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Summary

In this work, we study the nonlinear propagation of light in liquid crystals (LCs) and the optical gain provided
by LCs when they are polymer- or dye-doped.

We will focus on nematic LCs, which are characterized by a mean orientation (also called director) of the
elongated molecules and by a subsequent birefringence. After a general introduction on LCs, we focus on the
nonlinear propagation of light in nematic L.Cs, and in particular the soliton-like propagation (nematicon). Indeed,
if the light injected in the cell is intense enough, it can create a waveguide that counteracts the diffraction of the
light. The light then propagates with an almost constant (or periodic) transverse profile.

Our contribution to the subject starts with the numerical modeling of the thermal noise that characterizes the
nematic LCs and the study of spatial instabilities of the soliton propagation caused by that noise. In Ch.3 we show
that, by explicitly implementing the spatial correlation of the director in the LC thermal noise, it is possible to
reproduce some of the features that characterize the LC response, such as the speckle generation or the fluctuating
trajectory of the spatial optical soliton in LCs. Indeed, when the nematicon diameter is of the same order of
magnitude as or smaller than the refractive index perturbations caused by the thermal noise, the nematicon
starts to fluctuate in space. These fluctuations are not present when the noise is not correlated, indicating that
the long-range interactions in L.Cs are crucial to explain the fluctuations. The model also allows us to introduce
the propagation losses experienced by the nematicon without the use of an ad-hoc term. The simulations are
in agreement with the experimental results. This method could also help the modeling of complex nonlinear
phenomena in LCs that rely on noise, such as modulation instabilities or filamentation.

Then, the optical gain is included in the LCs by dissolving photoluminescent polymers or dyes in it. In par-
ticular, we show that a particular polymer, the polyfuorene, when dissolved in nematic LCs, creates an intricate
supramolecular pattern composed by homogeneous L.C-rich regions surrounded by polymer-rich boundaries.
The study of these structures through an ultra-fast spectroscopic technique (the pump-probe technique) and
confocal microscopy reveals that the boundaries are composed by ordered and isolated chains of polymers.
This particular morphology allows the observation of the optical gain from an oxidized unit of the polymeric
chain (keto defects). This signal is usually covered by the absorption caused by the chain aggregation in solid
state samples, while in LCs it is clearly visible. The optical gain from the keto defects appears also to be polarized
orthogonal to the LC director, which is also the orientation of most of the boundaries. When a dye, one of the
pyrromethenes, is dissolved in the L.Cs, the sample appears to be homogeneous. The optical gain from the dye is
polarized along the LC director and it shows an important spectral blue-shift (10 nm) passing from a polarization
parallel to orthogonal to the LC director. The amplified spontaneous emission (ASE) shows the same shift when
changing the direction of the sample excitation.

When the ASE and the nematicon are generated in the same sample, it is possible to study the interaction
between the two. In particular, the waveguide induced by the soliton can be used to guide another signal at
another wavelength. We show that the nematicon can collect the ASE generated in the same device and guide
it to the same fiber used to inject the nematicon in the LC cell. The extraction of the ASE from the device
increases almost one order of magnitude when the soliton is present. However, due to the nematicon spatial
fluctuations in L.Cs, an optimal nematicon power has to be found. Indeed, by increasing the soliton power, the
light guiding is improved since the refractive index contrast of the nematicon-induced waveguide is increased.
However, very high soliton powers have to be avoided, since the power-dependent soliton fluctuations prevent
an optimal collection of the light. The nematicon is also found to increase the spectral purity and the polarization
degree of the guided signal.

Another LC system is studied, the chiral nematic LCs. In this system, the molecules are disposed following
an helicoidal distribution. Due to their optical anisotropy and the periodic distribution, the system presents
an optical band-gap. If the LC is also dye-doped, the combination of optical band-gap and gain generates laser
emission. We are interested in a fast (sub-ms) reorientation of the helix, with the aim of studying the effect of this
reorientation on the laser emission. The first step is the alignment of the LC helix (without the dye) with its axis

vi
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parallel to the glass plates that constitute the cell, which is difficult to obtain with a high optical quality. For this
reason, an innovative method is developed to align L.Cs through directional solvent evaporation. The solvent-
induced method allows us to obtain particularly homogeneous textures, with a contrast ratio between the bright
and the dark states that is a factor of 4 greater than that obtained with traditional methods. The LC samples
based on solvent-induced alignment are then stabilized via two-photon photo-polymerization. This technique
allows us to polymerize small regions of the device while the rest of the sample can be washed out in a solvent
bath. When an achiral material is used to refill the device, it assumes a chiral alignment in the polymerized
regions and an achiral nematic distribution in the rest. The first characterization of the laser emission is then
presented in the last Chapter, with the aim of achieving sub-ms electrical tuning in future works.

In this work a wide range of aspects have been investigated, leading to the realization of novel techniques for
the fabrication of liquid crystal devices, the demonstration of novel phenomena for light amplification in liquid
crystals and the experimental verification of new numerical modeling tools for light propagation in liquid crystals.
The three key aspects of the work are nonlinear propagation, optical amplification and electrical response of
different LC-based mixtures. Although the first few chapters deal with some of the aspects separately, in the last
chapter these aspects are combined, revealing interesting new phenomena and pointing out a number of new
aspects that could be part of future work. The results in this work have potential applications in fast tunable
lasers, optical communication systems and lab-on-chip components.



Résumé

Dans ce travail, nous étudions la propagation nonlinéaire de la lumiere dans les cristaux liquides (CLs) et le gain
optique produit dans les CLs lorsque ceux-ci sont dopés par des polymeres ou des colorants.

Notre travail se focalisera sur les CLs nématiques qui sont caractérisés par une orientation moyenne (appelée
directeur) des molécules allongées et par la biréfringence qui en découle. Apres une introduction génfale sur
les CLs, nous nous concentrerons sur la propagation nonlinéaire de la lumiere dans les CLs nématiques et, en
particulier, sur la propagation de type soliton (nématicon). En effet, lorsque la lumiere injectée dans la cellule est
suffisamment intense, elle peut créer un guide d’'onde qui contrebalance la diffraction de la lumiere. La lumiere
se propage alors avec un profil transverse presque constant (ou périodique).

Notre contribution sur le sujet commence par une modélisation numérique du bruit thermique qui caractérise
les cristaux liquides nématiques et I'étude des instabilités spatiales de la propagation de type soliton causées par
ce bruit. Dans le Ch. 3 nous montrons que I'implémentation explicite de la corrélation spatiale du directeur
dans le bruit thermique des cristaux liquides permet de reproduire certaines des caractéristiques propres a la
réponse des CLs telles que la génération de speckle ou la trajectoire fluctuante du soliton spatial optique dans
les cristaux liquides. En effet, quand le diametre du nématicon est du méme ordre de grandeur ou plus petit
que les pérturbations de I'indice de réfraction causées par le bruit thermique, le nématicon commence a osciller
dans I'espace. Ces fluctuations ne sont pas présentes dans le cas d’'un bruit non corrélé, ce qui indique que les
corrélations sur longue distance dans les CLs sont cruciales pour expliquer ce phénomene. Le modele permet
aussi de reproduire les pertes de propagation subies par le nématicon sans l'introduction d’'un terme ad hoc
de perted phénoménologiques. Les simulations sont en accord avec les résultats expérimentaux. Ce modele
pourrait aussi aider a la modélisation de phénomenes nonlineaires complexes dans les CLs qui impliquent du
bruit, comme I'instabilité de modulation et la filamentation.

Ensuite, le gain optique est inclus dans les CLs en y dissolvant des polymeres photoluminescent ou des
colorants. En particulier, nous montrons qu'un polymere particulier est dissous dans les cristaux liquides né-
matiques, le polyfluorene, il crée des structures supramoléculaires intriquées, composée de régions homogenes
riches en CL entourées de bords riches en polymere. L'étude des ces structures a I'aide d’'une technique de
spectroscopie ultra-rapide (la technique pompe-sonde) et de la microscopie confocale révele que les bords sont
composés par des chaines de polymeres ordonnées et isolées. Cette morphologie particuliere permet I'observation
du gain optique venant d'une unité oxydée de la chaine polymérique (défaut cétone ou fluorénone). Ce signal est
habituellement couvert par I'absorption causée par 'aggrégation des chaines de polymere dans les échantillons a
I'état solide alors que dans les CLs, il est clairement visible. Le gain optique venant du défaut cétone est polarisé
orthogonalement au directeur du CL, qui correspond aussi a l'orientation de la majorité des bords. Quand un
colorant, un des pyromethenes, est dissous dans les CLs, I'échantillon apparait comme étant homogene. Le
gain optique provenant du colorant est polarisé le long du directeur du cristal liquide et il montre un décalage
vers le bleue important (10 nm) passant d'une polarisation paralléle a une polarisation orthogonale au director
des cristaux liquides. L'émission spontanée amplifée (Amplified Spontaneous Emission - ASE) montre le méme
décalage vers le bleue quand la direction de I'excitation de I'échantillon est changée.

Quand I'ASE et le nematicon sont générées dans le méme échantillon, il est possible d’étudier I'interaction
entre ces deux phénomenes. En particulier, le guide d’onde induit par le soliton peut étre utilisé pour guider
un autre signal a une autre longueur d’onde. Nous montrons que le nematicon peut collecter cette ASE générée
dans la cellule a CL et la guider dans la fibre utilisée pour y injecter le nématicon. L'extraction de '’ASE du
dispositif augmente quasiment d'un ordre de grandeur lorsque le soliton est présent. Cependant, a cause des
fluctuations spatiales du nématicon dans les CLs, une puissance optimale du nématicon doit étre trouvée. En
effet, en augmentant la puissance du soliton, le guidage de la lumiere est amélioré car le contraste d’indice de
réfraction du guide d’onde induit par le nématicon est augmenté. Cependant, des puissances trop importantes
de solitons sont a éviter vu que les fluctuations du soliton dépendant de la puissance empéchent une collecte
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optimale de la lumiére. Le nématicon permet aussi d’augmenter la pureté spectrale et le dégré de polarisation
du signal guidé.

Un autre systeme a CLs est étudié dans ce travail: les CLs nématiques chiraux. Dans ce systeme, les molécules
sont disposées selon une distribution hélicoidale. Du fait de leur anisotropie optique et de leur distribution
périodique, le systeme présente une bande intérdite optique. Si les cristaux liquides sont également dopés par
colorants, la combinaison de la bande intérdite optique avec le gain génere de I'émission laser. Nous nous sommes
intéressés a une réorientation rapide (sub-ms) de I'hélice dans le but d’étudier I'effet de cette réorientation sur
I'émission laser. La premiere étape est I'alignement des CLs en hélice (sans le colorant) avec un axe parallele
a la plaque de verre qui constitue la cellule, ce qui est difficile a obtenir avec une bonne qualité optique. Pour
cette raison, une méthode innovante a été développée pour aligner les cristaux liquides grace a I'évaporation
directionnelle du solvant. Cette méthode d’alignement induite par le solvant permet d’obtenir des textures
particulierement homogenes avec un rapport de contraste entre les états brillant et noir quatre fois meilleur que
ce qui peut étre obtenu par les méthodes traditionnelles. Les échantillons de cristaux liquides alignés par cette
méthode sont alors stabilisés par la photo-polymérisation a deux photons. Cette technique permet de polymériser
de petites régions, alors que le reste de I'échantillon peut étre vidé dans un bain de solvant. Quand un matériau
achiral est utilisé pour remplir le dispositif, il adopte un alignement chiral dans les régions polymérisées et
achiral ailleurs. La premiere caractérisation de I'émission laser est ensuite présentée dans le dernier chapitre de
ce travail, dans I'optique d’arriver dans des travaux futurs a un dispositif accordable en champ électrique et avec
une réponse sub-ms.

Dans ce travail différents aspects ont été analysés, ce qui a conduit a la réalisation de nouvelles tech-
niques pour la fabrication des dispositifs a cristaux liquides, la démonstration des nouveaux phénomnes pour
I'amplification de lumiere dans les cristaux liquides et la vérification expérimentale des nouveaux outils pour
la propagation de la lumiere dans les cristaux liquides. Les trois aspects clés de ce travail sont la propagation
nonlinéaire, 'amplification optique et la réponse électrique pour différents mélanges de CLs. Méme si les pre-
miers chapitres traitent certains de ces aspects séparément, dans le dernier chapitre ces aspects sont réunis, en
révélant des nouveaux phénomenes et en mettant en avant nombreux nouveaux point qui pourraient étre part de
travaux futurs. Les résultats de ce travail peuvent avoir des applications potentielles pour des lasers rapidement
accordables, des systemes de communication optique et des composantes lab-on-chip.



Samenvatting

In dit werk wordt de niet-lineaire voortbeweging van licht in vloeibare kristallen (Liquid Crystals, LCs) en de
optische versterking door het LC-materiaal bestudeerd in het geval van polymeer- of kleurstof-gedoteerde LCs.

We richten ons vooral op nematische L.Cs die gekarakteriseerd worden door een gemiddelde oriéntatie van de
langwerpige moleculen (ook director genoemd) en als gevolg daarvan door een dubbelbreking. Na een algemene
inleiding over LCs kijken we naar de niet-lineaire voortbeweging van licht in nematische LCs en in het bijzonder
de soliton-achtige voortbeweging. Deze soliton-achtige voortbeweging wordt ook nematicon genoemd. Immers,
als de lichtbundel die geinjecteerd wordt in de component intens genoeg is, dan wordt een golfgeleider gevormd
die de diffractie van het licht tegengaat. Het licht beweegt zich dan voort met een vrijwel constant (of periodiek)
transversaal profiel.

