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The recent retreat of glaciers and ice sheets as a result of global warming exposes

forefield soils that are rapidly colonized by microbes. These ecosystems are dominant

in high-latitude carbon and nutrient cycles as microbial activity drives biogeochemical

transformations within these newly exposed soils. Despite this, little is known about

the response of these emerging ecosystems and associated biogeochemical cycles to

projected changes in environmental factors due to human impacts. Here, we applied the

model SHIMMER to quantitatively explore the sensitivity of biogeochemical dynamics

in the forefield of Midtre Lovénbreen, Svalbard, to future changes in climate and

anthropogenic forcings including soil temperature, snow cover, and nutrient and organic

substrate deposition. Model results indicated that the rapid warming of the Arctic, as

well as an increased deposition of organic carbon and nutrients, may impact primary

microbial colonizers in Arctic soils. Warming and increased snow-free conditions resulted

in enhanced bacterial production and an accumulation of biomass that was sustained

throughout 200 years of soil development. Nitrogen deposition stimulated growth during

the first 50 years of soil development following exposure. Increased deposition of organic

carbon sustained higher rates of bacterial production and heterotrophic respiration

leading to decreases in net ecosystem production and thus net CO2 efflux from soils.

Pioneer microbial communities were particularly susceptible to future changes. All

future climate simulations encouraged a switch from allochthonously-dominated young

soils (<40 years) to microbially-dominated older soils, due to enhanced heterotrophic

degradation of organic matter. Critically, this drove remineralisation and increased nutrient

availability. Overall, we show that human activity, especially the burning of fossil fuels

and the enhanced deposition of nitrogen and organic carbon, has the potential to

considerably affect the biogeochemical development of recently exposed Arctic soils in

the present day and for centuries into the future. These effects must be acknowledged

when attempting to make accurate predictions of the future fate of Arctic soils that are

exposed over large expanses of presently ice-covered regions.

Keywords: SHIMMER, glacier forefield, microbial dynamics, Arctic soils, climate change

http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org/Earth_Science/editorialboard
http://www.frontiersin.org/Earth_Science/editorialboard
http://www.frontiersin.org/Earth_Science/editorialboard
http://www.frontiersin.org/Earth_Science/editorialboard
https://doi.org/10.3389/feart.2017.00026
http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2017.00026&domain=pdf&date_stamp=2017-04-03
http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org
http://www.frontiersin.org/Earth_Science/archive
https://creativecommons.org/licenses/by/4.0/
mailto:jbradley8365@gmail.com
https://doi.org/10.3389/feart.2017.00026
http://journal.frontiersin.org/article/10.3389/feart.2017.00026/abstract
http://loop.frontiersin.org/people/232167/overview
http://loop.frontiersin.org/people/190304/overview
http://loop.frontiersin.org/people/136524/overview


Bradley et al. Future Climate-Sensitivity of Glacier Forefield Biogeochemistry

INTRODUCTION

Over the past century, the Arctic mean surface air temperature
has increased at a rate twice as fast as the global mean and is
predicted to warm a further > 4◦C by 2,100 (Stocker et al.,
2013). The observed warming has been accompanied by alarming
changes in ice cover, increasing length of glacier melt seasons,
and changing precipitation patterns and hydrology (Macdonald
et al., 2005). These changes to the physical environment exert
cascading effects on Arctic carbon and nutrient dynamics with
potentially important, yet underexplored implications for both
Arctic ecosystems (Kirchman et al., 2009), as well as global
climate (Serreze et al., 2000; Screen and Simmonds, 2010;
Stocker et al., 2013). Specifically, ecosystems in Polar regions
are thought to be among the most vulnerable to global climate
change, due to the adaptation of microbial processes to extreme
environmental conditions (Vincent, 2010), and the vulnerability
of Polar regions to tipping points (Lenton, 2012). However, there
is high uncertainty in the future ecosystem response to predicted
Arctic warming (Ciais et al., 2013). Warming of Arctic soils may
increase soil respiration and thus CO2 fluxes to the atmosphere,
thereby contributing to a positive feedback effect (Billings, 1987;
Oechel et al., 1993; Goulden et al., 1998). On the other hand,
there is also evidence that Arctic ecosystems in particular may
acclimatize to warming over decadal timescales (Oechel et al.,
2000). Assessing the potential implications of accelerated climate
change in Polar regions on regional and global biogeochemical
cycles and the climate system requires a better quantitative
understanding of Arctic ecosystems, as well as predictions of their
response to ongoing climate change.

Glacier forefields are one of the most intriguing ecosystems in
the Arctic as they act as pioneer sites for ecosystem development
and soil formation. The retreat of glaciers since the end of the
Little Ice Age has led to the emergence of terrestrial landscapes
that were previously locked underneath ice (Paul et al.,
2011). Glacier forefields act as bioreactors and intermediates
between the icy biome (Anesio and Laybourn-Parry, 2012) and
downstream ecosystems (Fountain et al., 2004, 2008; Kastovska
et al., 2005; Mindl et al., 2007). The physical, geochemical
and biological development of exposed soils following glacier
retreat have been studied using chronosequence approaches
(Bradley et al., 2014 and references therein). Decades of
empirical research in glacier forefields has shown that microbes
support enhanced weathering rates, the development of complex
community structures, the colonization of plants, as well as
the physical process of soil formation (Schulz et al., 2013;
Bradley et al., 2014). More recently, data derived from field
campaigns in the Alps, the Canadian Arctic, and Svalbard, as
well as laboratory experiments, were integrated with numerical
modeling using the Soil biogeocHemIcal Model for Microbial
Ecosystem Response (SHIMMER) to explore microbial dynamics
and nutrient fluxes along soil chronosequences (Bradley et al.,
2015, 2016b). This integrated model-data approach revealed that
autotrophic and heterotrophic biomass has likely accumulated
in the forefield of Midtre Lovénbreen glacier (Svalbard) over
the last century. Low measured microbial growth efficiency
had a potentially important role for nutrient accumulation by

enhancing the degradation of organic matter (Bradley et al.,
2016b). In addition, simulation results emphasized that microbial
communities play a key role in fixing and recycling carbon and
nutrients. Furthermore, results indicated that both allochthonous
carbon inputs, as well as microbial necromass, are important in
sustaining a pool of organic material in older soils, that feeds
heterotrophic bacteria.

There are relatively few studies that have explored the effect
of environmental factors, such as temperature, snow cover
and nutrient supply on microbial dynamics in developing
forefield soils. These mostly empirical investigations have
correlated microclimatic environments and weather-related
seasonal variations with distinct patterns of microbial diversity
(Lazzaro et al., 2015) and demonstrated that allochthonous
nutrient deposition stimulates microbial activity (Brankatschk
et al., 2011; Goransson et al., 2011). Whilst these experiments
and observations provide important insights, they often explore
only the short-term (seasonal) response to changes in one single
environmental factor for a spatially discreet geographical location
and thus do not allow for assessment of the mid-term (decadal)
to long-term (century) response of the system to holistic
environmental perturbations. As such, little is known about the
influence of ongoing and projected Arctic environmental change
on microbial dynamics and the resulting implications for carbon
and nutrients imported and exported from these environments.

