
 

ECARES 
ULB - CP 114/04 

50, F.D. Roosevelt Ave., B-1050 Brussels BELGIUM 
www.ecares.org 

 

 

 

 

 

Household Responses to Cash Transfers 

 
 
 

Bram De Rock, 
ECARES, SBS-EM, Université libre de Bruxelles 

 
Tom Potoms, 

ECARES, SBS-EM, Université libre de Bruxelles 
 

Denni Tommasi,  
ECARES, SBS-EM, Université libre de Bruxelles 

 
 
 
 
 
 
 

 
October 2017 

 

 

ECARES working paper 2017-38 

 

 



Household Responses to Cash Transfers

Bram De Rock, Tom Potoms and Denni Tommasi
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Abstract

This paper exploits the experimental set-up of the cash transfer program PRO-

GRESA in rural Mexico to estimate a collective model of the household in order

to investigate how parents allocate household resources. We show that household

decisions are compatible with the collective model at the beginning of the program,

but reject it later on. This shows that second order effects of cash transfer pro-

grams are important and suggests we need richer structural models to thoroughly

analyse these policy interventions. We end this paper by proposing such a simple

and tractable model of household behaviour, where decision makers may have mis-

aligned preferences as a result of the treatment about the importance of a public

good.
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1 Introduction

Over the last decades, conditional cash transfer (CCT) programs have occupied a large

percentage of governments’ annual anti-poverty budgets (Fiszbein and Schady, 2009).

PROGRESA, a CCT program implemented in rural Mexico in the late 1990s, is a prime

example in which the exogenous cash transfers are targeted to mothers in order to give

them a higher share of the household resources. It has been well documented that these

large monetary incentives had a substantial effect on households’ behavior (see Bobonis

(2009), Attanasio and Lechene (2014) and Angelucci and Garlick (2016) for some recent

empirical results).

We exploit the experimental set-up of PROGRESA in order to structurally investigate

how households respond to the cash transfers in terms of the observed budget allocation

of food. Focusing on the budget structure of food is a meaningful exercise as it accounts

for around 80% of the expenditures of the targeted (poor) households in our sample.

Moreover, Attanasio and Lechene (2014) convincingly show that the changes in the food

decisions can not only be explained by the impact of the conditional cash transfer on

household income, but are also due to changes in the intra-household decision process.

In this paper we want to further investigate the latter.

The starting point of our analysis of the intra-household decision process is the col-

lective model of the household, which was pioneered by Chiappori (1988, 1992) and Apps

and Rees (1988) and further extended by Browning et al. (1994), Browning and Chiappori

(1998), Blundell et al. (2005) and Chiappori and Ekeland (2006). In recent years this

framework has become the main paradigm through which household allocation decisions

are studied. There are two main reasons for this, which together make the framework

perfectly suitable to study the distributional impacts of public policies. First, the funda-

mentals of the model, namely individual preferences and the household decision process,

can be identified under reasonable conditions (Chiappori and Ekeland, 2009). Second,

the model is based on a small set of assumptions, mainly the (Pareto) efficiency of the

household allocation process, and yet provides strong testable restrictions.1

1See Bourguignon et al. (1993); Browning et al. (1994); Browning and Chiappori (1998); Chiappori
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We estimate a theoretically consistent demand system on different subsamples and

apply a test of Pareto efficiency (i.e. the collective model) developed by Bourguignon

et al. (2009) (BBC hereafter).2 Tests of efficiency based on data collected from random-

ized experiments are appealing because these programs allow researchers to construct

credible distribution factors, that is variables that affect the decision process without

affecting preferences. In what follows we augment a structural QAIDS model a-la Banks

et al. (1997) with two credible distribution factors, and estimate it on household’s budget

shares of food. The first distribution factor that we use is the treatment indicator, which

is exogenous by construction. For the second exogenous distribution factor we follow

Attanasio and Lechene (2014) by using data on the network of relatives present in the

village. Subsequently, we run the BBC test by focusing on the most responsive demand

equations with respect to the chosen distribution factors.

Our estimates show that households satisfy the testable implications of the collective

model only in 1998, 6 months after the beginning of the program, but reject them if we

use the data 12 months after the first cash transfer. This implies that our results are

slightly different from the existing evidence in favor of the collective model (see Bobonis

(2009), Attanasio and Lechene (2014) and Angelucci and Garlick (2016)). As we discuss

more in detail in Section 4, this is partly explained by our different sample selection

and/or our focus on food. Moreover, our more precise conclusion with respect to the

importance of heterogeneity across time, is also due the fact that our results are based on

the inversion of the most responsive demand equations. This makes our statistical tests

much more powerful.

In principle, the rejection of the collective model in the second period leaves open a

multitude of possible explanations. First, it could be interpreted as an indication of non-

and Ekeland (2006) for testable implications in a parametric framework and Cherchye and Vermeulen
(2008); Cherchye et al. (2009, 2011) for a revealed preference approach.

2There is a long tradition on testing the Pareto efficiency hypothesis in a household context. Early
papers find efficiency in commodity demand (Bourguignon et al. (1993), Browning et al. (1994), Browning
and Chiappori (1998)), labor supply for childless couples (Chiappori et al. (2002), Vermeulen (2005)),
demand of childrens’ health (Thomas et al., 2002; Duflo, 2003) and female labor supply (Donni, 2007;
Donni and Moreau, 2007). However, efficiency has been rejected in household agricultural production
(Udry, 1996), labor supply for couples with children (Fortin and Lacroix, 1997) and risk sharing activities
(Dercon and Krishnan (2000), Robinson (2012)).
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cooperative behavior, which in turn leads to suboptimal decisions. However, Chiappori

and Naidoo (2017) show that distribution factors in a noncooperative model should sat-

isfy the same testable implications as the ones we tested (in addition to some extra partial

differential equations). This excludes this explanation and in our opinion the same con-

clusion extends to the so-called semi-cooperative models introduced in d’Aspremont and

Dos Santos Ferreira (2014) and Cherchye et al. (2015). Next, an alternative explanation

could be the need for extending our static framework to include intertemporal effects.

