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1 Introduction

The standard model for propagation of laser beams is the 2D Schrödinger equation
with Kerr nonlinearity

i@t C� C j j2 D 0;  .x; y; 0/ D  0.x; y/:

It is well known that this equation can become singular at finite time, see, for
instance, [13] and the classical references therein. Karpman and Shagalov [16]
studied the regularization and stabilization effect of a small fourth-order dispersion,
namely they considered the equation

i@t C� C j j2� � ��2 D 0; (1)

for some � > 0, the equation being now considered in Œ0;1Œ�RN , N � 1. One of
their results shows, by help of some stability analysis and numerical computations,
that when N� � 2, the waveguide solutions are stable for all � and when 2 <
N� < 4, they are stable for small values of � . This result shows that when adding
a small fourth-order dispersion term, a new critical exponent/dimension appears. In
particular, the Kerr nonlinearity becomes subcritical in dimension 2 and 3 which is
obviously an important feature of this extended model.
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In [13], Fibich et al. have motivated the study of (1) by recalling that NLS
(the nonlinear Schrödinger equation) arises from NLH (the nonlinear Helmholtz
equation) as a paraxial approximation. But since NLS can become singular at a
finite time, this suggests that some of the small terms, neglected in the paraxial
approximation, plays in fact an important role to prevent the blow up. The natural
question addressed by Fibich et al. is therefore whether nonparaxiality prevents the
collapse. The small fourth-order dispersion coefficient � is then shown to be part of
the nonparaxial correction to NLS.

In [13], Fibich et al. showed the role of the new critical exponent � D 4=N
in the global existence in time when applying the arguments of Weinstein [25].
The necessary Strichartz estimates follow from Ben-Artzi et al. [1]. A necessary
condition for existence of waveguide solutions is given in [13, Lemma 4.1], see also
the Derrick-Pohozahev identity in Section 6.

The purpose of this short note is to show that classical tools, available in the
literature, allow to state the existence and some qualitative properties of least
energy waveguide solutions. In particular, a small fourth-order dispersion coefficient
does not affect the symmetry, uniqueness and nondegeneracy of the least energy
waveguide solution at least for a Kerr nonlinearity in dimension N � 3.

From now on, we focus on standing wave solutions of (1), referred to as
waveguide solutions in nonlinear optics, namely on solutions of (1) of the form

 .t; x/ D exp.i˛t/u.x/:

This ansatz yields the semilinear elliptic equation

��2u.x/ ��u.x/C ˛u.x/ D juj2�u.x/; x 2 R
N : (2)

By scaling the solutions as v.x/ D u. x
4
p
�
/, it is equivalent to consider the equation

�2v.x/ � ˇ�v.x/C ˛v.x/ D jvj2�v.x/; x 2 R
N : (3)

where ˇ D 1p
�

.
It is standard that least energy solutions can be obtained by considering the

minimization problem

mRN WD inf
u2M

RN
JRN .u/ (4)

where

JRN .u/ D
ˆ
RN
.j�uj2 C ˇjruj2 C ˛juj2/ dx (5)

and

MRN WD fu 2 H2.RN/ W
ˆ
RN

juj2�C2 dx D 1g:
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Indeed, if u 2 MRN achieves the infimum m D mRN , then u weakly solves

�2u � ˇ�u C ˛u D mjuj2�u: (6)

Henceforth, if m > 0, then v D .m/
1
2� u solves (3). Moreover v is a least energy

solution in the sense that it minimizes the action functional E W H2.RN/ ! R

defined by setting

E.u/ WD 1

2
JRN .u/ � 1

2� C 2

ˆ
RN

juj2�C2 dx

among the set of (H2 or smoother) solutions or equivalently within the Nehari
manifold

fu 2 H2.RN/ W E0.u/.u/ D 0g:

We then prove the following results.

Theorem 1.1. Assume ˛ > 0, ˇ > �2p˛ and 2 < 2� C 2 < 2N
N�4 if N � 5.

Then problem (3) has a nontrivial least energy solution. If ˇ � 2
p
˛, then any least

energy solution does not change sign, is radially symmetric around some point and
strictly radially decreasing.

An existence statement (as well as the information on the sign of the minimizer) is
also given in Section 3 and Section 4 when the equation is considered in a bounded
domain with Navier boundary conditions. The symmetry properties of the solutions
that match the symmetries of the domain are discussed in Section 4.

When ˇ is large, the Laplacian is the driven term in the differential operator in (3)
and we therefore expect to recover the uniqueness (up to translations) of the least
energy solution. By scaling, we can discuss this issue by looking at least energy
solutions of (2) for small � . As a preliminary observation, we prove the strong
convergence in H1 to the unique least energy solution of NLS.

Theorem 1.2. Assume 2 < 2� C 2 < 2N
N�2 if N � 3. If �k ! 0 and uk is a sequence

of least energy solutions of (2), then .uk/k converges (after possible translations) in
H1 to u0, where u0 is the unique positive (radially symmetric) solution of the limit
problem (2) with � D 0.

The positive solution of (2) with � D 0 is unique up to translations. To ensure
uniqueness, we have assumed that u0 is the positive solution radially decreasing
around 0. For the physical model (2) with � D 1 in dimension N � 3, we can
improve this convergence to strong convergence in H2. The nondegeneracy of the
least energy waveguide of NLS allows then to use the Implicit Function Theorem to
prove uniqueness for small � .



34 D. Bonheure and R. Nascimento

Theorem 1.3. Assume N � 3 and � D 1. Then there exists �0 > 0 such that if
0 < � < �0, (2) has a unique least energy solution (up to translations). Fixing
its maximum at the origin, this solution is radially symmetric and strictly radially
decreasing.

An equivalent statement can be proved for the Navier boundary value problem in a
ball (and a weaker statement holds for other bounded domains), see Section 6.