In this respect, a mathematical model, which is constructed
on the basis of current mechanistic knowledge and tested against
experimental datasets, is a powerful means to assess the potential,
long-term response of microbial and biogeochemical dynamics
to projected climate changes, using a scenario-based approach
(Bradley et al., 2016a). Here, we used the novel numerical
model SHIMMER (Bradley et al., 2015, 2016b) to quantitatively
predict the response of the microbial community as well as the
implications for carbon and nutrient transformations and fluxes
in the forefield of the Midtre Lovénbreen glacier (Svalbard) over
climate-relevant time periods (decades to centuries). To assess
the induced changes, simulation results of (1) a baseline scenario
that has previously been calibrated (Bradley et al., 2016b) are
compared to five different anthropogenic change scenarios: (2)
increased soil temperature, (3) increased soil temperature and
earlier spring snow melt, (4) increased deposition of reactive
nitrogen, (5) increased deposition of organic carbon, and (6) a
combination of all of these factors. Finally, regional implications
of projected changes are discussed on the basis of model results.

METHODS

Study Site
We focused the investigation on the forefield of Midtre
Lovénbreen, an Arctic polythermal valley glacier on the
Kongsfjorden, Western Svalbard (78◦55′N, 12◦10′E). This glacier
forefield has previously been the subject of an integrated and
comprehensive field, laboratory and modeling study (Bradley
et al., 2016b). In the framework of this study, determination of
model sensitivity helped identify critical model parameters, that
were then constrained by laboratory measurement of bacterial
growth rates, growth efficiencies and temperature response for
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this specific habitat, and helped refine model predictions. The
Midtre Lovénbreen catchment is roughly 5 km East of Ny-
Ålesund, where several long-term monitoring programs and
weather stations provide contextual information and forcing
data. Midtre Lovénbreen has experienced negative mass balance
throughout much of the Twentieth Century. Since the end
of the Little Ice Age maximum (in the 1900s) in Svalbard,
the glacier snout has retreated considerably in response to a
warming of mean annual temperatures (Lefauconnier et al.,
1999). This retreat continues to the present day (Fleming
et al., 1997; Moreau et al., 2008). The regional climate
is predominantly influenced by the North Atlantic Current,
resulting in a maritime Polar climate that is uncharacteristically
mild for the region. The Midtre Lovénbreen catchment falls
within the tundra zone in Svalbard, amid the areas that are
the richest in fauna and flora. The glacier forefield zone,
however, is extremely sparsely vegetated, mostly consisting of
lichens, Dryas octopetala and Saxifraga oppositifolia in micro-
local habitats in soil that has been exposed for roughly
100 years (Moreau et al., 2008). Nearby cliffs are heavily
populated with nesting birds, and the tundra is frequented
by mammals including the Svalbard reindeer, the Arctic fox
and the polar bear. Snow-cover persists over winter (typically
from October until June), containing biologically significant
concentrations of nutrients and organic material (Larose et al.,
2013a,b).

The SHIMMER Model
The numerical model SHIMMER (Bradley et al., 2015) is a
novel microbial-biogeochemical model designed to simulate
the initial stages of microbial community establishment during
soil development in glacier forefields. SHIMMER has been
previously developed and successfully used to quantify microbial
and nutrient dynamics in a number of contrasting forefields
in Switzerland, Canada, and Svalbard (Bradley et al., 2015,
2016b). It thus represents an ideal tool to quantitatively explore
the potential response of these systems to projected climate
change. The model is zero-dimensional and explicitly resolves
the evolving dynamics of microbial biomass, labile and refractory
organic substrate (S1 and S2 respectively), dissolved inorganic
nitrogen (DIN) and dissolved inorganic phosphorus (DIP) along
a chronosequence (Table S1). Microbes are categorized according
to function: autotrophs (A1−3) and heterotrophs (H1−3) are
further subdivided into glacial microbes (A1 and H1), soil
microbes (A2 andH2) and nitrogen-fixingmicrobes (A3 andH3).
Transformations in substrate and nutrients due to autotrophic
and heterotrophic production and respiration, microbial growth,
death and predation, exopolymetric-substance (EPS) production,
and nitrogen fixation are also explicitly resolved (Figure 1).
The following external forcings drive and regulate the model
dynamics: (1) PAR (wavelength of approximately 400–700 nm)
(W m−2), (2) snow depth (m), (3) soil temperature (◦C), and
(4) allochthonous inputs of organic material, DIN and DIP
(provided in µg g−1 d−1). The Supplementary Information
contains a detailed description of the model set-up used in
this study, including a list of initial conditions (Table S1) and
parameter values (Table S2).

Model Scenarios
Here, we used SHIMMER to quantitatively explore the response
of the Midtre Lovénbreen glacier forefield to a number of
different climate scenarios, described in detail below. A baseline
scenario (“BASE”) and five future climate change scenarios
were designed to explore the response of microbial and
biogeochemical dynamics to projected changes in the physical
environment (“TEMP” and “TEMP&SNOW”), perturbations of
external carbon and nitrogen inputs (“NITRO” and “SUBS”),
as well as a combined scenario (“COMB”). This approach
allows exploration into the individual effects of climate change
driven variations in external forcings, as well as to assess the
potential combined effects of these climate-driven variations on
the forefield dynamics. Simulated future climate scenarios are
described and evaluated as stand-alone simulations, or relative
to the control model simulation run with baseline forcings.

“BASE” Scenario: Baseline Forcings
The baseline simulation was set up exactly as the optimized
model simulation presented in Bradley et al. (2016b). Briefly,
meteorological forcings were constrained by daily observations
for the entire year 2013 and remained unchanged for the duration
of the model run (Figure 2). Averaged daily soil temperature
(at 1 cm depth) and PAR for 2013 were provided by the Alfred
Wegener Institute for Polar andMarine Research (AWI) from the
permafrost observatory near Ny-Ålesund, Svalbard, and the AWI
meteorological station near Ny-Ålesund, Svalbard, respectively.
Averaged daily snow depth for 2009–2013 is provided by the
Norwegian Meteorological Institute (eKlima). The presence of
snow on the ground attenuates sunlight and inhibits PAR
from reaching the soil surface. This was accounted for in pre-
processing of forcing data. Light attenuation was estimated
according to the equation:

n = n0e
−mx (1)

Whereby n is the irradiance (W m−2), x is the snow depth
(m) and m is the extinction coefficient for snow (Greenfell and
Maykut, 1977; Bradley et al., 2015). Due to its high latitude, the
study site experiences continual daylight for much of the summer
and continual darkness for much of the winter. Forcing data
was provided as daily averages, and linear interpolation was used
between any (very infrequent) missing data points. Averaged
daily allochthonous nutrients and carbon inputs were estimated
based on the best available budget estimates of catchment
hydrology and nutrients for Midtre Lovénbreen presented in
Hodson et al. (2005), described and used in Bradley et al. (2016b)
and also summarized in the Supplementary Information (Tables
S3, S4).

