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Abstract

In this Thesis, we propose to analyze three different aspects of Fundamental
Physics.

The first part is devoted to the detailed study of what is called unconventional
supersymmetry in three and four dimensions for Abelian and non-Abelian
internal groups. We show the dynamical content of the odd-dimensional
theory, counting at the same time the local degrees of freedom for some
particular sectors of the phase space. In the non-Abelian three-dimensional
case, some black hole solutions are presented, including their Killing spinors.
In four dimensions, the supersymmetry is broken explicitly and a standard
Dirac Lagrangian coupled with the electromagnetic field and the background
geometry is obtained.

In the second part, the dynamical content for the free and gauge coupled
massless Rarita-Schwinger theory is presented. We are able to do that through
the Dirac’s Hamiltonian formalism and the Faddeev-Jackiw method, showing
at the same time the symmetries of the theory. It is shown that in the gauge
extended theory, which includes extra fermionic fields to restore the fermionic
symmetries of the free case, the anticommutator of the Rarita-Schwinger
field in the canonical quantization is not positive definite in general.

As the graphene has been proposed as an on “table-top laboratory” for some
Quantum Gravity scenarios, in the third part of this Thesis we clarify some
subtle features of strained graphene in order to manage properly this material.
We show particularly that the pseudo-magnetic field induced by the in-plane
strain tensor field cannot emerge from a Quantum Field Theory in curved
spacetime approach (bottom-up approach) but from the detailed analysis of
the tight-binding Hamiltonian of π electrons in graphene (top-down approach)
instead.
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Resumé

Dans cette Thèse, nous nous proposons d’analyser trois aspects différents de
la Physique Fondamentale.

La première partie est consacrée à l’étude détaillée de ce qu’on appelle super-
symétrie non conventionnelle à trois et quatre dimensions pour des groupes
internes abéliens et non abéliens. Nous montrons le contenu dynamique de
la théorie de la dimension impaire, comptant en même temps les degrés
de liberté locaux pour certains secteurs particuliers de l’espace des phases.
Dans le cas tridimensionnel non-abélien, certaines solutions de trous noirs
sont présentées, y compris leurs spinors de Killing. En quatre dimensions, la
supersymétrie est brisée explicitement et un Lagrangien de Dirac standard
couplé à l’électromagnétisme et à la géométrie d’arriére-plan est obtenu.

Dans la deuxième partie, le contenu dynamique de la théorie de Rarita-
Schwinger libre et couplée à un champ de jauge sans masse est présenté.
Nous sommes en mesure de le faire par le formalisme Hamiltonien de Dirac
et la méthode dite de Faddeev-Jackiw, en montrant en même temps les
symétries de la théorie. Il est démontré que dans la théorie étendue de
jauge, qui comprend des champs fermioniques supplémentaires pour restaurer
les symétries fermioniques du cas libre, l’anticommutator du champ Rarita-
Schwinger dans la quantification canonique n’est pas définiti positif en général.

Comme le graphène a été proposé comme un “laboratoire de table” pour
certains scénarios de gravité quantique, dans la troisième partie de cette
Thèse, nous clarifions certaines caractéristiques subtiles du graphène sous
tension afin de gérer correctement ce matériel. Nous montrons en particulier
que le champ pseudo-magnétique induit par le champ tensoriel de déformation
dans le plan ne peut pas émerger d’une théorie de champ quantique dans un
espace courbe (approche bottom-up), mais bien à partir de l’analyse détaillée
de l’Hamiltonien tight-binding des π électrons dans le graphène (approche
top-down).
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Resumen

En esta Tesis se propone analizar tres aspectos diferentes de la F́ısica Funda-
mental.

La primera parte está dedicada al estudio detallado de lo que ha pasado a
llamarse supersimetŕıa no convencional en tres y cuatro dimensiones para
grupos internos abelianos y no abelianos. Se muestra el contenido dinámico
en dimensiones impares de la teoŕıa, contando al mismo tiempo los grados
de libertad locales para ciertos sectores del espacio de fases. En el caso
tridimensional no abeliano, se presentan algunas soluciones de agujeros
negros, incluyendo sus espinores de Killing. En cuatro dimensiones, la
supersimetŕıa está rota expĺıcitamente y se obtiene un lagrangiano estándar
de Dirac acoplado con el campo electromagnético y la geometŕıa de fondo.

En la segunda parte, se presenta el contenido dinámico de la teoŕıa de
Rarita-Schwinger libre y con acoplamiento gauge. Esto se puede hacer a
través del formalismo hamiltoniano de Dirac y el método de Faddeev-Jackiw,
mostrando al mismo tiempo las simetŕıas de la teoŕıa. Se observa que en
la teoŕıa gauge extendida, la cual incluye campos fermiónicos extra para
restaurar la simetŕıa fermiónica del caso libre, el anticonmutador del campo
de Rarita-Schwinger no es definido positivo en la cuantización canónica.

Ya que el grafeno se ha propuesto como una “mesa de laboratorio” para
algunos escenarios de gravedad cuántica, en la tercera parte de esta Tesis se
clarifican algunas caracteŕısticas sutiles del grafeno extendido con el objetivo
de manejar debidamente el material. Se muestra particularmente que el
campo seudo-magnético inducido por el campo de tensión planar no puede
emerger de una teoŕıa cuántica de campos en espacios curvos (abordaje
top-down), sino de un análisis detallado del hamiltoniano tight-binding de
los electrones π en el grafeno (abordaje bottom-up).
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Chapter 1

Introduction

One of the most important and exciting challenges in Theoretical Physics is
to construct a theoretical framework which reconciles the four fundamental
interactions. Three of these interactions, the electromagnetic, strong and
weak forces, are described by the Standard Model (SM), a Yang-Mills (YM)
theory with a particular internal gauge symmetry. Theories with internal
gauge symmetries with fiber bundle structure not only restrict the field
content and the possible couplings among them but are also instrumental
to ensure renormalizability of these theories [1, 2]. Renormalizable theories
are those that allow reabsorbing the divergent part calculated from the
perturbative expansion of physical measurable quantities (for instance, cross
sections and decay rates of elementary particles). This property is crucial
to treat consistently the experimental predictions of the theory and is one
of the main reasons for the predictive success of the SM, in addition to its
enormous precision corroborated in large particle colliders.

The only fundamental interaction, of the four mentioned, which does not
qualify as a YM theory is Gravitation. At large scales, Gravitation is described
by General Relativity (GR), which is invariant under diffeomorphisms of the
coordinates on the spacetime base manifold. Although these diffeomorphisms
are also local symmetry transformations, general relativity does not have a
simple fiber bundle structure as the other gauge interactions and it turns to
be non-renormalizable. One could trace the non-renormalizability of GR in
the fact that the Newton Gravitation constant G has dimensions of length
squared (in natural units, ~ = c = 1). Thus, as more vertices are added, there
appear powers of all orders in the ultraviolet momentum cut-off Λ, making
it impossible to absorb all divergences of the theory with a finite number of
parameters [1]. This, in particular, makes it very difficult to quantize GR.
Nevertheless, the efforts to reconcile Gravity with Quantum Mechanics lead

1



2 1. Introduction

to several sensible models of Quantum Gravity (QG).

Since the internal symmetries turn out to be essential in the cancellation of
infinities in the SM, it seems plausible that, in order to unify Gravitation with
other fundamental interactions, one should formulate a theory invariant under
a gauge group containing both internal symmetries and spacetime symmetries.
The ‘no go’ Coleman-Mandula theorem [3] states that if the scattering matrix
S satisfies certain minimum technical requirements, the theory can only be
invariant under a group that is the direct product of the Poincaré group
ISO(3, 1) times the group of internal symmetries K. This means that if
we want to construct a quantum field theory (QFT) with a standard Lie
algebra for an internal symmetry group G that contains ISO(3, 1) and K as
subgroups, then necessarily G = ISO(3, 1) ×K. The latter does not give
us much hope to cancel infinite diagrams for the Gravitation, at least as
formulated with the standard GR.

It is possible to circumvent the Coleman-Mandula theorem using instead of
a conventional Lie algebra, a graded one, i.e. if along with the commuting
generators, anticommuting generators are also included. Such graded algebras
are also known as superalgebras [4]. For instance, Haag-Lopuszanski-Sohnius
[5] shown how to extend the Poincaré algebra generators Jµν and Pµ including
internal symmetries Ti in a nontrivial way with the addition of fermionic
generators to the algebra, i.e., generators Q that obey anticommutation rules.

If we denote in a generic way B the bosonic generators Jµν , Pµ and Ti, the
algebra can be symbolically expanded as

{Q̄,Q} ∼ B, [B,Q] ∼ Q, [B, Q̄] ∼ −Q̄, [B,B] ∼ B.

Central extensions with generators Z can also be included in more general
cases. In this way, one theory is a supersymmetric (SUSY) theory if its
field equations are invariant under the symmetry group associated with a
superalgebra of this type.

There are many examples of SUSY theories, from the Wess-Zumino model in
four dimensions [6] to the different types of superstrings in d = 10 dimensions
[7, 8]. In this kind of theories, supersymmetry (SUSY) is manifested
assuming that both bosonic and fermionic fields must transform in some
vector representation under SUSY rotations,(

S ′

F ′

)
= Q

(
S
F

)
=

(
SBB SBF
SFB SFF

)(
S
F

)
,

where Q represents the exponentiation of fermionic generators Q with some
spinor parameter θ. Because of the superalgebra, this rotation mixes bosonic
and fermionic degrees of freedom. The invariance can be done locally, i.e.,
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making θ = θ(x), which gives rise to supergravity (SUGRA) [9]. These
theories were very attractive at the time because it was found that in four
dimensions they have cancellations at one-loop order due to opposite signs
of the fermionic and bosonic loops, providing a protection mechanism for
the hierarchy problem1 and even bringing the hope for a possible mechanism
to renormalize Gravity2. Moreover, many SUSY theories guarantee ener-
gies bounded from below and absence of tachyon with no more restrictions [4].

Despite the aforementioned advantages of the standard SUSY theories, the
fact that for the super-Poincaré group (the minimal SUSY extension of
the Poincaré group), Pµ commutes with Q implies that the masses asso-
ciated with fermionic and bosonic particles must degenerate: m2

F = m2
B.

This means that if SUSY were present in nature at current energy scales,
every elementary bosonic (fermionic) particle in the SM should have its
fermionic (bosonic) companion with the same mass. As this has not been
confirmed experimentally, even to scales of current energies reached by the
Large Hadronic Collider, SUSY must be broken at observed scales and this
symmetry breaking makes the mass of the unobserved partners too large to
be detected.

It should be noted that there are ways to implement SUSY in odd dimensions,
in which SUSY is not manifested in a vector representation as mentioned
above, but with both bosonic and fermionic fields as part of the connection
and, therefore, they are in the adjoint representation and not in the fun-
damental one [10, 11]. This type of construction also has some attractive
features as the off-shell closure of the SUSY. As we will see below, this kind
of SUSY is in fact much more related to the first part of this Thesis. However,
the superparticle partners are still present in these kinds of SUSY models.

At this point, one may wonder whether if it is possible to relax some other
condition of previous models to allow for the existence of SUSY without
the assumption that SUSY is broken at high energies. In [12] this ques-
tion was explored in D = 3 dimensions. A model was built, in which the
fields associated with the SUSY algebra transform in the adjoint rather
than the fundamental representation and where furthermore, the dreibein is
realized in a different way than in standard SUGRA models. This model has
nontrivial dynamics and leads to a different scenario, where local SUSY is
absent (although there is still diffeomorphism invariance) but where a rigid
SUSY can survive for certain background geometries. Because there is no

1The hierarchy problem can be stated with the following question: why the energy
scale of the electroweak force is much lesser than the Planck scale (the energy scale where
it is believed the quantum gravity effects are very important)?

2However, it is still not clear if such a miracle occurs at higher orders [9].
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local SUSY, there are no SUSY pairings. The supersymmetric backgrounds
present, however, a great interest in connection with the Part III of this
Thesis and the couplings of fermions with bosons are those we found in
the SM. This model it is called unconventional supersymmetry (U-SUSY) .
Their detailed dynamical study [13], its extension to non-Abelian internal
group [14], as well as D = 4 dimensions [15], is revised in Part I.

In standard SUGRA, the hypothetic superpartner of the particle associated
with the Gravity interaction (graviton), is the massless 3/2-spin, which is
called gravitino [16]. The dynamics of such a particle is described by the
Rarita-Schwinger action [17]. Although 3/2-spin particle is an important
piece of the standard SUGRA theories, it is argued is also important by
its own, playing an important role in anomaly cancellation in different QG
candidate theories or grand unified models [18, 19].

The description of massive Rarita-Schwinger (RS) fields turns out to be
problematic both at classical and quantum level [20, 21]. However, recently
the non-existence of such problems for the massless case has been claimed
[22, 23], due to the presence of a fermionic gauge symmetry in the theory.3 In
Part II, we studied in detail if this symmetry is present for the massless RS
theory. In order to do that, we implement the Dirac’s Hamiltonian formalism
[25, 26] and Faddeed-Jackiw method [27] first for the free case and later
for the case of a 3/2-spin field coupled with an Abelian gauge field, i.e., a
Maxwell field. We conclude the fermionic gauge symmetry is not present
on-shell for the gauged RS action. Finally, we make the same dynamical
study of what is called the extended massless RS theory, where the fermionic
gauge invariance of the free theory is restored by adding spin-1/2 fields to
the gauged RS action [28].

As we mentioned above, there are several sensible models of QG, many
of them even do not make necessarily use of SUSY [29, 30]. Such models
are very attractive but, as is the case for SUSY theories, their predictions
are beyond the reach of existing hadronic colliders or from astrophysical
observations. Therefore, we are missing an important piece of information
coming from Nature: we need experiments or at least indirect observations,
to compare and select among different logically well proposed QG theories.

On this respect, Graphene is a very promising table-top laboratory to exper-
imentally probe some of the fundamental mysteries of Nature [31–33]. The
low energy regime of its π electrons is very well described by an effective

3There is, however, a consistent description of massive spin-3/2 fields in AdS4 with its
flat limit [24].
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theory that shares many of the features of a massless Dirac QFT in the
presence of a background space(time).

The QED description for the π electrons is for the case of pure flat graphene:
there are no deformations, and no defects or impurities. However, real lab
graphene is not perfectly planar as it ripples [34] and, even though is very
resistant to in-plane deformations due to the strong σ−electrons bonds,
it can be easily bent. In more realistic cases, taking into account these
considerations, one can still preserve the Dirac description, by introducing
extra coupling fields. Moreover, the honeycomb sheet could be induced to
take particular non-trivial geometric forms, as fullerene for positive curvature
[35] or Beltrami pseudosphere for negative curvatures [36, 37]. All these
ingredients make the graphene sheet a very good experimental tool in order
to test different QG predictions for several geometrical backgrounds in a real
lab [31, 32].

It is worth noting the (2 + 1)-dimensional U-SUSY mentioned above is a
very natural description of π electrons in graphene in the linear regime of
the dispersion relation, at least in the flat case. This is the case because, as
we will see in Chapter 3, the only dynamical local degrees of freedom are the
fermionic ones. Even if local bosonic degrees of freedom are not present in
(2 + 1) U-SUSY, the coupling between the fermion with such a fields, like
SU(2) spin connection (as we shall see in Chapter 4) or torsion fields, could
give rise to interesting phenomena descriptions in different graphene regimes.

In order for graphene to keep its promises, we need to have full control
of what sort of fields are there and what they represent in a field theory
language. In the vast literature on the gauge fields of graphene (see [38–40],
and [41] for a recent review), there are a variety of proposals, sometimes
practically valuable for the applications to condensed matter physics, but
most of the time unsatisfactory for probing fundamental physics. The
landscape of proposals ranges from SU(2) monopole-like gauge fields in the
case of graphene membranes with intrinsic curvature (the inflated graphene
buckyballs of [42]) to a concurrence of a spin-connection field and a U(1) field,
in the case of purely strained graphene [43] (although sometimes non-Abelian
fields are evoked in this case as well [44]). Even in the simplest case, that is
purely strained graphene, there is some confusion: does the spin connection
arising from straining graphene give physical effects or not? And, what is
the interpretation of the U(1) field from a fundamental point of view?

We can infer from the literature, the issue of the nature of the gauge field
arising during pure strain (which is capable to mimic magnetic fields of
more than 300 Tesla [38]), is not settled yet, see [45], and work is constantly
produced on it, see the recent [46]. Our goal in Part III is to clarify the
geometric nature of all gauge fields emerging from straining graphene, having
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in mind their use to probe fundamental properties of nature. In fact, we
shall not discover any new field, as compared, for instance, to [47–49], but
we shall hopefully be able to clarify issues that are important precisely for
the use of graphene as a laboratory to realize otherwise unreachable physics,
see, e.g., [32] for the Hawking-Unruh radiation effect.

Our focus in this Part is on the deformed graphene membrane whose two-
dimensional intrinsic curvature and torsion are zero. This corresponds, in
the phenomenology of graphene, to the case of purely strained graphene. We
shall take two roads. First, we investigate whether the most straightforward
gauge field one would employ to describe a QFT in curved spacetime can
indeed explain the pure strain gauge field of graphene. This road starts from
the fundamental fully relativistic constructions and sees whether the results,
suitably adapted to graphene, can indeed describe the strain. We shall see
here the special role of Weyl symmetry. We call this a top-down approach.
The second road, instead, takes the opposite path, i.e., it is a bottom-up
approach: we start from the condensed matter non-relativistic theoretical
description of graphene, and we look for the fundamental object/gauge field
that can describe strain. This latter road is actually necessary because, as
we shall see, this kind of gauge field could not be guessed within standard
QFT in curved spacetime [50].

The three parts of this Thesis are related in the sense they deal with different
aspects we could take into account in our pursuit of a well-defined and, at
least indirectly, tested QG theory or theories. However, as these parts are
relatively independent each other, the presentation and discussion of each
one are included separately.



Part I

Unconventional
Supersymmetry
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Chapter 2

Internal U(1) group

Despite some of the appealing advantages presented in Chapter 1, no evidence
of SUSY has been found [51], at least in its standard form. This lack of
evidence of SUSY in the SM may be due to the fact that bosons and
fermions transform in the fundamental representation under standard SUSY
transformations. It is known that if the field does not transform in the
fundamental but in the adjoint representation, the dynamical content of
the theory could be very different. As we shall see, this would lead to
supermultiplets composed by matter and gauge fields, with a different number
of bosons and fermions, as well as different masses. As the first example of
this theory is given in (2 + 1)−dimensions for the supergroup OSP (2|2) [12],
which includes as subgroups the internal Abelian U(1) and Lorentz SO(2, 1),
we shall consider such a case in some detail in this Chapter.

In (2 + 1) dimensions a very curious similarity occurs between the Abelian
Chern-Simons form and the free Dirac Lagrangian, AdA ∼ ψ/∂ψ. Even though
an Abelian connection Aµ and a complex Dirac spinor ψα transform very
differently under gauge−U(1) transformations, they can be accommodated
as part of the same connection in the following way,

A =

(
Aαβ ψα

ψα 0

)
, (2.1)

where Aαβ = Aµ(γµ)αβ, being γµ the set of three 2 × 2 Dirac matrices

in three dimensions, and we consider the adjoint row ψα = iψ†β(γ0)
β
α, as

is shown in Appendix A.1. The gauge transformation A′µ = Aµ + ∂µα,

ψ′ = eiαψ, and ψ
′

= e−iαψ can be obtained as in the case of non-Abelian
gauge transformation A′ = g−1Ag + g−1/dg, where g = exp[αK], with the

9
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3× 3 matrices

Z =

 i
2

0 0
0 i

2
0

0 0 i

 , /d =

(
(γµ)αβ∂µ 0

0 0

)
.

This observation is pointing out that we can consider U(1) as a subgroup of a
larger non-Abelian group, under which Aµ, ψ and ψ transform as components
of the same connection. As we shall see below, this symmetry also includes
rotations which transform Aµ, ψα and ψα into each other, a key feature of
SUSY.

2.1 Connection, Lagrangian and field equa-

tions

One can object that the expression (2.1) is not truly a connection; the com-
ponents are not all one-forms. This is corrected by introducing the dreibein
eaµ matching in a suitable way the tangent space and the base manifold1. A
more transparent expression is obtained by writing the connection as a linear
combination of generators in a 3 × 3 representation with field coefficients.
The smallest graded Lie algebra containing u(1) subalgebra is osp(2|2) [12].
Therefore, a natural connection is A = Aµdx

µ, with2

Aµ = AµZ + ψα(/eµ)αβQβ + Qβ(/eµ)βαψ
α + ωaµJa , (2.2)

where Z, Qα, Qβ, and Ja are the U(1), SUSY and Lorentz SO(2, 1) generators,
respectively. We use the notation (/eµ)αβ = eaµ(γa)

α
β, being (γa)

α
β the Dirac

matrices in the tangent space. An explicit expression of the 3 × 3 matrix
generators is shown in Appendix B.1, leading to the following non-vanishing
(anti-)commutators of the osp(2|2) Lie algebra,

[Ja, Jb] = ε c
ab Jc ,

{
Qα,Qβ

}
= Ja(γa)αβ − iδαβZ ,

[Ja,Qα] = −1

2
(γa)

α
βQβ ,

[
Ja,Qα

]
=

1

2
Qβ(γa)

β
α , (2.3)

[Z,Qα] =
i

2
Qα ,

[
Z,Qα

]
= − i

2
Qα .

1Through this work, last greek letters µ, ν, . . . denote base manifold indexes, and
lowercase latin letters a, b, . . . for tangent space indexes. We reserve capital latin letters
A,B, . . . to matrix generator indexes and the first greek letters α, β, . . . to denote spinorial
indexes.

2As in this Chapter we work in D = 3, we use the dual notation for the Lorentz spin
connection, ωa = 1

2ε
a
bcω

bc and for the Lorentz generator Ja = − 1
2ε

bc
a Jbc.
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From the above algebra, it is explicitly seen that the fermion is ‘charged’
with respect to U(1) and Lorentz subgroup SO(2, 1). The geometry of the
(2 + 1) background is given by the metric gµν = ηabe

a
µe
b
ν , with the convention

η = diag(−1, 1, 1).

The Chern-Simons (CS ) form in D = 3 dimensions provides a Lagrangian
for the connection A without additional ingredients (for a detailed review of
CS forms in SUGRA see [52], and references therein). Therefore3,

L = 〈AdA +
2

3
A3〉, (2.4)

where 〈. . .〉 is a symmetrized supertrace (see Appendix B.1 for more details
on bilinear generators supertrace of the osp(2|2) superalgebra). Plugging
(2.2) into (2.4), and using the algebra conventions, the following Lagrangian
is obtained

L =
1

2
AdA+

1

2
ωadω

a +
1

6
εabcω

aωbωc + ψ/e
[←−
D −

−→
D
]
/eψ, (2.5)

where we introduced the notation4←−D =
←−
d +iA− 1

2
ωaγa,

−→
D =

−→
d −iA+ 1

2
ωaγa

for the bosonic covariant derivatives, and we suppress spinorial indexes in
(2.4) as they are all contracted.

The Lagrangian (2.5) can be written in a more suggestive form if we expand
the derivatives acting on the fermion and on the dreibein,

L =
1

2
AdA+

1

2
ωadω

a +
1

6
εabcω

aωbωc − 2ψψeaTa

− 2ψ
(←−
/D −
−→
/D
)
ψ|e|d3x , (2.6)

where |e| = det[eaµ] =
√
−g and T a = dea + ωabe

b is the torsion 2−form.
The second line in the above Lagrangian describes a Dirac spinor minimally
coupled to a U(1)-gauge field Aµ and to the background geometry through
the spin connection ωaµ. The bosonic gauge fields are described by the first
line of (2.6) which is the sum of their respective CS forms. These two
facts make the Lagrangian (2.6) straightforwardly invariant under U(1) and
SO(2, 1), up to a boundary term.

The field equations can be obtained from (2.5), as usual, by varying the
action with respect to the independent fields,

δA : Fµν = εµνρj
ρ , (2.7)

3Exterior product of forms is understood and wedge symbols are omitted, except where
ambiguities arise.

4For an m−form Ω, we define Ω
←−
d = (−1)mdΩ.



12 CHAPTER 2. INTERNAL U(1) GROUP

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field strength, jρ =
−iψγρψ|e| is the electromagnetic current density associated with a spin-
1/2 particle,

δω : Rab = 2ψψeaeb , (2.8)

δψα : −/e
[
/T − /e

−→
D
]α

β
ψβ = 0 . (2.9)

Although the dreibein was introduced as a field to connect the tangent space
with the base manifold, forming a composite field with the fermion, its
presence in the Lagrangian is dynamical as much as the other fields,

δea : −2Taψψ = ηabe
bψ
[←−
D −

−→
D
]
ψ , (2.10)

where the derivatives act only on the fermions.

The solutions of field equations (2.7)-(2.10) will be studied in more detail
for the SU(2, 1|2) group, which contains an additional SU(2) sector. We
anticipate that there are purely bosonic solutions for these equations (ψ =
ψ = 0) whose backgrounds are non-trivial [12]. Some of these backgrounds,
as AdS and extremal BTZ black holes, contain non-trivial Killing-spinors, as
we will see in Chapter 4.

2.2 Symmetries

An infinitesimal group element for OSP (2|2) can be written as g ' 1+ Λ,
with

Λ = λK + Qε− εQ + λaJa ,

where λ, ε, ε and λa are infinitesimal parameters. The transformation
A′ = A + δA, where δA = dΛ + [A,Λ}, translates to the component fields as

δA = dλ− i
(
ψ/eε+ ε/eψ

)
,

δ (/eψα) =
−→
Dεα +

i

2
λ/eαβψ

β − 1

2
λa(γa)

α
β/e

β
ρψ

ρ , (2.11)

δ
(
ψ/eα

)
= −ε

←−
Dα −

i

2
ψ/eαλ+

1

2
ψρ/e

ρ
β(γa)

β
αλ

a ,

δωa = dλa + εabcω
bλc +

(
εγa/eψ + ψγaε

)
.

We stress the fact that the fields ψα and ψα are always coupled with the
vierbein eaµ. Therefore, as we shall see below, we must impose some condition

in (2.11) in order to split the transformation of the composite fields ψ/eα and
/eψα, and in this way to define how these fields transform under SUSY.
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By construction, as the CS form is a pseudo-gauge invariant form, the
variation of the action (2.4) under the entire group OSP (2|2) is

δL = dCλ + dCε,ε + dCλa ,

where these boundary terms are

Cλ =
1

2
λdA ,

Cε,ε = εd(/eψ)− d(ψ/e)ε ,

Cλa =
1

2
dωaλa .

The explicit changes of the fields under U(1), SO(2, 1) subgroups and SUSY
transformations in terms of the infinitesimal parameters are

• U(1) transformations: Λ = λZ,

δAµ = ∂µλ , δψ
α =

i

2
λψα , δψα = − i

2
λψα , δe

a
µ = δωaµ = 0

• SO(2, 1) transformations: Λ = λaJa, of course δAµ = 0 is this case. The
second and third equations (2.11) determine the transformation laws
for /eψα and ψ/eα. These are not fundamental spin-3/2 but composite
fields, as mentioned above. The product of a spin-1 (the dreibein eaµ)

and spin-1/2 (either ψ or ψ) belongs to the reducible representation
1 ⊗ 1/2 = 1/2 ⊕ 3/2, according to Clebsch-Gordan coefficients [53].
In this way, δ (/eψα) = δea(γa)

α
βψ

β + ea(γa)
α
βδψ

β and similarly for

δ
(
ψ/eα

)
, with

δea = εabce
bλc , (2.12a)

δψα = −1

2
λa(γa)

α
βψ

β , (2.12b)

δψα =
1

2
ψβ(γa)

β
αλ

a . (2.12c)

The last equation in 2.11 gives us the transformation of the spin
connection omegaa under SO(2, 1) transformations, i.e.,

δωa = dλa + εabcω
bλc , (2.12d)

which is the covariant derivative acting on a Lorentz vector (see Ap-
pendix B.1 for details on this covariant derivative).
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• SUSY transformations: Λ = Qε− εQ, if this transformation does not
affect the dreibein one-form ea, i.e. δea = 0, therefore,

δAµ = −ieaµ
(
ψγaε+ εγaψ

)
, (2.13a)

δψα =
1

3

−→
/Dεα , (2.13b)

δψα = −1

3
ε
←−
/Dα , (2.13c)

δωaµ =
(
ψε+ εψ

)
eaµ − εabcebµ

(
ψγcε− εγcψ

)
, (2.13d)

We remark here the invariance of eaµ under SUSY transformation is not
expected in the standard local form of SUSY, i.e. SUGRA. This is compatible
with the particular way the dreibein is introduced in the connection (2.2), not
as the coefficient of the translation generators Pa (as in the case of standard
SUGRA or CS-SUGRA [10]), but instead as a dictionary connecting the
tangent space and the base manifold. This is a special feature of this U-SUSY,
for which choosing δea = 0 allows to obtain a linear representation of SUSY
acting on the fields, whose consistency implies the appearance of an extra
condition, as we will see below. If the theory has nontrivial solutions for this
extra condition, this theory has a rigid SUSY.

It can be directly checked that the Lagrangian (2.5) is real and diffeomor-
phisms invariant by construction. Due to the way in which the fermion is
introduced, i.e., always coupled to the dreibein, there is also a local scale
symmetry. This means the Lagrangian (2.5) is invariant under local scale
transformations of the form

eaµ → e′aµ = µ(x)eaµ , ψα → ψ′α = µ−1(x)ψα , ψα → ψ
′
α = µ−1(x)ψα , (2.14)

where µ(x) is an invertible, but otherwise arbitrary, function on the base
manifold. This symmetry will give some interesting features to this theory,
as we shall see in Chapter 3 as well.

