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Abstract

This paper adopts the new loss reserving approach proposed by Denuit and Trufin (2016),
inspired from the collective model of risk theory. But instead of considering the whole set
of claims as a collective, two types of claims are distinguished, those claims with relatively
short development patterns and claims requiring longer developments. In each case, the total
payment per cell is modelled by means of a Compound Poisson distribution with appropri-
ate assumptions about the severities. A case study based on a motor third party liability
insurance portfolio observed over 2004-2014 is used to illustrate the approach proposed in
this paper. Comparisons with Chain-Ladder are performed and reveal significant differences
in best estimates as well as in Value-at-Risk at high probability levels.

Key words and phrases: general insurance, reserving, collective model, mixture models,
GAMLSS, solvency evaluation.



1 Introduction

In Property and Casualty (P&C) insurance, claims often need several years to be settled.
Meanwhile, insurers have to build reserves representing their estimate of outstanding lia-
bilities for claims that occurred on or before the valuation date. Reserving calculation has
traditionally been performed on the basis of aggregated data summarized in run-off triangles
with rows corresponding to accident years and columns corresponding to development years.
Such data exhibit three dimensions: for each accident (or occurrence, or underwriting) year i
and development period j = 1, 2, . . ., we read in cell (i, j) inside the triangle the total amount
paid by the insurer in calendar year i + j − 1 for claims originating in year i. Techniques
dealing with such aggregated triangular arrays of data go back to the pre-computer era, at a
time where the available computing resources, data storage facilities and statistical method-
ologies were extremely limited. The Chain-Ladder (CL, in short) approach is certainly the
most popular technique falling in this category. See for instance Kaas et al. (2008) for an
introduction and Wuthrich and Merz (2008) for a detailed account of the topic.

Departing from these aggregated run-off triangles, Arjas (1989) and Norberg (1993, 1999)
developed a mathematical framework for the development of individual claims in continuous
time. Individual reserving models describe how each claim evolves over time, from the
occurrence of the accident until settlement of the claim. In addition to the pioneering works
by Arjas (1989) and Norberg (1993, 1999), let us also mention the contributions by Larsen
(2007), Zhao et al. (2009), Drieskens et al. (2012), Rosenlund (2012), Antonio and Plat
(2014), Pigeon et al. (2013, 2014), and Huang et al. (2015, 2016).

To bridge the gap between aggregated CL techniques and fully individual reserving mod-
els, Denuit and Trufin (2016) tried to find the best compromise, inspired from the individual
and collective models in actuarial risk theory (see, e.g., Chapters 2-3 in Kaas et al., 2008,
for an introduction). Specifically, the number of payments and the amounts of each of them
in cell (i, j) are used to fit a Compound Poisson model. The severities are described by a
mixture model, combining light-tailed and heavy-tailed distributions to capture the mix of
large and attritional claims. Compared to individual reserving methods, payments related
to the same claim are not modelled jointly.

In the present paper, we adopt the same approach but we separate the numerous small
(or attritional in the Solvency 2 parlance) claims that are reported to the insurer soon after
occurrence and are rapidly settled, and the larger claims that develop more slowly over time.

Large losses are generally defined as those exceeding a large loss threshold at least once
during their development. Several authors proposed reserving methods which separate large
and attritional losses. See Riegel (2014, 2016) and the references therein. In this constext,
the actuary is faced with a major technical problem: for older accident years, most large
losses have already been identified whereas for more recent accident years, less developments
are available and a higher percentage of large losses have not yet exceeded the threshold.
This is why appropriate bifurcation techniques have been proposed by Riegel (2014, 2016)
to treat large losses on a consistent basis. To avoid these difficulties, we separate here claims
with short and long developments. Typically, claims with short developments are those
reported during the year of occurrence or the year after, and finalized at most one year after
the accident year. In motor third party liability insurance, this simple classification rule
creates two sets of claims with very different characteristics, both in terms of settlement
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dynamics and amounts paid by the insurer. Even if the time to settlement does not reveal
the ultimate cost of the claim, those claims that are rapidly settled are generally cheaper
compared to the ones requiring longer developments. Hence, we approximately recover in a
simple and efficient way the dichotomy between large and attritional losses.

In this approach, the vast majority of claims can be classified into one of these two cate-
gories, except only for the very last accident year. This difficulty can nevertheless easily be
circumvented using simple moment-based approximations or mixture models. Even if other
criteria can be used, such as the separation between claims with bodily injuries and claims
with material damages, only, the classification rule based on the length of the settlement pe-
riod proposed in this paper appears to be particularly efficient in motor third party liability
insurance.

The collective model exploits several triangles of counts. The numbers of payments are
built from the numbers of reported and closed claims to get the number of open claims
and finally allow for zero payments to isolate the number of effective payments made by
the insurer. Notice that we aggregate all the payments related to a single claim and work
with total yearly payments, in line with the individual and collective models of actuarial
risk theory. To favor tools that are familiar to non-life actuaries (such as Poisson and
GLM regression analysis, their GAMLSS extensions, compound sums and Panjer algorithm),
we opt here for the incremental payments, for which independence is usually considered
as a reasonable assumption in regression-based reserving techniques applied to aggregated
triangular data.

Yearly payments are modelled by means of discrete mixture models. A probability mass
at the origin accounts for the possibility of zero yearly payments, which means that nothing
has been paid by the insurer during the calendar year for that particular claim. A con-
tinuous component with a density over the half positive real line is then added to model
positive payments. For claims with longer developments, this continuous component is fur-
ther decomposed into a mixture of light-tailed and heavy-tailed distributions to capture
large amounts paid by the insurer. Model parameters are explained by the combined effect
of accident year, development lag, and calendar time in a regression setting using GAMLSS
techniques.

The remainder of this paper is organized as follows. The motor third party liability
insurance data basis used to illustrate the model proposed in this paper is presented in
Section 2. Section 3 explains how claims are divided in two categories. Sections 4 and 5 are
devoted to the modelling of claims with a relatively short development and claims developing
over longer periods, respectively. Section 6 is devoted to the calculation of reserves and to
comparisons with the classical CL approach. The final Section 7 discusses the results and
concludes.

2 Notation and data

2.1 Accident and development indices

We assume that we have n years of observations. Accident years range from i = 1 to n
and developments from j = 1 to n. These data fill a triangle: Accident year i is followed
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from development j = 1 (corresponding to the accident year itself) to the last observed
development n− i+ 1 (corresponding to the last calendar year n for which observations are
available, located along the last diagonal of the triangle).

Henceforth, we denote as ω the time needed to settle all the claims occurred during a
given accident year i, i.e. these claims are closed in calendar year i + ω − 1 at the latest.
For business lines with long developments, some claims for accident year 1 may still be open
in calendar year n so that ω > n. Precisely, ω = n if all claims of the first accident year
are settled at the end of the observation period. If not, ω > n and we must introduce a tail
factor to account for the last developments before final settlement.

2.2 The data

The approach proposed in this paper is applied on a data set extracted from the motor
third party liability insurance portfolio of an insurance company operating in the European
Union (EU). The observation period consists in calendar years 2004 till 2014. The available
information concerns accident years 2004 to 2014 so that we have observed developments j
up to n = 11. In the numerical illustrations, we let i range between i = 2004 and 2014,
instead of 1, . . . , n, in order to make the results easier to interpret.

