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Abstract

We document considerable within-person (over time) variation in diet

quality that is not fully explained by responses to fluctuations in the eco-

nomic environment. We propose a two-selves model that provides a struc-

tural interpretation to this variation, in which food choices are a compromise

between a healthy and an unhealthy self, each with well-behaved prefer-

ences. We show that the data are consistent with this model using revealed

preference methods. The extent of self-control problems is higher among

younger and lower income consumers, though this is overstated if we do

not control for responses to fluctuations in the economic environment. Our

results are intuitively related to stated attitudes on self-control.
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“New Year’s Day ... now is the accepted time to make your regular

annual good resolutions. Next week you can begin paving hell with

them as usual.” – Mark Twain

1 Introduction

A growing theoretical literature posits that people sometimes make decisions that

they later regret. The presence of self-control problems opens the possibility that

public policy may be able to improve welfare by increasing the cost of consumption

today to reflect unanticipated future costs, or by facilitating the use of commitment

devices (O’Donoghue and Rabin (2003), Gruber and Koszegi (2004), O’Donoghue

and Rabin (2006) and Bernheim (2009)). A leading example of a setting in which

self-control problems may play a role is in food consumption. Evidence from the

experimental literature (for instance, Read and Van Leeuwen (1998) and Gilbert

et al. (2002)) and the existence of a multi-billion dollar diet industry (Cutler et al.

(2003)) attest to this.

However, there is limited direct evidence on self-control problems from ob-

servational consumption data. An important reason for this is that to provide

convincing evidence requires that we account for the considerable heterogeneity

in individuals’ food preferences that leads both to wide cross-sectional variation

in food choices and to variation in how individuals respond to changes in the eco-

nomic environment. In this paper we provide empirical evidence on the existence,

size and variation in self-control problems in food choice, while controlling for

heterogeneity in preferences and in responses to changes in the economic environ-

ment.

We make two contributions to the literature. First, we document substantial

within-person variation in diet quality over time. Considerable attention has been

paid to the variation in diet quality across people; we show that variation within

people is of a similar magnitude to the cross-sectional variation. The patterns of

within-person variation are suggestive of self-control problems, with individuals

exhibiting periods of significant deterioration in the nutritional quality of their

food purchases followed by periodic “resets” (e.g. around New Years), where diet

quality improves substantially for a limited time and then deteriorates again.

Second, we develop an empirically tractable framework that allows us to ac-

count for the heterogeneous food choice behavior of individuals and that provides

a structural interpretation of the within-person time-series fluctuations in diet

quality. To do this we bring together insights from the behavioral literature on
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multi-selves models with the literature on collective household behavior. We model

individual food purchase behavior as a compromise between two selves, a healthy

and an unhealthy self, each with stable preferences over two separate baskets of

food and drink products. The first basket is associated with a healthy lifestyle

and contains products such as fruits, vegetables and whole grains. The second

basket contains products such as soda, crisps and confectionery. The allocation

of products between the two selves is determined endogenously and is consumer

specific. Our framework encompasses standard models of consumer purchase be-

havior. This means that it incorporates the impact of variation in the relative

prices of foods and in food budgets, in addition to psychological factors related to

temptation and self-control, to explain the observed purchase behavior.

The two selves bargain over the food budget, with bargaining power that can

change over time. We model the two selves as entering into a bargaining process for

which we make only the minimal assumption that it results in a Pareto optimal

outcome. Pareto efficiency is a weak requirement that underlies most existing

multi-selves models. We make use of the sharing rule concept, often used to

quantify the bargaining power of individuals in collective models, to be able to

interpret variation in the diet quality of individuals’ food baskets over time as due

to variation in the bargaining weights of the healthy and unhealthy selves. For an

individual who exhibits self-control, either from an intrinsic psychological trait, or

from external commitment devices, we expect the bargaining weights of the two

selves to remain broadly stable throughout the year. In contrast, an individual

who lacks self-control may experience fluctuations in the bargaining weight of the

unhealthy self, reflecting temporary resoluteness followed by periods where they

succumb to temptation.

This definition of self-control is related to that used in the theoretical liter-

ature. We focus on increases in the influence of the unhealthy self in decision

making as indicating failure to exert self-control. We also describe variation in the

mean sharing rule across individuals; however, without making further assump-

tions, it is not possible to identify whether this reflects heterogeneity in (stable)

preferences across individuals, or variation in the average influence that the un-

healthy self has over the food budget. A strength of our focus on within-consumer

deviations in choices over time is that we avoid confounding self-control prob-

lems with heterogeneity in preferences, something that we would do if we were to

use cross-consumer comparisons to make inference about the extent of self-control

issues (see also Ameriks et al. (2007) and Bucciol (2012)).
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Our empirical analysis exploits longitudinal data on the grocery purchases of

a sample of British individuals. Revealed preference methods suggest that the

two-selves model does a good job at explaining variation in the data, and a better

job than a single-self model, in which each individual is characterized by a single,

stable utility function. We recover the sharing rule, which describes the share of

the food budget that is allocated to the healthy self. We show that the level of

this sharing rule, which represents the healthy self’s relative bargaining power, is

correlated with stated preferences that support our interpretation of consumers’

behavior. For example, individuals with a higher mean sharing rule are more likely

to state that they try to eat a healthy diet and are less likely to state that they

have tastes for processed foods.

We show that around 20% of within-person variation in the sharing rule is

explained by responses to changes in prices or food budgets. We also show that

seasonality in preferences does not explain the remaining variation in the sharing

rule. We investigate the relationship between our measure of self-control (residual

variation in the sharing rule after controlling for fluctuations in prices and food

budgets) with age and income. Several papers have posited that self-control may

be causally related to poverty (see, e.g., Mani et al. (2013), Haushofer and Fehr

(2014) and Bernheim et al. (2015)). We find evidence consistent with this hypoth-

esis: individuals with lower income experience greater variation in their spending

on healthy foods, even after controlling for their responses to changes in prices

and food budgets. We find a similar relationship with age: younger people have

more variation in their residual sharing rule than older people. This is consis-

tent with findings from the savings literature (see, e.g., Ameriks et al. (2007) and

Bucciol (2012)). In addition, we find that self-control issues are correlated with

stated preferences. For example, individuals who state that they regularly make

a shopping list and commit to buying the same brands also exhibit smaller fluc-

tuations. On the other hand, individuals who state that they often spend money

without thinking, or spend more on their credit card than they should, have larger

fluctuations in their sharing rule.

Our work relates to several important literatures. Firstly, it relates to the lit-

erature on multiple-selves models, which dates back to Strotz (1955) and Peleg

and Yaari (1973) and which remains very popular in the theoretical literature (see,

e.g., Gul and Pesendorfer (2001), Kalai et al. (2002), Gul and Pesendorfer (2004),

Fudenberg and Levine (2006), Manzini and Mariotti (2007), de Clippel and Eliaz

(2012), Manzini and Mariotti (2015), Ambrus and Rozen (2015) and Manzini and

Mariotti (2016)). In this paper our aim is to study the choices that individu-
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als make and to consider what they can tell us about the extent of self-control

problems. Many of these multi-selves models deliver observationally equivalent

predictions about choice behavior. They do have importantly different implica-

tions for welfare, but this is not our focus in this paper. The main intuition that

we take away from these multi-selves models can be distilled down to capturing

consumer decision making as a process in which two selves each have an influence

on decision-making (Manzini and Mariotti (2007) and Spiegler (2011)).

There is an extensive psychological literature on the use of self-regulation and

behavior modification (see references and discussion in Rabin (1998), DellaVi-

gna (2009), Dolan et al. (2012) and Bernheim et al. (2015)). The literature has

found relatively little evidence of the effective use of such commitment devices

(see DellaVigna and Malmendier (2006), DellaVigna (2009), Giné et al. (2010),

Bryan et al. (2010), Garon et al. (2015) and Bernheim et al. (2016)). An extension

of the multi-selves model formalizes the notion of costly self-control (see Gul and

Pesendorfer (2001) and Fudenberg and Levine (2006)).

Our paper also closely relates to the collective approach to choice behavior,

which is popular in the household economics literature (see Chiappori (1988),

Chiappori (1992), Browning and Chiappori (1998), Chiappori and Ekeland (2009),

Dunbar et al. (2013) and Browning et al. (2013)). The structure of the collective

model turns out to be well suited to bring the multiple-selves model to data.

We consider an individual with a healthy and an unhealthy self characterized

by (different) rational preferences and that enter into a bargaining process that

results in a Pareto optimal outcome. Chiappori (1988) shows that the sharing

rule – in our set up this is the share of the budget allocated to healthy goods –

is a direct indication of the bargaining power of the healthy self. Therefore, we

are able to remain agnostic about the specific interaction between the selves (as

long as it results in a Pareto optimal outcome), which means that our approach

encompasses most of the cited multiple-selves models, and we are still able to

interpret variation in the sharing rule as indicative of variation in the bargaining

power of the healthy self.

We check whether the theoretical implications of our two-selves model are sat-

isfied for our data by making use of revealed preference methods in the tradition

of Samuelson (1938), Afriat (1967) and Varian (1982). Our empirical application

builds on the work of Cherchye, De Rock, and Vermeulen (2007, 2011), who de-

veloped revealed preference methods to analyze collective choice behavior. These

methods provide a useful tool to evaluate the consistency of our two-selves model

with the data. Revealed preference methods typically place restrictions on the time
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variation in preferences, but are very flexible regarding the assumptions about the

functional form of demand. The methods allow us to check behavioral consistency

with the two-selves model for each individual separately, and thus avoid assuming

that individuals are characterized by homogeneous preferences.

The rest of the paper is structured as follows. In the next section we provide

evidence that there is substantial variation in food purchasing behavior by individ-

uals across time. We show that this variation is heterogeneous across individuals

and provide descriptive evidence that is indicative of temptation and self-control

problems. In Section 3 we develop a model of behavior that captures temptation

by modeling an individual’s decision making as reflecting the tension between a

healthy and an unhealthy self. Importantly, we allow for preference heterogeneity

across individuals. In Section 4 we show that individual purchase behavior can

be rationalized by the two-selves model. We analyze how the sharing rule varies

with prices, food budgets and what it suggests about self-control and temptation.

A final section concludes and discusses some avenues for future work.

2 Food purchasing behavior

Considerable attention has been paid to variation in diet quality across individu-

als and the impact this has had on rising obesity and diet-related disease (Cutler

et al. (2003), Finkelstein and Zuckerman (2008), Bleich et al. (2008), Baum and

Ruhm (2009) and Cutler and Lleras-Muney (2010)). Cross-sectional heterogene-

ity in diet quality has been shown to be associated with important inequalities in

health outcomes; for instance, Cutler and Lleras-Muney (2010) show that obesity

rates are half as high among the better educated. Much less attention, however,

has been paid to the variation in diet quality within-person over time. We em-

phasize the importance of this type of variation by studying the decisions that

individuals make over food purchases and the nutritional characteristics of their

food basket through time. This is a setting in which the idea that some con-

sumers may suffer from self-control problems is particularly salient (O’Donoghue

and Rabin (2000), Gul and Pesendorfer (2001) and Downs et al. (2009)), and where

poor decisions have potentially important consequences for well-being and welfare

(Cawley (2000), Bhattacharya and Sood (2011) and Finkelstein et al. (2013)).

People’s tendency to make (and fail to keep) New Year’s resolutions to lead

more healthy lifestyles indicates the potential importance of within-person vari-

ation in diet quality over time. Figure 2.1 shows data from Google Trends for

both the US and UK; panel (a) shows the time trends in google searches for the
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word “diet” and panel (b) shows the trends for searches for “healthy foods”. Both

searches, in both countries, show spikes in January and a steady decline as the

year progresses.

Figure 2.1: Google searches

(a) Searches for “Diet”
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(b) Searches for “Healthy food”
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Notes: Data from Google Trends for the search term “diet” (left hand panel) for the US and
UK, collected on 6th January 2017. Data from Google Trends for the search term “healthy food”
(right hand panel) for the US and UK, collected on 18th April 2017. Numbers represent search
interest relative to the highest point on the chart for the given region and time. A value of 100
is the peak popularity for the term; a score of 50 means the term was half as popular as the peak.

This pattern is reflected in the composition of food products in the shopping

baskets of individuals in the UK. We demonstrate this in Figure 2.2, which shows

how the share of calories from “healthy foods” varies over time on each day be-

tween 2005 and 2012 (where we use food as shorthand for food and non-alcoholic

drinks). The graph shows a similar pattern to the Google Trends data – a spike

in healthiness in January, followed by some decline, plateauing around the middle

of the year, then further decline until the end of the year.

