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The Bigger Picture

The movement of ions and

molecules through biological

membranes is regulated by

embedded protein channels,

carriers, and pumps. The

dysfunction of ion channels is the

underlying cause of many

diseases, notably cystic fibrosis, in

which passive chloride ion

transport is impaired. A number of

groups are making small

molecules that can carry chloride

through lipid-bilayer membranes

and so potentially replace the

function of faulty channels,
SUMMARY

Synthetic transmembrane anion transporters (anionophores) have potential as

tools for biomedical research and as therapeutic agents for diseases associated

with anion-channel dysfunction. However, the possibility of H+ or OH� transport

by anionophores has received little attention, and an anionophore selective for

Cl� over H+/OH� is currently unavailable. Here, we show that depending on

anionophore acidity, many anionophores facilitate electrogenic H+ or OH�

transport, potentially leading to toxicity. Nevertheless, using several lipo-

some-membrane-based assays, we identified two newly developed small mole-

cules that promote electrogenic Cl� transport without effectively dissipating

the transmembrane pH gradient, essentially mimicking the electrogenic catio-

nophore valinomycin. The Cl� > H+/OH� selectivity of anionophores showed

a consistent positive correlation with the degree of Cl� encapsulation and a

negative correlation with the acidity of hydrogen-bond donors. Our study

demonstrates that a valinomycin equivalent for Cl�-selective transport is

achievable.
thereby ameliorating the

symptoms of these types of

diseases. However, many of these

transporters exhibit a side effect

of pH-gradient disruption, which

can lead to cell death. Herein, we

show the first examples of

transporters with a high selectivity

for chloride over proton and

hydroxide, which represents a

paradigm shift for transporter

design. This is a significant step

toward real biomedical

application of anion transporters

in the battle against cystic fibrosis

and other diseases caused by

faulty ion channels.
INTRODUCTION

Facilitation of transmembrane ion transport by small-molecule carriers that function

by reversible binding of the transported ionic species is an important supramolec-

ular process.1,2 The most notable example of a small-molecule carrier is the natu-

rally occurring K+ carrier valinomycin (Figure 1), which has found many applications

in the study of biological systems.3 Valinomycin facilitates transmembrane K+ trans-

port by interfacial binding of K+, translocation of the cationic complex through the

lipid membrane, release of K+ at the other interface of the membrane, and eventu-

ally back transport of the uncomplexed valinomycin to complete the cycle (Fig-

ure 2B, left).4,5 The action of valinomycin is electrogenic because there is a net

transfer of charge across the membrane. Ionophores, such as valinomycin, that

transfer charge across the membrane are termed ‘‘electrogenic’’ (i.e., they modify

a membrane potential) or ‘‘electrophoretic’’ (i.e., they transport ions driven by a

membrane potential). The more common term ‘‘electrogenic’’ is used throughout

this article. By contrast, the action of some other cationophores is purely electro-

neutral (i.e., there is no movement of net charge) because a metal ion (M+) is

exchanged for H+ (Figure 2A, left). One example is the carboxylate-containing cat-

ionophore monensin,6 which carries a monovalent cation through the membrane as

an overall neutral ion-pair complex (Figure 1) with no transmembrane movement of

charged species.3 Valinomycin and monensin thus have fundamentally different ion-

transport mechanisms controlled via membrane potential (valinomycin) or pH

gradient (monensin).3
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Although the transport properties of naturally occurring cationophores, many of

which possess antibiotic properties, are well understood, natural or synthetic trans-

membrane anion transporters (anionophores) have only recently attracted signifi-

cant attention.7,8 Anionophores are useful in complementing valinomycin and other

cationophores in biomedical research9,10 and might be used to replace defective

anion channels in treatments for genetic diseases such as cystic fibrosis11,12 or to

induce cancer cell apoptosis by facilitating NaCl influx.13 The best known aniono-

phore, the natural product prodigiosin (Figure 1), facilitates H+/Cl� symport14,15

(cotransport; Figure 2A, right) and Cl�/NO3
� antiport (exchange),16 but its non-elec-

trogenic nature, reported by Sato et al.,17 is sometimes overlooked. A wide spec-

trum of synthetic anionophores that function by hydrogen bonding,7,8 halogen

bonding,18 or metal coordination19 to anions have been developed. So far, research

efforts have mainly focused on their efficacy in facilitating anion exchange, and little

attention has been paid to anion-transport mechanisms, especially their ability to

disrupt pH or proton gradients.

Transmembrane pH gradients are essential for cellular function.20 It is therefore

important to understand the role ionophores play in facilitating proton or hydroxide

transport. (H+ transport produces the same effect as OH� transport in the reverse di-

rection. In this article, we use the term ‘‘H+/OH� transport’’ to refer to the process of

H+ and/or OH� translocation through lipid bilayers. We also use ‘‘/’’ elsewhere to

indicate a coupled process, e.g., ‘‘H+/Cl� symport.’’) In this respect, valinomycin

functions as a selective electrogenic K+ ionophore that does not facilitate H+/OH�

transport.21 By contrast, currently no anionophore has been identified with

strong Cl� > H+/OH� selectivity.22 Indeed, prodigiosin,14,15 and some of the most

powerful synthetic anionophores,23–27 have been shown to uncouple vacuolar

type H+-ATPase (V-ATPase) and neutralize acidic cellular organelles (such as the

Golgi apparatus, lysosomes, and endosomes) by facilitating H+/Cl� symport or

Cl�/OH� antiport through organelle membranes. Monensin is also known to exhibit

this neutralization effect by promoting Na+/H+ antiport through organelle mem-

branes.6 Another possible yet unexamined action of synthetic anionophores is elec-

trogenic H+ transport. Compounds known as ‘‘protonophores,’’ such as carbonyl

cyanide phenylhydrazones,28 facilitate electrogenic H+ transport (Figure 2C, left),

enabling them to uncouple oxidative phosphorylation by dissipating the proton

gradient pumped by the electron transport chain.29

Although prodigiosin and other functionally similar compounds are promising anti-

cancer agents because of their ability to disrupt transmembrane pH gradients, elec-

trogenic Cl� carriers that do not facilitate H+/OH� transport (‘‘valinomycin-like’’

anionophores) are required for other applications. These include using aniono-

phores for physiological research where H+/OH� transport would complicate data

interpretation. Examples include the identification of electrogenic H+-coupled

metal-ion transport, such as H+/K+ symport (here the aninophore would dissipate

the accumulation of a membrane potential like the use of valinomycin in the study

of Cl�/H+ antiport by ClC transporters30); and potential replacement of defective

anion channels in genetic diseases where H+/OH� transport would lead to toxicity

(e.g., Best disease, Startle disease, Bartter syndrome, and most notably, cystic

fibrosis).31

As a process functionally equivalent to H+ transport,32 OH� transport, at first

glance, seems an unlikely process for synthetic anionophores to facilitate, consid-

ering the high energy penalty required to dehydrate OH� (DGhydration(OH�) =

�430 kJ mol�1 compared with DGhydration(Cl
�) = �340 kJ mol�1).33 However, OH�
128 Chem 1, 127–146, July 7, 2016
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Novel anionophores are marked with an asterisk. For trihexylamine, prodigiosin, and MnTPP,

their Cl� complexed forms are shown.
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Figure 2. Schematic Representations of Ion-Transport Mechanisms

(A) Electroneutral M+/H+ antiport facilitated by monensin (Mon, left) and electroneutral H+/Cl�

symport facilitated by prodigiosin (Prod, right).

