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Abstract— In this letter the recently developed Extreme 

Gradient Boosting (Xgboost) classifier is implemented in a very-

high-resolution (VHR) object-based urban Land Use-Land Cover 

application.  In detail, we investigated the sensitivity of Xgboost 

to various sample sizes, as well as to feature selection (FS) by 

applying a standard technique, Correlation Based Feature 

Selection. We compared Xgboost with benchmark classifiers such 

as Random Forest (RF) and Support Vector Machines (SVM). 

The methods are applied to VHR imagery of two Sub-Saharan 

cities of Dakar and Ouagadougou and the village of Vaihingen, 

Germany. The results demonstrate that, Xgboost parametrized 

with a Bayesian procedure, systematically outperformed RF and 

SVM, mainly in larger sample sizes.  

 
Index Terms— Extreme gradient boosting (Xgboost), very-

high-resolution classification, random forest (RF), feature 

selection (FS), support vector machine (SVM) 

I. INTRODUCTION 

on-parametric supervised machine learning (ML) 

classifiers such as Random Forest (RF) and Support 

Vector Machines (SVM) have been widely utilized in 

Geographic Object Based Image Analysis (GEOBIA) Land 

Use-Land Cover (LULC) mapping due to their effectiveness 

and ease to use [1]. For the past decade, their use has 

constantly been expanding and numerous studies have 

demonstrated their applicability [2], [3]. Recent studies have 

shown that more advanced variants of some of the 

aforementioned algorithms such as Rotation Forest ensembles, 

Logistic Model Trees and Canonical Correlation Forests, have 

exhibited superior results in several recent test cases [4]–[6]. 

On the other hand, advances in computer vision and the advent 

of Big Data have shifted the research to Artificial Neural 

Networks (ANN) and specifically to Convolutional Neural 

Networks (CNN) techniques, as an alternative to traditional 

supervised GEOBIA methods. Although it is generally 
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established that most types of CNNs can be impressive with 

large volumes of training data at the cost of computational 

resources and model complexity [7], [8], most studies 

compare their results with other CNN techniques and not with 

GEOBIA [9], [10]. In fact, only a few studies have tackled the 

issue from a comparative perspective [11] but they focused on 

object detection and not on a multiclass LULC scheme. 

Moreover, they usually benchmarked their results with RF and 

SVM and not with more advanced ML implementations. 

Finally, limitations in training data have not taken under 

considerations as huge volumes of sample sizes are the 

exception rather than the rule. Consequently, in order to more 

realistically perform comparisons between deep learning 

methods and GEOBIA in the future, rigorous and new state-

of-the art machine learning classifiers need to be investigated. 

Another supervised classification technique, that belongs to 

the Classification and Regression Trees (CART) family is 

Gradient Boosting Machines (GBM) [8].  In the past, GBM 

and their variants have successfully been applied for several 

remote sensing (RS) applications such as species prediction 

[12], above ground biomass estimation [13] and scene 

classification [14]. Even though they have been shown to 

perform similarly to the rest of the state-of-the art classifiers 

[15], the effort and expertise needed to implement them 

overshadowed their predictive prowess for RS applications. 

The main reason is that traditional boosting algorithms are 

more prone to overfitting and have a larger number of 

parameters to optimize than machine learning algorithms such 

as RF and SVM. 

Recently, Chen and Guestrin [16], published a new, 

regularized implementation of GBM, called Extreme Gradient 

Boosting (Xgboost). Since then, it has made a very strong 

impact in the machine learning community, being the winning 

solution of most machine-learning competitions [17]. A 

number of studies in other scientific fields have already 

demonstrated its superior performance compared to popular 

algorithms [18], [19]. Although preliminary results of its 

efficacy for VHR LULC were shown in [3], tο our knowledge, 

this is the first systematic implementation of Xgboost in urban 

classification. 