2.3 No-gravitini projection

The condition δea = 0 under SUSY transformation (2.13a), implies the metric
gµν remains invariant under SUSY meaning the absence gravitini in this
theory. Taking a closer look to the SUSY transformation in (2.11) expressed
in coordinate basis, we have

δ (/eψα) =
−→
Dεα . (2.15)
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By imposing δeaµ = 0, this equation becomes eaµ(γa)
α
βδψ

β =
(−→
Dε
)α
µ
. Multi-

plying this last expression by γµ gives

δψα =
1

3

−→
/Dεα .

Now, multiplying this by γν , using again (2.15) and the fact that δeaµ = 0,
we end up with the condition

−→
D νε

α − 1

3
γνγ

µ−→Dµε
α = 0 . (2.16)

As we mentioned above, a spinor with an extra Lorentz (or spacetime)
index, such as ξαµ = γµψ

α, belongs to the reducible representation 1⊗ 1/2 =
1/2⊕ 3/2 of the Lorentz group. Hence, it can be uniquely decomposed into
its irreducible projections as ξµ = Ψµ + Φµ, where Ψµ = (P1/2)µ

νξν carries
spin-1/2, while Φµ = (P3/2)µ

νξν is the spin-3/2 part (see Appendix E.2 for
details), with

(P3/2)µ
ν = δνµ −

1

3
γµγ

ν = δνµ − (P1/2)µ
ν . (2.17)

In our case, ξµ = eaµγaψ = γµψ and therefore the gravitino contribution van-
ishes identically, Φµ ≡ 0. Thus, according to (2.15), a SUSY transformation
of Ψµ = eaµγaψ gives

δΨµ = γaδe
a
µψ + γµδψ =

−→
Dµε. (2.18)

So, the condition (2.16) can be written simply as5

(P3/2)µ
ν−→D νε = 0 . (2.19)

Equation (2.19) can be solved by demanding that
−→
Dµε belongs to the kernel

of P3/2, that is
−→
Dµε = γµχ , (2.20)

for an arbitrary spinor χ. Consistency of (2.20) induces a relation among the
field strength Fµν , curvature Ra

µν and torsion T aµν of the background geometry.
This leads to(−→

Dµ

−→
D ν −

−→
D ν

−→
Dµ

)
ε = − i

2
Fµνε+

1

2
Ra
µν(γa)ε

= T aµν(γa)χ− (γµDν − γνDµ)χ .

On the other hand, from equation (2.20), we can obtain χ = 1
3

−→
/Dε. Therefore,

− i
2
Fµνε+

1

2
Ra
µν(γa)ε−

1

3
T aµν(γa)

−→
/Dε+

1

3
(γµDν − γνDµ)

−→
/Dε = 0 . (2.21)

5For more details about solutions of no spin-3/2 condition see [54] and references
therein.



16 CHAPTER 2. INTERNAL U(1) GROUP

So, only for very particular backgrounds there exists nontrivial fermionic
parameters εα which satisfies (2.21). The number of independent globally
well defined solutions of this equation depends on the gauge curvatures and
on possible topological obstructions. Nevertheless, in a typical experimental
setting appropriate to the strained graphene analysed in the Part III of theis
Thesis, the curvatures are negligible in the region where the experiment are
carried out6. The relevant regions in those cases are huge compared with
the quantum wavelength of the particles involved, but at the same time are
extremely small compared with the local radius of curvature of spacetime
and, to a good approximation the curvature can be safely assumed to vanish.
Then χ can be taken equal to zero and ε approximates to a Killing spinor
of the background (we shall find in Chapter 4 some particular backgrounds
solutions with their corresponding Killing spinors solutions).

The presence of fermions requires the introduction of a soldering form (the
vielbein) in order to project properties of the dynamical fields in the tangent
space onto the base manifold. In particular, the fact that fermions belong to
a spin-1/2 representation of the Lorentz group is a feature defined on the
tangent space. On the other hand, A(x) is a one-form on the base manifold
and, the introduction of the vielbein is required by the presence of fermionic
matter so that a theory that includes fermions must also to include a metric
structure, as noted long ago by H. Weyl [55].

One of the essential features of gauge theories is the background independence
of the gauge symmetry. A gauge transformation has the form

A(x)→ A′(x) = g−1(x) [A(x) + d] g(x), (2.22)

independently of the spacetime geometry. In particular, it does not depend
on the metric or affine properties of the background. The invariance of the
Yang–Mills Lagrangian, LYM = (−1/4)

√
−ggµαgνβTr (FµνFαβ) under (2.22)

holds at any spacetime point, irrespective of the coordinates, the metric, the
background curvature, torsion, etc. The decoupling between the internal
gauge symmetry and the spacetime geometry is also reflected in the fact that
the metric itself is invariant under internal gauge transformations.

Gauge invariance of the metric is ensured if under internal gauge symmetries
the vielbein is also invariant, eaµ(x)→ e′aµ(x) = eaµ(x). Actually, a weaker
condition like e′aµ(x) = Λa

b(x)ebµ(x), with Λ ∈ SO(1, 2), would suffice
to render the metric invariant. This is indeed the case when the gauge
group includes Lorentz transformations, something that is not often assumed
because the Lorentz group is not usually viewed as an internal symmetry.

6However, this is not longer true when we are considering the Beltrami pseudosphere
made from graphene sheet in order to test Hawking-Unruh effects, as is shown for instance
in [31]
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The distinction between internal and spacetime symmetries for the case of
the Lorentz group, however, is rather semantic.

The decoupling between the gauge transformations (internal symmetries) and
the geometric properties of spacetime (external symmetries) guarantees that
gauge invariance holds irrespective of the “environment.” Mathematically
this is reflected in the fact that a fiber bundle is locally a direct product of a
vector space and a manifold: the fibers in the bundle are identical copies of
the same algebra, regardless of what the base manifold could be. In the same
spirit, here we assume the metric structure to be decoupled from SUSY. The
vielbein plays the role of a dictionary to translate between the manifold and
the tangent space that is not transformed under SUSY. As shown in [12],
this corresponds to a projection of the local SUSY algebra on the spin-1/2
subspace, instead of projecting on the spin-3/2 space, as it is usually done in
SUGRA [56].

The consequence of this is that there is no spin-3/2 components on the right
side of (2.11), i.e., there are no gravitini. As will be confirmed in Chapter
3, the SUSY of the action (2.5) is not there once imposing δeaµ = 0. At
most, for very particular backgrounds, there are solutions of (2.20) implying
a global/rigid accidental SUSY.

2.4 Summary

Usually, a gauge theory constructed from a connection belonging to a super-
algebra (superconnection), defines a new field, the spin-3/2 gravitino (see
Part II for more details about spin-3/2 field theory). In the model presented
in this Chapter, this is not the case being consistent to the fact that since no
spin-3/2 is required, the gravitini can be projected out. However, we must
stress here the fact that the SUSY parameter is not arbitrary but must be
constrained by the subsidiary condition (2.16). This means, in particular,
that the realization of SUSY here is not local, but global/rigid provided
there exist nontrivial solutions. The number of independent solutions ε
for this equation, if there were, will depend on the background geometry.
The fact that these parameters are not arbitrary will be reaffirmed later
in Chapter 3, where we show there is no first-class constraint associated
to SUSY transformations. However, there are background examples where
there exist solutions to condition (2.16), as for instance in (2 + 1)-black holes
sectors, which we shall see in Chapter 4.

The U-SUSY could be useful as a simple field theory for an electromagnetically
charged spin-1/2 field interacting with the (2 + 1)-dimensions background
geometry. In particular, it fits very well to the massless Dirac description of
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π electrons in flat graphene (see Chapter 9). It was proposed that graphene
with constant negative curvatures could be used to test some features of QFT
in curved spacetime, as the Unruh radiation effect [32], as we will mention
in Part III. Therefore, this model could be used to describe the π electrons
in these backgrounds [57]. Even more, if some fixed background sheet of
graphene satisfies condition (2.16) (diffeomorphism invariance is explicitly
broken, as there is no more dynamical background), this U-SUSY model
describing π electrons is a theory with a rigid accidental SUSY. It is possible
that this SUSY rigid symmetry appearing in this fixed backgrounds could
have an observable (fermionic) current associated, which in principle could
be measurable in a real lab.

The fact that fermion mass can arise as an effect of the background spacetime
through the torsion (which in the case of condensed matter corresponds to
the presence of dislocations in the crystal lattice), seems to have been put
forward by Weyl long time ago [55]. It could be interesting to explore if this
procedure could be used as a mass generation mechanism for the neutrinos,
without the necessity to break any symmetry.

This model may also be regarded as an instance that could be extended to
higher-dimensional scenarios, as a non-Abelian internal group in Chapter 4,
or more realistic D = 4 studied in Chapter 5. The crucial point here is that
rigid/global SUSY could manifest itself very differently if the fermion fields
are accommodated in the adjoint representation and the vielbein does not
make the usual role of the translation generator coefficients, as in CS-SUGRA.



Chapter 3

Dynamical Contents

It is well known that CS theories in three dimensions for any Lie algebra have
no local degrees of freedom [58]. This is true also for CS theories based on
graded Lie algebras [59], like in the case of the CS SUGRA for the osp(2|2)
algebra. By contrast, a massive spin-1/2 field in a fixed three-dimensional
background of has 2n propagating degrees of freedom, where n = 1 for
Majorana and n = 2 for Dirac spinors [26, 60]. Now, if in the osp(2|2) CS
theory the gravitino field χαµ is split into a spin-1/2 Dirac spinor ψα and
the vielbein eaµ, the fermionic sector of the reduced theory describes a Dirac
fermion in a curved background, minimally coupled to u(1) and so(2, 1) gauge
connection one-forms A = Aµdx

µ and ωab = ωabµdx
µ, respectively [12]. It

is therefore only natural to inquire whether this reduced theory has zero
local degrees of freedom (DOF) as the original CS system, or has four local
degrees of freedom of a spin-1/2 Dirac fermion. The question is further
complicated by the fact that in the reduced Lagrangian the dreibein are
not Lagrange multipliers (their time derivatives ėa appear explicitly in the
action) and therefore eaµ are in principle dynamical fields as well.

The identification of the local physical DOF can be addressed by direct
application of Dirac’s analysis of constrained Hamiltonian systems [25],
which systematically separates the dynamical fields from the gauge degrees
of freedom. In the case of CS theories, however, the separation between first
and second-class constraints is a delicate issue, and the system considered
here is not an exemption. The action from (2.5) [12] reads

I[ψ, e, A, ω] =

∫
1

2

[
2ψ/e(

←−
D −

−→
D)/eψ + AdA+

1

2
ωabdω

b
a +

1

3
ωabω

b
cω

c
a

]
,

In addition to the local U(1)× SO(2, 1) symmetry and spacetime diffeomor-
phisms, this action is invariant under local Weyl rescalings (2.14),

eaµ → λeaµ , ψ → λ−1ψ , ψ̄ → λ−1ψ̄ ,

19
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where λ(x) is a non-vanishing, real and differentiable function. All of these
symmetries are in principle associated with first-class constraints that reduce
the physical phase space.

Varying the action with respect to ψ yields the Dirac equation with a mass
term m = 1

2|e|ε
µνρηabe

a
µDνe

b
ρ (including hermiticity corrections), while varying

with respect to eaµ implies the vanishing of the energy-momentum tensor,

T µν = 1
2|e|η

abEµ
a
δL
δebν

+ (µ↔ ν), with Eµ
a the inverse dreibein. In particular,

the vanishing of the trace T µµ = 0 is consistent with the local scale invariance
of the action.

For a fixed background, the local degrees of freedom should correspond to
the 2n independent components of the Dirac field in flat spacetime. A quick
analysis suggests that six out of the nine components of the dreibein can
be eliminated by the conditions T µν = 0, while the remaining three can
be gauged away via two spatial diffeomorphisms and a Weyl scaling. In
CS theories, time diffeomorphisms are not independent, which means their
phase space generators are linear combinations of the remaining first-class
constraints [58].

As noted in [12], the closure SUSY for (2.5) requires the parameter of the
SUSY transformation to satisfy a subsidiary condition to ensure the variation
δψ to have spin-1/2, like ψ itself. This subsidiary condition is satisfied if
the SUSY parameter is required to be a Killing spinor of the background
and, like in the original WZ system, this means that SUSY is a global (rigid)
symmetry [15], as we mentioned in Chapter 2. Since this is not a gauge
symmetry, it is not generated by a first-class constraint that would further
reduce the number of local physical DOF, as we see below.

3.1 Hamiltonian analysis

Splitting the fields and their derivatives into time (t) and spatial components
(i, j = 1, 2), the Lagrangian (2.5) can be written, up to a boundary term, as

L = εij
[
−ηabėai ebjψ̄ψ− ˙̄ψγijψ+ψ̄γijψ̇+

1

2
ηabω̇

a
i ω

b
j+

1

2
ȦiAj

]
−eatKa+ω

a
t Ja+AtK ,

(3.1)
where we defined γij ≡ eai e

b
jγab, and

Ka ≡ 2εij
[
ηabT

b
ijψ̄ψ − ebi(ψ̄γaγb

−→
D jψ + ψ̄

←−
D jγbγaψ)

]
, (3.2)

Ja ≡ εijηab(
1

2
Rb
ij − εbcdeciedj ψ̄ψ) , (3.3)

K ≡ εij(∂iAj − iψ̄γijψ) . (3.4)
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The Lagrangian (3.1) describes the evolution of (21+4n) coordinate fields: eaµ
(nine), ωaµ (nine), Aµ (three), ψ (2n) and ψ̄ (2n); among them there are seven
(eat , ω

a
t and At), whose time derivatives do not appear in the Lagrangian and

are therefore Lagrange multipliers with vanishing canonical momenta. For
the remaining components, the Lagrangian contains only first time derivatives
and, therefore, each momentum is a function of the coordinate fields. Thus,
the following (14 + 4n) primary constraints are obtained1 (see Appendix C.1
for notation of the constraints)

ϕia = pia + 2εijηabe
b
jψ̄ψ ≈ 0 ,

Ω = χ+ εijγijψ ≈ 0 ,

Ω̄ = χ̄− εijψ̄γij ≈ 0 , (3.5)

φia = πia −
1

2
εijηabω

b
j ≈ 0 ,

φi = πi − 1

2
εijAj ≈ 0 .

The seven combinations Ka, Ja, K in (3.1) are then secondary constraints
associated to the Lagrange multipliers. Moreover, the canonical Hamiltonian
weakly vanishes and the total Hamiltonian can be taken as an arbitrary
linear combination of all the constraints2,

HT =

∫
d2x

[
eatKa − ωat Ja − AtK + ϕiaλ

a
i + φiaΛ

a
i + Λ̄Ω + Ω̄Λ + λiφ

i
]
.

(3.6)

It can be proved that the following seven linear combinations are first-class
constraints (see Appendix C.1 for more details)

J̃a ≡ Ja + ε b
a aϕ

j
be
c
j +

1

2
(Ω̄γaψ − ψ̄γaΩ) +Djφ

j
a ,

K̃ ≡ K − i

2
(Ω̄ψ − ψ̄Ω) + ∂jφ

j ,

Υ ≡ −ebjϕ
j
b + Ω̄ψ + ψ̄Ω , (3.7)

Hi ≡ eaiKa − eaiDjϕ
j
a + T aijϕ

j
a + ψ̄

←−
D iΩ + Ω̄

−→
D iψ − ωai J̃a − AiK̃ + φjFij + φjaR

a
ij .

Here the (spatial) covariant derivative Di acts on each field according to its
transformation properties, as in (B.5). Using (3.2)-(3.5), the generators Hi

can be expressed as

Hi = (∂iAj − ∂jAi) πj − Ai∂jπj +
(
∂iω

a
j − ∂jωai

)
πja − ωai ∂jπja

+
(
∂ie

a
j − ∂jeai

)
pja − eai ∂jpja + ∂iψχ+ χ∂iψ ,

1We use the symbol ≈ to denote weak equality [25].
2Hereafter we perform the integrations over the spatial slices Σ given by t = constant,

for which we do not consider a boundary.
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which can be readily seen to generate spatial diffeomorphisms on phase space
functions F as {F,

∫
ξiHi} = LξF . This in turn means that

{Hi(x),Hj(y)} = Hi(y)∂
(y)
j δ(2)(x− y)−Hj(x)∂

(x)
i δ(2)(x− y) , (3.8)

as expected from generators of spatial diffeomorphisms [61]. On the other
hand, it can be directly checked that J̃a, K̃ and Υ generate SO(2, 1)×U(1)×
Weyl transformations over all the fields and momenta. Indeed, they satisfy
the (weakly vanishing) Poisson relations (C.4) with all the constraints, and
one finds

{J̃a, J̃b} = ε c
ab J̃c ,

{K̃, K̃} = {Υ,Υ} = {K̃,Υ} = 0 , (3.9)

{J̃b, K̃} = {J̃b,Υ} = 0 .

Together with the generators of spatial diffeomorphisms these then form a
first-class Poisson algebra.

Note that performing a shift in the Lagrange multipliers of the form

λai → λ′ai = −veai + λai ,

Λ′α → Λ′α = vψα + Λα , (3.10)

Λα → Λ
′
α = vψα + Λα ,

produces a shift in the total Hamiltonian (3.6),

HT → H ′T = HT +

∫
vΥd2x . (3.11)

This accounts for the Weyl invariance (2.14) of the system. However, the
absence of spatial derivatives in Υ implies that such symmetry is generated
by a purely local constraint with no associated asymptotic charges (recent
examples of this fact can be found in [62] and references therein, see [63] for
a thorough discussion). Weyl symmetry is thus a local redefinition of the
fields without any observable effects. The corresponding symmetry breaking,
however, leads to physical consequences as we will discuss.

3.1.1 Generic scale invariant sector

We now assume that in a generic3 background the (14+4n) time preservation
equations of the primary constraints fix an equal number of Lagrange multi-
pliers (see Appendix C.2 for details). The other seven parameters remain free

3Following [58] we understand by generic sectors those with a maximum number
of degrees of freedom or, equivalently, a minimum number of independent first-class
constraints.
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in the total Hamiltonian (3.6), to form a linear combination of the first-class
constraints. Choosing {Hi, Υ, J̃a, K̃ } as the basis of these generators, the
total Hamiltonian can be written as

HT =

∫
d2x

[
ξiHi + vΥ− ωat J̃a − AtK̃

]
, (3.12)

Here the Lagrange multipliers ξi, v, ωat and At are real and arbitrary func-
tions on equal footing. As the Hamiltonian is a combination of first-class
constraints, the time preservation relations are fulfilled by construction, and
no additional (tertiary) constraints are produced in the Dirac algorithm. Note
further that for any phase space function F the Poisson bracket {F,HT}
coincides with the corresponding Dirac bracket.

Now, the expression (3.12) was obtained from (3.6) by choosing

eat = ξieai . (3.13)

This means that the three components eat are functions of the two free
parameters ξi, while it also implies a degenerate dreibein, |e| = 0. Although
this may seem puzzling for a metric interpretation, it is dynamically consistent
and allows to do the correct counting of the local degrees of freedom (see
e.g., [58] and Appendix C.2). The choice (3.13) is equivalent to the gauge
N⊥ = 0 in gravitation, which is perfectly acceptable as well as generic choices
in ordinary gauge systems, i.e., YM [64, 65]. Furthermore, it also allows
to write the generator of temporal diffeomorphisms as a linear combination
of generators of local spatial diffeomorphisms, rescalings, Lorentz and U(1)
transformations4,

H = ξiHi + vΥ− ωat J̃a − AtK̃ . (3.14)

Note that the degenerate condition |e| = 0 remains invariant under local
Weyl symmetry. Next, we consider a choice in which the Weyl symmetry
is broken and the eat remains arbitrary so that the dreibein need not be
degenerate.

3.1.2 Pure spin-1/2 generic sector

We now examine a specific sector of the theory in which (3.13) is not imposed
but the Weyl invariance is fixed instead. We consider a generic sector for the
fields e and ψ that restricts the fermionic excitations to have spin-1/2 only.
A fermionic field χαa transforms as a vector in the index a and as a spinor in

4It can be explicitly shown that {· · · ,
∫
NH} ≈ LN ∂

∂t
(· · · ), which is a general property

of coordinate invariant systems [60].
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the index α and therefore belongs to a representation 1⊗ 1/2 = 3/2⊕ 1/2 of
the Lorentz group, as said in Section 2.3. There is a unique decomposition
of this field into irreducible representations χa = χ

(3/2)
a + χ

(1/2)
a , where

[δba −
1

3
γaγ

b]χ
(1/2)
b = 0 , (3.15)

γaχ(3/2)
a = 0 . (3.16)

In the case of the field ψ, the condition that it only carries spin-1/2 requires
that Dµψ also belongs to the spin-1/2 representation and should therefore
be in the kernel of the spin-3/2 projector, namely,5

[δµν −
1

3
γνγ

µ]Dµψ = 0 , (3.17)

where γµ ≡ eaµγa. This implies that the system does not generate local
spin-3/2 excitations –no gravitini– through parallel transport of the fermion.
It may be regarded as a consistency condition for the system (2.5) if it is
meant to describe a Dirac spinor. The general solution of (3.17) is, in analogy
to the solution of equation (2.19),

Dµψ = γµξ , (3.18)

where ξ is an arbitrary Dirac spinor.

Next, in order to study the dynamical content of the sector, we perform
a partial gauge fixing. As shown in [12], the field equations for the action
(2.5) require the torsion to be covariantly constant, DT a = 0, where D is the
Lorentz covariant exterior derivative (see Appendix A). The general solution
of this equation, with an appropriate local rescaling of the dreiben –using
the freedom due to Weyl symmetry– is of the form

T a = αεabce
bec , (3.19)

where α is an arbitrary (dimensionful) constant. Now, inserting (3.18), (3.19)
in (3.2) we obtain

Ka = 2εijebie
c
j

[
2αεabcψ̄ψ − (ξ̄γaγbγcψ − ψ̄γcγbγaξ)

]
. (3.20)

In order for the constraint condition Ka ≈ 0 not to introduce additional
restrictions on the fields, the right-hand-side of (3.20) must identically vanish.

5Formally, if the scale has not been fixed the sector should be defined as the equivalence
class of configurations satisfying (3.17) up to Weyl transformations. A manifestly covariant
condition can be attained by introducing a gauge field for scale invariance Dµ → Dµ+Wµ,
as originally proposed by Weyl [63].
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This demands ξ = αψ and therefore, this selects the sector6

Dµψ = αγµψ . (3.21)

Multiplying both sides by γµ, this reduces to the Dirac equation where
the mass m = 3α is an integration constant related to the torsion of the
background, in complete agreement with [12].

Both (3.19) and (3.21) break local scale invariance, leaving only a global
symmetry under ea → λea, ψ → λ−1ψ, m→ λ−1m for constant λ. In analogy
with SUSY, this rigid symmetry does not interfere with the counting of local
DOF. As pointed out in [12, 14], the introduction of a dimensionful mass
constant m enables us to finally determine the scale for the theory.

In Appendix C.2, we show that the sector equations (3.19) and (3.21) can
be used to consistently solve and preserve the remaining constraints. In fact,
in this case one is enabled to explicitly determine the time evolution of e
and ψ, which is equivalent to the fact that Lagrange multipliers in the total
Hamiltonian are also found in closed form (without using the ‘degenerate
gauge’ (3.13)). We now show how the first-class generators arise to recover
the residual symmetries of (3.19,3.21). In principle we will only assume the
spatial components of these equations to hold, while the temporal parts will
be recovered from Hamilton equations. Thus, note first that in this sector
the combinations

K̃a = Ka −Diϕ
i
a + 2αεbace

c
iϕ

i
b + α(Ω̄γaψ − ψ̄γaΩ)

+2iebi ψ̄γabψφ
i + 2εbace

c
i ψ̄ψφ

i
b , (3.22)

are first-class constraints, as can be directly checked computing the Poisson
brackets:

{K̃a,Ω} ≈ {K̃a, Ω̄} ≈ {K̃a, ϕ
i
b} ≈ 0 , (3.23)

{K̃a, φ
i
b} ≈ {K̃a, φ

i} ≈ 0 , (3.24)

{K̃a, K̃b} ≈ 0 . (3.25)

These three constraints are the generators of spacetime diffeomorphisms
supplemented by gauge transformations and projected on the tangent space.
This is seen from the identity

{· · · , eai K̃a} ≈ {· · · ,Hi + AiK̃ + ωai J̃a} . (3.26)

6The projector (3.17) is a generalization of the so-called ‘twistor operator’, which
defines conformal Killing spinors (3.18) in the absence of torsion [6, 66]. Equation (3.21)
can be regarded as the Killing spinor equation for a curved background [14]. Remarkably,
(3.18) and (3.21) are completely equivalent by virtue of the Dirac equation.
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We now set the Lagrange multipliers associated to the primary constraints in
order to accommodate the seven first-class generators. The total Hamiltonian
reads

HT =

∫
d2x

[
eatKa − ωat Ja − AtK + ϕiaλ

a
i + φiaΛ

a
i + Λ̄Ω + Ω̄Λ + λiφ

i
]

=

∫
d2x

[
−ωat J̃a − AtK̃ + eat K̃a

]
=:

∫
d2xH . (3.27)

Note that here we are implicitly fixing the Weyl freedom, i.e., we have
assumed v = 0 in the shift (3.11). This is required to preserve the sector.
Indeed, the time evolution for the fields (eai , ψ, Ai, ω

a
i ), by virtue of the

Hamilton equations, leads to

Dtψ = ψ̇ − i

2
Atψ +

1

2
εabcωbtγcψ = αγtψ , (3.28)

T ait = ∂ie
a
t − ėai + ωabie

b
t − ωabteai = 2αεabce

b
ie
c
t , (3.29)

Fit = ∂iAt − Ȧi = 2ieai e
b
tψ̄γabψ , (3.30)

Ra
it = ∂iω

a
t − ω̇i + εabcωbiωct = 2εabce

b
ie
c
tψ̄ψ , (3.31)

These are readily seen to recover the temporal parts of equations (3.19)-(3.21)
and the constrains (3.3,3.4), thus agreeing with the Euler-Lagrange equations.

As stated, an interesting feature of this gauge is that eat is not restricted at
all, which is equivalent to the statement that the three constraints K̃a are
first-class. For regular configurations with |e| 6= 0, it is clear that (H,Hi)
are then three independent constraints generating temporal and spatial
diffeomorphisms, respectively. Nevertheless, even for a degenerate dreibein it
is possible to define

H⊥ := εabce
b
1e
c
2K̃a , (3.32)

which corresponds (up to normalization) to the generator of diffeomorphisms
normal to the surfaces t = constant, modulo gauge transformations. Defining
the Lagrange multipliers eat , At and ωat as

eat = N⊥εabce
b
1e
c
2 + eaiN

i , (3.33)

At = λ− AiN i , (3.34)

ωat = λa − ωaiN i , (3.35)

the generator of time evolution takes the more familiar form [61]

H = N⊥H⊥ +N iHi − λK̃ − λaJ̃a. (3.36)

We thus find the expected SO(2, 1)× U(1)×Diff residual symmetries and
their corresponding generators. We anticipate here that even though in this
gauge choice there exist a different set of first-class constraints associated to
diffeomorphisms, the number of DOF is the same and this is, therefore, a
generic sector. This will be discussed in Section 3.2.
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3.1.3 Bosonic Vacuum

The purely bosonic vacuum ψ̄ = 0 = ψ corresponds to a very particular
configuration. In principle, it should not be regarded as a subsector of the
previous case because it acquires additional degeneracies in the Dirac matrix7

which lead to new first-class constraints. This is a direct consequence of
the whole energy-momentum tensor of the Lagrangian formalism vanishes
identically and there are no field equations to determine eaµ, so the dreibein
is a non-propagating gauge field in this case. Nevertheless, some of the first-
class constraints found in the previous section turn out to be not functionally
independent and therefore compensate the situation. As we will show, the
whole picture results into an equal number of DOF, thus we can think of the
vacuum as a generic sector.

First note if the fermions vanish, (C.3) and (3.2)-(3.4) imply

{ϕia, ϕ
j
b} = {ϕia,Ω} = {ϕia, Ω̄} = {ϕia, φj} = {ϕia, φ

j
b} = 0 , (3.37)

{ϕia, K} = {ϕia, Ja} = {ϕia, Ka} = 0 , (3.38)

(where we have set ψ̄ = 0 = ψ after computing the Poisson brackets). Thus,
we find six additional first-class constraints ϕia ≈ 0, which generate arbitrary
changes in the spatial components of the dreibein,

δeai = {eai ,
∫
d2x λbjϕ

j
b} = λai . (3.39)

As the time component eat is already a Lagrange multiplier, this in turn means
that the dreibein is completely arbitrary (in particular it can be chosen to
be invertible). In this sector, the first-class constraints (3.7) read

J̃a = Ja + εbacϕ
j
be
c
j +Djφ

j
a , (3.40)

K̃ = K + ∂jφ
j , (3.41)

Υ = −ebjϕ
j
b , (3.42)

Hi = eaiKa − eaiDjϕ
j
a + T aijϕ

j
a − ωai J̃a − AiK̃ . (3.43)

Note that the Weyl invariance has not been fixed so the torsion components
T aij remain undetermined. In this sector one can also identify Ka ≈ 0 as a
first-class constraint (which is identically fulfilled). However, since (3.2) is
quadratic in the fermionic variables, it can be shown that it does not act on
the phase space,

{Ka, F} = 0 , (3.44)

7The Dirac matrix is defined as ΩAB := {φA, φB}, where the indexes A,B range over
all the constraints [25].
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Sector Gauge Generators F S

Any generic N⊥ = 0 J̃a, K̃,Hi,Υ 7 14 + 4n

Spin-1/2 v = 0 J̃a, K̃, K̃a 7 14 + 4n

Vacuum — J̃a, K̃, ϕ
i
a 10 8 + 4n

Table 3.1: The number of local degrees of freedom for different dynamical sectors.
In these cases, n = 1 for real Majorana spinors and n = 2 for complex Dirac
spinors.

for any function of the physical fields. As Ka ≡ ∂L
∂eat

can be regarded as the

(t− a) components of the energy-momentum tensor, (3.44) is a consequence
of the fact that the linearized version of T µν = 0 is fulfilled identically.
Considering this functional degeneracy of Ka, we see that diffeomorphisms
(3.43) are composed only of gauge transformations plus certain particular
displacements of the vielbein. Moreover, it is clear that the SO(2, 1) ×
U(1)×Diff×Weyl transformations are generated by a linear combination
of the first-class constraints J̃a, K̃ and ϕia only. The remaining constraints,
corresponding to Ω, Ω̄, φjb and φj, are second-class as can be checked from
their Poisson brackets (C.3).

