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The present work introduces a novel approach for obtaining reduced chemistry representations
of large kinetic mechanisms in strong non-equilibrium conditions. The need for accurate reduced-
order models arises from the need to compress large ab initio quantum chemistry databases for
their use in fluid codes. The method presented in this paper builds on the known physics-based
strategies and proposes a new approach based on the combination of a simple coarse grain model
with Principal Component Analysis (PCA). The internal energy levels of the chemical species are
regrouped in distinct energy groups with a uniform lumping technique. Following the philosophy of
machine learning, PCA is applied on the training data provided by the coarse grain model to find
an optimally reduced representation of the full kinetic mechanism. Compared to recently published
complex lumping strategies, no expert judgment is required before the application of PCA. In this
work we will demonstrate the benefits of the combined approach, stressing its simplicity, reliability
and accuracy. The technique is demonstrated by reducing the complex quantum N2(1Σ+

g )-N(4Su)
database for studying molecular dissociation and excitation in strong non-equilibrium. Starting
from detailed kinetics, an accurate reduced model is developed and used to study non-equilibrium
properties of the N2(1Σ+

g )-N(4Su) system in shock relaxation simulations.

I. INTRODUCTION

Detailed kinetic models are a prerequisite to conduct
accurate predictive simulations of non-equilibrium
plasma in various high-tech applications [1]. Some
examples are the prediction of the material recession
of ablative heat shields during atmospheric re-entry
[2, 3], the study of non-equilibrium plasma to model
the ignition time in plasma assisted combustion appli-
cations [4–6], or the design of ion thrusters for electric
propulsion [7]. All these applications unite the chemistry
and engineering communities to couple computational
chemistry to computational fluid dynamics (CFD) in
order to conduct high-fidelity predictions.
Two main categories of models have been developed to
describe the physico-chemical state of non-equilibrium
plasma: collisional and multi-temperature models.
Multi-temperature models (MT) are based on experi-
mental data and distribute the energy levels of a species
according to their most probable distribution at equi-
librium, the Maxwell-Boltzmann distribution. All the
populations follow an equilibrium distribution at their
own temperature, which can be the translational, vibra-
tional, rotational or electronic temperature depending on
the excited degrees of freedom of the species. Although
these models are simple and computationally efficient,
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they are only valid for the equilibrium conditions
determined by the experimental setup. For atmospheric
entry flows, MT models have been investigated in detail
by Park for Earth and the Martian atmosphere [13, 14].
He showed their applicability is limited as they are only
correct for Local Thermodynamic Equilibrium (LTE)
assumptions where the free-stream velocity remains
low and the pressure high [15]. In order to extend the
validity of the physico-chemical models and improve
their accuracy, ab initio collisional or State-To-State
(STS) models have been developed. Collisional models
require a deep knowledge of the internal structure of the
system. Accurate kinetic data must be collected for each
excited level under the form of ab initio cross-sections or
rate coefficients for all elementary processes which are
obtained after complex quantum calculations [10–12].
In STS models, all excited levels of an atom or molecule
are included and solved as pseudo-species during the
calculation [8, 9]. Non-equilibrium effects, i.e. deviations
of the inner energy levels from the equilibrium Maxwell-
Boltzmann distribution, are automatically accounted for
as the level of detail is conserved. As the complexity of
the model increases for a higher accuracy, STS models
require significantly more computational power than
MT models. This may lead to prohibitively expensive
calculations in the case of 3D flow simulations [16].

Different strategies can be considered to reduce
the complexity of detailed kinetic mechanisms while
conserving a high level of information and precision.
One possible approach consists in projecting the system
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on a reduced base of variables according to a time-scale
based classification. In the Rate-Controlled Constrained
Equilibrium (RCCE) theory introduced by Keck [17, 18],
the fast kinetics is projected on the slow varying base
of the system providing a reduced representation of the
dynamics. This reduced base is obtained by setting
constraints, where the fast reactions are assumed to be
at equilibrium [19–21]. A possible alternative to the
aforementioned methods is provided by the lumping
or binning techniques. In combustion, those lumping
techniques propose to regroup species with similar
compositions and functionality. These new recombined
species are solved as one identity throughout the simu-
lation [22, 23]. In other cases where the internal energy
levels of a species are excited, the mechanism reduction
is realized using a coarse grain model which lumps the
inner levels into bins (where a distribution for the levels
is prescribed). As an example, coarse grain models
have been developed to reduce the electronic excitation
and ionization mechanism in air (abba model [24–26]).
Le et al. [39] have focused on the reduction of atomic
systems and were able to capture the main features of
macroscopic ionization of hydrogen using only 2 energy
bins. Guy et al. [40] have reduced the 68 vibrational
levels of N2(1Σ+