There are 52, 155 claims in the data set. Among them, 4, 023 claims are still open at the
end of the observation period. Table 1 presents the information available for two claims of
the database. Claim #16, 384 corresponds to an accident occurred in 2009 that has been
reported during the same calendar year. Payments have been made in years 2009 to 2013,
but no payment has been recorded for 2014. At the end of the observation period, claim
#16, 384 is still open. Claim #20, 784 corresponds to an accident occurred in 2010 that has
been reported during the same calendar year. A payment has been made in 2010, there was
no payment in 2011, and the claim has been closed in 2011, one year after its reporting to
the insurer. Notice that in our data set, the declaration of a claim corresponds to the first
time there is a payment or a positive case estimate for that claim. Hence, late reporting (i.e.
at lags 3-4) is due here to the definition adopted for reporting as motor insurance contract
typically impose that policyholders rapidly file the claim against the company.

Table 2 displays for each accident year i the total numbers of claims reported at various
lags j. We can see from Table 2 that all claims are reported after 4 developments, i.e. during
the accident year and the three following calendar years. If the claim appears at lag j ≥ 3,
this usually means that the claim manager initially thought that the insured driver was
not liable for the accident but that this opinion has been contradicted later on (recall that
reporting means here the first lag j at which there is a payment or a positive case estimate).

Table 3 gives the total numbers of claims closing at various settlement periods j, per
accident year i. Even if the majority of claims are settled after two years of development,
we also see the emergence of a group of claims with longer path to settlement. Comparing
the observed totals 4, 196 of reported claims in 2004 and 4, 187 of closed claims for the same
year reported in Tables 2-3, we can see that some claims are not closed at the end of the
observation period, i.e. n = 11 < ω. For the first accident year, there remain 9 claims still
open at lag 11. A tail factor will be included in the model to account for the presence of
these claims.

Table 4 displays descriptive statistics for the payments per accident year i and lag j. We
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Event No Year Amount
Occurrence 16,384 2009 -

20,784 2010 -
Declaration 16,384 2009 -

20,784 2010 -
Payments 16,384 2009 5,022

16,384 2010 67,363
16,384 2011 903
16,384 2012 6,295
16,384 2013 13,850
16,384 2014 0
20,784 2010 1,605
20,784 2011 0

Closure 16,384 Not settled -
20,784 2011 -

Table 1: Information available for claims No 16, 384 and No 20, 784 in the data set. Claim
No 16, 384 is still open end of year 2014.

1 2 3 4 5 6 7 8 9 10 11

2004 4,022 165 8 1 0 0 0 0 0 0 0

2005 4,190 174 5 1 0 0 0 0 0 0

2006 4,331 210 2 2 0 0 0 0 0

2007 4,743 255 9 3 0 0 0 0

2008 5,046 222 8 1 0 0 0

2009 5,168 191 10 0 0 0

2010 4,612 217 7 1 0

2011 4,394 200 9 1

2012 4,299 162 7

2013 4,557 169

2014 4,753

Table 2: Observed numbers of reported claims per accident year i = 2004, . . . , 2014 and lag
j = 1, . . . , 11. Whole data basis.

can see there the number of payments, the proportion of claims with no payment, the mean
of the payments as well as the standard deviation and skewness per accident year i and lag
j. Table 4 shows that there is a break in the average amounts paid by the insurer, which
considerably increase after two lags. The standard deviation is often about twice the mean
while the large skewness values suggest highly asymmetric distributions.
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1 2 3 4 5 6 7 8 9 10 11

2004 2,266 1,509 203 94 42 38 9 14 5 3 4

2005 2,428 1,582 172 62 46 29 17 12 8 4

2006 2,433 1,607 228 139 65 29 22 5 7

2007 2,451 1,853 433 136 59 38 14 8

2008 2,643 2,079 287 141 58 30 21

2009 2,607 2,105 385 127 71 29

2010 1,782 2,442 340 146 66

2011 1,793 2,223 337 123

2012 1,852 2,017 373

2013 1,859 2,197

2014 1,925

Table 3: Observed numbers of claims that are definitively settled at development j =
1, . . . , 11 per accident year i = 2004, . . . , 2014. Whole data basis.

3 Separating losses with short and long development

to settlement

Claims that are settled relatively rapidly are usually cheaper than those requiring longer
settlement periods. The length of the settlement period is thus a natural criterion to distin-
guish two types of claims. This is why we propose to isolate claims that are reported and
settled after a few development periods.

For the data considered in the present work, Table 4 confirms that applying this intuitive
idea indeed leads to a separation of two types of claims with different average amounts.
Specifically, we see from Table 4 that there is a considerable increase in the average yearly
payment after development 2. This suggests to consider that claims are rapidly settled if
they are closed during the accident year itself, or during the year after. This choice is also
relevant given the absence of reporting delay, the vast majority of claims being filed during
the accident year or the year after (in case of accidents occurring during the last weeks of
the calendar year).

Henceforth, we separate the losses according to the time needed for their settlement.
Precisely, we distinguish between

- losses with short development to settlement, i.e. those losses that are reported and
fully settled at most ω1 years after occurrence, for some given lag ω1 depending on the
line of business;

- and losses with longer development to settlement, i.e. that are not yet reported at
development ω1 or that are still open.