3.2 Degrees of freedom counting

In a theory with N dynamical field components (that is, excluding Lagrange
multipliers), F first-class and S second-class constraints, the number of DOF
is given by [67]

DOF =
2N − 2F − S

2
. (3.45)

In the system discussed here there are N = 14 + 4n dynamical field com-
ponents, Ai, ω

a
i, e

a
i , ψ, ψ̄. The following table gives the values of F and S

in different cases: In all cases, formula (3.45) gives DOF = 2n, in complete
agreement with the naive counting at the beginning of this chapter. Note
that the first two sectors share the same number of independent first-class
constraints. For the second, one finds an additional diffeomorphism generator
instead of the Weyl scaling.

As the possibility of finding another first-class combination cannot be ruled
out in general, one could in principle find a sector where all the three
diffeomorphism generators and the Weyl scaling (in addition to J̃a and
K̃) are independent, even though such a configuration would certainly be
non-generic by definition. However, this would lead to an odd number of
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second-class constraints and a non-integer result for the DOF , according to
(3.45).

3.3 Analysis

Let us remember the Lagrangian (2.5) is obtained from a CS form for an
osp(2|2) connection, in which the spinorial component of the connection is a
composite field split as /eαβψ

β. This splitting has a number of nontrivial con-
sequences for the dynamical contents of the theory: i) Instead of zero degrees
of freedom of a generic CS action, this system has the four propagating DOF
of a Dirac spinor; ii) The system acquires a proper Weyl rescaling symmetry,
i.e., it has no associated Noether charge and can be directly fixed; iii) The
metric structures –the dreibein and the induced metric– are invariant under
SUSY, and therefore there is no need to include spin-3/2 fields (gravitini);
iv) Supersymmetry is reduced from a gauge symmetry to a rigid/global
invariance that is contingent on the features of the background geometry
and the gauge fields; v) For the vacuum sector the dreibein becomes pure
gauge and diffeomorphisms degenerate into SO(2, 1)× U(1) transformations.

The Dirac formalism completely recovers the Lagrangian equations. The
equations for the gauge fields (ω,A) follow from the constraints and the
Hamilton equations for these fields. Furthermore, it can be shown that
the Dirac equation and equation T µν = 0 are respectively equivalent to
(C.9,C.10) for an invertible dreibein. In fact, after Weyl fixing and computing
the temporal evolution one gets Dtψ = eat ζa and T ati = ebte

c
iT

a
bc. Then,

equations (C.9,C.10) together with the constraint (3.2) can be covariantized
to give

T aµνψ̄ψ = ψ̄γaγ[µ

−→
D ν]ψ + ψ̄

←−
D [νγµ]γ

aψ , (3.46)

γµDµψ =
1

4
T aµνγ

νµγaψ . (3.47)

The degeneracy of these equations follows from the fact that T µµ is pro-
portional to (3.46) and is a combination of the Dirac equation -plus its
conjugate-, and therefore identically vanishes for this theory, which is in turn
equivalent to Weyl invariance.

It should be stressed that DOF = 2n is an upper bound for the number of
local DOF since in non-generic sectors there might be additional accidental
first-class constraints and therefore fewer degrees of freedom, as it happens
in some sectors of higher-dimensional CS systems [58]. The general counting
performed in Section 3.1.1 proceeds under the assumption that this is not
the case. The argument given there, using the ‘degenerate gauge’, even
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holds for the spin-1/2 sector of Section 3.1.2, but for that configuration, it is
illustrative to explicitly use the Weyl fixing instead (see the end of Appendix
C.2).

In that sense, the purpose of choosing a specific sector such as the spin-1/2
is twofold: On the one hand, the Lagrange multipliers can be readily solved,
allowing for an explicit solution of (C.9,C.10) leading to a full realization
of the first-class constraints. On the other, the Weyl symmetry is “gauged
away” in this case, providing a symmetry breaking mechanism. One is left
with a global version of the scale invariance which is broken by fixing the
fermion mass or the normalization of the dreibein.

In this system, SUSY seems to play a marginal role. It starts out as part
of the gauge invariance of the action (2.5), then it is seen as a global (rigid)
symmetry without first-class constraints associated to it, contingent on
the existence of some spacetime symmetry, which need not occur in every
spacetime background. The action and the equations are invariant under

δψ =
1

3

−→
/Dε , δψ =

1

3
ε
←−
/D

δA = − i
2

(
ψ/eε+ ε/eψ

)
δωa = −ψ

(
ea + εabce

bγc
)
ε− ε

(
ea − εabcebγc

)
ψ , (3.48)

δea = 0

where ε satisfies the no-spin-3/2 condition, [δµν − (1/3)γνγ
µ]Dµε = 0. This

condition can be fulfilled provided the spacetime and the connection fields
admit a Killing spinor of a certain kind [15]. This is the case for the vacuum:
AdS or Minkowski space without fermions or electromagnetic fields. This
background is a full-BPS state preserving full supersymmetry, but there are
configurations preserving 1/2 or 1/4 of SUSY, just like in (2 + 1) SUGRA
[14, 68]. A bosonic vacuum ψ = 0 remains invariant under (3.48) provided
/Dε = 0, which is also a requirement that the background admits a Killing
spinor.

Unconventional supersymmetries can also be constructed in higher dimensions
based on a gauge superalgebra containing so(2n, 2) or so(2n−1, 1) as a proper
subalgebra. In odd dimensions D = 2n+ 1 ≥ 5, a similar CS construction
can be set up, while for D = 2n ≥ 4, since the CS forms are not defined,
the construction requires a metric and the action can be of a Yang-Mills
type, as we shall see in detail in Chapter 5. In both cases, the fermionic
part of the connection can be construed as a composite of a vielbein and
a spin-1/2 Dirac field [15]. For all D ≥ 4, it can be expected that, as in
the three-dimensional case discussed here, the vielbein would not contribute
to the dynamic contents unless it possesses an independent kinetic term
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of its own; the effective gauge symmetry would correspond to the bosonic
part of the superalgebra, and supersymmetry would be reduced to a rigid
invariance conditioned by the existence of globally defined Killing spinors
of the background. In other words, supersymmetry would be at most an
approximate feature in some vacuum spacetime geometries, and the main
footprint of its presence in the theory would be in the field content, the type
of couplings and the parameters in the action.

As we shall see in Chapter 9, the conduction properties of graphene [69–71]
can be very well described by the π-electrons in the two sublattices of the
honeycomb structure as massless fermions in the long-wavelength limit [40].
It was already conjectured that the system studied here could reproduce the
behaviour of these π-electrons [12, 14], while the very strong σ-bond of the
remaining available electrons of the carbon atoms keep the geometry of the
graphene layer fixed. Therefore it is expected that in the low energy (long
wavelength) regime, the dynamical contents are essentially in the fermion
sector, as pointed out here. Nevertheless, note that we have introduced
a torsional mass term, which is required in principle by hermiticity. Such
construction not only leads to a symmetry breaking mechanism but, it also
allows the massive fermion to trigger a backreaction into the background,
provided we use the contorsion as an effective cosmological constant. This
implies a constant curvature background as illustrated in [12]. Following
that line, an idea to be experimentally explored is whether specific graphene
layers (or graphene-like material) can be manufactured which admit Killing-
spinors in order to measure some induced SUSY effects. This would provide
low-energy graphene models to test high-energy physics theories, whose
observable effects are beyond reach in current particle accelerators [31, 32].

Besides providing a rigorous tool for identifying the dynamical DOF, the
Hamiltonian formalism could be the preliminary warm-up towards a quanti-
zation procedure [25, 26], eventually leading to a quantum theory of graphene.
In the system described here, the only dynamical degrees of freedom are those
of the Dirac fermion; the bosonic connections A and ω are described by CS
actions and therefore have no local DOF, while the dreibein is an artefact that
can be gauged away. This means that the bosonic fields could not contribute
to the QFT other than as classical external fields; their quantum excitations
would be produced by nontrivial global holonomies of a topological nature.
Such fields would not propagate and hence should not generate perturbative
corrections. In particular, there should be no perturbative corrections gener-
ated by quantum fluctuations of the bosonic fields in graphene, the system
should behave like a free electron field propagating in a curved classical
background and, therefore, one can reasonably expect to be renormalizable.
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Chapter 4

Internal SU(2) group

In this section, we shall describe an extension of the group OSP (2|2) in
order to include a particular non-Abelian internal gauge symmetry, as SU(2).
As we will see, the procedure to construct such a theory is very similar to
that followed in Chapter 2. The only difference is the addition, due to the
transformation of the fermion under SU(2) fundamental representation, of
an extra internal index for such a fermion. We also present some interesting
bosonic solutions, as AdS3 and BTZ black holes, and their Killing spinors.

4.1 Connection, Lagrangian and field equa-

tions

The minimal graded Lie algebra where the fields are in a linear representation,
which includes su(2) and so(2, 1) as subgroups, is usp(2, 1|2) [14]. We take
a one-form connection, which is spanned by the su(2) generators TI , the

Lorentz generators Ja, SUSY generators Qα
i , Qi

α, and it is needed an extra
generator Z (a central U(1) extension) in order to close the algebra, as we
shown in Appendix B.2. With the role of dreibein as connecting the tangent
space and the base manifold, such a one-form connection can be written as

A = AITI + ψ
i
/eQi + Qi

/eψi + ωaJa + bZ , (4.1)

where this time we omitted the spinorial indexes for the sake of simple
notation. The index I = 1, 2, 3 is in the adjoint representation of su(2)
subalgebra, while the index i = 1, 2 is in the fundamental one. We define the
Dirac adjoint as

ψ
i

α = iψ†βj Cβαδ
ji . (4.2)

33
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Here
(γa)

† = CγaC , C† = −C , C2 = −1 .

so that C†C = 1. In this case, the spinor need not be charged with respect
to u(1) because of Z is central. Part of the geometric structure and the
details of the representation can be readily seen from the curvature two-form1,
F ≡ dA + A2,

F = FaJa + F ITI + QiFi + F iQi + F(b)Z , (4.3)

whose components are given by

Fa = Ra − εabcebecψψ , (4.4)

F I = F I − iεabceaebψγcσIψ , (4.5)

Fi = D j
i (/eψj) , (4.6)

F i = −(ψ
j
/e)
←−
D i
j , (4.7)

F(b) = db− iεabceaebψγcψ . (4.8)

Here Ra = dωa + 1
2
εabcω

bωc is the Lorentz curvature 2-form, and F I =
dAI + 1

2
εIJKA

JAK is the su(2) curvature. We use D for the exterior covariant
derivative for an so(1, 2)× su(2) connection. In particular, for the spin-1/2
fundamental representation,

−→
D j
i = δji

−→
d − i

2
AI(σI)

j
i +

1

2
δjiω

aγa

←−
D j
i = δji

←−
d +

i

2
(σI)

j
i A

I − 1

2
δji γaω

a . (4.9)

In (4.9) we have used the full Lorentz connection (metric compatible) ωa.
The Lorentz connection can be split uniquely as ωa = ω̊a + κa, where ω̊a

is the torsion-free connection (dea + ω̊abe
b = 0) and κa is the contorsion

one-form, so that T a = εabcκ
bec.

As before, the Lagrangian for this theory can be written as a CS form,

L =
κ

2
〈AdA +

2

3
A3〉 , (4.10)

where 〈. . .〉 is the invariant supertrace of su(2) graded Lie algebra [14], (see
Appendix B). This way, the Lagrangian can be written simply as

L =
κ

4

(
AIdAI +

1

3
εIJKA

IAJAK
)

+
κ

4

(
ωadωa +

1

3
εabcω

aωbωc
)
(4.11)

− κψ

(
γµ
−→
Dµ −

←−
Dµγ

µ +
1

2
εabcT

bc
a

)
ψ|e|d3x . (4.12)

1We omit internal indexes and free spinorial indexes whenever it does not lead to

ambiguities, so that ψψ ≡ ψiψi and ψσIψ ≡ ψi(σI) ji ψj .
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The field equations are given by the zero-curvature conditions,

Fa = 0 , F I = 0 , (4.13)

the Dirac equation and the resulting equation from the variation with respect
to the local frame.
Varying with respect to ψ and dropping a boundary term ∂µ(−κ |e|δψψ), we
obtain the Dirac equation,

0 = 2[γµD̊µ +m]ψ + εabcω̊
a
µE

bµγcψ + |e|−1∂µ(|e|γµ)ψ , (4.14)

where the last two terms are required by hermiticity. In (4.14) we have
defined the quantity,

m =
1

8
εabcTabc , (4.15)

associated to a nonzero torsion of the spacetime.
Varying with respect to the vierbein eaµ gives δ(|e|Lψ) = |e|δeaµτ µ

a +κ ∂µ[|e|εµνaδeaνψψ],
where

τ µ
a = κEcµε

cbd
[
ψ
←−
Ddγbγaψ + ψγaγb

−→
Ddψ − ψψTadfεcdf

]
. (4.16)

Therefore, the field equation
τ µ
a = 0 , (4.17)

guarantees that the stress-energy tensor,

tµν = −1

4
κEcµEbν ε

bcd
[
ψ
←−
Ddγbγaψ + ψγaγb

−→
Ddψ − ψψTabd

]
+ (µ↔ ν) ,

(4.18)
vanishes on-shell2 as a consequence of Weyl invariance. Another way to
read this is that the on-shell torsion acts as a source for the usual spinor
contribution to the energy-momentum tensor.

4.2 Symmetries

Due to the way the dreibein is implemented, the Lagrangian (4.11) has the
scale symmetry (2.14) and, because it is built from a CS form, it is immedi-
ately invariant under diffeomorphisms. A gauge transformation generated by
a local, infinitesimal, su(2, 1|2)-valued zero-form G,

G = ρITI + Qi
εi − εiQi + λaJa + λZ , (4.19)

2Here tµν ≡ (2/
√
−g)δ(

√
−gLψ)/δgµν = (1/2)ηab(E µ

a τ
ν
b + E ν

a τ
µ
b ), and we used a

convention in which sµν = s(µν) for symmetric tensors.
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induces transformations on the component fields ωa, AI , ea, ψi and b. While
the transformation laws for ωa, AI and b are straightforward to read off from
the usual rule δA = dA + [A, G] ≡ DG, extra care is required when handling
ea and ψi, since this expression only determines the variation of the product
/eψi. In order to see the form of the transformations on the fields ψi and
ea, we follow the prescription given in Chapter 2, which basically ensures
that the vielbein remains invariant under gauge and SUSY transformations,
but rotates as a vector under the Lorentz subgroup. This is in line with
the standard assumption that the metric is unaffected by internal gauge
transformations like U(1) and SU(N).

4.2.1 Internal gauge symmetry.

The u(1) transformations generated by λZ affect only the u(1) field b, which
changes as δb = dλ. Under su(2), the nonzero transformations are

δAI = DρI , (4.20)

δψi =
i

2
ρI(σI)

j
i ψj , (4.21)

δψ
i

= − i
2
ψ
j
ρI(σI)

i
j , (4.22)

where we have defined the su(2) covariant derivative in the adjoint represen-
tation, DSI ≡ dSI + εIJKAJSK . It is consistent to keep the same notation
for the full so(1, 2)× su(2) covariant derivative as long as it is used with the
appropriate representation of the argument. In this realization there are no
gauginos and the matter field ψi transforms in the fundamental representation
of SU(2).

4.2.2 Lorentz symmetry.

Under Lorentz rotations, ea transforms as a vector while the metric gµν =
ηabe

a
µe
b
ν is insensitive to the choice of local orthonormal basis in the tangent
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space. Consequently, one finds3

δωa = Dλa , (4.23)

δea = −εabcλbec , (4.24)

δψi = −1

2
λaγaψi , (4.25)

δψ
i

=
1

2
λaψ

i
γa , (4.26)

where Dλa ≡ dλa + εabcωbλc defines the Lorentz covariant derivative of λa.
Note that the matter field ψi transforms in the spin-1/2 representation
automatically, and not in the adjoint of so(1, 2). Obviously, AI remains
invariant under local Lorentz transformations.

4.2.3 Supersymmetric rotations.

Under SUSY transformations ωa, AI and b change by

δωa = ea(ψε+ εψ)− εabceb(ψγcε− εγcψ) , (4.27)

δAI = −iea(εσIγaψ + ψσIγaε) , (4.28)

δb = −iea(εγaψ + ψγaε) , (4.29)

where the su(2) indexes are traced over (and omitted). We used here the
same prescription given in Section 2.3 to deal with the decomposition of the
vierbein eaµ and the spinor ψ. This leads to the infinitesimal transformations,

δψi =
1

3
γµ(Dµε)i , (4.30)

δψ
i

= −1

3
(ε
←−
Dµ)iγµ , (4.31)

δea = 0 . (4.32)

Here, as for the OSP (2|2) case, ε will be regarded as a global instead of a
local parameter.

In the next subsection, we describe the classical solutions for these field
equations that have vanishing vacuum energy but a nonzero Λeff.

3In this one-index notation, eq. (4.24) is equivalent to δea = −λabeb, with λab =
−εabcλc.
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4.3 Vacuum solutions

The field equations (4.13) in the matter-free sector, ψ = 0 = ψ, imply that
spacetime is locally Lorentz flat (Rab = 0) and SU(2) flat (F I = 0). The
interesting point is that, however, this does not necessarily imply a trivial
geometry or a trivial SU(2) configuration. The field equations admit other
nontrivial solutions depending on the topology and boundary conditions.
Moreover, these equations do not completely determine the metric structure
and there is a large family of nontrivial solutions that solve them, as discussed
in this section.

Lorentz-flat geometry

As shown in [72], the most general (2+1)-geometry compatible with Rab = 0 is
a geometry of constant negative (Riemann) curvature, i.e., AdS3. Minkowski
space is also allowed as a limiting case of vanishing cosmological constant.
This can be seen as follows.

The Lorentz connection ω can be uniquely split into a torsion-free part and
the contorsion as

ωab = ω̊ab + κab, (4.33)

The torsion-free condition can be solved for ω̊ in terms of the vielbein and a
symmetric affine connection (Christoffel symbol). The Lorentz curvature Rab

splits into the torsion-free (Riemannian) curvature R̊ab and torsion-dependent
terms,

Rab = R̊ab + D̊κab + κacκ
cb , (4.34)

where for D̊(. . .) we understand the covariant derivative with respect to
the torsion-free connection ω̊ab. Clearly the Lorentz-flat condition Rab = 0
does not necessarily imply R̊ab = 0. The Lorentz-flat condition (4.34),
however, implies that the torsion-free connection ω̊ab is not generically flat,
but R̊ab = −D̊κab − κacκ

cb. From the field equation Fa = 0, we have
immediately Ra

be
b = 0, which means DT a = 0. In three dimensions, this

equation has the solution [72]

T a =
ε

l
εabce

bec , (4.35)

where l > 0 is an arbitrary integration constant with dimensions of length
and ε = ±1. The introduction of a dimensionful constant fixes the scale for
the classical configuration, breaks Weyl invariance and gives us an effective
mass term for the fermion

m = −3ε

2l
. (4.36)
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Thus, from relation (4.35), the contorsion can be written as

κab = −ε
l
εabce

c, (4.37)

where we reserved the constant l for the vacuum case and l > 0. It can be
directly checked that D̊κab = 0 and finally

R̊ab = − 1

l2
eaeb . (4.38)

The torsion-free part of the Lorentz connection defines the Riemann tensor
that accounts for the purely metric (torsion free) curvature,

Rαβ
µν = Eα

aE
β
bR̊

ab
µν . (4.39)

Combining (4.38) and (4.39), the Riemann tensor for a Lorentz-flat connection
is found to be [72]

Rαβ
µν = − 1

l2
(
δαµδ

β
ν − δαν δβµ

)
. (4.40)

Therefore, even if the contribution to the vacuum energy from the fermion
condensate were to vanish (ψψ = 0), there is an effective cosmological
constant Λeff = − 1

l2
, where l is an arbitrary integration constant. The

solution with flat Riemann curvature can also be accommodated by taking
ε = 0 (or l →∞). Note that, while there is a sign ambiguity in the torsion
(ε = ±1), no such ambiguity exists for the curvature, which means that
this result is not true for Λ > 0: de Sitter spacetime is not a Lorentz-flat
geometry.

Considering that the symmetry used to define the model is a superextension
of Lorentz symmetry, it is interesting that either flat or negative curvature
spaces could emerge spontaneously. Positive curvature, however, is not
allowed. We can compare this fact with the four-dimensional case in which
de Sitter is not favoured by SUSY either [73].

Conversely, (4.38) implies that any simply connected patch of three-dimensional
anti-de Sitter space can be endowed with a flat Lorentz connection, just like
any patch of Minkowski space. This result can be seen as the Lorentzian
version of Adams’ theorem, which states that S3 is parallelizable, i.e., it can
be endowed with a globally defined flat SO(3) connection [74, 75]. This
theorem is only valid for S0, S1, S3 and S7, so it should not surprise us to
have also a similar conclusion in D = 7 and in no other cases.

In the presence of matter the fermion condensate
〈
ψψ
〉

relates to the curvature
of space and the magnitude of the torsion by means of,

R̊ab = (2
〈
ψψ
〉
− 1

l2
)eaeb , (4.41)
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and therefore, the effective cosmological constant is

Λeff = 2
〈
ψψ
〉
− 1

l2
. (4.42)

This implies that, in order to avoid the appearance of a tachyonic mass term,
the following condition has to be satisfied,

1

l2
= 2

〈
ψψ
〉
− Λeff ≥ 0 , (4.43)

or Λeff ≤ 2
〈
ψψ
〉
. There are three different cases: First, if

〈
ψψ
〉
< 0 only

AdS spaces are allowed. Second, if
〈
ψψ
〉

= 0, then spacetimes with Λeff ≤ 0

are allowed. Finally, for
〈
ψψ
〉
> 0, Λeff can take any values in the range

−∞ < Λeff ≤ 2
〈
ψψ
〉

allowing for metrics that include flat, negative, and a
small window of positive curvature spacetimes.

Summarizing, the general solution for the matter-free equations is a spacetime
that is locally AdS3 (or Minkowski), where the cosmological constant Λ =
−1/l2 is an arbitrary integration parameter. This family of geometries
includes AdS3 with or without identification, in particular, the (2 + 1)-black
hole [76] and spinning point particles [77].

4.3.1 The (2 + 1) black hole as a Lorentz-flat geometry

The (2 + 1)-black hole is locally AdS3, and the local frame that corresponds
to the rotating solution reads [78]

e0 = fdt , (4.44)

e1 = f−1dr , (4.45)

e2 = r (dϕ+Nϕdt) , (4.46)

where

f(r) =

(
r2

l2
−M +

J2

4r2

)1/2

, (4.47)

Nϕ = − J

2r2
, (4.48)

and (M,J) are integration constants corresponding to the mass and angular
momentum. The vanishing torsion condition, dea + ω̊abe

b = 0, can be solved
for the connection yielding

ω̊0
1 =

r

l2
dt− J

2r
dϕ , (4.49)

ω̊1
2 = −fdϕ , (4.50)

ω̊2
0 = − J

2fr2
dr . (4.51)
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The corresponding Riemannian two-form has constant, negative (or zero)
curvature, R̊ab = −l−2eaeb. On the other hand, the full Lorentz connection
ωab, including the contorsion (4.37), reads

ω0
1 =

(
r

l
− ε J

2r

)[
1

l
dt+ εdϕ

]
, (4.52)

ω1
2 = −f

[ε
l
dt+ dϕ

]
, (4.53)

ω0
2 = − 1

lf

(
Jl

2r2
+ ε

)
dr , (4.54)

and is explicitly checked to be flat, Rab = 0.

Other black holes solutions in the presence of torsion have also been derived
in detail under the Mielke-Baeckler model [79, 80], but we want merely to
stress here the fact we can realize the BTZ solution as a Lorentz flat geometry
irrespective of the model which it is implemented.

4.3.2 Flat su(2) sector

In addition to being locally AdS3, the vacuum solutions have a locally flat
SU(2) connection. This connection is locally pure gauge and therefore can be
gauged away in any simply connected patch. But the possibility of gauging
it away everywhere depends on the topology of the manifold.

Since su(2) and so(1, 2) are locally isomorphic, and the corresponding gener-
ators 1/2σI and 1/2γa are the same up to factors of ±i [cf. eq. (B.6)], one
can use the connection (4.52)–(4.54) to tailor the su(2) field AI as

A1 = −i η
hs

(1− ηsV ϕ) dr , (4.55)

A2 = −h
[η
s
dt+ dϕ

]
, (4.56)

A3 = −iηr
s

(1 + ηslV ϕ)
[η
s
dt+ dϕ

]
, (4.57)

where η = ±1, s is an arbitrary length scale (not necessarily equal to l), and

h(r) =

(
r2

s2
−W +

K2

4r2

)1/2

, (4.58)

V ϕ = − K

2r2
. (4.59)

The flat su(2) solution (4.55)–(4.57) makes the asymptotic behavior of the



42 CHAPTER 4. INTERNAL SU(2) GROUP

field as

A
1

= −iη
r
dr , (4.60)

A
2

= −r
s

[η
s
dt+ dϕ

]
, (4.61)

A
3

= −ir
s
η
[η
s
dt+ dϕ

]
. (4.62)

Here (W,K) are integration constants. This configuration for AI closely
mimics the Lorentz connection ωab [cf. eqs. (4.52)–(4.54)], but the field
equations allow nonetheless for independent integration constants (W,K, s).
As in the Lorentz connection, there is a sign ambiguity (η) in the solution
for F I = 0, but in this case it is not related to another structure because in
SU(2) there is no analogue for the local frame or the torsion. Additionally,
the solution (4.55)–(4.57) allows another sign freedom that corresponds to
the choice of sign in the square root to define h. There is no analogue of this
sign freedom in the Lorentz connection, since it would amount to choosing
a local basis in tangent space with the opposite handedness relative to the
coordinate basis.

4.3.3 Conserved Charges

In order to define conserved charges in the presence of nontrivial boundary
conditions it is necessary to add boundary terms to the action to make
sure that the action remains stationary on the classical orbits. For trivial
conditions, in which all the fields are fixed at the boundary and the space
is asymptotically flat, it is often unnecessary to take these precautions, but
for asymptotically AdS spacetimes boundary terms are often required. In
particular, the CS terms in a non-compact manifold must be supplemented
with a boundary term and appropriate boundary conditions that regularize
the action [81]. Let us assume a three-dimensional manifold whose local
geometry is of the formM = R×Σ, where R represents the time direction and
Σ is the two-dimensional spatial section. As shown in [82–84], the regularized
Chern-Simons action in three dimensions is given by the transgression form
T defined by

T = LCS(A) +B(A,A)− LCS(A) , (4.63)

where A corresponds to a fixed classical solution, that matches A at the
boundary and has zero curvature FA = 0. The term B lives on the boundary
and is such that it makes the action gauge invariant. Varying T with respect
to A (with δA = 0) yields

δT = κ 〈δAFA〉 −
κ

2
d 〈AδA〉+ δB. (4.64)
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The first term on the right-hand side vanishes on-shell and therefore B must
be such that [

δB − κ

2

∫
∂M
〈AδA〉

]∣∣∣∣
on-shell

= 0. (4.65)

The boundary condition A
∣∣
∂M = A means that (4.65) is fulfilled if

B = −κ
2

∫
∂M

〈
AA
〉
. (4.66)

The variation of the transgression form around an arbitrary (infinitesimal)
configuration δA will be given by

δT = κ〈δAFA〉+ dΘ. (4.67)

where
Θ =

κ

2
〈δA

(
A− A

)
〉 . (4.68)

Under gauge transformations δA = DAG, δA = DAG, the transgression
remains invariant off-shell, δgaugeT = 0. Consequently, by Noether’s theorem,
there is a conserved current ∗J = −Θ [84]. Demanding the reducibility
condition at spatial infinity [85],

Dξ
∣∣
∂Σ

= 0 , (4.69)

the conserved charge can be found as [84]

Q[ξ] = κ
〈(
A− A

)
ξ
〉
. (4.70)

This last expression will be used now to compute the global charges of
nontrivial vacuum solutions.