The data that we use in this graph, and in the analysis below, is for a sample

of 3,645 single individuals in the UK from the Kantar Worldpanel, each of whom

we observe for at least 24 months. The data record all grocery purchases at the

transaction level made and brought into the home by these individuals. The data

include foods and drinks, as well as household goods such as cleaning supplies,

toiletries etc. We know the exact products purchased, the price paid for them,

and we have information on the nutritional characteristics of each product. We

focus on single-person households to avoid confounding self-control problems with

intra-household allocation issues. We describe the data in more detail in Appendix

A.1.
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Figure 2.2: Share of calories from healthy foods over 2005–2011
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Notes: We calculate the percentage of calories from healthy foods purchased on each shopping
trip for a sample of 3,645 individuals. The definition of healthy foods is given in the text. The
figure shows the mean of this variable across individuals on each day over 2005-2011.

We use the nutrient profile score (NPS) to rank foods by their “healthiness”.

The NPS is an index developed by nutritionists, and used by the UK Government,

that converts the multidimensional nutrient profile of a food product into a single

score. A lower score means the product is more healthy.1 Products with scores

below 4 are deemed “healthy” – this threshold is used by the UK Government

to restrict advertising of unhealthy products to children.2 In this section, we use

the government’s cutoff of 4 to class foods as healthy and unhealthy. In Section 4

we allow for the fact that individuals might have heterogeneous views about what

counts as healthy by endogenising the classification of foods into the healthy and

unhealthy sets. More details on the NPS are provided in Appendix A.2.

Figure 2.2 shows a decline in the calories purchased from healthy foods of over

10%, on average, over the calendar year. This is a sizable change. To provide some

intuition for the magnitude of this change, if we considered the average shopping

basket, this change would be approximately equivalent to cutting the calories from

1The NPS gives positive points for saturated fat, sodium, sugar and calories and negative
points for fibers, proteins and fruit, vegetables and nuts. The NPS ranges from -15 to 40; the
products that have the lowest score are pulses and vegetables, with scores of around -10, and
those with highest scores are solid fats, chocolates and biscuits, with scores over 20.

2For drinks the NPS scale is slightly different; we use the government classification that
drinks with a score below 1 are categorized as healthy.
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chocolate, sweets, and cake in half, and doubling calories from fruit.3 The variation

within-person is of a similar magnitude to the variation we see across people (see

Appendix A.3).

Figure 2.2 depicts an important aggregate trend in diet quality, with a general

decline over the course of the year. However, it masks a great deal of heterogeneity

in within-person variation. January is the healthiest month for only around one-

third of individuals; the healthiest month for the remaining two-thirds is roughly

evenly spread over the rest of the year, with October, November and December

being the months that are least often the healthiest. Similarly, roughly one-third

of individuals purchase their least healthy grocery basket in December, but the

remaining two-thirds buy their least healthy basket in a different month. Individ-

uals also vary considerably in the frequency with which they experience a decline,

with some experiencing many dips over the year, and others experiencing only a

few.

Figure 2.3: Share of calories from healthy foods around significant dates
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Notes: We calculate the percentage of calories from healthy foods for each shopping trip. The
dotted line shows the mean of this (across people) on each day leading up to and immediately after
Easter (left hand panel) and the individual’s birthday (right hand panel) for all years 2005-2011.

Easter and birthdays are two other times of the year that are also associated

with systematic changes in purchases of healthy foods – see Figure 2.3. In the run

up to both Easter and to individuals’ own birthdays the share of healthy foods

purchased tends to decline, gradually over several days in the former case and

more starkly a few days beforehand in the latter case. In both cases the share of

3Chocolate, sweets, and cake together account for an average of 9% of total calories, cutting
calories from this source by half would reduce the share of calories from unhealthy foods by
around 4.5 percentage points; fruit accounts for around 4% of calories, doubling this would
increase the share of calories from healthy foods by around 4 percentage points.
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calories from unhealthy products recovers towards the pre-event level immediately

following the occasion. These spikes are often contemporaneous with spikes in food

expenditure; in exploring what drives fluctuations in diet quality over time it is

important to control for price and income effects.

In Figure 2.4 we summarize the overall variation in both the average share

of healthy foods purchased across individuals and the within-individual variation

over time. Panel (a) shows a histogram of the mean share of the calories that

individuals purchase as healthy food. Variation in diet quality across individuals

is considerable; 5% of individuals purchase more than 70% of their calories in

healthy foods, while at the other extreme 5% purchase less than 35% from healthy

foods. On average, people purchase just over half (53%) of calories from healthy

foods. This variation is likely to reflect both preference heterogeneity (e.g., it is

strongly correlated with individuals’ stated preference that they prefer a healthy

diet) and differences in the economic environment they face (e.g., differences in

prices faced or food budgets). It may also reflect persistent differences in individ-

uals’ propensity to yield to temptation.

Figure 2.4: Heterogeneity in purchases of healthy foods
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Notes: For each person-year-month we calculate the percentage of calories from healthy food.
Panel (a) shows the distribution of each person’s mean of this variable (calculated across year-
months in which they are in the sample). Panel (b) shows the distribution of each person’s
standard deviation (across year-months) of this variable.

Panel (b) shows a histogram of the within-person standard deviation in the

share of calories from healthy food. The average standard deviation is around 10

percentage points; it is less than 6 percentage points for 5% of individuals and more

than 14 percentage points for 5% of individuals. Variation in diet quality over time

may be driven by temptation and self-control problems. However, it could also

reflect rational responses to changes in the economic environment. If the relative
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prices of healthy and unhealthy foods varied over time, or if the expenditure

elasticity of healthy and unhealthy foods departs from unity and food budgets

fluctuate, then we might expect the share of calories from healthy food to vary

over time. This motivates the need to develop a model of food choice that we

can take to data and that can accommodate the considerable heterogeneity in

preferences that are a clear feature of the data.

3 Theory

In this section we present a two-selves model that incorporates rich preference

heterogeneity and that allows us to capture the possibility that individuals exhibit

self-control problems. In this model, individual choice is driven by the influence of

a healthy self and an unhealthy self, that are both characterized by their own stable

and well-behaved preferences. We make use of a revealed preference methodology

(Samuelson (1938), Afriat (1967) and Varian (1982)) that allows us to investigate

whether the observed purchasing behavior can be rationalized by a two-selves

model. This method checks consistency of purchasing behavior with the two-selves

model for each individual separately, which fully accounts for across individual

preference heterogeneity.

3.1 Data structure and notation

Consider I individuals, indexed i ∈ {1, . . . , I}, with food consumption bundles

that contain both healthy and unhealthy foods and drinks. A first set of goods, Hi,

is associated with a healthy lifestyle and contains items such as fruits, vegetables

and whole grains. A second set, Li, contains unhealthy foods, such as soda, crisps

and confectionery. The i subscripts reflect the fact that individuals may have

different views on the nutritional quality of specific food items. In Section 4.1, we

explain how we empirically define the individual specific categorization of healthy

and unhealthy sets of goods. In our empirical application we consider 85 goods

that together make up the entire food and non-alcoholic drink grocery basket;

these are each an aggregate of nutritionally similar food or drink products (UPCs

or barcodes).

We observe Ti grocery baskets purchased by each individual i. The number of

observations is also individual specific, which does not pose a problem since the

application of our model is individual specific. For each observation t ∈ {1, . . . ,
Ti}, denote the quantities of the healthy food items by qhit ∈ RHi

+ and the quantities

10



of the less healthy food items by qlit ∈ RLi
+ . The market prices associated with

these are denoted by pht ∈ RHi
++ and plt ∈ RLi

++, respectively. In our empirical

application prices vary by region, but for notational simplicity we omit that here.

The individual’s food budget spent on healthy food items is denoted by xhit and is

equal to ph′t qhit; the food budget spent on less healthy food is denoted by xlit and

it equals pl′t q
l
it. The food budget of consumer i at time t is denoted by xit, where

xit = xhit + xlit. To summarize, for each individual i ∈ {1, . . . , I} we observe the

data Si = {
(
pht ,p

l
t; q

h
it,q

l
it

)
, t = 1, . . . , Ti}.

3.2 Two-selves model

We propose a two-selves model in which we assume that individual i is character-

ized by two selves, each with stable preferences. The first self is associated with a

healthy lifestyle and derives utility from only the healthy food items qhit. The sec-

ond self derives utility from only the unhealthy food items qlit. The preferences of

each self are represented by the well-behaved utility functions uih
(
qhi
)

and uil
(
qli
)
.

The two selves enter into a bargaining process that is different for every individual

and which may not be stable over time. Note that an important feature of our

model is that it incorporates elements of non-standard decision making, without

abandoning the assumption of rational choice behavior altogether.

Intuitively, a more resolute individual is one whose bargaining process is sta-

ble over time. Heterogeneity in preferences (and other characteristics, such as

metabolism, and lifestyle choices, such as levels of exercise) might mean that an

individual prefers more or less healthy foods. They may regularly consume a diet

that gives more or less weight to the healthy self, but this does not change much

over time. By contrast, an individual who suffers from self-control problems will,

from time to time, be tempted by their unhealthy self, and so experience greater

fluctuations in the bargaining process. Note that our approach, which focuses on

within-person variation in bargaining, does not rule out that consistently buying

an unhealthy diet may reflect systematic self-control problems, however, we can-

not separately identify this from the individual simply having strong preferences

for unhealthy goods.

One useful way to quantify the influence of both selves is to make use of the

sharing rule concept, which we borrow from the literature on collective models

(see, e.g., Chiappori (1988), Browning and Chiappori (1998) and Chiappori and

Ekeland (2009)). The sharing rule distributes the food budget, xit, of individual i

to the budget spent on healthy food items by the healthy self, xhit, and the budget

11



spent on less healthy food items by the unhealthy self, xlit. One important question

is how the selves’ utility functions are aggregated to determine the observed pur-

chase behavior
(
qhit,q

l
it

)
of individual i. Chiappori (1988) demonstrated that the

sharing rule, as defined above, is compatible with the assumption that both selves

choose Pareto efficient allocations, in the setting with stable rational preferences

over the food bundles qhit and qlit. The sharing rule is then a direct indication of

the bargaining power of both selves.4

More formally, Pareto efficiency implies that individual i’s observed food pur-

chase behavior
(
qhit,q

l
it

)
can be represented as the solution of the following maxi-

mization problem:

max
qh
i ,q

l
i

µitu
ih
(
qhi
)

+ (1− µit)uil
(
qli
)

(3.1)

subject to

ph′t qhi + pl′t q
l
i ≤ xit.

In this representation the parameter µit ∈ [0, 1] is a Pareto weight that rep-

resents the bargaining weight of the healthy self in consumer i’s optimization

problem in period t. If µit equals one, then the individual behaves according to

the healthy self’s preferences, while if µit equals zero the allocation of the food

budget is determined by the unhealthy self’s preferences.

The two-selves model is a direct generalization of a rational choice model in

which healthy and unhealthy foods and drinks are strongly separable: this is

characterized by the case where µit = µi ∈ ]0, 1[. The rational choice model with

strongly separable preferences is a special case of the rational choice model without

any such constraints. In the empirical analysis we show that our two-selves model

outperforms the standard model and thus, by implication, the rational choice

model with strong separability.

However, under the assumption of bargaining between the two selves, the

Pareto weight generally depends on the food prices pht and plt, and on the food

expenditures xit. The Pareto weight may also depend on other factors, captured

by zit, that have an impact on the bargaining weight between the two selves, but

that do not affect the selves’ preferences or the budget constraint.

4Our setting is also compatible with a situation in which the healthy and unhealthy selves
behave noncooperatively. The intuition behind this result is that free-riding behavior is excluded
by default, since the healthy food items are exclusively consumed by the healthy self, while the
less healthy food items are exclusively consumed by the unhealthy self (see Cherchye, Demuynck,
and De Rock (2011)). This result implies that, in principle, in this setting any cooperative
behavior can be represented as noncooperative behavior (and vice versa). We focus on the
sharing rule interpretation.
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The sharing rule gives the relative share of the healthy self’s food expenditures

in total food expenditure, ηit = xhit/xit. There is a one-to-one relation between the

Pareto weight µit and the sharing rule. Hence, under some regularity conditions,

the sharing rule is a function of the same variables that affect the Pareto weight.

We can therefore write:

ηit = ηi(p
h
t ,p

l
t, xit, zit). (3.2)

In the next section we make extensive use of this sharing rule to describe the

variation in the bargaining weights of the two selves over time.