g ) into 3 bins to study non-equilibrium
phenomena in nitrogen nozzle flows. The vibrational
kinetics of CO2 has been reduced by using an adaptive
binning scheme by Sahai et al.[41] maximizing the
entropy in each bin. As a follow-up on this method,
they reduced the NASA database for N2(1Σ+

g )-N(4Su)
combining a spectral clustering algorithm with the
maximum entropy principle reducing the 9391 species
in the mechanism to 15-20 bins [42]. Multiple research
has been published on the N2(1Σ+

g )-N(4Su) database
developed by the Computational Quantum Chemistry
Group at NASA Ames Research Center [31–33] to
gain insight on molecular dissociation and internal
energy excitation in hypersonic flows [34–36]. The
first coarse grain models for the NASA database have
been proposed by Magin, reducing the rovibrational
levels into distinct energy bins [27]. Using the energy
binning approach, the results obtained for flows across
normal shock waves, within nozzles and along the
stagnation-line of blunt bodies have shown that the
proposed coarse-grained models can correctly reproduce
the dynamics of N2(1Σ+

g ) dissociation by using only
10-20 energy bins [27, 37, 38]. Alternative methods have
been proposed by Yen [28, 29] and Zhu [30]. A long
lasting literature has been published on the development
and improvement of coarse grain models for reducing
the large N2(1Σ+

g )-N(4Su) mechanism, using every time
more complex algorithms to cluster the inner levels. In
this paper we will present a novel technique inspired
from machine learning, combining a simple coarse grain
model with Principal Component Analysis.

Principal Component Analysis (PCA) is a statistical
approach for projecting a system on a reduced reference

system identified by the so-called principal components
[43]. The PCA method learns from data as in the
machine learning approaches [44–46]. These principal
components correspond to the directions with the largest
variance in the system. The reduced base is obtained
after solving an eigenvalue problem on the covariance
of the full thermo-chemical state. Over the years, the
method has demonstrated its ability to reduce large
combustion mechanisms as shown by Sutherland and
Parente [47, 48]. Global and local Manifold-Generated
PCA have been derived from the method as shown by
Isaac [49] and Coussement [50]. As a first attempt of
applying the method to plasma flows, Peerenboom [51]
has coupled PCA with non-linear regression to reduce
the vibrational levels of CO2. More recently, PCA has
successfully been applied on a collisional-radiative model
for argon plasma to study non-equilibrium phenomena
in shock relaxation calculations reducing the dimen-
sionality of the system by 90 % [52, 53]. PCA can be
used as a tool to analyze the dynamics of a reacting
system and to retrieve its main variables which can
thereafter be used in a reduced model. Moreover, PCA
has demonstrated it could conserve the level of accuracy
of the original model which is not the case using a coarse
grain model. The method is simple, and doesn’t require
detailed knowledge about the energy levels as is required
using complex lumping strategies. The objective of the
present work is to combine PCA with physical methods
such as the binning techniques providing an optimal
reduced representation of large kinetic mechanisms. We
will demonstrate that the PCA-based reduced model
is more accurate, and offers a valuable alternative to
existing reduction methods based on coarse grain models.

The present paper describes how to combine a sim-
ple coarse grain model with principal component anal-
ysis to optimally reduce large kinetic mechanisms. To
demonstrate the method, the full physical model for
the N2(1Σ+

g )-N(4Su) NASA ARC mechanism will be re-
duced in shock relaxation calculations using re-entry free-
stream settings. The database for the N2(1Σ+

g )-N(4Su)
mixture is presented in Section II together with its coarse
grain model based on a simple uniform binning strategy.
Principal component analysis is described in Section III
and the results are presented in Section IV. The conclu-
sions are summarized in Section V.