This would allow us for instance to focus on commitment in household decisions, which

could in turn lead to an ex-post inefficient decision. As shown in Mazzocco (2007), the

significance of our distribution factors indicate that there is only limited commitment.

The rejection of the collective model could therefore be interpreted as an indication that

the participation constraint for the marriage is binding. That is, the spouses should

divorce, which is (currently) not the case for our observed households.

Alternatively, the rejection of the collective model can also be seen as an indication

of misaligned preferences due to preference shifts over the period of observation. This

interpretation complements the results by Angelucci (2008) and Bobonis et al. (2013), who

show that PROGRESA induced a higher level of threats of violence for some targeted

households. Due to data limitations we could not explicitly analyze the incidence of

violence within the household, but our results confirm once more the fact that there

might be second round effects of PROGRESA. Empowering women might threaten their

husband’s perceived identity, or, more generally, might have created more misaligned

preferences between the spouses. This implies that the observed budget allocation of

food cannot be solely explained by an induced shift of bargaining power towards the

mother.

Motivated by this evidence and by our empirical results, we provide a simple analytical

framework to rationalize the results in the context of misalignment in the preferences

of the spouses. Albeit simple, our framework can be used as a starting point, both

empirically and methodologically, to think more carefully about second round effects of

public interventions and household responses following an altering of the decision process

4



inside the household. As such, our paper is also related to the treatment effect literature

of CCT programs, which aims at identifying empirical facts on how to obtain the desired

policy interventions. One of the focuses of this literature is to establish whether, why

and to what extent targeting conditional cash transfers to women is effective (see Yoong

et al. (2012) for a systematic review).

The paper is organized as follows. Section 2 describes the general theoretical frame-

work which motivates the empirical analysis. Section 3 discusses the data, the empirical

strategy and the methodological issues related to the estimation of a demand system.

Section 4 presents the results and their rationalization within an alternative theoretical

framework of changes in preferences. Section 5 concludes.

2 Theoretical framework

In this section we discuss the theoretical set-up of individuals’ interactions within the

household and introduce the test of the collective model that we run in the empirical

section. Consider a household comprising two decision makers i ∈ {m, f} and any number

of children, where m stands for mother and f for father. Children are not part of the

decision making process and enter as a public good within the household. Household

member i cares about her own private consumption ci and household public goods k. Each

member’s preferences are assumed to be representable by a continuously differentiable

and strictly concave utility function U i(ci,k). The extent to which members m and

f care about the children is captured by their preferences for the public good. The

resources of the family are derived from total household earnings x, potentially including

an endowment entitled to member m. The budget constraint of the family can then be

written as follows:

p′c + P′k = x, (1)

where p and P are the price vectors of private and public goods respectively.

According to the formulation of household decisions provided by Chiappori and Maz-

zocco (2017), the test of efficiency is derived at the intra-household allocation stage. At
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this stage, a household takes as given an arbitrary amount of household-level private

goods c̄ and public goods k̄ ,which are optimally chosen at the resource allocation stage.

Then the household chooses the allocation of private goods between spouses by solving

the following (static) problem:

U(k̄, µi(z)) = max
{cm,cf}

∑
i

µi(z)U i(ci, k̄)

s. t cm + cf = c̄,

(2)

where µi(z) is the Pareto weight summarizing the individual decision power of the two

spouses. The resulting demand equation for a generic (private) good j then takes the

following form:

θj = ξj(c̄, µ
i(z); d, ε), (3)

where d and ε are a set of observable and unobservable characteristics of the household.

The crucial aspect of this demand function is the presence of the Pareto weight function

µi(z) and its functional dependence on distribution factors z. Indeed the manner in which

these factors affect demand (3) can be used to test Pareto efficiency, the main underlying

assumption of collective models.

BBC derive necessary and sufficient conditions for collective rationality that are valid

for any type of good, either private or public. In order to understand the theoretical

restriction that we want to test, we have to introduce the concept of z-conditional de-

mand functions. Consider the demand for good j resulting from program (2), θj =

ξj(c̄, µ
i(z); d, ε), where some of the elements of z may not be observed but at least one

is. In particular, assume that there is at least one good j and one observable distribution

factor z1 such that ξj(c̄, µ
i(z); d, ε) is strictly monotone in z1. Given strict monotonicity,

the demand function for good j can be inverted on this factor: z1 = ζ(c̄, µi(z−1), θj; d, ε).

We can now define the following:

Definition 1. The demand function for any good j, private or public, is a z-conditional
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demand if:

θj = ξj(c̄, µ
i(z1, z−1);d, ε) = ξj[c̄, ζ(c̄, µi(z−1), θl), µ

i(z−1);d, ε] = ϕj(c̄, µ
i(z−1), θl;d, ε).

(4)

In other words, the demand for good j can be written as a function of total expenditure

c̄, all distribution factors but the first, z−1, and the quantity demanded for good l.

Although conditional demands are often used in demand analysis, it is useful to refer to it

as z-demands because it incorporates the idea that distribution factors play a central role

in the intra-household allocation stage of collective models. Empirically, the restriction

that involves the z-conditional demand says that if there exists a distribution factor such

that:

∂θj
∂z1

6= 0 ,∀j, (5)

the demand for good j is compatible with collective rationality if and only if there exists

at least one good l such that:

∂ϕj(c̄, µ
i(z−1), θl; d, ε)

∂zp
= 0 ∀j 6= l and p = 2, . . . , s. (6)

The meaning of this testable restriction is the following. If we invert the demand for

good l on a distribution factor z1, which is also significant for any other good j 6= l,

and we replace this demand into the demand of any other good j 6= l, the effect of any

second distribution factor zp is going to be irrelevant. The intuition is that, by definition,

distribution factors affect demand only through their effect upon the location of the final

outcome on the Pareto frontier. That is, they do not shift the Pareto frontier, because

they do not impact the individual preferences nor the budget constraint. Importantly,

the effect of the bargaining weight is one-dimensional. Once the location on the Pareto

set has been changed by the effect of the first distribution factor, the information brought

by any other additional distribution factor is uninformative.3

3Note that Proposition 2 of BBC provides three equivalent conditions necessary and sufficient for
collective rationality. Empirically, the restriction that involves the z-conditional demand is the most
powerful because we can employ single equation methods which are more robust than tests of the equality
of parameters across equations. This is the reason why in the present paper we employ this restriction.
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3 Empirical implementation

We investigate how households respond to monetary incentives using a sample drawn

from the surveys collected to evaluate the impact of PROGRESA.4 This is a conditional

cash transfer program implemented in rural Mexico in the late 1990s. The choice of

this dataset is motivated by a variety of reasons. First, the monetary incentives were

quite large and had a real effect on households’ behavior inducing them to change their

consumption patterns. Second, the surveys are very detailed and of high quality allow-

ing us to construct vectors of quantity and prices for various important commodities.