In this letter, we introduce Xgboost and evaluate its 

efficiency considering its sensitivity to sample size and feature 

selection (FS) using VHR datasets over the cities of Dakar and 

Ouagadougou along with the village of Vaihingen. A 

Bayesian-based parameter optimization method is followed to 
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maximize the performance of the algorithm. The results of the 

Xgboost classification, both in terms of accuracy and 

computational cost, are compared with traditional benchmark 

classifiers, namely RF and SVM. 

MATERIALS AND METHODS 

A. Ouagadougou, Burkina Faso 

   The first classification scheme is implemented in 

Ouagadougou, the capital of Burkina Faso and a major 

Sahelian city which has been facing an extensive urban growth 

since the last two decades. A pansharpened stereo 

WorldView-3 image (VNIR, 0.5m) collected in October 2015, 

as well as a normalized Digital Surface Model (nDSM) 

produced by stereo-photogrammetry on the same dataset, are 

used for this study. The city mostly consists of planned and 

unplanned residential buildings, commercial structures and 

natural materials. 

B. Dakar, Senegal 

Pleiades tri-stereo imagery (VNIR, 0.5m) of Dakar, 

Senegal, collected in July 2015, was also used for LULC 

classification along with the respective nDSM. The urban 

fabric is more diverse and complex than that of Ouagadougou, 

especially in the city centre. 

C. Vaihingen, Germany 

Finally, the openly accessible ISPRS Vaihingen (GE) 

dataset is employed. The dataset is characterized by various 

Germanic architectural styles and is consisted of orthophotos 

at 9 cm spatial resolution (NIR, R, G). The orthophotos are 

split into several referenced numbered tiles. We trained and 

tested the various classifiers in tile no 13.  

D. Image Segmentation and Training Samples 

For segmentation, we use an open source, semi-automatic 

processing chain, recently developed in a Python environment, 

exploiting GRASS GIS [20]. The processing chain uses region 

growing segmentation, with Unsupervised Segmentation 

Parameter Optimization (USPO) as implemented in the 

i.segment.uspo module of GRASS [21] (Fig. 1). The 

classifications are trained using different number of classes for 

each dataset as described in Table I.  The collection of training 

objects for Dakar and Ouagadougou is performed using 

random and stratified random sampling with strata defined 

using OpenStreetMap while the objects are validated and 

labeled by detailed visual interpretation. For Vaihingen, we 

created the training and validation samples by labeling each 

object in the image with the reference layer that is provided. 

Afterwards, we randomly extracted objects for training and 

validation. To reduce the bias of disproportional class sizes we 

used three fixed training sets of 20, 40 and 60 objects per class 

for Dakar and Ouagadougou. Due to the abundance of training 

data in the Vaihingen dataset, we investigated the sensitivity 

to sample size in more depth (between 50 and 400 objects per 

class) while we also used ten randomly drawn distributions of 

training objects for each sample size category, further 

increasing the inference power of the results.  

 
Fig. 1.  Examples of different segmentations produced by the i.segment.uspo 

module of GRASS. Infrared false color composite image subsets of a) 

Vaihingen, b) a dense built-up area in Dakar, c) a sparsely built-up area in 
Ouagadougou. 

E. Classification Algorithms 

   Along with Xgboost, which is presented in detail here after, 

two popular benchmarked classifiers, RF and SVM are 

selected. Comprehensive reviews of their operational 

framework and their applications can be found in [22] and 

[23]. All three classifiers are utilized through their R software 

implementations. 

 
TABLE I 

CLASSIFICATION SCHEME AND VALIDATION DATA FOR DAKAR, OUAGADOUGOU AND VAIHINGEN 

 

Dakar (Senegal) Ouagadougou (Burkina Faso) Vaihingen (Germany) 

Class name Validation set Class name Validation set Class name Validation set 

Asphalt 107 Asphalt 80 Impervious surface 1000 

Building type A 73 Building 351 Building 1000 

Building type B 433 Bare Soil 312 Low vegetation 1000 

Bare soil / light and dusty concrete 428 Tree 134 Tree 1000 

Tree 117 Mixed bare soil/ vegetation 319   

Grass 142 Other vegetation 254   

Bush 130 Inland water 129   

Inland water 40 Swimming pool 107   

Shadow 113 Shadow 117   
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   Xgboost is a regularized extension of traditional boosting 

ensemble techniques that belong to the CART family. As an 

ensemble tree-boosting method, its fundamental function 

predicts a new classification membership after each iteration. 