Onze bijdrage aan het onderwerp start met de numerieke modellering van de ruis die karakteristiek is voor
nematische LCs en de studie van de ruimtelijke instabiliteiten van de solitonvoortbeweging die veroorzaakt
wordt door deze ruis. In Hoofdstuk 3 tonen we aan dat het mogelijk is om enkele karakteristicke fenomenen van
de voortbeweging van licht in .Cs numeriek te reproduceren, zoals de vorming van speckle of het fluctuerende
traject van ruimtelijke optische solitonen in LCs. Hiervoor is het nodig om de ruimtelijke correlatie van de director
van de thermische ruis in LCs expliciet numeriek te implementeren. Als de diameter van het nematicon van
dezelfde grootteorde is of kleiner dan de perturbaties van de brekingsindex, veroorzaakt door de thermische ruis,
dan start het nematicon ruimtelijk te fluctueren. Deze fluctuaties zijn er niet wanneer de ruis niet gecorreleerd is,
wat aantoont dat interacties in het vloeibaar kristal op lange afstand cruciaal zijn om de fluctuaties te begrijpen.
Dit model laat daarnaast ook toe om de voortbewegingsverliezen die het nematicon ondervindt te reproduceren
zonder een ad-hoc term in te voeren. De simulatieresultaten zijn namelijk in goede overeenstemming met de
experimentele resultaten. Deze methode kan ook helpen bij het modeleren van complexe niet-lineaire fenomenen
in vloeibare kristallen die gebaseerd zijn op ruis, zoals modulatie-instabiliteit of filamentatie.

Vervolgens wordt optische versterking in L.Cs bestudeerd door fotoluminescente polymeren of kleurstoffen in
het LC te mengen. In het bijzonder bekijken we een bepaald polymeer, polyfluoreen, dat intrinsieke supramolec-
ulaire patronen vormt wanneer het opgelost wordt in nematisch LC. Deze patronen worden gevormd door ho-
mogene regio’s rijk aan vloeibaar kristal, omgeven door polymeer-rijke grenzen. De studie van deze structuren
via ultra-snelle spectroscopische technieken (de pomp-probe techniek) en confocale microscopie toont aan dat
de grenzen bestaan uit geordende en geisoleerde ketens van polymeer. Deze bijzondere morfologie leidt tot
de observatie van optische versterking van geoxideerde eenheden van de polymeerketen (keto defecten). Dit
signaal is normaal gezien niet zichtbaar wegens de absorptie die veroorzaakt wordt door de aggregatie van de
polymeerketens, terwijl in LCs dit duidelijk kan geobserveerd worden. De optische versterking van de keto
defecten blijken gepolariseerd loodrecht op de vloeibaarkristaldirector, min of meer gelijk aan de oriéntatie van
de grenzen. Als een kleurstof (bvb. van de klasse van de pyrromethenen) wordt opgelost in het LC, dan blijkt
de structuur homogeen te zijn. De optische versterking vanwege de kleurstof is gepolariseerd langs de LC di-
rector en vertoont een verschuiving naar het blauw (van ongeveer 10 nm) wanneer de polarisatie verandert van
parallel naar loodrecht op de LC director. De versterkte spontane emissie (amplified spontaneous emission of
ASE) vertoont dezelfde verschuiving wanneer de richting van de excitatie verandert.

Wanneer de ASE en het nematicon worden gegenereerd in hetzelfde sample is het mogelijk om de interactie
tussen de twee te bestuderen. In het bijzonder kan de golfgeleider die gegenereerd wordt door het soliton
worden gebruikt om een ander signaal te geleiden bij een andere golflengte. We tonen aan dat het nematicon
de gegenereerde ASE kan verzamelen en leiden naar een optische vezel die tegelijkertijd wordt gebruikt om het
nematicon te injecteren in de cel. De extractie van het ASE licht verhoogt met bijna 1 grootteorde wanneer
het soliton aanwezig is. Door het solitonvermogen te verhogen wordt de lichtgeleiding verbeterd aangezien het
brekingsindexcontrast van de nematicongolfgeleider stijgt. Maar te hoge solitonvermogens moeten vermeden
worden omdat de solitonfluctuaties bij hogere vermogens een optimale verzameling van het licht teniet doen.
Het nematicon verhoogt ook de spectrale zuiverheid en de polarisatiegraad van het signaal.
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Tot slot wordt nog een ander type LC materiaal bestudeerd, namelijk chiraal nematisch LC. In dit materiaal
ordenen de moleculen zich op een helicoidale manier. Dankzij de optische anisotropie en de periodieke ordening
is er een optische verboden zone. Als het L.C ook gedoteerd is met een kleurstof, dan is het mogelijk om via de
combinatie van een verboden zone en optische versterking laseremissie te verkrijgen. We zijn geinteresseerd in
een snelle (sub-ms) reoriéntatie van de helix om zo het effect van de reoriéntatie op de laseremissie te kunnen
bestuderen. De eerste stap is om een goede alignering van de LC helix te bekomen met de as parallel aan de
glasplaten waartussen het LC zit. Het is vooral moeilijk en belangrijk om een zo hoog mogelijke optische kwaliteit
te verkrijgen van het LC. Om deze reden werd een innovatieve methode ontwikkeld die het LC aligneert via
het directioneel verdampen van solvent. Deze solvent-gebaseerde methode laat toe om zeer homogene texturen
te verkrijgen met een contrastverhouding tussen de lichte en de donkere toestand van een factor 4 groter dan
mogelijk met traditionele methoden. Het LC met solvent-geinduceerde alignering is vervolgens gestabiliseerd
via twee-foton foto-polymerisatie. Deze techniek is interessant om kleine gebieden te polymeriseren, terwijl de
rest van het materiaal kan uitgewassen worden door de component in een solventbad te dompelen. De eerste
karakterisatie van laseremissie wordt voorgesteld in het laatste hoofdstuk, maar het sub-ms elektrisch schakelen
is helaas het onderwerp van toekomstig werk.

In dit werk werden verschillende fysische aspecten onderzocht en dit heeft geleid tot de realisatie van nieuwe
technieken voor de fabricage van vloeibaarkristalcomponenten, de demonstratie van nieuwe fenomenen voor
lichtversterking in vloeibare kristallen en de experimentele verificatie van nieuwe numerieke modelering van
lichtpropagatie in vloeibare kristallen. De rode draad doorheen dit werk zijn drie aspecten: niet-lineaire optische
voortbeweging van licht, optische versterking en elektrische respons van verschillende vloeibaarkristalmengsels.
Hoewel de eerste hoofdstukken deze aspecten afzonderlijk behandelen worden meerdere aspecten in het laatste
hoofdstuk gecombineerd, waarbij nieuwe fysische fenomenen aan het licht komen en waarbij ook enkele inter-
essante bevindingen worden vermeld die het onderwerp kunnen zijn van verder werk. De resultaten in dit werk
kunnen potentieel gebruikt worden voor toepassingen in snelle afstembare lasers, optische communicatiesyste-
men en lab-on-chip componenten.



Sommario

In questo lavoro studiamo la propagazione nonlineare della luce nei cristalli liquidi (CL) e il guadagno ottico da
essi fornito quando dopati con polimeri o coloranti.

Focalizzeremo la nostra attenzione sui CL nematici, caratterizzati da un’orientazione media (nota come diret-
tore) delle molecole di CL allungate e dalla birifrangenza che ne consegue. Dopo un'’introduzione generale sui CL,
ci concentreremo sulla propagazione nonlineare della luce nei CL nematici e in particolare sulla propagazione di
tipo solitone (noto anche come nematicone). Infatti, la luce iniettata, se sufficientemente intensa, puo creare una
guida d’onda che contrasta la diffrazione della luce, che si propaga quindi con un profilo trasverso quasi costante
(o periodico).

Il nostro contributo in quest’area inizia con un modello numerico del rumore termico che caratterizza i CL
nematici e con lo studio delle instabilita spaziali da esso causate sulla propagazione del solitone. Nel Cap.3
mostriamo che, costruendo esplicitamente la matrice di correlazione che descrive il rumore termico nei CL, &
possibile riprodurre alcuni degli aspetti che caratterizzano il loro comportamento, come la generazione di speckle
o le oscillazioni della traiettoria dei solitoni spaziali nei CL. Infatti, quando il diametro del nematicone & dello
stesso ordine di grandezza o piu piccolo delle perturbazioni dell'indice di rifrazione causate dal rumore termico, il
nematicone inizia a oscillare nello spazio. Queste oscillazioni non sono presenti quando il rumore non ¢ correlato,
segno del fatto che le interazioni a lunga distanza nei CL sono cruciali per I'esplicazione di tali oscillazioni. I
modello inoltre permette di riprodurre la perdite di propagazione subite dal nematicone senza l'utilizzo di un
termine ad hoc per esse. Le simulazioni sono in accordo con i risultati sperimentali. Questo modello potrebbe
aiutare la modellizzazione di fenomeni nonlineari complessi nei CL che si basano sul rumore, come l'instabilita
di modulazione o la filamentazione.

Successivamente, il guadagno ottico ¢ ottenuto dissolvendo nei CL polimeri o coloranti fotoluminescenti.
Mostreremo come un particolare polimero, il polifluorene, quando disperso nei CL, crei dei intricati motivi
supramolecolari composti da regioni omogenee ricche di CL, circondate da bordi ricchi in polimero. Lo studio
di queste strutture attraverso una tecnica di spettroscopia ultrarapida (tecnica di pump-probe) e la microscopia
confocale rivela che i bordi sono composti da catene di polimero ordinate e isolate. Questa morfologia parti-
colare permette I'osservazione del guadagno ottico da parte delle unita ossidate del polimero (difetti chetonici).
Questo segnale ¢ in genere coperto dall'assorbimento causato dall’aggregazione —nello stato solido— delle catene
di polimero, mentre in CL e chiaramente visibile. Il guadagno ottico da parte di questi difetti & inoltre polarizzato
ortogonalmente alla direzione del direttore del CL, direzione che coincide anche con l'orientamento maggior
parte dei bordi. Quando un colorante, della famiglia dei pyrromethenes, & dissolto in CL, il campione ha un
aspetto omogeneo. Il guadagno ottico del colorante & polarizzato lungo la direzione del direttore e presenta uno
spostamento dello spettro verso il blu (10 nm) quando la polarizzazione passa da parallela a ortogonale al diret-
tore. L'emissione spontanea amplificata (ESA) mostra lo stesso tipo di spostamento spettrale quando si cambia
la direzione di eccitazione del campione.

Quando I'ESA e il nematicone sono generati nello stesso dispositivo, & possibile studiare I'interazione tra i
due. In particolare, la guida d’onda indotta dal solitone puo essere usata per guidare un altro segnale ad un’altra
lunghezza d’onda. Il nematicone puo raccogliere I'ESA generata nello stesso dispositivo e guidarla nella stessa
fibra utilizzata per iniettare il nematicone nella cella a CL. I'estrazione dell’ESA dal dispositivo aumenta di quasi
un ordine di grandezza quando il solitone e presente. Tuttavia, a causa delle fluttuazioni spaziali del nematicone,
la potenza ottimale di quest'ultimo deve essere trovata. Infatti, da un lato, grazie ad un aumento del contrasto
dell'indice di rifrazione della guida d’onda generata dal nematicone, il guidaggio della luce & migliorato quando
la potenza del solitone & aumentata. Dall’altro lato, potenze troppo elevate causano flutuazioni del solitone che
impediscono una raccolta ottimale della luce. Infine, osserviamo che che il nematicone migliora la purezza
spettrale e il grado di polarizzazione del segnale guidato.

Un altro tipo di CL studiato & il CL. nematico chirale. In tale materiale, le molecole sono disposte secondo
una distribuzione elicoidale. A causa della loro anisotropia ottica e della loro distribuzione periodica, tale sistema
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presenta un band gap ottico. Se il CL & anche dopato con del colorante, la combinazione di band-gap e guadagno
ottico genera emissione laser. Siamo interessati in particolare ad una riorientazione rapida (<ms) dell’elica del
CL chirale, con l'obiettivo di studiare l'effetto della riorientazione sull’emissione laser. Il primo passo verso tale
direzione ¢ I'allineamento dell'asse del CL chirale (non dopato) parallelo ai vetri che costituiscono la cella, allinea-
mento particolarmente difficile ad ottenere con un’elevata qualita ottica. Per tale ragione abbiamo sviluppato un
metodo innovativo per allineare i CL attraverso I'evaporazione direzionale di un solvente. Tale metodo permette
di ottenere una struttura particolarmente omogenea, con un rapporto tra luminosita del bianco e luminosita del
nero quattro volte superiore a quello ottenuto per un allineamento conseguito con metodi tradizionali. Il campi-
one di CL allineato con 'evaporazione di solvente ¢ stabilizzato attraverso la foto-polimerizzazione a due fotoni.
Tale tecnica permette di polimerizzare piccole regioni del dispositivo, mentre il resto del materiale puo essere
eliminato con un bagno di solvente. Quando poi il dispositivo ¢ riempito con un CL non chirale, quest'ultimo
assume un allineamento chirale nelle regioni polimerizzate e non chirale nel resto. Una caratterizzazione pre-
liminare dell’emissione laser ¢ infine presentata nell’'ultimo capitolo, con l'obiettivo di ottenere in lavori futuri
un’emissione che sia accordabile attraverso un controllo elettrico e con tempi di risposta inferiori al millisecondo.

In questa tesi sono stati affrontati diversi temi che hanno portato alla realizzazione di nuove tecniche per la
fabbricazione di dispositivi a CL, la dimostrazione di nuovi fenomeni di amplificazione ottica in CL e la verifica
sperimentale di nuovi metodi numerici per la modellizzazione della propagazione luminosa nei CL. I tre aspetti
chiave di questo lavoro sono la propagazione nonlineare della luce, 'amplificazione ottica e la risposta ai campi
elettrici di varie strutture a CL. Sebbene i primi capitoli trattino tali aspetti separatamente, questi sono combinati
nell'ultimo capitolo, portando all’analisi di nuovi fenomeni interessanti, utili per eventuali lavori futuri. I risultati
di questo lavoro potrebbero avere un umpatto in applicazioni come laser accordabili e a risposta rapida, sistemi
per le comunicazione ottiche e dispositivi lab-on-chip.



