(M

-1); S_A(counter ,1) = d;
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64 else

65 counter = counter +1; K(counter ,1) = ind; J(counter ,1) = ind -N;

S_A(counter ,1) = d;

66 counter = counter +1; K(counter ,1) = ind; J(counter ,1) = ind+N;

S_A(counter ,1) = d;

67

68 end

69 end

70 end

71 end;

72

73 A = sparse(K,J,S_A);

Algorithm B.6 Function that imposes δϑ̄ = 0 on the boundary.
1 % Generates discretization of equation

2 % etha*u_z = u_xx + u_yy + gamma*u + zeta*u_x

3 % using Crank Nicholson discretisation

4 %

5 %

6 % ^

7 % x, ¦ ----------------------------- glass

8 % M points ¦ -----------------------------

9 % ¦ <--j-->

10 % ¦

11 % ¦ ^

12 % ¦ /-\ ¦

13 % ¦ \-/ k

14 % ¦ ¦

15 % ¦ v

16 % ¦

17 % ¦ z

18 % ¦ / -----------------------------

19 % ¦ / ----------------------------- glass

20 % ¦/-------------------------------------------->

21 % y, N points

22 %

23 % !!!!!!!!!!!! SIZE(MATRIX) = (M,N) !!!!!!!!!!!!!!!!!

24 %

25 % with N grid pts in x, M grid pts in y

26 % The ordering (y first , then x) is used. (RIGA x COLONNA)

27 % dx ,dy : stepsize of the discretization along x and y

28 % function A = ellprob(M,N,dx,dy)

29

30 %% all the variables are in the SI !!!!!!!!!!

31

32 function [A] = discret_NR_diag(M,N,a)

33

34 % NB a is a vector !! it depends on theta !!

35

36 %% definition of the matrix

37

38 tot = M*N; % total number of elements different from zero

39 K = (1:1: tot);

40 J = (1:1: tot);

41

42 A = sparse(K,J,a);

Algorithm B.7 Function that calculates F̄ Eq. (3.34).
1 %% it calculates the function

2 %% F = K(d^2theta/dx^2 + d^2theta/dy^2) + 0.5* eps_zero*delta_eps *|E|^2* sin(2* theta)

3
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4

5 function [F] = F_bound (A_norm ,theta ,b,E,eps12vect ,eps22vect , delta_eps)

6

7 eps_zero = 8.854e-12; % F/m % vacuum dielectric constant

8

9 F = A_norm*theta + (0.5* eps_zero*delta_eps*abs(E).^2.* sin (2*( theta -atan(eps12vect ./

eps22vect)))-b);

10 end

Algorithm B.8 Function that calculates the average of the correlation function over one cell Eq. (3.63).
1 function [aver] = average(Param ,T,Xi,dx)

2

3 K = Param.E7.K; % [N] one constant approximation

4

5 % physial constant

6 k_B = 1.38064852*10^( -23); % [J/K] Boltzmann constant % [K]

7

8 a = dx; %3*10^ -9; % [m]

9

10 %% integral

11 fun = @(q) ((k_B*T)/(a*2*K*pi^2))*((q.* sinint(q*a))./(q.^2+Xi^-2));

12 aver = integral(fun ,0,2*pi/a);

13

14 end
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