The nontriviality of the configuration given in Sections 4.3.1 and 4.3.2 can
be assessed by computing the conserved charges (4.70). For a generator
ξ = αaJa + βITI ∈ so(1, 2)⊕ su(2) we explicitly have

Q[ξ] =
κ

4

[
(ωa − ωa)αa + (AI − AI)βI

]
. (4.71)

This charge requires the definition of the asymptotic behavior of ωa and A
I

[85], given by the leading order in r for r → ∞, where these connections
approach those of the massless black hole and the uncharged su(2) solution.
Therefore

ω0 − ω0 = −Ml

2r

(ε
l
dt+ dϕ

)
+O

(
r−3
)
, (4.72)

ω1 − ω1 =
l2

2r3

(
εM +

J

l

)
dr +O(r−5) , (4.73)

ω2 − ω2 = − J
2r

(ε
l
dt+ dϕ

)
, (4.74)
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and

A1 − A1
= −i s

2

2r3

(
ηW +

K

s

)
dr +O(r−5) , (4.75)

A2 − A2
=
Ws

2r

(η
s
dt+ dϕ

)
+O

(
r−3
)
, (4.76)

A3 − A3
= i

K

2r

(η
s
dt+ dϕ

)
. (4.77)

Now, the reducibility condition (4.69) for ξ implies in the asymptotic region

dαa + εabcω
bαc = 0 , dβI + εIJKA

JβK = 0 . (4.78)

The asymptotic solutions are

α0 = εc1

(
r +

εlJ − l2M
2r

)
+O

(
r−2
)
, (4.79)

α1 = 0 , (4.80)

α2 = c1r +O
(
r−1
)
, (4.81)

and

β1 = 0 , (4.82)

β2 = ηc2

(
r +

ηsK − l2W
2r

)
+O

(
r−2
)
, (4.83)

β3 = iηc2r +O
(
r−1
)
. (4.84)

with c1 and c2 some arbitrary constants. Finally, the Noether charge (4.71)
is found to be

Q = κ
(c1

8l
(εMl − J) +O

(
r−2
))

[εdt+ ldϕ]

+ κ
( c2

4s
(ηWs−K) +O

(
r−2
))

[ηdt+ sdϕ]. (4.85)

This charge must be integrated on a circle at spatial infinity of a time slice,
to obtain the conserved quantities associated to the two symmetry groups,∫

S1
∞

Q =
πκ

2
(c1qSO(1,2) + c2qSU(2)) , (4.86)

where

qSO(2,1) = εMl − J , (4.87)

qSU(2) = ηsW −K . (4.88)



4.3. VACUUM SOLUTIONS 45

Each of the two symmetry groups have a single Casimir operator and this is
reflected in the two charges produced by Noether’s procedure. In order to
see how these charges determine the configuration, let us consider the charge
associated to the Lorentz group, which is determined by two continuous
parameters (M ,J/l) and one sign (ε). For a fixed value of qSO(2,1), there are
two sets of points in the (M − J/l) plane that correspond to it,

M = ±1

l

(
J + qSO(2,1)

)
. (4.89)

These are two straight lines of slope ±1 that intersect at the point (Ml, J) =
−(0, qSO(1,2)). As shown in Figure 4.1, these lines (dashed) correspond to all
states for some negative value of qSO(1,2), which include black holes (upper
wedge), point particles (lower wedge) and unphysical states (left and right
wedges). Each of these lines intersects an extremal black hole, M = |J |/l,
or an extremal spinning particle, M = −|J |/l [77]. As will be shown in the
next section, for qSO(1,2) 6= 0 those extremal states admit-globally defined
Killing spinors (BPS states).

A given value of the SU(2) charge also corresponds to two lines in the
(W,K/y) plane, but in this case there is no geometric interpretation provided
by the metric, which discriminates between black holes, point particles and
unphysical states. In contrast with Poincaré or AdS gauge theories, here we
have only one independent charge asociated to space-time or Lorentz gauge
transformations [86–89]. It is important to clarify how the flat SU(2) solution
should be interpreted. The fact that the fundamental homotopy group of
SU(2) is trivial, π1(SU(2)) = 0, tells us that that symmetry is necessarily
broken in the solution of Section 4.3.2. This is the result of imposing specific
asymptotic behavior (4.60)-(4.62) by demanding DβI = 0 at spatial infinity.
In this sense (4.88) is really an SU(2)-singlet charge, computed with respect
to certain “orientation” of the βI parameter. The parameter βI is analogous
to the Higgs-like field of the ’t Hooft-Polyakov monopole solution [90–92].
Here we have not included the charge associated with the central generator
Z, which could be treated as a U(1) charge in the usual sense and added to
the other two charges trivially.

4.3.4 Killing Spinors

If a bosonic system has a classical solution, it is often sufficient to show
that it admits globally defined Killing spinors in order to prove perturbative
stability. The idea is to embed the theory into a supersymmetric one so that
the supersymmetric action is stationary around the classical solution. Then,
SUSY is typically enough to show that the classical solution is a local energy
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Conical defects
(point particles) 

2+1 BH spectrum  (J!0) 

J 

U 

AdS 

Black 
holes 

Ml 

PP 

U 

Figure 4.1: Mass-angular momentum phase diagram for three-dimensional so-
lutions of gravity. The upper wedge (light blue, or darker grey in the printed
version), M > |J |/l, corresponds to nonextremal black holes configurations. The
lower wedge (light yellow in the electronic version), M < −|J |/l, corresponds to
point particles. Left and right wedges, |M | < |J |/l, are unphysical configurations.
At M = −1 we have anti-de Sitter spacetime (square). Solid lines correspond to
M ± |J |/l = 0. Dotted lines in the lower wedge correspond to M ± |J |/l = −1.
The dashed lines correspond to −1 < M ± |J |/l < 0.
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minimum and, therefore, perturbatively stable [93]. Using the covariant
derivative (4.9), the Killing spinor equation (Dψ)i = 0 can be written as4

dψ +
1

2
ωaγaψ −

1

2
AIσIψ = 0 , (4.90)

where ωa and AI are given by Equations (4.52)–(4.52) and (4.55)–(4.57),
respectively.

Solutions

The general solution for the Killing spinor equation is given by

ψ = UXUγUσUY ψ0, , (4.91)

where ψ0 is a constant spinor and

UX = Xγ−ε +
1

X
γε, (4.92)

UY = Y ση +
1

Y
σ−η, (4.93)

Uγ = exp

[
−θ(ε/l)γ0

([
−M +

εJ

l

]
γ−ε + γε

)]
, (4.94)

Uσ = exp

[
−iθ(η/s)

([
−W +

ηK

s

]
ση + σ−η

)
σ2

]
. (4.95)

In (4.92)–(4.95) we have defined

X =

(
f +

r

l
− εJ

2r

)1/2

, (4.96)

Y =

(
h+

r

s
− ηK

2r

)1/2

, (4.97)

θ(v) =
1

2
(vt+ ϕ) , (4.98)

γε =
1

2
(1 + εγ1) , ση =

1

2
(1 + ησ1) . (4.99)

Note that Uγ and Uσ depend only on t and ϕ, while UX and UY depend only
on r (see Appendix D for details).

4Recalling that γ and σ belong to different spaces and therefore act on different indexes
of ψ, we can safely omit all indexes and simply write γ and σ both acting on ψ from the
left.
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Periodicity Conditions

Let us examine the periodicity of Uγ and Uσ under ϕ→ ϕ+ 2π for different
values of (M,J/l) and (W,K/y). Under that rotation, the phases of Uγ and
Uσ,

S = −γ0

([
−M +

εJ

l

]
γ−ε + γε

)
, (4.100)

Z = −i
([
−W +

ηK

s

]
ση + σ−η

)
σ2 (4.101)

get multiplied by 2π. There are two possibilities for periodicity to occur: i)
if S2 = −1 = Z2, in which case the corresponding Us would be trigonometric
functions of θ, and ii) if S2 = 0 = Z2, in which case there is no ϕ-dependence
at all. Direct computation yields

S2 =

[
γ0

([
−M +

εJ

l

]
γ−ε + γε

)]2

= M − εJ

l
, (4.102)

Z2 =

[
i

([
W − ηK

s

]
ση − σ−η

)
σ2

]2

= W − ηK

s
. (4.103)

In the (M,J/l) plane one can distinguish three different cases: i) M − εJ/l =
−1, corresponding to two straight lines passing through the AdS point,
(−1, 0); ii) the generic extremal cases, M = |J |/l 6= 0; and iii) the zero mass
extremal case, M = 0 = |J |. Three analogous cases can be distinguished
in the (W,K/s) plane simply replacing (ε, l,M, J) by (η, s,W,K) which,
together with the other three, produce nine combined cases. In each of
these cases the number of globally-defined Killing spinors is different, as
summarized in Table 4.1, also depicted in Figure 4.2 (see Appendix D for
details).

In the case M − εJ/l = −1, for each value of ε there are two well-defined
solutions, the two basis for the constant spinor ψ0, represented by the solid
lines in Figure 4.2. In the second case, M = |J |/l 6= 0, there is only one
well-defined solution corresponding to the basis spinor in the kernel of γε,
represented by the two lines M = ±J/l. We can also see that at the two
green points there are three well-defined solutions: two for the value of ε
such that M − εJ/l = −1 and one for the value of ε such that M − εJ/l = 0.

Since the SO(1, 2) and SU(2) symmetry groups are independent, each one
with its own constants of integration, the total number of Killing spinors is
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J/l

M

2 KS2 KS

1 KS1 KS

4 KS

3 KS3 KS

2 KS

Figure 4.2: A generic configuration has no globally-defined Killing spinors (KS),
but there may be up to 4 ks for special values of M and J . Further explanation in
the main text.
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aaaaaaaa
(W,K/s)

(M,J/l)
(−1, 0) (0, 0) (R+,M)

(−1, 0) 16 8 4
(0, 0) 8 4 2

(R+,W ) 4 2 1

Table 4.1: The number of Killing spinors for different values of (M,J/l) and
(W,K/s) in the black hole region.

just the product of the number of well-defined solutions (4.91) of each sector.
The number of complex components of ψ0 is four, two from the spinor index
and two from the internal index. The final number of Killing spinors for
each case is given in Table 4.1. These could be considered as more general
Killing-spinors solutions of the ‘standard’ BTZ, which were already found
[68].

4.4 Discussion

We have considered the CS theory for the superalgebra su(2, 1|2). This
algebra can be seen as the minimal supersymmetric extension of the algebra
so(1, 2)⊕ su(2). This yields an action containing, in addition to the SU(2)
connection and (2 + 1) gravity, a Dirac field minimally coupled to gravity
and to the SU(2) gauge field. As in [12], the cosmological constant and the
mass of the fermion are related and determined by an integration constant,
instead of being fundamental parameters in the action.

This system can be viewed as a three-dimensional toy model of a more
“realistic” four-dimensional theory. However, the Dirac Lagrangian minimally
coupled to the SU(2) gauge field also seems appropriate to describe electrons
in graphene in the long wavelength limit near the Dirac point, including
the possibility of spin-spin coupling mediated by the SU(2) gauge field.
This interaction corresponds to assuming the freedom of choosing the spin
quantization axis independently at each point in the graphene lattice, as
done in the Jordan-Wigner transformation for the Hubbard model [94, 95].
Such an interaction might produce long-range correlations between electron
pairs with antiparallel spins in a manner analogous to the Cooper pairs in the
BCS theory, in which case, a superconducting phase could exist in graphene
at low temperature.

The field equations in the matter-free case obtained by setting to zero the
fermions, are those of a locally flat SU(2) connection in a background of
locally maximally symmetric three-dimensional spacetime, which includes
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AdS3, black holes, and point particles (conical singularities) in AdS3, as well
as their spinning counterparts. By exploiting the fact that for a particular
choice of the torsion a locally AdS3 geometry is Lorentz-flat, a globally
nontrivial although locally flat SU(2) connection is constructed mimicking
the geometry of a (2 + 1)-black hole. The solution has a SU(2) charge.
However, as discussed in Section 4.3.3, this is not coloured but just an Abelian
charge from the residual broken symmetry SU(2)→ U(1). If the black hole
is rotating, it is characterized by a combination of the parameters (M,J)
and (W,K). For certain specific values of these parameters, the solutions
admit globally defined Killing spinors, which means that the corresponding
solutions are candidates for perturbatively stable ground state configurations
with a number of unbroken rigid supersymmetries.

By a similar procedurewe we have seen in Chapter 3, in a generic SUSY
extension of an internal non-Abelian gauge symmetry, the fermion excitations
turn out to be the only contribution to the local DOF. In order to illustrate
this, let us consider the split Lagrangian for the SU(2) theory (4.11), which,
up to a global factor, reads [14]5

LSU(2) = εij
[
−ηabėai ebjψ̄AψA − ˙̄ψAγijψ

A + ψ̄Aγijψ̇
A +

1

2
ηabω̇

a
i ω

b
j +

1

2
δIJȦ

I
iA

J
j

]
−eatKa + ωat Ja + AItKI , (4.104)

Here the indexes A = 1, 2 transform under the 2× 2 vector representation
of SU(2) (Pauli matrices), while I = 1, 2, 3 refers to the adjoint repre-
sentation (we follow the conventions of [14]). The primary constraints
(ϕia, φ

i
a, φ

i
I ,Ω

A, Ω̄A) are defined in an analogous fashion to their U(1) coun-
terparts. If one omits the contraction in the A index, i.e. ψ̄Aψ

A = ψ̄ψ, the
secondary constraints Ka and Ja adopt exactly the same form as (3.2,3.3)
where the covariant derivatives are now gauged by SO(2, 1)× SU(2). The
remaining constraint reads

KI = εijδIJ(
1

2
F J
ij − iψ̄γijσJψ) = εijδIJ(∂iA

J
j +

1

2
εJKLA

K
i A

L
j − iψ̄γijσJψ) .

(4.105)

5The CS form also contains an abelian form b associated to the central charge in
su(2, 1|2). However, b decouples from the action and therefore does not enter in the
dynamical analysis.
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Then, one can show that

J̃a := Ja + εacϕ
j
be
c
j +

1

2
(Ω̄γaψ − ψ̄γaΩ) +Djφ

j
a ,

K̃I := KI −
i

2
(Ω̄σIψ − ψ̄σIΩ) +Djφ

j
I ,

Υ := −ebjϕ
j
b + Ω̄ψ + ψ̄Ω , (4.106)

Hi := eaiKa − eaiDjϕ
j
a + T aijϕ

j
a + ψ̄

←−
D iΩ + Ω̄

−→
D iψ − ωai J̃a − AIi K̃I + φjIF

I
ij + φjaR

a
ij .

correspond to F = 9 first-class combinations generating SO(2, 1)× SU(2)×
Weyl × Diff transformations, respectively. In account of these and the
remaining S = 18 + 8n second class constraints, the original phase space of
N = 18 + 8n variables only contains

DOFSU(2) =
2N − 2F − S

2
= 4n (4.107)

degrees of freedom for a generic sector, exactly matching the double of the
U(1) case due to the doubling of the fermion fields. SUSY is again not
realized as a first-class constraint, but is a rigid transformation for certain
backgrounds. Such matters, together with the computation of the asymptotic
charges, were already treated in Section 4.3.4.



Chapter 5

Unconventional
Supersymmetry in D = 4

We would like to extend the model presented in previous chapters to D = 4,
in order to obtain a more realistic fundamental theory, or at least an effective
theory describing some particular behaviour of Nature. Following the same
logic than these ones, the most naive choice for an invariant Lagrangian in
even dimensions could be

P2n = 〈F · · ·F〉 , (5.1)

where 〈· · · 〉 is a (super) trace in the Lie algebra, is an invariant polynomial 2n-
form. However, this is a topological invariant and not a suitable Lagrangian.
In fact, the Chern-Weil theorem asserts that any invariant polynomial of this
form is necessarily closed, dP2n = 0, and therefore, according to the Poincaré
lemma, it is locally an exact form: P2n = dC2n−1 [96]. This means that its
variations –under appropriate boundary conditions– identically vanish, or
are just a boundary term, while the dynamics in the bulk remains arbitrary.
Thus, in particular, there are no Lagrangians L(F) constructed using only
exterior products, invariant under the entire gauge group; the Euler-Lagrange
equations for such “invariant Lagrangians” would have the trivial form 0 = 0.

Therefore, in order to have dynamics in even dimensions, one must give up
gauge invariance under the full gauge group. Instead, the form (5.1) must
be constructed with a symmetric trace 〈· · · 〉 that is not invariant under the
entire gauge symmetry group, but under a subgroup of it. This case is the
only alternative in even dimensions and corresponds to the approach taken
independently by Chamseddine and West [97], Mac Dowell and Mansouri
[98], and by Townsend [99], to construct a four-dimensional (super-)gravity
out of a superalgebra for the (super-)AdS symmetry. Those authors found
that although the fields could be described by an SO(3, 2) (AdS4) connection,

53
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the four-dimensional action could be at most invariant under the Lorentz
group (SO(3, 1)-invariant).

In all dimensions, YM Lagrangians can be constructed, provided the space-
time is equipped with a metric structure with which the Hodge dual of F is
defined. Thus, we tentatively define

LYM = −1

4
Str [F ∧~ F] , (5.2)

where ~F is the dual of F. The metric structure required by this construction
is provided by the vierbein form ea = eaµd

µ, where µ ∈ {0, 1, 2, 3}.

5.1 The system

The simplest SUSY in 4D containing U(1)× SO(3, 1) includes the (A)dS4

generators Ja and Jab, the complex supercharge Qα in a spin 1/2 repre-
sentation, and the U(1) generator K. This is the usp(2, 2|1) superalgebra,
whose essential anticommutator is (see Appendix B.3 for details on this
representation)

{Qα,Qβ} = −i(γa)αβJa +
i

2
(γab)αβJab − δαβK , (5.3)

together with the trivial anticommutators {Qα,Qβ} = 0 = {Qα,Qβ}. An
explicit 6× 6 representation for the supercharges is

(Qα)AB = − i
s

(δA5 δ
α
B + CαAδ6

B), (Qα)AB = δAα δ
5
B + δA6 CαB , (5.4)

where s2 = −1 corresponds to de Sitter, and s2 = 1 to anti-de Sitter.
Here Cαβ = −Cβα is the conjugation matrix, Cαβ is its inverse1. In this
representation, the U(1) and AdS generators are [15]

(K)AB = i(δA5 δ
5
B−δA6 δ6

B), (Ja)
A
B =

1

2
(γa)

α
βδ

A
α δ

β
B, (Jab)

A
B =

1

2
(γab)

α
βδ

A
α δ

β
B

(5.5)

The connection can be written as

A = AK+Q/eψ + ψ/eQ+ faJa +
1

2
ωabJab, (5.6)

1The indices A,B = 1, ..., 6 combine both spinor indices (α, β = 1, ..., 4) and those of a
two-dimensional representation (r = 5, 6) of U(1), i.e., A = (α, r).
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where A = Aµdx
µ, /e = γae

a
µdx

µ, fa = faµdx
µ and ωab = ωabµ dx

µ are one-form
fields (spinorial indices omitted). The curvature F = dA + AA takes the
form F = F0K+QαFα + FαQα + F aJa + 1

2
F abJab, where

F0 = F − ψ/e/eψ , (5.7)

F = ∇(/eψ) , (5.8)

F = −(ψ/e)
←−
∇ , (5.9)

F a = Dfa − i

s
ψ/eγa/eψ , (5.10)

F ab = Rab + s2faf b + iψ/eγab/eψ , (5.11)

Here F = dA, Dfa = dfa + ωabf
b, and Ra

b = dωab + ωacω
c
b. We have

also used the notation 6f = γaf
a, and /ω = 1

2
γabω

ab. The operators
−→
∇ ≡[−→

d − iA+ s
2
6f + 1

2 /ω
]

and
←−
∇ ≡

[←−
d + iA− s

2
6f − 1

2 /ω
]

are the full bosonic

covariant derivatives in the 1/2−spin representation.

Under SUSY transformation generated by Λ = Qε− εQ, the connecton A
changes by δA = dΛ + [A,Λ]. Using the (anti-) commutation relations of
the superalgebra, one finds

δAµ = −
(
εγµψ + ψγµε

)
(5.12)

δfa = − i
s

(
εγa/eψ + ψ/eγaε

)
(5.13)

δωab = i
(
εγab/eψ + ψ/eγabε

)
(5.14)

δ [γµψ] =

[
∂µ − iAµ +

s

2
faµγa +

1

4
ωabµ γab

]
ε ≡ ∇µε . (5.15)

As discussed above, using δea = 0 = δγµ in (5.15) implies δψ = 1
4
γµ∇µε, and

the consistency condition
[
δµν − 1

4
γνγ

µ
]
∇µε = 0 eliminates the spin-3/2 part.

5.1.1 Invariant Hodge trace

Starting from the connection (5.6), one can construct an action of the YM
type. The Lagrangian is a four-form quadratic in curvature,

L = κ〈F~F〉 , (5.16)

where ~F stands for the dual of F with (~)2 = −1 in the Lorentzian signature.
Here we take duality as the Hodge dual (∗) in the spacetime, the γ5-conjugate
in spinor indices, and the dual in the AdS algebra, to wit,

~F = ∗F0K+ (Q)α(γ5F)α + (F)α(γ5Q)α + Υ

[
F aJa +

1

2
F abJab

]
. (5.17)
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In the 6× 6 representation, (Υ)AB = (γ5)αβδ
β
Bδ

A
α , or

Υ =


γ5

0
0
0
0

0
0
0
0

0 0 0 0 0 0
0 0 0 0 0 0

 . (5.18)

The three dualities square to minus the identity in their respective subspaces,
(∗)2 = (γ5)

2 = (Υ)2 = −1 2. Since Υ commutes with K and Jab, but
not with Ja or Qαi , the resulting quadratic form (5.16) is invariant under
SO(3, 1)× U(1), the only remaining symmetry of the action out of the full
AdS SUSY (5.3).

5.1.2 Four-dimensional Lagrangian

The nonvanishing supertraces, bilinear in the generators that appear in L,
are

〈KK〉 = 2, 〈QαQβ〉 = 2iδβα = −〈QαQβ〉, 〈JabΥJcd〉 = εabcd , (5.19)

and therefore,

〈F~F〉 = 2F0 ∗ F0 + 4iFα(γ5)αβFβ +
1

4
εabcdF

abF cd . (5.20)

From (5.8) and (5.10) it is clear that the covariant derivative acts on the
components ξαµ ≡ γµψ

α which are in the kernel of the spin-3/2 projector,
Pµ

νγνψ = 0. The second term of the r.h.s. of (5.20) contains only covariant
derivatives in the spin-1/2 representation, so we can safely assume that no
dynamical channels are available to switch on a spin-3/2 excitation.

The Lagrangian can also be expressed as

L = −1
4
〈F~F〉 = LEM|e|d4x+ LGrav(ω, f)

+ i
2
sψ
[←−
Dγ5/e6f/e + γ5/e6f/e

−→
D
]
ψ + i

2
sψ
[
γ5(/T 6f/e − /e6f /T )

]
ψ

− i
2
s2ψγ5/e6f 6f/eψ + 12

[
(ψγ5ψ)2 − (ψψ)2

]
|e|d4x ,

(5.21)

2This choice of the dual operator ~ ensures that it produces the right kinetic terms for
the Maxwell filed, the gravitational action and the spinor.
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where
−→
Dψ ≡ (

−→
d − iA+ 1

2 /ω)ψ, ψ̄
←−
D ≡ ψ̄(

←−
d + iA− 1

2 /ω), LEM = −1
4
FµνF

µν ,
and LGrav(ω, f) = − 1

16
εabcd(R

ab + s2faf b)(Rcd + s2f cfd).

The quartic fermionic expression is the Nambu–Jona-Lasinio (NJL) term,
g[(ψψ)2 − (ψγ5ψ)2].

The field fa is undifferentiated and therefore its equation could –in principle–
be algebraically solved and substituted back in the action. Since f is a
connection component, this means that the invariance of the theory under
local AdS boosts is frozen, which is consistent with the fact that the action
is not really invariant under local AdS boosts. The same is true about
the vierbein ea in the first order formulation of four-dimensional gravity
[100]: in that case, the torsion equation can be algebraically solved for the
spin connection, underscoring the fact that 4D gravity has local SO(3, 1)
invariance, and no SO(3, 2), SO(4, 1), or ISO(3, 1) local symmetry.

The tensor character of fa and ea is the same, and it was suggested in
[99] that they should be proportional, fa = µea, where µ is a constant
with dimensions of (length)−1. This choice eliminates parity-violating terms
from the Lagrangian so that in the absence of parity changing interactions,
this sector remains self-contained, but it might be of interest to see the
consequences of relaxing this condition and to explore, in particular, whether
this could lead to new phenomena in conflict with observations.

If one follows the proposal in [99] the Lagrangian becomes

L = LEM|e|d4x+ LGrav(ω, e)

− i
2
sµ
[
(ψ
←−
D)γaψ − ψγa(

−→
Dψ)

]
εabcde

beced + 2isµψγ5γaψ(Tbe
b)ea

− i
2
s2µ2ψψεabcde

aebeced + 12
[
(ψγ5ψ)2 − (ψψ)2

]
|e|d4x ,

(5.22)
in standard units, ~ = c = 1, µ has units of mass. The spin-1/2 field with
the right physical dimensions is ψphysical =

√
6µψ, where we have included a

factor
√

6 for later convenience. Rewriting the Lagrangian in this convention,
one obtains

L = [LF + LEM ]
√
|g|d4x+ LGrav(ω, e), (5.23)

where the fermionic Lagrangian is

LF = − i
2
s
[
ψ(
←−
/D −
−→
/D)ψ + 4µψψ

]
− istµψγ5γµψ−

1

3µ2

[
(ψψ)2 − (ψγ5ψ)2

]
.

(5.24)

Here
−→
Dψ = (

−→
/∂ − i /A+ 1

2 /ω)ψ, and ψ
←−
/D = ψ(

←−
/∂ + i /A− 1

2 /ω), are the covariant
derivatives for the connection of the SO(3, 1)×U(1) gauge group in the spino-
rial representation, and following [101], we defined tµ ≡ − 1

3!
εµνρτeaνTaρτ |e|.
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The correct sign of Newton’s constant in (5.23) is obtained for s2 = −1, that
is, for the de Sitter group only.

5.1.3 Field equations

Varying the action (5.22) with respect to the dynamical fields yields the
following (we take the de Sitter signature):

δAν : ∂µF
µν + iψγνψ = 0 (5.25)

δωabµ : ψγab
cψEµ

c + 3µ2
[
Eν
aE

λ
bE

µ
c + 2Eµ

aE
ν
bE

λ
c

]
T cνλ = 0 (5.26)

δψα : −
−→
/Dψ + 2iµψ + γ5γµψt

µ + 2
3µ2

[
(ψ̄γ5ψ)γ5 − (ψ̄ψ)

]
ψ = 0 (5.27)

δea : εabcd(R
bc − µ2ebec)ed = τa, (5.28)

where τa is the stress-energy three-form, defined by δ (|e|[LF + LEM ]) =
δea ∧ τa. From the second equation it follows that T cµνE

ν
c = 0, which means

that torsion is determined by the local presence of fermions.

T aµν =
−i

3sµ2
ψγabcψe

b
µe
c
ν . (5.29)

Contracting the third equation with ψα and its conjugate with ψα, gives

ψα
δL

δψα
− δL

δψα
ψα = ∂µ(is

√
|g|ψγµψ)d4x = 0 , (5.30)

which expresses the conservation of electric charge and coincides with the
current conservation condition obtained from (5.25).

5.2 Discussion

The fermionic Lagrangian (5.23) describes an electrically charged spin-1/2
field minimally coupled to the spacetime background, plus non-minimal
couplings that depend on the spacetime dimension. The coupling to torsion
is not a new feature of this model but, as noted long ago by H. Weyl [55], it
is present whenever the Dirac equation is written in a curved spacetime with
torsion. The only new fermionic piece in the Lagrangian is the NJL term in
the four-dimensional theory, which can be viewed as the main modification
predicted by this model.3

3If instead of the U(1) gauge group, one had considered SU(2) or SU(3), NJL term
would have been of the form Cabcd[(ψ

a
ψb)(ψ

c
ψd)− (ψ

a
γ5ψ

b)(ψ
c
γ5ψ

d)], where Cabcd is an
invariant tensor in the algebra.
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Both the four-fermion NJL coupling and the Einstein-Hilbert gravitational
action are perturbatively non-renormalizable. This strongly suggests that
the whole system should be considered as a low energy, effective model and
not a fully consistent quantum theory. However, the fact that the parameters
of the theory are so tightly constrained that it is conceivable that the two
evils may cancel each other. The exploration of this problem, however, lies
well beyond the scope of this work.

The NJL term provides a mechanism for dynamical symmetry breaking that
gives mass to the fermionic excitations in superconductivity and was originally
proposed as a way to describe massive excitations in strong interactions [102–
104]. The value of the fermion mass m is produced through the gap equation
for a cut-off M,

m2

M2
log

[
1 +
M2

m2

]
= 1− 2π2

gM2
. (5.31)

For m = me ≈ 0.5MeV and M = MPlanck = G−1/2 ≈ 2.5× 1022me, so that
m2/M2 ≈ 10−45, the relation between the NJL coupling g and the UV cut-off
M must be extremely fine-tuned in the range 1 < gM2/2π2 < 1 + 10−43.

In four dimensions, the spacetime geometry is described by the Einstein-
Hilbert action with cosmological constant Λ = −3s2µ2, where s2 = −1(resp.+
1) for dS (resp. AdS) algebra [see, e.g., (B.10)]. The sign of the kinetic term
in the gravitational action (5.22) is −s2, which, in the standard convention,
should be positive. Hence, both Λ and G should be positive. However,
depending on the vacuum structure of the theory it might be worth consider-
ing the alternative where both G and Λ are negative, as in the case of the
so-called topologically massive gravity in three dimensions [105, 106]. At
any rate, the effective cosmological constant in the nontrivial vacuum should
be given by ΛEff = Λ− 2iµs2〈ψ̄ψ〉+ g2[〈(ψγ5ψ)2〉 − 〈(ψψ)2〉]. It would be
premature to claim something about the sign of ΛEff , especially in view of
the fine tuning between g, G, Λ and the cut-off M.