This is done in an additive way, meaning that the predictions 

are made from weak classifiers that constantly improve over 

the previous classifiers error. Incorrectly classified samples 

receive higher weights at the next step, forcing the classifier to 

focus on their performance in the following iterations. The 

final classification is the most vigorous as it includes the 

combined improvement of all the previous modelled trees. The 

learning of these classifiers is based on defining an objective 

function [24]. This function represents the training loss and 

the regularization. The former describes the predictive 

accuracy of the model while the latter the complexity. So far, 

GBM lacked a robust regularization factor, which made them 

susceptible to overfitting [25]. Xgboost overcomes this 

shortcoming by providing a stronger regularization 

framework, that constrains overfitting. 

F. Feature Selection 

   We consider several features as initial input to the 

classification of each image. In the sub-Saharan regions of 

Dakar and Ouagadougou these include object descriptive 

statistics (mean, median, min, max, range, standard deviation, 

sum, first and third quartiles) for each spectral band, nDSM 

and NDVI, as well as geometrical covariates (object 

compactness, perimeter, fractal dimension and area) which 

total up to 60 features. With respect to the Vaihingen dataset, 

the same object statistics and covariates were computed for the 

spectral bands, NDVI, the wetness index (NDWI), as well as 

several textures of the Gray-level-co-occurrence matrix 

(GLCM) summed to 102 variables. These covariates were 

used as input to a typical supervised multiclass model for each 

classifier. 

   Recent studies have shown that in OBIA VHR 

classifications, machine learning classifiers are affected in 

different ways from FS techniques [26]. Consequently, in this 

study we employ a widely used standard FS method named 

Correlation Based Feature Selection (CFS) to assess the 

selected classifiers sensitivity to simple dimensionality 

reduction. CFS is a filter method which examines the 

relationships between covariates and the dependent variable 

through statistical metrics such as correlation or mutual 

entropy. It is often preferred  due to its high computational 

efficiency albeit having the drawback of not capturing feature 

interaction, a phenomenon documented in CART based 

classifiers [27]. The CFS method creates an objective function 

which performs a greedy search by maximizing the 

dependency of a feature subset with the dependent variable, 

while minimizing the collinearity among the features of the 

subset [28] as shown in (1): 

 

                                      g(F)=FCi/IFC                                 (1) 

  

where, F is a candidate feature subset, g(F) is the objective 

function, FCi is the average correlation between subset F and 

the dependent variable and IFCi is the average correlation 

within the subset F.  

G. Parameter Optimization 

   The Xgboost parameters are optimized with a Bayesian 

optimization (BO) procedure through the 

‘rBayesianOptimization’ package in R as it has been 

demonstrated to be the most appropriate method for boosting 

classifiers [29]. As input, the algorithm requires the minimum 

and maximum boundaries for a given parameter. Afterwards, 

10 model runs are constructed based on random combinations 

of a 10-fold cross-validated subset and the internal 

classification error is reported. From this point onwards, a 

Bayesian model is fit aiming to predict parameter 

combinations that minimize classification error using posterior 

probabilities. The procedure ends when a predefined number 

of iterations is reached (50 runs in our case). We predefined a 

total of 600 trees for the boosting to make sure that the 

optimization will be conservative and reduce the chances of 

overfitting. For the rest of the parameters such as the learning 

rate, tree depth and subsampling of training data and features, 

we used a wider range of values as input to the BO. For the 

SVM optimization, we construct a sequential grid search (GS) 

with a radial kernel function by applying exponentially 

growing sequences to identify the optimal cost and gamma 

parameters. Regarding RF parameters, an appropriate number 

of trees and number of features selected at each tree node by 

minimizing the Out of Bag Error (OOB). Finally, parameter 

optimization is performed both before and after FS. The 

training and testing of the classifiers is performed using an 

Intel Xeon E5-2690 16 core processor at 2.9 GHz with 96 GB 

of RAM. 