To summarize the two-selves model, consider an individual who has the New

Year’s resolution to eat more healthy food. In the first few months of the year

this individual’s food purchasing behavior is driven, to a large extent, by the

preferences of the healthy self. The relatively high Pareto weight µit that is at-

tached to the healthy self would be reflected by a high share of the healthy food

items in the food budget, as determined by the individual-specific sharing rule

ηi(p
h
t ,p

l
t, xit, zit). As the year progresses her resolution deteriorates and she is

increasingly tempted, reflected by a change in zit. This decline in her resolution

is associated with, all else equal, a decrease over time of the Pareto weight and an

increase of the share of unhealthy food items in the food budget. Of course, vari-

ation in prices and budgets might also lead to variation in the share of the budget

spent on healthy foods. In the empirical analysis of the model we isolate variation

in the sharing rule that is driven by zit and link this to self-control problems. We

first discuss the testable implications of the two-selves model.

3.3 Testable implications

Browning and Chiappori (1998) and Chiappori and Ekeland (2009) characterize

the testable implications of the collective model, which has a similar structure to

our two-selves model. Cherchye, De Rock, and Vermeulen (2007, 2011) charac-

terize similar conditions in a revealed preference setting à la Afriat (1967) and

Varian (1982).

We assume that both selves of individual i have stable and rational preferences:

Definition 1 (Stable and rational preferences). Let Sij = {
(
pjt ; q

j
it,
)
, t = 1, ..., Ti}

be a set of observations of self j, where j = h, l. Self j’s behavior is rationalizable

if there exists a non-satiated utility function uij such that, for each observation t,

we have uij
(
qjit
)
≥ uij

(
qji
)

for all qji such that pj′t qji ≤ pj′t qjit.
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Cherchye, De Rock, and Vermeulen (2011) show that both sets Sih = {
(
pht ; q

h
it

)
,

t = 1, ..., Ti} and Sil = {
(
plt; q

l
it

)
, t = 1, ..., Ti} have to satisfy a series of Afriat-

style inequalities, which we refer to as the Afriat Condition.

Definition 2 (Afriat Condition). Let Sij = {
(
pjt ; q

j
it

)
, t = 1, ..., Ti} be a set of

observations of self j, where j = h, l. The set Sij satisfies the Afriat Condition

if there exist numbers U ij
t , λ

ij
t ∈ R++ that meet, for all observations s and t, the

Afriat Inequalities:

U ij
s − U

ij
t ≤ λijt pj′t (qjis − qjit).

Intuitively, for a given data set Sij, the Afriat Inequalities allow us to obtain

an explicit construction of the utility level and the marginal utility of income

associated with each observation t: they define a utility level U ij
t and a marginal

utility of income λijt (associated with the observed budget xjit for each observed

bundle qjit). Note that the Afriat Inequalities are linear in the unknowns U ij
t

and λijt . Thus, we can use standard linear programming techniques to verify

rationalizability of self j’s behavior for a given individual i (corresponding to the

data set Sij). Checking behavioral consistency with the two-selves model requires

verifying the Afriat Condition for each self separately.

Finally, note that this approach can be separately applied to each individual

i, so does not impose homogeneity of preferences across consumers. This is an

important feature in light of the empirical evidence showing considerable variation

across consumers in their food purchasing behavior.

3.4 Afriat Index

The Afriat Condition provides a pass/fail test of stable rational preferences: either

the data satisfy the condition or they do not. It is therefore useful to measure how

close the observed behavior is to exact rationalizability in the case that one or both

of the sets Sih or Sil violates the Afriat Condition for a given individual i. For

this purpose, we use (a two-selves, weighted, version of) the Afriat Index (Afriat

(1973)). This index measures the fraction by which observed expenditures must

be decreased for the data to be rationalized by the model. In revealed preference

applications this is widely used to assess the goodness-of-fit of a rationalizability

condition such as the one in Definition 2.

We first define the Afriat Index for a given self j of individual i. To do so,

we make use of the modified concept, the Extended Afriat Condition, which is

defined for 0 ≤ ei ≤ 1.
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Definition 3 (Extended Afriat Condition). Let Sij = {
(
pjt ; q

j
it

)
, t = 1, ..., Ti}

be a set of observations of self j, where j = h, l. The set Sij satisfies the Ex-

tended Afriat Condition if there exist numbers U ij
t , λ

ij
t ∈ R++ that meet, for all

observations s and t, the Extended Afriat Inequalities:

U ij
s − U

ij
t ≤ λijt pj′t (qjis − ei ∗ qjit).

The exact Afriat Condition in Definition 2 is equivalent to ei = 1. Generally,

lower values of ei imply weaker rationalizability restrictions. For a given data

set Sij, the Afriat Index equals the largest value of ei such that Sij satisfies the

Extended Afriat Condition. It measures how close the observed behavior is to

exactly rationalizable behavior. We refer to Choi et al. (2014) for additional

discussion on the interpretation of the Afriat Index as a measure for the degree of

data consistency with rationalizable behavior.5

For our two-selves model, we can define a separate Afriat Index for the healthy

and the unhealthy self of each individual i. From this, we construct a weighted

Afriat Index as the weighted average of these self-specific indices, by setting the

weights equal to the shares in the total food expenditures (over all observations) of

the respective selves. This weighting accounts for the “importance”of each self in

the individual’s total outlays. The interpretation of the resulting weighted index

is that the smaller the index, the more the observed food purchasing behavior

deviates from the behavior induced by the two-selves model.

3.5 Power

A power analysis evaluates the probability of detecting an alternative hypothesis

to the model under study. Bronars (1987) first defined a procedure to assess

the power for revealed preference conditions of rationalizability. His alternative

hypothesis was based on the notion of irrational behavior of Becker (1962), which

states that individuals randomly choose consumption bundles that exhaust the

available budget. Our power assessment adapts Bronars’ procedure for the two-

selves model.

5These authors refer to the Afriat Index as “Critical Cost Efficiency Index”(CCEI). In the
revealed preference literature, the two denominations are used interchangeably. In defining
their CCEI, Choi et al. (2014) start from the generalized axiom of revealed preference (GARP)
condition for rationalizable consumer behavior, whereas we start from the Afriat Condition in
Definition 2. As shown by Varian (1982), the two conditions for rationalizability are empirically
equivalent.
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An important requirement for our power evaluation method relates to the

prevalence of zero expenditures in the data. In fact, without explicit correction,

randomly drawing bundles from a budget constraint obtains a zero probability of

simulating zero consumption of a certain item. Such a simulation would there-

fore never match reality if zero expenditures are present. To take the observed

zero expenditures into account, we calculate the proportion πgi of strictly positive

expenditures for each individual i for each good g over the Ti observations. We

subsequently draw individual-specific random bundles defined by νgit. To define

each νgit we first draw a random number from the uniform distribution between

0 and 1. If this number is greater than πgi, then we set νgit equal to zero. If it is

less than πgi then νgit is the result of a new drawing from the uniform distribu-

tion (between 0 and 1). The (random) budget share of good g for individual i in

observation t is defined as wgit ≡ (νgit/
∑

i νgit). The random quantity bundle for

individual i in observation t is obtained by multiplying this budget share wgit by

the observed expenditure level xit and dividing the outcome by the corresponding

components of the price vector pt.

For each individual i and each observation t we use this procedure to construct

200 random consumption bundles. This defines 200 series of Ti random consump-

tion bundles. The advantage of this procedure is that it results in an expected

proportion of zero expenditures that complies with the observed proportion. If

an individual has no expenditures on a particular good across all observations t,

then it is never randomly allocated a consumption bundle with strictly positive

expenditures on that good. The randomly constructed consumption bundles can

be used to evaluate the power of the rationalizability conditions for our two-selves

model. For each individual i (characterized by Ti observed price-income regimes),

we compute the proportion of random draws with Afriat indices above the true

Afriat index computed with the data. This captures the probability that this true

index is below the Afriat index associated with random behavior.

4 Empirical implementation

In this section we empirically implement the model described above. We present

evidence on how well the two-selves model rationalizes the data. We recover vari-

ation in the sharing rule that is not due to changes in the economic environment,

and describe how this varies with individuals’ characteristics.
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4.1 Fit of the model

To implement the methods described in Section 3 we aggregate products to the

level of 85 goods based on their nutritional characteristics.6 For each good we

construct a price index that is a weighted average of the product level region-

month specific prices, where the weights reflect the quantity share of products –

see Appendix B.1 for details.

As described in Section 3.2, the two-selves model requires us to partition the

goods into those purchased by the healthy and unhealthy self. To do this, we make

use of the NPS, which summarizes the nutrient profile of a food product in a single

continuous measure (see Appendix A.2). This allows us to rank goods by how

healthy they are. In Section 2, we used the government’s cutoff of 4 (or 1 for drinks)

to group foods into healthy and unhealthy sets. However, there are a number

of reasons why people might differ in terms of what is, and what is perceived

to be, “healthy” and “unhealthy”. We therefore use the observed purchases of

individuals to determine the cutoff endogenously. We classify the 34 goods that

have an average NPS less than 0 as preferred only by the healthy self, and the 24

goods with an average NPS of more than 10 (or more than 1 for drinks) as preferred

only by the unhealthy self (see again Table A.2). We consider the 27 goods with

an average NPS between 0 and 10 as uncertain and potentially belonging to either

the healthy or the unhealthy set. For each individual we empirically identify the

cutoff within these 27 goods as follows. We compute the Afriat Index evaluated at

each possible cutoff and choose the classification that corresponds to the highest

index value. Figure 4.1 shows the share of individuals for which the good listed

on the horizontal axis is the cutoff between healthy and unhealthy. The goods are

ordered in decreasing healthiness from left to right. The red dashed line shows

the location of the government’s cutoff of 4. There is considerable variation across

individuals in the cutoff between healthy and unhealthy that best rationalizes their

food purchases.

6In our data we observe transactions at the UPC (barcode) level; there are several hundred
thousand UPCs. Many of these are the same product available in different pack sizes, formats
and, in some cases, flavors. There are 113,025 distinct products recorded as being purchased
over the seven year period.
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Figure 4.1: Cutoffs between healthy and less healthy foods

Notes: For each individual the selected cutoff is the one that gives the best fit of the two-selves
model with the data, i.e., the highest weighted Afriat Index. The goods are ranked from more to
less healthy; the red dashed line shows the government’s cutoff (which corresponds to an NPS of
4). Drinks have a government specified cutoff of 1: we classify drinks with an NPS less than 1
as belonging to the healthy set of goods for all individuals, and drinks with an NPS greater than
1 as belonging to the unhealthy set of goods for all individuals.

For the selected partitioning of the goods, Figure 4.2(a) shows the distribution

of the weighted Afriat index for the two-selves model. Almost 20% of individuals

have observed purchase behavior that is exactly rationalizable by the two-selves

model. The Afriat indices for the remaining individuals are very high, indicating

that only small perturbations (1% on average) of the budget are needed to ensure

purchase behavior is rationalized by the two-selves model.

To compute a measure of the power of the revealed preference test we construct

Afriat indices for random draws from budget sets for each individual, as described

in Section 3.5. We calculate the proportion of random draws that have Afriat

indices greater than the true Afriat index computed with the data. This can be

interpreted as the probability that the true Afriat index is below that implied

by random behavior. Figure 4.2(b) shows the distribution of the probabilities –

they are concentrated around zero, indicating that the test has sufficient power to

discriminate between observed and random behavior.
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Figure 4.2: Model fit and power of the two-selves model
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Notes: The construction of the wieghted Afriat index for the two-selves model is described in
Section 3.4. To compute the power of the test we construct Afriat indices for the random draws
for each individual, as described in Section 3.5. For each individual we calculate the proportion
of random draws that have Afriat indices greater than the Afriat index for the observed value.
The figure shows the distribution across individuals.

A natural alternative to the two-selves model is a single-self model, in which an

individual has a single stable utility function defined over all 85 goods. The pass

rate of the two-selves model is almost twice as high as the pass rate of the single-

self model, and the Afriat index for the two-selves model is higher for around two

thirds of the individuals. The Kolomogorov-Smirnov test statistically confirms the

difference between the distribution of the Afriat indices: the test statistic is 0.131,

which is higher than the threshold for a 1% test (which is 0.04). This leads us to

conclude that our two-selves model provides a good fit of the data. Note that the

two-selves model and the single-self model are not nested (see, for example, Section

3.B.2 in Chiappori (1988)). Our framework nests a single-self model with a strong

separability structure related to the healthy and unhealthy goods. Empirically if

we consider this model, we find that the extra structure decreases even further the

goodness-of-fit, and thus the Afriat indices, of the single-self model.

4.2 Recovering the sharing rule

The two-selves model gives a structural interpretation to the share of spending on

healthy food via the sharing rule; in particular, in our set up the share of spending

on healthy foods is a transformation of the bargaining weight of the healthy self.

The sharing rule depends on the vector of prices for healthy and unhealthy foods,

phrt and phtr, total food spending, xit, and other factors that affect the bargaining

weight, zit:

ηit = ηi(p
h
rt,p

l
rt, xit, zit).
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Notice that here we make explicit the dependency of prices on region, r, which

takes values: {north, central, south} of the UK.