In the H1 critical or supercritical regime, the least energy solution should
disappear at the limit � ! 0. In fact, if 2N

N�2 � 2� C 2 < 2N
N�4 , N � 5, the least

energy solutions are unbounded in H2 when � ! 0, see Section 6.
In contrast with Theorem 1.1, when ˇ is small in (3), some of the usual properties

of the least energy solution of NLS cannot hold. Namely, if one can prove that any
least energy solution is radial in that case, then oscillations arise at infinity. These
oscillations were suggested in [13]. We focus again on the model equation (2) with
� D 1 in dimension N � 3. We prove that least energy solutions among radial
solutions do oscillate at infinity.

Theorem 1.4. Suppose that �2p˛ < ˇ < 2
p
˛ and N � 3. Then every radial

least energy solution of (3) with � D 1 is sign-changing.

This statement shows that when ˇ < 2
p
˛, least energy solutions cannot be radial

and monotone in contrast with the case ˇ � 2
p
˛. We point out that on a bounded

domain, we are not aware of an equivalent statement.
The paper is organized as follows. Section 2 deals with the functional framework

and the formulation of the problem on a bounded domain. In Section 3, we prove
the existence of a least energy solution in the whole space as well as in bounded
domains. In Section 4, we consider the qualitative properties for large ˇ. Section 5
is dedicated to the proof of Theorem 1.2 and Theorem 1.3 while Section 6 contains
the proof of Theorem 1.4. In the last section, we give some concluding remarks.

Notes added in proofs: We thank Jean-Claude Saut for bringing to our attention
the reference [5] which deals with an anisotropic mixed dispersion NLS also
proposed in [13]. We believe that some arguments from [5] can be used to obtain
the exponential decay of the ground state at least in some particular cases.

We also mention the very recent preprint [6] where the first theoretical proof
of blow-up is obtained for the biharmonic NLS as well as a new Fourrier
rearrangement is proposed in the Appendix. This rearrangement decreases the L2-
norm of .��u/s for every s � 0 and is therefore adequate to deal with polyharmonic
as well as fractional equations. Applied to our problem, it completes Theorems 1.1
and 1.4 in the following way. Assuming ˇ � 0 and � 2 N0 (including therefore
the physical case � D 1), there is a ground state solution of (C) which is radially
symmetric. As a consequence of Theorem 1.4, assuming � 2 N0 and 0 � ˇ < 2

p
˛,

this ground state is radially oscillatory at infinity. When � is not an integer, the
radial symmetry remains an open question in the range ˇ < 2

p
˛ though the natural

conjecture is that radial symmetry holds for every � and every ˇ in the range covered
by Theorem 1.1.
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2 Functional framework

In this section, we settle the functional setting. The natural space for (2) and (3)
is H2.RN/ or H2.˝/ \ H1

0.˝/ when we consider the boundary value problem in a
bounded domain ˝ � R

N with Navier boundary conditions, namely

.Pˇ/

�
�2u � ˇ�u C ˛u D juj2�u; in ˝;

u D �u D 0; on @˝:

We therefore set H˝ WD H2.˝/ \ H1
0.˝/ and HRN WD H2.RN/. We introduce the

following conditions on ˛ and ˇ:

(A1) ˛ > 0 and ˇ > �2p˛;
(A10) ˛ > �ˇ�1.˝/ � �21.˝/ and �2�1.˝/ < ˇ;

where �1.˝/ stands for the first eigenvalue of �� in H1
0.˝/ when ˝ is a bounded

domain. Observe that when j˝j is large, �1.˝/ is small. If ˇ is negative, (A10)
is then more restrictive than (A1). The following lemma follows from standard
computations.

Lemma 2.1. Assume˝ is a bounded smooth domain and .A1/ or .A10/ holds. Then
H˝ is a Hilbert space endowed with the inner product defined through

hu; vi D
ˆ
˝

.�u�v C ˇrurv C ˛uv/ dx 8 u; v 2 H˝:

Proof. From H2 elliptic regularity [14, 18], we know that if u 2 H2.˝/ \ H1
0.˝/,

then

kukH2 � Ck�ukL2

for some C > 0 depending on ˝, so that H˝ is a Hilbert space endowed with the
inner product

hu; viH˝ D
ˆ
˝

�u�v dx 8 u; v 2 H˝:

It will be enough to show that there exists a constant C > 0 such that

ˆ
˝

.j�uj2 C ˇjruj2 C ˛juj2/ dx � CkukH˝ 8 u 2 H˝: (7)

Obviously the inequality (7) holds true if we have ˛ � 0 and ˇ � 0. For u 2 H˝ ,
we can apply Young’s inequality to obtain
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kuk2 D
ˆ
˝

.j�uj2 C ˇjruj2 C ˛juj2/ dx

D
ˆ
˝

.j�uj2 � ˇu�u C ˛juj2/ dx

�
�
1C ˇ

2�

�ˆ
˝

j�uj2 dx C
�
˛ C ˇ�

2

� ˆ
˝

juj2 dx (8)

for every � > 0. We have to distinguish two cases. If we can choose � > 0 such that
both terms in the right-hand side of (8) are positive, then we are done. This ends the
proof if ˇ > �2p˛, namely if (A1) holds. If

1C ˇ

2�
> 0 and ˛ C ˇ�

2
< 0;

we write

kuk2 �
�
1C ˇ

2�

� �ˆ
˝

j�uj2 dx C g.�/
ˆ
˝

juj2 dx

�
;

where

g.�/ D ˛ C ˇ�=2

1C ˇ=2�
:

Recalling Poincaré inequality

ˆ
˝

j�uj2 dx � �21.˝/

ˆ
˝

u2 dx 8 u 2 H˝;

we can complete the proof if

g.�/ > ��21.˝/

for some � > 0. When ˇ > �2�1.˝/; this condition can be fulfilled if

˛ > �ˇ�1.˝/ � �21.˝/

while if ˇ � �2�1.˝/, we recover the condition

�2p˛ < ˇ:

ut
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In the case ˝ D R
N , the same arguments show that (A1) implies

hu; vi D
ˆ
˝

.�u�v C ˇrurv C ˛uv/ dx

is a scalar product on HRN . Elliptic regularity can be used here to ensure that

�
1C ˇ

2�

� ˆ
RN

j�uj2 dx C
�
˛ C ˇ�

2

� ˆ
RN

juj2 dx

is a norm on H2.RN/ as soon as 1 C ˇ

2�
> 0 and ˛ C ˇ�

2
> 0. This yields the

following lemma.