II. RESULTS 

   The CFS feature selection identified 26, 22 and 16 

covariates for Dakar, Ouagadougou and Vaihingen, 

respectively. To evaluate the efficiency of each classifier we 

computed the overall classification accuracy (OA) prior and 

after FS in each examined sample size.  

A. Dakar Results 

   The results of the classification for Dakar are described in 

Table II and Fig.2. It can be observed that Xgboost’s 

efficiency is more evident with larger sample sizes. For 

example, with the maximum sample size (N60) it outperformed 

both RF (~ 1.5%) and SVM (~ 4%), regardless of feature 

selection. The highest recorded accuracy (OA=82.10%) is 

obtained when Xgboost trained with the full set of features. 

Nonetheless, Xgboost appears to be slightly negatively 

influenced by a reduced CFS feature subset, except for very 

small sample sizes (N20). In contrast, RF and to a smaller 

extent SVM, appear to be benefited from CFS selection in all 

cases. 
 

TABLE II 

OVERALL ACCURACIES (%) FOR DAKAR USING DIFFERENT NUMBERS OF 

TRAINING OBJECTS. THE TRAINING TIME REFERS TO THE LARGEST SAMPLE 

SIZE (N60) 
 

Training 

sample 

SVM SVMCFS RF RFCFS Xgb XgbCFS 

N20 74.65 75.85 77.12 77.67 74.81 75.56 

N40 77.12 77.31 78.33 79.4 80.09 79.25 
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N60 77.88 78.07 80.33 80.88 82.1 81.78 

Time (s) 0.25 0.18 1.51 1.01 3.62 2.21 

 

TABLE III 
OVERALL ACCURACIES (%) FOR OUAGADOUGOU USING DIFFERENT NUMBERS 

OF TRAINING OBJECTS. THE TRAINING TIME REFERS TO THE LARGEST 

SAMPLE SIZE (N60) 
 

Training 

sample 

SVM SVMCFS RF RFCFS Xgb XgbCFS 

N20 84.53 83.53 82.57 82.55 83.42 84.23 

N40 86.74 85.64 85.83 86.19 87.21 87.30 

N60 88.39 88.02 86.78 86.69 88.44 88.10 

Time (s) 0.29 0.21 1.75 0.82 4.15 1.93 

 

B. Ouagadougou Results 

In a similar fashion for Ouagadougou, Xgboost systematically 

outperformed for all but the smallest sample size (Table III). 

Xgboost before and after CFS, obtained the highest accuracy 

using medium and large sample sizes. SVM performed very 

good having similar accuracies with Xgboost. On the contrary, 

RF under performed in all the cases. In most cases, the 

classifiers were relatively unaffected by FS, with the exception 

of the first category, where for SVM the FS led to a drop of 

1%. 

 

C. Vaihingen Results 

   The results of the average and standard deviation of OA for 

10 randomly sampled training distributions for each class size 

are reported in Fig 3. Xgboost displays higher accuracy in all 

different cases, with or without FS. SVM and RF largely 

underperformed in comparison to Xgboost with quasi 5% and 

2% differences in OA. Generally, the standard deviation of the 

mean OA is decreasing as sample size increase for all 

classifiers. However, models with FS appear smoother in their 

trends potentially because noisy features that might affect 

stability are discarded.  Regarding FS, it is clear that with a 

very large number of covariates (102), FS can be beneficial in 

small to moderate sample sizes. Critically, from 200 samples 

per class, Xgboost appears to increase in accuracy when the 

whole data are used, while SVM and RF remain the same. 