Introduction Chapter

Liquid crystals (LCs) are a particular phase of matter in between the liquid and solid states. In particular, they
possess a long-range order like crystals, while maintaining the possibility to flow like liquids. For this reason,
many devices take advantage of the propagation of light in LCs. Thanks to their high birefringence and large
response to external stimuli (electrical, mechanical, thermal, ...) they are the perfect candidates for applications
such as displays [1-4], smart windows [5, 6], photovoltaic cells [7], lasers [8—11] and spatial light modulators
(SLM) [12]. In all these applications the light beam is usually weak enough to not perturb the LC distribution.
In this thesis, however, we are interested in the nonlinear behavior that arises when an intense light beam is
propagating inside the LC.

When the light is propagating in a linear medium and it is focused into a small area, the beam tends to
diffract and its transverse profile tends to change during the propagation. However, if the propagation occurs
in a medium with a particular kind of nonlinearity, the beam itself can cause a local increase in the refractive
index. In this way, the beam creates its own waveguide during the propagation, counteracting the diffraction
and maintaining its (temporal or spatial) profile. This beam is called a (temporal or spatial) soliton.

In LCs, the electric field of the laser beam reorients the LC director causing a local increase of the refractive
index due to the birefringence of the LCs. This Rerr-like effect occurs at low powers (some mW) and causes
the transverse confinement of the light [13—22]. This soliton-like self-guiding is also called a nematicon when it
occurs in a particular LC phase called the nematic phase [23]. Since this kind of nonlinearity is non-resonant [16],
meaning that the molecular reorientation is not wavelength dependent, a huge variety of sources can been used,
ranging from UV [24] to IR laser sources [25], or even incoherent light sources [26, 27]. The description of
nematicons, together with the introduction of the L.C properties, is the subject of Ch. 2.

Since the interactions in LCs are long-range, the perturbations in these materials extend over a distance
much larger than the molecular size (tens of micrometers) [28, Ch.1]. For this reason, the nematicon-induced
reorientation spreads over multiple times the size of the optical beam [29, 30]. This means that multiple solitons
can interact with each other even if they are much further away than the width of the optical field. In particular
they can deviate, intersect or merge their trajectories [31-33]. Since the nematicon-induced waveguide can be
used to transmit optical co-polarized signals at other wavelengths [16, 34-37], the interaction among nematicons
can be used to implement all-optical logical gates [38] or switching [39]. Also, due to the easy response of LCs to
external stimuli, nematicons can be deviated with the action of an electric field or other optical beams, in order
to build optical logical gates or re-configurable optical switches [25, 40, 41].

For these all-optical signal handling applications where nonlinear phenomena play a significant role, it is
important to keep the intensity of light as constant as possible along the propagation. However, the propagation
losses in LCs limit the soliton propagation and interaction distance to a few millimeters. Our work started with
the aim of sensibly increasing the propagation length of a nematicon.

The main contribution to the propagation losses in LCs is the scattering in the medium [42] In particular,
the long-range orientational fluctuations of the LC mean distribution gives rise to a scattering that is six orders
of magnitude larger than in conventional isotropic fluids [28] The effect of this long range thermal noise on the
nematicon propagation is particularly important since it causes both intensity attenuation and spatial fluctuations
of the nematicon intensity profile. Indeed, by increasing the nematicon power, the soliton suffers from thermal
instability and/or strong self-focusing [16, 29, 43, 44]. In Ch. 3 we propose a novel modeling scheme for the
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physical origin of these fluctuations and its comparison with the experimental results. We show how the
nematicon propagation is influenced by the physical quantities that characterize the LC phase, such as the
thermal fluctuations of the molecules in LCs, the temperature or the elastic forces among the molecules. We
also show that our model can explain the linear propagation of light in LCs, giving rise to the typical speckle
formation.

In order to increase the nonlinear propagation length, several attempts have been adopted in the literature
in order to overcome the issue of the propagation losses. One solution is to increase the nonlinear response
along the propagation in order to compensate for a decrease in the beam intensity [44]. Another option is to
compensate the losses via an optical amplification of the soliton. Distributed optical amplification in LCs can
easily be achieved by mixing the LC with photoemissive molecules (dyes or polymers) and exciting the system
with a pump light beam. However, even if this solution has been predicted theoretically [45], no experimental
evidence has been presented until now. The initial aim of our work was to explore this route.

The first step in this direction is an extensive study of the optical gain provided by photoluminescent media
dispersed in L.Cs. In Ch. 4 we analyze how ordered and anisotropic media such as a L.C can modify the stimulated
emission of emitting dyes and polymers dispersed in it. The first study of the optical gain in LCs with the aid of
the pump-probe technique is presented. With the aid of this technique, which allows us to temporally resolve
the evolution of the excited states of a molecule or a system, we were able to demonstrate that photoluminescent
dyes or polymers dissolved in L.Cs can provide polarized optical gain. However, despite the different excitation
geometries and wavelengths we tried, it was not possible for us to obtain nematicon amplification. We believe
that the main reasons are twofold. Firstly, despite the fact that the dye shows a long-living optical gain (Ch. 4),
the excitation powers were not sufficient to amplify, even transiently, the continuous-wave beam that is used to
generate the nematicon. Secondly, the maximum excitation power was limited by the appearance of amplified
spontaneous emission (ASE) or random lasing, depending on the adopted pumping geometry.

The observation of narrow-band and directional emission such as ASE opens up new possibilities for inte-
grated narrow-band intense light sources. Due to its low degree of coherence, ASE is particularly suitable for
a range of applications. The low spatial coherence is useful for illumination purposes, due to the low speckle
production [46, 47], while the low temporal coherence is suitable for biomedical applications such as optical
coherence tomography [48-50]. A requirement for these applications is that the light is efficiently collected and
guided within the device. The method we propose is to exploit the nematicon-induced-waveguide for this pur-
pose. The case where the fluorescence is generated by the nematicon itself launched in a dye-doped material
was reported in the literature [24, 51]. However, the case where the nematicon was used to collect the light of
a laser-like source generated within the same cell had not been previously analyzed. This is the subject of the
first half of Ch. 6, where the ASE is generated in a dye-doped LC cell and collected by a nematicon injected in
the same device. We show that the nematicon increases the intensity, the spectral purity and the polarization
degree of the light extracted from the device. Later, it was shown that a nematicon is able to guide and even
tune others types of light sources, such as random lasing [36, 37.

The drawback of ASE is the fact that its wavelength is not tunable. Indeed, since there is no cavity feedback
to tune the emission wavelength, the emission peak is fixed at the wavelength with the lowest losses [52-55].
However, some applications need tunable sources, such as selective sample excitation in biology or medicine [56].
This is the reason why we focused our attention to other laser sources, whose emission is chosen to be in the
plane of the LC cell in order to eventually maximize the collection of the light from a nematicon propagating in the
same plane. There are different ways to obtain in-plane laser emission in L.Cs, such as the periodic modulation
of the gain [57-59] or of the refractive index [60-62] in dye-doped LCs. This last configuration is achieved when
a chiral nematic LC, which is characterized by a self-aligning helicoidal distribution of the L.C orientation, is
aligned with the helix axis in the plane of the cell (uniform lying helix - ULH). Such a periodic distribution
generates an optical band-gap in the plane of the cell that can be used as feed-back for lasing emission.

As presented in Ch. 5, the ULH alignment presents a fast (sub-ms) reorientation of the optic axis of the
helix when an alternating electric field is applied orthogonal to the periodicity, known as the flexoelectro-optic
effect [63—67]. When the light is propagating orthogonal to the ULH axis, the medium acts as a birefringent
material whose optic axis can be reoriented with an external electric field. This is of particular interest for
technological applications requiring fast switching, such as next generation flat panel displays [68, 69]. In our case,
we are interested in the effect of this fast reorientation on the optical band-gap and on the laser emission. Towards
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this aim, the first steps are the alignment of a high-quality ULH alignment and the doping of the structure in
order to obtain laser emission. In Ch. 5 we apply for the first time the solvent-induced self-alignment method to
obtain a high-quality ULH. The characterization of the flexoelectro-optic response in terms of reorientation angle
and response time is in agreement with what is found in the literature, indicating that the solvent technique does
not alter the ULH properties. The solvent-induced ULH presents an almost defect-free structure, making it a
better candidate to obtain laser emission than the ULH obtained with standard techniques. The laser emission
from the dye-doped structures is presented in the second half of Ch. 6. The ULH is photo-polymerized in order
to improve the stability of the alignment at high electric fields. The polymerization is obtained via two-photon
absorption in order to polymerize small areas of the sample. It is then possible to remove the non-polymerized
material and refill the cell with nematic LC. The sample obtained in this way presents narrow emission from
the polymerized ULH regions, while the surrounding shows a broader ASE at a higher threshold.

The flexoelectro-optic effect is expected to influence the lasing emission. We believe that this would lead to
fast-switching in-plane lasing in samples in which also a nematicon could be injected for efficient extraction of
the emission.

If not explicitly expressed otherwise, [ fabricated the samples, assembled the optical setup for the character-
ization, wrote the simulation code and analyzed the data.
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Liquid crystals and solitons Chapfer

In this Chapter, thermotropic liquid crystals, and in particular the nematic phase, will be presented. The basis of
the continuum theory will be introduced, as it will be used in Ch. 3 for the numerical model and in Ch. 5 to explain
the flexoelectro-optic response. The optical properties of LCs will be analyzed, in particular those of chiral liquid
crystals. In the last part of the chapter, after a brief introduction about light propagation in dielectrics, the concept
of optical soliton will be introduced. Finally, the nonlinear propagation of light in nematics, in particular the
solitonic behavior, will be considered.

2.1 Thermotropic liquid crystals

One of the main reference books for LCs was written by Pierre Gilles de Gennes and Jacques Prost [28]. We
will be referring to this book for the general theory of thermotropic liquid crystals. Liquid crystals are a par-
ticular phase of matter in between the solid and the liquid phase. In particular, they preserve the possibility to
flow, like liquids, while maintaining a long-range order, like crystals. There are different ways to obtain this
phase (also called mesophase), the two most important ones are changing the relative concentration of the con-
stituents (lyotropic LCs) and changing the temperature (thermotropic LCs). In this thesis, we will use exclusively
thermotropic LCs, that will therefore be referred to simply as LCs.

The molecules that represent the liquid crystalline phase, called mesogens, possess a pronounced geometrical
anisotropy, such as a disc or rod-shape. This anisotropy is then reflected onto their dielectric, elastic and viscous
properties, as seen in more detail in the next chapters. We will focus on rod-shaped molecules characterized
by a uniaxial birefringence. The average of the molecular long axis orientation over a significant number of
molecules is called the director (1), and it is a unit vector. The refractive indices in the direction parallel and
orthogonal to the director are called, respectively, n and n (Fig. 2.1a). In Fig. 2.1b it is possible to see some
of the phases that can be observed when the temperature of a rod-like mesogen is increased. It goes from the
solid (crystalline) to the liquid (isotropic) phase, passing through one or more mesophases. The system passes
from the solid to the LC phase at the melting temperature (T,), since at that point the medium acquires viscous

layer plane
yer p ﬁ

i | el |
™

| |
solid (crystal) Tm smectic C | smectic A | nematic Te liquid T

(b)

FIGURE 2.1: (a) The revolution symmetry of an ensemble of molecules around the director @ and its uniaxial anisotropy; the
frame of reference & 4,44,24 is defined by the director (@ || Z4). (b) Schematic of the phase transition from the crystalline
phase to the liquid phase, passing through some of the LC phases, characterized by a decreasing degree of order when the
temperature is increased.

v
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properties. The first phase that is usually encountered is the smectic phase, characterized by an organization
into lagers. The two most common smectic phases, smectic A and C, are characterized by two translational
degrees of freedom (within the layer) and by the director orientation that is orthogonal (smectic A) or at an angle
(smectic C) with respect to the layer.

The nematic phase is encountered when further increasing the temperature. Its only degree of order is
dictated by the director orientation. The molecules can freely rotate around the director and move along the
three directions.

It has to be noted that in all LC phases the long-range interactions tend to order the director orientation.
However, without the help of an external stimulus, like the appropriate boundary conditions, the organization
would be on a scale that is much larger than the molecular scale but shorter than macroscopic dimensions. This
is why when looking at a LC without macroscopic aligning boundary conditions, its appearance is milky. The
light is highly scattered by the pm-sized birefringent domains that constitute the bulk. When the system passes
to the liquid phase, the long-range interactions are destroged by thermal agitation and the medium becomes
transparent. For this reason, the temperature at which the system passes to the isotropic phase is called the
clearing temperature (1¢).

The nematic phase, in both its achiral and chiral forms, is the one used in this work.

2.2 Nematics

Nematic LCs are characterized by the fact that the molecules have an average orientation (director) but they can
still move freely along the three directions. The average orientation is due to their long-range interaction, whose
origin will be discussed in more detail in Ch. 3. The molecules also usually present an electric dipole, even if,
macroscopically, no net polarization is present in the medium in the absence of external stimuli. On average,
the same number of molecules point in opposite directions. This impossibility to distinguish the head and the
tail of the molecule has to be reflected in the way the system is described. Therefore, the physical quantities that
describe the system have to be invariant under the transformation a(7) — —a(r).

In the following, the optics and the response to an electric field of nematic L.Cs are described in the bulk,
without taking into account the contribution due to the boundary conditions.

2.2.1 Dielectric tensor

Due to their long-range order and molecular anisotropy, nematic LCs
can be treated as a birefringent medium.! In the coordinate system
noted as Z4,94,24, where the Z; axis is defined by the director orien-
tation (Fig. 2.1a), and considering only a linear response, the relative
dielectric tensor takes a diagonal form

g1 0 0
El=| 0 e 0 |, (2.1)
0 0 6”

where €| and ¢ are the relative permittivities (or dielectric constants)
orthogonal and parallel to the director, respectively. At optical frequen-
ciese| = ni and g = nﬁ

The relative dielectric tensor can be expressed in a generally ori-
ented frame of reference Z,9,2 (Fig. 2.2). The system Z,9,2 can be FIGURE 2.2: The generic frame of reference
obtained through a double rotation, the first one through an angle ¢ %92, where the director @ correspond to
around the axis Z; and the second one through an angle § around the the molecular axis fgr_ simplicity. The an-
axis ¢//; obtained with the first rotation. The rotation matrix associated gles  and ¢ are positive as represented.
with this transformation is:

"This can always be done, at least locally.
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Nl

FiGURE 2.3: Splay (a), twist (b) and bend (c) deformations in nematic LCs.