The function ηi is a consumer-specific nonparametric function and its argu-

ments include 85 prices, the food budget and the vector zit, which includes poten-

tially unobservable variables that affect the sharing rule. In order to estimate the

portion of variation in ηi that is driven by variation in prices and food budgets, and

the portion that is due to other factors, we impose the following restrictions. First,

we assume that the unobservable information is one dimensional and separable, so

that we can write ηit = gi(p
h
rt,p

l
rt, xit) + zit, where gi contains the observable part

of the sharing rule. Second, we assume that the two price vectors, which together

contain 85 separate price series, can be approximated by four price indices: one

for very healthy foods (those with an NPS less than 0), Πvh
irt; one for healthy foods

(those with an NPS between 0 and 10, but classed by the individual as healthy),

Πh
irt; one for unhealthy foods (those with an NPS between 0 and 10 and classed

by the individual as unhealthy), Πl
irt; and one for very unhealthy foods (those

with an NPS greater than 10), Πvl
irt. These price indices are weighted averages of

the prices for the goods which comprise each set. The weights are equal to the

individual’s mean quantity share of each good (out of quantity purchased on each

of the four sets of foods – very healthy, healthy, unhealthy, very unhealthy) – see

Appendix B.1 for further details.

Under these assumptions we get:

ηit = gi(Π
vh
irt,Π

h
irt,Π

l
irt,Π

vl
irt, xit) + zit.

We approximate gi with an expression that is linear in the log of the four price

indices and the log of a deflated expenditure term, and that has individual specific

coefficients. The approximation of the sharing rule that we estimate is:

ηit = αi + βhi

˜
ln

(
Πh
irt

Πvh
irt

)
+ βli

˜
ln

(
Πl
irt

Πvh
irt

)
+ βvli

˜
ln

(
Πvl
irt

Πvh
irt

)
+ γi

(
l̃n rxit

)
+ zit (4.1)

where l̃n(.) denotes that we normalize each variable by subtracting the individual

specific mean7 and,

ln rxit ≡ lnxit − [ω̄i
vh ln(Πvh

it ) + ω̄i
h ln(Πh

it) + ω̄i
l ln(Πl

it) + ω̄i
vl ln(Πvl

it )],

7For instance,
˜

ln
(

Πh
irt

Πvh
irt

)
= ln

(
Πh

irt

Πvh
irt

)
− 1

Ti

∑
t ln
(

Πh
irt

Πvh
irt

)
.
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is the log of real food expenditure.8 Deflating by the price index for food ensures

that the sharing rule is homogeneous of degree zero in prices and expenditure.

Normalizing the variables allows us to interpret αi as the individual’s preference

for healthy food when they face their average food budget and average relative

prices.

Estimation

We estimate equation (4.1) for each individual using OLS. (In Section 4.5, we

show that the results below are robust with respect to instrumenting log real food

expenditure). The R2 is a measure of the amount of the variation in the sharing

rule that is explained by variation in the economic environment (relative prices

and food budgets). The mean R2 across individuals is 0.21 – on average, around

20% of the within-person variation in the sharing rule is explained by variation

in the economic environment. For one-quarter of individuals, more than 27% of

variation in their sharing rule is explained by economic variables; for one-quarter

of individuals, less than 10% is explained by variation in prices and food budgets.

Estimates of the coefficients in equation (4.1) are summarized in Appendix

B.2. For each individual, we test the joint significance of the coefficients on rel-

ative prices. For around 33% of individuals, the relative price terms are jointly

significant at the 5% level, and for around 43% of individuals, the relative price

terms are jointly significant at the 10% level. For 25% of individuals, the coeffi-

cient on the log real food expenditure term is statistically different from zero; for

80% of these individuals the coefficient is negative, meaning that increases in the

food budget lower the bargaining weight of the healthy self, while for the remain-

ing 20%, the coefficient is positive, meaning an increase in the food budget raises

the healthy self bargaining weight.

For each individual, we calculate the elasticity of the sharing rule with respect

to the four price indices (εvhi , ε
h
i , ε

l
i, ε

vl
i ) and real food expenditure, εrxi ; these de-

scribe the percentage change in the sharing rule allocation to the healthy self from

a 1% increase in each variable. Table 4.1 shows the distribution of these elasticities

across individuals. Theory does not give a clear prediction on the sign of these

elasticities. At the median, increases in the price of very healthy and healthy foods

are associated with increases in the bargaining weight of the healthy self. However,

at the median, an increase in the price of unhealthy foods increase the bargaining

8This is the log of nominal food expenditure deflated with a food price index (the weights
in the index, (ω̄vhi , ω̄hi , ω̄

l
i, ω̄

vl
i ) are the individual’s mean share of spending on each of the four

sets of goods).
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weight of the healthy self, whereas increases in the price of very unhealthy foods

act to reduce the bargaining weight. For the majority of individuals, increases

in food budgets lower the bargaining weight of the healthy self. Table 4.1 makes

clear, however, that there is a lot of heterogeneity across individuals, and for some

people the size of the effects are the opposite of the median effects.

Table 4.1: Elasticities of the sharing rule with respect to prices and food expenditure

Percentile

Elasticity of sharing rule w.r.t: Mean 25th 50th 75th

Real food expenditure, εrxi -0.05 -0.15 -0.05 0.04

Price of very healthy foods, εvhi 0.20 -0.85 0.12 1.20
Price of healthy foods, εhi 0.35 -1.10 0.39 1.88
Price of unhealthy foods, εli 0.28 -1.12 0.31 1.73
Price of very unhealthy foods, εvli -0.61 -2.42 -0.61 1.20

Notes: For each individual we compute the elasticity of the sharing rule with respect to the
four price indices and real food expenditure evaluated at the individual’s mean sharing rule,
η̄i. The elasticity of the sharing rule with respect to the price indices for healthy, unhealthy,
and very unhealthy goods are given by: εgi = 1

η̄i
(βgi − γiw̄

g
i ), for g = h, l, vl. The elasticity

of the sharing rule with respect to the price index for very healthy food is given by: εvhi =
− 1
η̄i

(βhi + βli + βvli + γiw̄
vh
i ). The elasticity of the sharing rule with respect to the food budget

is given by: εrxi = γi
ηit

. The table shows the mean and 25, 50, 75 percentiles of the distribution
across individuals.

4.3 Variation in preferences for healthy food

The parameter estimate α̂i is consumer i’s “mean” sharing rule, evaluated at their

mean real food expenditure and when the prices of the healthy, unhealthy and

very unhealthy goods (relative to the very healthy goods) are equal to the average

that the individual faces. It therefore captures the consumer’s average propensity

to choose healthy relative to unhealthy foods. This in part reflects preferences,

but may also reflect the consumer’s average tendency to succumb to temptation.

The median value of α̂i is 52%, the 25th percentile is 40% and the 75th percentile

is 61%. Figure 4.3 shows the distribution across individuals.
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Figure 4.3: Distribution of α̂i across individuals
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Notes: The figure shows the histogram of α̂i from estimating equation 4.1.

Figure 4.4(a) shows the mean sharing rule for different age groups. Older

people spend a greater share of their food budget on healthy foods than younger

people. Socioeconomic differences in health are well documented. For instance,

Cutler and Lleras-Muney (2010) show that obesity rates are half as high among

the better educated. They estimate that income, health insurance and family

background can explain about 30% of the relationship between education and

health behaviors. We use the average grocery expenditure of each individual – i.e.

expenditure on all fast moving consumer goods (food, alcohol, household supplies,

toiletries etc.) – over the course of their time in the sample (at least two years) as

a proxy for income. In the Appendix B.3 we show that this is strongly correlated

with income using data from the Living Costs and Food Survey. Henceforth, we

refer to the distribution of average grocery expenditure as the income distribution.

Figure 4.4(b) shows the mean sharing rule for quintiles of this distribution. People

in the top quintile have a sharing rule that implies they spend 2 percentage points

more of their food budget on healthy foods than people in the bottom quintile.

In terms of magnitude, this difference would be roughly equivalent to reducing by

half spending on chocolate and confectionery (which has an average expenditure

share of 4.6%) and doubling spending on dark green vegetables (which has an

average expenditure share of 1.1%).
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Figure 4.4: Variation in the mean sharing rule, α̂i, with age and income
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Notes: Age group is defined based on the individual’s median age while in the sample. For each
individual we calculate their mean total spending on fast moving consumer goods (food, alcohol,
household supplies, toiletries etc.) across the period they are in the sample. We use this as
a measure of individual income. Quintiles are based on the distribution of this variable across
individuals. 95% confidence intervals are shown. Confidence intervals reflect uncertainty arising
from the sample of individuals, but not over the time series variation for each individual.

In Appendix B.3 we summarize differences in the mean estimated sharing rule

across some other demographic groups. On average, men have lower mean values

of the sharing rule than women – they allocate 1.9 percentage points less of their

food budget to healthy foods than women. People not in work tend to spend a

lower share on healthy foods than people in work – with an average sharing rule

that allocates 2.3 percentage points less to healthy foods, and smokers allocate
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3.5 percentage points less than non-smokers. We also show that individuals’ pref-

erences for healthy food accord with their stated preferences: the mean sharing

rule is increasing in stated preferences for healthy food and declining in stated

preferences for processed food. These correlations are reassuring. In addition, we

find that individuals with lower stated self-control have a lower mean sharing rule;

this suggests differences in the mean sharing rule may partly reflect permanent

differences in self-control across individuals.

4.4 Variation in residual sharing rule

In our model, changes in the economic variables (prices and food budgets) have

a twofold effect: (i) the standard effect on demand (captured by the within self

utility functions) and (ii) an impact on the bargaining process, which implies a

change in the respective shares going to healthy and unhealthy foods and drinks.

In Section 4.2 we summarize the impact of economic variables on the bargaining

process. In what follows, we focus on the residual sharing rule zit. Recall that zit

measures an individual’s deviation from the mean sharing rule after accounting

for the impact of variation in prices and food budgets. In Section 4.5 we show

robustness of our results to removing seasonality in preferences, along with a

number of other possible concerns.

Variation over time

For each individual, the residual sharing rule, zit, captures variation over time in

the sharing rule (and hence the bargaining weight) around the mean that is not

driven by that individual’s responses to changes in food prices or food expendi-

tures. In Figure 4.5 we summarize the average (across individuals) variation in ẑit

over the year. We plot the deviation in the mean relative to January (pooled over

years). We also show the mean (relative to January) of the observed share of ex-

penditure allocated to healthy foods, ηit, over the year, which captures the average

variation in the share of spending allocated to the healthy self that is driven both

by observable economic variables (prices and food budgets) and unobservables

(zit).

The figure shows that, on average, the residual sharing rule declines from

January to March, increases from March to July, and then deteriorates from July

onwards. This pattern is similar to the share of expenditure on healthy goods

(which reflects both variation driven by the observed and unobserved parts of the

sharing rule). The decline in the last quarter of the year is larger for the share
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of spending on healthy food than for the residual sharing rule. This means that

individuals’ responses to the changes they experience in the economic environment

(prices and food budgets) accounts for some of the decline in diet quality over

the year, but not all of it. Indeed, more than half of the decline is accounted

for by variation in the unobserved part of the sharing rule. Individuals see the

bargaining weight of their unhealthy self rise over the second half of the year, for

reasons unrelated to variation in prices or food budgets.

Figure 4.5: Deviations from the mean sharing rule over the calendar year
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Notes: Black dots show the mean sharing rule, ηit, in each calendar month, pooled across years.
Red triangles show the mean residual sharing rule, ẑit, which removes the effect of variation in
prices and food budgets, in each calendar month, pooled across years. Both are measured relative
to the mean values in January. 95% confidence intervals are shown. Confidence intervals reflect
uncertainty arising from the sample of individuals, but not over the time series variation for
each individual.

Variation across individuals

Figure 4.5 shows that, on average, preferences of the unhealthy self become more

important in determining food choice over the calendar year. However, it masks a

great deal of variation across individuals. We construct the standard deviation of

the residual sharing rule for each individual i over t: σ̂i = sd(ẑit). This measures

variation in the individual’s sharing rule that is not driven by changes in prices

and food budgets, which we interpret as indicating self-control problems. In Ap-

pendix B.4 we show that the size of the deviations in the residual sharing rule are
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correlated with individuals’ stated attitudes. Individuals who have lower stated

self-control (i.e. state that they spend money without thinking, or spend more

on their credit card than they should) have larger fluctuations in their sharing

rule over the year. Individuals who state that they commit to buying the same

brands experience smaller deviations, while those who say that they are more

spontaneous, and, for example, are influenced by promotions experience larger

deviations in their residual sharing rule.