The figures displayed in Table 4 suggest to take ω1 = 2 for the data set under consideration.
The following analysis confirms the relevance of this choice. Table 5 displays the descriptive
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1 2 3 4 5 6 7 8 9 10 11
2004
Num. pay. 2,848 1,459 236 124 68 39 18 18 12 8 7
% no pay. 0.292 0.240 0.438 0.431 0.452 0.524 0.591 0.486 0.429 0.500 0.462
Mean 1,133 1,877 2,713 4,349 4,446 9,894 16,765 4,422 18,072 12,314 21,263
Std. dev. 2,378 5,317 4,861 9,405 7,918 26,576 27,037 9,768 24,203 14,436 50,490
Skewness 12.423 11.878 4.157 4.472 2.948 5.028 1.967 3.476 2.015 1.136 2.039
2005
Num. pay 3,001 1,492 207 97 53 42 24 21 11 11
% no pay. 0.284 0.229 0.423 0.484 0.579 0.475 0.529 0.382 0.500 0.214
Mean 1,112 1,659 3,168 5,455 5,132 14,882 25,781 8,997 4,230 1,347
Std. dev. 1,847 2,932 6,081 18,278 10,270 41,070 77,046 19,947 2,817 883
Skewness 4.113 5.509 3.709 8.387 4.089 4.353 3.135 3.464 0.413 0.241
2006
Num. pay 3,007 1,659 268 117 61 41 21 10 10
% no pay. 0.306 0.213 0.467 0.578 0.558 0.438 0.523 0.545 0.412
Mean 1,164 1,624 5,799 4,494 7,287 6,055 6,141 4,688 12,205
Std. dev. 2,972 2,932 49,737 7,632 22,190 12,682 9,173 4,594 26,907
Skewness 23.651 6.020 15.840 3.104 4.485 3.248 1.624 0.506 2.440
2007
Num. pay 3,246 1,893 322 170 79 48 24 16
% no pay. 0.316 0.257 0.542 0.377 0.423 0.385 0.400 0.385
Mean 1,159 1,905 2,679 3,500 7,401 8,243 12,140 13,148
Std. dev. 2,258 4,984 6,159 5,831 13,989 14,717 20,625 22,292
Skewness 9.382 13.781 6.688 3.093 3.029 2.872 2.731 1.921
2008
Num. pay 3,574 1,816 304 125 71 37 22
% no pay. 0.292 0.308 0.451 0.534 0.441 0.464 0.436
Mean 1,104 1,720 2,189 4,203 4,611 7,775 6,310
Std. dev. 1,837 3,644 3,524 8,791 9,908 12,249 7,275
Skewness 5.521 7.533 3.851 4.451 4.774 2.352 0.983
2009
Num. pay 3,545 1,877 300 131 90 51
% no pay. 0.314 0.318 0.543 0.518 0.379 0.311
Mean 1,142 1,919 3,981 4,379 6,896 9,129
Std. dev. 1,926 5,710 19,797 11,584 17,446 18,474
Skewness 4.610 18.270 14.896 7.229 5.379 3.265
2010
Num. pay 2,874 2,072 338 161 75
% no pay. 0.377 0.320 0.448 0.410 0.409
Mean 1,663 1,984 3,637 5,147 14,935
Std. dev. 4,012 5,832 11,419 13,420 60,912
Skewness 18.229 16.910 11.563 5.037 5.849
2011
Num. pay 2,777 1,930 327 119
% no pay. 0.368 0.311 0.443 0.526
Mean 1,601 1,982 2,441 5,171
Std. dev. 2,333 4,004 4,119 14,476
Skewness 5.628 7.586 3.607 4.742
2012
Num. pay 2,860 1,749 282
% no pay. 0.335 0.330 0.529
Mean 1,716 2,328 4,390
Std. dev. 4,587 10,085 31,803
Skewness 36.917 31.363 16.083
2013
Num. pay 2,924 1,844
% no pay. 0.358 0.357
Mean 1,637 2,230
Std. dev. 4,120 11,414
Skewness 31.519 35.894
2014
Num. pay 2,723
% no pay. 0.427
Mean 1,662
Std. dev. 2,360
Skewness 7.018

Table 4: Descriptive statistics for payments per accident year i = 2004, . . . , 2014 and lag
j = 1, . . . , 11, namely the number of payments (Num. pay.), the proportion of claims with
no payment (% no pay.), the mean of the payments as well as the standard deviation and
skewness. Whole data basis.

statistics for yearly payments at lags j ∈ {1, 2} after exclusion of claims needing more than
2 development periods to be settled. Considering Table 5 and columns j ≥ 3 in Table 4
clearly shows a break in these averages after lag 2. Also, standard deviations and skewness
tend to decrease after the separation between the two types of claims. Thus, we see that the
separation based on the time to settlement with ω1 = 2 provides us with a relevant criterion
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to isolate cheaper losses (i.e. those that are reported and settled at most ω1 = 2 years after
occurrence) from the other, the more expensive ones.

Based on the proposed criterion, all the losses can be categorized in our case study, except
those from the last accident year: at the end of the first development period (i.e. in the
last cell of the first column of the run-off triangle), the claims that are still open cannot
be attributed to one category or the other. We come back to this issue when dealing with
model calibration.

1 2

2004 N
(p)
ij 2,700 1,220

% no pay. 0.258 0.192
Mean 1,001 1,261
Std. dev. 1,748 2,482
Skewness 6.333 13.377

2005 N
(p)
ij 2,879 1,299

% no pay. 0.256 0.179
Mean 1,027 1,343
Std. dev. 1,687 1,910
Skewness 4.432 3.746

2006 N
(p)
ij 2,852 1,370

% no pay. 0.263 0.147
Mean 1,011 1,250
Std. dev. 1,545 1,888
Skewness 4.412 5.332

2007 N
(p)
ij 2,999 1,498

% no pay. 0.273 0.192
Mean 1,002 1,362
Std. dev. 1,675 2,186
Skewness 6.416 6.934

2008 N
(p)
ij 3,398 1,524

% no pay. 0.252 0.267
Mean 1,010 1,316
Std. dev. 1,626 2,262
Skewness 6.085 6.853

2009 N
(p)
ij 3,358 1,527

% no pay. 0.264 0.275
Mean 1,070 1,302
Std. dev. 1,712 1,895
Skewness 3.998 5.479

2010 N
(p)
ij 2,688 1,753

% no pay. 0.339 0.282
Mean 1,499 1,447
Std. dev. 2,837 1,859
Skewness 20.963 5.196

2011 N
(p)
ij 2,591 1,615

% no pay. 0.331 0.274
Mean 1,521 1,567
Std. dev. 2,118 2,891
Skewness 6.012 9.618

2012 N
(p)
ij 2,652 1,420

% no pay. 0.294 0.296
Mean 1,515 1,616
Std. dev. 1,804 2,421
Skewness 3.524 6.227

2013 N
(p)
ij 2,734 1,535

% no pay. 0.305 0.301
Mean 1,490 1,593
Std. dev. 1,945 2,293
Skewness 5.075 6.694

Table 5: Observed number N
(p)
ij of payments and descriptive statistics for payments per

accident year i = 2004, . . . , 2013 and development period j = 1, 2 restricted to those claims
reported and settled during the accident year or the year after. Accident year 2014 is not
included as claims with short or long development patterns cannot be identified.
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4 Losses with short development to settlement

4.1 Collective model

Let ω1 be the maximum number of developments to qualify as a claim with rapid settlement.
Precisely, claims with short development are those claims reported and finalized at most ω1−1
years after occurrence. In our example, we have ω1 = 2. All claims from accident year i
reported and settled during calendar years {i, . . . , i + ω1 − 1} are modelled in a collective
way. The total payment Xij at development j (i.e. in calendar year i+ j−1) for these losses
is disaggregated into the compound sum

Xij =

N
(o)
ij∑

k=1

Xijk, j = 1, 2, . . . , ω1,

where

N
(o)
ij = number of claims with short development originating in accident year i, reported at

or before development j, still open at development j;

Xijk = total payment made in calendar year i+j−1 for the kth claim with short development
originating in accident year i still open at development j, possibly equal to 0.

All these random variables are assumed to be mutually independent. Notice that here,
payments related to individual policies are not tracked, only payments for the collective are
modelled.

4.2 Severity modelling

Yearly payments Xijk per open claim are modelled by means of zero-augmented regression
model based on a light-tailed severity distribution (such as the Gamma or Inverse Gaussian
distributions, for instance), with a probability mass at zero

P[Xijk = 0] = ζj (4.1)

and a conditional mean of the form

E[Xijk|Xijk > 0] = γi+j−1ξj (4.2)

where γi+j−1 models inflation (in an hedonic approach) and ξj models the development
effect. The choice γ1 = 1 makes the inflation parameters identifiable and means that the
first accident year is taken as the base year for inflation. Notice that working with single
payments made by the insurer solves the severe identifiability issues faced in the aggregated
triangle approach. The parameter ξj then represents the average amount paid at lag j,
corrected for inflation.