Third, the available dataset contains two exogenous distribution factors, which allow us

to meaningfully test the main hypothesis outlined in the theory part.

The remainder of this section is divided in four sub-sections. First, we provide some

background information on the program, we present the evaluation surveys, how prices

and quantities are aggregated, and some descriptive statistics of the sample used in our

empirical analysis. Second, we discuss the appropriateness of the two distribution factors

that we use to test the efficiency of the resource allocation. These are the most important

variables for the purpose of our exercise. Third, we discuss the consumption behavior

of our sample, that is, household preferences and the observed demand equations, and

outline the z-conditional demand system that we are going to estimate. The final sub-

section deals with the estimation strategy and the methodological issues that have been

raised in the literature when one aims to identify the relationship of interest with data

coming from a cash transfer programs such as PROGRESA (e.g. Attanasio and Lechene

(2002, 2014), Attanasio et al. (2013)). In our context, we are particularly concerned

with the endogeneity of both total expenditure and the number of children enrolled in

secondary school.

3.1 Program design, sample selection and descriptive statistics

The original PROGRESA program was implemented between April 1998 and Decem-

ber 2000. Later it was extended to include new households both in rural and urban

4Specifically, we use exactly the same dataset as in Attanasio and Lechene (2014).
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areas. From its start, PROGRESA was subject to rigorous evaluation based on random

assignment. 10,000 localities were included in the first expansion phase, and from here

506 were selected in the evaluation sample, 320 of them were randomly chosen to have

an early start of the program, whereas the remaining 186 formed the control group. In

practice, households in the these latter villages were not included in the program until

late 1999, which means that they became eligible for the grant only after this date. “El-

igible” households in treatment villages started receiving the cash transfers subject to

the appropriate conditionality already in April 1998. Whereas “eligible” households in

control villages were still observed during this time, but they started benefiting from the

payment (in the same manner) only after November 1999.

The main objectives of the program were to introduce incentives to improve the ac-

cumulation of human capital of children and at the same time to alleviate short-term

poverty. To be eligible, a household must be sufficiently poor (in the program sense).

The transfers were paid to the mother every two months and were largely in the form of

scholarships to four grades of primary school, except the first two and the initial three

grades of secondary school. These transfers are conditional on certain behavior: first,

children must attend at least 85% of classes; second, household members must undergo

periodic health checks; third, the transfer recipients must attend nutrition and health

classes. The strong involvement of the mother in the program was motivated by the

assumption that they have a stronger taste for child well-being and are more responsible

at managing households resources. Moreover, a change in relative income of spouses was

motivated by the desire to change the position of woman within rural families in Mexico,

which was the intended by-product of the intervention.5

In the present paper we use two post intervention surveys, October 1998 and May 1999,

which were collected 6 months and 12 months, respectively, after the households started

5The program was so much a success that later it was expanded to other households in rural areas who
were followed throughout the 2000s, as well as households in urban areas. Other countries as well adopted
this kind of cash transfers program, both in Latin America, Asia, Africa, and some developed countries
as well. PROGRESA has been found to increase education attainment (Schultz (2004), Attanasio et al.
(2013)), to decrease short term poverty (Tommasi and Wolf, 2016), and to improve health (Gertler
(2004), Behrman and Parker (2011)). Detailed information on the program and its evaluations can be
found in Skoufias (2005) and Fiszbein et al. (2009).
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receiving the cash transfers. The surveys included detailed information on expenditures

at the household level and detailed information on members of the household. In order to

have an homogeneous sample on which to test the hypothesis of interest, we select a sub-

sample that satisfies the following restrictions. First, there are only households with both

natural parents in our sample and one to at most six children. This means that households

with at least one other adult member are excluded and the mother is always the recipient

of the cash transfers. Second, households with children aged 17 or above are also excluded

from the sample, in order to exclude households with multiple decision makers besides

the parents. The resulting sample consists of 5,125 households observed in 1998 and 4,932

households observed in 1999. In Table A.1 of the Appendix, we present the means of

various baseline household-level characteristics for eligible households in treatment and

control villages. As we can see from this table, households are disadvantaged in a number

of important ways. First, the education of head and spouse is quite low, as the average

adult has only slightly more than a primary school diploma. Second, families are quite

large as the average number of children is 4. Third, 38% of households have an indigenous

origin. Finally, only a quarter of localities have a secondary school in the village.

We are interested in studying the household responses to cash transfers in terms

of demand for food components, which, in our sample, represents about 80% of non-

durable expenditure.6 The demand for it is modeled assuming separability of these goods

from the non-food consumption and labor supply. The PROGRESA data contains very

detailed information on both expenditure and consumption for many (narrowly defined)

commodities. Following Attanasio and Lechene (2014), we use aggregated data to create

budget shares of 5 different commodities: starches; pulses; fruit and vegetables; meat,

fish and diary; and other foods. As explained in detail by the authors, for each of

the individual commodities that make the 5 commodities that we use, consumption is

computed as to include what has been bought as well as quantities obtained from own

production, payments in kind and gifts. The quantities are valued in pesos using locality

6We focus on demand for food for a variety of reasons. First and foremost, food consumption is the
most important commodity in the budget of the expenditure of the households in the sample. Second,
prices for the non-food consumption are not observed and hence it is practically impossible to use these
goods.
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level price information derived from unit values. As reported in Attanasio et al. (2013),

the authors take particular care to avoid duplication induced by household production.