We also construct the standard deviation of the sharing rule for each individ-

ual i over t: σ̃i = sd(ηit). This measures the total variation in the individual’s

sharing rule, driven by both changes in the economic environment and other fac-

tors. Figure 4.6 compares the distributions of σ̃i and σ̂i across individuals. The

distribution of σ̂i is to the left of the distribution of σ̃i. The shift shows the ex-

tent to which accounting for individuals’ responses to variation in prices and their

food budgets explains variation in their spending on healthy food over time. The

average standard deviation of the sharing rule, σ̃i, is 8.8 percentage points, but of

the residual sharing rule, σ̂i, is 7.9 percentage points.

Figure 4.6: Standard deviation of the sharing rule and the residual sharing rule
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Figure 4.7(a) shows how the standard deviation in the residual sharing rule,

σ̂i, varies across age groups. Panel (b) shows how the difference in variation in the
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total and residual sharing rule, (σ̃i− σ̂i), varies with age. This can be interpreted

as the extent of variation explained by the economic environment, and the size

of the error from interpreting the entire sharing rule (without removing the effect

of the economic environment) as a measure of self-control problems. Together

these graphs show two things. First, there is an age gradient in our measure

of self-control. Young people, on average, have more unexplained variation in the

bargaining weight of their healthy self, indicating they suffer more from self-control

problems than older people. This is consistent with previous findings (see Ameriks

et al. (2007), Bucciol (2012), Dohmen et al. (2017)). Second, failing to account for

the effects of the economic environment would lead to an over-statement of this

gradient. For individuals aged below 40, variation in the economic environment

is, on average, responsible for 1.25 percentage points of the standard deviation in

their sharing rule; for individuals aged over 70, 0.95 percentage points is explained

by responses to the economic environment.

Figure 4.8 shows a similar pattern for the relationship between σ̂i, σ̃i− σ̂i and

the income distribution. People with low income exhibit more variation in their

sharing rule. Part of this is driven by the residual sharing rule (panel (a)) and is

therefore reflective of self-control problems. Part of it is driven by responses to

the economic environment (panel (b)), which must be properly controlled for to

avoid over-stating the gradient in self-control problems.

Despite this, it is still the case that lower income individuals have more vari-

ation in their residual sharing rule. This difference is meaningful: individuals

in the bottom quintile have a standard deviation in their residual sharing rule

that is more than 2 percentage points larger than individuals in the top quintile.

This difference is larger than the cross-sectional difference in the average sharing

rule between the bottom to top quintile (which is roughly 2 percentage points –

see Figure 4.4(b)). This accords with evidence that low income people are more

susceptible to self-control problems. Indeed a number of papers point to low in-

come being causally related to self-control problems. For example, Haushofer and

Fehr (2014) and Mani et al. (2013) suggest that the stress and cognitive loads

of being in poverty means people are more likely to make unwise decisions and

underweight the future. Bernheim et al. (2015) argue that poverty can perpetuate

itself by undermining the capacity for self-control: low initial wealth precludes

self-control, and hence asset accumulation, creating a poverty trap. Banerjee and

Mullainathan (2010) take an alternative approach by assuming that “temptation

goods” are inferior goods, which leads to a similar conclusion that self-control

problems give rise to asset traps. Mastrobuoni and Weinberg (2009) find that
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retired individuals who have accumulated lower savings over their lifecycle are less

likely to smooth their food consumption over their Social Security pay periods.

Figure 4.7: Variation in σ̂i with age
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7
7.

5
8

8.
5

9
St

an
da

rd
 d

ev
ia

ti
on

 o
f r

es
id

ua
l s

ha
ri

ng
 r

ul
e

Under 40 40-50 50-60 60-70 70+
Age group

(b) Effect of responses to changes in prices and food expenditure

.9
1

1.
1

1.
2

1.
3

D
iff

er
en

ce
 b

et
w

ee
n 

s.
d.

 o
f s

ha
ri

ng
 r

ul
e

 a
nd

 s
.d

. o
f r

es
id

ua
l s

ha
ri

ng
 r

ul
e

Under 40 40-50 50-60 60-70 70+
Age group

Notes: Age group is defined based on the individual’s median age while in the sample. The
top panel shows the mean standard deviation in the residual sharing rule across individuals in
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shows the mean of this difference across individuals in age group. 95% confidence intervals are
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Figure 4.8: Variation in σ̂i with income

(a) Standard deviation of residual sharing rule
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Notes: For each individual we calculate their mean total spending on fast moving consumer
goods (food, alcohol, household supplies, toiletries etc.) across the period they are in the sample,
which we use as a proxy for income. Quintiles are based on the distribution of this variable
across individuals. The top panel shows the mean standard deviation in the residual sharing
rule across individuals in each quintile. For each individual we calculate the difference in the
standard deviation in the sharing rule and the standard deviation in the residual sharing rule,
σ̃i − σ̂i; the bottom panel shows the mean of this difference across individuals in each quintile.
95% confidence intervals are shown. Confidence intervals reflect uncertainty arising from the
sample of individuals, but not over the time series variation for each individual.

Failure to account for individuals’ response to changes in their economic en-

vironment leads to an overestimate of the gradient of self-control with age and

income. This is primarily due to differences in the fluctuations in individuals’

food budgets and how they respond to them. Younger and lower income indi-
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viduals have larger fluctuations in their food budgets: the standard deviation of

logged real food expenditure is 30% higher for individuals aged under 40 compared

with individuals aged over 70, and it is 70% higher for individuals in the bottom

income quintile compared with individuals in the top. Across the income gradient,

this is amplified by the fact that real food expenditure statistically significantly

affects the sharing rule for more individuals in the bottom quintile (32%) than

the top quintile (18%). This illustrates the importance of distinguishing between

cross-sectional and within-individual comparisons: Figure 4.4(b) shows that higher

income individuals, on average, allocate a higher share of their food budgets to

healthy foods, but our within-individual estimates show that, on average, increases

in food budgets reduce the bargaining weight of the healthy self. These patterns

are consistent with results in the literature that there is a socioeconomic gradient

in diet quality and that there are reductions in diet quality during periods when

individuals experience positive income shocks (e.g. Ruhm (2000)).

4.5 Robustness

We check the robustness of our results to three things: (i) seasonal variation in

preferences, (ii) instrumenting food expenditure in equation (4.1), and (iii) using

only the subset of individuals for whom the two-selves model rationalizes their

observed behavior better than the single-self model.

Seasonal preferences

In Section 4.4 we interpret residual variation in the sharing rule as reflecting self-

control. However, it may be the case that individuals have seasonal variation

in their preferences due to other time varying factors that do not represent or

affect self-control, for instance, the weather. We investigate the robustness of our

results to this possibility by estimating an alternative specification of equation 4.1,

in which we allow for quarterly effects, τit. In particular, we define zit = τit + zτit

and construct σ̂τi = sd(ẑτit) as the residual sharing rule (net of seasonal effects).

We repeat our analysis in Section 4.4 with σ̂τi – see Appendix B.5. Removing

quarterly variation in preferences reduces the standard deviation of the residual

sharing rule, but only by a relatively small amount – the mean across individuals

falls from 7.9 to 7.4. This means that there is still substantial variation in the

sharing rule over time that is unaccounted for by either responses to fluctuations in

prices and food budgets, and any seasonality (at the quarterly level) in preferences.
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The age and income gradients in the residual sharing rule remain, after taking out

seasonal effects.9

Instrumenting food expenditure

In Section 4.4 we partial out the effect of variation in food prices and budgets.

However, individuals’ responses to the changing economic environment may partly

reflect lapses in self-control. For instance, for some individuals, times in which they

spend a lot on food may also be times in which they are more inclined to succumb

to temptation (which implies a low value of zit). To deal with this possibility,

which could affect our interpretation of the residual sharing rule, we instrument

for the expenditure term in equation (4.1) using variables that are likely to drive

total spending on food, but to be uncorrelated with individuals’ self-control prob-

lems with respect to unhealthy foods. Our instrument set includes a set of prices

from the consumer price index (CPI). These consist of the all-items CPI, which

captures the general price level in the economy, and the CPI component indices for

the set of non-housing goods (food, alcohol and tobacco, furniture and equipment,

health care, transport, communications, recreation, education, restaurants and ho-

tels, other goods and services). The instruments also include individual monthly

spending on non-food items (cleaning products, toiletries, cosmetics). We expect

non-food spending and the relative price of food and non-food to influence individ-

uals’ allocation of their total budget between food and other commodities, but not

to be correlated with the extent of their propensity to succumb to the temptation

associated with unhealthy foods.10

We present the results from this alternative IV approach in Appendix B.5. The

results are very similar across the OLS and IV specifications. Slightly more of the

observed variation in the sharing rule is explained by prices and budgets in the OLS

specification than the IV. This is consistent with the idea that individuals might

spend more when then are more tempted. However, the relationships with age

and income, and the importance of the economic environment, are qualitatively

similar.

9We see similar results when we take out common month effects.
10Pooling in the first stage across individuals results in an F-statistic for a test of the joint

significance of the instruments of over 700. Estimating the first stage individual-by-individual
results in lower F-statistics, and, for some individuals, weak instruments.
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Individuals for whom the two-self model fits better

We check the consistency of individuals’ behavior with both the two-selves model

and a natural alternative, the single-self model. For two-thirds of individuals the

two-selves model is better able to rationalize their behavior than the single-self

model. The two-selves model performs better (relative to the single-self model)

for younger individuals; there is no significant relationship with income. The two-

selves model performs better for individuals who are less likely to state that they

make shopping lists or commit to buying the same things.

In our main results, above, we study variation in the sharing rule for all in-

dividuals. We check whether our results are robust to using only the two-thirds

of individuals for whom the two-selves model better rationalizes the data than

the single-self model. We present these results in Appendix B.5. When we look

just at the subset of individuals for whom the two-self model fits better, we con-

tinue to see larger fluctuations in the sharing rule for younger and lower income

individuals.

5 Summary and concluding comments

We propose a two-selves model in which food choices are a compromise between

a healthy and an unhealthy self. We use data on a sample of single person house-

holds and nonparametric revealed preference methods to show that the model is

consistent with the data. This model allows us to put a structural interpretation

on the data; specifically, the sharing rule, or share of spending on healthy foods,

can be interpreted as the bargaining weight of the healthy self. Within-person

variation in the sharing rule (reflecting variation in diet quality) is significant and

of a similar magnitude to variation across individuals.

We show that these fluctuations are not fully explained by the responses to the

economic environment. We recover the “residual” sharing rule, which removes in-

dividuals’ responses to changes in the economic environment, and interpret within-

person variation in the residual sharing rule as indicative of self-control problems.

We find that the extent of extent of self-control problems is larger for younger and

lower income individuals. If we fail to take into account how individuals respond

to changes in the economic environment we would overestimate both the extent

of self-control and the gradient of self-control with age and income.

The existence of self-control problems suggests that there may be scope for

public policy to improve welfare in this setting. However, we are cautious about
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making statements pertaining to welfare using our current framework. As dis-

cussed in the introduction, many of the existing multi-selves models deliver ob-

servationally equivalent predictions about choice behavior, which are captured by

our revealed preference conditions, but may have substantially different welfare

implications. Given our focus in the current study, we deliberately remain agnos-

tic about the specific interaction between the selves (except from assuming Pareto

efficient outcomes). But our findings do suggest that a more detailed investi-

gation of the particular interaction mechanisms at play constitutes a potentially

important avenue for follow-up research.

Finally, our study opens up a new application of the collective model of choice

behavior, which has become the workhorse model in the household economics liter-

ature. Our results show that individuals’ food purchase behavior can be modeled

as the outcome of a collective interaction process between two selves. This shows

that the large and well-established toolkit of empirical methods to analyze collec-

tive household behavior can also be used to analyse individuals’ choice behavior

in terms of multiple selves.
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Giné, X., D. Karlan, and J. Zinman (2010). Put Your Money Where Your Butt Is:
A Commitment Contract for Smoking Cessation. American Economic Journal:
Applied Economics 2 (4), 213–235.

Gruber, J. and B. Koszegi (2004). Tax incidence when individuals are time-
inconsistent: The case of cigarette excise taxes. Journal of Public Eco-
nomics 88 (9-10), 1959–1987.

Gul, F. and W. Pesendorfer (2001). Temptation and Self-Control. Economet-
rica 69 (6), 1403–1435.

Gul, F. and W. Pesendorfer (2004). Self-Control and the Theory of Consumption.
Econometrica 72 (1), 119–158.

Hagenaars, A. J., K. De Vos, M. Asghar Zaidi, and others (1994). Poverty statistics
in the late 1980s: Research based on micro-data.