R = R(0)R(p)
cos 0 —sind 1 0 0 cosf sinfsinp —sinfcosy
= 0 1 0 0 cosp sing | = 0 cos sin @ . (2.2)
sinf 0 cosf 0 —singp cosp sinf —cosfsing cosfcosy

In this frame of reference, the dielectric tensor takes the form:

_ £ + Aesin?0 Aesin f cos 0 sin Aesin 0 cos § cos ¢
§, = REIRT = | Aesinfcosfsing e + Aecos?fsin’p  Accos’Osinpcose |,  (2.3)
Aesinfcosfcosp Aecos’fsingcosp e + Aecos? fcos? @

where Ae = ¢ — ¢ is the dielectric anisotropy of the LC. When ¢ = 0, Eq. (2.3) takes the simple form

| +Aesin?0 0  Aesinfcosf
g = 0 el 0 . (2.4)
Aesinfcosf 0 e + Aecos’b

In this case, it is possible to show that, if the light is polarized along Z, the refractive index experienced by
the wave can be derived from the index ellipsoid [70, Ch.4]

€1 sin29+€H cos2 0 €2z

n(0) = \/2,(0) = \/ cLE _Jene — S22 (2.5)

2.2.2 Free energy in the continuum theory

When the LC is perturbed at one location, it is deformed over a scale much larger than the molecular size.
The LC can therefore be described as a continuum, without referring to discrete details of the molecules. Using
the director as a continuous function of the space a(7), it is possible to define the energy associated with the
perturbation of the equilibrium distribution.

For a nematic L.C, the state with the lowest energy is the one in which all the molecules are perfectly parallel
one to another. Any deviation from the equilibrium is associated with a distortion free energy density [J/m?
that, in the Oseen-Frank theory [28, Ch.3.1], takes the form

fa= §K1 (V-8)° + LK (8 (V % 8))2 4 2K (8 x (V x 8)°) (26)

splay twist bend

where K, Ky and K3 are, respectively, the splay, twist and bend elastic constants, expressed in [N]. These
deformations are classified according to their geometry (Fig. 2.3). The splay deformation is the one for which
the lines traced by the orientation of the molecules are all exiting from one point (V - & # 0). The twist and the
bend define rotations whose curl has a component orthogonal (2 - (V x 21) # 0) and parallel (& x (V x 1) # 0)
to the director, respectively. All these contributions are squared in order to have a centrosymmetric material
and to respect the invariance with the transformation a(7) — —a(7).
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The values of the three constants are close enough to justify, in some cases, the assumption K1 = Ko =
K3 = K. Then the Eq. (2.6) takes the form

1
mZiK“Vﬁf+me2. (2.7)
This equation is much simpler to solve numerically and will be useful in Ch. 3.

2.2.3 Electric field responses

When an electric field E is applied to a dielectric material, it induces a polarization density P that adds to the
electric field within the medium. The sum of these components is the electric displacement D

D =¢goE + P, (2.8)

where ¢ is the vacuum permittivity.
The polarization density groups all the different responses that the medium shows in the presence of an
electric field. In particular, for a nematic LC, there are usually at least two contributions:

P = PL + pflexo = 50>:(E + Pflexo (29)

where x is the first order susceptibility tensor, which is assumed to be real. The first term is due to the dielectric
linear response of the medium and the second one is due to the elastic deformation of the medium.
The displacement field [Eq. (2.8) takes then the form

D = E[)E + 60):(E + Pflexo
= 05+ E + Priegos (2.10)
where &, = 1 + ¥ is the relative permittivity of the medium and the electric field £ is assumed to have one

frequency (monochromatic).?
The potential free energy density f; associated with the electric field in the presence of the LC is therefore

1- =
Jao=-5E-D (2.11)
1 —-_ - 1- =
= —550E€TE - iE . Pfle:vo (2.12)
= fdiel + fflexo- (213)

The first and the second terms are the dielectric and the flexoelectric contributions, respectively. They will be
analyzed separately in the following paragraphs.

Dielectric contribution

The dielectric contribution arises from the dielectric anisotropy of the medium. Indeed, the dielectric term can
be rewritten as a function of the independent variables F and 1

1 - _
fdiet = —5c0keE (2.14)
= =B () (B-8)a+e (B E-2)n), (2.15)

where we decompose the electric displacement into its components that are parallel and orthogonal to the
director according to Eq. (2.1). Regrouping the terms we obtain

1 1 _ 2
fdiel = _5505L|E|2 — 50l (E-n)”. (2.16)

%For a detailed discussion on the use of the notation for Eq. (2.10), see Appendix A.
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Depending on the sign of the anisotropy Ae = ¢ — €, of the LC, the molecules will tend to align themselves
parallel (Ae > 0, positive anisotropy) or orthogonal (Ae < 0, negative anisotropy) to the electric field, in order
to minimize the energy of the system.

In this configuration, where there are slightly more molecules aligned with the field than in the other direction,
the symmetry a(7) — —n(7) is broken by the field and a net dipole is created. The asymmetry is not large
enough, though, to justify the introduction of additional terms in the free energy expression [Eq. (2.6)], since the
continuum theory, as already stated, disregards the details of the molecules.

Flexoelectric contribution

The flexoelectric effect is a deformation of the uniform distribution of the director that arises when molecules
with a permanent dipole and a non-centrosymmetric geometry are subjected to an electric field. Conversely,
if a deformation of the director distribution is generated, a net macroscopic polarization is generated in the
material due to the permanent dipole of the molecules. The two molecular shapes that are usually referred to
when analysing the flexoelectric effect are the pear-shaped molecules (Fig. 2.4a), with a dipole parallel to the
axis of the molecules, and the banana-shaped molecules (Fig. 2.4b), with a dipole orthogonal to the axis of the
molecules.

In the absence of an external field, no net polarization is present in the material. Even for non-centrosymmetric
molecules, the 4(7) — —a(7) symmetry is still present and the net polarization of the medium is zero (Fig. 2.4a,b).

When an electric field is applied, it reorients the molecular dipole parallel to it. Due to the shape of the
molecules, a deformation is introduced in the molecular distribution. In the case of pear-shaped molecules, the
dipole is usually along the long axis of the molecules and it will be aligned along the electric field. Due to the
shape of the molecules, a splay deformation will be formed (Fig. 2.4c). In the case of banana molecules, the

e® o P
(a) (b)

AN

WP I N

r

(e)

FIGURE 2.4: (a,b) Molecular distribution with no net polarization for the case of the pear-shaped (a) and banana-shaped (b)
molecules, in the absence of an applied electric field. The small black arrows are the molecular dipoles. When an electric
field E is applied, the reorientation of the dipoles induces a splay (c) or a bend (d) deformation in the medium, respectively
for the pear and banana-shaped molecules. (e) Splay-bend configuration with a periodicity of I".



CHAPTER 2. LIQUID CRYSTALS AND SOLITONS 10

dipole is usually orthogonal to the long axis. When it tends to align along the field, a bend deformation appears
in the material (Fig. 2.4d). In both cases the field breaks one of the symmetries in the system: for the pear-
shaped molecules, the a(7) — —n(7) symmetry is broken, while the molecules are still free to rotate around the
direction defined by the director. For the banana-shaped molecules, the opposite happens: the molecules cannot
rotate around the director (orthogonal to the electric field), but the end-to-end symmetry is preserved.

The flexoelectric polarization, as it was introduced by Meyer [71], is defined as

Pfiego = €1 (V-7) 1+ e3 (V x 71) x 7, (2.17)

where e; and es [C/m] are the splay and the bend flexoelectric coefficient, respectively. In this sign convention,
the net polarization is pointing outwards the center of the deformation for the splay and inwards for the bend
deformation (Fig. 2.4).

The free energy for the flexoelectric term can be therefore written as

fflexo = —%60 [61 (V . ’ﬁ) n -+ es (V X ’ﬁ) X ﬁ] - E. (2.18)

The direction of the deformation will depend on the polarity of the electric field, since the free energy ffie.0
depends linearly on the electric field £ and it has to be minimized to find the equilibrium configuration.

In a general case, molecules can present both behaviors at the same time. In that case, a splay-bend defor-
mation takes place (Fig. 2.4e). The period I" that characterizes the alternation of splay and bend deformations is

defined as [72]
_ (K1 + Kj3)

I'= .
(61 — 63)E

The higher the electric field, the faster is the reorientation of the director in space and shorter is the period.

(2.19)

2.3 Chiral nematic L.Cs

The chiral nematic phase, also known as cholesteric (CLC) phase, is exhibited by chiral molecules. In this phase,
the LC molecules tend to arrange themselves at an angle to one another in the direction orthogonal to their long
axis, in a configuration of pure twist (Fig. 2.5a). Alternatively, a small quantity of chiral dopant can be added
to an achiral LC to obtain the CLC phase. The distance over which the molecule turns over an angle of 27 is
the period pg of the helicoidal distribution along 2. In the planes orthogonal to 2, the molecules are parallel to
one another. We can therefore think of the medium as a series of nematic layers whose director rotates from
one layer to another, drawing a helix along 2. The rotation angle 6 is defined as 6 = (27 /pg)z, as reported in
Fig. 2.5b. The angle 6 is taken to be positive according to the right hand rule. The rotation angle and therefore
the pitch are determined by the rotatory power of the molecule (or by the concentration of the chiral dopant).
The helix can be left- or right-handed, depending on the chirality of the molecule.

Due to the geometry of the system, the periodicity of the medium is one-dimensional, along the axis of the
helix. Due to the a(7) — —n(7) symmetry, the period of the refractive index is half of the pitch po.

2.3.1 Optical band-gap

The periodic structure that the molecules assume, due to their birefringence, gives rise to a periodic distribution
of the refractive index.

When the light is propagating along the Z axis, as for Bragg reflectors, the refractive index periodicity causes
a light reflection selective in wavelength (optical band-gap). In CLCs, however, the geometry of the system is
circular. For this this reason, the most appropriate polarization basis to describe light propagation in CLCs is
the circular one. By solving the propagation equation for a birefringent medium whose optic axis is rotating
orthogonally to the 2 axis, it is possible to find the explicit form of the wavevectors of the fields propagating in
the two opposite directions along 2 [73] The field with a handedness opposite to the CLC helix has a wavevector
that takes real values for all wavelengths and propagates as in an isotropic medium. The field with the same
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FiGurEe 2.5: (a) The molecules of a CLC rotate orthogonal to the Z axis forming a spiral of pitch pg. (b) The LC director
in each plane draws a spiral whose handedness depend on the chirality (left or right) of the molecule. (d) Example of
transmission spectrum of unpolarized light propagating along the CLC axis; the optical band-gap in this case is between
520 and 590 nm.

chirality as the CLC takes complex values for wavelengths around the Bragg wavelength® A\p = py (n+n1)/2,
which cannot therefore propagate in the medium. The optical band-gap so-formed has a width that is defined
by the birefringence of the medium and takes the form [74]

nipyg < A< 1| Po (2.20)

in the case of positive anisotropy. The typical transmission spectrum of unpolarized light propagating along
the CLC axis is reported in Fig. 2.5c. Outside the bandgap the light progatas unperturbed and the spectrum is
modulated only by the Fabry-Perot cavity formed by the two glass substrates that compose the cell. Within the
bandgap, half of the light is transmitted because it has a polarization with the opposite handedness as the CLC
helix, while the other half is reflected. For this reason, the reflected light is polarized with the same handedness
as the CLC helix.

3The period of the refractive index is half the helix period po due to the fi(7) — —a(7) symmetry.
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2.3.2 Free energy in the continuum theory

In an unperturbed CLC, the director orientation along the helix can be described with the system of equations

Ny cos
ny | = | siné (2.21)
n, 0

where 0 = 2—32 is the angle between the director (in each plane orthogonal to 2) and the & axis (Fig. 2.5b), and
po is the natural pitch of the CLC. In this configuration, the twist term of Eq. (2.6) takes the form
2r 27

. 2.22
Po Po ( )

n-(Vxa)=—-a-(&cosh+ ysinb)
Since the twisted configuration is the equilibrium distribution for a chiral system like the CLC, we subtract

this term from the free energy equation Eq. (2.6), obtaining

1 1 1
fo= 51(1 (V-8)2 + 5}(2 (B (V x8)+q) + 51(3 (A x (V x1a))?, (2.23)

with ¢p = ?)—’OT. This energy contribution is minimum for a chiral configuration such as the CLC case.

2.3.3 Electric field responses

When a CLC is submitted to an electric field applied orthogonal to the helical axis, two kinds of coupling can
happen, dielectric and flexoelectric coupling. Only alternating electric fields will be applied in the experiments,
with a frequency high enough to to prevent charge transport and electrohydrodynamic instabilities [28, Ch.6].

Dielectric coupling

As we saw for nematics, the dielectric coupling will tend to align

the molecules parallel to the electric field (for positive anisotropy), 1) )) :)- §
while the restoring elastic forces will try to preserve the helical - —— < -
structure. In a CLC, if the electric field is applied orthogonal e Y § §
to the helical axis, the regions of the helix with the molecules — —— < =
aligned along the electric field will become larger (Fig. 2.6b) [75, % % é %
76]. This also causes a change in the birefringence of the medium ); } § E
for the light propagating orthogonal to the helix and polarized o - - ——
orthogonal to the helical axis. Eventually the pitch length starts i ¢ 0 = °< 5 ; i 7(; —
to increase (Fig. 2.6¢) and, for electric fields above the critical field N _— T e ==
value E, [77] (a) (b) (c) (d)

E, = 71;2 Ko (2.24) FIGURE 2.6: Evolution of the helix deformation

po \| eole’ of CLC helix as the electric field intensity is in-

creased.
the helix is completely unwound. Eq. (2.24) has been obtained

by comparing the free energy density associated with the region of twist and the uniform region composed by
pure nematic in the presence of an electric field [28]. The first contribution is given by Eq. (2.23), the second one
by Eq. (2.6) and the electric field is taken into account through the term in Eq. (2.16).