“TEMP” Scenario: Increased Soil Temperature
Climate change is amplified in the Arctic region, and as such
Svalbard is particularly susceptible to climate warming due
to its northerly latitude and its geographical location at the
northernmost reach of the North Atlantic Current (Overland
et al., 2014). Air temperature warming at Kongsfjorden, the site
of the Midtre Lovénbreen glacier, has occurred in the last two
decades and is expected to continue with present emissions rates
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FIGURE 1 | A conceptual model showing the components and transfers of SHIMMER. State variables are indicated with shading. Image reproduced from

Bradley et al. (2015).

(Maturilli et al., 2015). A very strong winter warming trend has
been identified alongside positive linear temperature trends for
spring, summer, and autumn (Forland et al., 2011). Therefore,
TEMP explores the effect of increasing soil temperatures on
the microbial and biogeochemical dynamics in the forefield.
For TEMP, we used predicted monthly surface air temperature
anomalies from the year 2000 to 2100 (relative to the 1981–
2005 period mean) based on climate model predictions for the
Arctic region (60–90◦N) presented in Overland et al. (2014)
(Table 1). Two end-member IPCC Representative Concentration
Pathways (RCPs) that cover the entire range of potential
warming are investigated: (1) the RCP 4.5 scenario (“mitigation”
scenario) whereby CO2 emissions increase only slightly before
decline commences around 2040; and (2) RCP 8.5 scenario
(“business-as-usual”/“extreme” scenario), the most extreme
climate scenario whereby emissions are projected to increase and
CO2 concentration is projected to rise above 1,370 ppm by 2100
(Moss et al., 2010). Predicted surface air temperature warming
was taken specifically from the Svalbard region in climate model
predictions (Overland et al., 2014). We assumed that surface air
temperature warming equated directly to an equal increase in
soil temperature whenever there is an absence of snow cover
(<1 cm). The changes (compared to the baseline scenario) to soil
temperature (scenario RCP 8.5), snow depth and PAR after 100
years are illustrated in Figure 2.

“TEMP&SNOW” Scenario: Increased Soil

Temperature and Earlier Spring Snow Melt
Observations indicate that there has been a persistent increase in
the duration of snow-free conditions across Eurasia and North
America for the past three decades, at a rate of 5 to 6 days per
decade (Anisimov et al., 2007). TEMP&SNOW thus explores

the combined effect of increasing soil temperatures and earlier
spring melt on the microbial and biogeochemical dynamics in
the forefield. For TEMP&SNOW (RCP 4.5 and RCP 8.5), we
prescribed an earlier spring snow melt rate of 1 day every 2
years to reflect observations (Anisimov et al., 2007), alongside
soil temperature increases based on the (1) RCP 4.5 and (2) RCP
8.5 pathways explored in TEMP. For new snow-free days, soil
temperature was set to the projected air temperature (based on
RCP 4.5 and RCP 8.5). PAR attenuation was re-calculated for
every simulated day to account for the new snow depth. The
changes after 100 years (compared to the baseline scenario) are
illustrated in Figure 2.

“NITRO” Scenario: Increased DIN Input
In recent decades, human activity has profoundly changed the
biogeochemical cycling of reactive nitrogen in Arctic regions
(Roberts et al., 2010). NO and NO2 are released predominantly
by burning fossil fuels (90%) and application of fertilizer (10%)
(Geng et al., 2014). Enhanced winter transport of polluted air
from both Europe and Russia has led to increased nitrogen
deposition in the Arctic (Eneroth et al., 2003). Although a
number of studies have attempted to assess the effect of increased
nitrogen deposition on carbon cycling at both the regional
as well as global scales (Holland et al., 1997; Nadelhoffer
et al., 1999; Zaehle and Friend, 2010; Mahowald, 2011), no
estimates of future deposition fluxes to the Artic, let alone their
implications for Arctic carbon and nutrient cycling, currently
exist. Local anthropogenic inputs of nitrogen to the biosphere
can lead to changes in the productivity of nitrogen deficient
ecosystems, that directly impact carbon uptake rates (Galloway
et al., 2008). Evidence for anthropogenic nitrogen inputs to
cryospheric ecosystems include northern hemisphere ice core
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FIGURE 2 | Baseline and manipulated meteorological forcings at

Midtre Lovénbreen glacier forefield. (A) Soil temperature, (B) snow depth,

and (C) PAR. Baseline forcings are indicated in black. Forcings for TEMP (RCP

8.5) (orange) and TEMPandSNOW (RCP 8.5) (red) are shown for year 100.

records (Goto-Azuma and Koerner, 2001; Isaksson et al., 2003;
Hastings et al., 2009), Svalbard lake sediments (Birks et al.,
2004), and field-based snowpack measurements and modeling
(Bjorkman et al., 2013; Kuhnel et al., 2013). Differences in the
magnitude and timing of periodic increases in nitrate deposition
in the Arctic can be attributed to different source regions and
pathways of pollutants (Goto-Azuma and Koerner, 2001; Geng
et al., 2014). However, there is considerable uncertainty in
predicting the magnitude of future reactive nitrogen deposition.
Ice core analyses from the Greenland Summit station has shown

TABLE 1 | Prescribed soil temperature increases for RCP 4.5 and 8.5 (from

Overland et al., 2014).

Month Temperature increase (◦C year−1)

RCP 4.5 RCP 8.5

January 0.051 0.114

February 0.042 0.103

March 0.037 0.084

April 0.028 0.065

May 0.019 0.047

June 0.019 0.042

July 0.019 0.047

August 0.028 0.056

September 0.037 0.075

October 0.056 0.093

November 0.065 0.121

December 0.065 0.131

a doubling of NO−

3 concentrations in the last century, and a
negative 15N stable isotope excursion suggesting this increase
is associated with anthropogenic sources (Geng et al., 2014).
Furthermore, climatological data from Svalbard has shown that
strong depositional events sometimes lead to reactive nitrogen
deposition fluxes up to 3 times higher than the annual mean
deposition flux (Kuhnel et al., 2013). However, in recent decades
(since ∼1970), nitrate deposition in the Arctic has stabilized due
toNorth American air pollutionmitigation strategies (Geng et al.,
2014). However, despite recent mitigation policies, increased
shipping in the Arctic due to sea-ice decline may further increase
local reactive nitrogen inputs (Peters et al., 2011; Eckhardt
et al., 2013). Therefore, overall trends of reactive deposition are
uncertain, resulting from the interplay of emissions, atmospheric
transport, chemistry, precipitation, and snowpack processes
(Kuhnel et al., 2011). The NITRO simulation is thus designed
to explore the effect of increased DIN input on the microbial
and biogeochemical dynamics of the forefield. To account for
the possible future range of DIN deposition in the Arctic due to
anthropogenic factors, we carry out multiple simulations from
1.0 (BASE) to 4.0 times (extreme) nominal deposition flux.
This range encapsulates the variability from observations from
both ice core records (up to 2 times) (Geng et al., 2014) and
climatological data (up to 3 times) (Kuhnel et al., 2011) and for
the possible occurrence of “extreme” (up to 4 times) nitrogen
deposition events in the future.