Lemma 2.2. Assume that .A1/ holds. Then the bilinear form

hu; vi D
ˆ
˝

.�u�v C ˇrurv C ˛uv/ dx 8 u; v 2 HRN ;

is an inner product on HRN .

3 Existence of minimizers

In this section, we handle the minimization problem (4). We start with the simpler
case of a bounded domain. In this case, the minimization problem writes

m˝ WD inf
u2M˝

J˝.u/

where

J˝.u/ D
ˆ
˝

.j�uj2 C ˇjruj2 C ˛juj2/ dx

and

M˝ WD fu 2 H˝ W
ˆ
˝

juj2�C2 dx D 1g:

In the case of a bounded domain, it is standard to prove that m˝ is achieved when
2� C 2 is a subcritical exponent because J˝ is the square of a norm on H˝ and we
can rely on the compactness of the embedding of H˝ into L2�C2.˝/. Moreover,
since m˝ is clearly positive, we deduce that v D .m˝/

1
2� u solves (Pˇ). Moreover v

is a least energy solution in the sense that it minimizes the action functional E˝ W
H˝ ! R defined by
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E˝.u/ WD 1

2
J˝.u/ � 1

2� C 2

ˆ
˝

juj2�C2 dx

among the set of (H2 or smoother) solutions or equivalently within the Nehari
manifold

fu 2 H˝ W E0̋ .u/.u/ D 0g:

Theorem 3.1. Assume ˝ is a bounded smooth domain and .A1/ or .A10/ holds.
Suppose moreover that 2 < 2� C 2 < 2N

N�4 if N � 5. Then problem .Pˇ/ has a
nontrivial least energy solution.

To handle the case of ˝ D R
N , since we cannot use sign information, nor

symmetry, we follow the celebrated method of concentration-compactness of P.L.
Lions. We give a sketchy proof since classical arguments apply. All the details can
easily be reconstructed from Kavian [17, Chapitre 8 - Exemple 8.5] with minor and
obvious modifications with respect to the case treated therein.

Proof (Proof of the existence part in Theorem 1.1.). We introduce

M� D fu 2 H2.RN/ W
ˆ
RN

juj2�C2 dx D �g

where � > 0 is fixed and we consider the minimization problem

m� WD inf
u2M�

JRN .u/

where JRN .u/ is defined as in (5).
Let .uk/k � M� be such that JRN .uk/ ! m�. Then, .uk/k is bounded in H2.RN/

and
´
RN jukj2�C2 D �. Thus, we can apply P.L. Lions’ concentration-compactness

lemma to the sequence .�k/k D .
´
RN jukj2�C2/k, see [21, Lemma I. 1]. Since

m� D �
1

�C1 m1, we have m� > 0 for all � > 0 and therefore, for all R > 0, the
sequence

Qk.R/ WD sup
y2RN

ˆ
BR.y/

juk.x/j2�C2 dx

does not converge to zero. Namely, vanishing is ruled out.
Since 2� C 2 > 2, we have, for 0 < � < �,

�
1

�C1 < �
1

�C1 C .� � �/ 1
�C1 ;
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which yields

m� < m� C m��� ; 8 � 2 	0; �Œ: (9)

Then dichotomy is ruled out using classical truncation arguments.
Therefore, the compactness holds for �k, i.e., going to a subsequence of .uk/ if

necessary, there exists a sequence .yk/ � R
N such that for every " > 0, there exists

R > 0 such that
ˆ

BR.yk/

jukj2�C2 dx > � � ":

Setting wk.x/ WD uk.x C yk/, we have that .wk/ is also a minimizing sequence for
m�. Then, up to a subsequence, wk weakly converges in H2.RN/ to w 2 M� and
JRN .w/ D m�. This concludes the proof of the existence in Theorem 1.1. ut
Remark 3.2. When ˇ � 2

p
˛, we can avoid the use of the concentration-

compactness lemma. Indeed, take a minimizing sequence .uk/k � H2.RN/ for
m. Then, let us set fk WD ��uk C ˇuk=2 and define vk 2 H2.RN/ to be the
strong solution of ��vk C ˇvk=2 D jfkj� in R

N , where jfkj� denotes the Schwarz
symmetrization of jfkj. Thus for each k 2 N, we have vk 2 H2

rad.R
N/ which is

the space of H2 functions that are radially symmetric around the origin. Then a
particular case of [3, Lemma 3.4] see also [4] implies

J

�
vk

jvkj2�C2

�
D

ˆ
RN
.��vk C ˇvk=2/

2 dx � .ˇ2=4 � ˛/
ˆ
RN
v2k dx

jvkj22�C2

�

ˆ
RN
.��uk C ˇuk=2/

2 dx � .ˇ2=4 � ˛/
ˆ
RN

u2k dx

jukj22�C2
:

Using the compact embedding of H2
rad.R

N/ into L2�C2.RN/, see, for instance, [20,
Théorème II.1], it follows that .vk/k weakly converges in H2 to some v 2 M and the
remaining arguments are standard.