(B) Electrogenic K+ transport facilitated by valinomycin (Vln, left) and electrogenic Cl� transport

facilitated by an electrogenic anion carrier (right).

(C) Electrogenic H+ transport facilitated by a weak acid protonophore (HA, left) and electrogenic

OH� transport facilitated by an electrogenic anion carrier (right). Note that these two processes

are functionally equivalent.

(D) Equilibria involving hydrogen bonding to OH� and deprotonation of ureas and thioureas.

Hydrogen bonds are represented by red dashed lines.
is an extremely strongly coordinating anion, and previous studies have demon-

strated that synthetic anionophores, including halogen-bond-based transporters

that do not possess H+ binding groups, can dissipate transmembrane pH gradients

in which OH� transport coupled with Cl� transport appears to be the only plausible

mechanism.18 In fact, the routine use of the 8-hydroxypyrene-1,3,6-trisulfonic acid

(HPTS) assay, which measures the rate of pH-gradient dissipation, to evaluate
130 Chem 1, 127–146, July 7, 2016



anion-transport activity suggests that designing a Cl�-selective anionophore that

does not facilitate OH� (or H+) transport is likely to be challenging.

In this article, we address H+/OH� transport facilitated by anionophores. We pro-

vide unambiguous evidence that (1) prodigiosin cannot facilitate electrogenic

transport of Cl�, H+, or OH� and (2) many synthetic anionophores can facilitate

electrogenic H+/OH� transport. We propose that the actual transport process

responsible for the observed electrogenic transport of H+ or OH� likely depends

on the acidity of hydrogen-bond donors in the anionophore. Most importantly,

we have developed two ‘‘valinomycin-like’’ electrogenic anionophores that show

outstanding Cl� > H+/OH� selectivity. One of these compounds was identified

as an active anionophore functioning in live cells. Distinct from other active anio-

nophores reported, this selective anionophore did not effectively neutralize lyso-

somal pH.
RESULTS AND DISCUSSION

Evidence of Electrogenic H+/OH� Transport

Previously, Busschaert et al.34 and Vargas Jentzsch et al.18 have demonstrated that

anionophores dissipate a transmembrane pH gradient in the presence of Cl� in

vesicle-based experiments employing the intravesicular pH indicator HPTS (Fig-

ure 1).35 Provided that the anionophores do not cause membrane defects or HPTS

leakage, these data indicate that anionophores facilitate H+/OH� transport (accom-

panied by Cl� transport as the counterion pathway to maintain electroneutrality).

However, an alternative mechanism of H+ transport via simple (unassisted) diffusion

coupled with Cl� transport facilitated by anionophores has been proposed,36 and in

theory pH-buffer transport is also possible. Assuming H+/Cl� symport, such a pro-

cess might be an obligatorily coupled electroneutral process (Figure 2A, right). In

this case, because H+ transport cannot be separated from Cl� transport, the aniono-

phore is unable to facilitate electrogenic H+ transport (Figure 2C). Alternatively,

H+/Cl� symport or Cl�/OH� antiport can be an indirectly coupled process with sepa-

rate pathways for electrogenic H+ (or OH�) transport (Figure 2C) and electrogenic

Cl� transport (Figure 2B, right). To the best of our knowledge, this possibility has

never been examined experimentally in the literature.

To identify the mechanism of H+/OH� transport by anionophores, a new HPTS assay

(here termed the tetrabutylammonium hydroxide [TBAOH] assay; Figure 3A) was

devised for testing purely electrogenic H+/OH� transport (in other words, protono-

phoric activity), in which ionophore-induced dissipation of a pH gradient across

large unilamellar vesicle (LUV) membranes (induced by adding 5 mM TBAOH to a

vesicle suspension) in a lightly buffered sodium D-gluconate (100 mM) medium

was monitored. In this assay, gluconate (Figure 1) transport is negligible because

of its large size and hydrophilicity. The presence of TBA+, a membrane-permeable

cation,37 provides a counterion pathway for electrogenic H+/OH� transport (driven

by the pH gradient), which would otherwise build up an opposing membrane poten-

tial preventing bulk pH change. This leads to overall TBA+/OH� symport or TBA+/H+

antiport in the presence of an electrogenic H+/OH� ionophore, dissipating the pH

gradient. Under our experimental conditions, the low H+ permeability of intact lipid

bilayers does not allow for observable pH-gradient dissipation over the timescale of

several minutes (see DMSO control in Figure S23).

Results from the TBAOH assay were compared with data from another HPTS assay

(termed the N-methyl-D-glucamine chloride [NMDG-Cl] assay; Figure 3B, left) set
Chem 1, 127–146, July 7, 2016 131
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Figure 3. LUV-Based Assays Used in This Study

(A) TBAOH assay. Electrogenic H+/OH� transport facilitated by the test ionophore couples with

simple diffusion of tetrabutylammonium ion (TBA+), leading to pH-gradient dissipation

(measured by intravesicular pH indicator HPTS) by TBA+/H+ antiport or TBA+/OH� symport

(shown in brackets).

(B) NMDG-Cl assay in the absence (left) and presence (right) of proton channel gramicidin D (Gra).

In the absence of gramicidin, the test anionophore facilitates H+/Cl� symport or Cl�/OH�

antiport (shown in brackets) to dissipate the pH gradient (measured by HPTS). In the presence of

gramicidin, which facilitates H+ transport, the test anionophore is only required to facilitate Cl�

transport to dissipate the pH gradient. If H+/OH� transport is rate limiting with the test

anionophore alone (i.e., if the test anionophore shows Cl� > H+/OH� selectivity), gramicidin will

improve the rate-limiting step and thereby accelerate the rate of pH-gradient dissipation.

(C) Anionophore-facilitated electrogenic Cl� transport coupling with valinomycin (Vln) facilitated

electrogenic K+ transport, leading to net KCl efflux (measured using a Cl�-selective electrode).