The estimated probabilities ζj of zero payments are ζ̂1 = 28.4% at lag 1 and ζ̂2 = 23.4%
at lag 2. Thus, the insurer does not make a positive payment for about one quarter of the
open claims.
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Table 5 shows a clear break between accident years 2009 and 2010 for the average yearly
amount paid per claim. Hence, as an alternative to (4.2), we rather consider a conditional
mean of the form

E[Xijk|Xijk > 0] = νiγi+j−1ξj, (4.3)

where

νi = I[i ≤ 2009] + κI[i > 2009] =


1 for i = 2004, . . . , 2009

1 + κ for i = 2010, 2011, . . .

The parameters νi enable us to account for the break observed between accident years 2009
and 2010. Some structure can be imposed to the inflation effects. Here we specify γ2004+l =
(1 + γ)l where the unique parameter γ is the constant yearly inflation rate. Also, we use a
Gamma distribution for the light-tailed severities, which can be fitted with the help of the
GLM package of the statistical software R. Estimation is carried out by maximum likelihood.
Hence, a Gamma regression gives the parameter estimates κ̂ = 1.265, γ̂ = 1.34%, ξ̂1 = 1, 019
and ξ̂2 = 1, 155. We see that the average sizes of payments, corrected for inflation, increase
by 26.5% between accident years 2009 and 2010. Also, we observe that ξ̂1 = 1, 019 <
1, 155 = ξ̂2 suggesting that payments are somewhat more expensive the year after occurrence.
Notice that the constant inflation γ̂ = 1.34% leads to an inflation of 14.2% over the whole
observation period 2004− 2014.

4.3 Modelling counts

4.3.1 Reported and closed cases

Let N
(r)
ij be the number of claims with short development that occurred in accident year

i and were reported to the insurer at development j (i.e. during calendar year i + j − 1).

Also, let N
(c)
ij be the number of claims with rapid settlement originating in accident year i

that were reported at development j or before and closed during calendar year i + j − 1.
Let us mention that N

(r)
ij corresponds to Nij0 in Schiegl (2015). Schiegl (2015) then splits

every N
(r)
ij into a sequence of numbers Nijk of claims that are still open in calendar year

i+ j+k−1. This allows the actuary to obtain the number N
(o)
ij of open claims directly from

the Nijk at the cost of the extra (or third) dimension k. Here, we obtain N
(o)
ij by means of

N
(r)
ij and N

(c)
ij .

In line with the classical CL model, we use the multiplicative specification

E[N
(r)
ij ] = αiβ

(r)
j and E[N

(c)
ij ] = αiβ

(c)
j (4.4)

subject to the usual identifiability constraints

ω1∑
j=1

β
(r)
j =

ω1∑
j=1

β
(c)
j = 1.

This ensures that the total number

Ni =

ω1∑
j=1

N
(r)
ij =

ω1∑
j=1

N
(c)
ij
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of claims with short development has mean E[Ni] = αi, and that

β
(r)
j = probability that a claim with rapid settlement is reported at lag j

β
(c)
j = probability that a claim with rapid settlement is closed at lag j

with j ∈ {1, . . . , ω1}.
The parameters αi, β

(r)
j and β

(c)
j are estimated from the two triangles with observed N

(r)
ij

and N
(c)
ij , combined. As the parameter αi is shared by these two sets of counts, combining

both triangles provides the appropriate estimation procedure.
The observed counts N

(r)
ij are displayed in Table 6 and N

(c)
ij in Table 7. As ω1 = 2,

restricting the analysis to calendar years with at least ω1 observed developments means that
we exclude only the last accident year. As this is not expected to impact on the estimations,
we follow this route here and we estimate the parameters on the basis of occurrence years
2004 to 2013. For these accident years, the observed claim development patterns can be
classified into losses with short (i.e. at most ω1 = 2) or long (i.e. at least ω1 + 1 = 3)
developments to settlement and separate analyses can be conducted for the two types of
losses. Tables 5-6-7 stop at accident year 2013 as for the last 2014 we cannot separate the
two types of claims. From Table 7, we see that N

(c)
i1 > N

(c)
i2 for i ≤ 2009 while N

(c)
i1 < N

(c)
i2

for i ≥ 2010. This can be explained by a change in the claim handling procedure inside the
company. In order to account for this deceleration in the speed of settlement for the claims
with short development patterns, we decide to calibrate parameters β

(c)
j only on accident

years i ≥ 2010.

1 2

2004 3,641 134

2005 3,872 138

2006 3,872 168

2007 4,127 177

2008 4,541 181

2009 4,561 151

2010 4,065 159

2011 3,871 145

2012 3,754 115

2013 3,934 122

Table 6: Observed numbers N
(r)
ij of reported claims per accident year i = 2004, . . . , 2013

and development period j = 1, 2 restricted to those claims reported and settled during the
occurrence year or the year after.

Table 8 displays the estimated parameters αi, β
(r)
j and β

(c)
j that have been obtained by

Poisson maximum likelihood based on the two triangles of counts N
(r)
ij and N

(c)
ij sharing the
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1 2

2004 2,266 1,509

2005 2,428 1,582

2006 2,433 1,607

2007 2,451 1,853

2008 2,643 2,079

2009 2,607 2,105

2010 1,782 2,442

2011 1,793 2,223

2012 1,852 2,017

2013 1,859 2,197

Table 7: Observed numbers N
(c)
ij of claims that are definitively settled at development j = 1, 2

per accident year i = 2004, . . . , 2013 restricted to those claims reported and settled during
the occurrence year or the year after.

common parameter αi. Again, we have used the GLM package of R. Therefore, the estimations
α̂i exactly replicate the observed totals

∑2
j=1N

(r)
ij =

∑2
j=1N

(c)
ij . We can see from Table 8 that

the estimations α̂i remain roughly stable over time, suggesting that the volume of business
stays unchanged, or moderately increases being compensated by the progressive reduction
in claim frequencies.

The probability of being reported during the accident year is estimated to β̂
(r)
1 = 96.4%

whereas the probability of being reported the year after is estimated to the remaining
β̂
(r)
2 = 3.6%. These 3.6% of claims reported the year after roughly correspond to the acci-

dents occurring during the last few weeks of the calendar year, causing delays in reporting
and/or handling because of Christmas and New Year breaks. Turning to settlements, we see
that about half of those claims developing rapidly are closed during the accident year and
the remaining half are closed the year after. Precisely, the corresponding probabilities are
estimated to β̂

(c)
1 = 45.1% and β̂

(c)
2 = 54.9%. This is in line with occurrences spread over the

calendar year and an average handling period of about half a year.

i 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

α̂i 3,775 4,010 4,040 4,304 4,722 4,712 4,224 4,016 3,869 4,056

j 1 2 3 4 5 6 7 8 9 10

β̂
(r)
j 0.964 0.036 - - - - - - - -

j 1 2 3 4 5 6 7 8 9 10

β̂
(c)
j 0.451 0.549 - - - - - - - -

Table 8: Estimated parameters αi, β
(r)
j and β

(c)
j .
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4.3.2 Number of open cases

The number N
(o)
ij of claims from accident year i open at development j is then obtained from

the identity
j∑

k=1

N
(r)
ik =

j−1∑
k=1

N
(c)
ik +N

(o)
ij

so that

E[N
(o)
ij ] = αi

(
j∑

k=1

β
(r)
k −

j−1∑
k=1

β
(c)
k

)
. (4.5)

4.3.3 Number of payments

The number N
(p)
ij of payments is obtained here from the number of open claims, allowing for

the possibility of zero payments. Specifically,

N
(p)
ij =

N
(o)
ij∑

k=1

I[Xijk > 0]

where I[A] is the indicator variable of the event A, equal to 1 if A is realized and to 0
otherwise, so that

E[N
(p)
ij ] = E[N

(o)
ij ](1− ζj). (4.6)

The observed counts N
(p)
ij are displayed in Table 5.