4 Sign and symmetry

In order to investigate the symmetry properties of a fourth order equation with
Navier boundary conditions or in the whole space, it is natural to ask if the equation
may be rewritten as a cooperative system. If this is the case, then the moving plane
procedure applies, see the work of Troy [23] in the case of a bounded domain or
de Figueiredo-Yang [10] (if we assume exponential decay) and Busca-Sirakov [7]
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(without assuming exponential decay) when ˝ D R
N . Observe that when ˛ > 0

and jˇj � 2
p
˛, we can indeed write the equation as a cooperative system

��u C ˇ

2
u � v D 0; ��v C .˛ � ˇ2

4
/u C ˇ

2
v D juj2�u:

To prove that least energy solutions do not change sign, we use the minimality
combined to the classical maximum principle for a single equation. The argument
goes back to van der Vorst, see, for instance, [24]. We sketch it for completeness to
emphasize the role of the assumption jˇj � 2

p
˛.

Lemma 4.1. Assume that jˇj � 2
p
˛ and ��1.˝/ < ˇ=2 if ˝ is bounded or

ˇ > 0 if ˝ D R
N. If u 2 H˝ is a minimizer of (4), then

u > 0 and ��u C ˇu=2 > 0 in ˝;

or else

u < 0 and ��u C ˇu=2 < 0 in ˝:

Proof. Let w 2 H˝ be such that

� ��w C ˇw=2 D j ��u C ˇu=2j; in ˝;
w D 0; on @˝:

Then

��.w ˙ u/C ˇ.w ˙ u/=2 � 0:

Using the strong maximum principle we know that u has a fixed sign if ��uCˇ=2 u
does not change sign. We then argue by contradiction, suppose that ��u C ˇu=2
changes sign. Then j ��u C ˇu=2j ¤ 0 and the strong maximum principle implies
that w > juj. For convenience denote by j� j2�C2 the L2�C2 norm in ˝. Therefore

J˝

�
w

jwj2�C2

�
D

ˆ
˝

.��w C ˇw=2/2 dx � .ˇ2=4 � ˛/
ˆ
˝

w2 dx

jwj22�C2

<

ˆ
˝

.��u C ˇu=2/2 dx � .ˇ2=4 � ˛/
ˆ
˝

u2 dx

juj22�C2

which contradicts the minimality of u. Observe that the last inequality holds because
the numerator is nonnegative. ut
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Remark 4.2. In the case of a bounded domain ˝ and 0 < ˛ � �1.˝/
2, we

then know the sign of the least energy solutions of .Pˇ/ for values of ˇ 2
.�2�1.˝/;�2p˛	[ Œ2p˛;1/. For˝ bounded, we do not know if the least energy
solutions change sign for ˇ 2 .�2p˛; 2p˛/. Section 6 deals with the case˝ D R

N

under the assumption that the minimizer is radial.

Proof (Proof of Theorem 1.1 continued). Existence was proved in Section 3 while
we just proved in Lemma 4.1 that any least energy solution does not change sign.

Writing f .u; v/ D .
ˇ2

4
� ˛/u � ˇ

2
v C juj2�u and g.u; v/ D v � ˇ

2
u, the equation

is equivalent to the cooperative system

�u C g.u; v/ D 0; �v C f .u; v/ D 0:

We are in the setting of Busca-Sirakov [7] and [7, Theorem 2] applies. Observe that
clearly u and v must be symmetric with respect to the same point. ut

In the case of a bounded domain, we have proved so far the following result
for (Pˇ).

Theorem 4.3. Assume ˝ is a bounded smooth domain and .A1/ or .A10/ holds.
Suppose moreover that 2 < 2� C 2 < 2N

N�4 if N � 5. Then problem .Pˇ/ has a
nontrivial least energy solution. If in addition jˇj � 2

p
˛ and ��1.˝/ < ˇ=2, then

any least energy solution does not change sign. If ˝ is a ball, then any least energy
solution is radially symmetric and strictly radially decreasing.

Proof. Existence has been achieved in Theorem 3.1 while the sign information
follows from Lemma 4.1. If ˝ is a ball, the symmetry of the minimizer follows
from [23, Theorem 1]. ut

We point out that the condition jˇj � 2
p
˛ is crucial to rewrite the problem (Pˇ)

as a cooperative system. In fact, we can deal more generally with smooth bounded or
unbounded domain ˝ with some symmetries. Then the symmetry properties of the
solutions of constant sign can be deduced from the moving plane method adapted
to cooperative systems in [23].

5 The effect of a small fourth order dissipation

In this section, we study the behaviour of minimizers of (4) when the coefficient of
fourth order dissipation tends to zero. We assume throughout the section that ˛ > 0
and we choose the norm on H1.RN/ defined through

kuk2H1 D
ˆ
˝

.jruj2 C ˛juj2/ dx:
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We recall that the problem

�2v.x/ � ˇ�v.x/C ˛v.x/ D jvj2�v.x/; x 2 R
N

is equivalent to

��2u.x/ ��u.x/C ˛u.x/ D juj2�u.x/; x 2 R
N :

by scaling the solutions as u.x/ D v. xp
ˇ
/ where � D 1=ˇ2. As before we consider

the associated minimization problem

m� D inf
u2M

J� .u/

where

M D fu 2 H˝ W
ˆ
˝

juj2�C2 dx D 1g

and

J� .u/ D
ˆ
˝

.� j�uj2 C jruj2 C ˛juj2/ dx:

When ˝ D BR or ˝ D R
N , the results of the previous sections imply that when

� � 1
4˛

, any minimizer is radially symmetric and strictly radially decreasing (after
a possible translation in the case ˝ D R

N). In the case ˝ D R
N , we assume from

now on that the maximum of any minimizer has been translated to the origin.
For � D 0, the associated minimization problem is

m0 D inf
u2M0

J0.u/

where

M0 D fu 2 H1
0.˝/ W

ˆ
˝

juj2�C2 dx D 1g

and

J0.u/ D
ˆ
˝

.jruj2 C ˛juj2/ dx:

Assume 2 < 2� C 2 < 2N
N�2 if N � 3, ˝ D BR or ˝ D R

N and let u0
be the unique minimizer of J0 in M0. We refer to [9, 15, 19] for the uniqueness
property (in the case ˝ D R

N , we fix the maximum of the solution at the origin
to achieve uniqueness). We first prove that if �k ! 0, then any sequence .uk/k of
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minimizer of J�k converge strongly in H1 to u0. A similar statement obviously holds
for other bounded domains except that uniqueness of the minimizer does not hold
in general so that in the conclusion, we can only state that we have convergence to
one minimizer, see Theorem 5.3.