(D) Anionophore-facilitated H+/Cl� symport (or Cl�/OH� antiport shown in brackets) coupling

with monensin (Mon) facilitated K+/H+ antiport, leading to net KCl efflux (measured by a

Cl�-selective electrode). The buffering agent HEPES is omitted for clarity.
up for H+/Cl� symport or Cl�/OH� antiport, in which NMDG-Cl (100mM) was used in

place of sodium gluconate (100 mM), and NMDG (5 mM) was used in place of

TBAOH (5 mM) as the base added to create a pH gradient. The conditions used

for the NMDG-Cl assay were similar to those of the HPTS assays employed by Vargas

Jentzsch et al.,18 but NMDG-Cl was used instead of NaCl for the sake of another

selectivity assay described below. Control experiments were conducted to ensure

that the HPTS response represented transport of Cl� and H+/OH� and not other pro-

cesses such as Na+/H+ antiport, gluconate/OH� antiport, or HPTS leakage from ves-

icles (Figures S31, S32, and S57–S60). After test ionophores were studied at different

concentrations, Hill plot analyses were performed to obtain a Hill coefficient, which

indicated the stoichiometry of the unstable38 active species mediating ion transport,

and the effective concentration to reach 50% of maximum transport at 200 s (EC50

value, low EC50 values indicate high activity) to quantify ion-transport activity.35
132 Chem 1, 127–146, July 7, 2016



Table 1. Summary of Acidity and Membrane-Transport Data of Ureas/Thioureas 1–6,

Prodigiosin, and CCCP

Compound pKa EPNa (Eh) TBAOH Assayb NMDG-Cl Assayc

n EC50 (mol %) n EC50 (mol %)

1 13.8d �18.2786 0.9 0.065 1.4 0.046

2 NDe �18.2798 1.9 0.83 2.4 0.61

3 16.1d �18.2947 1.5 0.26 2.3 0.16

4 8.5d, 8.9f �18.2723 0.9 0.014 1.2 0.015

5 10.7f �18.2774 1.1 0.013 1.9 0.26

6 NDe �18.3453 2.9 12 3.2 20

Prodigiosin NDe NDe –g >1g 1.4 0.000061

CCCP 6.0h NDd 1.0 0.0054 –i >100i

aElectrostatic potential at the nitrogen nucleus is expressed in atomic units. The structures were opti-

mized using the PM6 semi-empirical method, assuming the syn conformer. The EPN values were calcu-

lated at the B3LYP/6-311++G(d,p) level of theory with the SMD water-solvation model.
bA fluorescence assay for electrogenic H+/OH� transport. Large unilamellar vesicles (LUVs) of POPC

(mean diameter = 200 nm) were loaded with HPTS (1 mM) and sodium gluconate (100 mM) buffered at

pH 7.0 with 10 mM HEPES. The vesicles were suspended in an external solution of sodium gluconate

(100 mM) buffered at pH 7.0 with 10 mM HEPES. At the beginning of the experiment, a base pulse of

TBAOH (5 mM) was added to create a pH gradient, and the dissipation of the pH gradient induced by

the test ionophore (added as a DMSO solution) was monitored by HPTS fluorescence. Lipid concentra-

tion for fluorescence measurement was 0.10 mM. Dose-dependent Hill plot analysis was performed to

obtain a Hill coefficient (n) and an effective concentration to reach 50% of maximum transport (EC50) at

200 s for each ionophore. Ionophore concentrations are shown as ionophore-to-lipid molar ratios. See

Figures S23–S29 for Hill plots.
cA fluorescence assay for H+/Cl� symport or Cl�/OH� antiport. The internal and external medium used

was NMDG-Cl (100 mM) buffered at pH 7.0 with 10 mM HEPES, and the base pulse used was NMDG

(5 mM). The other conditions are the same as in the TBAOH assay. See Figures S34–S55 for Hill plots.
dIn DMSO, reported by Jakab et al.41

eNot determined.
fIn acetonitrile-water (9:1 v/v with 0.1 M TBAPF6), determined by potentiometric titrations.
gNo transport at 1 mol % concentration. Higher concentrations were not tested because of interference

with HPTS fluorescence. See Figure S30.
hIn water, reported by �Sturdı́k et al.43

iNo transport even at 100 mol % concentration. See Figure S56.
Several simple ureas/thioureas 1–6, prodigiosin, and a known protonophore

carbonyl cyanide m-chlorophenyl hydrazine (CCCP; Figure 1) were tested, and the

results are presented in Table 1.

Although prodigiosin was extremely active in the NMDG-Cl assay, corresponding to

H+/Cl� symport or Cl�/OH� antiport, it could not dissipate the pH gradient in the

TBAOH assay (Table 1), consistent with its inability to facilitate electrogenic trans-

port processes.17 This conclusion is consistent with the lack of protonophoric

activity or alteration of cellular ATP levels reported for prodigiosins.14,15 A likely

interpretation of these data is that the charged, protonated form of prodigiosin is

unable to move through the membrane in the absence of a transportable anion

(Figure 2A, right). Consistent with this idea, prodigiosin failed to facilitate electro-

genic Cl� transport (see the section Coupling between Cationophores and Aniono-

phores: Direct Evidence of ‘‘Valinomycin-likeness’’). CCCP transports H+, but not

Cl�, and therefore was active in the TBAOH assay and silent in the NMDG-Cl assay

(Table 1). By contrast, the neutral hydrogen-bond donors 1–6 responded in both as-

says (Table 1). Transport rates were essentially unaffected by switching the external

buffer from HEPES to phosphate (Figure S33), indicating that transport of the buffer

is unlikely. Further evidence for H+/OH� transport that completely rules out buffer
Chem 1, 127–146, July 7, 2016 133



transport is afforded by the observation of H+/OH� transport under buffer-free con-

ditions (Supplemental Information, Section 11.1). Thus, like the protonophore

CCCP, ureas and thioureas 1–6 facilitated electrogenic H+/OH� transport.

The molecular mechanism for H+ conductance induced by weak acid protonophores

such as CCCP involves the transmembrane movement of both neutral and deproto-

nated anionic forms of the protonophore (Figure 2C, left).39 Anionophores acting as

hydrogen-bond donors might adopt a CCCP-like deprotonation mechanism. This

process, coupled with electrogenic Cl� transport, would lead to overall H+/Cl� sym-

port in the NMDG-Cl assay. Alternatively, anionophores might produce the same

effect as protonophores by reversibly binding and releasing OH� or hydrated OH�

(Figure 2C, right). To identify the mechanism responsible for the protonophoric

activity, ureas/thioureas and their mono-N-methylated analogs were compared in

both assays. N-Methylation is expected to dramatically weaken anion (Cl� or OH�)
binding and transport because only a single NH hydrogen-bond donor is present.40

In the NMDG-Cl assay, N-methylation dramatically decreased the activities of both

urea 1 and thiourea 4, consistent with weakened Cl� binding by N-methylation.