II. PHYSICAL MODELING

A. NASA Ames database for the N2(1Σ+
g )-N(4Su)

mechanism

The NASA Ames Research Center (ARC) database
gives accurate state-to-state data for the thermodynam-
ics and kinetics of rovibrational excitation, dissociation
and predissociation of molecular N2 with N [33, 54, 55].
Besides the N2-N interaction, the database also provides
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detailed information for N2-N2 collisions [56, 57]. In
total, 9390 rovibrational energy levels N2(ν, J) are
provided for the electronic ground state of N. The
index ν stands for the vibrational quantum number.
As 61 vibrational levels can be considered when there
is no rotation, this index can vary from 0 to 60. The
rotational quantum number is given by the index J . A
total number of 279 rotational levels are considered for
ν = 0.

Three main reactions have been computed with the
N2(1Σ+

g )-N(4Su) database: collisional dissociation, pre-
dissociation and excitation between all states. In this
work, the pre-dissociation processes have been neglected
only using the following processes,

1. Collisional dissociation of bound states and predis-
sociated states:

N2(i) + N
kdiss
f−−−⇀↽−−−

kdiss
b

N + N + N, (1)

2. Inelastic collisional excitation between all states:

N2(i) + N
kin
f−−⇀↽−−

kin
b

N2(j) + N, (2)

using the convention i = i(ν, J) ordered by increas-
ing energy, with i < j and i, j ∈ {1, ..., 9390}.

State-to-state collision cross-sections have been com-
puted using quasi-classical trajectory (QCT) quantum
calculations to provide rate coefficients for the three dis-
sociation and inelastic collisional processes. The temper-
ature range that was used for these cross-section compu-
tations ranged between 7,500 and 50,000 K. When con-
sidering all exchanges between energy levels, 44 million
processes can be computed. However, only 19 million
non-zero excitation rate coefficients were retained from
the QCT computation. The backward rate coefficients
are computed based on micro-reversibility. The equilib-
rium constants K for dissociation is given by the ratio of
the forward rate coefficient kf and backward rate coeffi-
cient kb,

Kdiss =
kdissf

kdissb

=
[aNQ

t
N (T )]2

aN2(i)Q
t
N2

(T )
exp
−(2EN − EN2(i))

kBT
,

(3)
and for inelastic collisional excitation,

Kin =
kinf
kinb

=
aN2(j)

aN2(i)
exp
−(EN2(j) − EN2(i))

kBT
, (4)

with i < j and i, j ∈ {1, ..., 9390}, a the degeneracy,
Qt the translational partition function, E the energy, T
the temperature and kB the Boltzmann constant. The
degeneracy of the energy levels of N2 depends on the
rotational quantum number J(i) for each level,

aN2(i) = (2J(i) + 1)aNS , (5)

where the nuclear spin degeneracy aNS equals 6 for even
and 3 for odd J(i) respectively. The degeneracy for
single nitrogen aN equals 12 summing the nuclear and
electronic spin contributions. The translational partition
functions Qt

N and Qt
N2

are given as a function of the
translational temperature T,

Qt
j(T ) =

(
2πkBmjT

h2P

)3/2

, (6)

with j ∈ {N,N2}, hP the Planck constant and mk the
mass of species j.

B. Rovibrational collisional model

The NASA ARC database has been used to develop
a detailed rovibrational collisional model [34] to study
molecular dissociation and excitation in nitrogen shocks.
The governing equations are written as Euler equations
in the shock frame and conserve the species continuity,
for both N and all the rovibrational levels of N2. The
total energy of the mixture is conserved with respect to
the translational temperature of the species, which is the
only temperature considered in this model,

∂(ρyNu)

∂x
= ωN, (7)

∂(ρyN2(i)u)

∂x
= ωN2(i), (8)

∂(ρu2 + p)

∂x
= 0, (9)

∂(ρuH)

∂x
= 0, (10)

with i ∈ {1, ..., 9390}.

The thermodynamic properties are obtained by sum-
ming the contributions for all N2 levels together with the
contribution for N, with the number density of the gas:

n = nN + nN2, (11)

and the pressure:

p = nNkBT + nN2kBT. (12)

The thermal energy density is also composed out of
a translational part and the formation contributions of
both N and N2,

ρe(T ) =
3

2
nkBT + nNEN +

9390∑
i=1

niEi, (13)

with nN2 =
∑9390

i=1 nN2(i).