For instance, if a household has consumed a good that was produced at home, they

include the value of this good (valued at average prices in the town) but do not include

the value of the raw material that was purchased to make that good.

We compute unit values of the five commodities which allow us to estimate the demand

system. These are used to evaluate consumption in kind and to compute price indexes

for each of the composite commodities. Unit values are computed for each household

dividing the value of the purchase by its quantity. The value of the purchased commodity

is computed by using village-level prices for individual commodities, where the village-

level price is selected by looking at median unit value of the households that purchased

that product in a given locality. More details on the computation of these unit values

and how price indexes are constructed can be found in Attanasio et al. (2013). This

resulted in considerable variation in prices across villages and time in the data, which in

turn allows to get precise parameter estimates of the demand system.

3.2 Distribution factors

For our empirical exercise we need to find at least two variables that affect the allocation

of resources but not preferences. These variables are called distribution factors and enter

the Pareto weight function of the two agents within the household. Browning et al. (2014)

report the most common distribution factors used in the literature. As the authors argue,

it is a difficult exercise to find plausible distribution factors because theory does not give

guidance as to what constitutes a distribution factor and for each variable it is possible

to find a reason why it could also affect preferences or the budget constraint.

In order to conduct a robust analysis, in the present paper we use two of the most

credible distribution factors used in the literature: the eligibility to PROGRESA and the

relative importance of the husband and wife’s family network in the village. Since both

these variables have already been used by Attanasio and Lechene (2014), we briefly re-

capture their discussion in Appendix A.2. Nevertheless, there are two important remarks
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we want to stress in the main text. First, the choice of the conditioning distribution

factor and the conditioning good is crucial for the reliability of the empirical results.

Theory indicates that the conditioning distribution factors must be statistically relevant

and must affect the conditioning good monotonically. In the empirical analysis we use

the network variable as our preferred conditioning distribution factor, which has been

shown by Attanasio and Lechene (2014) to satisfy all the requirements of the theory and

is statistically significant in our own empirical exercise. Second, part of the discussion in

the collective model literature is the nature and validity of the distribution factors used,

whether discrete or continuous. We point out that, for the reliability of the results, it

is important that the second distribution factor (the one on which the demand system

is inverted on) is continuous. This is the case in our empirical exercise for our network

variable.7

3.3 Functional forms

In our empirical application we assume that households have preferences given by the

integrable QAIDS demand system of Banks et al. (1997). QAIDS allows flexible prices

responses and the quadratic income allows the Engel curves to display a great variety of

shapes. The indirect utility function of each household is assumed to be of the following

form:

V =

{[
lnx− lna(p)

b(p)

]−1

+ λ(p)

}−1

, (7)

where

lna(p) = α0 +
n∑
j=1

αjlnpj +
1

2

n∑
j=1

n∑
l=1

γjllnpjlnpl,

b(p) =
n∏
j=1

p
βj
j ,

λ(p) =
n∑
j=1

λjlnpj.

(8)

7As for the first distribution factor, which is the treatment indicator in our case, Kapan (2009) discuss
the underlying conditions such that a discrete distribution factor can be used to study the impact on
bargaining power.
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The parameters αj, βj, λj and γjl (∀j, l) are to be estimated. Adding up requires that∑
j αj = 1,

∑
j βj = 0,

∑
j λj = 0 and

∑
j γjl = 0 (∀l). Homogeneity is satisfied

if
∑

l γjl = 0 (∀j).8 Notice that the indirect utility function underlying Deaton and

Muellbaur’s (1980) Almost Ideal Demand System corresponds to equation (7) where

λj = 0 for all goods.

Applying Roy’s identity to equation (7) we obtain the QAIDS budget share equations

for each household and commodity j

wj =
θj
x

= α0 + φ′d + ψ′z +

j∑
l=1

γillnpl + βjln

{
x

a(p)

}
+

λj
b(p)

[
ln

{
x

a(p)

}]2

+ εj, (9)

where wj indicates the jth budget share of a household facing a price vector p and total

expenditure level x, whereas d and z are vectors of, respectively, individual demographic

characteristics and distribution factors. The impact of these variables runs through the

coefficients φ and ψ, whose estimates constitutes the main purpose of our empirical

investigation. In principle both vectors d and z could of course affect the demand system

in other ways, not necessarily through the intercept only. As a robustness check, we re-

estimated the parameters of a general QAIDS model where demographic characteristics

and distribution factors were allowed to change the curvature of the demand system in

multiple ways. Almost all the additional parameters were not significant, which indicates

that it is not restrictive to focus only on changes in the intercept.

In order to estimate the z-conditional demand system (4) for good θk, we have to

allow that the conditioning good θl might be endogenous. This problem can be avoided

because the excluded distribution factor on which the demand is inverted becomes a

natural instrument for θl. Let N , the relative family network, be the excluded distribution

factor. The demand function for commodity j (j = 1, . . . , n) can be inverted on this

factor:

N =
1

ψN
θl −

ψ′

ψN
z−1 −

1

ψN
fl(x,p)− φ′

ψN
d− 1

ψN
ul,

8As shown in Browning and Chiappori (1998), Slutsky symmetry no longer needs to hold, so we did
not have to impose this. It would be satisfied satisfied if γjl = γlj (∀j, l).
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where now z−1 contains only the remaining distribution factor and, for notational simplic-

ity, fl(x,p) =
∑n

j=1 γljlnpj +βlln
{

x
a(p)

}
+ λl

b(p)

[
ln
{

x
a(p)

}]2

for each good l. Substituting

this equation for N in the demand for all other goods results in the system of z-conditional

demand functions:

θj = α̃′z−1 + γ̃θl + β̃fl(x,p) + φ̃′d + ũj (10)

for all goods j 6= l. The test of collective rationality then boils down to a test of the

significance of α̃.