However, results from the TBAOH assay were more complex; urea 1 was still far

more active than N-methyl urea 2, but thiourea 4 and its N-methyl analog 5 showed

similar activities (Table 1). To rationalize these effects, pKa values of some

compounds were determined by potentiometric titrations in acetonitrile-water

(9:1 v/v), and literature pKa values41 (in DMSO) were tabulated (Table 1). Electro-

static potential values at the nitrogen nucleus (EPN)42 obtained with density func-

tional theory calculations (see Supplemental Information, Section 7.1) were used

to compare acidity when the pKa values were too high for determination by poten-

tiometric titration.

Because of its high acidity, a significant proportion of compound 4 was deproto-

nated under the experimental conditions (external pH �8 after base pulse), likely

allowing H+ transport in the same manner as CCCP.43 Despite its weaker acidity,

compound 5 also existed in equilibrium with its deprotonated form in water, and

the following lines of evidence lead us to suggest that 5 transported H+ via a

CCCP-like mechanism: (1) 5 was much better at transporting H+/OH� than Cl�

(Table 1, compare EC50 values in the two assays), and (2) 5 showed a Hill coefficient

of �2 in the NMDG-Cl assay, suggesting Cl� transport via a 2:1 (5$Cl�) complex.

However, the different Hill coefficient of �1 in the TBAOH assay suggests that an

alternative process from anion binding was occurring. We attribute this process to

a CCCP-like deprotonation mechanism. These observations for 5 are in sharp

contrast to other ureas/thioureas, which show EC50 values of the same order of

magnitude and similar Hill coefficients in the two assays (Table 1). When comparing

4 and 5, the disadvantage of the weaker acidity of 5 is likely compensated by its

higher lipophilicity (it has been shown that carrier lipophilicity is favorable for mem-

brane transport25) and weaker binding to the lipid phosphate head group, leading to

similar activities of 4 and 5 in H+ transport. It is also possible that 4 transports OH� as

a result of stronger anion binding, different from the H+ transport mechanism of 5.

Ureas 1–3 have pKa values higher than 13 (Table 1; although we were unable to

determine the pKa of 2 by potentiometric titration, 2 is less acidic than 1, as indicated

by their EPN values). Therefore, H+ transport by a deprotonation mechanism at

physiological pH is less likely for ureas 1–3 than thioureas 4 and 5. The higher activity

of 1 than of theN-methyl urea 2 in the TBAOH assay seems to support the hypothesis

that 2 and possibly also 1 facilitated OH� transport by hydrogen bonding to OH�.
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However, because N-methylation weakens acidity, comparison between 2 and 3 is

more conclusive. When compared with 3, compound 2 is more acidic on the basis

of their EPN values (Table 1), and it is also more lipophilic. Therefore, if both 2

and 3 facilitated H+ transport via deprotonation, then 2 would be more active

than 3 in the TBAOH assay. However, the TBAOH assay revealed that 2 had a lower

activity than 3, highlighting the importance of twoNH hydrogen-bond donors, which

supports the hypothesis of OH� transport. This is also supported by the similarly

high Hill coefficients in the two assays, in the cases of 2, 3, and 6, indicating the

complexation of both Cl� and OH� by more than one receptor molecule. Although

3 and 6 contain two NH hydrogen-bond donors, they showed high Hill coefficients,

presumably because of the less acidic nature of the NH hydrogen-bond donors (less

electron-deficient anion binding site) than of those in 1 and 4, and therefore they

needed more carrier molecules to transport Cl� and OH�. This is supported by

the report that relatively weak halogen-bonding anionophores show high Hill coef-

ficients in anion transport.18 The above-mentioned results demonstrate that OH� (or

hydrated OH�) transport is the more likely pathway for less acidic anionophores to

facilitate H+/OH� transport, while the more acidic 5 can deprotonate in water and

thereby transport H+ in the same way as CCCP.

It should be noted that the OH� complex (1:1) and the hydrated deprotonated form

of a urea/thiourea are structurally similar, differing only by small changes in the

position of the proton (Figure 2D). This difference would disappear in the case of

a single-well [N$$$H$$$OH]� hydrogen bond (similar to the [F$$$H$$$F]� ion).44

This highlights the fact that, when direct deprotonation of a receptor cannot take

place, OH� can nonetheless form a strong complex with a less acidic receptor.

This might help to explain the surprising observation that synthetic anionophores

may transport OH� as efficiently as Cl�, despite the hydrophilicity of OH�. We

next show, however, that by rational design of the anionophore structure, we can

reduce OH� or H+ transport in relation to Cl� transport.

Cl� > H+/OH� Selectivity

We investigated whether it is possible for anionophores to possess selectivity for

electrogenic Cl� transport over H+/OH� (including electrogenic and non-electro-

genic pathways) transport, which we refer to as Cl� > H+/OH� selectivity. Because

of its perfect K+ > H+/OH� selectivity, low concentrations of valinomycin do not

facilitate K+/H+ antiport unless a protonophore is present.45 On the basis of this

rationale, an HPTS assay for Cl� > H+/OH� selectivity was devised and employed

(Figure 3B). In this modified NMDG-Cl assay, we studied the effects of the proton

channel gramicidin D on the rate of pH-gradient dissipation (indicating H+/Cl� sym-

port or Cl�/OH� antiport) induced by anionophores. If H+/OH� transport was rate

limiting (i.e., electrogenic Cl� transport was faster than H+/OH� transport, namely

Cl� > H+/OH� selectivity), pH-gradient dissipation would be significantly acceler-

ated by gramidicin, which facilities electrogenic H+ transport. Conversely, if Cl�

transport was rate limiting (or if the anionophore did not facilitate electrogenic

Cl� transport faster than H+/Cl� symport or Cl�/OH� antiport), the rate of pH-

gradient dissipation would be unaffected by gramidicin. The neutral proton channel

gramicidin was employed to prevent potential intermolecular interaction between

anionophores and proton carriers such as carbonyl cyanide phenylhydrazones.