When also the flexoelectric contribution is taken into account, the expression for the critical field becomes [63,
67, 68, 78]

2
K.
B.=T 73(61763)2 , (2.25)
PO\l eple — 16(K1+K3)

where the flexoelectric distortion effectively decreases the dielectric anisotropy and increases the critical field
for the helix unwinding.
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Ficure 2.7: Helix deformation (a,c) when a field is applied orthogonal to the helical axis. Compared to the unperturbed
case (b), the optic axis (OA) is tilted with respect to helix axis (HA) when an electric field is applied. Depending on the
polarity of the electric field, the reorientation angle is positive (a) or negative (c).

Flexoelectro-optic response

If non-centrosymmetric molecules in a chiral nematic phase are subjected to an electric field orthogonal to the
helical axis, a deformation of the whole helix takes place due to flexoelectric coupling. The optic axis (OA) of
the CLC is tilted by an angle ¢ with respect to the helical axis (HA) (Fig. 2.7). The direction and the amplitude
of the tilt depend on the polarity and the amplitude of the electric field, due to the linear dependence of the
flexoelectricity on the electric field. Patel and Meyer first reported the observation and the theoretical model of
this effect, called the flexoelectro-optic effect [63, 79]. In the planes orthogonal to the OA, this configuration gives
rise to the same bend-splay deformation we presented for nematics (Sect. 2.2.3).

By evaluating the free energy density of the configuration in Fig. 2.7a and finding the equilibrium distribution
as a function of ¢, it is possible to calculate the dependence of the tilt angle as a function of the electric field. In
the case of Fig. 2.7a, the CLC director distribution of Eq. (2.21) is modified into

NG cos 6
ng | = | sinfcos¢ |, (2.26)
Nz sin @ sin ¢

where 6§ = qpz is the same as that defined previously and ¢ is the angle, independent of Z, that we want to
optimize to find the equilibrium configuration. Since the director is only a function of 2, its divergence and curl
are

00
V -1 = sin ¢ cos 0% = sin ¢ cos b g (2.27)
a6
—cos g cos 0 —qp cos ¢ cos b
V xh= —sinf%? = —qosin @ (2.28)
0 0

We can then evaluate each term of the elastic deformation contribution [Eq. (2.23)] separately,

1 1 1

splay:  fs = §K1 (V-0)?= §K1 (qosin ¢ cos 0)? = §K1q3 sin? ¢ cos? 6, (2.29)
1 1 1

twist:  f; = 5[(2 (f-(V x8)+q)? = §K2 (—gqocos ¢ + qo)* = §K2q% (1 —cos¢)?, (2.30)
1 1 1

bend: f, = - K3 (8 x (V 1)) = 55 (qosin Osin $)? = 5Kg,qg sin? @ sin” . (2.31)

The flexoelectric contribution [Eq. (2.18)], in the case where the electric field is polarized along z, takes the

form
ffiezo = —P - E = —E, (e1sin ¢ cos® 6 — ez sin ¢sin® 6) go. (2.32)
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The total free energy density associated with the elastic distortion and the flexoelectric coupling is then
averaged over one period py, in order to remove the spatial dependence given by 6 = 6(z)

fover = [ e i+ o+ i) 2 (23)
aver — 20 Jo s t b flexo . .

This equation, with Eq. (2.29) - (2.32), becomes

faver = qug sin? ¢ + {qg (1 —cos ¢)* + qug sin? ¢ — E, (e] — e3) % sin ¢. (2.34)

This is the equation that has to be minimized in order to find the equilibrium distribution. If we assume the
pitch pp is constant [64, 78], we can differentiate Eq. (2.34) with respect to ¢ and set it to zero to find the angle
¢ that minimizes the energy

K1+ K. K E
%q% sin ¢ cos ¢ + 72q3 (—2cos¢sing + 2sin ¢) — ?z (e1 —e3) gocos ¢ = 0. (2.35)
Therefore, reorganizing the terms

— K| 2K+ K
tanqﬁ:@(el 63)EI— ! 2+ 3s

' 2.36
o 2K, 2K, in ¢, (2.36)

where we substituted gy = 27/py. From this equation it is possible to see that the tilt angle ¢ is linearly
dependent on the applied electric field, at small angles.

The system is also subjected, in general, to dielectric coupling. Since, for small tilt angles, the dielectric
coupling depends quadratically on the electric field, the flexoelectro-optic effect will be predominant at small
electric field amplitudes. Increasing the electric field, the dielectric coupling will take place, saturating the
switching angle and unwinding the helix.

2.4 Liquid crystal cells

As introduced above, LCs need macroscopic boundary conditions in order to present a macroscopic order. The
simplest geometry is represented by two large glass plates, assembled with a glue mixed with spacers that
provide the desired thickness (Fig. 2.8a). The glass plates have to be cleaned and then coated with a lager that
forces a definite orientation of the LC director at the interface. In the homeotropic alignment, the director is
aligned orthogonal to the glass plate, while in the planar case they are parallel to it (Fig. 2.8b). In this thesis both
uniform homeotropic and planar alignments are used.

2.4.1 Fréedericksz threshold

The glass plates do not only fix the orientation at the interfaces. Due to the elastic forces among the molecules,
they also modify the response to an electric field. Indeed, if an electric field is applied to the cell, the molecular
electrical reorientation is counteracted by the restoring elastic forces and the fixed orientation at the interfaces.

This introduces a threshold that depends on different factors, such as the cell thickness (the thinner the cell,
the smaller the reorientation freedom for the molecules) and the elastic constants of the LC [28, Ch.3]. Also,
varying the orientation of the electric field with respect to the initial LC director, the electric torque on the
molecular dipole can be modified and different elastic deformations (involving different elastic constants) can be
excited.

These considerations will dictate the choice of the cell geometry, notably for the nonlinear propagation, as
we will see in the next paragraphs.
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2.4.2 Cell fabrication

The glasses used in this thesis are either 1.1 mm thick glass covered with a ~100 nm layer of indium-tin-oxide
(ITO, a transparent conductor) or a 100 um thick glass substrate.

The homeotropic alignment layer is obtained with a commercial polyimide layer (SE-4811, Nissan Chemical).
The solution is spin-coated (2500 rpm, 15 seconds) on the substrate. Due to the viscosity of the solution and the
poor wettability of the substrate, the glass is immediately transferred to a pre-heated hot-plate (100°C) for a few
minutes, in order to have a fast solvent evaporation and avoid the breaking-down of the film [80, 81]. The film
is then processed in the oven for 1h at 180°C.

To obtain planar alignment, a solution of 1 wt% Nylon 6,6 in 2,2,2 trichloroethanol is spin coated on to
the glass (3500 rpm, 45 seconds) and cured in the oven at 180°C for 4 hours. The surface is then rubbed with
a rotating cylinder covered with a velvet wipe. The direction of the rubbing determines the direction of the
LC director on the surface. Due to the rubbing process, the molecules have a small tilt (a few degrees) at the
surface [82]. The two glasses are assembled with the rubbing direction in an antiparallel configuration, in order
to avoid a splay distortion across the thickness of the cell (Fig. 2.8b). For both kinds of alignment, the thickness
of the layer is of the order of some hundreds of nanometers.

The two glasses are assembled with UV-curable glue mixed with spherical spacers of a defined diameter.
The spacers define the thickness of the cell. The cell is then heated on a hot plate to some degrees Celcius above
the clearing temperature of the LC. A small quantity of L.C is put at the entrance of the cell and the L.C fills the
gap by capillary action.

In some of the samples, a non-commercial optical fiber is slid between the two glasses. The fiber has a
cladding diameter of 64.4 um, a core diameter of 2.9 um and a cut-off wavelength of 550 nm. This refractive
index profile supports a mode with a radius (at 1/e?) of 3.7 um at 1064 nm. The fiber has to be adequately
prepared before the insertion. The polymeric coating is soften for 20 minutes in a dichloromethane bath and
then removed mechanically. Due to the nonstandard diameter of the fiber and its particularly fragile glass, it
has to be cleaved with an ultrasonic cleaver (Precision Fiber Optic Cleavers, Photon Rinetics). The quality of
the fiber facet is checked in an optical fiber splicer and only then the fiber is carefully inserted in the LC cell.
In this thesis we will use only one LC, the commercially available E7 (Merck). The chemical structure of the
components that constitute the E7 mixture are shown in Fig. 2.9 and the E7 properties are reported in Tab. 2.1.

Unless stated otherwise, we fabricated the cells used in this thesis in the clean room facilities at Ghent
University.

2.5 Optical solitons

The concept of soliton goes back to the year 1848 when John Scott Russel described a water wave propagating
in a canal [87]: "I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair
of horses, when the boat suddenly stopped - not so the mass of water in the channel which it had put in motion;
it accumulated round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled
forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined

TR —

LTI ——
| N\

(a) (b)

FiGuRe 2.8: (a) Structure of a L.C cell where it is possible to notice the alignment layer on the glass substrates and the
spherical spacers; (b) Homeotropic (left) and planar (right) alignment in a LC cell.
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K: 107 pN
Elastic Constants [83] Ky  65pN
o o i
Viscosity [84] n  0.08 Pa-s
9 I 2.9204
80CB N: Optical properties at 1064 nm [85] e,  2.2681
16 St An 02029
Electrical properties [83] Ae 13.7
8% Transition temperatures [86] T 9°C
bt T. 60 °C
FIGURE 2.9: Chemical structures of the components of the E7 TaBLE 2.1: Characteristics of the E7 LC.

liquid crystal mixture.

heap of water, which continued its course along the channel apparently without change of form or diminution of
speed.” In this first description, Russel already describes the main characteristics of a soliton. He speaks about a
wave arising alone - solitary, that propagates without changing its shape and speed. Water wave solitons are not
the only ones observed in nature. In particular, soon after the invention of the laser (1960), the first optical soliton
was observed [88, 89]. They are described as self-trapped optical beams that maintain an invariant (temporal or
spatial) profile during their propagation.

In this section, after a brief introduction on light propagation, we will explain the concept of spatial soliton
in media that exhibit Rerr nonlinearity.

2.5.1 Light propagation in dielectric media

We start from the macroscopic formulation of Maxwell’s equations
OB

VD = py, (2.37) VXE:—E, (2.38)
_ _ - 0D
V-B=0, (2.39) VX H = Jp+ - (2.40)

where py and J; are the free charge and current densities, E and B are the electric and the magnetic field. The
electric displacement field D and the magnetizing field H are defined as

D =¢yE + P, (2.41)

_ B

H=—-M, (2.42)
Ho

where 1 is the vacuum permeability, P is the polarization density and M is the magnetization of the medium.
In our case, we will work in media with no magnetization (M = 0) and no free charge or current densities
(pf =0and Jy = 0).

Taking the curl of Eq. (2.38) and combining it with Eq. (2.40) and Eq. (2.42), we obtain

9*°D

BE=—plz
V x V x o5z

(2.43)
Using Eq. (2.37) and Eq. (2.41), and assuming that the average density of bound charges py is zero (so that
V. P = —p, = 0) or that P is slowly varying in space, we obtain

_ 10°FE 9*P

2p 2~ T
VE -~ 5om = gy (2.44)



CHAPTER 2. LIQUID CRYSTALS AND SOLITONS 17

This is the propagation equation for the electric field of an electromagnetic wave.
The electric susceptibility tensor y can be decomposed in to a linear and a non linear contributions.

=YW +xPE+x®EE (2.45)

where {9 are the susceptibiliy tensors of the j™-order and the electric field £ is assumed to be monochromatic.

In particular, we will focus on media with a Rerr (or cubic) nonlinearity, where the second-order term is
not present since the medium is supposed to be centrosymmetric [90, ch.1]. For a medium with a local and
instantaneous response, the polarization takes the form

P =coXE = eoxVE + eox ¥ EEE = P, + PnL, (2.46)

where P, and Py, are the linear and nonlinear contributions to the polarization. Eq. (2.41) becomes then
D =g (T +xW + i(3)EE> E (2.47)
=coer B (2.48)

where 1 is the identity matrix and &,(E) is the relative permittivity.

With this relation, Eq. (2.44) becomes
_ _ 0’E
2 = —
V°E — Moeoerﬁ = O, (249)
which is the well-known wave equation. )
Associated with the electromagnetic wave is the so-called Poynting vector .S, defined as [70, Ch.1]

S—ExH. (2.50)

It gives the power density [W/m?] of the beam. The integral of this vector over a surface gives the optical power
flowing through that area.

2.5.2 Linear propagation

We start from the case of light propagation in a linear medium. This means that ¥(® = 0 and the tensor &,
does not depend on the electric field. In that case, one solution to the wave equation is the plane wave [70]

E(F,t) = §ewot=ikT, (2.51)
where & is the amplitude of the plane wave, wy is the angular frequency, and k is the wave vector. These last
two quantities follow the relation |k| = (wo/c)n* = (wo/c)\/ek, where n* and * are the refractive index and
the relative permittivity seen by the wave of Eq. (2.51).

The plane wave, when injected into Maxwell’s equations Eq. (2.38) and Eq. (2.40), gives the orthogonality
relations

- _ k1 B

kxFE=—-wB=1<{ _~ _ (2.52)
E 1B

- _ k1l D

kEx H=wyD=<_" _ (2.53)
H1D

The fields £ and B are always orthogonal, and so are the fields D and H. The displacement field D is
orthogonal to the wavevector &, but the electric field £ not necessarily, due to the permittivity tensor [Eq. (2.48)].
Indeed, when light propagates in a birefringent medium (and it is not polarized along one of the principal optic
axes), the displacement field D and the electric field £ are no longer parallel [Eq. (2.48)]. The angle between
them is called the walk-off angle § and it can be calculated as
tand = M, (2.54)
D-E

where || - || indicates the norm of a vector.