The gravitational Lagrangian is a particular combination of the three Lovelock
terms that occur in 4D that has the form of the Pfaffian of the (A)dS
curvature. This combination can also be viewed as the gravitational analogue
of Born-Infeld electrodynamics [107], and although the Gauss-Bonnet term
has no effect on the field equations and hence is usually ignored, it can give
a significant contribution to the global charges of the theory, and acts as
a regulator that renders the charges well-defined and finite in the case of
nontrivial asymptotics [108, 109]. It is, therefore, an interesting bonus of the
model that the gravitational action is regularized by construction and no ad
hoc counterterms are necessary to correctly define its thermodynamics.



60 CHAPTER 5. UNCONVENTIONAL SUPERSYMMETRY IN D = 4

Even as an effective low-energy model, a healthy theory should have a well-
defined (stable) ground state, a vacuum around which it would make sense to
expand perturbatively to study the quantum features of the theory (Killing
spinors, BPS vacua). A vacuum without fermions (trivial vacuum, ψ = 0)
would be invariant under SUSY provided δψ = ∇λ = 0, which means that
λ must be a covariantly constant (Killing) spinor. The number of linearly
independent, globally defined solutions of this equation characterizes the
residual supersymmetries of a particular background configurations, as was
discussed in Section 4.3.4 for D = 3 bosonic solutions. Such backgrounds
have been studied and a number of nontrivial BPS backgrounds are known
[110, 111].



Part II

Massless Rarita-Schwinger
Theory
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Chapter 6

Free massless Rarita-Schwinger
theory

In this Chapter, we shall discuss the theory of free 3/2-spin particle field.
The action for describing this kind of particles was proposed by William
Rarita and Julian Schwinger in 1941 [17], which in a modern notation can
be written as (see next section for notational details)

S[ψ, ψ] =
i

4

∫
d4xεµνρσ

(
ψµγ5γν∂ρψσ − imψµγµνψν

)
, (6.1)

where m is proportional to a real particle mass. When the fermions ψµα
and ψαµ are coupled with a Maxwell field Aµ through minimal substitution
∂µ → Dµ = ∂µ − igAµ (from now on, we will call it gauged RS theory), Velo
and Zwanziger (VZ) shown that some inconsistences appear [20]. First, at
classical level, the fermion wave fronts have superluminal modes, i.e., the
velocity of such modes are strictly greater than speed of light c. Second, at
quantum level, the anticommutation relation of the fermionic field operators
are not positive definite. These inconsistences were late reinforced in (2 + 1)-
dimensions by Hortaçsu [112] and in non-flat metrics by Deser and Waldron
[21].

However, already in the work of VZ, we can see that the inconsistencies
appearing in the gauged RS theory are more subtle for the m = 0 case, due
to the fact that there are terms which become singular, as they contain the
reciprocal of mass. With this in mind, and motivated by the fact that in
the SM scheme the fermion mass leads to some problems1, Stephen Adler

1This is why the spontaneous symmetry breaking is casting, through suitable potentials,
in the SM rather than a fermion mass term. This spontaneous symmetry breaking could
be generated either through couples to the Higgs boson or through the chiral symmetry
breaking caused by particular fermion condensates.
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recently reopened the discussion about the consistency of a classical and
quantum massless RS field. In his works [22, 23], Adler claims that in the
massless case there are no superluminal propagation modes and the quantum
theory is consistent, as the anticommutators of the field fermionic operator
are positive semidefinite. For some of these claims, it is used explicitly that,
when m = 0, the massless RS has a fermionic gauge symmetry, i.e., the
action is invariant under the transformation ψαµ → ψ′αµ = ψαµ +Dµε

α, where
εα is a fermionic 1/2-spin parameter.

Although it is relatively straightforward to show the free massless RS has
this fermionic gauge invariance, the claim is more subtle for the gauged case,
as we will see in Chapter 7. As this fermionic gauge invariance is important
to avoid the inconsistencies of the massless case, it is relevant to make sure
whether the symmetry actually exists for that case. As a warming-up exercise,
we will apply the Dirac’s Hamiltonian formalism [25] to the free massless RS
case in order to compare later with the gauged case.

6.1 Classical action, symmetries and field equa-

tions

The functional action for the classical free massless RS theory (either for
Majorana or Dirac fermions) is2

S[ψ, ψ] =
i

4

∫
d4xεµνρσ

(
ψµγ5γν∂ρψσ − ∂µψνγ5γρψσ

)
, (6.2)

where we added a boundary term (which does not alter the RS field equations)
with respect to the action defined in [22] in order to write the action in a
Hermitian way and take the conjugate convention ψµ = iψ†µγ

0. For Majorana
fermions, the field ψµ must be anti-commuting, otherwise (6.2) is a null term
without bulk field equations, as is also the case Dirac Lagrangian [113]. The
field equations are obtained by varying S[ψ, ψ] with respect to ψ and ψ ,
which are, respectively,

εµνρσγν∂ρψσ = 0 ,

εµνρσ∂µψνγρ = 0 . (6.3)

2For notational simplicity, we are omitting the spinor indexes when there is no misun-
derstanding.
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The zeroth component of (6.3) gives us3

εijk∂iψjγk = 0 ,

εijkγi∂jψk = 0 . (6.4)

With fermionic parameters (ε, ε) the RS fields gauge transformation is defined
as

ψµ → ψ
′
µ = ψµ + ∂µε ,

ψµ → ψ′µ = ψµ + ∂µε . (6.5)

Under the transformations (6.5), the action (6.2) changes according

δGS[ψ, ψ] = BT , (6.6)

where for BT we understand a boundary term.

The stress-energy tensor can be computed by varying with respect to gµν
[114],

TµνRS = − i
4
εσρλτ

[
ψσγ5

(
γνδµρ + γµδνρ

)
∂λψτ +

1

4
∂α
(
ψσγ5γρ([γ

α, γµ]δνλ + [γα, γν ]δµλ)
)
ψτ

]
.

(6.7)

which fulfills

∂µT
µν
RS = 0.

Using our particular representation of the Dirac matrices (see Appendix
A.2 for the chosen representation and notation), we can write the left chiral
component of the action (6.2) as (see Appendix E.1 for left and right-handed
components decomposition)

SL[Ψ†,Ψ] =
1

4

∫
d4x

(
− ~Ψ† · (~σ × ~̇Ψ) + ~̇Ψ† · (~σ × ~Ψ) + ~Ψ† · (~∇× ~Ψ)

+ (~∇× ~Ψ†) · ~Ψ + ~Ψ† · (~σ × ~∇Ψ0)− ~∇Ψ†0 · (~σ × ~Ψ)
(6.8)

−Ψ†0~σ · (~∇× ~Ψ)− (~∇× ~Ψ†) · ~σΨ0

)
,

where, as usual, the dot implies time derivative and ∇i = ∂i = ∂i.

3We denote by the latin indexes {i, j, k, . . .} the spatial components and define εijk ≡
−ε0ijk.
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6.2 Dirac’s Hamiltonian formalism

6.2.1 Momenta, Poisson brackets and canonical Hamil-
tonian

The canonical momenta are given by4

Ξµα =
∂LL
∂Ψ̇†µα

, Ξ†µα =
∂RL
∂Ψ̇α

µ

, (6.9)

where L is the Lagrangian density. The non-vanishing Poisson brackets at
equal time between fields and momenta are (following convention of [26]){

Ψα
µ(x),Ξ†νβ (y)

}
=

{
Ξ†νβ (y),Ψα

µ(x)
}

= δνµδ
α
β δ

(3)(x− y) ,{
Ψ†αµ (x),Ξνβ(y)

}
=

{
Ξνβ(y),Ψ†αµ (x)

}
= −δνµδαβ δ(3)(x− y) . (6.10)

The time and spatial components of (6.9) are given by

Ξ0α = 0 , ~Ξα =
1

4
(~σ)αβ × ~Ψβ , Ξ†0α = 0 , ~Ξ†α = −1

4
~Ψ†β × (~σ)βα .

We can write the canonical Hamiltonian as

H0 =

∫
d3x

(
Ξ†µΨ̇µ + Ψ

†
µΞµ − L

)
=

1

4

∫
d3x

(
− ~Ψ† · (~∇× ~Ψ)− (~∇× ~Ψ†) · ~Ψ− ~Ψ† · (~σ × ~∇Ψ0) (6.11)

+~∇Ψ†0 · (~σ × ~Ψ) + Ψ†0~σ · (~∇× ~Ψ) + (~∇× ~Ψ†) · ~σΨ0

)
.

6.2.2 Primary and secondary constraints

The primary constraints obtained from (6.9) are

χ0α ≡ Ξ0α ≈ 0 , ~χα ≡ Ξ0α − 1

4
(~σ)αβ × ~Ψβ ≈ 0 ,

χ†0α ≡ Ξ†0α ≈ 0 , ~χ†α ≡ ~Ξ†α +
1

4
~Ψ† × ~σ ≈ 0 , (6.12)

whose only non-vanishing Poisson bracket is{
χ†iα (x), χjβ(y)

}
= −1

2
εijk(σk)

β
αδ

(3)(x− y) . (6.13)

4In this subsection, we will write explicitly the spinorial indexes {α, β, . . .}.
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Now, we can write the primary Hamiltonian as

HT = H0 +

∫
d3x

(
Λ†µχ

µ + χ†µΛµ

)
, (6.14)

where Λ†µ and Λµ are Lagrange multipliers.

We demand the primary constraints (6.12) to hold as the system evolves in
time, i.e.,

χ̇0α(x) =
{
χ0α(x), HT

}
= −1

2
(~σ)αβ · (~∇× ~Ψβ) ≈ 0 ,

χ̇†0α (x) =
{
χ†0α (x), HT

}
= −1

2
(~∇× ~Ψ†β) · (~σ)βα ≈ 0 ,

where in the second equalities we used (6.10), (6.12) and (6.11) explicitly.
This lead us to define the following secondary constraints

Kα ≡ 1

2
(~σ)αβ · (~∇× ~Ψβ) ≈ 0 ,

K†α ≡
1

2
(~∇× ~Ψ†β) · (~σ)βα ≈ 0 , (6.15)

whose non-vanishing Poisson brackets with the rest of constraints (6.12) are{
Kα(x), χ†iβ (y)

}
=

1

2
εijk(σj)

α
β∂

(x)
k δ(3)(x− y) ,{

K†α(x), χiβ(y)
}

= −1

2
εijk(σj)

β
α∂

(x)
k δ(3)(x− y) (6.16)

Preservation in time of the rest of primary constraints determines a possible
set for the Lagrange multipliers Λ†i and Λi.

χ̇iα(x) =
{
χiα(x), HT

}
=

1

2
~∇× ~Ψα +

1

2
(~σ)αβ × ~∇Ψβ

0 − (~σ)αβ × ~Λβ ≈ 0

=⇒ ~Λ ≈ ~∇Ψ0 + i(~∇× ~Ψ) ,

χ̇†iα (x) =
{
χ†iα (x), HT

}
=

1

2
~Ψ†α × ~∇− 1

2
Ψ†0β × ~∇× (~σ)βα + ~Λ†β × (~σ)βα ≈ 0

=⇒ ~Λ† ≈ ~∇Ψ†0 − i(~∇× ~Ψ†) .

where we used the properties (A.8-A.10). The other Lagrange multipliers Λ†0
and Λ0 are undetermined.

Finally, in other to see whether there is an extra constraint, we must check
the secondary constraints K† and K are also preserved in time.

K̇α(x) = {Kα(x), HT} =

∫
d3y

{
Kα(x), χ†iβ (y)

}
Λβ
i = −1

2
εijk(σj)

α
β∂kΛ

β
i

= −1

2
((~σ)αβ · (~∇× ~Λβ).
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Replacing the value of ~Λ obtained above and using the fact that ~∇×(~∇Ψ0) =
0, we get

K̇α(x) ≈ i

2
(~σ)αβ · (~∇× (~∇× ~Ψβ)) = − i

2
~∇ · ((~σ)αβ × (~∇× ~Ψβ))

Using (~σ)αβK
β ≈ 0 and the property (A.8), we obtain i(~σ)αβ × (~∇× ~Ψβ) ≈

~∇× ~Ψα, so

K̇α(x) ≈ 1

2
~∇ · (~∇× ~Ψα) = 0 .

where in the last equality we assumed ~Ψ is smooth. Following the same steps,
we can prove that

K̇†α(x) ≈ 1

2
~∇ · (~∇× ~Ψα) = 0 .

This means there is no extra constraints, meaning we have the set of con-
straints:

{
χ†µα , χ

µα, K†α, K
α
}

.

6.2.3 First-class and second-class constraints

We already known from (6.12) that χ0 and χ†0 are first-class constraints.
This is why the Lagrange multipliers Λ†0 and Λ0 are undetermined. The
transformation associated to those constraints are arbitrary shifts on Ψ†0 and
Ψ0, respectively.

As the action (6.1) has the symmetry (6.5), we can guess the following
first-class constraints

K̃α ≡ ∂µχ
µα −Kα

K̃†α ≡ ∂µχ
†µ
α −K†α . (6.17)

Indeed, using (6.13) and (6.16), it can be shown that (6.17) are first-class
constraints and generates the gauge transformation (6.5), i.e., with arbitrary
fermionic functions parameters ε† and ε, at equal time, we have

δ~Ψ†α(~x) ≡
{∫

d3yε†β(~y)K̃β(~y), ~Ψ†α(~x)

}
= ~∇ε†α ,

δ~Ψα(~x) ≡
{∫

d3yK̃†β(~y)εβ(~y), ~Ψα(~x)

}
= ~∇εα . (6.18)

6.2.4 Degrees of freedom counting

Once we classified the constraints in first-class F and second-class S, the
DOF are obtained following the formula already presented in (3.45) [26].
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Constraint kind Number of this kind Classification
χ0α 2 first-class
χ†0α 2 first-class

K̃α 2 first-class

K̃†α 2 first-class
χiα 6 second-class
χ†iα 6 second-class

Table 6.1: Constraint classification for the free left-handed massless RS theory.

In this case N = 2 × 16 = 32, F = 8 and S = 20 − 8 = 12 , as is shown
in Table 6.1. Therefore, the formula (3.45) gives us DOF = 2. Of course,
this is only when we take into account the left-handed theory (6.8). In the
case of Majorana real spinors, the right-handed sector is determined by the
left-handed one [115] and does not add new local DOF. In the complex Dirac
spinor case, the right-handed sector brings in the same number of local DOF,
leading to a total of DOF = 4. It is worth to nothing that these are the
same results obtained in previous works [113, 116].

6.3 Faddeev-Jackiw method

We can apply for the free massless RS action (6.8) the Faddeev-Jackiw (FJ)
method [27, 117]. Although this technique was already known and used some
time before the paper of Ludvig Faddeed and Roman Jackiw for Lagrangians
which are first order in the fields (see for instance [118], and references
therein), we still shall call this the Faddeev-Jackiw method. This method has
the advantage we do not need to introduce superfluous constraints, given
us directly the local DOF without classifying such constraints in first and
second class (if we are able to solve them, of course). For the case of massless
RS theory, it elucidates which components of ψαµ we can choose as the local
DOF of the system making use of the fact that the action (6.2) has fermionic
gauge symmetry under the transformation (6.5).

Let us start with the Lagrangian density appearing in (6.8), which can be
written as

L =
1

4
Ψ̇†iσjΨ

kεijk−1

4
εijkΨ†iσjΨ̇k−Ψ†0K−K†Ψ0+

1

4
Ψ†i∂jΨkε

ijk+
1

4
εijk∂iΨ

†
jΨk ,

(6.19)
where K†α and Kα are the constraints defined in (6.15). As we already known,
these constraints can be improved to be first-class and generates the fermionic
gauge transformation (6.5). Therefore, we have the freedom to change the
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Field Number

Ψα
3/2T i (with corresponding momentum Ψ†3/2T iα) 2

Table 6.2: Local DOF kept after solving the constraints for the free massless
left-handed RS theory.

fermions as

Ψ†iα = Ψ′†iα + ∂iζ
†
α ,

Ψα
i = Ψ′αi + ∂iζ

α .

We can fix the gauge choosing ζ†α and ζα such that Ψ′†iα(σi)αβ = 0 and

(σi)βαΨ′αi = 0. This means (see Appendix (E.2))

Ψ′†1/2iα = 0 ,

Ψ′α1/2i = 0 .

Even more, using (E.2), we can write the constraints as

Kα = − i
2
~∇ · ~Ψα

3/2 = −i∇2Θα = 0,

K†α =
i

2
~∇ · ~Ψ†3/2α = −i∇2Θ†α = 0,

where we decompose Ψ†3/2i and Ψ3/2i in their transversal (T) and longitudinal

(L) components (see Appendix E.3). Then, the constraints K† and K can
be seen as a set of differential equations (Laplace equations) for Θ†α and
Θα, respectively. With suitable boundary condition (for instance, these
functions decay sufficiently rapid at infinity) these equations can be solved
(Θ† = Θ = 0, for the later boundary conditions). Taking all this into account
and using again (E.2) for the kinetic term, we can write the Lagrangian
density (6.19) as

L = − i
4
~̇Ψ†3/2T ·~Ψ3/2T+

i

4
~Ψ†3/2T ·~̇Ψ3/2T+

1

4
Ψ†3/2T ·(∇×~Ψ3/2T )+

1

4
(∇×~Ψ†3/2T )·~Ψ3/2T ,

(6.20)
indicating clearly Ψα

3/2T are the only degrees of freedom for the free massless
RS theory, as shown in Table 6.2. . Therefore, DOF = 2 for the real
Majorana spinor and, if we take into account the right-handed component
for the complex Dirac spinor case, we have DOF = 4. It reassuring that
this result coincides with the one obtained by using the Dirac’s Hamiltonian
formalism.
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Abelian gauged massless
Rarita-Schwinger theory

As we have a more clear picture the local DOF of the free massless RS theory
and how to apply both Dirac’s Hamiltonian formalism and FJ method, we
will move now to the gauged massless RS theory, starting from [22]. We shall
apply the same methods than the free theory to elucidate if the fermionic
gauge transformation is present in this case or not. As we mentioned before,
this symmetry is crucial to overcoming some of the inconsistencies presented
in [20], as the semidefinite positivity of the quantum field anticommutators.
This is why once clarified the dynamical contents of the theory, we will
compute the quantum fermion field anticommutators.

7.1 Classical action, symmetries and field equa-

tions

In the Abelian gauged case, the total action can be written as [22]

S[A,ψ, ψ] = −1

4

∫
d4xFµνF

µν+
i

4

∫
d4xεµνρσ

(
ψµγ5γν

−→
Dρψσ + ψµ

←−
D νγ5γρψσ

)
,

(7.1)
where the anti-Hermitian convention for the Abelian covariant derivatives
acting on ψ and ψ are, respectively,

ψµ
←−
D ν = ∂νψµ + igψµAν , (7.2)

−→
Dµψν = ∂µψν − igAµψν .
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The action (7.1) has the usual Abelian symmetry

Aµ → A′µ = Aµ +
1

g
∂µθ ,

ψ†µα → ψ′†µα = e−iθψ†µα ,

ψαµ → ψ′αµ = eiθψαµ ,

where θ is a local parameter and depends smoothly on the spacetime point x.

Using the two-component decomposition (E.1), we can write the left-chiral
component action (7.1) as

SL[A,ψ, ψ] = −1

4

∫
d4xFµνF

µν +
1

4

∫
d4x

[
Ψ̇†σjΨk −Ψ†iσjΨ̇k

]
+

1

4

∫
d4x

[
Ψ†iσj

−→
DkΨ0 + Ψ†i

←−
D jσkΨ0 −Ψ†0σi

−→
D jΨk −Ψ†0

←−
D iσjΨk

]
+

1

4

∫
d4xεijk

[
Ψ†i
−→
D jΨk −Ψ†i

←−
D jΨk

]
(7.3)

+
ig

2

∫
d4xεijkA0Ψ†iσjΨk .

Taking into account the Bianchi identity and varying the action (7.3) with
respect to Aµ, Ψ†µ and Ψµ gives us, respectively1

∂ρFµν + ∂µFνρ + ∂νFρµ = 0 , ∂νF
µν =

−ig
2
εµνρτΨ†νσρΨτ , (7.4)

εµνρτσν
−→
DρΨτ = 0 , εµνρτΨ†ν

←−
Dρστ = 0 . (7.5)

The equations (7.4) are the Maxwell equations with a RS fermion source and
the (7.5) are the gauged version of (6.3).

7.2 Dirac’s Hamiltonian formalism

7.2.1 Momenta, Poisson brackets and canonical Hamil-
tonian

The canonical momenta associated to the gauge field are

πµ =
∂L
∂Ȧµ

, (7.6a)

1As usual, we defined the cuadri-vector notation σµ = (I, ~σ) and σ̃µ = (−I, ~σ).
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while the fermionic canonical momenta are given again by2

Ξµα =
∂LL
∂Ψ̇†µα

,

Ξ†µα =
∂RL
∂Ψ̇α

µ

. (7.6b)

The non-vanishing Poisson brackets, at equal time, between fields and mo-
menta are (following the convention of [26])

{Aµ(x), πν(y)} = −{πν(y), Aµ(x)} = δνµδ
(3)(x− y) ,{

Ψα
µ(x),Ξ†νβ (y)

}
=

{
Ξ†νβ (y),Ψα

µ(x)
}

= δνµδ
α
β δ

(3)(x− y) , (7.7){
Ψ†αµ (x),Ξνβ(y)

}
=

{
Ξνβ(y),Ψ†αµ (x)

}
= −δνµδαβ δ(3)(x− y) .

The time and spatial components of (7.6) are given by

π0 = 0 , πi = F i0 ,

Ξ0α = 0 , Ξiα =
1

4
εijk(σj)

α
βΨβ

k ,

Ξ†0α = 0 , Ξ†iα = −1

4
εijkΨ†jβ(σk)

β
α.

We can write the canonical Hamiltonian H0 as

H0 =

∫
d3x

[
1

2
πiπi − A0

(
∂iπ

i +
ig

2
Ψ†iσjΨk

)
+

1

4
FijF

ij

]
−1

4

∫
d3xεijk

[
Ψ†iσj

−→
DkΨ0 + Ψ†i

←−
D jσkΨ0 −Ψ†0σi

−→
D jΨk (7.8)

−Ψ†0
←−
D iσjΨk + Ψ†i

−→
D jΨk −Ψ†i

←−
D jΨk

]
.

7.2.2 Primary and secondary constraints

The primary constraints are given by

φ0 = π0 ≈ 0 ,

χ0α ≡ Ξ0α ≈ 0 , χiα ≡ Ξiα − 1

4
εijk(σj)

α
βΨβ

k ≈ 0 , (7.9)

χ†0α ≡ Ξ†0α ≈ 0 , χ†iα ≡ Ξ†iα +
1

4
εijkΨ†jβ(σk)

β
α ≈ 0 ,

whose only non-vanishing Poisson bracket is{
χ†iα (x), χjβ(y)

}
= −1

2
εijk(σk)

β
αδ

(3)(x− y) . (7.10)

2In this subsection, we will write explicitly the spinorial indexes {α, β, . . .}.
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Now, we write the primary Hamiltonian

HT = H0 +

∫
d3x

(
Λ†µχ

µ + χ†µΛµ

)
,

where Λ†µ and Λµ are Lagrange multipliers associated to the primary con-
straints, except for the constraint3 π0.

We demand the primary constraints (7.9) to hold as the system evolves in
time, i.e.,

φ̇0(x) =
{
φ0(x), HT

}
= ∂iπ

i +
ig

2
εijkΨ†iσjΨk ≈ 0 ,

χ̇0α(x) =
{
χ0α(x), HT

}
= −1

2
εijk(σi)

α
β

−→
D jΨ

β
k ≈ 0 ,

χ̇†0α (x) =
{
χ†0α (x), HT

}
= −1

2
εijkΨ†jβ

←−
D i(σk)

β
α ≈ 0 ,

where in the second equalities we used (7.7), (7.9) and (7.8) explicitly. This
lead us to define the following secondary constraints

k ≡ −∂iπi −
ig

2
εijkΨ†iσjΨk ≈ 0 ,

Kα ≡ 1

2
εijk(σi)

α
β

−→
D jΨ

β
k ≈ 0 , (7.11)

K†α ≡
1

2
εijkΨ†jβ

←−
D i(σk)

β
α ≈ 0 ,

whose non-vanishing Poisson brackets with the rest of constraints (3.5) (and
between them) are given in Appendix F.1.

Substituting (7.11) in (7.8), we get

H0 =

∫
d3x

[
A0k + Ψ†0K +K†Ψ0 +

1

2
πiπi +

1

4
FijF

ij

]
−1

4

∫
d3xεijk

[
Ψ†i
−→
D jΨk −Ψ†i

←−
D jΨk

]
.

Preservation in time of the rest of primary constraints determines a possible
set of Lagrange multipliers (see Appendix F.1 for computational details)

Λα
i ≈ igA0Ψα

i +
−→
D iΨ

α
0 + iεijk

−→
D jΨ

α
k ,

Λ†iα ≈ −igA0Ψ†iα + Ψ†0α
←−
D i − iεijkΨ†kα

←−
D j .

where we used the properties (A.8-A.10).

3In Section 7.2.3 we present π0 as a first-class constraint. Therefore, its Lagrange
multiplier is undetermined.
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Until now, everything was pretty like the free case, except the extra gauge
field momenta and the covariant derivatives. However, demanding time
preservation of the secondary constraints does not hold so easy as in the
previous case. First of all, it can be proved with a little bit of algebra that
the constraint k does preserves in time, i.e.,

k̇(x) = {k(x), HT} ≈ 0 .

But imposing preservation of Kα and K†α gives us

K̇α(x) = {Kα(x), HT} ≈ V α(x) ,

K̇†α(x) =
{
K†α(x), HT

}
≈ V †α (x) ,

where we defined

V α =
ig

4
εµνρτ (σµ)αβFνρΨ

β
τ ≈ 0 ,

V †α =
ig

4
εµνρτΨ†µβ(σν)

β
αFρτ ≈ 0 . (7.12)

It is important to note that in spite we are using spacetime notation, due
to definition of spatial gauge momenta πi = F i0, there are no velocities in
definitions (7.12). So, in principle, it seems that (7.12) are new secondary
(tertiary) constraints, as is claim in [22]. The non-vanishing Poisson brackets
of the constraints (7.12) between them and the rest of primary and secondary
constraints are given in Appendix F.1.

We can see from the first two brackets in (F.2) that χ†0α and χ0α are not
first-class constraints as in the free case. This means, the fields Ψ†0 and Ψ0

are not arbitrary anymore, but instead determined by the other canonical
fields Ψ†i and Ψi, respectively. In order to see this fact explicitly, let us
first define Σi = εijkFjk, which is proportional to the magnetic field, in the
same way that πi is proportional to the electric field. Now, we will prove a
straightforward, but a useful result.
Lemma 7.2.1. Let ~A be a spatial vector. Then ~A 6= ~0 ⇐⇒ ~σ · ~A 6= 0.

Proof. (⇒)

Using (A.6), we have

(σ · ~A)(σ · ~A) = (σiσj)αβAiAj = ~A · ~Aδαβ .

As ~A 6= 0, then ~A · ~A 6= 0 implying, due the above equality, (σ · ~A) 6= 0.

(⇐)

Suppose ~A = ~0. Then ~σ · ~A = 0, but by hypothesis σ · ~A 6= 0, which is absurd.
So, it is true ~A 6= ~0.
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Because of the Lemma 7.2.1, if the magnetic field is non-zero (~Σ ·~Σ > 0), then

we can solve (7.12) for Ψ0 and Ψ†0 as function of the remaining dynamical
fields. Indeed,

Ψα
0 ≈ 1

~Σ · ~Σ

[−→
Σ · (−→σ )αβ(~Ψ)β ·

−→
Σ + 2

−→
Σ · (−→σ )αβ

[
~π · (−→σ × ~Ψ)β

]]
, (7.13)

~Ψ†0α ≈ 1

~Σ · ~Σ

[−→
Σ · (~Ψ)†β(−→σ )βα ·

−→
Σ − 2

[
(~Ψ† ×−→σ )β · ~π

]
(−→σ )βα ·

−→
Σ
]
.

Demanding preservation in time of V α and V †α and using the brackets (F.2)

allows us to solve the Lagrange multipliers Λ0 and Λ†0, respectively. Indeed,

Λα0 ≈
~Σ · (~σ)αβ
~Σ · ~Σ

(
2[~∇× ~π · ~Ψ]β − 2[~∇× ~π · ~σΨ0]β + ~Σ · ~Λα + 2[~π · ~σ × ~Λ]β+[
~∇× ~Σ− ig

(
~Ψ† × ~σΨ0 + Ψ†0~σ × ~Ψ− ~Ψ† × ~Ψ

)]
· (~σ × ~Ψ)β

)
(7.14)

Λ†0α ≈
(

2[~Ψ† · ~∇× ~π]β − 2[Ψ†0~σ · ~∇× ~π]β + ~Λ†β · ~Σ− 2[~Λ† × ~σ · ~π]β+

(~Ψ† × ~σ)β ·
[
−~∇× ~Σ + ig

(
~Ψ†0~σ × ~Ψ + ~Ψ† × ~σΨ0 − ~Ψ† × ~Ψ

)] ) (~σ)βα · ~Σ
~Σ · ~Σ

.

It can be proved as a crosscheck, as Ψ̇†0α = {Ψ†0α, HT} = Λ†0α and Ψ̇α
0 =

{Ψα
0 , HT} = Λ0, the set of equations (7.14) is the time derivative of (7.13),

where the time derivatives of canonical variables were substituted by their field
equations from (7.5). As a byproduct of these computations, we checked there
is no more constraints for the gauged massless RS field theory. We have then
the following set of (2 + 24n) constraints4:

{
φ0, k, χ†µα , χ

µα, K†α, K
α, V †α , V

α
}

.