The use of inert NMDG+ (Figure 1) as the cation component precluded gramicidin

itself from dissipating the pH gradient by facilitating M+/H+ antiport. The ratio be-

tween EC50 values obtained in the absence and presence of gramicidin (selectivity

[S] value shown in Table 2) was used to quantify Cl� > H+/OH� selectivity. It is impor-

tant to note that the selectivity value obtained is a relative value dependent on the
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Table 2. Summary of Cl� Transport Activity and Cl� > H+/OH� Selectivity

Anionophore Without Gra With Gra (0.1 mol %) Selectivity (S)b

n EC50 (mol %) n EC50 (mol %)a

1 1.4c 0.046c 1.4 0.043 1.1

2 2.4c 0.61c 1.9 0.29 2.1

3 2.3c 0.16c 2.0 0.11 1.4

4 1.2c 0.015c 1.2 0.015 1.0

5 1.9c 0.26c 1.8 0.33 0.8

6 3.2c 20c 3.1 13 1.5

7 2.5 7.9 2.7 5.9 1.3

8 1.3 0.00074 1.3 0.00085 0.9

9 1.3 0.042 1.1 0.0030 14

10 1.2 0.0011 1.2 0.0012 0.9

11 1.3 0.11 1.3 0.0028 39

12 1.2 0.067 1.4 0.00086 78

13 – too inactive – too inactive –d

14 1.2 9.5 1.0 1.3 7.4

15 1.5 0.25 1.2 0.077 3.3

16 1.3 0.016 1.4 0.017 0.9

17 – too inactive 0.9 0.089 –e

18 1.4 0.18 1.2 0.0017 100

Trihexylamine 1.1 0.026 1.1 0.023 1.1

I2 1.6 6.9 1.5 6.1 1.1

Prodigiosin 1.4c 0.000061c 1.3 0.000059 1.0

Mn(TPP)Cl 1.1 0.0051 1.2 0.0045 1.1

Hill plot analysis of anionophores 1–18, trihexylamine (Hex3N), iodine (I2), prodigiosin (Prod), andMn(TPP)

Cl in the NMDG-Cl assay in the absence and presence of the proton channel gramicidin D (Gra). The

NMDG-Cl assay is a fluorescence assay for H+/Cl� symport or Cl�/OH� antiport. Large unilamellar ves-

icles (LUVs) of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; mean diameter, 200 nm) were

loaded with HPTS (1 mM) and NMDG-Cl (100 mM), and buffered at pH 7.0 with 10 mM HEPES. The ves-

icles were suspended in an external solution of NMDG-Cl (100mM) buffered at pH 7.0 with 10mMHEPES.

At the beginning of the experiment, a base pulse of NMDG (5 mM) was added to create a pH gradient,

and the dissipation of the pH gradient induced by the test ionophores (added as a DMSO solution, or

ethanol and acetonitrile solutions in some cases) was monitored by HPTS fluorescence. Lipid concentra-

tion for fluorescence measurement was 0.10 mM. Dose-dependent Hill plot analysis was performed to

obtain a Hill coefficient (n) and an effective concentration to reach 50% of maximum transport (EC50) at

200 s for each ionophore. Ionophore concentrations are shown as ionophore-to-lipid molar ratios. See

Figures S34–S55 for Hill plots.
aEC50 in the presence of Gra indicates Cl� transport activity, since without Gra, H+/OH� transport may

be rate limiting. Note that the ‘‘activity’’ here is the ‘‘total activity’’ of electroneutral H+/Cl� symport (or

Cl�/OH� antiport) and electrogenic Cl� transport. The Gra concentration used (0.1 mol %) has been

optimized to ensure maximum acceleration of pH-gradient dissipation for a Cl� > H+/OH�-selective
anionophore.
bCl� > H+/OH� selectivity (S) is quantified by the EC50 in the absence of Gra divided by EC50 in the pres-

ence of Gra; an S value of 1 indicates H+/OH� transport faster than Cl� transport, i.e., no selectivity.
cThe same data as shown in Table 1.
dToo inactive for Hill plot analysis. A single-concentration comparison showed no selectivity (Figure S46).
eNo S value is given because, without gramicidin, 17was too inactive for Hill plot analysis. This indicates a

very high Cl� > H+/OH� selectivity that cannot be quantified by this method.
Cl� concentration employed. It should not be regarded as the absolute ratio be-

tween the permeability values of Cl� and H+/OH�. Table 2 presents selectivity

data for the 22 anionophores shown in Figure 1 (refer to Section 3 in the
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Supplemental Information for synthesis of new compounds), the majority of which

are hydrogen-bond donors.

Prodigiosin showed no selectivity, consistent with its reported non-electrogenic

nature (Table 2).17 The commercially available Cl� ionophore Mn(TPP)Cl19 was

also unselective, likely because the Lewis acid metal center facilitated efficient

OH� transport. Simple monopodal ureas/thioureas 1–7 and a squaramide 8 showed

rather weak to no selectivity.

While testing the Cl� > H+/OH� selectivity of anionophores, we serendipitously

identified that the tripodal thiourea 9,46 but not its fluorinated analogs,25 was

both relatively highly selective (14-fold) and comparatively active (Table 2). New

tripodal thioureas were therefore synthesized in an attempt to improve both activity

and selectivity. Interestingly, adding electron-withdrawing cyano substituents to 9

(compound 10) led to loss of selectivity (pKa of 10 was 10.5 in 9:1 acetonitrile-water;

Figure S21). Conversely, changing the phenyl group to an n-pentyl group (com-

pound 11) noticeably improved selectivity to 39-fold (Table 2). This result suggests

that selectivity is sensitive to the acidity of the NH groups. By changing the linear

n-pentyl group to the bulky tert-pentyl group, both activity and selectivity further

improved from 11 to 12 (Table 2). Of note, 12 showed a remarkable selectivity of

78-fold, whereas its Cl� transport activity matched that of squaramide 8,47 one of

our most active anionophores reported to date. Despite the presence of a basic

tertiary amine group and therefore the possibility of Cl� transport as a protonated

ion-pair complex for the tripodal thioureas (Figure S63), pH-dependent anion-

transport studies (Figure S65) demonstrated that the tripodal thioureas actually

transported Cl� in their neutral forms (forming anionic complexes), unlike the ‘‘HCl

receptors’’ prodigiosin and trihexylamine. Consistent with this idea, the crystal

structure of the 12$tetraethylammonium chloride (TEACl) complex (Figure 4A) dem-

onstrates the ability of the neutral form of 12 to encapsulate Cl� with six NH$$$Cl�

hydrogen bonds (see Figure S22 for a ball-and-stick model).