Additional temperatures can be retrieved after post-
processing the data to obtain the internal, vibrational
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and rotational temperatures of the N2 levels. Our tem-
perature of interest is the internal temperature of the
bins, Tint, is obtained by solving [58],

9390∑
i=1

nN2(i)EN2(i) − nN2E
int
N2(Tint) = 0. (14)

C. Coarse grain models

Previous studies have shown that the full RVC model
can be reduced to a simplified model using coarse-grain
models. The objective is to lump the excited levels of the
N2 molecule into several energy bins as demonstrated in
the works of Magin [27], Munafò [37], Torres [59]. Nowa-
days, more sophisticated binning strategies exist based
on maximum entropy principles instead of energy separa-
tion as shown is the work of Sahai [41]. However, we will
focus on the simple binning methods as they are simple
and easy to implement. In the early lumping history, two
models have been developed, which cluster the levels into
simple energy bins : the Boltzmann and the uniform rovi-
brational collisional model, denoted by BRVC and URVC
respectively. Their difference lies in the method used to
average the properties of the energy bins. In the BRVC
model, the properties of each bin are averaged through
the use of an equilibrium Boltzmann distribution func-
tion, similar to the MT models. The population distribu-
tion of each bin has been averaged using this Boltzmann
average at the translational temperature T,

nN2(i)

nk
=

aN2(i)

Qk(T )
exp

(
−∆Ek(i)

kBT

)
, (15)

with nk the population distribution of bin k, and Ek the
energy distribution of the bin:

nk =
∑

N2(i)∈Bk

nN2(i), (16)

Ek = E(1) + ∆Ek. (17)

The energy Ek depends on the energy of the first level in
energy bin k, and the ∆Ek which represents the energy
difference between the level k and this first energy level.
The partition function of the energy bin k, Qk(T ), can
be considered as the bin’s degeneracy and is given by:

Qk(T ) =
∑

N2(i)∈Bk

aN2(i) exp

(
−∆Ek(i)

kBT

)
. (18)

Thermodynamic properties for the BRVC model con-
tain an extra term because of the temperature depen-
dence of the Boltzmann distribution in the definition of
the specific heats and energies:

ρe(T ) =
3

2
nkBT + nNEN +

∑
N2(i)∈Bk

nN2(i)EN2(i)

+
∑

N2(i)∈Bk

nN2(i)kBT
2 ∂ lnQk(T )

∂T
, (19)

with the specific heats,

cV,N (T ) =
3

2

kB
mN

, (20)

cV,k(T ) =
3

2

kB
mN2

+
∂

∂T

[
kBT

2

mN2

∂ lnQk(T )

∂T

]
. (21)

The difficulty in these lumping methods lies in the
choice of the correct number of bins to represent the
detailed NASA ARC database in the full RVC model.
After a bin sensitivity analysis, Munafò [60] defined the
optimal number of Boltzmann bins to use to represent
the detailed RVC model. He showed that both the trans-
lational and internal temperature are bin dependent.
The more bins are used, the higher the translational
temperature becomes. Starting from 10 bins, both
temperatures converge to the exact equilibrium value.
Starting from 100 bins, the temperature follows its
converged solution. A good approximation of the N
mole fraction can already be obtained using 10 bins. To
conclude on the BRVC bins, there can be stated a mini-
mum of 10 bins is necessary to be able to well represent
the dissociation rate of nitrogen. Ideally, 100 bins are
needed to reconstruct a correct post-shock temperature
field which converges to the exact equilibrium solution.
Unfortunately, using 100 bins is still a high amount of
variables to use within a 2D code for solving a re-entry
problem.