Proposition 5.1. Assume 2 < 2� C 2 < 2N
N�2 if N � 3,˝ D BR or˝ D R

N. There
exists C > 0 such that for every � > 0, we have

m0 � m� � m0 C C�:

Moreover, if �k ! 0 and .uk/k is a sequence such that J�k.uk/ D m�k , then uk ! u0
strongly in H1.

Proof. The estimate of m� is clear since by elliptic regularity, we easily infer that
u0 2 H2.˝/. Therefore, we have

m� � J� .u0/ D �

ˆ
˝

j�u0j2 dx C J0.u0/ � C� C m0;

whereas taking any minimizer u� for m� , we get

m� D J� .u� / D �

ˆ
˝

j�u� j2 dx C J0.u� / � m0:

Let �k ! 0 and .uk/k be a sequence of minimizers for mk WD m�k . Then

ˆ
˝

.jrukj2 C ˛jukj2/ dx � mk � m0 C C�k ! m0:

Since we know that uk is a radial function, it follows that uk is bounded in H1
rad.˝/ -

the space of H1 functions that are radially symmetric around the origin—so that
up to a subsequence, uk converges weakly in H1 to some u 2 M. The strong
convergence in L2�C2 when ˝ D R

N follows from the compact embedding of
H1

rad.R
N/ into L2�C2.RN/, see [20, 22].

Now, by weak lower semi-continuity, we have

m0 �
ˆ
˝

.jruj2 C ˛juj2/ dx � lim inf
k!1

ˆ
˝

.jrukj2 C ˛jukj2/ dx

� lim sup
k!1

ˆ
˝

.jrukj2 C ˛jukj2/ dx D m0:

Hence the convergence is strong in H1 and u is a minimizer for m0. By uniqueness,
u D u0 and the whole sequence converges. ut

In the model case with a Kerr nonlinearity in dimension N � 3, we can improve
this convergence.
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Proposition 5.2. Assume ˝ D R
N, � D 1 and N � 3. If �k ! 0 and .uk/k is a

sequence such that J�k.uk/ D m�k , then uk ! u0 strongly in H2.

Proof. To fix the ideas, we deal with the case N D 3, N D 2 being similar. The
starting point is an a priori bound in H1 and the strategy is to end up with an a priori
H4-bound. We already know from Proposition 5.1 that uk converges to u0 strongly
in H1. To improve the convergence, we use the Euler-Lagrange equation

�k�
2uk ��uk C ˛uk D mku3k ;

where mk D m�k . We can assume �k � 1 and mk 2 Œm0;m0 C C	.

Bound in H1. Since uk is a minimizer, we can assume

kukkH1 � m0 C C:

This also provides an a priori bound in Lq for every q 2 Œ2; 6	.
Bound in H2. We denote vk D ��k�uk. Then vk solves

��vk C 1

�k
vk D wk; (10)

where wk WD mku3k � ˛uk. Since J�k.uk/ � m0 C C, we infer that vk ! 0 strongly in
L2. In particular, .vk/k is bounded in L2. Observe also that .wk/k is a priori bounded
in L2. Now, by elliptic regularity, we infer that vk 2 H2.R3/ with a bound that does
not depend on k. Indeed, since 1

�k
� 1, we get this a priori bound as in Krylov [18,

Chapter 1, Theorems 6.4 & 6.5]. Now, from this a priori H2-bound on .vk/k and the
Euler equation

��uk C ˛uk D mku3k C�vk; (11)

we deduce that .uk/k is a priori bounded in H2.R3/ as well.

Bound in H4. It is straightforward to check that the H2-bound on uk implies that
wk 2 L2.R3/ and �wk 2 L2.R3/. Then, elliptic regularity implies wk is bounded in
H2 as well. Using again (10), we now infer that vk 2 H4 with a bound independent
of k, arguing as in Krylov for HmC2 regularity [18, Chapter 1, Theorem 7.5 &
Corollary 7.6]. Looking at (11) again, we have that the right-hand side is bounded
in H2, whence uk 2 H4 with a bound independent of k.

Conclusion. Observe now that we can use the equation (11) to conclude. Since
��vk D �k�

2uk ! 0 strongly in L2, we conclude that

mku3k C�vk ! m0u
3
0
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strongly in L2 and elliptic regularity applied to (11) implies that the convergence of
uk to u0 is actually strong in H2. ut

Now that we have proved the strong convergence in H2 to the unique minimizer
for � D 0, we can use its non degeneracy to apply the Implicit Function Theorem.
This yields Theorem 1.3.

Proof (Proof of Theorem 1.3). We start by setting X WD H2
rad.R

3/ and Y WD
H�2.R3/. Let F W RC �X ! Y be the operator defined (in the sense of distributions)
by

F.�; u/ D ��2u ��u C ˛u � juj2u:

Namely, for every v 2 H2.R3/, we have

F.�; u/.v/ D
ˆ
R3

.��u�v C rurv C ˛uv � juj2uv/ dx:

Obviously F.0;
p

m0u0/ D 0. Also, F is continuously differentiable in a neighbour-
hood of .0;

p
m0u0/ with DuF.�; u/ 2 L .X;Y/ defined by

DuF.�; u/v D ��2v ��v C ˛v � 3jujuv; 8 v 2 X;

i.e.