Haushofer, J. and E. Fehr (2014). On the psychology of poverty. Sci-
ence 344 (6186), 862–867.

36



Kalai, G., A. Rubinstein, and R. Spiegler (2002). Rationalizing choice functions
by multiple rationales. Econometrica 70 (6), 2481–2488.

Mani, A., S. Mullainathan, E. Shafir, and J. Zhao (2013). Poverty Impedes Cog-
nitive Function. Science 341 (6149), 976–980.

Manzini, P. and M. Mariotti (2007). Sequentially rationalizable choice. American
Economic Review 97 (5), 1824–1839.

Manzini, P. and M. Mariotti (2015). State dependent choice. Social Choice and
Welfare 45 (2), 239–268.

Manzini, P. and M. Mariotti (2016). Dual Random Utility Maximisation. Discus-
sion Paper 1605, University of St Andrews.

Mastrobuoni, G. and M. Weinberg (2009, August). Heterogeneity in Intra-monthly
Consumption Patterns, Self-Control, and Savings at Retirement. American
Economic Journal: Economic Policy 1 (2), 163–189.

O’Donoghue, T. and M. Rabin (2000, April). The economics of immediate grati-
fication. Journal of Behavioral Decision Making 13 (2), 233–250.

O’Donoghue, T. and M. Rabin (2003). Studying optimal paternalism, illustrated
by a model of sin taxes. American Economic Review 93 (2), 186–191.

O’Donoghue, T. and M. Rabin (2006). Optimal sin taxes. Journal of Public
Economics 90 (10-11), 1825–1849.

Peleg, B. and M. E. Yaari (1973). On the Existence of a Consistent Course of
Action when Tastes are Changing. Review of Economic Studies 40 (3), 391.

Rabin, M. (1998). Psychology and Economics. Journal of Economic Litera-
ture 36 (1), 11–46.

Rayner, M., P. Scarborough, A. Boxer, and L. Stockley (2005). Nutrient Profiles:
Development of Final Model. Final Report for the Food Standards Agency. Ox-
ford: British Heart Foundation Health Promotion Research Group, Department
of Public Health, University of Oxford.

Rayner, M., P. Scarborough, and T. Lobstein (2009). The UK Ofcom Nutrient
Profiling Model: Defining Healthy and Unhealthy Foods and Drinks for TV Ad-
vertising to Children.

Read, D. and B. Van Leeuwen (1998). Predicting hunger: The effects of ap-
petite and delay on choice. Organizational behavior and human decision pro-
cesses 76 (2), 189–205.

Ruhm, C. J. (2000). Are recessions good for your health? Quarterly Journal of
Economics 115 (2), 617–650.

Samuelson, P. A. (1938). A Note on the Pure Theory of Consumer’s Behaviour.
Economica 5 (17), 61–71.

Spiegler, R. (2011). Bounded Rationality and Industrial Organization. Oxford
University Press.

Strotz, R. H. (1955). Myopia and inconsistency in dynamic utility maximization.
Review of Economic Studies 23 (3), 165–180.

Varian, H. R. (1982). The nonparametric approach to demand analysis. Econo-
metrica 50 (4), 945–973.

37



Appendix

A new year, a new you?
Heterogeneity and self-control in food purchases

Laurens Cherchye, Bram De Rock, Rachel Griffith,

Martin O’Connell, Kate Smith and Frederic Vermeulen

December 8, 2017

A Data and measurement

A.1 Kantar Worldpanel

The Kantar Worldpanel records all grocery purchases (food, household supplies,

toiletries etc.) made and brought into the home by a representative panel of

roughly 25,000 households. For each transaction, the data contain information

on exact transaction prices, where the product was purchased, whether it was on

promotion, and the nutritional composition of the product. The data also contain

demographic information on the panel of households.

We focus on a sample of 3,645 single individuals over the period 2005 to 2011.

Table A.1 compares selected demographics in our data with single individuals in

the nationally representative Living Costs and Food Survey. We drop months in

which the individual is recorded not making any purchases for longer than 14 days.

This removes periods on which individuals are on holiday. We also require that

individuals are present for at least 24 (not necessarily consecutive) year-months.

There are a number of advantages to these data: they cover all grocery pur-

chases brought into the home; they contain information at the transaction level,

including price, date and nutrient information at the UPC (or barcode) level; the

data are longitudinal. One drawback is that the data do not contain information

on consumption; our results relate to temptation as it affects purchase decisions.

The data also do not include information on sharing within the households, we

therefore focus on individuals to avoid issues of intra-household allocation of food.
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Table A.1: Demographics of single person households

Kantar 2005-2011 LCFS 2005-2011

Mean 95% C.I Mean 95% C.I

Male 41.6 [40.0, 43.2] 43.3 [42.4, 44.2]

Age 62.7 [62.3, 63.2] 59.6 [59.3, 59.9]

SES: Highly skilled 16.0 [14.9, 17.2] 14.9 [13.9, 15.9]
SES: Semi-skilled 50.1 [48.4, 51.7] 54.6 [53.2, 55.9]
SES: Unskilled 33.8 [32.2, 35.4] 30.5 [29.2, 31.8]

Notes: There are 3,645 individuals in the Kantar Worldanel sample. There are 11,628 indi-
viduals in the Living Costs and Food Survey (LCFS) sample. Male, highly skilled, semi-skilled
and unskilled are dummy variables equal to 1 if the individual belongs to that group. Socioeco-
nomic status (SES) groupings of highly skilled, semi-skilled and unskilled individuals are based
on occupation.

A.2 Nutrient Profile Score

A number of different measures and data sources are used by nutritionists, re-

searchers and policy makers to measure the range of foods and nutrients that an

individual purchases or consumes. Measuring nutritional quality is complicated;

for example, how does a product that is high in sugar and low in fat compare

to one that is high in fat but low in sugar. We use the nutrient profiling score

(NPS), which converts the multidimensional nutrient profile of a food product into

a single dimensional score (Rayner et al. (2005), Arambepola et al. (2008), Rayner

et al. (2009)). A higher score means that the product is less healthy. Specifically,

products get points based on the amount of each nutrient they contain; 1 point

is given for each 335kJ per 100g, for each 1g of saturated fat per 100g, for each

4.5g of sugar per 100g, and for each 90mg of sodium per 100g. Each gram of

fiber reduces the score by 1 point. Products also get scores based on their fruit

and protein content. Protein enters the score only if the score omitting protein is

below a threshold of 11 points. In theory, a product can score a maximum of 40

points, and a minimum of -15. The UK Food Standard Agency classifies a food

product with a score of 4 points or more (and a drink with a score of 1 point

or more) as “less healthy”, and these products are not allowed to be advertised

during TV programmes mainly watched by children.
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Table A.2: Goods: nutrient profile scores

NPS= “Unhealthy” points – “Healthy” points

Good Energy Saturates Sugar Sodium Total FVN Fibre Protein Total

Pulses -10.1 2.7 0.2 0.1 0.8 3.8 5.0 4.0 4.9 13.9
Frozen veg -9.4 0.3 0.2 0.1 0.3 0.9 5.0 3.4 1.9 10.3
Dark green veg -8.7 0.0 0.0 0.0 0.0 0.1 5.0 2.4 1.4 8.7
Potatoes -7.0 0.3 0.0 0.0 0.0 0.3 5.0 1.2 1.1 7.3
Onions -7.0 0.0 0.0 0.0 0.0 0.0 5.0 1.0 1.0 7.0
Other fresh veg -6.9 0.2 0.1 0.4 0.1 0.7 5.0 1.9 0.7 7.6
Canned veg -6.5 1.0 0.4 0.3 1.5 3.1 5.0 2.7 1.9 9.6
Orange veg -6.3 0.0 0.0 0.9 0.0 1.0 5.0 2.2 0.1 7.2
Other salad -5.7 0.0 0.2 0.1 0.1 0.4 5.0 0.6 0.5 6.1
Dark green salad -5.5 0.0 0.0 0.0 0.0 0.0 5.0 0.5 0.1 5.6
Tomatoes -5.4 0.0 0.0 0.1 0.2 0.4 5.0 0.6 0.1 5.7
Beans -5.1 2.4 0.6 0.4 0.4 3.8 0.0 4.6 4.3 8.9
Citrus -5.1 0.0 0.0 0.9 0.0 0.9 5.0 1.0 0.0 6.0
Other fresh fruit -4.8 0.0 0.0 1.4 0.0 1.4 5.0 1.2 0.0 6.2
Tropical fruit -4.3 0.0 0.1 1.8 0.0 2.0 5.0 1.3 0.0 6.3
Apples -4.0 0.0 0.0 2.0 0.0 2.0 5.0 1.0 0.0 6.0
Oatmeal -4.0 4.0 1.0 0.5 0.2 5.7 0.0 4.9 4.8 9.7
Berries -3.9 0.1 0.1 1.6 0.1 1.8 5.0 0.7 0.0 5.8
Canned fruit -3.4 0.1 0.0 1.9 0.1 2.1 5.0 0.5 0.0 5.5
Wholegrains -3.3 2.7 0.1 0.2 3.5 6.5 0.0 4.9 4.8 9.7
Fruit juice -3.2 0.0 0.0 1.7 0.1 1.8 5.0 0.0 0.0 5.0
Pasta -2.8 3.3 0.2 0.0 0.5 4.0 0.0 2.4 4.5 6.8
Flour -2.7 3.9 0.1 0.0 1.3 5.3 0.0 3.1 4.8 8.0
Grapes -2.1 0.0 0.0 3.0 0.0 3.0 5.0 0.0 0.0 5.0
Dried fruit -2.0 1.3 0.4 4.2 0.1 6.0 5.0 2.5 0.6 8.1
Whole chicken -1.9 1.1 0.4 0.0 1.5 3.0 0.0 0.1 4.8 4.9
Bananas -1.5 1.0 0.0 3.5 0.0 4.5 5.0 1.0 0.0 6.0
Other poultry -1.3 1.3 1.1 0.0 1.4 3.7 0.0 0.0 5.0 5.0
Chicken pieces -0.9 1.4 0.9 0.0 1.7 4.0 0.0 0.0 4.9 4.9
Other grains -0.8 2.6 0.3 0.1 2.9 5.9 0.0 2.8 3.9 6.7
Carbonated diet drinks 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Non-carbonated diet drinks 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0
Water 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0

Tea 0.3 0.1 0.1 0.1 0.0 0.3 0.0 0.0 0.0 0.0
Eggs 0.1 1.0 2.8 0.0 0.9 4.7 0.0 0.0 4.7 4.7
Bread 0.3 2.4 0.4 0.2 4.3 7.3 0.0 3.0 4.1 7.1
Milk 0.4 0.0 1.0 0.9 0.5 2.4 0.0 0.0 1.9 1.9
Frozen fish 0.4 1.7 0.9 0.0 3.3 6.0 0.0 0.7 4.9 5.6
Frozen meals 0.5 1.7 0.9 0.0 1.7 4.3 0.0 2.0 1.9 3.8
Canned fish 0.7 1.2 0.7 0.0 3.6 5.6 0.0 0.0 4.8 4.9
Soup 0.8 0.5 0.4 0.6 3.1 4.7 0.0 2.4 1.5 3.9
Pork 0.9 1.6 3.6 0.0 0.4 5.6 0.0 0.0 4.7 4.7
Rice 1.2 2.5 0.4 0.0 1.7 4.6 0.0 0.9 2.5 3.3
High quality beef 1.3 1.6 3.7 0.0 0.7 5.9 0.0 0.0 4.6 4.6
Fresh fish 1.4 1.3 1.1 0.0 3.3 5.7 0.0 0.2 4.1 4.3
Muesli 1.5 4.0 0.9 3.8 0.9 9.6 0.0 5.0 3.1 8.0
Meat appetizers 1.6 2.0 1.5 0.1 3.3 7.0 0.0 1.0 4.4 5.4
Yogurt 1.7 0.6 1.0 2.0 0.4 4.0 0.0 0.2 2.1 2.3
Lamb 1.7 1.5 4.4 0.0 0.6 6.4 0.0 0.0 4.7 4.7
Healthier pizza 2.0 2.2 2.5 0.2 3.5 8.4 0.0 2.0 4.4 6.4
Ready meals 2.7 1.3 2.1 0.1 2.9 6.4 0.0 0.9 2.8 3.7
Dips 5.0 2.4 2.7 0.3 3.6 8.9 0.0 1.3 2.6 3.9
Less healthy pizza 6.9 2.8 4.0 0.1 4.3 11.2 0.0 1.9 2.4 4.3
Low quality beef 7.7 2.5 6.4 0.0 0.9 9.8 0.0 0.0 2.1 2.1
Buns and scones 8.0 3.1 2.0 3.1 3.3 11.5 0.0 2.0 1.5 3.5
Fatty pork 8.0 2.5 6.9 0.0 0.7 10.1 0.0 0.0 2.1 2.1
Breakfast cereal 8.1 4.1 0.9 4.7 3.1 12.9 0.0 3.7 1.1 4.8
Condiments 8.2 1.3 0.9 1.9 5.1 9.2 0.0 0.8 0.2 1.0
Chilled desserts 8.4 2.1 3.6 3.2 0.9 9.8 0.0 0.6 0.8 1.5
Chips and snacks 8.6 2.3 4.4 0.1 4.8 11.6 0.0 1.8 1.2 3.0
Fatty lamb 9.9 2.5 8.1 0.0 0.6 11.3 0.0 0.0 1.4 1.4