When considering the uniform formulation for the
URVC bins, the energy of a bin, Ek is averaged according
to the degeneracy of each corresponding excited state i
in the bin Bk,

Ek =
1

ak

∑
N2(i)∈Bk

aN2(i)EN2(i). (22)

The same kind of relation using the degeneracy exist
when expressing the population of every bin,

nN2(i)

nk
=
aN2(i)

ak
, (23)

with the degeneracy, energy and population of bin k ex-
pressed respectively as,

ak =
∑

N2(i)∈Bk

aN2(i), (24)

Ek =
∑

N2(i)∈Bk

EN2(i). (25)

nk =
∑

N2(i)∈Bk

nN2(i). (26)

Calculating the thermodynamic properties for the
URVC model is straight forward as each bin can be
treated as a separate species with its own characteris-
tics; each bin has its own energy level and degeneracy
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according to the previously described relations. The con-
tributions of each bin are summed together to evaluate
the total thermodynamic properties of molecular nitro-
gen the mixture. The energy of N2 can be represented
as the sum of the energies over the uniform bins k in the
expression for the gas thermal energy density:

ρe(T ) =
3

2
nkBT + nNEN +

∑
N2(i)∈Bk

nN2(i)EN2(i). (27)

When considering Boltzmann bins, an additional
temperature-dependent term should be added because of
the expression for the partition function. For URVC bins,
Qk = ak, which simplifies the determination of the ther-
modynamic properties significantly. The specific heats
are also free from a temperature-dependent term and are
given by the relations:

cV,N (T ) =
3

2

kB
mN

, (28)

cV,k(T ) =
3

2

kB
mN2

. (29)

with k ∈ Bk.

A bin sensitivity study has also been performed for
the URVC bins by Munafò [60]. In this investigation,
the minimal number of bins has been determined to
represent the full RVC solution by comparing shock
tube simulations. For a describing the temperature
behavior within 1% accuracy, 100 bins are needed. For
determining an accurate dissociation rate, allowing an
error on the temperatures, the number of bins can be
decreased to 10. The translational temperature is not
bin-dependent when using the URVC bins. However,
this is the case when using the BRVC model.

Unfortunately, using the URVC model as it is leads
to wrong equilibrium calculations. By averaging the
populations uniformly according to their degeneracy,
important non-equilibrium properties of the flow are
being neglected during the simulation. As the thermo-
dynamics has been altered, a correct equilibrium state
cannot be retrieved using the URVC model as it is. To
solve this problem, a correct equilibrium can be forced
by imposing the forward and backward reaction rate by
micro-reversibility.

As mentioned previously, an internal temperature for
the energy bins can be extracted after post-processing
the solution for the flow field. By expressing the ratio
of the sum of the population in each bin over the total
population of N2, the following expression for the internal
temperature Tint, can be retrieved,∑

nN2(i)EN2(i)

nN2

=

∑
Ekak exp(−Ek/kBTint)∑
ak exp(−Ek/kBTint)

(30)
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FIG. 1: Temperature profiles for the URVC model using
100 bins after a normal shock wave. Free-stream

velocity: 10 km/s. Thick lines translational
temperature T, thin lines internal temperature Tint.

TABLE I: Free-stream conditions for the RVC model
shock relaxation simulations.

T [K] 300
p [Pa] 6.67, 13.3, 44.4
p [torr] 0.05, 0.1, 0.33
v [km/s] 10

Figure 1 represents the temperature profiles when
using the URVC model with 100 bins. The thick lines
stand for the translational temperature of the species,
and the thin lines the internal one. The free-stream
pressure equals 10 km/s and the pressure ranges from
6.67 to 44.4 Pa as shown in Table I. When increasing the
pressure, the number of collisions between the species
increases, which results in a shorter relaxation time.
All internal temperatures reach a peak before melting
with the translational one and converging to thermal
equilibrium. This peak in internal temperature reaches
values up to 25,000 K for a free-stream velocity of 10
km/s. The initial mass fraction for single nitrogen has
been set to 2.8 % to enhance the dissociation in the
beginning of the simulation. The 100 bins case will be
used as a benchmark for providing the training sample
in the PCA reduction.

III. PRINCIPAL COMPONENT ANALYSIS FOR
CHEMISTRY REDUCTION

Principal component analysis offers a way to reduce
the dimensionality of the reacting manifold by project-
ing the system on a truncated base made up out of
its principal components. These principal components
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are uncorrelated and retain most of the variance of the
system. The computational cost decreases considerably
as only a smaller number of variables, the principal
components, are taken into account to solve the set of
governing equations. One can choose to work in the
space given by the eigenvectors which correspond to
the principal components: these are called scores and
relate to the PCA-score method. The CFD code has to
be modified accordingly to allow a change of variables
from the conserved ones, such as mass fractions and
temperatures, to the scores. Another method consists
in relating the chosen principal components to variables
expressed in the original space of mass fractions. This
technique has lead to development of MG-PCA, which
has already been discussed and applied to argon plasma
in previous work by the authors [52].