7.2.3 First-class and second-class constraints

Strictly speaking, taking into account the above considerations, there is no
first-class constraint associated with the fermionic gauge transformations
unlike the free theory. It can be proved that the two first-class constraints
are φ0 and the combination

k̃ = k − ig
(
~Ψ† · ~χ− ~χ† · ~Ψ

)
.

This last improved version of k constraint generates the usual infinitesimal
Abelian gauge transformations, i.e.,

δθAi =

{
Ai(x),

∫
d3yk̃(y)θ(y)

}
=

1

g
∂iθ(x) ,

δθΨ
†
iα =

{
Ψ†iα(x),

∫
d3yk̃(y)θ(y)

}
= −igθ(x)Ψ†iα(x) ,

δθΨ
α
i =

{
Ψα
i (x),

∫
d3yk̃(y)θ(y)

}
= igθ(x)Ψα

i (x) .

4Remember that n = 1 corresponds to real Majorana spinors, while n = 2 to complex
Dirac spinors.
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Constraint kind Number of this kind Classification
φ0 1 first-class

k̃ 1 first-class
χ0α 2 second-class
χ†0α 2 second-class
χiα 6 second-class
χ†iα 6 second-class
Kα 2 second-class
K†α 2 second-class
V †α 2 second-class
V α 2 second-class

Table 7.1: Constraint classification for the massless left-handed RS theory coupled
to a Maxwell field.

The remaining set of 24n constraints
{
χ†µα, χ

α
µ, K

†
α, K

α, V †α , V
α
}

are second
class, as we can see for the brackets computed in Appendix F.1.

7.2.4 Degrees of freedom counting

Applying again the formula (3.45), we have for this case N = 2× (16 + 4) =
32 + 8, F = 2, and S = 24, according to Table 7.1. Therefore, the number of
degrees of freedom is now DOF = 4 + 2 = 6 for the real Majorana spinor.
Taking into account also the right-handed fermion component for the complex
Dirac spinor, we gave DOF = 10.

The main conclusion of this section is that the gauged massless RS theory is
not invariant under fermionic gauge transformation (6.5). From the point of
view of the formalism, the reason of that is the presence of tertiary constraints
(7.12), which make the χ†0, χ0, K†, K second-class constraints (and not first-
class as the free case). So, there is a discontinuity on the DOF when one
turns on the gauge coupling constant g.

7.3 Faddeev-Jackiw method

As in the free massless RS theory in Section 6.3, we can apply the FJ method
for the gauged case. In such a case, the Lagrangian density appearing in
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(7.3) can be written as

L = Ȧiπ
i +

1

4
Ψ̇†iσjΨ

kεijk − 1

4
εijkΨ†iσjΨ̇k − A0k −Ψ†0K −K†Ψ0

− 1

2
πiπ

i − 1

4
FijF

ij +
1

4
Ψ†i
−→
D jΨkε

ijk − 1

4
εijkΨ†i

←−
D jΨk , (7.15)

where the constraints k, K†α and K† were defined in (7.11).

We first proceed by solving the constraint k. It will be useful to split the Ai
adn πi fields in their transversal (T) and longitudinal (L) components, i.e.,

Ai = AT i + ALi , ∂iAT i = 0 , ALi = ∂iA ,

πi = πT i + πLi , ∂iπT i = 0 , πLi = ∂iπ , (7.16)

where A and π are scalars which define locally the longitudinal components
of Ai and πi, respectively. The constraint k can be read as

∂iπ
i
L = −ig

2
εijkΨ†iσjΨk =⇒ ∇2π = −ρ , (7.17)

where we defined ρ = ig
2
εijkΨ†iσjΨk. This means we can solve π from the

Poisson equation (7.17) with suitable boundary conditions. Let us write
symbolically5 π = −(∇2)−1ρ, meaning π is a solution of equation (7.17).

Now, we can observe that

Ȧiπ
i = ȦT iπ

i
T + ∂iȦ∂

iπ + ȦT i∂
iπ + ∂iȦπ

i
T = ȦT iπ

i
T + Ȧρ ,

where in the second equality we integrated by parts and used (7.17). Similarly,

−1

2
πiπ

i = −1

2
πT iπ

i
T +

1

2
ρ(∇2)−1ρ .

We can observe also that

Fij = ∂iAj − ∂jAi = ∂iATj − ∂jAT i = FT ij ,

where in the second equality we considered Ai as a smooth function on the
coordinates. Therefore, the Lagrangian density is

L = ȦTiπ
i
T + Ȧρ+

1

4
Ψ̇†iσjΨ

kεijk − 1

4
εijkΨ†iσjΨ̇k −Ψ†0K −K†Ψ0

− 1

2
πTiπ

i
T +

1

2
ρ(∇2)−1ρ− 1

4
FT ijF

ij
T +

1

4
Ψ†i
−→
D jΨkε

ijk − 1

4
εijkΨ†i

←−
D jΨk .

5Being more rigourous, one solution of the Poisson equation (7.17) is π(x) =
−
∫
d3yG(x, y)ρ(y), where G(x, y) = − 1

4π|x−y| is the Laplacian Green function, which

fulfils ∇2G(x, y) = δ(3)(x− y) [119, 120].
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Field Number
AT (with corresponding momentum πiT ) 2

Ψα
3/2T i (with corresponding momentum Ψ†3/2T iα) 2

Ψα
1/2i (with corresponding momentum Ψ†1/2iα) 2

Table 7.2: Degrees of freedom left after solving the constraints for the massless
left-handed RS theory coupled to a Maxwell field.

We can transform the fermions in the following way,

Ψ†µα → Ψ′†µα = Ψ†µαe
−iA ,

Ψα
µ → Ψ′αµ = eiAΨα

µ ,

writing the lagrangian density as

L = ȦT iπ
i
T +

1

4
Ψ̇′
†
iσjΨ

′kεijk − 1

4
εijkΨ′†i σjΨ̇

′
k −Ψ′†0K

′ −K ′†Ψ′0

− 1

2
πT iπ

i
T +

1

2
ρ(∇2)−1ρ− 1

4
FT ijF

ij
T +

1

4
Ψ′†i
−→
DTjΨ

′
kε
ijk − 1

4
εijkΨ′†i

←−
DTjΨ

′
k ,

where DiT is the covariant derivative considering only the transversal com-
ponent of the gauge field Ai.

We solve now the fermionic constraints K ′†α and K ′α, respectively

i

2
∇2Θα +

g

2
AT i∂

iΘα +
g

2
AT iΨ

′α
3/2T i − i

−→
D iΨ

′α
1/2i = 0 , (7.18)

− i
2
∇2Θ†α +

g

2
AT i∂

iΘ†α +
g

2
Ψ′†3/2T iαAT i − iΨ

′†
1/2iα

←−
D i = 0 ,

where we decompose the fermions in 3/2−spin and 1/2−spin components the
former split in its transversal, ∂iΨ3/2T i = 0 and longitudinal part, Ψ3/2Li =
∂iΘ , (see Appendix E). With suitable boundary conditions, we can solve
the above differential equations for Θα and Θ†α, respectively.

At the end, the only degrees of freedom of the gauged massless RS are in
Table 7.2. . Therefore, DOF = 2 + 4 = 6 for the real Majorana spinor, as
the Dirac’s Hamiltonian formalism. If we take into account the right-handed
components for the complex Dirac spinor, we have DOF = 10. Of course,
instead of solving Θ† and Θ as a function of Ψ†1/2i and Ψi1/2 in (7.18), we
can solve the last ones as function of the formers, as the number of variables
coincides each other. In this case, the local DOF are both the transversal
and longitudinal 3/2-spin particle components.
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7.4 Wave fronts and quantization in the pres-

ence of an external magnetic field

Once the Dirac’s constraint classification is done, we are ready to the quanti-
zation of gauged RS field through the construction of Dirac bracket [26, 121].
For the sake of simplicity, we will deal with an external time-independent
gauge field which is coupled with the RS fields through the covariant deriva-
tives (7.2). In this way, we can realize there is an external magnetic field
Σi = εijkFjk, as defined above. The fermionic constraints are as (7.9) and
(7.11), and the total Hamiltonian reads

HT =

∫
d3x

[
−ig

2
A0ε

ijkΨ†iσjΨk + Ψ†0K +K†Ψ0 +
1

4
Ψ†i

(←−
D j −

−→
D j

)
Ψk + χ†µΛµ + Λ†µχ

µ

]
,

where Λµ and Λ†µ are Lagrange multipliers and K†α, Kα as defined in (7.11).

For this case, we can verify preservation in time of secondary constraints Kα

and K†α implies the tertiary constraints

V α ≡ − i
4
g
(
/Σ
α
βΨβ

0 − ΣiΨα
i − 2εijk(σi)

α
βψ

β
k∂jA0

)
≈ 0 , (7.19)

V †α ≡
i

4
g
(

Ψ†0β /Σ
β
α − ΣiΨ†iα + 2εijkψ†kβ(σk)

α
β∂jA0

)
≈ 0 ,

where we introduced the notation /Σ
α
β ≡ Σi(σi)

β
α.

Preservation in time of constraints (7.19), determines the Lagrange multipliers
Λα

0 and Λ†0α, respectively, while preservation of Kα and K†α determines Λα
i

and Λ†iα, respectively. Therefore, there are no extra constraints. We have
already shown all the constraint are second class.

In order to compute the Dirac brackets, we will proceed by steps (see for
instance Exercise 1.12 of [26]).

1. Consider the second-class constraints χ†iα and χiα. We have then the
following partial constraints matrix6 χ†jβ (y) χjβ(y)

χ†iα (x) 0 −1
2
εijk(σk)

α
β

χiα(x) 1
2
εijk(σk)

α
β 0

 δ(3)(x− y) = M(x, y) ,

whose inverse is χ†jβ (y) χjβ(y)

χ†iα (x) 0 −i(σiσj)αβ
χiα(x) i(σiσj)

β
α 0

 δ(3)(x− y) = M−1(x, y) .

6The following description is just mnemonic and cannot be realized as a formal
mathematical equality.
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We can immediately compute the bracket at level 1, i.e.,{
Ψ†iα(x),Ψβ

j (y)
}∗

=
{

Ψ†iα(x),Ψβ
j (y)

}
−
∫
d3wd3z

{
Ψ†iα, χ

kγ(w)
}(
M−1

)τ
jkγ

(w, z)
{
χ†lτ (z),Ψβ

j (y)
}

= −i(σiσj)βαδ(3)(x− y) .

Other important brackets which are modified at this level are

{
K†α(x), Kβ(y)

}∗
= − i

4
g /Σ

β
αδ

(3)(x− y) ,{
V †α (x), V β(y)

}∗
=

g

2
Σi
(
∂iA0 − i

g

8
Σi

)
δβαδ

(3)(x− y) .

2. Consider the second-class constraints χ†0α , χ0
α, V †α and V α. We have

then the following partial constraints matrix
χ†0β (y) V †β (y) χ0β(y) V β(y)

χ†0α (x) 0 0 0 − i
4g /Σ

β
α

V †α (x) 0 0 − i
4g /Σ

β
α

g
2Σi

(
∂iA0 − i g8Σi

)
δβα)

χ0α(x) 0 − i
4g /Σ

α
β 0 0

V α(x) − i
4g /Σ

α
β

g
2Σi

(
∂iA0 − i g8Σi

)
δαβ 0 0

 δ(3)(x−y) = (N)(x, y) ,

whose inverse is

χ†0β (y) V †β (y) χ0β(y) V β(y)

χ†0α (x) 0 0 2
g

δαβ

Σi∂iA0− ig8 ~Σ·~Σ
4i
g
/Σ
α
β

V †α (x) 0 0 4i
g
/Σ
α
β 0

χ0α(x) 2
g

δβα
Σi∂iA0− ig8 ~Σ·~Σ

4i
g
/Σ
β
α 0 0

V α(x) 4i
g
/Σ
β
α 0 0 0


δ(3)(x−y) = (N−1)(x, y) .

We can see the modified bracket at level 2 of Ψ with Ψ† and K† with
K are unchanged, i.e.,{

Ψ†iα(x),Ψβ
j (y)

}∗∗
=

{
Ψ†iα(x),Ψβ

j (y)
}∗
−
∫
d3wd3z

{
Ψ†iα, V

γ(w)
}(
N−1

)τ
γ

(w, z)
{
V †τ (z),Ψβ

j (y)
}

= −i(σiσj)βαδ(3)(x− y) ,{
K†α(x),Kβ(y)

}∗∗
= − i

4
g /Σ

β
αδ

(3)(x− y) .

Other modified brackets are, for instance,{
Ψ†0α(x),Ψβ

i (y)
}∗∗

= − i

~Σ · ~Σ
(
/Σσi /Σ

)
β
αδ

(3)(x− y) ,{
Ψ†iα(x),Ψβ

0 (y)
}∗∗

= − i

~Σ · ~Σ
(
/Σσi /Σ

)
β
αδ

(3)(x− y) .
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3. Consider the second-class constraints K†α and Kα. We have then the
following partial constraints matrix K†β(y) Kβ(y)

K†α(x) 0 − i
4
g /Σ

β
α

Kα(x) − i
4
g /Σ

α
β 0

 δ(3)(x− y) = R(x, y) ,

whose inverse is K†β(y) Kβ(y)

K†α(x) 0 − 4i

g~Σ·~Σ
/Σ
α
β

Kα(x) − 4i

g~Σ·~Σ
/Σ
β
α 0

 δ(3)(x− y) = R−1(x, y) .

Finally, we compute the bracket at level 3 (the Dirac bracket), i.e.,

{
Ψ†iα(x),Ψβj (y)

}∗∗∗
=

{
Ψ†iα(x),Ψβj (y)

}∗∗
−
∫
d3wd3z

{
Ψ†iα,K

γ(w)
}∗∗ (

R−1
)τ
γ

(w, z)
{
K†τ (z),Ψβj (y)

}∗∗
= −i(σiσj)βαδ(3)(x− y) +

4i

g

∫
d3z
−→
D

(z)
i

[
δ(3)(x− z)

] /Σ
β
α

~Σ · ~Σ

[
δ(3)(z − y)

]←−
D

(z)
j

≡
{

Ψ†iα(x),Ψβj (y)
}
D
, (7.20)

which is the same as obtained in [23].

As there are no first-class constraints in this case, the extended Hamiltonian
for the gauged RS theory coincides with the total Hamiltonian, where the
second-class constraints are strongly imposed to be zero, and is

HE =

∫
d3x

[
−ig

2
A0ε

ijkΨiσjΨk +
1

4
εijkΨ†i

[←−
D j −

−→
D j

]
Ψk

]
. (7.21)

Now, we can obtain the dynamics of the canonical fields Ψ†iα and Ψα
i (as we

saw in Subsection 7.2.2, the fields Ψ†0α and Ψα
0 do have dynamics, but they

are completely determined by Ψ†iα and Ψα
i ) with their Dirac brackets with

respect to HE,

Ψ̇†iα =
{

Ψ†iα, HE

}
D
,

Ψ̇α
i = {Ψα

i , HE}D ,

K†α = Kα = 0 .

Note that the equality on the constraints are implemented strongly as the
Dirac brackets preserves the constraint surface in the phase space [26]. It can
be verified that one obtains the same field equations (7.5) for the canonical
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fields, i.e.,

Ψ̇†iα = −igΨ†iA0 + iε jki Ψ†kα
←−
Dk +

[
Ψ†jβΣj /Σ

β
α − 2εjklΨ†jγ(σl)

γ
β∂kA0 /Σ

β
α

~Σ · ~Σ

]
←−
D i ,

Ψ̇α
i = igA0Ψα

i + iε jki
−→
D jΨ

α
k +
−→
D i

[
/Σ
α
βΣjΨβ

j + 2εjkl /Σ
α
β(σj)

β
γ∂kA0Ψγ

l

~Σ · ~Σ

]
,

K†α = Kα = 0 . (7.22)

As a crosscheck, we can verify that the quantities between straight brackets
in the first two lines in (7.22) are Ψ†0 and Ψ0 by solving V †α and V α from
(7.19), respectively. We can see in (7.22), even in the case of limiting g → 0,

Ψ̇α
i ∼ iε jki ∂jΨ

α
k + ∂i

[
/Σ
α
βΣjΨβ

j + 2εjkl /Σ
α
β(σj)

β
γ∂kA0Ψγ

l

~Σ · ~Σ

]

we cannot avoid the second term, which contains information about the
external gauge field. This is the Adler’s argument about retained memory of
gauge fields at zero amplitude limit (see Section VIII.A. of [22]).

This dynamical analysis can be used to prove there are no superluminal
modes in the gauged massless RS theory. Let us consider the equation of
wave fronts in the neighborhood of a spacetime point x∗, and we choose
A0 = 0. Writing (7.22) at first order,

Ψ̇α
i ∼ iε jki ∂jΨ

α
k + ∂i

[
/Σ
α
β∗Σ

j
∗Ψ

β
j

~Σ∗ · ~Σ∗

]
+ ∆i [Ψi, x∗, x] (7.23)

where Σ∗ = ∆(x∗) and for ∆[. . .] we symbolically denote terms with no first
derivatives of its arguments. The term containing ∆ can be avoided [22], as
in

lim
δ→0

∫ δ

−δ
d`Ψ̇α

i ,

discontinuities across wave fronts contribute only through the first deriva-
tive terms, but when the external field ~Σ is smooth, the ∆[Ψi, x∗, x] term
makes a vanishing contribution. Therefore, dropping this term in (7.23) and
multiplying by Σ2

∗, we get the following condition

Fα
i ≡ Σ2

∗Ψ̇
α
i − Σj

∗ /Σ
α
β∗∂iΨ

β
j − iΣ2

∗ε
jk
i ∂jΨ

α
k = 0 . (7.24)

Besides this, we have to take into account the secondary constraint (7.11),
which, with the same arguments given before, leads to the linear condition

Gα ≡ εijk(σi)
α
β∂jΨ

β
k = 0 . (7.25)
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Observing the two conditions (7.24) and (7.25) are linear equations with
constant coefficients, the general solutions are plane waves. Without lost of
generality, we can assume the vector wave ~k is opposite to the x3-axis, i.e.,
~k = −kx̂3. So, we take the ansatz

Ψα
i (t, z) = Cα

i e
iΩt+ikz , (7.26)

where Ω, k, and Cα
i are constants non-zero constants. Therefore, the six

conditions (7.24) become

ΩCα
1 = −ikCα

2 ,

ΩCα
2 = ikCα

1 , (7.27)

~Σ∗ · ~Σ∗ΩCα
3 = kΣj

∗ /Σ
α
β∗C

β
j ,

while the two conditions (7.25) can be read as

(σ2)αβC
β
1 = (σ1)αβC

β
2 .

Writing explicitly the Pauli matrices and splitting the constants as column

spinor Ci =

(
C↑i
C↓i

)
, we get

−iC↓1 = C↓2 ,

iC↑1 = C↑2 . (7.28)

The first two lines of (7.27) together with (7.28), have solutions

C↑1 = C , C↑2 = iC , Ω = k , ,

C↓1 = C , C↓2 = −iC , Ω = −k , , (7.29)

meaning that the transversal modes are exactly luminal, as |Ω/k| = 1. For
the longitudinal modes, the third line in (7.27), has non-trivial solution only
if ∣∣∣∣ ~Σ · ~ΣΩ− k(Σ3)2 kΩ3 (Ω1 − iΩ2)

kΩ3 (Ω1 + iΩ2) Σ∗ · Σ∗Ω− k(Σ3)2

∣∣∣∣ = 0 ,

where we assume the magentic field is evaluated in the spacetime point x∗.
Solving the wave front velocity V = |Ω/k| from the last equation, we obtain∣∣∣∣Ωk

∣∣∣∣ =
(Σ3)2

(Σ1)2 + (Σ2)2 + (Σ3)2
≤ 1 , (7.30)

meaning the longitudinal modes are subluminal.

In order to quantize the theory, as this system is a second-class one, we have
to promote the canonical variables as operators acting on the Fock space,
whose quantum anticommutators [, ]+ are the Dirac brackets times i~,[

Ψ†iα(x),Ψβ
j (y)

]
+

= i~
{

Ψ†iα(x),Ψβ
j (y)

}
D
. (7.31)

By virtue of (7.20), it is verified the canonical anticommutator (7.31) is not
positive definite.
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7.5 Discussion

The main conclusion emerged from the detailed dynamical analysis for the
massless gauged RS theory is that, unlike to the free case, there is no fermionic
gauge invariance due to the fact there is no first-class constraint associated
with it. This implies there is a discontinuity on the DOF when it is turned on
the coupling constant g, according to our counting of first and second-class
constraints in Chapters 6 and 7. Therefore, for the gauged case, we cannot
use the fermionic gauge symmetry to restrict the quantum anticommutators
to belong to the definite positive sector, as suggested in [23]. However, from
the classical side, there are no superliminial modes for massless RS field,
even in the presence of an external magnetic field, as is claimed in [22].

As also noted in [22], we can observe directly from (7.22) that perturbation
theory is not well defined as we cannot decouple the free term from the
external magnetic field term, due to the fact that there is no g-proportionality
in the last one. In order words, the asymptotic states for the gauged massless
RS theory are not well defined. Therefore, some no-go theorems about the
quantum consistency of RS fields, which make use of this fact, should be
revisited for the massless case.

We can wonder if an extension of the massless gauges RS which restore the
gauge symmetry, as proposed in [22], could have a not ill-defined quantum
physics. This extension consists in the addition of a spin-1/2 field to the
Lagrangian, which it is coupled with both, the electromagnetic and the RS
fields. The dynamical contents, including the local DOF counting, of such a
model will be discussed in Chapter 8. Even it is true that one can always
extend a second-class system, as the massless gauged RS theory, to become
it a first-class one [26], perhaps this extended model could be used also to
avoid anomalies in Grand Unified Theories [19].
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Chapter 8

Extended gauged massless
Rarita-Schwinger theory

We saw in Chapter 7 that, by a detailed study of their dynamical contents,
the massless RS theory has not a fermionic gauge invariance. An extension
of the massless RS to restore the gauge symmetry was proposed [22], by
adding the 1/2-spin fermionic fields ξα, ξ

α as

S[A,ψ, ψ, ξ, ξ] = −1

4

∫
d4xFµνF

µν +
i

4

∫
d4xεµνρσ

(
ψµγ5γν

−→
Dρψσ + ψµ

←−
Dµγ5γρψσ

)
− g

4

∫
d4xεµνρσ

(
ξFµνγ5γρψσ − ψµγνγ5Fρσξ

)
(8.1)

+
g

8

∫
d4xεµνρσ

(
ξFµνγ5γρ

−→
Dσξ − ξ

←−
Dµγνγ5Fρσξ

)
.

The first observation we can make is that the new fermions ξ, ξ are not, in
principle, auxiliary fields as they have dynamics. This fact can be seen in
the last line of the action (8.1). The second observation, is that the action
(8.1) has the following (infinitesimal) fermionic gauge symmetry

δAµ = 0 , δψµ = ζ
←−
Dµ , δψµ =

−→
Dµζ , δξ = ζ , δξ = ζ . (8.2)

This statement can be shown immediately if we rewrite the Lagrangian
density appearing in (8.1) in a more compact form,

L = −
1

4
FµνF

µν+
i

4
εµνρσ

(
ψµ − ξ

←−
Dµ

)←−
Dνγ5γρ

(
ψσ −

−→
Dσξ

)
+
i

4
εµνρσ

(
ψµ − ξ

←−
Dµ

)
γ5γν

−→
Dρ

(
ψσ −

−→
Dσξ

)
,

where we integrated by parts, dropped the boundary term and used the

identity εµνρσ
−→
Dµ

−→
D νξ = − ig

2
εµνρσFµνξ (and similarly for ξ†). The action

(8.1) has also the standard gauge symmetry, which can be written in an
infinitesimal form as

δAµ =
1

g
∂µα , δψµ = −iαψµ , δψµ = iαψµ , δξ = −iαξ , δξ = iαξ . (8.3)

87



88 CHAPTER 8. EXTENDED RS THEORY

The transformations (8.2) and (8.3) are independent each other and can be
done separately.

As in the other sections, it is better to work with the left-handed decomposi-
tion shown in Appendix E.1. In such a case, the action (8.1) can be read
as

S[A,ψ, ψ, ξ, ξ] = −1

4

∫
d4xFµνF

µν +
1

4

∫
d4xεµνρτ

(
Ψ†µσν

−→
DρΨτ + Ψ†µ

←−
Dµσρψτ

)
(8.4)

+
ig

4

∫
d4xεµνρτFµν

(
ξ†σρψτ + ψ†ρστξ −

1

2
ξ†σρ
−→
D τξ −

1

2
ξ†
←−
Dρστξ

)
.

The field equations obtained from varying (8.1) with respect to Aµ, Ψ†µ, Ψµ,

ξ and ξ are, respectively,

∂νF
µν+

ig

2
εµνρσ

[
Ψ†νσρΨτ + ∂ν

(
ξ†σρΨρ + Ψ†ρστξ −

1

2
ξ†σρ
−→
D τξ −

1

2
ξ†
←−
Dρστξ

)]
= 0 ,

1

2
εµνρσσν

[
−→
DρΨτ +

ig

2
Fρτξ

]
= 0 ,

−1

2
εµνρσ

[
Ψ†ν
←−
Dρ +

ig

2
ξ†Fρτ

]
στ = 0 , (8.5)

ig

4
εµνρσFµνσρ

[
Ψτ −

−→
D τξ

]
= 0 ,

ig

4
εµνρσFµν

[
Ψ†ρ − ξ†

←−
Dρ

]
στ = 0 .

We observe the second and third equations are consequence of the fourth
and last equations, respectively. This fact is a consequence of the fermionic
gauge symmetry which translates in a redundance of the dynamical content
of the action (8.4).

8.1 Dirac’s Hamiltonian formalism

8.1.1 Momenta, Poisson brackets and canonical Hamil-
tonian

The canonical momenta associated with the gauge field Aµ and the fermions
Ψ†µ,Ψµ, ξ

†, ξ are, respectively,

πµ =
∂L
∂Ȧµ

,Ξ†µα =
∂RL
∂Ψ̇α

µ

,Ξµα =
∂LL
∂Ψ̇†µα

, p†α =
∂RL
∂ξ̇α

, pα =
∂LL
∂ξ̇†α

. (8.6)
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The non-vanishing Poisson brackets, at equal time, between fields and mo-
menta are (following convention of [26])

{Aµ(x), πν(y)} = −{πν(y), Aµ(x)} = δνµδ
(3)(x− y) ,{

Ψ†αµ (x),Ξνβ(y)
}

=
{

Ξνβ(y),Ψ†αµ (x)
}

= −δνµδαβ δ(3)(x− y) ,{
Ψα
µ(x),Ξ†νβ (y)

}
=

{
Ξ†νβ (y),Ψα

µ(x)
}

= δνµδ
α
β δ

(3)(x− y) , (8.7){
ξ†α(x), pβ(y)

}
=

{
pνβ(y), ξ†α(x)

}
= δβαδ

(3)(x− y) ,{
ξα(x), p†β(y)

}
=

{
p†β(y), ξα(x)

}
= δαβ δ

(3)(x− y) .

The time and spatial components of (7.6) are given by

π0 = 0 , πi = F i0 − ig

2
εijk
[
ξ†σjΨk + Ψ†jσkξ −

1

2
ξ†σj
−→
Dkξ −

1

2
ξ†
←−
D jσkξ

]
,

Ξ†0α = 0 , ~Ξ†α = −1

4
~Ψ†β × (~σ)βα.

Ξ0α = 0 , ~Ξα =
1

4
(~σ)αβ × ~Ψβ ,

p†α = −ig
8
εijkFijξ

†
β(σk)

β
α , pα =

ig

8
εijkFij(σk)

α
βξ

β .

At this point, it is convenient to introduce some definitions:

θ†iα ≡ Ψ†iα −
1

2
ξ†α
←−
D i ,

θαi ≡ Ψα
i −

1

2

−→
D iξ

α , (8.8)

�i ≡ εijk
(
ξ†σjθk + θ†jσkξ

)
,

r ≡ εijk
(
−Ψ†i
−→
D jΨk + Ψ†i

←−
D jΨk + igFij

[
ξ†θk − θ†kξ

])
. (8.9)

With (8.8), can write the canonical Hamiltonian H0 as

H0 =

∫
d3x

[
A0

(
−∂iπi −

ig

2
Ψ†iσjΨk +

g2

4
Fijξ

†σkξ

)]
(8.10)

+

∫
d3x

[
Ψ†0ε

ijk

(
1

2
σi
−→
D jΨk +

ig

4
Fijσkξ

)
+

(
−1

2
Ψ†i
−→
D jσk −

ig

4
Fijξ

†σk

)
εijkΨ0

]
+

∫
d3x

[
1

2

(
πi +

ig

2
�i
)(

πi +
ig

2
�i
)

+
1

4
FijF

ij +
1

4
r

]
.
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8.1.2 Primary and secondary constraints

The primary constraints are given by

φ0 ≡ π0 ≈ 0 ,

χ0α ≡ Ξ0α ≈ 0 , ~χα ≡ Ξ0α − 1

4
(~σ)αβ × ~Ψβ ≈ 0 ,

~χ†α ≡ ~Ξ†α +
1

4
~Ψ† × ~σ ≈ 0 , χ†0α ≡ Ξ†0α ≈ 0 ,

ϕ†α ≡ p†α +
ig

8
εijkFijξ

†
β(σk)

β
α , ϕα ≡ pα − ig

8
εijkFij(σk)

α
βξ

β . (8.11)

whose only non-vanishing Poisson brackets are{
χ†iα (x), χjβ(y)

}
= −1

2
εijk(σk)

β
αδ

(3)(x− y) ,{
ϕ†iα (x), ϕβ(y)

}
= −ig

4
εijkFij(σk)

β
αδ

(3)(x− y) . (8.12)

Now, we write the primary Hamiltonian

HT = H0 +

∫
d3x

(
Λ†µχ

µ + χ†µΛµ + λ†ϕ+ ϕ†λ
)
,

where Λ†µ,Λµ, λ
†, λ are Lagrange multipliers associated to the primary con-

straints, except for the constraint1 π0.