“SUBS” Scenario: Increased Input of Organic

Substrate
Forefield soils accumulate organic carbon from autochthonous
production, allochthonous deposition, and ancient sources that
are mobilized during glacier retreat (Schulz et al., 2013).
Similarly, glacier surfaces accumulate organic carbon from
biological activity (e.g., in situ primary production) and the
deposition of allochthonous organic material from terrestrial
or anthropogenic sources (Hood and Berner, 2009; Singer
et al., 2012; Stibal et al., 2012). It has been suggested that the
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allochthonous flux of organic carbon to glacier forefields could
increase over the next two centuries due to (1) increased glacier
runoff and thus increased flux of organic carbon from glacier
surfaces to the pro-glacial zone (Foreman et al., 2007; Hood
et al., 2015), (2) a longer residence time of liquid water in the
glacial snowpack supporting higher growth and carbon fixation
rates of snow algae (Morgan-Kiss et al., 2006; Stibal et al., 2007;
Takeuchi et al., 2009; Lutz et al., 2015), (3) the invasion of
non-native birds and mammals (Jonsdottir, 2005; Kelly et al.,
2010; Miller and Ruiz, 2014; Ware et al., 2014), (4) the invasion
of new plant species as human activity and tourism increases
(Ware et al., 2014), and (5) an enhanced input of feces-derived
organic material to soils from increasing populations of Barnacle
Geese, Reindeer herds and other biota in Svalbard in response
to climate warming (Michelutti et al., 2009; Moe et al., 2009;
Luoto et al., 2015). However, there is considerable uncertainty
in predicting the magnitude of future substrate deposition and,
to our knowledge, no studies have made direct predictions based
on estimations or empirical data. Therefore, we have simulated a
range of possible future scenarios from present day deposition
rates increasing up to 4 times present day for the following
reasons: (1) the chosen range encapsulates a substantial increase
in organicmatter deposition compared to the present day, and (2)
it is consistent with the range investigated for DIN deposition,
allowing for comparative sensitivity analysis between the two
forcing scenarios.

“COMB” Scenario: Warming, Snow Melt, and

Nitrogen and Substrate Deposition
COMB is based on a combination of all extreme scenarios to
explore the maximum effect of climate change on microbial
communities and biogeochemical dynamics in glacier forefield
soils. Thus, COMB assumes:

• Soil temperature prescribed according to RCP 8.5-based
predictions.

• Snow melting prescribed according to TEMP&SNOW.
• Allochthonous inputs of DIN and substrate prescribed to a

maximum of 4 times nominal values.

RESULTS AND DISCUSSION

Baseline Scenario: Microbial and
Biogeochemical Dynamics in the Midtre
Lovénbreen Forefield
Figure 3 summarizes the simulated evolution of microbial and
biogeochemical dynamics in the Midtre Lovénbreen forefield
over a period of 200 years. Simulation results show that, while
both autotrophic and heterotrophic biomass accumulated in the
forefield, the microbial community was dominated by autotrophs
(Figures 3A,B). The increase in biomass for all functional groups
was first characterized by a lag phase (years 0–40), due to
the slow accumulation of biomass from extremely low inocula
concentrations. This was followed by a rapid growth phase (years
40–80), with exponential growth in bacterial populations due to
increased biomass and nutrient availability. Finally, from year
80 onwards, microbial growth slowed down due to limiting

organic carbon availability in forefield soils, since soil organic
carbon stocks were mostly refractory (Figure 3C). During initial
soil development (20–50 years), nitrogen-fixers (A3 and H3)
experienced more rapid growth than other functional groups
because of their ability to overcome DIN-limitation by fixing
atmospheric nitrogen. All other functional groups (A1−2 and
H1−2) were co-limited by DIN and DIP and therefore their
biomass accumulated at a slower rate.

Carbon and nutrient dynamics were mainly controlled by
allochthonous inputs during the lag phase (0–40 years), whereas
microbial dynamics became the main control on carbon and
nutrient stocks during and after the rapid growth phase (40–
80 years). Refractory organic carbon (S2) accumulated over
the entire simulation period (Figure 3C), predominantly by
contributions from allochthonous deposition (>50%) in years
0–114, and necromass (>50%) from year 114 onwards. In
contrast, the concentration of labile substrate (S1) increased
slightly during the initial lag period (year 0–40), followed by a
depletion due to rapid heterotrophic growth during years 50–
100 (Figure 3C). Simulation results show that DIN and DIP
concentrations increased from trace quantities (<4 µg g−1 and
<2 µg g−1 respectively) to >157 µg g−1 and >201 µg g−1

respectively over two centuries. Figure 4A illustrates that the
observed increase in nitrogen concentrations was mainly driven
by allochthonous deposition (>50%) in young soils (years 0–
38), while internal recycling by heterotrophic activity increased
nitrogen stocks in older soils (contributing 90–95% in years 60–
200). Similarly, Figure 5A shows that allochthonous deposition
dominated DIP accumulation (up to 99%) from years 0–66,
while heterotrophic recycling contributed 48–58% of total DIP
input after year 66. Simulation results thus indicate that the
switch from an allochthonous-controlled system to a microbial-
controlled system was triggered by nutrient availability from
external sources, and further enhanced by nutrients that are
increasingly derived from heterotrophic remineralisation of
necromass-supplied organic matter (Figure 3C).

The glacier forefield was characterized by negative net
ecosystem production rates (NEP = total heterotrophic
respiration—total net autotrophic CO2 fixation) over the
entire simulation period (Figure 3D), despite high autotrophic
biomass. The magnitude of NEP was highly variable over the
simulated period. In the initial phase, low rates of autotrophic
and heterotrophic activity resulted in NEP close to zero.
Between years 60 and 90, an increase in heterotrophic growth
and degradation rates, supported mainly by initial stocks of
organic carbon and the accumulation of allochthonous labile
and refractory organic carbon, led to a decrease in NEP (<
−8 µg C g−1 y−1). Subsequently (years 110–200) NEP rates
stabilized at −4 µg C g−1 y−1 (± 1 µg C g−1 y−1) as bacterial
activity remained relatively constant. During this phase, nutrient
limitation was alleviated (due to the accumulation of recycled
DIN and DIP in the soil) and heterotrophic growth became
limited by available organic matter (Figure 3C). In a previous
study, measured heterotrophic growth efficiency for these soils
was extremely low (Bradley et al., 2016b) (Table S2). Thus,
the observed net heterotrophy and the associated net release
of CO2 to the atmosphere was mainly driven by substantial
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FIGURE 3 | Baseline simulation for Midtre Lovénbreen glacier forefield. Modeled (A) autotrophic biomass, (B) heterotrophic biomass, (C) carbon substrate

and nutrients and (D) net ecosystem production with nominal (baseline) forcings.

degradation of initial carbon stocks and was sustained by
allochthonous carbon inputs. Modeling therefore suggests
that heterotrophic processing of initial and allochthonous
inputs of organic substrate exert a major control on glacier
forefield biogeochemistry. Predicted carbon fluxes in the Midtre
Lovénbreen forefield are corroborated by data from the forefield
of the Damma Glacier (Switzerland). Evidence from the Damma
Glacier suggests high rates of CO2 efflux from soils, particularly
in the later stages of development (soil age>110 years) (Guelland
et al., 2013b), and also suggest that organic matter becomes
increasingly refractory in the later stages of development due
to continual re-working and cycling by microbial communities
(Goransson et al., 2011). However, empirical evidence from
Midtre Lovénbreen is currently lacking, and this should be a
particular focus of future experimental efforts. Heterotrophic
activity in glacier forefield soils is sensitive to environmental
conditions (Brankatschk et al., 2011; Goransson et al., 2011),
indicating that projected future changes in temperature, snow
cover and allochthonous inputs might have an important impact
on regional carbon and nutrient cycling. The following sections
explore the potential response of the Midtre Lovénbreen forefield
to such changes.