Two effects arising from the tripodal anionophores might be key to their superior Cl� >

H+/OH� selectivity in comparison to that of monopodal anionophores: (1) enhanced af-

finity for Cl� due to the chelate effect48 (e.g., compare theCl� affinity of 7 [K= 14M�1]49

and 9 [K = 190 M�1]46 in DMSO-d6/0.5% H2O) and (2) anion encapsulation enforcing a

high degree of anion desolvation. Although the Hill coefficient of �2.6 in the case of 7

(Table2) suggests thatCl� is likely sequesteredby three thioureamolecules, likebinding

of Cl�within the tripodal thiourea cage 9, the alkyl spacer in 9 enforces a higher degree

of Cl� desolvation than does the 3:1 7$Cl� complex, where the three thiourea moieties

arenot interconnected. To rationalize theseeffects, the selectivityof bisthioureas13 and

14 was examined. Both compounds can bind Cl� via four NH$$$Cl� hydrogen bonds,

but the long alkyl spacer in 14 enforces a higher degree of anion desolvation (compare

Figures 4B and 4C). Indeed, appending an additional thiourea moiety led to enhance-

ment of Cl� affinities of both 13 (K1 = 150 M�1, K2 = 3.4 M�1; Figure S16) and 14

(K1 = 530 M�1, K2 = 6.2 M�1; Figure S18) in DMSO-d6/0.5% H2O in relation to that of

7 (K = 14 M�1).49 But, improvement of selectivity (relative to 7, 1.3-fold selectivity) was

only observed for 14 (7-fold selectivity), whereas 13 demonstrated no selectivity (Fig-

ure S46), underscoring the importance of anion encapsulation. This idea is also sup-

ported by the higher selectivity of 12 than that of 11, given that the bulky alkyl substitu-

ents in 12makeCl� less solvent accessible than linear alkyl substituents in 11. The exact

reasonbehind thebenefitof anionencapsulation for selectivity is unclear at themoment.

We propose that this could be related to the higher hydration enthalpy of OH� than of

Cl�.50 When the dehydration is caused by the part of the receptor that does not
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Figure 4. Space-Filling Representations of Crystallographic or Optimized Structures of Cl�

Complexes

(A) X-ray crystal structure of the 12$TEACl complex (CCDC: 1431251; see Section 8 in the

Supplemental Information for details).

(B and C) Molecular models of Cl� complexes of (B) 14 and (C) 13, optimized using the semi-

empirical PM6 method.

Atom colors are as follows: gray, C; white, H; blue, N; yellow, S; and green, Cl.
significantly contribute enthalpically to binding anions, such as a spacer group, the

anion-binding dehydration enthalpic cost for receptors that enforce a higher degree

of dehydration will be higher than for those enforcing a lower degree of dehydration.

This may confer greater selectivity on anionophores that encapsulate anions to a higher

degree.

Although, in general, more acidic hydrogen-bond donors are favorable for anion

binding and transport (in terms of activity),49,51 Table 2 demonstrates that Cl� > H+/

OH� selectivity is severely compromised when more acidic hydrogen-bond donors

are present. For example, the selectivity sequence of 11> 9[ 10 illustrates this effect.

An obvious disadvantage of higher-acidity anionophores is the possibility of H+

transport via a CCCP-like deprotonation mechanism (Figure 2C, left). Deprotonation

is, however, not the only reason for the observed negative correlation between selec-

tivity and acidity, given that even the halogen-bonding-based anionophore iodine

showed no selectivity despite its inability to transport H+ by deprotonation of the

receptor (Table 2). It seems that more acidic (thus more electron-deficient) aniono-

phores favor the transport of the more charge-dense OH� over the less charge-dense

Cl�. This idea is consistent with the previous report that a CH hydrogen-bond-

based anionophore, which is much less acidic than NH hydrogen-bond receptors,

showed a high selectivity for Cl� over the more charge-dense HCO3
�.52 In contrast, a

highly acidic bisurea anionophore lacked the Cl� > HCO3
� selectivity.52

The steroid scaffold is known to pre-organize two or three anion-binding motifs,

resulting in powerful Cl� ionophores (‘‘cholapods’’).53–55 We subjected several
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reported and new cholapod-based urea anionophores to the selectivity test. Com-

pound 1553 showed modest selectivity of 3-fold, which was eliminated when a

trifluoroacetamide group,54 as an additional hydrogen-bond donor, was introduced

(compound 16), likely because of its high acidity (Table 2). However, remarkable

selectivity was achieved by 17 and 18, which feature binding-site enclosure

(Table 2).56 Compound 17 was extremely selective to the extent that H+/OH� trans-

port was too inactive for Hill plot analysis. However, compound 17 was not a very

active chloride carrier (Table 2). Despite containing an acidic trifluoroacetamide

group, the more active 18 demonstrated a surprising 100-fold selectivity (Table 2).

Presumably, the advantages of binding-site enclosure, possibly also from a decrease

in urea NH acidity due to electron-donating alkoxy substituents, outweigh the disad-

vantage of an acidic trifluoroacetamide group. It is of interest to note that the Cl�

affinities of 17 (K= 1.23 105M�1) and 18 (K= 3.63 105M�1) were dramatically lower

than those of 15 (K = 1.5 3 107 M�1)53 and 16 (K = 2.8 3 108 M�1)54 in water-satu-

rated chloroform (for binding-constant determination, see Supplemental Informa-

tion, Section 5). The higher Cl� > H+/OH� selectivity observed with the weakly

binding but more encapsulating receptors 17 and 18 than with 15 and 16 again sup-

ports our proposition that anion encapsulation to a high degree, but not high-affinity

anion binding, benefits selectivity.

Further evidence of the Cl� > H+/OH� selectivity of 12 and 18 was demonstrated by

their coupling with the proton carrier CCCP to facilitate H+/Cl� symport or Cl�/OH�

antiport in HPTS (Figure S62), ion-selective electrode (ISE; Figure S67), and osmotic-

response assays (Figure S70). Thus, 12 and 18 couple with H+ transporters irrespec-

tive of the H+ transport mechanism (channel or carrier). This also suggests that H+

transport and Cl� transport are independent processes in this case, ruling out

possible intermolecular interactions between a proton transporter and 12 or 18.

As a complementary test, an HPTS assay conducted using KCl as the medium

demonstrated that the activities of 12 and 18 were unaffected by the presence of

the K+ ionophore valinomycin (Figure S62), which can replace potentially rate-

limiting Cl� transport with faster K+ transport as the counterion pathway. This result

indicates that Cl� transport is not rate limiting for the pH change57 (for further

explanation, see Supplemental Information, Section 9.4), which further supports

the Cl� > H+/OH� selectivity of 12 and 18.