The number N
(o)
ij of open claims is obtained from the joint reporting and closure dy-

namics, i.e. from the N
(r)
ij and N

(c)
ij counts. As we aggregate all the cash-flows related to a

single open claim during a given calendar year into a single yearly payment, we believe that
this approach is more appropriate in the present setting compared to the direct modelling
of the number of payments generated by the N

(r)
ij reported claims that have payment delay

of 0, 1, 2, . . . years.

4.3.4 Compatibility of the count models

In order to check the compatibility of the different count models, we also model N
(p)
ij directly

and compare the corresponding predictions to those obtained from N
(o)
ij . In line with the

classical CL model, we use the specification

E[N
(p)
ij ] = α

(p)
i β

(p)
j (4.7)

subject to the usual identifiability constraint

ω1∑
j=1

β
(p)
j = 1.

Table 9 displays the estimated α
(p)
i and β

(p)
j obtained by Poisson maximum likelihood with the

help of the GLM package of R. The estimated means E[N
(p)
ij ] obtained by this direct modelling
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of the number of payments are given in Table 10 and compared to the corresponding values
deduced from the number of open claims and the zero-payment probabilities. We see there
that the estimated E[N

(p)
ij ] in (4.7) are reasonably close to the estimated E[N

(o)
ij ](1 − ζj)

obtained previously.

i 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

α̂
(p)
i 3,920 4,178 4,222 4,497 4,922 4,885 4,441 4,206 4,072 4,269

j 1 2 3 4 5 6 7 8 9 10

β̂
(p)
j 0.662 0.338 - - - - - - - -

Table 9: Estimated parameters α
(p)
i and β

(p)
j .

α̂
(p)
i β̂

(p)
j Ê[N

(o)
ij ](1− ζ̂j)

i j = 1 j = 2 j = 1 j = 2

2004 2,593 1,327 2,608 1,360

2005 2,764 1,414 2,771 1,444

2006 2,793 1,429 2,791 1,455

2007 2,975 1,522 2,974 1,550

2008 3,256 1,666 3,263 1,701

2009 3,232 1,653 3,256 1,697

2010 2,938 1,503 2,918 1,521

2011 2,782 1,424 2,775 1,446

2012 2,694 1,378 2,673 1,393

2013 2,824 1,445 2,802 1,461

Table 10: Estimated means E[N
(p)
ij ]

5 Model specification for losses with longer develop-

ments

Let us now turn to losses requiring more than ω1 development periods to be settled or
reported to the insurer after lag ω1.

5.1 Individual reporting lag and time to settlement

As we work here with fewer losses with longer developments, we build the loss model from
individual claim information, before aggregating in yearly totals. Precisely, the kth loss
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originating in accident year i is represented as follows. First, we account for a random
declaration, or reporting lag Dik: The kth claim occurring during calendar year i is reported
in year i+Dik − 1 where the random variable Dik is valued in {1, 2, . . . , ω}. Then, we allow
for a random length Lik of settlement, with Lik ∈ {0, 1, . . . , ω}: Claim k reported in year
i + Dik − 1 is settled in year i + Dik + Lik − 1 ≤ i + ω − 1, where Dik + Lik ≥ ω1 + 1. We
assume that the pairs (Dik, Lik) are independent and identically distributed. Notice that the
value of Dik constrains the support of Lik as

Dik + Lik ≥ ω1 + 1

so that
Dik = d ≤ ω1 ⇒ Lik ≥ ω1 − d+ 1.

Moreover, Dik +Lik ≤ ω. As an example, let us consider the loss described in Table 11. The
corresponding reporting lag and random length of settlement are Dik = 2 and Lik = 2.

Event Year Amount
Occurrence 2005 -
Declaration 2006 -
Payments 2006 6,955

2007 0
2008 2,089

Closure 2008 -

Table 11: Evolution of a loss with longer development.

Let us now describe the history of these claims with longer developments. Between
occurrence of the accident and notification to the insurance company, these claims are said
to be Incurred But Not Reported (IBNR). From reporting until closure, they are said to be
Reported But Not Settled (RBNS). Thus, the claim is classified as IBNR during calendar
years i, . . . , i + Dik − 1. Then, the claim is classified as RBNS from calendar year i +
Dik − 1 until year i + Dik + Lik − 1. At the end of each year spent as RBNS, there is a
payment of amount Yi,k,Dik+h made by the insurer, h = 0, . . . , Lik. We assume that these
annual payments are mutually independent (in line with the standard independent increment
assumption in regression-based loss reserving). Coming back to our example in Table 11,
the loss occurred in accident year 2005, stayed IBNR during one year (from 2005 to 2006)
and became RBNS in 2006 until 2008. The corresponding payments Yi,k,Dik+h are 6, 955 for
h = 0, 0 for h = 1 and 2, 089 for h = 2.

As Dik and Lik are correlated, their joint distribution must be inferred from the pairs
(Dik, Lik). Three cases must be distinguished for the (Dik, Lik):

- unavalaible data when Dik > n− i+ 1;

- incomplete data when

Dik ≤ n− i+ 1 but Dik + Lik > n− i+ 1;
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- complete data when Dik + Lik ≤ n− i+ 1.

Henceforth, we denote
ϕd,l = P[Dik = d, Lik = l].

5.2 Aggregated counts

Denote asMi the total number of claims with long development occurred during accident year
i. Let us now aggregate the individual developments to form the three related development
triangles filled with

M
(r)
ij = number of claims with long development originating in accident year i, reported at

development j, i.e. during calendar year i+ j − 1,

M
(r)
ij =

Mi∑
k=1

I[Dik = j];

M
(c)
ij = number of claims with long development originating in accident year i, reported at

development j or before and closed during calendar year i+ j − 1,

M
(c)
ij =

Mi∑
k=1

I[Dik + Lik = j]

such that
M

(c)
ij = 0 for j ≤ ω1;

M
(o)
ij = number of claims with long development originating in accident year i, still open at

development j,

M
(o)
ij =

Mi∑
k=1

I[Dik + Lik ≥ j].

In line with the CL model, we consider that the counts M
(r)
ij and M

(c)
ij have respective

means
E[M

(r)
ij ] = δiθ

(r)
j and E[M

(c)
ij ] = δiθ

(c)
j (5.1)

subject to the constraints
ω∑

j=1

θ
(r)
j =

ω∑
j=1

θ
(c)
j = 1.