This section of the paper describes the PCA-score tech-
nique in more detail and shows how it can be coupled to
a rotation method, such as the VARIMAX method, for
retrieving a more stable formulation of the source terms
and increasing the robustness of the code.

A. PCA-scores

PCA starts with a training data set containing the
value of all conserved variables for every observation.
These conserved variables correspond to mass frac-
tions, temperatures and the velocity. However, previous
work[61] has shown the reduction works best when using
only mass fractions when carrying out PCA. In this par-
ticular case, the mass fractions are retrieved at different
distances from the shock front after a shock relaxation
simulation. The sample data is collected in matrix Y,
which has the size [n×Q] with n the number of observa-
tions or points in space and Q the number of variables.
For the N-N2 system, Q=9,391 as this number of species
is considered within the model,

Y =

y11 . . . y1Q
...

. . .
...

yn1 . . . ynQ

 . (31)

Some pre-processing techniques are applied to prepare
the data for PCA. After centering the variables, they
are scaled by dividing them by a scaling factor which is
determined by a suitable scaling technique. Choosing a
good scaling method is essential as it can affect the size
and the accuracy of the reconstruction of the manifold
after PCA reduction. An overview of different scaling
techniques (variable stability, pareto, max, ...) are given
in the work of Parente and Sutherland[62]. In previous
work on the reduction of collisional-radiative chemistry,
Pareto scaling appeared to be the most convenient
method.

To correlate information of this system in terms
of variance, an eigenvalue problem is solved on the

covariance matrix, given by S, to obtain the eigenvalues,
L, and eigenvectors, A (Eq. 32).

S =
1

n− 1
YTY = ALAT (32)

As our main interest lies in the eigenvectors containing
most of the variance of the system, we only select those
with the highest eigenvalue. The matrix of eigenvectors
can be truncated to a matrix Aq containing only the
q < Ns eigenvectors with the highest variance.

Zq = YAq (33)

Ỹq = ZqA
T
q (34)

When projecting the original data set on this trun-
cated matrix, one obtains the principal components
or scores which correspond to the most important
directions of the reduced system. The scores are a linear
combination of the original species as they contain each
variable weighted by a PCA-defined loading. When
inverting relation 33 one can find back the original
sample as shown in Eq.34.

The scores do not relate to the original space given by
the conserved variables which are in our case the mass
fractions, but do relate to the eigenvectors of the vari-
ables. The governing equations must be solved in this
space and should accordingly be rewritten in the CFD
code. More generally, if a set of transport equations ex-
ists under the following conservative form:

∂

∂t
ρy +∇ · (ρu⊗ y) = ωy (35)

than it can be rewritten in the score space as follows:

∂

∂t
ρz +∇ · (ρu⊗ z) = ωz (36)

In these relations, y is a mass fraction for a single species
and z a single principal component, which are each indi-
vidual realizations of the vectors Y and Z respectively.
The species source terms should also be transformed to
the space of principal components by using the truncated
matrix of eigenvectors Aq :

ωZ = ωY Aq (37)

IV. RESULTS

The one-dimensional SHOCKING code, developed by
Munafò[60] has been used to simulate the relaxation of
ionizing shocks in the N-N2 mixture with the Score-PCA
based reduced model. Applying PCA on the full mecha-
nism containing almost 10000 species remains expensive.
The PCA model of the full mechanism retained around
100 scores, which is still too expensive for 2D or 3Dl
calculations. The idea is to start from a coarse grain
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model given by the BRVC or URVC formulation and
apply Score-PCA on the model to further reduce the
cost of the simulation. The data from the coarse grain
models using 100 bins for the N2 states has been used as
a starting point for Score-PCA. Using 100 bins ensures
reproducing detailed information, such as post-shock
temperatures, dissociation rates and populations, with
high accuracy.