Non-carbonated non-diet drinks 1.5 0.1 0.0 0.9 0.6 1.5 0.0 0.0 0.0 0.0
Carbonated non-diet drinks 1.6 0.0 0.0 1.6 0.0 1.6 0.0 0.0 0.0 0.0
Coffee 2.8 1.1 1.5 1.8 0.5 4.8 0.0 0.9 1.1 2.1
Snacks 10.5 5.8 3.4 0.5 6.1 15.9 0.9 3.5 1.0 5.4
Pastry and pies 10.8 3.0 6.6 0.0 3.6 13.2 0.0 1.5 0.9 2.5
Frozen desserts 10.9 2.1 5.2 3.9 0.5 11.8 0.0 0.5 0.3 0.9
Milkshake mixes 11.0 3.3 0.3 8.9 0.3 12.8 0.0 1.8 0.0 1.8
Bacon and ham 11.1 1.7 3.1 0.0 8.1 12.9 0.0 0.1 1.8 1.8
Jams and syrups 12.2 3.5 1.7 7.7 0.5 13.4 0.0 1.0 0.1 1.2
Cream 13.3 3.5 9.6 0.1 0.2 13.4 0.0 0.0 0.1 0.1
Other dairy 13.5 3.2 5.9 3.4 1.9 14.4 0.0 0.1 0.8 0.9
Sausage 13.8 2.8 6.4 0.0 6.0 15.2 0.0 1.0 0.3 1.3
Croissants and waffles 14.1 4.7 6.9 1.4 3.9 16.8 0.0 2.2 0.6 2.8
Baking ingredients 14.2 3.7 0.5 8.8 1.5 14.6 0.0 0.4 0.0 0.4
Solid cheese 14.6 2.4 7.4 0.3 5.6 15.7 0.0 0.1 0.9 1.0
Cake 14.7 4.2 4.8 5.8 1.8 16.6 0.0 1.5 0.5 1.9
Pate and other deli 16.4 2.9 7.3 0.1 7.1 17.4 0.0 0.9 0.2 1.1
Margarine 18.1 9.9 8.1 0.0 0.1 18.1 0.0 0.0 0.0 0.0
Hot chocolate 18.2 4.0 3.9 8.7 5.1 21.7 0.0 3.5 0.0 3.6
Biscuits 18.5 5.3 7.4 5.5 3.0 21.2 0.0 2.5 0.2 2.7
Chocolate and confectionery 20.9 5.1 6.8 9.4 0.6 21.8 0.0 0.9 0.1 1.0
Cream cheese 21.2 4.5 9.9 0.0 6.8 21.2 0.0 0.0 0.0 0.0
Oils 21.3 5.9 9.5 0.0 6.0 21.4 0.0 0.0 0.0 0.0
Solid fats 22.6 8.5 10.0 0.0 4.1 22.6 0.0 0.0 0.0 0.0
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We aggregate individual food UPCs (barcodes), of which there are around

several hundred thousand, into 85 goods, listed in Table A.2. The table shows the

NPS of products within each good, and the components that constitute the NPS.

For the empirical implementation we need to split goods into a “healthy” and

“unhealthy” set. The 34 goods with an average NPS less than 0 are deemed to

be preferred only by the healthy self (i.e., “always healthy” items). The 24 goods

with an average NPS of more than 10 (or more than 1 for drinks) are deemed

to be preferred only by the unhealthy self (i.e., “always unhealthy” items). We

consider the 27 goods with an average NPS of between 0 and 10 as uncertain

and potentially belonging to either the healthy or the unhealthy category for each

individual.

A.3 Within and between variance

We use the panel element of the data to look at the degree of within individual

(over time) variation in diet quality, in comparison with the cross-sectional varia-

tion. Table A.3 shows that when purchases are aggregated to the weekly level, the

within individual intertemporal variation in diet quality is larger than the cross

sectional variation. This falls when we aggregate purchases to the monthly level,

but within individual intertemporal variation is still roughly the same as the cross

sectional variation. In the main analysis in the paper we use only the monthly

aggregation.

Table A.3: Variation in diet quality

(1) (2)
Purchases aggregated to:

% calories from healthy food Week Month

Mean 51.02 48.34
Standard deviation 22.64 13.77

within people 20.50 10.00
between person 9.60 9.46

Notes: In column (1) we calculate the % of calories from healthy foods across shopping trips
in each person-year-week, in column (2) we calculate the % calories from healthy food across
shopping trips in each person-year-month. The table shows the decomposition of the standard
deviation of these variables into the within individual versus between-person variation.
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B Empirical implementation

B.1 Prices

Prices of goods

We model demand at the level of 85 goods. We observe prices at the UPC (bar-

code) level; there are several hundred thousand of these. Many of these are the

same product available in different pack sizes, formats and, in some cases, flavors.

There are 113,025 distinct products (defined by brand). We aggregate these to

the good level based on their nutritional characteristics.

Let b index 113,025 products, g index 85 goods, r index three geographic

regions (north, central, south), t index month. The set of products in each good

is Bg. The set of individuals living in region r is Rr.

pbrt denotes the mean (quantity weighted across different pack sizes and for-

mats) price per kilogram of product b in region r in month t. qib denotes the

total (over time) quantity of product b purchased by consumer i. The price of

foods in good g, in region r in month t are measured as the weighted average of

the prices of products in that good, where the weights are the mean (over time

and consumers) quantity shares of consumers in that region. Define the share of

product b in region r as wbr =
∑

i∈Rr
qib∑

i∈Rr

∑
b′∈Bg

qib′
.

The price of foods in good g are given by

Pgrt =
∑
b∈Bg

wbrpbrt, (B.1)

In Table B.1 we describe the price variation and expenditure shares of each good.

Very healthy, healthy, unhealthy and very unhealthy food price indices

The price indices for healthy and unhealthy sets of foods that we use in Section 4

are defined as:

Πvh
it =

∑
g∈V Hi

wigPgrt (B.2)

Πh
it =

∑
g∈Hi

wigPgrt (B.3)

Πl
it =

∑
g∈Li

wigPgrt (B.4)

Πvl
it =

∑
g∈V Li

wigPgrt (B.5)
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Table B.1: Goods: budget shares and relative prices

Budget Price variation
Good share Min. Max.

Pulses 0.02 0.75 1.26
Frozen veg 0.69 0.89 1.10
Dark green veg 1.09 0.80 1.52
Potatoes 1.52 0.79 1.26
Onions 0.14 0.72 1.25
Other fresh veg 1.95 0.81 1.27
Canned veg 0.81 0.86 1.23
Orange veg 0.46 0.76 1.35
Other salad 1.07 0.69 1.37
Dark green salad 0.87 0.82 1.20
Tomatoes 1.39 0.78 1.32
Citrus 1.04 0.76 1.32
Beans 0.02 0.81 1.18
Other fresh fruit 1.44 0.80 1.29
Tropical fruit 0.18 0.82 1.37
Apples 0.97 0.85 1.33
Oatmeal 0.31 0.85 1.24
Berries 0.20 0.69 1.46
Canned fruit 0.34 0.83 1.21
Wholegrains 1.30 0.82 1.14
Fruit juice 1.74 0.79 1.22
Pasta 0.31 0.83 1.21
Flour 0.15 0.78 1.32
Grapes 0.85 0.70 1.57
Dried fruit 1.77 0.65 1.65
Whole chicken 1.68 0.81 1.15
Bananas 1.10 0.81 1.23
Other poultry 0.48 0.80 1.38
Chicken pieces 0.78 0.81 1.18
Other grains 0.05 0.87 1.13
Carbonated diet drinks 0.81 0.79 1.24
Non-carbonated diet drinks 0.11 0.83 1.18
Water 0.52 0.91 1.14
Tea 1.02 0.85 1.22
Eggs 1.15 0.72 1.25
Bread 3.37 0.86 1.16
Milk 5.34 0.83 1.16
Frozen fish 1.17 0.93 1.09
Frozen meals 1.33 0.92 1.10
Canned fish 0.85 0.76 1.38
Soup 1.91 0.85 1.20
Pork 0.77 0.86 1.19
Rice 0.45 0.78 1.27
High quality beef 1.31 0.83 1.27
Fresh fish 1.81 0.81 1.25
Muesli 0.24 0.91 1.17
Meat appetizers 0.15 0.91 1.13
Yogurt 2.80 0.89 1.14
Lamb 0.58 0.83 1.29
Healthier pizza 0.11 0.92 1.11
Ready meals 6.98 0.91 1.13
Dips 0.44 0.95 1.06
Less healthy pizza 0.66 0.94 1.12
Low quality beef 0.76 0.78 1.31
Buns and scones 0.38 0.85 1.31
Fatty pork 0.39 0.85 1.17
Breakfast cereal 1.19 0.93 1.18
Condiments 2.21 0.89 1.15
Chilled desserts 2.02 0.88 1.15
Chips and snacks 0.20 0.84 1.18
Fatty lamb 0.29 0.83 1.38
Non-carbonated non-diet drinks 0.71 0.91 1.19
Carbonated non-diet drinks 0.83 0.84 1.29
Coffee 1.73 0.92 1.16
Snacks 2.30 0.90 1.19
Pastry and pies 1.86 0.88 1.15
Frozen desserts 1.53 0.93 1.09
Milkshake mixes 0.02 0.89 1.16
Bacon and ham 4.99 0.83 1.17
Jams and syrups 0.68 0.84 1.20
Cream 0.43 0.79 1.25
Other dairy 0.18 0.83 1.23
Sausage 1.07 0.88 1.16
Croissants and waffles 0.15 0.87 1.19
Baking ingredients 0.84 0.82 1.22
Solid cheese 0.86 0.85 1.18
Cake 2.21 0.88 1.18
Pate and other deli 0.18 0.90 1.18
Margarine 0.39 0.75 1.21
Hot chocolate 0.33 0.91 1.11
Biscuits 3.52 0.88 1.19
Chocolate and confectionery 4.59 0.93 1.13
Cream cheese 2.51 0.86 1.18
Oils 1.07 0.83 1.31
Solid fats 0.97 0.81 1.34

Notes: Column (1) shows the share of total spending (across individuals and year-months) on
each good. The construction of prices for each good in each region-year-month are described in
the text. For each good in each region-year-month, we divide price over the average price for the
good across all regions and year-months. Columns (2) and (3) show the minimum and maximum
values of this for each good.
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where V Hi, Hi, Li, V Li are the sets of goods in the very healthy, healthy, un-

healthy and very unhealthy sets, respectively, and:

wig =

∑
b∈Bg

qib∑
g′∈Xi

∑
b∈Bg′

qib
, where X = V H, H, L, V L

i.e. the quantity share that each good g constitutes within the set of very healthy,

V Hi, healthy, Hi, unhealthy, Li, and very unhealthy, V Li, foods for individual i

across all time periods.

B.2 Coefficient estimates

Figure B.1: Joint significance of price coefficients
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Notes: The figure shows the distribution of p-values for tests of the joint significance of the
coefficients on the relative prices of healthy, unhealthy, and very unhealthy (relative to the price
of very healthy foods).
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Figure B.2: Distributions of estimated coefficients on:

(a) Relative price of healthy food
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(b) Relative price of unhealthy food
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(c) Relative price of very unhealthy food
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(d) Total food expenditure

0
2

4
6

8
%

 o
f i

nd
iv

id
ua

ls

-.2 -.1 0 .1 .2
Coefficient on total food expenditure

Not significantly different from zero
Significantly different from zero at 5% level

Notes: The figures show the distribution of estimated coefficients in equation 4.1. The lighter
shaded areas represent parts of the distribution for which the estimated coefficients are not sig-
nificantly different from zero (at the 5% level), the darker areas show the the coefficients that are
significantly different from zero.