Hence, θ
(r)
j and θ

(c)
j can be interpreted as probabilities of being reported and of being closed

at lag j, respectively. We set
θ
(c)
j = 0 for j ≤ ω1

in accordance with our condition to qualify as a claim with long development. The marginal
distribution of the reporting lag Dik is deduced from the triangle of the reported claims M

(r)
ij ,

i.e.
P[Dik = d] = θ

(r)
d .
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In case data do not cover the entire settlement period ω, i.e. n < ω, a tail factor can be
included in (5.1) to account for the development between n and ω. This may be needed to

ensure that the same δi is involved in the expectations of M
(r)
ij and M

(c)
ij . Indeed, claims are

typically reported sooner whereas some complicated cases may require development until ω.
For instance, the series of estimated θ

(c)
j can be extrapolated from j = n+ 1 to ω when they

exhibit a clear trend.
Then, the number Mi of claims with long development occurred during accident year i

is decomposed into

Mi =
ω∑

j=1

M
(r)
ij =

ω∑
j=1

M
(c)
ij ,

with mean
E[Mi] = δi. (5.2)

Furthermore, as
j∑

k=1

M
(r)
ik =

j−1∑
k=1

M
(c)
ik +M

(o)
ij

we then get

E[M
(o)
ij ] = δi

(
j∑

k=1

θ
(r)
k −

j−1∑
k=1

θ
(c)
k

)
.

Table 12 displays the observed numbers M
(r)
ij for the claims included in the database.

Table 12 is thus the analog to Table 2 after having excluded the claims reported and settled
in at most 2 years. Similarly, Table 13 displays the observed numbers M

(c)
ij of closed claims.

1 2 3 4 5 6 7 8 9 10 11

2004 381 31 8 1 0 0 0 0 0 0 0

2005 318 36 5 1 0 0 0 0 0 0

2006 459 42 2 2 0 0 0 0 0

2007 616 78 9 3 0 0 0 0

2008 505 41 8 1 0 0 0

2009 607 40 10 0 0 0

2010 547 58 7 1 0

2011 523 55 9 1

2012 545 47 7

2013 623 47

Table 12: Observed numbers M
(r)
ij of reported claims requiring more than two development

periods, per accident year i = 2004, . . . , 2013 and development j = 1, . . . , 11, together with
totals

∑n−i+1
j=1 M

(r)
ij . Accident year 2014 is not included as claims with short or long devel-

opment patterns cannot be identified.
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1 2 3 4 5 6 7 8 9 10 11

2004 0 0 203 94 42 38 9 14 5 3 4

2005 0 0 172 62 46 29 17 12 8 4

2006 0 0 228 139 65 29 22 5 7

2007 0 0 433 136 59 38 14 8

2008 0 0 287 141 58 30 21

2009 0 0 385 127 71 29

2010 0 0 340 146 66

2011 0 0 337 123

2012 0 0 373

Table 13: Observed numbers M
(c)
ij of closed claims requiring more than two development

periods, per accident year i = 2004, . . . , 2013 and development j = 1, . . . , 11, together with
totals

∑n−i+1
j=1 M

(c)
ij . Accident years 2013-2014 are not included as claims require at least two

developments before settlement.

Table 14 displays the estimated δi and θ
(r)
j obtained from the observed counts M

(r)
ij by

assuming that these random variables are independent and obey Poisson distributions with
means (5.1). Again, we have used the GLM package of R. We see that the resulting δ̂i replicate

the observed totals
∑n−i+1

j=1 M
(r)
ij for earlier accident years (up to 2011), whereas 1 and 10

claims are added to these totals for accident years 2012 and 2013, respectively. This is in
line with the observed reporting patterns at lags j ∈ {3, 4} for accident years 2012 and 2013.

The estimated probabilities θ̂
(r)
j of being reported at lag j rapidly decrease with j, starting

from 90.1% and ending at 0.2%.

i 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

δ̂i 421 360 505 706 555 657 613 588 600 680

j 1 2 3 4

θ̂
(r)
j 0.901 0.084 0.013 0.002

Table 14: Estimated parameters δi and θ
(r)
j .

Table 15 displays the corresponding estimates obtained from the observed counts M
(c)
ij

by Poisson regression. The tail factors θ̂
(c)
12 and θ̂

(c)
13 have been set to

θ̂
(c)
11 = θ̂

(c)
12 = θ̂

(c)
13 = 1%

because the last estimations θ̂
(c)
10 and θ̂

(c)
11 tend to stabilize around that value. For the first

accident year, these two tail factors increase
∑n

j=1M
(c)
ij = 412 to 420 so that δ̂i obtained from

the counts M
(c)
ij and M

(r)
ij by Poisson regression almost coincide. For accident year 2005, δ̂i
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obtained from M
(c)
ij and M

(r)
ij are equal. This motivates the choice ω = 13. However, δ̂i

obtained from the counts M
(c)
ij then exceeds the observed values

∑n−i+1
j=1 M

(r)
ij for accident

years 2006 and beyond.

i 2004 2005 2006 2007 2008 2009 2010 2011 2012

δ̂i 420 360 514 726 579 683 659 627 715

j 1 2 3 4 5 6 7 8 9 10 11 12 13

θ̂
(c)
j 0 0 0.522 0.212 0.103 0.059 0.032 0.019 0.015 0.009 0.010 0.010 0.010

Table 15: Estimated parameters δi and θ
(c)
j .

The compatibility with the triangles of the counts M
(r)
ij , M

(c)
ij and M

(o)
ij is then obtained

from

E[M
(c)
ij ] =

j∑
k=1

E[M
(r)
ik ]

ϕk,j−k

θ
(r)
k

and

E[M
(o)
ij ] =

j∑
k=1

E[M
(r)
ik ]

(
1− ϕk,0 + . . .+ ϕk,j−k−1

θ
(r)
k

)
.

5.3 Claim severities

In order to model the sequence of yearly payments Yi,k,Dik+h, h = 0, . . . , Lik, we need to
account for zero values (i.e. no payment for that claim during that particular year) as well
as possibly large values. Therefore, we resort to a discrete mixture with three components:

- a lighter-tailed component with probability τh such as Gamma or Inverse Gaussian
distributions;

- a heavier-tailed component with probability ρh with Pareto type 2 distribution;

- as well as a probability mass at zero

P[Yi,k,Dik+h = 0] = 1− τh − ρh.

The parameters (probabilities assigned to each component as well as distributional param-
eters) are explained by means of several explanatory variables using appropriate regression
models. Specifically, yearly payments are assumed to be mutually independent and the
explanatory variables we are referring to are supposed to be

- the large-claim inflation ϑt related to an appropriate time scale t; here, we consider
the time of payment (t = i+Dik + h− 1);

- the reporting lag Dik;
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- the claim-specific development h (i.e. h measures the development from reporting, not
from the occurrence year).

If needed, the large-claim inflation may be structured (by specifying a constant inflation
rate, for instance). Of course, other explanatory variables may also be included.