III.   DISCUSSION  

   Although far from extensive, the results demonstrate that 

Xgboost is a promising alternative to other state-of-the-art 

classifiers. Optimized through a Bayesian procedure, its 

performance for VHR LULC classification is highly 

encouraging in comparison to RF and SVM. Even at cases 

were typical CART classifiers such as RF underperformed 

(Ouagadougou), Xgboost managed to achieve the highest 

accuracy. On the negative side, the high number of trees, made 

the algorithm computationally inefficient in comparison to RF 

and SVM (Tables II – III). With respect to the training time, 

SVM was by far the fastest with RF and Xgboost following. It 

is suggested that Xgboost performs just as good if a lower 

amount of iterations is selected [19]. This indicates that 

computation cost may be reduced by optimizing the 

parameters around a smaller number of trees. 

 

  
Fig. 2.  a) Pleiades RGB composite of a central urban region in Dakar and b) 
LULC map of the same region using Xgboost with the largest sample size 

(N60). 

 

 
Fig. 3.  Mean overall accuracy and standard deviation of 10 random 
distributions of training data for each sample size category 

 
 

   Another important facet of the applied methodology is that 

parameter optimization is performed for each classifier before 

and after FS. In most studies, optimization is performed only 

once. The effects of re-optimizing parameters when the 

number of input features is changed, is largely unexplored and 

subject of further research.  Moreover, FS using CFS appeared 

to be systematically beneficial for relatively small amount of 

training objects in comparison to the amount of input 

covariates. This can be explained by the curse of 

dimensionality  where the accuracy of prediction can be 

affected by the number of  predictors [3]. Given that we used 

more than 100 covariates in the Vaihingen dataset, it is not 

surprising that even with 150 objects per class there was merit 

for performing FS. In larger sample sizes RF and SVM 

classifiers were largely unaffected but Xgboost exhibited 

increase in OA using the whole set of features. These results 

imply that the merit of using CFS as an FS method on 

Xgboost is beneficial for small to moderate sizes but can be 

harmful with large volumes of training data. As such, 

alternative selection methods should be investigated. In [26] it 

was demonstrated that instead of focusing on FS methods that 

produce single feature subsets, it is more appropriate to 

perform selection with methods that produce sequential 

feature rankings [26], [30]. Detailed methodologies regarding 

the GEOBIA processing along with documented code can be 

found in [20] while a simple example of the classification, 

parameter optimization and feature selection procedures can 

be found in the following github repository 

(https://github.com/ANAGEO/Xgboost_FeatureSelection_Opt

imization). Finally, it should be noted that Xgboost has 

https://github.com/ANAGEO/Xgboost_FeatureSelection_Optimization
https://github.com/ANAGEO/Xgboost_FeatureSelection_Optimization
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recently been included in the list of classifiers of the 

v.class.mlR module in GRASS GIS. 

IV. CONCLUSIONS 

   This study evaluates the implementation of Xgboost for 

VHR LULC urban classification. The results demonstrate that 

optimized Xgboost with a Bayesian model, consistently 

outperforms RF and SVM in different VHR datasets and 

classification schemes but at the cost of increased 

computational time. The improvement of Xgboost offers 

expands as the amount of training data increase. The benefits 

of CFS as FS method for reducing dimensionality are more 

beneficial for small sample sizes.  

   With respect to supervised machine learning algorithms, 

further research should compare Xgboost with more refined 

classifiers such as Rotation Forest [5] and other CART 

ensembles [4]  that have been shown to outperform several 

traditional techniques. Moreover, comparative studies between 

GEOBIA methods employing Xgboost and deep learning 

techniques should be investigated. It is recommended the 

studies take into account computational burden and 

complexity, and training data limitations. Finally, more 

advanced FS methods, such as recursive feature elimination 

[28]  or genetic algorithms should be examined, particularly 

for Xgboost which was shown to be sensitive to the results of 

dimensionality reduction.  
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