Coupling between Cationophores and Anionophores: Direct Evidence of

‘‘Valinomycin-likeness’’

Because valinomycin (an electrogenic cationophore) and monensin (a non-electro-

genic cationophore) function via fundamentally different mechanisms, we used

these compounds to investigate the anion-transport mechanisms of representative

anionophores. Ionophore-induced Cl� efflux was measured by ISE from KCl-loaded

vesicles suspended in an inert external K2SO4 solution. Here, Cl� transport was

mainly driven by the large Cl� concentration gradient (300 mM inside and �0 mM

outside), but no measurable Cl� efflux could occur in the presence of an aniono-

phore alone because of the buildup of amembrane potential (if the test anionophore

was an electrogenic Cl� carrier) or a pH gradient (if the test anionophore was a

H+/Cl� symporter or a Cl�/OH� antiporter). Valinomycin dissipated the membrane

potential from electrogenic Cl� transport58 (the K+ gradient also provided a small

additional driving force for Cl� transport), allowing electrically coupled K+/Cl� flux

in the presence of an electrogenic Cl� transporter (Figure 3C).59 By contrast,

monensin dissipated the pH gradient accumulated by Cl�/OH� antiport (or

H+/Cl� symport) through K+/H+ antiport, leading to formal KCl flux in the presence

of a H+/Cl� symporter or Cl�/OH� antiporter (Figure 3D).
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Figure 5. Coupling between Cationophores and Anionophores to Facilitate Net KCl Flux

(A–D) POPC LUVs (mean diameter = 200 nm) were loaded with KCl (300 mM) and K2SO4 (200 mM)

buffered at pH 7.4 with 5 mM HEPES. The vesicles were suspended in an external solution of

K2SO4 (200 mM) buffered at pH 7.4 with 5 mM HEPES. Cl� efflux induced by (A) prodigiosin (Prod),

(B) 1, (C) 12, or (D) 18 in the absence and presence of valinomycin (Vln, 0.1 mol % with respect to

lipid) or monensin (Mon, 0.1 mol %) was monitored using a Cl�-selective electrode. All

ionophores were added to the vesicle suspensions as DMSO solutions. Detergent was added at

5 min to release all Cl� and calibrate Cl� efflux to 100%. Lipid concentration was 1.0 mM.

Ionophore concentrations are shown as ionophore-to-lipid molar ratios. Error bars represent

standard deviations from two repeats. The same DMSO, Vln, and Mon controls were used in all

figures. See Figures 3C and 3D for schematic illustrations.
Figure 5A shows that prodigiosin coupled with monensin, but not valinomycin,

demonstrating that prodigiosin cannot facilitate electrogenic Cl� transport and is

thus the anionophore equivalent of the non-electrogenic cationophore monensin.

The unselective anionophore 1 coupled with both valinomycin and monensin (Fig-

ure 5B), demonstrating that 1 can facilitate both electrogenic Cl� transport and elec-

troneutral Cl�/OH� antiport (or H+/Cl� symport) at the same concentration. The

same transport rates observed in the presence of valinomycin andmonensin suggest

that Cl� transport is the same rate-limiting process, also ruling out potential
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transport acceleration via ion pairing between the valinomycin$K+ complex and the

1$Cl� complex. Taking into account that 1 also facilitated electrogenic H+/OH�

transport (Table 1), 1 can be regarded as a charge-inversed equivalent of

‘‘valinomycin + CCCP’’ (but with a much lower activity). Importantly, the

selective anionophores 12 and 18 coupled with valinomycin, but not monensin

(Figures 5C and 5D), indicating that they can facilitate electrogenic Cl� transport

with little H+/OH� transport at the same concentration. Potential transport

acceleration via ion pairing in the case of 12 and 18 coupling with valinomycin is

unlikely given that valinomycin did not accelerate 12 and 18 in the HPTS assay

(Figure S62). The ‘‘valinomycin-likeness’’ of selective anionophores 12 and 18

is thereby firmly established. Thus, the results reveal that prodigiosin, 1, and 12

(18) are representative examples of three types of anionophores with different

functions (for further details, see Supplemental Information, Sections 9.4, 12,

and 14).

Anion-Transport and pH-Perturbation Studies in Cells

To begin to investigate the action of anionophores in cells, we used model systems

to study the effects of anionophores on anion transport, pH-gradient disruption, and

cytotoxicity. For these experiments, we used Fischer rat thyroid (FRT) cells, a cell line

used to investigate epithelial ion transport,60 and A549 cells, a cell line employed for

pH-gradient disruption and cytotoxicity studies.26 To measure anionophore-medi-

ated Cl� transport in FRT cells, we used FRT cells engineered to express the

halide-sensitive yellow-fluorescent protein, YFP-H148Q/I152L.11,61,62 Facilitated

Cl� transport through the plasma membrane was measured indirectly by I� entry

into the cells coupled with the exit of intracellular Cl�, leading to quenching of

YFP fluorescence by I�.11 Compound 18 was inactive in this assay (data not shown),

likely because of low deliverability.11 By contrast, Figure 6A demonstrates that com-

pound 12 mediated anion transport with high activity (similar to the active aniono-

phores reported previously).11

We performed cytotoxicity studies in human lung adenocarcinoma (A549) cells.

Compound 12 exhibited modest toxicity to A549 cells with a half-maximum inhibi-

tory concentration (IC50, determined after treatment for 24 hr) of 43 G 4 mM. Inter-

estingly, analog 10 was significantly less toxic with IC50 > 100 mM (Supplemental

Information, Section 13). Possibly related to this result, we found that 10 was unable

to facilitate electrogenic Cl� transport in LUV assays (Figure S73A).

In lysosomes, an acidic luminal pH is established by H+ pumping into lysosomes by

V-ATPase and a counterion pathway, which is likely Cl�/H+ antiport via ClC-7.63,64

Prodigiosin is known to neutralize lysosome pH by electroneutral H+/Cl� symport

out of lysosomes, which is a possible cause of its toxicity.14,15 Compound 12 was

tested for its ability to neutralize lysosome pH in A549 cells using the pH-sensitive

fluorescent dye acridine orange (AO) to stain lysosomes and endosomes. After treat-

ing A549 cells with 50 mM 12, a concentration close to its IC50, only a small propor-

tion of the orange fluorescence inside the cells disappeared compared with the

DMSO control (Figure 6B), suggesting only slight neutralization of lysosomal pH.

This result contrasts with recently reported tambjamine-derived anionophores that

led to complete disappearance of AO fluorescence in the same cell line at concen-

trations close to their IC50 (�10 mM).26 Similarly, analogs of 9 with electron-

withdrawing fluorine or trifluoromethyl substituents,25 other anionophores with

highly acidic hydrogen-bond donors,23,24 and other tambjamine-derived ‘‘HCl re-

ceptors’’27 exhibited potent lysosomal pH neutralization, although they were tested

in different cell lines. Anionophores bearing highly acidic hydrogen-bond donors
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Figure 6. Compound 12 Mediates Anion Transport without Effectively Neutralizing Lysosomal

pH in Cells

(A) (Left) Anion transport by FRT cells expressing the halide sensor YFP-H148Q/I152L at the

indicated concentrations of compound 12 was determined from the fit of first-order exponential

functions to the fluorescence decay elicited by NaI (100 mM). Fluorescence quenching by the

anionophore vehicle (1–10 mM, 0.1% v/v DMSO; 50 mM, 0.5% v/v DMSO) was subtracted from each

test measurement to determine the transport activity of compound 12. Data are shown as

means G SEM (n = 35–40 from at least three independent experiments). (Right) Representative

time courses of cell fluorescence. Values of cell fluorescence were normalized to the fluorescence

intensity at t = 0 s.