Effect of Projected Climate Change on
Microbial Dynamics in the Midtre
Lovénbreen Forefield
General Response
Figure 6 summarizes the simulated response (relative to the
baseline (BASE) scenario) of each individual functional group
to each tested scenario of environmental change. Simulation
results show that the entire forefield microbial community was
responsive to the environmental changes imposed in all future

climate scenarios investigated. Model results show a peak in
percentage biomass increase (relative to the baseline simulation)
for all functional groups in response to all climatological forcings
occurred between years 30 and 80, after which the percentage
biomass increase stabilized at lower values. The observed peaks
varied in height (abundance) and width (duration) depending
on the specific forcing investigated and the functional group
of interest, but in general they coincided with the exponential
(rapid) growth phase of bacteria (see Figure 3). In younger soils,
nutrient availability generally limited microbial growth (Bradley
et al., 2014, 2016b). Thus, alleviating growth limitations by
increasing allochthonous inputs or, to a lesser extent, improving
physical conditions, triggered a pronounced growth response.
Model results also show that generic soil autotrophs and
heterotrophs (A2 and H2 respectively) reacted more strongly to
an improvement in growth conditions than glacial bacteria (A1

and H1), which are better adapted to growing in oligotrophic low
nutrient conditions, and nitrogen fixers (A3 and H3), which can
source atmospheric nitrogen (N2) in place of DIN. In older soils
(year 80 onwards), bacterial abundance was high and the rate of
new biomass accumulation was relatively low. These older soils
generally contained nutrient concentrations well above limiting
concentrations (KN and KP, Table S2) resulting in a stabilization
of the system that approaches its ecological climax (although at
greater abundance than in the baseline simulation). Therefore,
in older forefield soils, the response of microbial biomass to
environmental perturbations was weaker than in younger soils.

Response to Increased Temperature and Decreased

Snow Cover (TEMP and TEMP&SNOW)
Warming promoted soil conditions that were more favorable
to autotrophic and heterotrophic growth. Similarly, earlier
snow melt allowed for a longer autotrophic growth season
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FIGURE 4 | DIN budget. Relative contribution of allochthonous deposition (black) and remineralisation of organic matter (gray) to the DIN pool over 200 years of soil

development for (A) BASE, (B) TEMP (RCP 8.5), (C) TEMPandSNOW (RCP 8.5), (D) NITRO (4.0), (E) SUBS (4.0), and (F) COMB (4.0).

due to increased exposure to PAR. Over century time-scales,
temperature and snow cover play an important role in microbial
community dynamics in glacier forefields. Model results show
that the response of autotrophs (A1−3) to modeled climatological
changes was stronger than the response of heterotrophs (H1−3)
(Figure 6), suggesting that the positive effect of temperature
increase and snow-free conditions on autotrophs did not linearly
translate to heterotrophs. This observation can be explained
by the reduced availability of labile organic carbon in these
simulations, which limited heterotrophic growth. The improved
thermal and light conditions induced a stronger long-term
response in autotrophic populations (in particular A2 and A3)

than any other single driver (red line, Figure 6). Furthermore,
the effects of temperature on biomass were enhanced with
“extreme” temperature warming (RCP 8.5, light blue line, up to
33.9% increase in total biomass) compared to the “mitigation”
climate scenario (RCP 4.5, yellow line, up to 25.0%). These
trends are supported by empirical observations from soil
manipulation experiments suggesting that a positive relationship
exists between temperature and observed growth of Arctic
and sub-Arctic microbial communities (Callaghan et al., 1999;
Yergeau et al., 2012; Sistla et al., 2013; van der Wal and Stien,
2014; Lau et al., 2015; Bradley et al., 2016b; Newsham et al.,
2016).
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FIGURE 5 | DIP budget. Relative contribution of allochthonous deposition (black) and remineralisation of organic matter (gray) to the DIP pool over 200 years of soil

development for (A) BASE, (B) TEMP (RCP 8.5), (C) TEMPandSNOW (RCP 8.5), (D) NITRO (4.0), (E) SUBS (4.0), and (F) COMB (4.0).

Response to Increased Nutrient and Organic Carbon

Inputs (NITRO and SUBS)
Model results show that microbial growth responded more
strongly to increases in allochthonous DIN (NITRO) and organic
carbon input (SUBS) than climatological changes (TEMP and
TEMP&SNOW), particularly in the very early stages of soil
development (0–50 years) (Figure 6). DIN deposition exerted
a greater effect on the non-nitrogen-fixing functional groups
(A1, A2, H1, H2) reducing the pressure of DIN-limitation in
young (0–50 year old) soils. Increased substrate input supported

higher heterotrophic (H1−3) (up to 111%) and to a lesser
extent autotrophic (A1−3) (up to 68%) biomass. Interestingly, the
increased carbon inputs (SUBS) also caused long term increases
in microbial biomass beyond the exponential growth phase, due
to the enhanced supply of labile substrate to the older soils
(100–200 years), which were typically depleted in labile organic
matter. However, simulation results show that increased organic
carbon and nutrient inputs did not trigger fundamental shifts
in system behavior over the explored range. Total (autotrophic
and heterotrophic) biomass responded linearly to increases
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FIGURE 6 | Biomass response to climatological forcings. Percentage change in microbial biomass (relative to nominal (BASE) simulation) for individual microbial

functional groups over 200 years of soil development. Simulations: TEMP (RCP 4.5) (yellow), TEMP (RCP 8.5) (light blue), TEMPandSNOW (RCP 4.5) (purple),

TEMPandSNOW (RCP 8.5) (red), NITRO (4.0) (dark blue), SUBS (4.0) (green), and COMB (black).

in DIN and organic carbon input (Figure S1, Supplementary
Information) and did not reveal tipping points, in contrast to
studies on soils in temperate and desert regions (Zhou et al., 2012;
Shcherbak et al., 2014; Scheer et al., 2016).

Response to Combined Changes (COMB)
In COMBwe demonstrated that the combined effect of warming,
snowmelt, and increased nitrogen and substrate input resulted
in the largest increase in total microbial biomass (up to 190%
relative to baseline forcings) throughout two centuries of soil
development compared to the effects of individual environmental
variations considered independently. Furthermore, the observed
peak response in biomass (Figure 6) occurred earlier than other
scenarios. Bacteria were rapidly alleviated of growth-limitations
by the additional organic substrate and nutrients. Thus, the
bacterial communities could respond quicker and more strongly
to more favorable thermal and light conditions as a result
of climate warming. Similarly, initial warming enabled soil
microbial communities to take advantage of favorable nutrient
and substrate concentrations.