Considering the amounts of payments Yi,k,Dik+h, we use a mixture model with a Gamma
and a Pareto type 2 component augmented with a probability mass at zero. We denote
by F

(1)
h,i+Dik+h−2 the cumulative distribution function of the Gamma component and by

F
(2)
h,i+Dik+h−2 the cumulative distribution function of the Pareto type 2 component. Precisely,

the average payment is of the form

χ1,h(1 + g1)
i+Dik+h−2

for the Gamma component and of the form

χ2,h(1 + g2)
i+Dik+h−2

for the Pareto type 2 component. In these averages, g1 (resp. g2) can be interpreted as
a constant inflation rate for the Gamma (resp. Pareto type 2) component and χ1,h (resp.
χ2,h) models the claim-specific development effect h for the Gamma (resp. Pareto type 2)
component.

h 0 1 2 3 4 5 6 7 8 9 10

τ̂h 0.170 0.262 0.153 0.063 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ρ̂h 0.193 0.293 0.355 0.450 0.549 0.564 0.502 0.545 0.576 0.607 0.500

1− τ̂h − ρ̂h 0.637 0.445 0.492 0.487 0.451 0.436 0.498 0.455 0.424 0.393 0.500

Table 16: Estimated parameters τh and ρh, as well as the probability mass at zero 1−τh−ρh,
by development h for a lighter-tailed component Gamma and a heavier-tailed component
Pareto type 2.

Such a 2-component mixture of Gamma and Pareto distributions can be fitted with the
help of the GAMLSS package of the statistical software R (http://www.gamlss.org/). GAMLSS
(for Generalized Additive Models for Location, Scale and Shape) are regression models where
several parameters of the assumed distribution for the response can be modeled as additive
functions of the explanatory variables (not only the mean as in GLMs). Estimation is car-
ried out by maximum likelihood. The only restriction is that the individual contribution
to the log-likelihood and its first two derivatives with respect to each of the parameters
must be computable. We refer the reader to Stasinopoulos et al. (2017) for more details.
The GAMLSS package supports many continuous, discrete and mixed distributions for mod-
eling the response variable, including the 2-component Gamma-Pareto mixture used here.
Development effects can also be smoothed using P-splines, cubic splines or loess smoothing.

Considering the estimations displayed in Table 16, the weights for the Gamma and Pareto
type 2 components are comparable at developments h ∈ {0, 1} whereas the Gamma compo-
nent decreases between h = 2 and h = 3 to become negligible when h ≥ 4.
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The estimated inflation rates g1 and g2 are ĝ1 = 0.03% and ĝ2 = 1.96% and Table
17 shows the estimated χ1,h and χ2,h obtained by using cubic spline smoothers. The way
these estimations vary with the development h conforms with intuition. The mathematical
expectations of the Gamma components decrease with lag h whereas those of the Pareto
component increase with h, capturing the largest losses with expensive payments and longer
development to settlement. Also, we notice that the difference between g1 and g2 is quite
significant. This difference can be explained by a low inflation over the observation period,
such that g1 is very small, while the large claims are also submitted to the superimposed
inflation leading to a higher g2.

h 0 1 2 3 4 5 6 7 8 9 10

χ̂1,h 3,432 3,765 1,903 652 - - - - - - -

χ̂2,h 3,061 4,019 4,154 5,318 6,011 8,253 9,709 10,167 10,145 10,231 10,178

Table 17: Estimated parameters χ1,h and χ2,h by development h for a lighter-tailed compo-
nent Gamma and a heavier-tailed component Pareto type 2.

6 Reserve calculations

6.1 Best estimates

6.1.1 Claims with short development

For calendar years i ∈ {n−ω1 +2, . . . , n}, the expected value of the outstanding claims with
short development is

E

[
ω1∑

j=n−i+2

Xij

]
=

ω1∑
j=n−i+2

E
[
N

(o)
ij

]
E [Xij1]

=

ω1∑
j=n−i+2

E
[
N

(p)
ij

]
E
[
X+

ij1

]
where X+

ij1 is distributed as Xij1 given Xij1 > 0. Of course, discounting at some appropriate
interest rate can be included, if needed. By equations (4.5), (4.2) and (4.6), it comes

E

[
ω1∑

j=n−i+2

Xij

]
=

ω1∑
j=n−i+2

αi

(
j∑

k=1

β
(r)
k −

j−1∑
k=1

β
(c)
k

)
(1− ζj)γi+j−1ξj.

In our case study, ω1 = 2 so that only the last accident year 2014 is concerned with reserve
calculations for claims with short development. Also, in the setting of our case study, instead
of relying on (4.2) for E

[
X+

ij1

]
, we rather use (4.3). Hence, since νi = κ and γi+1 = (1 + γ)11

for the last accident year i = 2014, we get

E [Xi2] = αi

(
2∑

k=1

β
(r)
k − β

(c)
1

)
(1− ζ2)νiγi+1ξ2 = αi

(
1− β(c)

1

)
(1− ζ2)κ(1 + γ)11ξ2.
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The parameter αi still needs to be estimated (see Table 8). Since E
[
N

(c)
i1

]
= αiβ

(c)
1 , we can

estimate αi by N
(c)
i1 /β̂

(c)
1 = 1, 925/0.451 = 4, 271. Hence, we get Ê [Xi2] = 3, 040, 309.

6.1.2 Claims with longer development

For all accident years (except the first one if n = ω), we must add the corresponding amount
for claims with longer development. To develop the total payments related to the whole
portfolio, we can simply use the following aggregate representation

Zij =

M
(o)
ij∑

k=1

Zijk

where Zijk is the payment in calendar year i+ j − 1 for a claim originating in accident year
i, still open at development j. The distribution of Zijk can be obtained as a mixture by
conditioning with respect to Dik. Precisely,

P[Zijk ≤ z] =

j∑
d=1

P[Zijk ≤ z|Dik = d]P[Dik = d|Dik ≤ j]

where

P[Zijk ≤ z|Dik = d] = P[Yi,k,d+(j−d) ≤ z]

= 1− τj−d − ρj−d + τj−dF
(1)
j−d,i+j−2(z) + ρj−dF

(2)
j−d,i+j−2(z)

and

P[Dik = d|Dik ≤ j] =
θ
(r)
d

θ
(r)
1 + . . .+ θ

(r)
j

.

Then,

E

[
ω∑

j=n−i+2

Zij

]
=

ω∑
j=n−i+2

E
[
M

(o)
ij

]
E [Zij1]

with

E [Zij1] =

j∑
d=1

E[Yi,1,d+(j−d)]
θ
(r)
d

θ
(r)
1 + . . .+ θ

(r)
j

and
E[Yi,1,d+(j−d)] = τj−dχ1,j−d(1 + g1)

i+j−2 + ρj−dχ2,j−d(1 + g2)
i+j−2.

6.1.3 Last accident year

In the context of our case study, we still need to estimate δi for the last accident year 2014

(see Table 14). As we know that E
[
N

(r)
i1 +M

(r)
i1

]
= αiβ

(r)
1 + δiθ

(r)
1 , we estimate δ2014 by

δ̂2014 =
N

(r)
2014,1 +M

(r)
2014,1 − α̂2014β̂

(r)
1

θ̂
(r)
1

= 704.
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Also, we need parameters estimates for τh, ρh, and χ2,h for lags h = 11, 12. Considering the
values reported in Tables 16 and 17 for h up to 10, it seems reasonable to set τ̂h = 0, ρ̂h = 0.5
and χ̂2,h = 10, 200 for h = 11, 12. The reserve estimate corresponding to claims with longer
development is 24, 384, 172.