Due to the relations of orthogonality derived above, ¢ is also the angle between the wavevector k and the
Poynting vector S.
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2.5.3 Optical Rerr soliton

In this section, we will follow Kivshar and Agrawal’s dissertation [91] on Kerr solitons, reporting only the principal
results and assumptions.

In our case, the medium is considered isotropic and the electric field is considered polarized along z. The
electric field can be written as

B t) = %x [E(F)e™t +cc] | (255)

where 7 = (&, g, 2) is the frame of reference of the laboratory (Fig. 2.2) and &(7) is the spatial part of the optical
electric field. With these assumptions, the polarization and the displacement field take the form

P(r,t) = -3 [P(F)e™! + cc], (2.56)

D(F,t) = =& [D(F)e™"" + cc] . (2.57)

N~ N

The spatial component of the linear polarization can therefore be written as
A7) = coxVE(r) (258)

while, by inserting Eq. (2.55) in Eq. (2.46) and neglecting the terms with the highest frequency (x €¥3«0%), we
obtain the following expression for the nonlinear polarization

3
Pni(r) = 801X(3)|<‘5(f)|28(f)- (2.59)
The electric displacement [Eq. (2.48) | can therefore be written as
F) ~ W 4 3, @812 ) &
D(r)~eo 1+ x + X |8(7)|” ) &(T). (2.60)

The term between parenthesis is the total relative permittivity €, = e1, + enr., which includes the linear and the
nonlinear contributions

er =1+ xW, (2.61)
3
enL(T) = EX(?’)’@(P)P- (2.62)

Since the refractive index n of a medium is defined as the square root of the relative permittivity and the
nonlinear contribution is supposed to be a perturbation of the linear response, we can write

n(F) = \/1 + x4+ ZX<3>|5(77)|2 (2.63)
~14 M+ ix@’)yg(my? (2.64)
877,()
= ng + n2|&(7) [, (2.65)
3

where ng = 1+ () is the linear refractive index and ngy = %X(‘g) is the cubic nonlinear, or Rerr, coefficient.
Both of them are assumed to be independent of 7, and ng is assumed to be very small so that we can limit the
development to the first order in no.

With all these relations, it is possible to obtain the time-independent equation from Eq. (2.44)

PN P W () LB @ erm2) orn
Vé’(r)+§8(r):fc—2 X +ZX |E(T)|* ) &(7), (2.66)

Using Eq. (2.61) and (2.62) we obtain
V2&(r) + kie, (1) 6(7) =0 (2.67)
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where kg = wp/c. This equation is also known as the Helmholtz equation for the envelope of the electric field
of an electromagnetic wave.
The Equation 2.66, by introducing the Rerr coefficient of Eq. (2.65), becomes

2

V2E(F) + k§ (no + 2nona| E(7)|?)” &(F) = 0. (2.68)

Supposing a wave that is propagating along Z so that the wavevector has only one component (paraxial
approximation [92]), we can decompose the spatial part of the electric field [Eq. (2.55)] in to an envelope and a
carrier A

& (r) = A (r) e~ ooz, (2.69)
where A (7) is the slowly varying envelope, kg = 27/ is the wavevector in vacuum and A = 27¢/wy is the

wavelength. The refractive index ng used in the planar wave is the same uniform linear refractive index of
Eq. (2.65). Inserting Eq. (2.69) into Eq. (2.68), we obtain

OA(T) 0> A (7)

022

2ikono = V3A(F) + + 2k2nona| A (F)|* A (7), (2.70)
where V2 = 9%/02% + 9% /0y? is the transverse part of the Laplacian operator. Since the envelope is slowly
varying, the variations of the envelope derivative are slow along # (therefore |04 /022| < |2kong 0.4 /0z|,

slowly varying envelope approximation [93]) and can be neglected. Eq. (2.70) becomes

OA (T
2ikono az(r) = V2 A(F) + 2kEnone| A (7)|* A (7). (2.71)

This equation is also know as cubic Nonlinear Schrédinger Equation (NLSE).

The solutions of this equation can be classified as a function of the dimensions of the problem. In the
case where the nonlinearity takes place only along one direction (z) and the confinement along the other
direction is provided, for example, by a planar waveguide, we can separate the variables in the envelope
A(r) = /Iou(z, z)o(y), where « and ¢ are the normalized amplitudes and Iy is the peak intensity of the
beam. In this way, Eq. (2.71) takes the form [94]

Ou(z,z) 1 9%u(z,z)

P
i + k0n2—0|a(:v, 2)|?u(z, 2), (2.72)

0z  2kong Ox2 legt

where P is the peak power of the beam and I is the confinement length due to the planar waveguide along
the ¢. In order to better understand the properties of the solution of this equation, the diffraction and nonlinear
lengths are introduced

P L
Lp = konowg, Lni = (kom lo) ; (2.73)
eff
where wy is the beam width. Introducing the dimensionless variables
Z =z/Lp X = x/wy, (2.74)
Eq. (2.72) can be written as
(X,Z) 10%u(X,Z) L
20X 2) 10X Z) | Ip v 2(x, 7). (2.75)

B4 2 0X2 | Ing

The ratio Lp/Lni, = N defines the parameter N, which is the order of the soliton. In the case Lp = Lt the
solution is the fundamental soliton (N = 1) [91]

iZ

w(X,Z) =+/Pysech (X)ez, (2.76)

or, in physical units

«(z,2) = /Py sech <x> ¢35 (2.77)

wWo
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This electric field profile preserves its shape along the propagation and after the interaction with another soliton.
This solution has been found with the hypothesis that the characteristic length of diffraction Lp corresponds to
the characteristic length of the nonlinear effect Ly,. This means that the inclination of the beam to diffract is
exactly compensated by the self-focusing nonlinear effect. From this condition it is possible to extract the critical
beam power P, necessary to excite a soliton of a definite size wq

Lp = L, (2.78)
2 PC —1
konowy = (konzl ff) ; (2.79)
wg Lp. _
P.= (kgnongl—o) L= (kongl—D) L (2.80)
eff eff

For higher-order solitons (N > 1), the beam intensity is larger than this critical value. It is possible to show [95,
Ch.5] that in that case the profile of the beam is no longer constant, but its width and peak intensity follow an
oscillatory behavior along 2. If the initial profile is not a soliton, the system spontaneously evolves towards the
closest integer N.

It is possible to show that, for a medium that is instantaneous and local, the solution of the cubic (Kerr)
NLSE is stable only for the 1-D case [96]. In the 2- and 3-D cases, the nonlinear effect acts on more than one
dimension. This induces an over-focusing of the field causing the so-called catastrophic collapse, or the medium
is damaged. The collapse can be prevented including a mechanism for which the energy cannot concentrate
too tightly or the electric field cannot grow too much. In the 2-D case it has been demonstrated that the solution
is stable for a nonlocal medium [97, 98], for a saturable nonlinearity [99] or considering the non-paraxial term in
the propagation equation [100, 101].

2.6 Nematicons

The nonlinearities that we have analyzed until now have an electronic origin. In the case of nematic LCs, the
nonlinear response of the medium can have different causes.

In the case of intense laser illumination or in the presence of a dye absorbing the laser frequency, the LC
is heated by the incident light. This can cause a change in the temperature or in the density of the LC [102,
Ch.7], inducing in both cases a change in the refractive index. Another way to modify the refractive index is
through the reorientation of the birefringent LC. Indeed, when a laser beam is sent onto a L.C sample, the optical
electric field can reorient the LC due to the dielectric interaction and locally increase the refractive index. These
intensity-induced refractive index modifications in LCs are called Rerr-like nonlinearities. In the following, we
will be focusing onto the light-induced L.C reorientation to induce a change in the refractive index.

Due to the viscosity of the medium, the LC reorientation is slow (~ms) [103] compared to the response
time of the electronic nonlinear responses (~as) [90, Ch.4]. Moreover, due to the elastic interaction among the
molecules, a perturbation of the LC distribution in a point causes a molecular reorientation at long distances
(tens of micrometers). Finally, the increase of the refractive index is limited by the birefringence of the LC. This
saturable and non-local Kerr-like nonlinearity is responsible for the stable 2-D solitons observable in LCs [104].

However, the nonlocality of the LC response would add a spatial convolution between ¥ and E in Eq. (2.46)
that would notably increase the difficulty of the study of the NLSE.# For this reason, the nonlocality and the
saturation are taken into account with a second equation that describes the molecular distribution and interaction
with the optical electric field.

In the following, we will derive the propagation equation in the case of a non-homogeneous birefringent
material, while a second equation describes the LC distribution, its saturable and nonlocal response and inter-
action with the optical electric field. The solution of the coupled equations describes the propagation of light in
LCs. In particular, in the case where the nonlinearity compensates for the diffraction, we have the formation of
a solitary wave that, as it occurs in nematic LCs, is called nematicon.

“The non-instantaneous response is simplified due to the monochromatic approximation [Eq. (A.8)], since we are interested only in
the equilibrium regime and the transient evolution is not analyzed.
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FIGURE 2.10: (a) Geometry of the LC cell and the LC orientation in the laboratory frame of reference. (b) Soliton propagation
in the 2 plane; 6 is the angle between the propagation vector & and the director 1, ¢ is the walk-off, which is the angle
between the Poynting vector S and the vector . (c) Soliton profile in the plane #7. The director reorientation due to the
optical electric field takes place in the plane Z2.

N>

2.6.1 Constitutive equations

The cell geometry adopted in this work is reported in Fig. 2.10a. The liquid crystal molecules lie in the plane
&2, where the reorientation takes place. Their orientation can be described with only the angle #.> The LC
director has an initial orientation 8y due to the rubbing direction. In this way, the torque induced by the electric
field is increased (compared to the case where the molecules lie along 2) and the Fréedericksz threshold for the
reorientation, presented in Sect. 2.4.1, is minimized [19, 22, 25].

We start from the Helmoltz equation [Eq. (2.67)] and, as before, we consider the case of light propagating
along 2 and polarized along #. At the interface with the LC, the electric field is tilted towards the vector k by
the walk-off angle 4, and the orthogonality between E and S is maintained [Eq. (2.50)]. However, as a first
approximation in case of a small walk-off, the electric field can be considered parallel to the Z axis within the
LC. The scalar approximation developed in the previous paragraphs can therefore be maintained.

In contrast to the case explained in the previous section, LCs present a Rerr-like nonlinearity. This means
that, even if the Rerr coefficient ny is negligible, they present an intensity-dependent refractive index modification,
which has however a non-electronic origin. In the case of LCs, the local increase of the refractive index is due
to the molecular reorientation induced by the optical electric field of the beam propagating in the medium. For
this reason, the relative permittivity can be written as a function of § and 7

e.(7,0) = n?(7,0), (2.81)

where the nonlinearity is hidden in the dependence of # on the electric field. Due to the long-range interaction,
we can assume that the spatial variations of the permittivity are slow enough to allow the approximation used
for Eq. (2.44). The Equation 2.67 can therefore be written as

V28(F) + kie, (F,0) &(F) = 0. (2.82)

We assume an electric field profile like the one expressed in Eq. (2.69), where ny is the unperturbed refractive
index seen by the incoming wave. Since the electric field is polarized along z, the unperturbed refractive index
isng = \/e1 + Aesin?(fy) (from Eq. (2.4)), where 6 is the angle between the initial orientation of the director
and the wavevector kg. In the following, ng will indicate the linear unperturbed contribution to the refractive
index, while e(7, ) (or n(7, #)) will take into account the electric field-induced reorientation.

With the same assumption made before (paraxial approximation and slowly varying envelope A (7)), we

obtain

A(T)
0z
In an homogeneous medium, it is possible to choose n2 = ¢, = &,(7,6) for the carrier wave, making the last
term disappear.

2ikono = V3 A(F) + k§ (e,(F, 0) — ng) A(F). (2.83)

®Referring to Fig. 2.2, we consider the case where the angle ¢ is negligible.
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Since the LC is a birefringent medium, the light experiences a walk-off when the vector k is not parallel to
one of the principal optical axes of the LC. Due to the relation of Eq. (2.48) and Eq. (2.4), the walk-off angle of
Eq. (2.54) takes the form
Aesinfcosd  e,.(0)

tan §(6) = g1 +Necos?0  £,.(0)

(2.84)

Since we are treating a birefringent medium with a scalar approximation, we need to add a phenomenological
term in the propagation equation Eq. (2.83) that takes into account the walk-off effect during the propagation [91]

OT) _ G2 (1) + [ (0. 6) — )] A + 2ikunotan 622 (2

X

2’”430110

as also reported in [19, 22, 105]. The last term in Eq. (2.85) takes into account the fact that the light, with a
wavevector k at an angle 6 with respect to the director, experiences a walk-off §(#) during its propagation
(Fig. 2.10b).

Until now the orientation of the L.C has been taken into account only through the angle 8. We need now to
introduce the LC elastic forces among the molecules and the response to electric field. In order to do that, we
can write the total free energy for our configuration

7 = [[[ fat®yazdyay = [[ [ (1a06) + twato)azaya, (2.66)

and minimize it to find the equilibrium position, with the angle # as free parameter. The spatial distribution of ¢
that gives the lowest energy is the one that the LC spontaneously adopts. The director distribution is described
by

0 =sinf 2+ cosb 2, (2.87)
where the reorientation only takes place in the plane 2. We also consider that the director distribution is slowly

varying along Z, therefore 6 = 0(z, y).
The elastic contribution to the free energy density in the one-constant approximation [Eq. (2.7)] becomes

1 -
fa= 3K (V-8 +(V x ﬁ)ﬂ (2.88)
1[99\ L0000 20 \*
= 5[( (cos 08:1:) + <— sin Ga—yx + sin Ha—xy + cos Gayz) ] (2.89)
1 [(06\* (06’
-k | (& ). 2.
| (32) - (3) &

The dielectric contribution is derived from Eq. (2.16), from which only the term dependent on 6 is considered®

2

1 B
Jaiet = =580\ (E-n) (2.91)
1
= —ieoaa\Eﬁ sin? 0 (2.92)
1
= —§€0A€ﬂ2 sin? 6. (2.93)
The total energy F is a function of the variable § and its derivatives, that are noted as
00
i = - 2.94

where &; are the spatial coordinates (i = 1,2, 3 for x, y and z, respectively).