3.4 Endogeneity

Since our dataset comes from the evaluation of a cash transfer program, which has some

important conditionality attached, the main methodological concern in estimating the

demand system (9) is the endogeneity of total expenditure and child school enrollment.

A further methodological concern is the non-linearity of the system, which makes the

recovery of the parameter estimates more complicated. The latter issue is tackled by

estimating the complete system with the iterated Feasible Generalized Non-Linear Least

Squares (FGNLS) estimator. The former concern is tackled with a control function

approach, as it is commonly applied in demand analysis (e.g. Blundell and Robin (1999)),

where the residuals, estimated in the first stage, enter as a polynomial of second order.

In the following paragraphs we explain the concern for each of the endogenous variables

and how we deal with it.

For the endogeneity of total expenditure, notice that the implicit assumption behind

our exercise is the idea that households decide their budget structure under two-stage

budgeting: first they decide how much to allocate to food and then how much to allocate

to each of the 5 components of food. The residuals in (9) can be interpreted as the house-

hold’s unobserved tastes that affect each budget share. There are two main arguments

in the literature for why total expenditure x should be endogenous. One is that taste

shocks that determine total expenditure x may be correlated with the unobserved shocks

to a particular food component in the system. The other one is that measurement error

in the budget shares may be correlated with measurement error in total expenditure. In
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the present paper we follow Attanasio and Lechene (2002, 2014) and instrument total ex-

penditure x with the average agricultural wage in the village. This is a strong instrument

and the implicit assumption in using it is that any measurement error in village-level

income is not correlated with measurement error of household total expenditure, which

is a commonly accepted assumption. As the authors explain at length, this is a valid

instrument if labor supply is separable from consumption. With respect to this, there is

large evidence that PROGRESA did not affect adult labor supply and hence it is not a

concern for us (e.g. Skoufias (2005)).

The second endogenous variable in system (9) is the number of children enrolled in

school. As it was explained before, eligible households receive a (large) portion of the

grant if their children are enrolled and attend school. This conditionality requirement,

which is controlled for in the demand equations, might affect consumption behavior if

sending children to school imposes additional costs like books, uniforms, etc. Moreover, if

children are fed in school, this would further impact the budget share of food. Enrollment

in primary school is almost universal in rural Mexico and hence not affected by the grant.

In order to allow for endogeneity of children in secondary school, we follow Attanasio and

Lechene (2002, 2014) and instrument it with a dummy variable indicating the existence

of a secondary school in the village and with the distance from the closest secondary

school if no such school is present in the village. The implicit assumption made is that

these two instrumental variables affect the schooling decisions of parents but not directly

the structure of their expenditure on food.

Finally, before concluding this section, it is worth noticing that the QAIDS budget

share equations of the z-conditional demand depicted in equation (10) contains a third

endogenous variable: the budget share of the conditioning good. As the conditioning

good θl is correlated with the unobserved taste shock of the demand for good θk, this

needs to be instrumented for. The natural instrument to use is already suggested by the

theory and by the z-conditional demand test that we run: the distribution factor used to

invert the demand of the conditioning good satisfies the common requirements for valid

instrumental variables. Hence, in estimating equation (10) we apply the same control

15



function approach as before adding the residuals from the first stage of the conditioning

good as well.

4 Results

We divide this section in two parts. First, we present the results of the test of the

collective model and show that, contrary to the existing literature, it is not rejected at

the beginning of the program (first wave, 6 months after the start of the program) but it is

rejected later in time (second wave, 12 months after the start of the program). Second, we

provide an alternative simple rationalization that could be used to empirically investigate

the rejection of the collective model.

In all specifications we instrument total food expenditure with village-level agricul-

tural wage (and its square), and number of children in secondary school with a dummy

if there is a secondary school present in the village and distance to the closest secondary

school. We control for a large set of pre-treatment village, household and individual char-

acteristics. Village characteristics include town size and prices. Household characteristics

include number of young children, number of children enrolled in primary school, number

of children enrolled in secondary school, number of relatives eating in the household and

number of household members eating outside the household. Individual characteristics

include the level of education of both parents, age of the household head and an indige-

nous head dummy. All the standard errors are clustered at village level and bootstrapped

200 times.

4.1 Does the collective model rationalize the data?

We first estimate the unconditional (QAIDS) demand system for various interesting

(sub)groups in our sample: respectively, the full sample, the sample splitted accord-

ing to the two years, and subgroups for each year based on different education and age

differences between spouses. We report only the results for the tests on the two cross-

sections separately, because these are the only ones where there are at least two demand

16



equations with two significant effects of the distribution factors. In all other subgroups

that we have defined, the effects of the distribution factors are always too weak to provide

reliable estimates of the z-conditional demand test, and hence no clear pattern was found.

The full set of regression results are of course available upon request.

The main parameters of interest are reported in Table 1. The estimated demand

system is able to predict very well the observed budget allocation for both control and

treatment groups in both periods, as reported in Table A.2 of the Appendix. By taking

these demand equations, we investigate whether the collective model is able to rationalize

the observed budget allocation. In order to do so, we estimate the z-conditional demands

by taking any pairwise combination of the most responsive demand equations to the

distribution factors. As we can see, these are starches, fruits and vegetables and meat,

fish and diaries for the 1998 observation. Whereas for 1999 these are starches, pulses,

fruits and vegetables and other foods. Hence, this means that in 1998 we first use fruits

and vegetables as conditioning good, invert it on network and test the collective model on

the remaining goods where the treatment variable is significant. Then use meat, fish and

diaries to invert the system and test the model on the remaining goods. And so on for the

remaining goods in 1998 and 1999. Note that, in order to have a high power of the test

results, the conditioning good must be responsive to network, that is, the distribution

factor on which the system is inverted. Whereas the goods on which the collective model

is tested must be responsive, in principle, to both distribution factors. For completeness

of the results we report the test of all goods where at least treatment is significant, but

one should keep in mind that the most powerful results are on those specifications where

both demand equations are responsive to both distribution factors.