We demand the primary constraints (8.11) to hold as the system evolves in
time, i.e.,

φ̇0(x) =
{
φ0(x), HT

}
= ∂iπ

i +
ig

2
εijkΨ†iσjΨk −

g2

4
Fijξ

†σkξ ≈ 0 ,

χ̇†0α (x) =
{
χ†0α (x), HT

}
=

1

2
εijk
(

Ψ†iβ
←−
D j +

ig

2
Fijξ

†
β

)
(σk)

β
α ≈ 0 ,

χ̇0α(x) =
{
χ0α(x), HT

}
= −1

2
εijk(σi)

α
β

(
−→
D jΨ

β
k +

ig

2
Fijξ

β

)
≈ 0 ,

where in the second equalities we used (8.7), (8.11) and (8.10) explicitly.
This lead us to define the following secondary constraints

k ≡ −∂iπi −
ig

2
εijk
(

Ψ†iσjΨk +
ig

2
Fijξ

†σkξ

)
≈ 0 ,

K†α ≡ −1

2
εijk
(

Ψ†iβ
←−
D j +

ig

2
Fijξ

†
β

)
(σk)

β
α ≈ 0 , (8.13)

Kα ≡ 1

2
εijk(σi)

α
β

(
−→
D jΨ

β
k +

ig

2
Fijξ

β

)
≈ 0 .

1In Section 7.2.3 we present π0 (= φ0) as a first-class constraint. Therefore, its Lagrange
multiplier is undetermined.
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The non-vanishing Poisson brackets of (8.13) with the rest of constraints
(8.11), and between them, are shown in Appendix F.2.

Substituting (8.13) in (8.10), and using the notation Ei ≡ πi + ig
2
�i = F 0i

( ~E is proportional to the electric field) and Σi ≡ εijkFjk (~Σ is proportional
to the magnetic field), we get

H0 =

∫
d3x

[
A0k + Ψ†0K +K†Ψ0 +

1

2
EiEi +

1

8
ΣiΣi +

1

4
r

]
.

Preservation in time of the rest of primary constraints determines a possible
set of Lagrange multipliers (see Appendix F.2 for computational details),

Λ†iα ≈ −igA0Ψ†iα + Ψ†0α
←−
D i + iεijkΨ†jα

←−
Dk + ig

[
Ei +

i

2
Σi

]
,

ϕ̇α(x) = {ϕα(x), HT}

Λα
i ≈ igA0Ψα

i +
−→
D iΨ

α
0 + iεijk

−→
D jΨ

α
k + ig

[
Ei − i

2
Σi

]
,

λ†α ≈ −igA0ξ
†
α + Ψ†0α

+
1

~Σ · ~Σ

[
−2( ~E × ~Σ) · ~ϑ† + 2i( ~E · ~Σ)(~ϑ† · ~σ)− 2i(~Σ · ~ϑ†)(~σ · ~E)− (~Σ · ~ϑ†)(~σ · ~Σ)

]
α
,

λα ≈ igA0ξ
α + Ψα

0

+
1

~Σ · ~Σ

[
2( ~E × ~Σ) · ~ϑ+ 2i( ~E · ~Σ)(~σ · ~ϑ)− 2i( ~E · ~σ)(~Σ · ~ϑ) + (~Σ · ~σ)(~Σ · ~ϑ)

]α
.

One can prove also that with these Lagrange multipliers the preservation in
time of the secondary constraints k,K†, K does not requirers extra constraints.
Therefore, we completed the set of constraints, and in the next subsection,
we will classify them according to be first-class or second-class ones.

8.1.3 First-class and second-class constraints

We already known from (8.11) that φ0, χ†0, χ
0α are first-class constraints. As

the action (8.1) has the symmetries (8.3), (8.2), we can guess the following
first-class constraints

k̃ ≡ 1

g
k + iχi†Ψi − iΨ†iχi + iϕiξ − iξ†ϕ , (8.14)

K̃α ≡ Kα − ∂µχµα + ϕα

K̃†α ≡ K†α − ∂µχ†µα + ϕ†α . (8.15)

Indeed, using (6.13) and (6.16), it can be shown that (6.17) are first-class
constraints and generates the gauge transformations (8.3), (8.2), respectively.
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Constraint kind Number of this kind Classification
φ0 1 first-class

k̃ 1 first-class
χ0α 2 first-class
χ†0α 2 first-class

K̃α 2 first-class

K̃†α 2 first-class
χiα 6 second-class
χ†iα 6 second-class
ϕ†α 2∗ second-class
ϕα 2∗ second-class

Table 8.1: Constraint classification for the extended massless left-handed RS
theory coupled to a Maxwell field.

8.1.4 Degrees of freedom counting

Applying again the formula (3.45), we have for this case2 N = 2× (4 + 16 +
4∗) = 4 + 32 + 16∗, F = (2 + 8), and S = (12 + 4∗), according to Table 8.1.
Therefore, the number of degrees of freedom is now DOF = (2 + 2 + 2∗) for
the real Majorana spinor. Taking into account also the right-handed fermion
component for the complex Dirac spinor case, we gave DOF = (2 + 4 + 4∗).
We can see in this extended case we restore the local fermionic DOF of the
free case (see Section 3.2).

8.2 Faddeev-Jackiw method

Following the same steps and definitions as in Sections 6.3 and 7.3, we
can apply the FJ method to this extended massless RS. Starting with the
Lagrangian density appearing in (8.4), we can write it as

L = Ȧiπ
i +

1

4
εijk
(

Ψ̇†iσjΨ
k −Ψ†iσjΨ̇k

)
+
ig

8
εijkFij

(
ξ̇†σkξ − ξ†σkξ̇

)
− A0k −Ψ†0K −K†Ψ0 −

1

2
(πi +

ig

2
�i)(πi +

ig

2
�i)− 1

4
FijF

ij − 1

4
r ,

where the quantities �i, r and the constraints k, K†α, K† were defined in
Sections 8.1.1 and 8.1.2, respectively.

2The asterisk ∗ in the right of the number is just distinguish the local DOF coming
from the extra fields ξ† , ξ with respect to the original fields Ψ†i ,Ψi.
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Splitting Ai and πi in transversal and longitudinal components, defining the
transformations

Ψ†µα → Ψ′†µα = Ψ†µαe
−iA , Ψα

µ → Ψ′αµ = eiAΨα
µ ,

ξ†α → ξ′†α = ξ†αe
−iA , ξα → ξ′α = eiAξα ,

and solving for k = 0, as in Section 7.3, we have

L = ȦT iπ
i
T +

1

4
εijk
(

Ψ̇′
†
iσjΨ

′k −Ψ′†i σjΨ̇
′
k

)
+
ig

8
εijkFij

(
ξ̇′†σkξ

′ − ξ′†σkξ̇′
)

− Ψ′†0K
′ −K ′†Ψ′0 −

1

2
(πT i +

ig

2
�i)(πiT +

ig

2
�i)− 1

4
FT ijF

ij
T −

1

4
r ,

where in this case �i and r contain primed fields and transversal covariant
derivatives DT .

As we already known this extended massless RS has the fermionic gauge
invariance (8.2), we can induce a second field transformation

Ψ′†µα → Ψ′′†µα = Ψ′†µα + ∂µζ
†
α , Ψ′αµ → Ψ′′αµ = Ψ′αµ + ∂µζ

α ,

ξ′†α → ξ′′†α = ξ′†α + ζ†α , ξ′α → ξ′′α = ξ′α + ζα ,

where, as in Section (6.3), we choose the fermionic parameters ζ† and ζ such
that

Ψ′′†iα(σi)αβ = 0 =⇒ Ψ′′†1/2iα = 0 ,

(σi)βαΨ′′αi = 0 =⇒ Ψ′′α1/2i = 0 .

Now we left with only the 3/2−spin components of Ψ† and Ψ, we can split
them in transversal and longitudinal components, then we can solve the
fermionic constraints,

K ′′α =
i

2
∇2Θα +

g

2
AT i∂

iΘα +
g

2
AT iΨ

′α
3/2T i +

ig

2
Σk(σ

k)αβξ
′′β = 0 ,

K ′′†α = − i
2
∇2Θ†α +

g

2
AT i∂

iΘ†α +
g

2
Ψ′†3/2T iαAT i −

ig

2
ξ′′βΣk(σ

k)βα = 0 ,

in a frame where the magnetic field is not zero (~Σ · ~Σ 6= 0). Therefore,
solving the fermionic constraints can be seen as solving the above differential
equations for Θ† and Θ with suitable boundary conditions.

At the end, the only degrees of freedom left are those shown in Table 8.2 .
Therefore, for the extended left-handed massless RS theory (real Majorana
spinor), we have dof = (2 + 2 + 2∗), as the Dirac’s Hamiltonian formalism.
If we take into account the right-handed components for the complex Dirac
spinor case, we have dof = 2 + 4 + 4∗.
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Field Number
AT (with corresponding momentum πiT ) 2

Ψα
3/2T i (with corresponding momentum Ψ†3/2T iα) 2

ξα (with corresponding momentum ξ†α) 2∗

Table 8.2: Degrees of freedom left after solving the constraints for the extended
massless left-handed RS theory.

8.3 Quantization in the presence of an exter-

nal magnetic field

The total Hamiltonian for the extended gauged massless RS with an external
magnetic field (we choose A0 = 0) can be written as

HT =

∫
d3x

[
1

4
Ψ†i

(←−
D j −

−→
D j

)
Ψk +

ig

4
Σi
(
ξ†Ψi −Ψ†iξ

)
+
ig

8
Σiξ†

(←−
D i −

−→
D i

)
ξ

+ Ψ†0K +K†Ψ0 + χ†µΛµ + Λ†µχ
µ + λ†ϕ+ ϕ†λ

]
, (8.16)

where the constraints are defined as (8.11) and (8.13). Regarding the quanti-
zation of the theory, we cannot apply directly the aforementioned proceeding
as the system has first-class constraints. In order to transform the system
in a second-class one, we need to add suitable equal number gauge-fixing
condition (GFC) as first-class constraints [121]. These conditions must be
well-defined in the sense that if ΦA are first-class constraints and ΓA GFCs,
then {ΓA(x),

∫
d3yΦB(y)εB(y)} = 0 implies εA = 0. With the addition of

these GFCs the system of constraints become second-class, and therefore, we
can apply the same procedure than the last section.

8.3.1 ξ†α = ξα = 0 gauge

The easiest way to implement the GFCs is to choose Ψα
0 = Ψ†0α = 0 and

ξα = ξ†α = 0, i.e.,

Ωα = ξα ≈ 0 ,

Ω†α = ξ†α ≈ 0 ,

Υα = Ψα
0 ≈ 0 , (8.17)

Υ†α = Ψ†0α ≈ 0 .

The extended Dirac bracket can be obtained in steps as the previous case.
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1. Consider the second-class constraints χ†iα , χiα, ϕ†α and ϕα. We have
then the following partial constraints matrix

χ†jβ (y) ϕ†α(y) χjβ(y) ϕβ(y)

χ†iα (x) 0 0 −1
2
εijk(σk)

β
α 0

ϕ†α(x) 0 0 0 ig
4
/Σ
β
α

χiα(x) 1
2
εijk(σk)

α
β 0 0 0

ϕα(x) 0 ig
4
/Σ
α
β 0 0

 δ(3)(x−y) = M(x, y) ,

whose inverse is
χ†jβ (y) ϕ†β(y) χjβ(y) ϕβ(y)

χ†iα (x) 0 0 −i(σiσj)αβ 0

ϕ†α(x) 0 0 0 4i
g

/Σ
α
β

~Σ·~Σ
χiα(x) i(σiσj)

β
α 0 0 0

ϕα(x) 0 4i
g

/Σ
β
α

~Σ·~Σ
0 0

 δ(3)(x−y) = M−1(x, y) .

We can immediately compute the bracket at level 1, i.e.,{
Ψ†iα(x),Ψβ

j (y)
}∗

=
{

Ψ†iα(x),Ψβ
j (y)

}
−
∫
d3wd3z

{
Ψ†iα, χ

kγ(w)
}(
M−1

)τ
jkγ

(w, z)
{
χ†lτ (z),Ψβ

j (y)
}

= −i(σiσj)βαδ(3)(x− y) ,{
ξ†α(x), ξβ(y)

}∗
=

{
ξ†α(x), ξβ(y)

}
−
∫
d3wd3z

{
ξ†α(x), ϕγ(w)

} (
M−1

)τ
γ

(w, z)
{
ϕ†τ (z), ξβ(y)

}
=

4i

g

/Σ
β
α

~Σ · ~Σ
δ(3)(x− y) .

Other important brackets which are modified at this level are{
K†α(x), Kβ(y)

}∗
= 0 ,{

K†α(x),Ωβ(y)
}∗

= δβαδ
(3)(x− y) ,{

Ω†β(x), Kβ(y)
}∗

= −δβαδ(3)(x− y) ,{
Ω†β(x),Ωβ(y)

}∗
=

4i

g

/Σ
β
α

~Σ · ~Σ
δ(3)(x− y) .

2. Consider the first-class constraints K†α, Kα and the GFCs Ω†α and Ωα.
We have then the following partial constraints matrix

K†β(y) Ω†β(y) Kβ(y) Ωβ(y)

K†α(x) 0 0 0 δβα
Ω†α(x) 0 0 −δβα

ig
4
/Σ
β
α

Kα(x) 0 −δαβ 0 0

Ωα(x) δαβ
ig
4
/Σ
β
α 0 0

 δ(3)(x− y) = G(x, y) ,
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whose inverse is
K†β(y) Ω†β(y) Kβ(y) Ωβ(y)

K†α(x) 0 0 4i
g

/Σ
α
β

~Σ·~Σ
δαβ

Ω†α(x) 0 0 −δαβ 0

Kα(x) 4i
g

/Σ
β
α

~Σ·~Σ
−δβα 0 0

Ωα(x) δβα 0 0 0

 δ(3)(x− y) = G−1(x, y) .

We can immediately compute the bracket at level 2, i.e.,{
Ψ†iα(x),Ψβ

j (y)
}∗∗

=
{

Ψ†iα(x),Ψβ
j (y)

}∗
−
∫
d3wd3z

{
Ψ†iα,K

γ(w)
}∗ (

G−1
)τ
γ

(w, z)
{
K†τ (z),Ψβ

j (y)
}∗

= −i(σiσj)βαδ(3)(x− y) +
4i

g

∫
d(3)z

[
δ(3)(z − y)

]←−
D j

4i

g

/Σ
τ
γ

~Σ · ~Σ
−→
D i

[
δ(3)(x− z)

]
.

3. Finally, consider the first-class constraints χ†0α , χ0α and the GFCs Υ†α
and Υα, which give us the final partial constraint matrix

χ†0β (y) Υ†β(y) χ0β(y) Υβ(y)

χ†0α (x) 0 0 0 δβα
Υ†α(x) 0 0 −δβα 0
χ0α(x) 0 −δαβ 0 0
Υα(x) δαβ 0 0 0

 δ(3)(x− y) = H(x, y) ,

whose inverse is
χ†0β (y) Υ†β(y) χ0β(y) Υβ(y)

χ†0α (x) 0 0 0 δαβ
Υ†α(x) 0 0 −δαβ 0
χ0α(x) 0 −δβα 0 0
Υα(x) δβα 0 0 0

 δ(3)(x− y) = H−1(x, y) .

We can immediately compute the bracket at level 3, i.e.,{
Ψ†iα(x),Ψβ

j (y)
}∗∗∗

=
{

Ψ†iα(x),Ψβ
j (y)

}∗∗
= −i(σiσj)βαδ(3)(x− y) +

4i

g

∫
d(3)z

[
δ(3)(z − y)

]←−
D j

/Σ
τ
γ

~Σ · ~Σ
−→
D i

[
δ(3)(x− z)

]
≡

{
Ψ†iα(x),Ψβ

j (y)
}
D
, (8.18)

which is exactly the same as the Dirac bracket for the standard gauged
case (7.20). With the GFCs Υ†α and Υα, we just kill the fields Ψ†0α and
Ψα

0 , respectively.
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The extended Hamiltonian is

HE =
1

4

∫
d3xεijkΨ†i

[←−
D j −

−→
D j

]
Ψk . (8.19)

We obtain the dynamics of the canonical fields with the modified Poisson
bracket {. . . , . . .}D∗ , i.e.,

Ψ̇†iα =
{

Ψ†iα, HE

}
D
,

Ψ̇α
i = {Ψα

i , HE}D ,

K†α = Kα = 0 .

Note that the equality on the constraints are implemented strongly as the
Dirac brackets preserves the constraint surface in the phase space [26]. It can
be verified that one obtains the same field equations (7.22) for the canonical
fields, except now Ψ†0α = Ψα

0 = 0.

Of course we can take a different set of GFCs than (8.17). For instance, to
get exactly the same field equations than (7.5), we can choose the following
set,

Ωα = ξα ≈ 0 ,

Ω†α = ξ†α ≈ 0 ,

V α = −ig
4

[
/Σ
α
βΨβ

0 − ΣiΨα
i

]
≈ 0 ,

V †α =
ig

4

[
Ψ†0β /Σ

β
α − ΣiΨ†iα

]
≈ 0 .

Note that V α and V †α are exactly the tertiary constraints (7.12) for the case of
an external magnetic field. The difference is that in this case is implemented
as a GFC form outside, where in the other case it is a constraint coming
from the Hamiltonian formalism when we require the time preservation of
the secondary constraints Kα and K†α, respectively.

8.3.2 Extended covariant radiation gauge

As the ξ has dimension of a spin-1/2 field, even another GFCs could be to

add a multiple of /Ωξ to
−→
D iΨi to form an extended gauge covariant radiation

gauge fixing. This GFCs leads to particularly simple formulas

ωα ≡ 1

2

−→
D iΨα

i +
g

4
/Σ
α
βξ

β ≈ 0 ,

ω†α ≡
1

2
Ψ†iα
←−
D i +

g

4
ξ†β /Σ

β
α ≈ 0 ,

Υα = Ψα
0 ≈ 0 , (8.20)

Υ†α = Ψ†0α ≈ 0 .
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We note the last two GFCs only rule out Ψ†0 and Ψ0 of the game. The other
observation is that

(σi)
α
β

−→
D i(σj)

β
γΨ

γ
i =
−→
D iΨα

i + iεijk(σi)
α
β

−→
D jΨ

β
k = ωα + 2iKα ≈ 0

So, if ~σ · ~D is invertible, this means ~σ · ~Ψ ≈ 0, and analogously for Ψ†.
Therefore, according to E.2, we are selecting the 3/2-spin component of Ψ.
The third observation is that by gauge transformation (8.2), the first two
GFC in (8.20) transform as

ω′α = ωα + (σiσj)αβ
−→
D i

−→
D jζ

β ,

ω′†α = ω†α + ζ†β
←−
D i
←−
D j(σ

iσj)βα ,

meaning that, if we insist in the invertibility of ~σ · ~D, then this gauge
condition is attainable for any configuration space sector. In this case, the
non-vanishing brackets are3



K†β(y) ω†β(y) Kβ(y) ωβ(y)

K†α(x) 0 0 0 1
2

−→
/D
−→
/D
(y)β
α δ(3)(x− y)

ω†α(x) 0 0 − 1
2

−→
/D
−→
/D
(y)β
α δ(3)(x− y) ig

4

−→
/D
−→
/D
(y)β
α δ(3)(x− y)

Kα(x) 0 − 1
2

−→
/D
−→
/D
(y)α
β δ(3)(x− y) 0 0

ωα(x) 1
2

−→
/D
−→
/D
(y)α
β δ(3)(x− y) ig

4

−→
/D
−→
/D
(y)α
β δ(3)(x− y) 0 0


= N(x, y) ,

where we introduced the notation
−→
/Dα
β ≡ (σi)αβ

−→
D i. Assuming, as we said

before, that ~σ · ~D is invertible, we define the following distribution∫
d3zZαγ (x, z)

−→
/D
−→
/D

(z)γ
β δ(3)(z−y) = δαβ δ

(3)(x−y) =

∫
d3z
−→
/D (z)α
γ δ(3)(z−y)Zγβ (x, z)

←−
/D .

(8.21)

Roughly speaking, Zαβ is the inverse of the operator
−→
/D
−→
/D . We can now invert

the matrix N(x, y), obtaining


K†β(y) Ω†β(y) Kβ(y) Ωβ(y)

K†α(x) 0 0 iZαβ (x, y) 2Zαβ (x, y)
Ω†α(x) 0 0 −2Zαβ (x, y) 0
Kα(x) iZβα(x, y) −2Zβα(x, y) 0 0
Ωα(x) 2Zβα(x, y) 0 0 0

 = N−1(x, y) .

3We proceed in the same lines as the Section 8.3.1, in the sense that we first construct
level 1 brackets {. . . , . . .}∗ by solving the constraints χ†, χ, ϕ† and ϕ. Then we move to
level 2 brackets {. . . , . . .}∗∗, by solving the rest of the constraints.
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Now we are ready to obtain the level 2 bracket,{
Ψ†iα(x),Ψβ

j (y)
}∗∗

= −i(σiσj)βαδ(3)(x− y)− i
−→
D

(y)
j Zβα(x, y)

←−
D

(x)
i

+ε klj (σk)
γ
α

−→
D

(y)
l Z

β
γ (x, y)

←−
D

(x)
i +

−→
D

(y)
j Zβγ (x, y)ε kli

←−
D

(x)
k (σl)

γ
α ,{

ξ†α(x),Ψβ
i (y)

}∗∗
= −2i

−→
D

(y)
i Zβα(x, y)− ε jki (σj)

β
γ

−→
D

(y)
k Z

γ
α(x, y){

Ψ†iα(x), ξβ(y)
}∗∗

= −2iZβα(x, y)
←−
D

(y)
i + Zγα(x, y)

←−
D

(y)
j ε jki (σk)

β
γ{

ξ†α(x), ξβ(y)
}∗∗

=
4i

g

/Σ
β
α

~Σ · ~Σ
δ(3)(x− y)− 3iZβα(x, y) . (8.22)

As the effect of taking into account the Υ† and Υ is to read off the variables
Ψ†0 and Ψ0, respectively, the brackets (8.22) are the Dirac brackets.

We can see from (8.22) that once one goes to the quantum anticommutator
relations (multiplying by i~ the Dirac brackets) the last term for sure is
singular when the magnetic field Σ goes to zero.
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Part III

Strained Graphene
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Chapter 9

Electronic properties of
Graphene

Besides the promising technological and industrial applications of their
electronic properties, graphene has the potential to be used as a table-top
to testing fundamental physics. A remarkable example is the possibility to
deform the graphene sheet to mimic different spacetime horizons [31, 32].
This is due to the effective Dirac massless description of the hopping electrons
in the flat case along with the possibility of the graphene sheet to acquire
different background shapes, as for instance Beltrami pseudo-sphere [36].
This Chapter is devoted to the basic electronic properties of flat graphene
without any kind of deformations (i.e, there is no curvature, no torsion).
The intention is not to be exhaustive on this topic, as there is a lot of
literature both from the theoretical and experimental point of view, but only
to introduce basic properties and some notation. In the next two chapters, we
will focus on the strained graphene and the electronic properties associated
with it.

9.1 Honeycomb lattice

Graphene is an allotrope of carbon forming a one-atom-thick, hence it is
the closest in Nature to a two-dimensional system. It is fair to say that was
first theoretically speculated in [69, 70], and, decades later, experimentally
found [71]. The honeycomb lattice of graphene is made of two intertwined
triangular sub-lattices, which is called honeycomb lattice1. Three of carbon’s

1We call the honeycomb structure a lattice even if strictly speaking the two triangular
sub-lattice structure is not a lattice, as there is not a primitive translation vector basis
associated to it [122].
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l

Figure 9.1: The honeycomb lattice of graphene, and its two triangular sublattices,
with our choice of the basis vectors, (~a1,~a2) and (~s1, ~s2, ~s3). This figure was taken
from [31].

four electrons available to form covalent bonds are shared by the three nearest
neighbours, forming so-called σ-bonds (associated to the atomic 2s-orbitals).
The fourth electron also forms a covalent bond, which is called π-bond
(associated to the atomic 2p-orbitals), but only with one of their neighbours.
Because the π bonds are ’weaker’ than the σ ones, these π electrons can hop
more easily. It turns out that in the vicinity of the points (in the momentum
space) where the conductivity and valence bands touch, these electrons can
be well described by Dirac equation in two spatial dimensions (QED2+1)
[40], as we shall recollect below. The electronic properties of graphene are
due to the electrons belonging to the π orbitals.

In the honeycomb lattice, there are two inequivalent sites per unit cell,
which are symbolled as black and white dots in Figure 9.1. As the vectors
{~a1,~a2} are not enough to reach all black and white points, an extra set of
vectors {~s1, ~s2, ~s3} are needed. The last set of vectors describes the position
of the three near neighbors for each atom. The vectors of both sets are
bi-dimensional ~r = (x, y), and we choose here the following convention for
them (see Figure 9.1)

~s1 = `(0,−1) , ~s2 =
`

2
(
√

3, 1) , ~s3 =
`

2
(−
√

3, 1) ,

~a1 =
`

2
(
√

3, 3) , ~a1 =
`

2
(
√

3,−3) , (9.1)

where ` ' 1.42Å is the carbon-carbon near neighbors distance [40], that
we call lattice length2. From the three near-neighbors vectors {~si} we can

2As usual, the lattice spacing is the length of the basis vectors |~ai| =
√

3` ∼ 2.46Å.
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construct the six next-to-near neighbor (NNN) vectors as

~t1 = ~s2 − ~s3 , ~t2 = ~s2 − ~s1 , ~t3 = ~s3 − ~s1 ,

~t4 = −~t1 , ~t5 = −~t2 , ~t6 = −~t3 . (9.2)

We will use these vectors to derive the dispersion relation of the π electrons,
up to NNN-order corrections in Section 9.2.

9.2 Massless Dirac structure of π electrons

Let us briefly recapitulate the very well known facts happening at the low-
energy limit of the physics of the π electrons in graphene, in the half-filling
regime. The tight-binding (TB) Hamiltonian is3(using natural units ~ = 1)

H = −
∑
~r∈LA

[
η
i=3∑
i=1

(
a†(~r)b(~r + ~si) + b†(~r + ~si)a(~r)

)
+η′

i=6∑
i=1

(
a†(~r)a(~r + ~ti) + b†(~r)b(~r + ~ti)

)]
, (9.3)

where η is the nearest-neighbor hopping energy which is approximately 2.8
eV, η′ is NNN hopping energy4 (hopping in the same lattice), and a, a†(b, b†)
are the anticommuting annihilation and creation operators for the planar
electrons in the sub-lattice LA(LB) of the honeycomb lattice realized by the
σ-bonds (see Figure 9.1).

If we make a Fourier transformation to momenta space ~k = (kx, ky) of the
annihilation and creation operators,

a(~r) =
∑
~k

a~ke
i~k·~r , b(~r) =

∑
~k

b~ke
i~k·~r , (9.4)

then

H = −
∑
~k

[
η

i=3∑
i=1

(
a†~kb~ke

i~k·~si + b†~ka~ke
−i~k·~si

)
+ η′

i=6∑
i=1

(
a†~ka~ke

i~k·~ti + b†~kb~ke
−i~k·~ti

)]
.

3We are not considering here the spinorial nature of the π electrons as its contribution
to TB Hamiltonian is weaker than the hopping energy.

4The value of η′ is still not well determined, but it is though to be around 0.02η ≤
η′ ≤ 0.2η [40].
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Figure 9.2: (a) The dispersion relation E(~k) for the π electrons in graphene,
setting η` = 1. We only take into account the near neighbors contribution in (9.3).
(b) A zoom near the Dirac point KD+ showing the linear approximation works
well in the low energies regime.

Using our conventions (9.1) and (9.2), we define the functions

f1(~k) ≡ −η
i=3∑
i=1

ei
~k·~si = −ηei`ky

[
1 + 2e

3i
2
`ky cos

(√
3

2
`kx

)]
, (9.5)

f2(~k) ≡ −η′
i=6∑
i=1

ei
~k·~ti = 2η′

(
cos
(√

3`kx

)
+ 4 cos

(√
3

2
`kx

)
cos

(√
3

2
`ky

))
,

leading to

H = −
∑
~k

[
f1(~k)a†~kb~k + f ∗1 (~k)b†~ka~k + f2(~k)a†~ka~k + f2(~k)b†~kb~k

]
.

For the case we consider only near neighbors contribution (η′ = 0), the
conduction and valence bands touch each other in the first Brillouin zone
(if they do) when |f1( ~K)| = 0. For the case of π electrons in graphene they
touch at KD± = (± 4π

3
√

3`
, 0), as we can check from (9.5). Actually, there are

six of that points, but the only two shown above are inequivalent under
lattice discrete symmetry. These points are called Dirac points. A sketch
for the dispersion relation E(~k) = |f(~k)|, for η` = 1, is shown in Figure 9.2
(a). Now, let us analyze the energy behaviour of the π electrons around the

Dirac points KD±. In order to do that, we expand f1(~k) as ~k± = ~KD± + ~p,
where it is assumed |p| � |KD|,

f1+(~p) ≡ f(~k+) = vF (px + ipy) ,

f1−(~p) ≡ f(~k−) = −vF (px − ipy) ,
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where vF ≡ 3
2
η` ∼ c/300 is the Fermi velocity. We can see from this that the

dispersion relation for the π electrons around the fermi point is

|E±(~p)| = vF |~p| , (9.6)

which is the dispersion relation for a massless particle (see Figure 9.2 (b)).