B.3 Variation in mean sharing rule

Total expenditure as a proxy for income

We use total grocery expenditure to proxy for household income. The Living

Costs and Food Survey (LCFS) is an expenditure survey that collects data on

spending for a repeated cross-section of households (in contrast to the Kantar

data, which has a panel structure). It also contains information on household

income. Figure B.3 shows that there is a strong relationship between households’

annual equivalized income and equivalized weekly grocery spending.
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Figure B.3: Relationship between household income and grocery expenditure
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Notes: Figure drawn using data on 4937 households in the Living Costs and Food Survey 2011.
The horizontal axis shows logged equivalised annual income of the household, and the vertical axis
shows equivalised weekly grocery expenditure. Figure trims the 5th and 95th percentiles of the
logged equivalised annual income distribution. We equivalise using the standard OECD modified
equivalence scale (see Hagenaars et al. (1994)).

9



Relationship between mean sharing rule and demographics

Table B.2: Variation in mean sharing rule by demographic characteristics

(1) (2) (3) (4)
Mean Difference 95% CI for diff.

Female 51.3
Male 49.5 -1.9 [-2.8, -0.9]

Age less than 40 49.6
Age 40-65 49.9 0.3 [-1.2, 1.8]
Age over 65 51.7 2.1 [0.6, 3.6]

High skilled 52.2
Medium skilled 51.2 -1.0 [-2.5, 0.5]
Low skilled 49.4 -2.8 [-4.3, -1.3]

Full time work 50.9
Part time work 50.9 -0.0 [-1.8, 1.8]
Not working 48.6 -2.3 [-3.9, -0.7]
Retired 51.4 0.5 [-0.7, 1.6]

Non smoker 51.3
Smoker 47.8 -3.5 [-4.6, -2.4]

Vegetarian 50.9
Non vegetarian 50.5 -0.3 [-1.8, 1.2]

Above median income 51.1
Below median income 50.0 -1.1 [-2.0, -0.2]

Notes: The numbers in column (3) are the difference in means from the first row in each group.
Confidence intervals for α̂i reflect uncertainty arising from the sample of individuals, but not
over the time series variation for each individual.

Relationship between mean sharing rule and stated preferences

Kantar Wordpanel asks participants a selection of questions to gauge their attitude

to a variety of lifestyle factors. We use a subset of these to construct a measure of

individuals’ preferences for healthy food, processed food, tendency to buy things

on offer, shopping commitment, and lack of self-control. The questions we use are

listed in Table B.3. Questions change from year to year; no questions were asked

in 2008 and 2011. When an individual answers the same question across years, we

take his/her median response. We use an unweighted average of responses to the

questions within each group to construct individuals’ stated preferences for healthy
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food, processed food, tendency to buy things on offer, shopping commitment, and

lack of self-control.

Table B.4 shows the relationship between individuals’ mean sharing rule and

whether they have above or below median (across individuals) preferences for the

five factors.

Table B.4: Variation in mean sharing rule by stated preferences

(1) (2) (3) (4)
Mean Difference 95% CI for diff.

Above median preferences for healthy food 52.7
Below median preferences for healthy food 48.2 -4.5 [-5.4, -3.5]

Above median preferences for processed food 48.9
Below median preferences for processed food 52.3 3.4 [2.5, 4.4]

Above median tendency to buy on promotion 50.3
Below median tendency to buy on promotion 50.9 0.6 [-0.4, 1.6]

Above median shopping commitment 50.8
Below median shopping commitment 50.3 -0.5 [-1.5, 0.5]

Above median stated self-control 52.4
Below median stated self-control 50.0 -2.4 [-3.7, -1.0]

Notes: The numbers in column (3) are the difference in means from the first row in each group.
Confidence intervals reflect uncertainty arising from the sample of individuals, but not over the
time series variation for each individual.
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B.4 Variation in self-control

Relationship between self-control and demographics

Table B.5: Variation in σ̂i by demographic characteristics

(1) (2) (3)
Mean Difference 95% CI for diff.

Female 8.07
Male 8.16 0.09 [-0.06, 0.24]

Age less than 40 8.87
Age 40-65 8.15 -0.72 [-0.95, -0.49]
Age over 65 7.79 -1.08 [-1.31, -0.84]

High skilled 8.23
Medium skilled 8.09 -0.14 [-0.37, 0.09]
Low skilled 8.08 -0.16 [-0.39, 0.08]

Full time work 8.40
Part time work 7.92 -0.48 [-0.76, -0.19]
Not working 8.31 -0.09 [-0.34, 0.17]
Retired 7.80 -0.60 [-0.78, -0.42]

Non smoker 8.07
Smoker 8.21 0.14 [-0.04, 0.31]

Vegetarian 8.25
Non vegetarian 8.09 -0.16 [-0.39, 0.07]

Above median income 7.07
Below median income 8.49 1.43 [1.29, 1.56]

Notes: The numbers in column (3) are the difference in means from the first row in each group.
Confidence intervals for σ̂i reflect uncertainty arising from the sample of individuals, but not
over the time series variation for each individual.

Relationship between self-control and stated preferences

Table B.6 summarize the relationships between variation in the residual sharing

rule and individuals’ stated preferences. These are intuitive. Individuals that

have a stated preference for a healthy diet, a stated preference for buying the

same things, and stated higher self-control tend to exhibit less variation, while

those that have a preferences for processed food and state that they typically buy

things on promotion tend to have more variation.
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Table B.6: Variation in σ̂i by stated preferences

(1) (2) (3)
Mean Difference 95% CI for diff.

Above median preferences for healthy food 8.03
Below median preferences for healthy food 8.22 0.19 [0.04, 0.34]

Above median preferences for processed food 8.27
Below median preferences for processed food 7.96 -0.32 [-0.47, -0.16]

Above median tendency to buy on promotion 8.38
Below median tendency to buy on promotion 7.82 -0.56 [-0.71, -0.41]

Above median shopping commitment 7.94
Below median shopping commitment 8.30 0.36 [0.21, 0.51]

Above median stated self-control 7.53
Below median stated self-control 7.99 0.46 [0.25, 0.66]

Notes: The numbers in column (3) are the difference in means from the first row in each group.
Confidence intervals for σ̂i reflect uncertainty arising from the sample of individuals, but not
over the time series variation for each individual.

B.5 Robustness

Seasonal preferences

In order to allow for the fact that individuals may have seasonal preferences that

are driven by factors unrelated to self-control, we estimate a variant of equation

4.1 in which we allow for quarterly effects. Figure B.4 shows that there is still

substantial variation in the residual sharing rule, even after taking out quarterly

effects. Figures B.5 and B.6 are analogous to Figures 4.7 and 4.8. They show

that the age and income gradients remain, even after controlling for seasonal

preferences.
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Figure B.4: Standard deviation of the sharing rule and the residual sharing rule
(taking out heterogeneous quarterly effects)
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Notes: The white bars show the distribution of individuals’ standard deviation in the sharing rule,
˜sigmai. The grey bars show the distribution of individuals’ standard deviation in the residual

sharing rule, σ̂τi , which takes out the responses to changes in prices and total food budgets and
quarterly variation in preferences.
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Figure B.5: Variation in σ̂τi with age

(a) Standard deviation of residual sharing rule
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(b) Effect of responses to changes in prices and food expenditure
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Notes: Age group is defined based on the individual’s median age while in the sample. The
top panel shows the mean standard deviation in the residual sharing rule across individuals in
age group (taking out seasonal effects). For each individual we calculate the difference in the
standard deviation in the sharing rule and the standard deviation in the residual sharing rule,

˜sigmai− σ̂τi ; the bottom panel shows the mean of this difference across individuals in age group.
95% confidence intervals are shown. Confidence intervals reflect uncertainty arising from the
sample of individuals, but not over the time series variation for each individual.
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Figure B.6: Variation in σ̂τi with income

(a) Standard deviation of residual sharing rule
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(b) Effect of responses to changes in prices and food expenditure
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Notes: For each individual we calculate their mean total spending on fast moving consumer goods
(food, alcohol, household supplies, toiletries etc.) across the period they are in the sample, which
we use as a proxy for income. Quintiles are based on the distribution of this variable across
individuals. The top panel shows the mean standard deviation in the residual sharing rule across
individuals in each quintile (taking out seasonal effects). For each individual we calculate the
difference in the standard deviation in the sharing rule and the standard deviation in the residual
sharing rule, ˜sigmai − σ̂τi ; the bottom panel shows the mean of this difference across individuals
in each quintile. 95% confidence intervals are shown. Standard errors reflect uncertainty over
the sample of individuals, but not over the time series for each individual.

Instrumenting food expenditure

We estimate equation (4.1) using an IV approach, in which we instrument for the

expenditure term using variables that are likely to drive total spending on food,
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while being uncorrelated with individuals’ self-control problems with respect to

unhealthy foods. We use σ̂IVi to denote individual i’s estimated standard deviation

in their residual sharing rule based on these estimates. More details of this are

provided in the main paper.

Figure B.7: Standard deviation of the sharing rule and the residual sharing rule
(based on IV estimates)
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Notes: The white bars show the distribution of individuals’ standard deviation in the sharing
rule, σ̃i. The grey bars show the distribution of individuals’ standard deviation in the residual
sharing rule, σ̂IVi , which takes out the responses to changes in prices and total food budgets.
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Figure B.8: Variation in σ̂IVi with age

(a) Standard deviation of residual sharing rule
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(b) Effect of responses to changes in prices and food expenditure
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Notes: Age group is defined based on the individual’s median age while in the sample. The top
panel shows the mean standard deviation in the residual sharing rule across individuals in age
group. For each individual we calculate the difference in the standard deviation in the sharing
rule and the standard deviation in the residual sharing rule, σ̃i − σ̂IVi ; the bottom panel shows
the mean of this difference across individuals in age group. 95% confidence intervals are shown.
Confidence intervals reflect uncertainty arising from the sample of individuals, but not over the
time series variation for each individual.
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Figure B.9: Variation in σ̂IVi with income

(a) Standard deviation of residual sharing rule
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(b) Effect of responses to changes in prices and food expenditure
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Notes: For each individual we calculate their mean total spending on fast moving consumer
goods (food, alcohol, household supplies, toiletries etc.) across the period they are in the sample,
which we use as a proxy for income. Quintiles are based on the distribution of this variable
across individuals. The top panel shows the mean standard deviation in the residual sharing
rule across individuals in each quintile. For each individual we calculate the difference in the
standard deviation in the sharing rule and the standard deviation in the residual sharing rule,
σ̃i − σ̂IVi ; the bottom panel shows the mean of this difference across individuals in each quintile.
95% confidence intervals are shown. Confidence intervals reflect uncertainty arising from the
sample of individuals, but not over the time series variation for each individual.
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Individuals for whom the two-self model fits better

We repeat our analysis in Section 4.4 using only the subset of individuals (2470

out of a total 3645) for whom the two-self model fits better than the single-self

model.

Figure B.10: Standard deviation of the sharing rule and the residual sharing rule
(based subset of 2470 individuals)
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Notes: The white bars show the distribution of individuals’ standard deviation in the sharing
rule, σ̃i. The grey bars show the distribution of individuals’ standard deviation in the residual
sharing rule, σ̂i, which takes out the responses to changes in prices and total food budgets. The
distributions are drawn for the subset of individuals (2470) for whom the two-self model fits better
than the single-self model.
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Figure B.11: Variation in σ̂i with age (based subset of 2470 individuals)

(a) Standard deviation of residual sharing rule
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(b) Effect of responses to changes in prices and food expenditure
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Notes: Age group is defined based on the individual’s median age while in the sample. The top
panel shows the mean standard deviation in the residual sharing rule across individuals in age
group. For each individual we calculate the difference in the standard deviation in the sharing
rule and the standard deviation in the residual sharing rule, σ̃i − σ̂i; the bottom panel shows
the mean of this difference across individuals in age group. The estimates are for the subset
of individuals (2470) for whom the two-self model fits better than the single-self model. 95%
confidence intervals are shown. Confidence intervals reflect uncertainty arising from the sample
of individuals, but not over the time series variation for each individual.
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Figure B.12: Variation in σ̂i with income (based subset of 2470 individuals)

(a) Standard deviation of residual sharing rule
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(b) Effect of responses to changes in prices and food expenditure
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Notes: For each individual we calculate their mean total spending on fast moving consumer
goods (food, alcohol, household supplies, toiletries etc.) across the period they are in the sample,
which we use as a proxy for income. Quintiles are based on the distribution of this variable
across individuals. The top panel shows the mean standard deviation in the residual sharing rule
across individuals in each quintile. For each individual we calculate the difference in the standard
deviation in the sharing rule and the standard deviation in the residual sharing rule, σ̃i− σ̂i; the
bottom panel shows the mean of this difference across individuals in each quintile. The estimates
are for the subset of individuals (2470) for whom the two-self model fits better than the single-self
model. 95% confidence intervals are shown. Confidence intervals reflect uncertainty arising from
the sample of individuals, but not over the time series variation for each individual.
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