First the BRVC model will reduced. Next, Score-PCA
will be applied on the URVC binning model. The goal
is to reduce the 101 variables (100 bins of N2 + N) to
the smallest number possible while conserving detailed
chemistry features. To assess if a reduced model is accu-
rate, we will compare the post-shock temperature, disso-
ciation rate and populations. The principal components
will thereafter be analyzed to investigate how much of the
original system is expressed within the reduced model.

A. Score-PCA on the BRVC model

The BRVC model already provides a large reduction
of the original RVC mechanism as shown in the work of
Munafó [60]. As a reminder of his work, the 9391 species
were reduced to a model using 100 bins for a correct
temperature estimation. When allowing an error on
the translational temperature, 10 bins are sufficient to
predict the molar mass fraction of dissociated nitrogen.
Ideally, we would like to find a reduced model which
reproduces a correct temperature and nitrogen dissocia-
tion rate with less than 100 variables.

The solution for 100 bins has been used as a training
data set for the Score-PCA method, in order to start
from a model which was closer to the full RVC solution.
The data for the mass fractions of the bins has been
centered and scaled according to the PARETO scaling
method [62].

Figure 2b shows the dissociation rate of N and the
post-shock temperature respectively for a reduced BRVC
model based on 6 scores against a URVC reduction
with 5 scores. This was the best BRVC reduction that
could be obtained as the solution diverges when using
only 5 scores. An important model reduction has been
obtained as 6 variables have been retained out of the
100 bins. Expressing this result as a global reduction,
we can state the NASA ARC database has been reduced
by more than 99 %.

Our interest lies in using the cheapest binning method
to reduce the total computational cost of the simulation.
The BRVC lumping is a little more expensive and compli-
cated as its uniform counterpart as the properties should
be averaged using an equilibrium distribution in each
bin. We have therefore decided to investigate the URVC
model in detail for the different free-stream parameters.

TABLE II: Testing conditions for assessing the reduced
model. Free stream conditions are given by the index 1.

Calculated post-shock conditions by the index 2.

T1 [K] v1 [km/s] p1 [Pa] T2 [K] v2 [km/s] p2 [Pa]
300 10 44.4 62,547 2.5 36,861
300 10 13.3 62,547 2.5 11,041
300 10 6.67 62,547 2.5 5,537

The URVC model using the non-uniform energy grid of
Torres [59] has shown to provide the best results with
respect to coarse grain models. In the next paragraph,
we will show how this coarse grain binning model can be
combined with Score-PCA to further reduce the model.

B. Score-PCA on the URVC model

Also in this case, the scores have been retrieved start-
ing from a full data field containing the mass fractions
for 100 bins. Centering and PARETO scaling have been
applied to the training data set. More severe free-stream
conditions, reaching lower pressures have been tested
with the URVC bins as shown in Table II. These low
pressure and high speed cases are representative of
re-entry missions. Re-entry velocities of 10 km/s are
typical for lunar returns.

The results for the reduced model against the original
RVC solution can be visualized in Figure 2b for the 44.4
Pa case. The dissociation rate of N and the post-shock
temperatures have been plotted for the reduced models
based on 5 scores against the full solution. Small dis-
crepancies of the order of some percent can be observed
for the 5 scores model in the representation for the N
mole fraction. Figure 3b shows similar results for the
13.3 Pa case. Also for this intermediate pressure case,
the model can be represented by 5 scores allowing 1
% error on the mass fraction of single nitrogen. The
results for the third test case with a pressure of 6.67
Pa, can be visualize in Figure 4b. The model can be
represented by 6 sores allowing a little error on the both
the temperatures and the dissociation rate for N.

To evaluate the model, the relative error has been
calculated between the full RVC model and its reduced
representation with 6 scores in the re-entry conditions of
6.67 Pa and 10 km/s. As a reference case, the error of
a URVC(20) model has been compared with PCA and
the full case. Figures 6a and 6b represent the error on
the translational and internal temperature respectively,
which lies around 3.5 % for the score model. For the
URVC(20) model the error on the internal temperature
Tint lies significantly higher : 43 %. The error on the
molar fraction of single nitrogen is shown in Figure 6c
and has a value of 10 % for the score model and 17%
for the URVC(20) case. The relative error of the PCA
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FIG. 2: Comparison between the RVC solution and PC-scores. Pre-shock conditions: u1= 10 km/s and p1= 44.4
Pa. Full lines RVC, lines with circles 6 scores BRVC, lines with triangles 5 scores URVC.
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FIG. 3: Comparison between the RVC solution and PC-scores. Pre-shock conditions: u1= 10 km/s and p1= 13.33
Pa. Full lines RVC, lines with triangles 5 scores URVC.