6.2 Outstanding loss distribution

In a compound Poisson setting, Xij is distributed as

N
(p)
ij∑

k=1

X+
ijk

where the number of payments N
(p)
ij is Poisson distributed with mean (4.6) and X+

ijk is
distributed as Xijk given Xijk > 0. So, all Xij and Zij are independent and compound
Poisson distributed. Hence their sum also obeys a compound Poisson distribution and Panjer
algorithm can be used to derive the distribution of the outstanding claim amount

ω1∑
j=n−i+2

Xij +
ω∑

j=n−i+2

Zij. (6.1)

However, a computational problem may happen at initialization of the Panjer recursion to
compute exp(−λ) for large values of λ. We refer the reader for instance to Embrechts and Frei
(2009) for more details. In our case study, the Poisson parameter of the outstanding claim
amount (6.1) is 7, 578 so that exp(−7, 578) is outside the range of representable numbers in R

and is thus considered as 0. To prevent this issue, we could decompose the compound Poisson
random variable into the sum of m compound Poisson sums for a suitably large m such that
exp(−λ/m) can be evaluated in R and then carry out the m−fold convolution. Alternatively,
we may initiate Panjer recursion with unit value and then stop before probabilities explode,
dividing them by exp(λ). Here we rather choose to perform Monte-Carlo simulations.

Table 18 summarizes the outstanding claim distribution. The Value-at-Risk (VaR) at
probability levels 95% and 99.5% are based on 100, 000 simulations while the reserve estimate
is calculated analytically as shown previously. We see that about 1,500,000 has to be added
to the best estimate of the reserve to reach the 95th percentile. Approximately another
1,500,000 is needed to obtain the 99.5% quantile.

6.3 Comparison with CL and single collective approach

To enable benchmarking, we include the estimation results as obtained with standard re-
serving techniques designed for run-off triangles. We consider the results obtained with the
help of an Overdispersed Poisson (ODP) model with CL structure (as obtained with the
chainladder package available in R) where we apply a tail factor and we perform 10, 000
simulations. We also fit the collective model proposed by Denuit and Trufin (2016), which
does not separate claims with short and long developments. Table 18 also shows the reserve
estimates and the VaR at probability levels 95% and 99.5% obtained with these two methods.

22



Reserve estimate VaR0.95 VaR0.995

Our approach 27,424,481 29,262,230 30,751,029

Single collective 21,693,829 23,457,061 25,017,697

CL 22,259,690 24,142,573 25,239,963

Table 18: Reserve estimates and VaR at probability levels 95% and 99.5%.

Let us briefly comment on the values listed in Table 18. We see that both the best esti-
mates and the VaRs of the reserve are higher with the collective reserving model separating
the two types of claims proposed in this paper, compared to the aggregate CL predictions.
Also, working with a single collective leads to a significant underestimation of the insurer’s
liabilities. Let us stress that the VaR at 99.5% obtained with the approach developed in
this paper appears to be closer to the sum of the insurer’s case estimates at the end of 2014
compared to the lower CL value.

Let us explain why we favor the results obtained with the approach proposed in this
paper. The CL structure fails here because of its inability to capture the different inflation (or
diagonal) effects: the expected total payment in each cell does not factor into the product of a
row-specific coefficient times a column-specific one, as assumed under the CL decomposition.
Considering the single collective model proposed by Denuit and Trufin (2017), the approach
proposed here is able to capture the different dynamics of the two types of claims, the
difference in the average payments (the Gamma components have different means for the
two types of claims, as it can be seen by comparing the estimated ξ1 and ξ2 of about 1,100
to the estimated χ1,1 and χ1,2 that are about three times higher), as well as the different
inflation rates. Also, the model proposed in this paper extends the single collective one by
Denuit and Trufin (2017) so that the new approach can produce the same results, in case
there is no need to categorize the losses according to the length of their development.

7 Discussion

The model that has been proposed in this paper proceeds in two steps. For data correspond-
ing to short developments on the one hand, the observed numbers of claims are studied
in a Poisson regression setting. Moving to more elaborate models, including zero-inflated
or other mixed Poisson specifications, is possible if more appropriate. A zero-augmented
Gamma regression model is calibrated to paid amounts, with a specific inflation effect. For
claims with longer developments on the other hand, the reporting and settlement lags are
modelled at individual level and a 3-component mixture model describes the yearly pay-
ments per reported loss at various developments. Such finite mixture models can be fitted
to observed loss developments using the GAMLSS package of the statistical software R.

Only point estimates have been reported in the different tables. The reason is as follows.
For specifications (4.4) with Poisson distributed responses, the GLM procedure of R can be
used for inference. However, the mean is parameterized as exp(c + ai + bj) where c is the
intercept, each ai is associated with a row of the triangle, each bj with a column, setting
a1 = 0 and b1 = 0 for identifiability. The summary of the fit can be used to check whether
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all effects are significant, keeping in mind that the analysis is conducted with respect to
the reference levels of each factor, i.e. column 1 and row 1 in our example (users defined
contrasts can be used to compare other levels, if needed). Reverting to the parameterization
(4.4) means that α1 = exp(c), αi = exp(ai) for i ≥ 2, and βj = exp(bj)/(

∑
k exp(bk)).

Standard deviations on the αis are easily deduced from those of c and the ais but this is not
the case for βj. A bootstrap procedure can be applied to derive standard deviations in this

case: generating claim numbers from the Poisson distribution with mean exp(ĉ + âi + b̂j),

fitting the Poisson model and calculating the resulting β̂js. Notice that the specification
(4.3) is easier to handle as the constraints imposed to the parameters (γ1 = 1 and νi = 1 for
i ≤ 2009) correspond to the standard ones in the GLM package.

Considering the outputs of the GAMLSS package, standard deviations are difficult to obtain
with mixture models and smoothed effects. We refer to Section 5.2 in Stasinopoulos et al.
(2017), as well as to the warning about confidence intervals on parameters when smoothing
effects are included in the model (see page 134 of this book). For all these reasons, standard
deviations are not reported in this paper. Even if this is not really problematic for the appli-
cation to insurance loss reserving considered here, we acknowledge that this is a shortcoming
of the current approach that needs further investigation in the future.

In our example, we selected ω1 = 2 on the basis of the observed developments, so that
we only excluded the last accident year from the statistical estimation procedure. For larger
values of ω1, this may no longer seem reasonable as excluding a significant volume of data near
the end of the observation period may impact on the results. As observed loss development
patterns cannot be classified into short and long ones for accident years where less than ω1

developments are available (i.e. for accident years i > n − ω1 + 1), we need to resort to
a mixture model to account for the co-existence of losses with short and long development
patterns. Specifically, denoting as π1 and π2 = 1 − π1 the probability that a given loss
develops in less than ω1 years and more than ω1 years, respectively, each (possibly zero)
payment in these cells obeys the 4-component mixture model consisting in a probability
mass at zero, the common distribution of the X+

ijk, the lighter-tailed Gamma component,
and the heavier-tailed Pareto type 2 component. Such a discrete mixture model can be fitted
to the observations in the lower, left cells of the reserving triangle.

Of course, the same approach can be adopted with other dichotomies suitable for motor
insurance, such as claims with bodily injuries and claims with material damages, only, or
claims with initial case estimate above or below a given threshold.
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