DuF.�; u/vŒw	 D
ˆ
R3

.��v�w C rvrw C ˛vw � 3jujuvw/ dx; 8 v;w 2 X:

We thus have in the distributional sense

L.v/ WD DuF.0;
p

m0u0/v D ��v C ˛v � 3m0u
2
0v:

It is well known that the kernel of L is of dimension 3 when considered in
H2.R3/ and it is spanned by the partial derivatives of u0. In particular, the kernel
of L restricted to H2

rad.R
3/ is trivial and L W X ! Y is one-to-one. We refer, for

instance, to [8, 15, 19]. Moreover, it follows from the Open Mapping Theorem that
L�1 W Y ! X is continuous.

Since the linear map L is a homeomorphism, we can apply the Implicit Function
Theorem. Namely, there exists �0 > 0 and an open set U0 � X that contains

p
m0u0

such that for every � 2 Œ0; �0Œ, the equation F.�; u/ D 0 has a unique solution
u� 2 U0 and the curve


 W Œ0; �0Œ! H2.R3/ W � 7! u�

is of class C1.
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Now suppose that the uniqueness of least energy solutions fails in every interval
.0; �/. We can then construct two sequences in M of least energy solutions along
a sequence �k converging to 0. We call them .uk/k and .vk/k whereas mk is their
common energy. By assumption, uk ¤ vk. Since �k ! 0, we know that uk and vk

are radially symmetric. Since these two sequences converge in H2 to u0 as k ! 1,
we have

p
mkuk;

p
mkvk ! p

m0u0;

where the convergence is strong in H2. Then, for k large enough, there exist two
solutions of the equation F.�k; u/ D 0 in U0 with �k < �0. This is a contradiction
and ends the proof. ut

We now state the counterpart of Theorem 1.3 for the boundary value problem in
a bounded domain ˝ � R

N with Navier boundary conditions, namely

.P� /

�
��2u ��u C ˛u D juj2�u; in ˝;

u D �u D 0; on @˝:

We assume in the next statement that˝ is smooth. We have not searched to optimize
the required regularity of the boundary. At some point, we need to take two partial
derivatives into the equation. We assume enough regularity of the boundary so that
the solution belongs at least to H6.˝/. One could work with interior regularity
which requires less regularity on the boundary but since our main motivation is
to cover the case of a ball, working with global regularity is fine for our purpose as
the ball has the regularity required.

Theorem 5.3. Assume ˝ � R
N is a smooth bounded domain of class C6 and 3 �

2� C 2 < 2N
N�2 if 3 � N � 5. If �k ! 0 and .uk/k is a sequence of least energy

solutions of .P�k/, then, up to a subsequence, uk converges strongly in H2 to some
minimizer u0 for m0. If, in addition, ˝ is a ball, then there exists �0 > 0 such that if
0 < � < �0, the problem .P� / has a unique least energy solution. This solution is
radially symmetric and strictly radially decreasing.

Proof. Step 1. Global regularity. Using elliptic regularity [14, Theorems 8.12 &
8.13], we easily infer that the solutions uk are smooth, namely at least H6.˝/.
Indeed, one can write the equation as a double Dirichlet problem

��uk D �k; uk D 0 on @˝;

��k��k C �k D mkjukj2�uk � ˛uk; �k D 0 on @˝:

Here �k stays fixed and we can start with the fact that uk 2 H2.˝/, without
caring about the dependence on k. Then the term mkjukj2�uk � ˛uk 2 L2.˝/ as
it can be easily checked from the assumption on � and the embedding of H2.˝/

into Lq.˝/ for every q � 1 if N � 4 and q 2 Œ1; 2N
N�4 	 if N D 5. We therefore
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infer from [14, Theorems 8.12] that �k 2 H2.˝/ which in turn implies that
uk 2 H4.˝/ by [14, Theorems 8.13]. Now computing �.mkjukj2�uk � ˛uk/, we
realize that it is an L2 function and therefore mkjukj2�uk � ˛uk is an H2 function.
Indeed, the condition on � ensures the required integrability of jukj2��1jrukj2
and jukj2� j�ukj. We then conclude that �k belongs in fact at least to H4 and
therefore uk 2 H6.˝/.

Step 2. Strong convergence in H1. Arguing as in the proof of Proposition 5.1,
we infer that there exists a minimizer u0 2 M0 and a subsequence that we still
denote .uk/k such that uk ! u0 strongly in H1. If˝ is a ball, then u0 is the unique
minimizer and the whole sequence converge.

Step 3. Strong convergence in H2. To improve the convergence, we argue as in
the proof of Proposition 5.2. If 2� C 1 � N

N�2 , then we can bootstrap using the
HmC2 regularity theory. Due to the boundary condition, the argument of Krylov
[18, Chapter 1] cannot be applied directly to get higher regularity in general, see
[18, Chapter 8]. However, in our case, since we deal with Navier condition, we
have that uk D �uk D 0 on the boundary and therefore the equation .P�k/ tells
that �2uk D 0 on the boundary as well. By Step 1, we can take the Laplacian
inside the equation in .P�k/ and use the fact that �uk solves a boundary problem
with Navier boundary conditions, namely

�k�
2.�uk/ ��.�uk/C ˛.�uk/ D mkf .uk/; in ˝;

�.�uk/ D �uk D 0; on @˝;

where

f .uk/ D .2� C 1/sign.uk/
�
2�u2��1

k jrukj2 C u2�k �uk
�
: (12)