scores model is significantly lower than the one obtained
using the URVC(20) representation. Comparing these
results with the error of advanced binning techniques
as presented in the works of Sahai et al. [42], we can
conclude PCA performs better in terms of accuracy for
the test case investigated here.

To finalize the evaluation of the reduced model, the
populations are visualized for the most severe case using
the lowest pressure in a Boltzmann plot in Figure 5a.
The 6-scores model has been used to retrieve the popula-
tions of the 100 URVC bins. This is possible as the scores
or principal components are a linear combination of the
original variables. We are able to retrieve the same detail
on the distribution function as the 100 bins at a reduced

cost with respect to alternative methods such as the spec-
tral methods [42] as can be seen in Figure 5b where the
populations have been plotted for the URVC(10) model.
This unique property of PCA stresses its suitability for
reducing large plasma mechanisms.

V. CONCLUSION

The detailed rovibrational collisional model for the
large N2(1Σ+

g )-N(4Su) NASA ARC database has been
reduced using a novel technique combining two reduction
methods. A simple and cheap lumping technique has
been applied condensing the 9390 rovibrational states of
N2 into 100 energy bins, conserving detailed information.
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FIG. 4: Comparison between the RVC solution and PC-scores. Pre-shock conditions: u1= 10 km/s and p1= 6.67
Pa. Full lines RVC, lines with triangles 6 scores URVC.
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FIG. 5: Population distribution against their energy in a Boltzmann plot for 6.67 Pa and 10 km/s. Small blue dots:
x= 4× 10−4 m , big red dots: x = 5× 10−2 m. Full RVC solution in Figure (a).

These 100 energy bins have been used in a shock relax-
ation code to provide a training sample for carrying out
PCA. Score-PCA has thereafter been applied reducing
these 100 bins to 6 scores for the BRVC model. Applying
the method on the URVC model lead to a reduction
using 5 scores for the 13.3 and 44.4 Pa case. For the
low pressure case of 6.67 Pa, 6 scores were retained
from the 100 variables. Score-PCA reduces the coarse
grain model with 95%, decreasing the complexity of the
mechanism significantly. Globally, the 9391 species in
the N2(1Σ+

g )-N(4Su) mechanism have been reduced to
6 new variables leading to an impressive compression
of the mechanism. The Score-PCA technique allows
to retrieve detailed chemistry features accurately, such
as post-shock temperatures, dissociation rates and the

populations of the energy bins. Retrieving the popula-
tions of the energy bins with such a high precision is a
unique property of the method compared to the coarse
grain models. The relative error between the full model
and the PCA-based reduction shows higher accuracy for
the results at a lower computation cost than recently
published work using advanced lumping techniques [42].

The present work has shown how lumping techniques
and principal component analysis can be combined to
reduce large and complex chemistry models. The tech-
nique is user-friendly as it is automatic and simple to
implement. No expert judgment is required before the
application of PCA and no complicated fine-tuning is
necessary to optimize the method. The method follows
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FIG. 6: Relative error on the temperatures and nitrogen mole fraction between the 6 Score-PCA and URVC(20)
reduced model against the full RVC solution for 6.67 Pa and 10 km/s.

the philosophy of machine learning where complex sys-
tems can be studied and solved by analyzing and devel-
oping algorithms for simple training cases. Following this
line of thought, the developed one-dimensional reduction
will be applied to solve multi-dimensional cases in future
work.

ACKNOWLEDGMENTS

The research of A. Bellemans has been sponsored by
a FRIA fellowship of the Belgian research fund F.R.S.-
FNRS. The research of A. Parente is sponsored by the
European Research Council, Starting Grant No. 714605.
The authors would like to acknowledge the help of Dr.
Erik Torres for providing the URVC model with non-
uniform energy grid and Dr. Alessandro Munafò for dis-
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