(B) Acridine orange staining of human lung adenocarcinoma (A549) cells treated with DMSO

control (0.5% v/v) or compound 12 (50 mM, added in DMSO). The acridine orange staining was

performed four times in duplicate, and similar results were obtained.
(e.g., 8 and 10) or functioning as ‘‘HCl receptors’’ (e.g., prodigiosin and trihexyl-

amine) are unfavorable for selectivity, as demonstrated in our examples. The results

reported here are consistent with the Cl� > H+/OH� selectivity of 12, indicative of

low activity in facilitating H+/Cl� symport or Cl�/OH� antiport, processes required

for lysosomal pH neutralization. The selectivity, however, is not as perfect as the

K+ > H+/OH� selectivity of valinomycin (Figure S61A); this possibly explains the mi-

nor lysosomal pH neutralization observed.
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The change in intracellular (cytosolic) pH (pHi) of A549 cells was also measured using

the intracellular pH indicator SNARF-1 after anionophore treatment. Compound 12

induced a decrease in pHi of 0.42 G 0.04 pH units in this cancerous cell line. The

exact cause of the decrease in pHi is unclear at this moment. One possibility is

Cl�/HCO3
� antiport46 facilitated by 12. The decrease in pHi might also be an indirect

consequence of electrogenic Cl� transport facilitated by 12, which could trigger or

couple with other cellular ion transporters involved in pHi regulation under the

experimental conditions.
Conclusions

The application of synthetic anionophores to biological systems is still at an early

stage. However, in this article, we report a significant step forward by first developing

assays to measure the selectivity of anionophores for Cl� over H+/OH� and second

developing electrogenic anionophores with high selectivity. Specifically, we have

demonstrated that many small-molecule anionophores are capable of facilitating

electrogenic H+/OH� transport. By comparing a series of ureas/thioureas and

mono-N-methylated ureas/thioureas, we provide evidence that receptors acting

through hydrogen bonding can transport H+ by a CCCP-like deprotonation mecha-

nism or OH� by hydrogen bonding; the latter pathway is more likely for less acidic

hydrogen-bond donors. To emulate the highly selective electrogenic K+ carrier vali-

nomycin, we developed the synthetic small-molecule electrogenic Cl� carriers 12 and

18, for which H+/OH� transport is suppressed. The remarkable Cl� > H+/OH� selec-

tivity of these systems is confirmed by (1) coupling with both proton channel grami-

cidin and proton carrier CCCP to facilitate H+/Cl� symport (or Cl�/OH� antiport), as

shown by fluorescence, ISE, and osmotic response assays; and (2) coupling with

valinomycin, but not with monensin, to facilitate net KCl flux. Our results provide

guidelines to identify different anion-transport mechanisms (e.g., electroneutral, elec-

trogenic, and pH/proton-gradient dissipation) and develop anionophores with

desired functions by rational design. For example, the ability to encapsulate Cl�

and the absence of highly acidic hydrogen-bond donors seem to be crucial

characteristics of electrogenic Cl� > H+/OH� anionophores. As one of the first

proven examples of ‘‘valinomycin-like’’ anionophores, 12 was found to facilitate Cl�

transport in cells without effectively neutralizing lysosome pH, unlike other aniono-

phores that achieve high anion-transport activity by using highly acidic hydrogen-

bond donors or functioning as prodigiosin-like ‘‘HCl receptors.’’ We propose that

compounds of this type can play an important role in biomedical research and are

potentially more suitable for treating ‘‘channelopathies,’’ such as cystic fibrosis,

than other unselective anionophores.
EXPERIMENTAL PROCEDURES

HPTS assays based on pH-gradient dissipation18 were conducted using 1-palmitoyl-

2-oleoyl-sn-glycero-3-phosphocholine (POPC) LUVs (mean diameter = 200 nm)

loaded with the pH-sensitive fluorescence dye HPTS (1 mM), with the unencapsu-

lated HPTS removed by size-exclusion chromatography. The internal and

external solutions used were identical salt solutions (Na+-gluconate, NMDG-Cl,

(NMDG)2SO4, K+-gluconate, or KCl, depending on the assay) buffered with

10 mM HEPES (pH 7.0). For each measurement, a 2 mL sample containing 0.1 mM

lipid was used. To this vesicle suspension was added a base pulse (TBAOH,

NaOH, KOH, or NMDG, depending on the assay; final base concentration =

5 mM) to generate a transmembrane pH gradient. At the beginning of each

measurement, a DMSO solution (in some cases ethanol and acetonitrile solutions

were used) of the test ionophore was added, and the ratiometric fluorescence of
Chem 1, 127–146, July 7, 2016 143



HPTS (lex = 460 nm, lem = 510 nm, base form divided by lex = 403 nm, lem = 510 nm,

acid form) was recorded. In cases where an assisting ionophore (e.g., gramicidin D)

was used, the assisting ionophore was added to the vesicle suspension after

the addition of the base pulse and prior to the addition of the test ionophore.

At 200 s, a detergent was added to destroy the pH gradient and calibrate fluores-

cence. The fluorescence ratio was normalized to a fractional value. Dose-dependent

Hill plot analyses were performed to obtain Hill coefficients (n) and EC50 (200 s)

values.

ISE assays were conducted using POPC LUVs (mean diameter = 200 nm) loaded with

NH4Cl, KCl, or NaCl (300 mM for salt-efflux experiments and 500 mM for anion-ex-

change experiments) and suspended in a Cl�-free external solution containing

Na2SO4, K2SO4, or NaNO3 and a buffer. The unencapsulated Cl� was removed by

dialysis. For each measurement, a 5 mL sample containing 1 mM lipid was used.

At the beginning of each measurement, a DMSO solution (or ethanol solution for

trihexylamine) of the test anionophore was added to the vesicle suspension, and

Cl� efflux was monitored by a Cl�-selective electrode. In cases where an assisting

ionophore (CCCP, valinomycin, or monensin) was used, the assisting ionophore

was added to the vesicle suspension prior to the addition of the test anionophore.

At 5 min, a detergent was added to lyse the vesicles and release all Cl� to calibrate

Cl� efflux to 100%.

For further information about the different HPTS and ISE assays employed, see Sec-

tions 9 and 10 in the Supplemental Information.

For details of the biological studies, including anionophore-mediated anion trans-

port, cytotoxicity, and intracellular pH measurements, see Section 13 in the Supple-

mental Information.
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