Table 2 shows that in 1998, 6 months after the 1st transfer, the null hypothesis is

not rejected for all specifications. In light of the model outlined before, this implies that

we find convincing empirical evidence in favor of the collective model. A different story

emerges however when we look at the 1999 data, 12 months after the households started

receiving the cash transfers. Here not only we reject the null hypothesis in almost all

specifications, but the coefficient is always unvaried from the QAIDS estimates. This is
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a strong rejection of the collective model.9

Our results are somewhat different than those of the recent literature (in particular

Bobonis (2009), Attanasio and Lechene (2014) and Angelucci and Garlick (2016)). This

can be explained by several reasons. First, our sample selection strategy and variables

choice is slightly different. Our main, and most informative, results focus on the two

waves separately, while all the other papers pool the waves. As our empirical results

demonstrate, they fail as such to fully capture the heterogeneity over time. Next, similarly

to Attanasio and Lechene (2014), but differently from Bobonis (2009) and Angelucci and

Garlick (2016), we use only two waves of data after PROGRESA began to distribute

cash transfers and focus only on food consumption. The other authors use three waves

and model also non-food consumption. The problem with this implementation is that the

surveys do not contain information on prices for non-food commodities and hence it is not

possible to implement the QAIDS model as we pointed out above. Finally, again similarly

to Attanasio and Lechene (2014), but differently from Bobonis (2009) and Angelucci and

Garlick (2016), we use treatment and relative size of husband’s and wives family networks

as distribution factor.

Besides these differences in the sample selection strategy and the variables choice, a

second main difference is our implementation of the test of Pareto efficiency. As explained

above, to implement the BBC test, one has to invert the demand equations. To obtain

statistically reliable results, it is therefore crucial to have unbiased estimates and to focus

on the most responsive demand equations. Therefore, our test is based on the parameters

estimated from a full fledged QAIDS model, whereas the other papers are based on a linear

version of it, called `−QAIDS. Although the BBC test does in principle not require neither

price variation, nor the estimate of the parameters attached to prices, bypassing a proper

estimation of the demand system may lead to biases in the parameter estimates.10 Next,

9Note that the weak instruments problem is not a concern for us. The first stage F -test for both
total expenditure and enrollment in secondary school, for both years, are always above 20, which clearly
satisfies the Kleibergen and Paap (2006) critical values for strength of instruments under heteroscedas-
ticity.

10See, for instance, Pashardes (1993), Buse (1994), Moschini (1995), Buse (1998) and Matsuda (2006)
for more discussion on how biased estimates of a demand system may or may not influence the empirical
conclusions. The BBC test is an example where the biases are influential.
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with respect to inverting the demand functions, some of our sample selections resulted in

very small (and often insignificant) estimates of the parameters. As a consequence this

makes the BBC test very unreliable, since (after the inversion) it is based on the ratio of

two small numbers. This explains why we do not obtain similar conclusions in term of

cross-sectional heterogeneity as in Bobonis (2009) and Angelucci and Garlick (2016), but

obtain much more robust conclusions for the intertemporal heterogeneity.
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Table 1: Unconditional (QAIDS) demand system

Budget shares starches pulses fr. & veg. m., f. & d. other foods

Distribution factors: October 1998, 6 months after the 1st transfer

Treatment 0.020** 0.004 -0.012** -0.016** 0.004
(0.009) (0.006) (0.005) (0.008) (0.003)

Network -0.013* -0.005 0.011*** 0.013** -0.006
(0.007) (0.004) (0.004) (0.005) (0.004)

Joint test of (p-value):
Treatment 0.03
Network 0.00

Distribution factors: June 1999, 12 months after the 1st transfer

Treatment -0.049*** -0.021** 0.021*** 0.007 0.041***
(0.008) (0.009) (0.005) (0.006) (0.003)

Network 0.013** 0.003 -0.000 -0.002 -0.013***
(0.006) (0.003) (0.003) (0.005) (0.004)

Joint test of (p-value):
Treatment 0.00
Network 0.01

Notes: We report only the parameter estimates (and standard deviation) of the main distribution factors. The
sample size in the two waves is 5,125 and 4,932 observations, respectively. In all specifications we instrument total
food expenditure with village-level agricultural wage (and its square), and number of children in secondary school
with a dummy if there is a secondary school present in the village and distance to the closest secondary school. We
control for a large set of pre-treatment village, household and individual characteristics. Village characteristics
include town size and prices. Household characteristics include number of young children, number of children
enrolled in primary school, number of children enrolled in secondary school, number of relatives eating in the
household and number of household members eating outside the household. Individual characteristics include the
level of education of both parents, age of the household head and an indigenous head dummy. All the standard
errors are clustered at village level and bootstrapped 200 times. *** p<0.01, ** p<0.05, * p<0.1.
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4.2 How can we rationalize these results?

We now want to propose a simple theoretical framework that is able to rationalize the fact

that households behave different after having more experience with the features of the

PROGRESA program. In particular, it is assumed that, in each period, the household

solves the following optimization problem:

maxU f
(
cf , k

)
s.t. Um

(
cm, k − k̄ (s)

)
≥ 0

s.t. p′
(
cm + cf

)
+ P ′k = x.

(11)

This problem is similar in spirit to (2), but we have simplified the setting to the case

where there is only one public good k (e.g. expenditures on children) and the mother’s

participation constraint is made explicit. It is summarized by the term k̄ (s), which

depends on a preference shifter, denoted by s. We assume k(0) = 0 and k′(s) > 0.

Furthermore, for all cm, and s there exists a k̃ such that Um
(
0, k̃ − k̄ (s)

)
= 0.

Notice that, since utility of both household members is assumed to be increasing in all

its arguments, that is, for all (private) consumption bundles and values of the preference

shifter s, there exists a sufficiently small level of expenditures on the public good such

that the participation constraint for the mother is not satisfied. In this case she prefers

to obtain her outside option. The value of this outside option is given by the indirect

utility from the following problem:

max Um (cm, 0)

s.t. p′
(
cm + cf

)
+ P ′k = x,

(12)

where the mother takes as given cf , i.e. the father’s choice of private consumption.11

Notice that in case efficient bargaining (cooperation) breaks down, the mother picks

k = k̄(s). The interpretation of this framework is the following: the mother can always

select some minimal level of expenditures to the public good given by k̄(s), autonomously

11The same problem using the father’s preferences provides his outside option.
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from her husband. Only when the father finds it also profitable to have a higher level

of public good expenditures, the household reaches a cooperative (i.e. Pareto efficient)

solution.