Effect of Climate Change on Nutrient
Dynamics in the Midtre Lovénbreen
Forefield
Accumulating nutrients can be derived from allochthonous
sources, nitrogen fixation (for DIN) or the release of nutrients by
heterotrophic decomposition of organic matter. The deposition
of reactive nitrogen in snow is a major source of nitrogen in
Arctic regions (Hodson et al., 2005, 2010; Kuhnel et al., 2011;
Bjorkman et al., 2013). In addition, many studies on microbial
dynamics in glacier forefields also draw attention to microbially-
mediated nitrogen fixation as an important source of nitrogen to
glacier forefield soils (Deiglmayr et al., 2006; Duc et al., 2009a,b;
Brankatschk et al., 2011; Strauss et al., 2012; Ansari et al., 2013).
Figure 7 illustrates the change in soil DIN (A) and DIP (B) stocks
over 200 years of soil development for BASE, TEMP (RCP 8.5),
TEMP&SNOW (RCP 8.5), NITRO (4.0), SUBS (4.0), and COMB.
Additionally, Figures 4, 5 show the relative contributions to soil
DIN and DIP from allochthonous sources and organic carbon
remineralisation, thus enabling separation of these two factors
commonly observed only as a net outcome.
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FIGURE 7 | Soil DIN and DIP response to climatological forcings. Response of soil (A) DIN and (B) DIP stocks to climatological forcings simulated in: BASE

(solid black), TEMP (RCP 8.5) (light blue), TEMPandSNOW (RCP 8.5) (red), NITRO (4.0) (dark blue), SUBS (4.0) (green), and COMB (dashed black).

General Response
In all simulations, DIN and DIP accumulated from trace
concentrations (< 4 µg g−1) to >150 µg g−1 over two centuries
of soil development. In general, DIN and DIP fluxes were affected
by all climate scenarios, but in particular, the greatest response
was to organic carbon deposition, and the combination of all
future changes (Figure 7). All climatological scenarios enhanced
nutrient release by heterotrophic remineralisation of organic
carbon. In TEMP and TEMP&SNOW, however, nutrient uptake
was also enhanced, causing aminor depletion of nutrients relative
to BASE, whereas in NITRO, SUBS, and COMB, enhanced
organic matter remineralisation caused net accumulation of
DIN and DIP. Based on the predicted growth of nitrogen-
fixing autotrophs (A3) and heterotrophs (H3), modeling results
suggest that nitrogen fixation contributed up to 0.03 µg N g−1

y−1 in intermediate and older soils (years 80–200). Nitrogen
derived from nitrogen fixation is incorporated directly into
biomass rather than soil DIN, however total nitrogen derived
from nitrogen fixation would amount to only 2–4% of that
from remineralisation. The effect of climatic and anthropogenic
forcings explored in all future climate scenarios on the total
nitrogen fixation was negligible (data not shown).

Response to Increased Temperature and Decreased

Snow Cover (TEMP and TEMP&SNOW)
Model results show that the contribution of organic carbon
remineralisation to soil DIN and DIP increased in response
to increased thermal and light conditions (TEMP and

TEMP&SNOW) (Figures 4, 5). Heterotrophy is crucial to
nutrient dynamics in glacier forefields, due to its role in the
degradation of organic carbon into inorganic nutrients (Ingham
et al., 1985). Under nominal conditions (BASE), DIN and
DIP budgets were dominated by remineralisation rather than
allochthonous deposition (>50% contribution) after 40 and 68
years of exposure respectively (see Figures 4A, 5A). In response
to warming and earlier snowmelt (TEMP and TEMP&SNOW,
RCP 8.5), the >50% threshold was reached 4 to 7 years earlier.
Despite increased nutrient remineralisation, total nutrient stocks
declined relative to BASE (Figure 7) due to enhanced bacterial
growth. This is illustrated in Figure 6 whereby climatological
changes caused more favorable growth conditions which
enhanced bacterial production (Figure 6). Thus, although
organic carbon degradation and nutrient cycling was enhanced,
the growth of biomass was, overall, the dominant control on
nutrient budgets.

Response to Nutrient and Organic Carbon Inputs

(NITRO and SUBS)
Model results show that increased allochthonous DIN deposition
caused total soil DIN to increase (Figure 7). Predictably, the
prescribed increased in external DIN in NITRO caused an
increase in the proportion of DIN derived from allochthonous
sources (black, Figure 4D) throughout the entire simulation,
by ∼1–15% compared to BASE. Further, the increased
DIN deposition exerted a negligible effect on DIP budgets
(Figure 5D), since the impact of DIN deposition on TOC
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decomposition, and thus DIP from remineralisation, was
minimal (maximum relative change of−2%).

Model results show that the future delivery of allochthonous
organic carbon to forefield soils may exert an important control
on soil nutrient dynamics. Additional substrate [SUBS (4.0)]
had the most pronounced effect on soil DIN and DIP stocks
(Figure 7) for any single climatological forcing prescribed to
the model, causing a maximum increase of 131% and 61%
(respectively) relative to baseline forcings (BASE). Enhanced
heterotrophic remineralisation of organic carbon substantially
increased the relative contribution of nutrients derived from
remineralisation (indicated in gray) to both the DIN pool
(Figure 4E) and the DIP pool (Figure 5E). Consequently, this
further stimulated the growth of all microbial groups (A1−3 and
H1−3) (green line, Figure 6). The abundance and bioavailability
of phosphorus in glacier forefield soils has been causally linked
to mineralogy, and particularly weathering of mineral surfaces
(Anderson et al., 1997, 2000; Sattin et al., 2009; Prietzel et al.,
2013). Here, we show through modeling, that the heterotrophic
degradation of organic matter represents a major, potentially
under-appreciated, process for sustaining sources of available
nutrients to microbial communities in glacier forefield soils,
particularly if organic carbon input to Arctic glacier forefields
is enhanced in the future. The clear response of microbial
growth to enhanced DIN and organic substrate deposition
(NITRO and SUBS, Figure 6) is generally in line with the current
perception of glacier forefields as nutrient-starved environments,
and reinforces our result that nutrient availability is a major
limiting factor on rates of bacterial growth and production
(Jonsdottir et al., 1995; Duc et al., 2009b; Brankatschk et al., 2011;
Schulz et al., 2013; Bradley et al., 2014).

Response to Combined Changes (COMB)
Model results suggested that when all climatological forcings
were combined, total DIN and DIP stocks increased (Figure 7)
and the contribution of remineralisation to DIN and DIP were
elevated in comparison to the baseline forcings (Figures 4F,
5F). Despite the direct addition of DIN to soils from the
COMB scenario, the effect of enhanced DIN delivery from
remineralisation outweighed allochthonous DIN input. Warmer
soils and increased exposure to PAR created more favorable
conditions for bacterial growth. With strong allochthonous
deposition of DIN and organic carbon, the limitations on
microbial growth imposed by the availability of nutrients and
labile substrate were alleviated in younger soils, and thus bacterial
communities were able to respond more rapidly to the favorable
thermal and light conditions created by climate change. Thus,
heterotrophs grew rapidly (Figure 6) and nutrients were liberated
from organic carbon at a much greater rate (Figures 4F, 5F)
causing their net accumulation in soils (Figure 7).