®Note that in our frame of reference the angle between E (which is parallel to £) and 4 is = — .
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Finding the minimum of the integral F for the total energy involves solving the Euler-Lagrange equation for

the integrand f;,; [106, Ch.3]
3
8 aftot 8ftot
— — =0. 2.95
> () Ut e

In our case, this last equation takes the form

2 2
[gxi’ + gyZ] + %EOAM? sin 260 = 0. (2.96)

In our simple geometry, the surface interaction that induces the alignment at the interface is evaluated via
the boundary conditions used to solve the equation.

Indeed, due to the walk-off, the electric field £ is tilted towards the vector k and the torque is therefore
decreased. For this reason, in order to take into account the walk-off contribution, the angle §(6) is subtracted
from the angle 6 19, 107]

2 2
sz + gﬂ + %eoAgﬂz sin2(6 — 6(6)) = 0. (2.97)
The walk-off angle can be subtracted directly in the last equation only because the molecular reorientation
takes place over a scale much larger than the beam size (as shown in Ch. 3). For this reason, §(6) is almost
constant across the field section and the derivative 99/06 is negligible. As an alternative, the angle 6(6) can be
considered as a constant during the propagation and it can be calculated at the beam peak [20, 108] or for the
initial orientation (rubbing direction) of the director [22].

The Equations (2.85) and (2.97) form a system of coupled equations that will be solved numerically in the
next Chapter. The numerical solution for the profile of the electric field is not an eigensolution of the propagation
equation. Indeed, the beam profile is not constant along the propagation, but it is continuously focusing and
defocusing with a periodicity that depends on the nematicon power, similar to the breathing behavior of high
order solitons [44, 109]. For this reason, nematicons are often referred to as soliton-like phenomena. However,
for simplicity, we will continue to use the word soliton and nematicon as synonyms.
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Spatial fluctuations of solitons in L.Cs CHapter

The aim of this chapter is the modeling of the thermal noise in nematic liquid crystals and the spatial fluctuations
of the soliton propagation. The results reported in this Chapter have been published in Physical Review A [110].

Since the thermal noise induces local variations of the director orientation, I.Cs are characterized only by an
average order. These fluctuations, which cannot be too abrupt in space due to elastic restoring forces between the
molecules, are well described by the de Gennes’ theory[28, 111]. Starting from the Oseen-Frank continuum theory
for LCs, de Gennes’ theory predicts the value of the spatial correlation of the director fluctuations. These long-
range fluctuations are responsible for optical scattering in liquid crystal materials. This scattering is six orders
of magnitude larger than in conventional isotropic fluids which are dominated by the Rayleigh scattering [28]. It
is also the main contribution to optical propagation losses in liquid crystals [42].

From the de Gennes’ theory, it is possible to extract the variance of the molecular fluctuations, which can
be used to predict nuclear spin fluctuations [112], asymmetry in electron resonance spectra [113] and to define
the order parameter that characterizes nematic LCs [28]. The off-diagonal elements of the covariance matrix
described by de Gennes take into account the long-range interactions of the molecules and the spatial correlation
of the director within the LC cell. These correlations are often neglected when considering director fluctuations
in liquid crystals.

The accurate modeling of the director fluctuations is of particular importance for the understanding of
phenomena that depend on noise, such as modulation instability [114, 115], filamentation [116], or speckle for-
mation [117, 118]. Also, the thermally-induced refractive index fluctuations are responsible for soliton spatial
fluctuations. Indeed, when the power is high enough to induce the nematicon diameter to be of the same order
of magnitude as or smaller than the refractive index grains, nematicon spatial fluctuations are observed [29,
43]. Different ways to quench the fluctuations have been proposed, ranging from applying an external electric
field [119] to the polymerization of the medium [120]. However, until now, no model has been proposed to explain
the physical origin of this behavior. This is the aim of this Chapter.

In the first part of this Chapter, the discussion of the numerical implementation of the solution of the coupled
equations described in Sect. 2.6 is presented. Then the theory of the director correlation in L.Cs and its numerical
implementation is introduced. Starting from the elastic constants of the LCs and the thermal energy of the system,
the correlation matrix is explicitly written in our simulations to generate a model of long-range correlated noise.
First, the linear propagation regime is considered in order to explain the origin of speckle formation. Then the
nonlinear propagation and the soliton formation are analyzed and our model is experimentally verified. The
results demonstrate that the consideration of the correlation is crucial to explain the origin of the nematicon
fluctuations.

3.1 Soliton propagation in LCs without noise

This section reports the description of the method used to numerically solve the propagation equation [Eq. (2.85)]
and the reorientation equation [Eq. (2.97)]. The geometry of the sample is the one described in Sect. 2.6 (Fig. 3.1).
The director lies in planes parallel to the glass plates, where the electric field-induced reorientation also takes
place. Its initial orientation is §y = 45°, defined by the rubbing direction, and the optical beam is polarized along

25
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FIGURE 3.1: Scheme of the discretization variables, the orientation of the glass plates and the liquid crystal.

Z. The first equation is integrated with the beam propagation method (BPM) along Z, while the second one is
solved with the Newton-Raphson method [121]. Both Equations are discretized with a Crank-Nicholson method,
in order to conserve the energy of the propagating beam [121, Ch.19].

3.1.1 Propagation equation

In the case where the director is at 45°with the respect to the & axis, a beam polarized along & experiences a
walk-off § ~ 7.2°, defined according to Eq. (2.84). It can be demonstrated that for such an angle the paraxial
approximation introduces a relative error of just a few percent [122]. However, in order to minimize the numerical
error, a coordinate transformation is used which effectively tilts the frame of reference by an angle §(6p) with
respect to Z, in the same way that is usually done for the group velocity in the wave propagation equation [91,
pp.11-12]

¥ =x+tand (0y) z

y =y (3.1)

Z =z.

The propagation equation Eq. (2.85) then becomes

2ione 20— 732 (7) 4 (83 (< (7.6) — )] A (7) (32
OA ()

+ 2ikong [tan 6(0) — tan §(6p)] o

(3.3)

where the change of coordinates does not affect the transverse Laplacian V2 or the orientation of the electric
field polarization.
Introducing the parameters

n = 2ikono, (3.4)

v(0) = k§ (e(+,0) —ng) ,
¢(0) = 2ikgng [tan §(0) — tan 6(6y)] ,

we obtain
OA(7)

OA(7)
0z '

ox!

= VIA() +~v(0)A () + ¢(6) (3.7)
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This is the equation that has to be solved numerically. The equation is discretized using the Crank-Nicholson
method [121, pp. 847-851]

ﬂlHjl _1_‘%11'

A = Mfﬁ’«” (3.8)
oA A=A, 39
oz~ Az .

n+1 n 1 n
o 1 (AL Ay A AR (3.10)
ox' 2/ x 2 2 ’ |
n+1 n+1 n+1 1
92 A B 1 (ﬂﬁ,j+1 - 2‘%6,—; + ﬂki}l) + (ﬂ/’;,ﬁl - 2‘%;57/ + ﬂ/l%z,‘/%) (3.11)

oy Ay? 2

where the superscript » indicates the step number in the 2z’ direction (with increment Az), and the superscript
k, j are the indices along 2’ and ¢/, respectively (with a discretization grid Az and Ay) (Fig. 3.1). In the plane
orthogonal to the propagation direction, M intervals are taken in the ' direction and N in the 3’ one.

The Crank-Nicholson scheme is shown to be unconditionally stable and second-order accurate in 2’ [121,
pp. 847-851]. This method is also unitary, meaning that the integral of the square modulus of the function A
(i.e. the energy of the beam) is conserved during the propagation [121, pp. 851-853]. There is therefore no need
to normalize the energy of the beam at every step along 2’. This will be particularly important to evaluate the
propagation losses in Sect. 3.4.2.

The Equation (3.7) becomes for the point (£, ;)

Nz YN

ﬂ{lfl — A" 1
Ry k.j n+1 n+1 n+1 n n n
0 (At = 2705+ AL+ A = 270+ T

1 n n n
oy (T = 220 AL A =2 )
AP+ Ay 1 ,
FAO) g 0O g (AT + Ay — A Ay) - 61)

Grouping the coefficients

no 7(9) 1 1 n+1 _ C(e) _ 1 n+1 C(Q) _ 1 n+1
(Az 2 + Az2 + Ay2>ﬂ’*@/ - ANy 2A72 ﬂﬁ+1,(/+ ANy 9A72 ﬂ/é—l,(/

a —b —c
1 n+1 1 n+1
* <_2Ay2>ﬂfé,/‘+1 + <_2Ay2)ﬂk,{/—1
—d —d
_(n ) 1 1 " ¢(0) 1 " ¢(6) 1 "
B (Az T AV ZRVAN T A T ANz + 2N 22 A1 VAV * 2Nx2 )
f b c
1 n 1 n
+ (ZAyQ> /}7/’_;'_1 + <2Ay2) /ivj_l' (313)

d d

In order to be able to write the equation in the form 4 = AZ, we need to re-number the elements of Eq. (3.13)
in a such a way that A can be written as a vector. The two indices £ and j can be grouped in to new index
ind

ind=j+N(k—-1) (3.14)
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where
kA = 1,.... M along &
j = 1,...,N along y (3.15)
In this way the elements of the matrix are numbered line by line and Eq. (3.13) becomes
et = b Ay — e AL — dAG Ly — d A (3.16)
= fﬂgzd’ + bﬂgw’—‘,—l + Cﬂguf—l + dﬂgzd—i—N + dﬂ;;ld—N (317)

This is the equation for the generic point (£, 7). Writing this relation for all the points we can introduce the
matrices

a —-b -+ —d f b - d
—c a —-b - —=d c f b d
- . —¢ a —b - —d - ¢ f b .- d
A = , . and B = . . (3.18)
—d : —Cc a - d : IS f ..
—d d
—d d
ﬂle-l‘ﬂ—l .
gl = ﬂ;jg;ll . (3.19)
ﬂgz&-i-l
We obtain - ~
Ag"tt = Ba" (3.20)
and then o
" = A7 B (3.21)

The graphical representation of the structure of the matrices Aand Bis reported in Fig.3.2a. The sparse nature
of these matrices is exploited in the numerical code to increase the efficiency of the program (Alg. B.1, Sect. B.5).

Cyclic boundary conditions

As already mentioned, light propagating in liquid crystals experiences losses due to the scattering induced by
the director fluctuations. The reorientation of the director (i.e. the variation of ), and therefore the walk-off,
depends on the intensity of the electric field of the beam. Since the walk-off angle §(6) [Eq.(2.54)] is intensity
dependent, the soliton trajectory is expected to deviate from the initial walk-off §(6y). This means that the
soliton will not stay centered in the frame of reference that is shifting according to Eq. (3.1). Also, as it will be
presented in Sect. 3.4.2, the director fluctuations cause deviations in the nematicon propagation path. If we want
a soliton propagation over long distances, the walk-off drifting and the soliton oscillations imply that we should
adopt a large window in Z, sensibly increasing the calculation time. Another solution is to implement cyclic
boundary conditions along Z,! which is the option adopted in the following.
From Eq. (3.10) and Eq. (3.11) we obtain

O* A 1 OA 1

k=1 = o= 5 (Mo =270, + ), 57 = ang (M2 =) (322)
0? 1 ‘ OA 1

=M = o= (A =27+ A1)y 57 = oae (A = Au-y) - (3.29)

'This also implies that, if the beam is diffracting, there could be interferences between the beam going out from one side and the
beam that is entering. We will pay attention to avoid this situation, such as by limiting the propagation distance to 2.7 mm and by
analyzing the beam propagation for powers higher than the nematicon threshold, for which the beam is not diffracting.
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FIGURE 3.2: Structure of the matrix A, for a discretization (M, N) = (6,4), in the case of open (a) and cyclic (b) boundary
conditions. The matrix B has the same form as the matrix A, but the terms a, —b, —c, —d are replaced with f,b, ¢, d
[Eq. (3.18)].

We do not need to implement these conditions along ¢ since all of the cell thickness is considered in the
simulations. The structure of the matrix is reported in Fig. 3.2b.

In the Appendix B we report the matlab code issued from our modeling. The function nematicon.m
(Sect. B.1) is where all the parameters and the variables are defined, while Propagation_Crank_Nich.m (Sect. B.2)
describes the soliton propagation. The function that writes the matrices A and B is reported in Sect. B.5, Alg. B.1.

When reporting the nematicon propagation, we will transform the frame of reference back to £gZ with
Eq. (3.1) and we will unfold the soliton path in order to avoid discontinuities.