An important feature of the PROGRESA program is that it consists of a substantial

educational component.12 In particular, mothers receive intensive educational and pro-

grammatic meetings, with the aim to empower women on several dimensions (e.g. on the

importance of good quality food and speaking up with respect to their rights vis a vis

health care providers). Our simple framework is therefore able to capture our empirical

results in case we assume that, in the earlier stages of the PROGRESA program, we have

s = 0. Due to the training, there might subsequently have been a shift in preferences over

time, i.e. s > 0, which indicates that the mother has a higher preference for expenditures

on the public good. This creates a misalignment of preferences for the public good within

the household and causes the rejection of the collective model, in which s is fixed over

time.

Note that our framework could also be seen to capture the idea that, over time,

women get empowered from PROGRESA, both by the cash transfers, which implies a

higher bargaining power, but also potentially through a preference shift caused by the

educational program. If these women then want to exert their increased bargaining

power within the household, this could create tensions with the husband, thereby losing

efficiency in terms of household allocations. Indeed, both Angelucci (2008) and Bobonis

et al. (2013) have shown that a potential side effect of the PROGRESA program was,

for some households, an increased incidence of aggressive behavior from the husbands

towards their wives. Moreover, Angelucci (2008) notes that the likelihood to receive

more violent threats is related to the size of the cash transfers received by the household,

casting doubt on the validity of using the PROGRESA treatment as a valid distribution

factor (in terms of the collective household model).

Summarizing, this simple theoretical framework can be seen as a complement to the

12These kind of welfare programs have been coined “incentive-based welfare”, e.g. Gertler and Boyce
(2001). See also Barber and Gertler (2010) for more details concerning the educational component of
PROGRESA with respect to health care.
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empirical findings of the authors cited above. Though PROGRESA is likely to have

an overall positive effect on the welfare of children and the empowering of women in

rural Mexico, there might be some second order negative effects, in terms of loss in

intra-household efficiency and increased threats of violence, for a portion of targeted

households. Our framework can be used as a starting point to reason about these effects

within the household.

5 Conclusion

We have structurally analyzed if the collective model can rationalize the demand equa-

tions of food for a sample of households affected by the PROGRESA conditional cash

transfer program. This CCT program was implemented in rural Mexico in the late 1990s

and targeted poor families. The large monetary incentives had a substantial effect on

households’ behavior inducing them to change their consumption patterns. As shown by

Attanasio and Lechene (2014) this change can only be explained by the impact of the

conditional cash transfer on the intra-household decision process.

In this paper we have further investigated this impact. Based on the test introduced

in Bourguignon et al. (2009) we show that households are consistent with the collective

model only in 1998, 6 months after the beginning of the program, but reject it 12 months

after the first cash transfer. In other words, the collective model can no longer rationalize

the observed behavior in the PROGRESA data in later times of the program. The

differences in our results with those of the literature cited above demonstrate the need

for using a fully flexible demand system in order to capture the impact of price variation.

Moreover, our paper also shows that for obtaining a powerful and reliable application of

the BBC test of the collective model, it is crucial to invert the demand system on the

most responsive distribution factor.

Our results show that we need new structural models (e.g. including intertemporal

features), and corresponding empirical evidence, to analyze second round effects of CCT

programs such as PROGRESA. We have presented a simple example of such a structural
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model that captures the misalignment of the preferences due to the treatment about the

importance of public goods. An avenue for further research could use more information

from the targeted households (e.g. on threats of violence within the household or the

intensity of the educational program within PROGRESA, as proxies for the preference

shocks), in order to estimate explicitly their impact on the demand for private and public

goods. One of the interesting testable implications of our proposed framework is that,

since preferences changes over time, both the standard demand equations of public and

private goods are going to have a different shape. Subsequently, this allows to structurally

investigate the (un)observed heterogeneity of the impact of the policy intervention on the

individual well-being of the recipients.
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Appendix

The structure of this appendix is as follows. Section A.1 reports the summary statistics

of our sample of households in the treatment and control villages. Section A.2 discusses

more in detail the validity of our two distribution factors. Finally, Section A.3 shows that

our model fits the data very well.

A.1 Summary statistics

Table A.1: Summary statistics: Treatment vs Control

Variables Observations Control Observations Treatment Difference

Town size 2,360 41.7 3,951 39.7 1.97***
N children in primary school 2,322 1.3 3,893 1.4 -0.050
Household size 2,366 5.6 3,960 5.6 -0.050
N of children 2,366 3.6 3,960 3.6 -0.050
N of young children 2,366 2.2 3,960 2.3 -0.030
N of older children 2,366 1.3 3,960 1.3 -0.010
Education of the spouse 2,366 2.2 3,960 2.2 0.020
Education of the head 2,366 2.3 3,960 2.3 -0.010
Head is indigenous 2,366 0.4 3,960 0.4 -0.010
Age of head 2,365 37.7 3,949 37.4 0.260
ln(price of starches) 2,366 1.3 3,960 1.3 -0.02***
ln(price of pulses) 2,366 2.4 3,960 2.4 0.01**
ln(price of fruit and vegetables) 2,366 1.9 3,960 1.9 0.01***
ln(price of meat, fish and diary) 2,366 2.7 3,960 2.7 -0.01***
ln(price of other foods) 2,366 2.4 3,960 2.4 0.02***
Secondary school 2,347 0.3 3,960 0.3 0.000
Network 2,002 0.4 3,252 0.4 0.010
Education 2,366 1.0 3,960 1.0 0.010
Expenditure on food 2,366 749.0 3,960 800.7 -51.73***

Notes: Mean values and difference between eligible households in control and treatment villages. The data
refer to the 1998 wave. *** p<0.01, ** p<0.05, * p<0.1.