Then we can use the H2 regularity for the Dirichlet problem associated with the
systems

vk D ��k�uk ��vk C 1

�k
vk D wk; (13)

and

yk D �vk D ��k�
2uk ��yk C 1

�k
yk D mkf .uk/; (14)

where wk D mkjukj2�uk � ˛uk and f .uk/ is defined in (12). Applying [18,
Chapter 8, Theorem 8.7 ] to the second equation of the first system (13), we
get an H2 a priori bound of vk. Now turning to the Dirichlet problem

��uk C ˛uk D mkjukj2�uk C�vk; uk D 0 on @˝; (15)
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we deduce that uk is a priori bounded in H2 which leads to an L2 bound for
f .uk/. Applying then [18, Chapter 8, Theorem 8.7 ] on the second equation of the
system (14) gives an H2 a priori bound of �vk. Whence vk is a priori bounded
in H4. This allows to conclude that uk is a priori bounded in H4 because the
right-hand side of �(15), namely

��.�uk/C ˛�uk D mkf .uk/C�2vk;

is a priori bounded in L2. The remaining steps are now as in the proof of
Proposition 5.2.

If N
N�2 C 1 < 2� C 2 < 2N

N�2 , we can only start with a bound in L
2N

.N�2/.2�C1/ on
the right-hand side of

��vk C 1

�k
vk D wk;

where we still use the notations vk D ��k�uk and wk D mkjukj2�uk � ˛uk.
We therefore need to improve this bound first. Arguing as above (still using [18,
Chapter 8, Theorem 8.7 ]), we deduce an a priori bound in W2;q with q D

2N
.N�2/.2�C1/ . Then Sobolev embeddings give a better integrability of wk and we can

bootstrap until we get an L2 a priori bound on wk. The strong convergence in H2

is then achieved as in the proof of Proposition 5.2 taking into account the above
remark concerning the way to obtain the higher order elliptic regularity. Observe
that even if N

N�2 C 1 < 2� C 2, no additional bootstrap is necessary to derive the
H4 bound on uk since once we get an a priori H2 bound on uk, the assumption on �
implies that f .uk/ is a priori bounded in L2.

Uniqueness in the case˝ D BR. When˝ is a ball, the arguments used in the proof
of Theorem 1.3 are available. The nondegeneracy of u0 allows to apply the Implicit
Function Theorem to conclude the local uniqueness (in an H2 neighbourhood of u0)
for � small. The remaining arguments are then as in the proof of Theorem 1.3. ut

We end up the analysis of the asymptotics for � ! 0 by showing that the least
energy solution blows up in H2 when 2�C2 is H1 critical or supercritical. We focus
on the case of ˝ D R

N .
We first derive the Derrick-Pohozahev identity for minimizers. If u achieves m� in

M, then, defining v� by v�.x/ D �
N

2�C2 u.�x/, we infer that f .�/ WD J� .v�/ achieves
a local minimum at � D 1. This yields a Derrick-Pohozahev identity

� .2N � .2� C 2/.N � 4//
ˆ
RN

j�uj2 dx C .2N � .2� C 2/.N � 2//
ˆ
RN

jruj2 dx

C˛.2N � .2� C 2/N/
ˆ
RN

juj2 dx D 0:

If 2�C2 � 2N
N�4 , then u must be zero which is obviously a contradiction. This shows

that m� is not achieved for 2� C 2 � 2N
N�4 .
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For 2N
N�2 � 2� C 2 < 2N

N�4 , the first coefficient in the Derrick-Pohozahev identity
is positive whereas the other two are nonpositive. We can then write

� .2N � .2� C 2/.N � 4//
ˆ
RN

j�uj2 dx � ˛.2�N/
ˆ
RN

juj2 dx:

Now, from Gagliardo-Nirenberg inequality, we infer that for some C > 0,

1 D
�ˆ

RN
juj2�C2 dx

� 8
4.2�C2/�2�N

� C

�ˆ
RN

j�uj2 dx

� 2N
4.2�C2/�2�N

ˆ
RN

juj2 dx;

which implies

� .2N � .2� C 2/.N � 4//
�ˆ

RN
j�uj2 dx

�1C 2�N
4.2�C2/�2�N

� ˛.2�N/C:

This shows that �u blows up in L2.R3/ when � ! 0.

6 Sign-changing radial minimizer

In this section, we show that a radial least energy solution of (3) with � D 1 is sign-
changing when �2p˛ < ˇ < 2p˛. We assume N D 3 but the arguments apply in
dimension N D 2 also.

We will require the decay of the radial derivatives. Arguing as in de Figueiredo
et al [11, Theorem 2.2], one easily gets the following lemma.

Lemma 6.1. Let u 2 Hm
rad.R

3/ and let v W	0;1Œ! R be the function defined by
v.r/ WD u.x/ with r D jxj. Then, v 2 Hm.	0;1Œ; r2/. Moreover, for a.e. jxj 2 	0;1Œ

we have

ˇ̌
Dju.x/

ˇ̌ � ˇ̌
v.j/.jxj/ˇ̌; 8 j D 0; 1; : : : ;m:

In order to prove the Theorem 1.4 we adapt some arguments of Bonheure et al
[2, Theorem 6].

Proof (Proof of Theorem 1.4). We suppose N D 3, the case N D 2 is similar.

Step 1. Classical regularity. We start by observing that by elliptic regularity,
we have u 2 H6.R3/ which implies u 2 C4;1=2.R3/ and the solution can be
understood in the classical sense. Indeed, we know that the solution is H2, so that
from the equation

��.��u/ D juj2u � ˛u C ˇ�u;
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we infer that ��.��u/ 2 L2.R3/. This implies that ��u;��.��u/ 2 L2.R3/
and henceforth ��u 2 H2.R3/. Since u 2 H2.R3/, we conclude that u 2
H4.R3/. Looking again at the equation, we can now use the fact that the right-
hand side is an H2-function. Then ��u;��.��u/ 2 H2.R3/ and therefore
��u 2 H4.R3/. At last, combining the fact that u 2 H4.R3/ and ��u 2 H4.R3/,
we deduce that u 2 H6.R3/. Here above, the required elliptic regularity theory
can be found in [18, Chapter 1] and since we are in the whole space, this is just a
consequence of simple Fourier analysis.