3.1.2 Reorientation equation

Now we have to take into account the fact that the LC is reoriented by the light propagating inside the medium.
At equilibrium, the electric field of the incoming light counterbalances the restoring elastic forces of L.Cs. In
the one-constant approximation and for the optical field in the Z direction, the equation that describes the
equilibrium state is Eq. (2.97), which is reproduced here for clarity
0%0  9%0 . 2

K [8&:24—6@2} +§eosm2(9—5(0)) Ne|&]” =0, (3.24)
where § = 6 (7). Since the transverse Laplacian is not affected by the change of coordinates, it is possible to
keep the coordinate system Z3Z. The equation, dicretized with Eq. (3.8) and Eq. (3.11), becomes

K
gz O =205+ 051) + A (Or,j+1 = 205, + 0 j1)
linear term
1 2 .
+§€0A6 ’8/&)4," sin 2 (9/3,]' — 5;5’(/'((9/2”(/)) =0. (3.25)

nonlinear term

Using the same change of index of Eq. (3.14), we can write the equation in matrix notation
ﬁLé + FNL (é) =0, (3.26)

where ﬁLé is the linear contribution and Fiy. (@) is the nonlinear one.
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To solve this equation, the term on the left has to be minimized. The standard way to do that is the Newton-
Raphson optimization method. The complete theory of the method is reported in [121, Ch. 9.4], here only the
most important parts are reported. A general function F'(g) of type

F,(91.--9¢-.-91) =0, g=1,..Q (3.27)

can be written as a Taylor’s series

L
F,(g+ Ag) = Z< )Agf +0 (Lg%, (3.28)
(=
Tyt
where J, is the element (¢, () of the Jacobian matrix J. In matrix notation it becomes

Fg+A07)=F (@G +JAG+0 (A7) (3.29)

Starting from a generic point g, we want to find the variation Ag so that [121, Ch. 9.4]

F(g+ Ag)=0. (3.30)
From Eq. (3.29) and Eq. (3.30) ~
JAg=—F(g) (3.31)
and
Ag=—J 'F (). (3.32)

Starting from an initial guess g,;q of the parameters, this last equation gives the correction Ag to add to the
parameter g in order to satisfy Eq. (3.30)
Gnew = Gold + 2. (3.33)
In our case o L
F(0) = FL.O0 + FniL(0) (3.34)
and the Jacobian is
aF 0 <F:’L9 + FNL(é))

/= 00 00

= F}, + diag <EOA5 &% cos2 (0 — 5(0)) ( - ag(@))) . (3.35)

where the operator diag(g) produces a square diagonal matrix where the elements of the vector g are on the
diagonal. The elements that compose the derivative of §(6) are

65(0)L’12J 0 < (5:):,2(01',11&) )> 1 (aezz (ein&)/gzz(e{m(’))
= t e e = = 3.36
aeimﬂ aeim(’ atan €zz (91',11&) 1 + (Ezz( ind) ) 2 80{12& ( )

€zz\Vind

B 1 Ne (C082 0;ps — Sin Qm&) N (Aesin 6,y cos Hi,zdz)Q (337)
14 (6312(9[”(1) ) 2 (eL + Aecos? 011,24)2 (e1 + A€ cos? Gi,z‘g)z '
Ezz (Oinuf)
B ANe ((Ae + 22 ) cos (20;,9) + De) (3.36)
A%+ Ac (Ne + 22 ) cos (20i9) + 26 Ne + 262 '
where Eq. (2.84) has been used for the definition of §(6). The variation of f is
NG =] (Ff+ Fi(0)). (3.39)

This correction is added to the angle  and a new A is calculated in the next iteration. This iterative process
is followed until the correction is smaller than a certain value (0.5 - 10713 in our case), chosen in such a way
that a larger accuracy would not change significantly the solution.
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Boundary conditions

The boundary condition for the angle # can be separated into two regions, along the glass plates of the LC cell
and along the thickness of the cell.

Along the thickness of the cell (£ = 1 and £ = M)), cyclic boundary conditions are adopted. Indeed,
since cyclic boundary conditions are implemented along the axis 2 for the propagation equation, a continuum
behavior is needed along that direction also for the angle 6. The equations for the discretization of the linear
part of Eq. (3.25) are

A=1 = —_— (92,/ — 291’]' + HM”/) 0, (340)

K LK
> i
, K K

h=M = —;gww—zwm+ﬂMqﬂy+ZP.”:o. (3.41)

A
A
Along the glass plates (j = 1 and j = N), the orientation of the molecules is assumed to be fixed by
the rubbing direction (64 ; = 6p). To model this behavior, the condition A# = 0 is imposed for these points
(Alg. B.6). )
In the simulation program, the optimization of 6 is done through the matlab function theta_opt.m (Alg. B.3),
where the linear and nonlinear part are discretized separately (respectively Alg. B.5 and Alg. B.6).

3.2 Numerical results

In this section the numerical results, obtained with the model explained until this point, are reported.

The system is a standard LC cell (75 pm thickness, planar alignment, rubbing at 6y = 45° with respect to the
entrance window), filled with E7. The elastic constant K in the one-constant approximation is taken as 12 pIN.
The laser beam is injected with the optical fiber described in Sect. 2.4.2 and the electric field profile is assumed
to be gaussian

2 2
tﬂ(T):ujeXp<—:2—%z>, (3.42)
Oz wa
where the radius wg (= woz; = woy) is 3.7 um at the wavelength 1064 nm. The phase front is assumed to be
planar at the exit of the fiber.
For the simulations, we adopt a window of 55 pmx75 pm in the Zg plane. The discretization is M =155
points along & and N=211 points along ¢, with Az=Ay=355 nm.
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(coord. ch.)
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Figure 3.3: Nematicon trajectories for different step-sizes, before (orange, green and blue) and after (black and grey) the
change of coordinate. The soliton power is 3.7 mW.
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3.2.1 Importance of the frame of reference

We start by reporting on the importance of the moving frame of reference of Eq. (3.1).

The profile in the ZZ plane (obtained by integrating the intensity of the beam along the ¢ axis) is reported in
Fig. 3.3 for different step-sizes, and for the cases before (orange, green and blue curves) and after (black and gray
curves) the change of variables of Eq. (3.1). The power of the beam is high enough to observe a soliton behavior,
with light confinement along the propagation. However, it is possible to see that, before the change of variables,
the large numerical error causes a curved propagation path for the nematicon. Passing from Az =900 nm to
Az =90 nm the bending is decreased, but the computation time is increased from 1 hour to 8 hours (for a
propagation length of 3.6 mm).

When adopting a system of frame shifting with the walk-off [Eq. (3.1)], the propagation path is straight and
corresponds to the theoretical walk-off. This is the expected behavior for a soliton propagation in a medium
without losses, as was assumed here above. The intensity of the beam is constant along the propagation. The
LC reorientation and therefore the walk-off are constant too.

Using a step-size of the same order of magnitude as the wavelength (900 nm) or half of it (450 nm) gives a
difference for the output position that is less than a um after 3.6 mm of propagation. The computation time is,
however, doubled. For these reasons, in the following, we use a step-size of 900 nm in the Z direction.

3.2.2 LCreorientation, beam profile and walk-off

In Fig. 3.4 we report the spatial distribution for the angle  in a plane orthogonal to the light propagation (plane
Z7). The LC is reoriented by the electric field of the optical beam, increasing the value of 6 in the center of
the section. The reorientation extends over a distance much larger than the beam size (Fig. 3.5), due to the
nonlocality of the LCs. The reorientation peak has no radial symmetry because along 3 there are the boundary
conditions given by the glass plates (the director is pinned at §y=45°), while along & there are no constraints.

In Fig. 3.3 it is possible to see that the beam profile is not constant along the propagation, but it is continuously
focusing and defocusing with a periodicity that depends on the nematicon power, similar to the breathing
behavior of high order solitons [44, 109].

Ay — 56
56
54 154
52
1 52
50
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FIGURE 3.4: Spatial distribution of the angle 6 on the plane Z¢ (at 2=0).
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FIGURE 3.5: Intensity profile of the laser beam on the plane &g (at 2=0).
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FIGURE 3.6: Spatial evolution of the walk-off angle § in a plane Z§ (at 2=0).

From the angle @ it is possible to calculate the spatial evolution of the walk-off through Eq. (2.54). The result
is reported in Fig. 3.6. Since the beam size is much smaller than the region where the LC is reoriented, the beam
is expected to have a walk-off close to the minimum value reached at the center of the beam.
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3.3 Correlated thermal noise in L.Cs

As it was introduced in the first Chapter, nematic LCs are characterized by a mean orientation of the LC molecules,
called the director and represented by the unitary vector 4. The director is a statistical concept: it takes into
account volumes that are much larger than the molecular size and that includes a significant number of molecules.
If the molecules were not interacting (and in the absence of structured external stimuli), this local average would
be constant all over the sample and it would be enough to characterize the system macroscopically.

However, LC molecules interact with one another due to the elastic forces that connect them. This means
that a perturbation in one point will cause a perturbation at a distance much larger than the size of the molecule.
The average over a volume much larger than a molecule but smaller than the macroscopic sample, as it is the
case for the vector n, can therefore vary in space due to these long range fluctuations.

It is convenient to define the director as composed of two contributions?

ﬁ(fd) =1+ Aﬁ(fd), (3.43)

where 0y is the macroscopic average of the director, An(7y) = nz,(7q4)%q + ng,(7q)Jq defines the director
fluctuations and 7y = (&4, Yq24) designates the frame of reference of the director, where 24 is parallel to f.
The macroscopic average of these fluctuations is zero.

3.3.1 Director correlation

As presented by de Gennes in [28, Ch3.4] and [111], the director fluctuations can be evaluated in terms of
correlation between two points at a distance R. Here, we report the main points of de Gennes’ theory before
introducing our contribution to the model in Sect. 3.3.2.

The free energy of the system is composed of

F =50+ Fa+ Fdiel, (3.44)

where F is a constant contribution independent of (nz,(74), ng,(7q)), Fq is the distortion energy and Fy;e; is
the contribution due to the dielectric coupling with an external electric field F,;. These last two terms can be
evaluated to the second order in terms of the variation of the director. The elastic contribution #; takes the form

1 On; on; \ 2 On; on; \ 2 ong \ 2 on; \ 2
_ K Td Yd K Td Yad K Td Yd = 4
Ja 2/{ 1<a§;d+agd>+ 2(8@1 a:z»d>+ 3[<82d>+<82d> dra (345)

and F ;e

1
Fdiet = 550 / Ae |Ee:ct|2 (n?;d + n%d) . (346)

The Fourier coefficients are defined as
Az, (Q) = /nid (fd)eiq'mdfd, (3.47)
where the components of  are g3 = 27/ with § = x4, yq, 4. The Fourier transforms of the fluctuations are

1 ~ L L L
F =5+ 20 {Kl 13, (7)qz, + ngd(Q)Qg}d\Q + K> |fiz,(q)qy — ng(Q)Q:ed\Q
q

+ (Ko, + c0tse | Eunl?) [Iis (@) + I85,@)] } (3.48)
where (2 is the sample volume. It is possible to find a new coordinate system (fi; (g), fiz (¢)) where Eq. (3.48)
is diagonalized in the form [28, (pp.141-150)]
1

_ « ()2 2 2 2
T =%+ 55 g LZM 5, (@) (Kaa? + Kl + 200 [Ben?) (3.49)

*Note that in this work we analyze only the spatial behavior of the director, and not its temporal dynamics.
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where ¢ = ¢, and g Lgj. Since the formulation is now diagonalized, the equipartition theorem can be applied
to each degree of freedom

1 1
<2!2 18, (9)]° (Kgqﬁ + K,q1 +eole |Eext|2)> = kel 1=1,2 (3.50)

and, in the one-constant approximation for LC, we have

<]ﬁb(q)|2> _ K(fﬁi-?) L=1,2 (3.51)

where £ = K/ (EOAE |Eezt|2>

Since the average of the fluctuations in the coordinate system Z 49424 is zero, the correlation of n; between
two different points is (ns,(74,1)ns,(74,2)). Developing in series the components

ng,(Fa) = 271 s, () €77, (3.52)
q

it is possible to write

(3, (Ta,1)nz,(7a2)) = % << n3,(q) eiq'T‘“) > i, (q) e T T2 >
q
= > (8,9, (7)) @ Ta2"TTar), (3.53)
Since the Fourier coefficient n;,(7) and 11;,(¢’) are orthogonal if ¢ # ¢/, the last equation takes the form
(i, (Fa1) e, (Taz2)) = ga Z <!nxd > (ig-R) (3.54)

where R = Tq2 — Tq,1 is the distance between the two pomts Since the norm of the fluctuation vector is
conserved in the change of variables, i.e. |fiz,(7)|*+|fg,(7)|]> = |81(q)|*+|82(7)|? and the average fluctuations

on the two axis are the same, i.e. < n; ((j)\2> = <|ngd( 7) >, it is possible to write

(05, (a1 )0, (7a ) Q2Z<ﬁ P+ laa(@)?) €7 (355)

and then, with Eq. (3.51)

(g (Ta,1)my (Ta2)) = Z = 5 el (3.56)
7 K (q?
Going from the sum to the integral (3, — f qu) we have finally
_ _ kT 1 1 iR -
(034(Fa,1)m3,(Ta2)) = = (2ﬂ)3/q2+§—26 dg. (3.57)

The lower and the upper bounds of the integral are respectively zero and a certain ¢ = 27/a, where a is
the smallest size below which the continuum theory is no longer valid.

Equation (3.57) describes the covariance matrix that characterizes the nematic director fluctuations. The
off-diagonal elements of the matrix are obtained from Eq. (3.57) in the limit R > a

kT
SBE /g

KR (3.58)

(ng,(7q1)nz(Ta2)) =
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Ficure 3.7: (a) Evolution of the correlation over a grid size, according to Eq. (3.58) and Eq. (3.59); (b) evolution of the
correlation over a scale much larger than the grid size and in the case where the diagonal is defined according to Eq. (3.63).

The correlation expressed by Eq. (3.58) depends, through the coefficient &, on the applied electric field and the
distance R between the two considered points. In the absence of the electric field, the correlation is considered as
long range since it is slowly decreasing (o< 1/R). Indeed, in that case, it is not possible to define a characteristic
distance above which the fluctuations decrease fast enough to be considered negligible [28, Ch.3]. The effect of
an electric field is to exponentially dump the fluctuations, which then take place over the coherence length &.
The diagonal of the correlation matrix (the variance) cannot be calculated with Eq. (3.58), since the coefficient
diverges for R — 0. A method to estimate the variance is to truncate the integral at ¢,,qz, obtaining [28, p.148]

k‘BT s
2N _
Iljcd> — 27T2F,' <Qmax 25) (359)

AS @maz = 27/a, the proper choice of a is crucial in order to evaluate the amplitude of the fluctuations and it
is usually taken to be of the order of magnitude of the intermolecular [28, 113] or intermicellar [112] distance (a
few nm), values below which the continuum theory of LCs is no longer valid.

3.3.2 Director correlation on the discretization grid

In our case the correlation function is not a continuous function, but the values of R in Eq. (3.57) are limited