Effect of Climatic Change on Carbon
Dynamics and Net Ecosystem Production
(NEP) in the Midtre Lovénbreen Forefield
Figure 8 summarizes the response of the total soil TOC pool
(S1+S2) to the BASE, TEMP (RCP 2.5 and 8.5), TEMP&SNOW
(RCP 2.5 and 8.5), NITRO (1.2 to 4.0), SUBS (1.2 to 4.0) and

COMB scenarios. In addition, the seasonal evolution of daily-
integrated TOC production and consumption processes over
year 200 is also shown in Figure 9 for the above-mentioned
climate change scenarios to illustrate the variability of process
rates. Net ecosystem production over 200 years of exposure is
provided in Table 2.

General Response
Microbial dynamics exert an important control on carbon cycling
and soil TOC content in glacier forefields (Guelland et al.,
2013a,b; Schulz et al., 2013). Overall, the simulated response
of glacier forefield soils to future climate change scenarios
reinforce these observations. In contrast to the responses of soil
nitrogen and phosphorous stocks, the responses of TOC stocks
to the five climate and anthropogenic change scenarios were
qualitatively and quantitatively different. Nitrogen deposition
exerted a minimal effect on forefield TOC stocks, while climate
change (TEMP and TEMP&SNOW) and, in particular, organic
carbon deposition and the combined scenario (COMB) triggered
a more pronounced response (Figure 8). As discussed earlier,
forefield organic carbon dynamics are controlled by the balance
between organic carbon inputs by microbial necromass, as
well as allochthonous sources, and the consumption of organic
carbon by heterotrophic degradation and respiration. Simulation
results show that rates of organic carbon consumption and
production were characterized by a strong seasonal variability,
with higher process rates in summer and lower rates during
the winter months (Figure 9) resulting in a net accumulation
of TOC during summer (May-October) and a consumption of
TOC stocks during the rest of the year in all scenarios. The
relative significance of organic carbon inputs through necromass
(light blue line, Figure 9) or allochthonous material (yellow
line, Figure 9) was roughly equal in BASE and NITRO (4.0).
However, in TEMP (RCP 8.5), TEMP&SNOW (RCP 8.5) and
COMB, organic carbon inputs were dominated by necromass,
while organic carbon inputs were dominated by external
(allochthonous) deposition in the SUBS (4.0) scenario. Yet, the
forefield soil was net heterotrophic (NEP < 0; heterotrophic
respiration > autotrophic fixation) for all scenarios during all
stages of soil development (Table 2), thus, emphasizing the
importance of allochthonous organic carbon inputs on forefield
ecosystem dynamics.

Response to Increased Temperature and Decreased

Snow Cover (TEMP and TEMP&SNOW)
Heterotrophic respiration and growth rates, as well as the input
of necromass, increased by a factor of eight in response to the
temperature increase (TEMP RCP 8.5, Figure 9B). In addition,
the earlier snowmelt allowed an earlier onset of microbial activity
(mid-April compared to mid-June) (TEMP&SNOW RCP 8.5,
Figure 9C). Simulation results indicate that soil warming and
earlier onset of spring snow melt (TEMP and TEMP&SNOW)
initially resulted in a slight depletion of soil organic carbon
(relative to BASE) (Figure 8A), due to the increased consumption
of labile substrate by enhanced heterotrophic degradation rates.
However, on long time scales (>100 years), enhanced autotrophic
growth and the associated increase in necromass (Figures 9B,C)
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FIGURE 8 | TOC response to climatological forcings. Modeled total organic carbon (TOC) over 200 years for (A) BASE, TEMP, and TEMPandSNOW, (B) NITRO

(1.2-4.0), (C) SUBS (1.2-4.0), and (D) COMB.

supported the accumulation of refractory organic carbon in
the forefield (Figure 9A). In the most extreme warming and
snowmelt scenarios, the long-term accumulation of refractory
organic carbon resulted in a 24% increase in soil TOC compared
to baseline values (red line, Figure 8). Enhanced autotrophic

growth (Figure 6) also increased NEP by 10.3% and 24.0% for
TEMP (RCP 8.5) and TEMP&SNOW (RCP 8.5) respectively
(Table 2). The positive response of autotrophic growth to
warming thus theoretically renders a negative feedback possible,
whereby CO2-induced Arctic warming and snowmelt over large
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FIGURE 9 | Carbon fluxes in response to climatological forcings. Illustration of daily carbon fluxes in soil after 200 years of development, for simulations: (A)

BASE, (B) TEMP (RCP 8.5), (C) TEMPandSNOW (RCP 8.5), (D) NITRO (4.0), (E) SUBS (4.0), and (F) COMB. Microbial necromass (light blue), exudates (purple) and

allochthonous sources (yellow) contribute to the substrate pool (black), and heterotrophic growth (dark red) and respiration (dark blue) deplete it.

areas could enhance CO2 fixation from the atmosphere by
autotrophic activity. Simulation results suggest that this effect
may be sustained in the later stages of soil development where
biomass is greater, and where plants may become established.
However, even under the extreme warming scenario simulated
here the forefield remained net heterotrophic (NEP < 0).

Response to Nutrient and Organic Carbon Inputs

(NITRO and SUBS)
Enhanced deposition of DIN (NITRO) alleviated nutrient
limitation, resulting in a depletion of TOC relative to the baseline

scenario (years 50–200), due to the enhanced degradation of
labile organic matter by heterotrophic activity (Figure 6). In
general, however, the impact of enhanced DIN deposition on soil
TOC dynamics was minimal, and resulted in relative reduction of
−2% in TOC stocks (from 4 times DIN deposition) (Figure 8B).
Moreover, the most extreme DIN deposition scenario [NITRO
(4.0)] simultaneously enhanced both autotrophy (CO2 fixation)
and heterotrophy (CO2 production), and thus exerted a
negligible effect on NEP over 200 years (−2%) compared to
other climate change scenarios (TEMP, TEMP&SNOW, and
SUBS).
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TABLE 2 | Net ecosystem production over 200 years of exposure.

Simulation Net ecosystem production (µg C g−1)

BASE −823

TEMP (RCP 4.5) −797

TEMP (RCP 8.5) −739

TEMP&SNOW (RCP 4.5) −719

TEMP&SNOW (RCP 8.5) −626

NITRO (4.0) −842

SUBS (4.0) −2310

COMB −2195

Conversely, allochthonous inputs of organic carbon were an
important factor in sustainingmicrobial growth in newly exposed
glacier forefields by exerting a strong influence on forefield
TOC stocks (Figure 8C). By integrating daily carbon fluxes over
the 200-year simulation period, model predictions suggest that
under extreme substrate input fluxes [SUBS (4.0)], allochthonous
deposition contributed roughly 3 times more organic carbon
(3.34mg C g−1) than microbial necromass (1.08mg C g−1).
Yet, despite high substrate input (total = 4.42mg C g−1),
soil TOC stocks increased by only 1.07mg C g−1, suggesting
that most of the organic substrate delivered to the TOC pool
(>75%) was rapidly utilized by heterotrophic activity. This
caused a considerable decrease to NEP relative to the BASE
scenario (−180.5%, Table 2). Overall, these findings reinforce
previous experimental evidence suggesting that labile organic
carbon is a limiting factor on bacterial activity in established
glacier forefield soils (Goransson et al., 2011; Bradley et al.,
2016b). Therefore, accurately predicting the likely magnitude of
future organic carbon input to Arctic glacier forefields deserves
attention.