Step 2. Equation in radial coordinates and decay at infinity. Writing now
the equation (3) in radial coordinates (the expression is especially simple in
dimension N D 3), we compute that v, defined by v.r/ WD u.x/ for r D jxj,
solves

viv C 4

r
v000 � ˇv00 � 2ˇ

r
v0 C ˛v D jvj2v; r 2 	0;1Œ: (16)

The H5.R3/ regularity yields

lim
jxj!1

.u.x/; @xi u.x/; @
2
xixj

u.x/; @3xixjxk
u.x// D .0; 0; 0; 0/

whatever i; j; k 2 f1; 2; 3g. Then Lemma 6.1 implies that v satisfies

lim
r!1.v.r/; v

0.r/; v00.r/; v000.r// D .0; 0; 0; 0/: (17)

Step 3. Asymptotic analysis of the solution of the ordinary differential equation
(16).

Claim 1 : Given R > 0 we can find r � R such that v.r/ > 0.

Let R > 0 be fixed. Consider the following Cauchy problem

.C1/

�
wiv.r/ � ˇw00.r/C ˛w.r/ D 0; r > 0;

.w.r0/;w0.r0/;w00.r0/;w000.r0// DW w0;

where r0 > 0 and w0 2 R
4. By using condition (A1) we have that all the roots of the

characteristic equation associated with (C1) are complex, let us say ˙a ˙ ib. We set
� WD 2�=b. Then there exists c > 0 such that any solution of (C1) satisfies

sup
Œr0;r0C�	

w; sup
Œr0;r0C�	

.�w/ � cjw0j: (18)

Moreover, there exists M > 0 such that any solution of (C1) verifies

kwkC3.Œr0;r0C�	/ � Mjw0j:
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Again, we can also find N > 0 such that the solutions of

�
 iv.r/ � ˇ 00.r/C ˛ .r/ D h.r/; r > 0;

. .r0/;  0.r0/;  00.r0/;  000.r0// DW 0;

satisfy

k kC3.Œr0;r0C�	/ � NkhkL1.r0;r0C�/:

Let us set ı > 0 so that c � MNı
1�Nı > 0. Denote by v.r/ D v.rI r0; v0/ the solution of

(16) with initial conditions

.v.r0/; v
0.r0/; v00.r0/; v000.r0// DW v0; where r0 > 0:

Now, let us fix r0 � R large enough so that jv0j is small enough to have

sup
r2Œr0;r0C�	

jv.r/j2; sup
r2Œr0;r0C�	

4

r
and sup

r2Œr0;r0C�	
2ˇ

r
< ı:

We write

v D  C w;

where  solves

8<
:  iv � ˇ 00 C ˛ D jvj2v C 2ˇ

r
v0 � 4

r
v000; r > 0;

. .r0/;  0.r0/;  00.r0/;  000.r0// D 0;

and w is a solution of

�
wiv.r/ � ˇw00.r/C ˛w.r/ D 0; r > 0;

.w.r0/;w0.r0/;w00.r0/;w000.r0// D v0:

Now, let us choose r 2 Œr0; r0 C�	 such that

w.r/ � cjv0j:

Thus,

k kC3.Œr0;r0C�	/ � NıkvkC3.Œr0;r0C�	/;
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which implies that

k kC3.Œr0;r0C�	/ � Nı

1 � Nı
kwkC3.Œr0;r0C�	/ � MNı

1 � Nı
jv0j:

Then we obtain

v.r/ � cjv0j � k kL1 �
�

c � MNı

1 � Nı

�
jv0j > 0:

Claim 2 : Given R > 0 we can find r � R such that v.r/ < 0.

The proof of this claim is similar to that of Claim 1.

Conclusion. We have proved in the last step that u changes sign. In fact, we have
even proved that u oscillate as jxj ! C1. ut

7 Comments

This note provides some simple results for the model equation (3) with a Kerr
nonlinearity and aims to partially complete the discussion on waveguide solutions
in [13, Section 4.1]. The methods we used are standard. On the other hand, since
radial solutions present oscillations for �2p˛ < ˇ < 2

p
˛, we expect that one

needs new arguments to answer the question whether the least energy solutions are
radial or not in this case. Also uniqueness is a challenging question if we are not in
the asymptotic regime ˇ ! 1 (or equivalently � ! 0).

We also mention that the important question about the decay at infinity of the
least energy solutions will be addressed in a future work. We are only aware of [12]
for a result in that direction. The analysis therein relies on the computation of the
fundamental solution of the fourth-order operator in (3) with ˇ D 0.

The analysis of the decay should also allow to extend the statement of Theo-
rem 1.3 to the case 2 < 2� C 2 < 2N

N�2 and N � 3. Indeed, the arguments we
used are just fine for the Kerr nonlinearity whereas some technical adjustments are
needed for a general subcritical power. In fact, one checks easily that our arguments
apply in dimension N � 4 if we assume 2 � 2� C 1 � N

N�2 . The lower inequality
on � implies the required C1;1 regularity of the function s 7! jsj2� s whereas the
upper inequality is used to start the bootstrap with an L2-bound on juj2�u (here u is
a solution).

The same remark holds for Theorem 1.4 which should be true with less restrictive
assumptions. In dimension N � 8, one can deal with 2 � 2� C 1 � N

N�4 . The other
cases will require more care and will be treated in a forthcoming work.
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