A.2 Distribution factors: details

In what follows we describe and motivate each of the two distribution factors used in

this paper. The first distribution factor used is the eligibility to PROGRESA. This is

a dummy variable taking value 1 if the household belongs to a treated village and 0



otherwise. Since the grant is targeted to the mother, receiving the transfers constitutes

an exogenous increase in the share of the household income that she controls. This share

of income is not an argument of preferences, and conditional on total resources available,

it does not affect the budget constraint. Given the random assignment of the program,

the treatment variable constitutes an ideal distribution factor, which explains why it has

been used in the recent literature to test the collective model.

Two remarks on the treatment dummy are in order. First, the grant affects not only

the distribution of resources within the household but also the total resources available.

This implies that we need an appropriate specification of the demand system to control for

total resources available after the treatment. Conditional on all the resources, including

also those coming from the program, receiving the PROGRESA transfer should make

no difference to the allocation of household resources among different commodities. If

instead, after conditioning, the grant has a residual effect on allocation, it must be because

it has shifted the Engel curves as a consequence of a shift in Pareto weights. Second, the

PROGRESA grant is a conditional cash transfer, where the most stringent conditionality

is the child school enrollment. In the case of the Mexican context, the conditionality is

not stringent for families who have to enroll their children to primary school, as primary

school enrollment is almost universal. It is however stringent in the case of families with

children going to secondary school. A correct specification of the demand system needs

to account for this as well.13

The second distribution factor used is the relative importance of the husband and

wife’s family network in the village. This information was collected by Angelucci et al.

(2009) and used as a distribution factor to test the collective model by Attanasio and

Lechene (2014). The main idea behind the use of the network information is the fact

that a stronger presence of family members in the village affects the individual value of

their outside option. Indeed, as the authors argue, it is possible that the relative weights

of husband and wife in the allocation of resources depend, within the context of poor

13In principle, there is a third remark that should be made. If the PROGRESA grant affected labor
supply, then it would not be a valid distribution factor. However, it has been shown that the grant did
not have any effect on labor supply of adult members and hence it is likely that this does not constitute
a problem in our specific case (Skoufias (2005)).



marginalized rural households, on the relative strength and influence of the two extended

families in the village. The relative importance of the spouse’s networks is constructed

by Angelucci et al. (2009) as follows. The authors exploit the fact that the PROGRESA

evaluation surveys are a census of each village and the convention of Spanish last names

to map the network of relatives within each community. Indeed, in Spanish-speaking

countries, individuals get two surnames, the first one from the father and the second

one from the mother. Using the PROGRESA surveys it is possible to know the number

of relatives, for each adult, that are present in the village. The relative importance of

husband and wife’s networks is then constructed in two ways: the size and wealth of the

networks.14

At this point, one may be worried that, in the presence of altruism, if an adult member

cares about their siblings, presumably their siblings care about them. Hence one could

argue that if this adult has a relatively large family network, social norms may induce

him or her to behave in a way that is closer to the preferences of the network. In other

words, the number of siblings might affect preferences rather than bargaining. However,

under the assumption that both adult members live under the same set of social norms,

the construction of the distribution factor as a ratio of the two adults’ network, would

net away this concern. Next, concerning the effect on budget, the main reason why one

could argue that the number of siblings in the village might have a direct effect on the

demand for food is, if in rural Mexico it is common practice that siblings share meals.

Although this fact would not invalidate that relative family network does not affect the

budget, if we do not account for the direct effect of the number of siblings on the demand

for food, we might obtain biased estimates. Our empirical implementation avoids this

potential bias because we indeed control for the number of relatives who share meals with

the household as a determinant of expenditure shares.

14More formally, for each individual i = m, f , they construct the relative size of the networks as the
ratio of ni/nm + nf , where ni is either the number of relatives in the village or the value of their wealth
for each individual i. Wealth is proxied by (food) consumption of individual’s relatives.



A.3 Fit of the data

Table A.2: Actual and Predicated effect of PROGRESA, full sample

1998

Actual Predicted Predicted - Actual
C T D*100 C T D*100 D*100

starches mean 0.40 0.40 -0.20 0.41 0.40 -0.65 -0.45
sd 0.15 0.14 0.20 0.03 0.03 0.05 0.20

pulses mean 0.13 0.12 -0.91 0.13 0.12 -0.72 0.20
sd 0.08 0.08 0.11 0.02 0.03 0.04 0.12

fr. & veg. mean 0.13 0.14 0.48 0.12 0.13 0.69 0.20
sd 0.09 0.08 0.12 0.02 0.02 0.03 0.12

m., f., & d. mean 0.16 0.17 1.15 0.16 0.17 1.17 0.02
sd 0.13 0.12 0.18 0.05 0.05 0.06 0.19

other foods mean 0.18 0.17 -0.52 0.18 0.18 -0.49 0.02
sd 0.10 0.09 0.13 0.04 0.04 0.05 0.14

1999

Actual Predicted Predicted - Actual
C T D*100 C T D*100 D*100

starches mean 0.43 0.41 -1.91 0.42 0.41 -1.26 0.65
sd 0.15 0.15 0.21 0.04 0.04 0.05 0.22

pulses mean 0.11 0.10 -0.92 0.11 0.10 -1.14 -0.22
sd 0.07 0.07 0.10 0.02 0.02 0.03 0.11

fr. & veg. mean 0.10 0.11 1.07 0.11 0.12 0.88 -0.19
sd 0.07 0.07 0.10 0.02 0.02 0.02 0.10

m., f., & d. mean 0.16 0.19 2.32 0.17 0.19 2.11 -0.21
sd 0.13 0.13 0.18 0.05 0.05 0.07 0.19

other foods mean 0.19 0.18 -0.56 0.18 0.18 -0.60 -0.04
sd 0.10 0.10 0.14 0.04 0.04 0.06 0.15

Notes: Predicted impacts computed using the QAIDS model. C, T and D stand for Control and
Treatment groups and Difference between the two.