Response to Combined Changes (COMB)
TOC accumulation in COMB mirrored high rates of TOC
accumulation in SUBS (4.0) until the rapid growth phase
(Figure 8D), upon which more favorable temperature
and nutrient conditions enabled enhanced heterotrophic
degradation, and TOC stocks declined moderately. The
simulated carbon fluxes driven by COMB closely resembled
TEMP&SNOW (RCP 8.5) (i.e., the period of increased microbial
activity was extended earlier into the spring), but the overall
magnitude of fluxes were substantially larger (Figure 9F). This
resulted from increased biological activity due to the increased
availability of organic carbon, aligning with the higher microbial
abundance discussed earlier. Increased delivery of necromass
contributed to the soil TOC pool (Figure 9F). Favorable
conditions for phototrophic growth caused fixation of CO2

such that total NEP for COMB (−2195 µg C g−1) was higher
than when considering deposition of organic carbon [SUBS
(4.0)] alone (−2310 µg C g−1) (Table 2). Overall, NEP was still
substantially lower than the BASE simulation (−823 µg C g−1),
emphasizing the potential susceptibility of soil-atmosphere CO2

exchange to future climate change (Billings, 1987; Oechel et al.,
1993, 2000; Goulden et al., 1998).

CONCLUSIONS AND OUTLOOK

Arctic ecosystems are generally adapted to low availability of
nutrients and relatively extreme changes in climate (Jonsdottir
et al., 1995; Jonsdottir, 2005). We have shown that the
anthropogenically driven emission of pollutants (including
reactive nitrogen) and greenhouse gasses and its cascading
effects on the Arctic environment (such as increases in soil
temperature, the length of the melting season, and the availability
of carbon and nutrients), has the potential to considerably impact
the functioning of a basic soil microbial community in the
initial stages of soil development in the present day and for
centuries into the future. This is important in the context of
increased glacier retreat and soil formation over large expanses
of presently ice-covered regions. Our results thus demonstrate
that future attempts to characterize soil development in
glacier forefields must also consider changes to environmental,
climatic and anthropogenic drivers. We have made important
initial approximations of the sensitivity of microbiological and
biogeochemical processes in forefield soils to future climate
change by addressing the simulated responses to changes in
temperature, snow cover and nutrient input. However, these
initial approximations require further testing with in situ field-
based experiments. The results of ecological models critically
depend on the model used (Jackson et al., 2000; Meile and
Jones, 2016). Although, SHIMMER has been carefully calibrated
and tested based on field data from the Midtre Lovénbreen
forefield (Bradley et al., 2016b) and thus is the most appropriate
tool for the present study, further empirical measurements and
experiments simulating soil warming and nutrient deposition
may validate these predictions and strengthen the conclusions
drawn here.

Critically, future studies must identify the role of nutrient
availability on fungi and plant colonization (Insam and
Haselwandter, 1989; Bernasconi et al., 2011; Knelman et al.,
2012; Zumsteg et al., 2012; Schulz et al., 2013; Brown and
Jumpponen, 2014). The SHIMMER model does not include
a vegetation component and is thus not able to account for
the effect of plants (Bradley et al., 2015). Whereas Alpine
glacier forefields are usually abundant with vascular vegetation
soon after ice retreat (Miniaci et al., 2007; Bernasconi et al.,
2011), the initial young stages of the Midtre Lovénbreen
forefield soils are characterized by almost a complete absence
of plants. The Midtre Lovénbreen forefield is thus an ideal
system to study the interactions between microbes and rock
during soil formation. This forefield is also representative of
a major Polar ecosystem, since most of the non-ice-covered
surface land area of Antarctica and the high Arctic have
very little plant coverage (Vanderpuye et al., 2002; Okuda
et al., 2007, 2011; Birks, 2008). Plant colonization is likely
to heavily re-structure the microbial community (Brown and
Jumpponen, 2014), and the physical properties of the soil,
including water retention, ultraviolet exposure, temperature
fluctuations (Ensign et al., 2006; King et al., 2008) and nutrient
status (Kastovska et al., 2005; Schutte et al., 2009). For
example, Duc et al. (2009b) compared rhizosphere and bulk
soils in the Damma Glacier, and found substantially higher
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total organic carbon concentrations in soils sampled in close
proximity to plants. Thus, if plants were to become established
within the simulated period, the results may be somewhat
different. Although, the forcings investigated in the model caused
increasing efflux of CO2, the accelerated remineralisation and
release of nutrients created favorable conditions for plants,
which may encourage growth (Insam and Haselwandter, 1989;
Bernasconi et al., 2011; Brown and Jumpponen, 2014). Plants
may then cause a reduction in net soil CO2 efflux by enhancing
primary productivity (D’Amico et al., 2014), but may also
generate more litter to fuel heterotrophy (Guelland et al.,
2013a).

Our model analyses robustly indicate that microbial
activity, nutrient cycling, and carbon cycling in the Midtre
Lovénbreen forefield can respond strongly to future climate and
anthropogenic impacts. Our simulations suggest that:

• Climate and anthropogenic changes generally enhance
bacterial production and increase soil carbon and nutrient
stocks. The strength of this response is highly variable between
simulations.

• Nutrient availability is a major limiting factor for microbial
activity in recently exposed soils and thus exerts a major
control on the ability of forefield microbial communities to
respond to climate change.

• Pioneer communities are most susceptible to climatological
changes.

• Microbial and thus biogeochemical dynamics are mainly
controlled by allochthonous nutrient inputs in younger
soils. In developed soils, the heterotrophic recycling of
allochthonous organic carbon and, to a lesser extent,
necromass, causes sufficient nutrient accumulation over the
course of a century of soil development to alleviate the
dependence on allochthonous nutrient inputs.

• Climatological forcings encourage a more rapid switch
between allochthonously-dominated processes in young soils
to microbially-dominated processes in older soils.

• Factors that enhance heterotrophic activity, such as favorable
temperatures and increased organic substrate, contribute
additional nutrients via remineralization, which may facilitate
earlier colonization by fungi and plants.

• The Midtre Lovénbreen forefield is net heterotrophic (NEP <

0) for the length of the simulated period and all climate change

scenarios. However, warming and reduced snow cover lower
the net heterotrophy, while the increase in allochthonous
inputs generally increase net heterotrophy.

• The Midtre Lovénbreen forefield is resilient to tipping points,
in that, even with a combination of the most extreme
climatological and anthropogenic changes, soil microbiology
and biogeochemistry responded with an amplification of the
baseline dynamics, rather than major fundamental shifts.
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	Effect of Projected Climate Change on Microbial Dynamics in the Midtre Lovénbreen Forefield
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