Defining a± ≡ a(~k±) and b± ≡ b(~k±), the Hamiltonian (9.3), up to near
neighbors correction (avoiding f2), can be written as

H|k± =
∑
~p

[
f+a

†
+b+ + f−a

†
−b− + f∗+b

†
+a+ + f∗−b

†
−a−

]
= vF

∑
~p

[
a†+ (px + ipy) b+ − a†− (px − ipy) b− + b†+ (px − ipy) a+ − b†− (px + ipy) a−

]
= vF

∑
~p

[(
b†+ a†+

)( 0 px − ipy
px + ipy 0

)(
b+
a+

)
−
(
b†− a†−

)( 0 px − ipy
px + ipy 0

)(
b−
a−

)]
.

Arranging the creation (annihilation) operators as a column (row) vector

ψ± =

(
b±
a±

)
; ψ†± =

(
b†± a†±

)
, then

H = vF
∑
~p

[
ψ†+~σ · ~pψ+ − ψ†−~σ∗ · ~pψ−

]
, (9.7)

where ~σ = (σ1, σ2) and ~σ∗ = (σ1,−σ2), being σi the Pauli matrices. The
Hamiltonian (9.7) is the known Dirac massless pseudoparticles description
for the π electrons. This description works well for energies of order of the
hopping near neighbors energy η, as shown in Figure 9.2 (b). Also, the
velocity of the π electrons in this massless description is vF instead of speed
of light c, so they are three hundred times slower than photons. However,
this still a very high mobility for the conductor materials, being this one of
the features that make graphene appealing for electronic devices applications.

We must stress here that the spinor nature of π electrons emerged entirely
from the lattice honeycomb structure of graphene, as we explicitly ignore the
intrinsic spinorial nature of the electrons5.

The two spinors ψ+ and ψ− are connected by inversion of the full momentum
~KD+ + ~p −→ − ~KD+ − ~p = ~KD− − ~p. This is consistent with the following
picture: if near a given Dirac point, say ~KD+, the physics is described by
the spinor ψ+, then the physics for the upside-down inside the membrane is
described by the spinor ψ− with opposite momentum [123]. If nothing mixes
the two sides of the graphene sheet, as is the case for no curvature and no
torsion on it, the physics of π electrons at low energy are described by the

5We could insist in taking into account the intrinsic spinorial nature of the electrons
with the possibility of giving rise interesting spin(intrinsic)-spin(lattice) interactions [14].
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spinors ψ+ and ψ−, belonging each one in their own world. However, as we
shall see later, this has implications when we deal with strained graphene, as
the two Dirac points react differently under same strain tensor field.

Finally, we move back to the configuration space, which is equivalent to make
the usual substitution ~p→ −i~∇,

H = −ivF
∫
d2x

[
ψ†+~σ · ~∇ψ+ − ψ†−~σ∗ · ~∇ψ−

]
, (9.8)

where sums turned into integrals because continuum limit were assumed.

The next two chapters will be devoted to studying how the Hamiltonian (9.8)
is modified when the graphene sheet is in-plane strained.



Chapter 10

Top-down approach:
Spin-connection and Weyl
gauge field for strained
graphene

As is we learned in Chapter 9, the physics of the long wavelength (low energy)
π electrons in graphene, can be efficiently encoded within the Dirac massless
two-dimensional Hamiltonian (9.8). In the approach followed in this Chapter,
time will be included to make the formalism fully relativistic, although with
the speed of light c traded for the Fermi velocity vF (see, e.g., [31, 32]), hence
the formalism becomes (2 + 1)-dimensional where the action is

S = i~vF
∫
d3qψ̄γa∂aψ , (10.1)

here qa = (t, x, y) are the flat spacetime coordinates, γa are the usual Dirac
matrices in three dimensions, and we expand around only one of the two
Dirac points.

Following the conventions in [124], the metric1

gµν(q) =

 1 0 0
0
0
−gij(x, y)

 (10.2)

can also describe strain. Hence, we shall use the customary Dirac action
in that curvilinear background. As also pointed out in [124], we recall

1In this Chapter, we changed the signature of the (2 + 1)-dimensional metric to follow
the conventions in the literature of the subject.
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that although the system is (2 + 1) dimensional, the Riemann tensor Rλ
µνρ,

λ, ... = 0, 1, 2, has only one independent component, proportional to the
Gaussian curvature K. Furthermore, surfaces of zero or constant K, make
the metric (10.2) flat or conformally flat, respectively, and both cases can be
treated at once within a formalism that uses

gµν(Q) = e2Σ(Q)ηµν , (10.3)

where ηµν = diag(1,−1,−1), and the information about the metric being
flat or not is encoded in the conformal factor Σ. The coordinates where the
metric can be explicitly written in a conformally flat fashion,

Qµ ≡ (T,X, Y ) , (10.4)

and are, in general, different from the original coordinates qµ. Therefore, the
natural candidate action to describe strained graphene is (for a while we
shall use ~ = 1 = vF )

S = i

∫
d3Q
√
gψ̄Eµ

aγ
a(∂µ + Ωµ)ψ , (10.5)

where Ωµ = 1
2
ω ab
µ Jab, with Jab = 1

4
[γa, γb], the Lorentz generators, Eµ

a is the
inverse of the three dimensional vielbein eaµ (the dreibein), ω ab

µ is the spin
connection, and being in (2+1) dimensions, we can write the spin connection
in the one-index notation as in Chapters 2 and 4. Here, a is the non-Abelian
index of the local Lorentz group SO(2,1), and µ is the vector index on the
spacetime base manifold.

The metric (10.2) can always be written in more suitable coordinates q̃µ =
(t, x̃, ỹ), where t is the same time for both coordinate systems, and (x̃, ỹ) are
the spatial isothermal coordinates of the surface

gµν(q̃) =
∂qλ

∂q̃µ
∂qκ

∂q̃ν
gλκ(q) =

 1 0 0
0 −e2σ(x̃,ỹ) 0
0 0 −e2σ(x̃,ỹ)

 . (10.6)

The single scalar function σ identifies the surface/graphene membrane. Other
isothermal coordinates can be found, say ˜̃x, ˜̃y, but the function identifying
the surface is always the same2:

σ(˜̃x(x̃, ỹ), ˜̃y(x̃, ỹ)) = σ(x̃, ỹ) . (10.7)
2As an example of formula (10.7), the metric of a sphere of radius r = 1 could

be written as ds2 = e2σ
(
dx̃2 + dỹ2

)
with conformal factor σ(x̃, ỹ) = ln(1/ cosh ỹ)

being x̃ ∈ [0, 2π] and ỹ ∈ (−∞,+∞). On the other hand, using the coordinates

˜̃y =

{
arcsin(1/ cosh ỹ), if ỹ ≥ 0

π − arcsin(1/ cosh ỹ), if ỹ < 0
, and ˜̃x = x̃, σ(˜̃x, ˜̃y) = ln sin ˜̃y, with ˜̃y ∈ (0, π),

we recover the standard metric of the sphere ds2 = sin2 ˜̃yd˜̃x2 + d˜̃y2.
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10.1 Connecting space and spacetime confor-

mal factors

When the surface described by σ has zero or constant curvature, the two
metrics (10.3) and (10.6) both describe the same spacetime, although with
different coordinates,

gµν(Q) = e2Σ(Q)ηµν =
∂q̃λ

∂Qµ

∂q̃κ

∂Qν
gλκ(q̃) ;

hence, their Gaussian curvature cannot differ. Due to the simple structure of
the metric in the two coordinate frames, it is easy to compute the Gaussian
curvature

K = −e−2σ[∇2σ]

= e−2Σ [2�Σ + (∂aΣ)(∂aΣ)]

where ∇2 = ∂2
x̃ + ∂2

ỹ , and � = ∂2
T − ∂2

X − ∂2
Y . Clearly, the two confor-

mal factors are related, Σ(σ): if we know Qµ(q̃), we can write Σ(x̃, ỹ) =
Σ(T (x̃, ỹ), X(x̃, ỹ), Y (x̃, ỹ)), and then knowing σ(x̃, ỹ), we obtain Σ(σ). Nonethe-
less, we have the general equations that Σ has to satisfy for the two cases,
for K = 0,

�Σ = −1

2
(∂aΣ)(∂aΣ) , (10.8)

which corresponds to σ harmonic functions (i.e., solutions of ∇2σ = 0), and
for K =constant

�Σ = −1

2
(∂aΣ)(∂aΣ) +

1

2
Ke2Σ , (10.9)

which corresponds to σ Liouville functions (i.e., solutions of ∇2σ = −Ke2σ).

Let us focus on the flat case which, since it corresponds to pure strained
graphene, is the one of interest here. In this case, besides the obvious constant
solution of (10.8), Σflat = C, we also have

Σflat = − ln(T 2 −X2 − Y 2) + C . (10.10)

The constant C could be set to zero, but we shall keep it, to later compare
with the curved case. For the conformal factor (10.8), the metric (10.3) reads

gµν(Q) = e2Σflatηµν =
e2C

(T 2 −X2 − Y 2)2

 1 0 0
0 −1 0
0 0 −1

 . (10.11)

Hence, nothing constrains the norm of vectors just as for the Minkowski case

‖Q‖2 = gµνQ
µQν =

e2C

ηµνQµQν
(10.12)
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that means that Qµ truly describes a flat three-dimensional spacetime. In
order to see explicitly that (10.11) is in fact the Minkowski spacetime, take
the following change of coordinates:

t =
eCT

T 2 −X2 − Y 2
,

x =
eCX

T 2 −X2 − Y 2
, (10.13)

y =
eCY

T 2 −X2 − Y 2
.

(10.14)

On these coordinates the line element is ds2 = dt2 − dx2 − dy2, showing
that the singularities appearing in the metric (10.11) are simply coordinates
singularities due to our choice of nonstandard coordinates3. As a result of
that, when we use Σflat in the spin connection of (10.5)

ωµab = δcµ(ηcaδ
ν
b − ηcbδνa)Σν , (10.15)

we can safely use δµa as a proper dreibein, because it indeed connects the
tangent space with a flat manifold. Here Σµ = ∂µΣ, and Σa = ∂aΣ, and we
used the result that in three dimensions γaJab = γb.

10.1.1 Zero curvature: no physical effects of strain
through the spin-connection

The action (10.5) for the metric (10.3) is

S = i

∫
d3Q e2Σ ψ̄γa(∂a + Σa)ψ , (10.16)

and when the Dirac field is properly transformed

ψ = e−Σ(Q)ψ′ , (10.17)

where ψ′ refers to the Minkowskian flat spacetime ηµν [see (10.3)], the action
(10.5) is simply

S = i

∫
d3Qψ̄′γa∂aψ

′ , (10.18)

which refers to the background metric ηµν , which in turn is the unstrained
situation. Strain is gone altogether. It has no physical effects.

3To see whether one has a true or a coordinate singularity is, in general, not an easy
task. On this, see, e.g., [125].
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Another way to see this, is to stop at the action (10.16), i.e., before imple-
menting the transformation of the spinor as in (10.17), and consider the
gauge field Σa. This gauge field is itself a pure derivative, hence it cannot
produce any physical effect through its field strength

Fab = ∂aΣb − ∂bΣa = (∂a∂b − ∂b∂a)Σ = 0 , (10.19)

as can be seen also by explicitly computing ~BΣflat ≡ ~∇× ~Σflat and ~EΣflat ≡
−~∇Σ0 + ∂T ~Σflat with Σflat in (10.10). The result is zero ~BΣflat = 0 = ~EΣflat .
Therefore, from here, we see that the very well-known pseudomagnetic field
(and, for what matters, even a putative pseudoelectric field) induced by pure
strain, cannot be accounted for by the spin-connection/Weyl pure-gauge
field.

Let us now comment on Σa. As seen, this is a pure gauge field associated
to the local Weyl transformations (10.3) and (10.17). Indeed, the Weyl field
transforms as

Wµ → Wµ − ∂µΣ .

The reason why we do not have here the full Weyl gauge field, Wµ, but only
its pure gauge part, is due to the local Weyl invariance of (10.5), see [124].
Like any other Weyl field, Σa is an Abelian gauge field. Abelian gauge fields
are those routinely used in the graphene literature, [40] and [43]. On the
other hand, Σa carries information on the non-Abelian structure of the local
Lorentz group that is encoded in the spin connection. This information is
in the tangent space index “a” of Σa; see (10.15) and discussion below it.
Indeed, (local) Weyl transformations, in general, rephrase spacetime scaling
as an internal transformation. Non-Abelian gauge fields have also appeared
in various discussions on the gauge field approach to strained graphene [44,
126].

The above-mentioned properties are common to the full Weyl gauge field
Wµ; hence, they hold also for theories that do not have local Weyl invariance.
The extra property of Σa is that it is ∂aΣ; i.e. the true degree of freedom is
just one scalar, Σ, the one related to the two-dimensional spatial phonon, σ,
of the graphene membrane.

These facts are fully transparent in the coordinates Qµ in (10.4). When the
coordinates are different, the three aspects of this gauge field—(i) scalar
nature, (ii) abelian field, and (iii) non-Abelian Lorentz structure—get mixed
together, and they may appear, in the standard coordinates/frames used in
graphene, as originating from different gauge fields, as we show in Section 10.2.
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Figure 10.1: (a) For Σflat the spacetime is essentially the same as Minkowski.
Modulo an inessential singularity at the light cone, the causal structures are
identical; hence, the spacetime is three-dimensional and flat all the way. (b) In the
case corresponding to Σcurved, we see that there is a change of signature crossing
the light cone, that signals a behavior similar to a black hole horizon. In this latter
case, the true spacetime is one dimension smaller, due to the constraint (10.1.2)
that coordinates need to satisfy when curvature is present.

10.1.2 Nonzero curvature: the classical manifestation
of the quantum Weyl anomaly

Apparently, all seems clear: when Σ = Σflat, which should describe pure
strain, no physical effects can be described by the QFT in the curved
spacetime approach. Nonetheless, we also saw that when the Gaussian
curvature of the membrane is constant, a similar procedure could be applied;
hence, this seems to lead to conclude that also in that case as well, there is
no physical effect. However, as we shall now show, this is not the case.

When one solves (10.9), e.g., for negative curvature, K = −r−2, one obtains

Σcurved = −1

2
ln(T 2 −X2 − Y 2) + ln r , (10.20)

and evidently the associated ~BΣcurved and ~EΣcurved are zero. Nonetheless, this
time the metric (10.3) reads

gµν(Q) = e2Σcurvedηµν =
r2

T 2 −X2 − Y 2

 1 0 0
0 −1 0
0 0 −1

 , (10.21)

and the light-cone becomes essentially singular due to the change of signature,
typical of horizons in black hole spacetimes. Hence, the light-cone is a proper
Killing horizon, as shown already when considering Unruh effects reproduced
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on graphene; see, e.g., [31, 32]. Let us now see what happens to the length
of a position vector,

‖Q‖2 = gµνQ
µQν = r2 > 0 .

That is a dramatic difference with the previous case (10.12) (amusingly,
the difference comes about because of the different multiplicative constant
factors: −1 for the flat vs −1/2 for the curved case). In the curved case
the coordinates obey a constraint; hence, the effective theory lives in one
dimension less, with the coordinates that we call Pα, α = 0, 1. The behavior
of the flat and curved case is depicted in Figure 10.1. All of this makes us
conclude that the action that corresponds to the curved case (in the negative
curvature case) is

S
(2)
eff ≈ i

∫
d2P

√
g(2)χ̄γα(∂α + Ωα)χ ,

where everything has been dimensionally reduced to the two dimensions
(including the fermions writing in this reduced case as χ) and, in particular,
the metric is the induced curved metric:

g
(2)
αβ (P ) = ηab

∂Qa

∂Pα

∂Qb

∂P β
.

As well known, this two-dimensional theory has a quantum Weyl anomaly.
Hence, interestingly, through the classical constraints we have a manifestation
of a quantum Weyl anomaly.

The Weyl (trace) anomaly is known to be in one-to-one correspondence
with the Hawking radiation [127]. This is an interesting road to pursue an
alternative computation of the Hawking phenomenon on graphene as the one
presented in other works [31, 32].

10.2 Equivalence of the static Hamiltonian

and the fully relativistic approaches

To make contact with the literature focused on the phenomenology of
graphene (see, e.g., [41]) we need first to move from the action in the
Qµ coordinates to the Hamiltonian in the q̃µ coordinates, keeping the cur-
vature radius r finite. For Σ = −1

2
ln(T 2 −X2 − Y 2) + ln r = −t/r, the Qµ

coordinates are

T = et/r
√
e2σ(ỹ) + r2 (10.22)

X = et/reσ(ỹ) cos x̃ (10.23)

Y = et/reσ(ỹ) sin x̃ (10.24)
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To write the Hamiltonian in the q̃ coordinates, we have to consider the action
(10.16), Legendre-transform it

A =

∫
dtdx̃dỹL(q̃) =

∫
dtdx̃dỹ

[∥∥∥∥∂Q∂q̃
∥∥∥∥ (πψ∂Tψ)(q̃)−H

]
,

and follow the steps presented in the Appendix G. This gives, for H =∫
dx̃dỹH(q̃),

H = −i~
∫
dx̃dỹ ψ†

(
τ i [vF (σ(ỹ))] j̃

i ∂j̃ + vFφ+ vF τ
iAi

)
ψ (10.25)

where τ i are the Pauli matrices, we have re-introduced ~ and vF , and

φ =
1

r
e2σσỹ (10.26)

A1 = −1

r

e3σ σỹ√
e2σ + r2

cos x̃ , A2 = −1

r

e3σ σỹ√
e2σ + r2

sin x̃ , (10.27)

[vF (σ(ỹ))] j̃
i = vF

(
v1x̃ v1ỹ

v2x̃ v2ỹ

)
, (10.28)

with

v1x̃ =
r eσ σỹ√
e2σ + r2

sin x̃ (10.29)

v1ỹ = −e
σ

r

√
e2σ + r2 cos x̃ (10.30)

v2x̃ = − r eσ σỹ√
e2σ + r2

cos x̃ (10.31)

v2ỹ = −e
σ

r

√
e2σ + r2 sin x̃ . (10.32)

The computations here were carried on for the Σ in (10.20), for which we
can present the coordinates (10.22)-(10.24); hence, the expressions for φ, Ai

and [vF ] j̃
i depend of that choice. Nonetheless, even though the detailed

expression of those quantities change for Σ in (10.10), the structure of the
Hamiltonian (10.25) remains the same for the case of interest of pure strain.

We see here that, through this top-down method, we were able to reproduce
all the terms except one that customarily appears in the literature of strained
graphene; see, e.g., [41]. The latter is the one gauge field that gives unam-
biguous physical effects, and that couples to the spinors with an imaginary
factor (an instance that, on its own right, is an indication that such field
cannot be a Weyl field, see, e.g., [124]). In Chapter 11 we shall extensively
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comment on this field. Before moving to that, let us get one step closer to
the language usually adopted in the graphene literature.

In fact, the former expressions are written in the language of conformal
factors σ for the membrane and in isothermal coordinates whereas the usual
approach employs strain tensors uij = 1/2(∂iuj + ∂jui) (where, as customary,
the ui measures the departure from the unstrained position), and Cartesian
coordinates.

Although we started off with a fully relativistic formalism, due to the struc-
ture of the metric (10.2), everything of the previous expressions necessarily
depends only on the spatial coordinates. Henceforth, we can focus on the spa-
tial metric only and make the customary ansatz that, in Cartesian coordinates
(x, y),

gij(x, y) ' δij + 2uij . (10.33)

On the other hand, this metric is related through a coordinate change to the
one in (10.6)

gij(q) =
∂q̃k

∂qi
∂q̃l

∂qj
δkle

2σ(q̃) = Lij e
2σ(q̃(q)) . (10.34)

This needs to be considered in its infinitesimal form, i.e., q̃i(q) ' qi + ũi, so
that ∂q̃i/∂qj ' δij + ∂jũ

i, which gives, at first order, Lij ' δij + 2ũij; hence,

gij(x, y) ' (δij + 2ũij) (1 + 2σ) . (10.35)

Comparing the two expressions (10.33) and (10.35), we obtain the wanted
link between conformal factor, Cartesian strain tensor, and isothermal strain
tensor

uij ≡ σδij + ũij .
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Chapter 11

Bottom-up approach:
emergence of a honeycomb
structure gauge field

We learned in Chapter 10 that in pure in-plane strained graphene sheet, we
cannot obtain a gauge field which has physical significance from top-down
approach (fully relativistic with Weyl invariance taking into account), as the
curvature produced by it is zero, see (10.19). So, in this Chapter, we will
take the bottom-up approach: starting from strained Hamiltonian we will see
what we could learn to apply for sensible QG scenarios. As a warming-up
exercise, we start off with homogeneous strain (the strain tensor is constant
on the graphene sheet). After that, we discuss the more interesting case of
inhomogeneous strain, which give rise to measurable results as the celebrated
pseudo-magnetic field of around 300 T [38].

11.1 Homogeneous strain

Let us now take a homogeneously deformed graphene membrane. In this
case the strain tensor uij does not depend on the coordinates ~x. Allowing an
independent variation of the hopping energy of the three nearest-neighbours
tn due to variation of the vector basis ~s′i = ~si + ~∆i = (1+←→ε )~si, where I is
the identity matrix and εij = ∂iuj (see Figure 11.1), we get to first order

ti = η(1− βδi), (11.1)
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Figure 11.1: Near-neighbor vectors transformation ~s′i = (1+←→ε )~si under homo-
geneous strain.

with β =
∣∣∣∂ log η
∂ log `

∣∣∣ the electron Grüneisen parameter, and δi = 1
`2
~si · ~∆i. The

TB Hamiltonian, taking into account this displacements, is

H = −
∑
~r∈LA

i=3∑
i=1

(
a†(~r)tib(~r + ~s′i) + b†(~r + ~s′i)tia(~r)

)
. (11.2)

Making a Fourier transformation and with analogous replacements as those
leading to (9.7), we obtain

H =
∑
~k

(
h(~k)a†(~k)b(~k) + c.c.

)
, (11.3)

where

h(~k) = −
i=3∑
i=1

tie
i~k·~s′i = −

i=3∑
i=1

tie
i~k′·~si ,

with ~k′ = (1+←→ε )~k. It can be checked the function h(~k) is the generalization

of the near neighbor function energy f1(~k) in (9.5), as they coincide when
~∆i = 0 (unstrained graphene case). We can note already here that the effect
of strain is twofold:

1. it changes the hopping energy (β-dependent term in the literature);

2. it changes the reciprocal lattice in momentum space (β-independent
term).

Now we proceed in similar to the lines in Chapter 9. Expanding h(~k) to first
order in the displacements we get

h(~k) = f(~k′) +
η

`2

i=3∑
i=1

(
~si · ~∆i

)
ei
~k′·~si .
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Figure 11.2: The twofold effect of the strain: shifting of the Dirac points ~w± and
changing the slope of the Fermi cone.

Making the expansion around the above Dirac points ~k = ~K ′D± + ~p, gives
us a correction respect to the unstrained graphene

H = vF
∑
~p

(
ψ†+~σ ·

(
~p′ + ~A

)
ψ+ − ψ†−~σ∗ ·

(
~p′ − ~A

)
ψ−

)
,

where Aj = − β
2`
εjpKpmnumn is the usual pseudo-gauge field interpretation

of the in-plane strain effect in the graphene sheet [39]. The third rank
anisotropic tensor Kjmn will be soon very important (see Appendix H for
the definition of this tensor). Going back to the configuration space, we end
up with the result

H = −ivF
∫
d2x

(
ψ†+~σ ·

(
~∇+ i ~A

)
ψ+ − ψ†−~σ∗ ·

(
~∇− i ~A

)
ψ−

)
. (11.4)

We can see here that the effect of strain does not break time-reversal symmetry
with respect to the two Dirac points. We also see space-dependent Fermi
velocity through ~p′ vector, i.e., strain changes the slope of the Fermi cone
and shifts the Dirac points [45] (see Figure 11.2). Indeed, the zeros of

h(~k) in (11.3) are now localized in the new points ~kSD± = ~kD± + ~w±, where
w±1 = ∓A1 and w±2 = ∓A2. The expansion around this shifted Dirac points
~k± = ~kSD± + ~p is what gives us again the Dirac Hamiltonian for a massless

(Weyl) spinor

H = vF
∑
~p

[(
b
′†
+, a

′†
+

)
~σ · ~p

(
b′+
a′+

)
−
(
b
′†
−, a

′†
−

)
~σ∗ · ~p

(
b′−
a′−

)]
, (11.5)
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but now a′ and b′ are taking into account that we are expanding respect

to the true Dirac points ~kSD± . This means that a′(~x) is the annihilation
operator on LA but taking into account that we are now expanding around
~kSD± and not around ~kD± . The same for the operator b′(~x), related to LB. In
the configuration space, the Hamiltonian (11.5) takes the form

H = −ivF
∫
d2x

(
ψ
′†
+~σ · ~∇ψ′+ − ψ

′†
−~σ
∗ · ~∇ψ′−

)
(11.6)

We can obtain the Hamiltonian (11.4) if we define that the fermion transfor-
mation

ψ′± = e−i ~w±·~xψ±.

We could interpret this transformation, in the homogeneous strain regime,
as a phase transformation. At the end, we can relate the unstained fermion
ψ0 with the strained one ψ± via

ψ± = ei ~w±·~xψ0±. (11.7)

11.2 Inhomogeneous strain

The above analysis works very well for the homogeneous strain: we shift
the Dirac points in the Hamiltonian formulation which could be done either
adding the term i ~A, or transforming the fermion as (11.7). We can wonder
what happens now in an inhomogeneous strain. From a general point of view,
this is a very complicated issue and probably is not analytically solvable.
Due to this, we shall make a reasonable approximation: the variation of the
strain is very small on the scale of the lattice length `. In other words, the
Fourier modes of the strain tensor uij are much smaller than the original

Dirac points | ~kD± |. The modification of the Hamiltonian (11.4) in the presence
of an inhomogeneous strain is computed in [43]. In the fermion response
interpretation, we can write the formal solution ψ of the of the strained
graphene Hamiltonian following the Dirac’s prescription, as [128, 129]

ψ(~x) = ei
∫
~w±(~x′)· ~dx′ψ0(~x) = e∓i

∫
~A(~x′)· ~dx′ψ0(~x), (11.8)

where ψ0 is the unstrained solution1. We can select a point ~x0 as a reference
strain, i.e., a point where the strain effect ~w(~x0) could be gauged away.
The phase acquired in (11.8) could be interpreted as the circulation from
the zero strain region ~x0 to the strained one ~x. We stress the fact that

1We can see from (11.8) that each Dirac point is charged with opposite sign as a
consequence of time-reversal symmetry.
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Figure 11.3: Strained graphene with a deformation vector defined as ~u = (2xy, x2−
y2)u0/L.

the solution (11.8) is formal : once the curl of ~w is nonzero, the integral in
(11.8) is path-dependent (is a non-reversible process). Realizing that the
effect of the inhomogeneous strain is to shift the momenta of the Fourier
modes in a space-dependent way, we can interpret the situation as the ψ
fermion is in presence of an effective gauge field ~A, which could give us a
nonzero effective magnetic field if the curl of ~A is nonzero, giving rise to
the characteristic Landau levels. This gauge field, frequently called in the
literature pseudo-gauge field, is the one we announced in the through the
Part III of this Thesis. Clearly, it could not have guessed from the QFT in
curved space description.

We can follow the trail of the non-trivial behaviour of ~A as the result of
the contraction of the strain tensor uij with the third rank tensor Kijk.
This tensor is not isotropic2 and its presence is due to the triad {~s1, ~s2, ~s3}
specific to the structure of graphene, which is built from two sub lattices [39].
The non-triviality resulting from this contraction could be seen in a simple
example [131]. Consider the deformation vector ~u = (2xy, x2 − y2)u0/L,
where u0 is the maximum value of the strain and L is the length of the
graphene sample, as represented in Figure 11.3. This is a non-singular vector
field, in the sense that its curl and divergence is zero, so it is an irrotational
vector field without any source or sink.

However, the vector field ~A resulting from the contraction of the corresponding
strain tensor with Kijk is a clockwise rotational vector field with constant
curl, as we can see in Figure 11.4. This means that, not only the displacement
vector ~u matters, but also the orientation of this vector with respect to the
near-neighbour vectors triad ~si. So, the Kijk carries some memory of the

2In fact, the only isotropic tensors of rank three are proportional to the Levi-Civita
antisymmetric tensor εijk, which is zero in two dimensions [130].
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Figure 11.4: Pseudo-gauge field produced using the deformation vector ~u =
(2xy, x2 − y2)u0/L.

honeycomb structure, even in the low-energy (long-wavelength) limit. To see
more concretely that this is the case, suppose that we have two unstrained
graphene sheet samples. The honeycomb orientation of both samples are
such that one of them, let us say the sample 1, has the vector ~s1 of the triad
parallel to the y-axis, as in the last Section and the sample 2 has vector
~s1 = `(−1, 0) parallel to the x-axis, see Figure 11.5. The orientation of
the triads is to both the same. A direct computation shows that the Kijk

tensor are different for the sample 1 and sample 2. Now let us apply to both
samples the same strain deformation vector shown in Figure 11.3. For the
sample 1, the pseudo-gauge vector field gives us a constant pseudo-magnetic
field B = β

`
u0, while for the sample 2 the pseudo-magnetic field is zero.

So, even if in the long wavelength limit both samples look the same, the
pseudo-magnetic field remembers the honeycomb orientation. A detailed
study of the so-called “memory tensors” in the graphene honeycomb and
Kagomé lattices is found in [132]. Once the curl of ~w is not zero, equation
(11.8) is not single-valued, as we can see if we take a loop around the origin.
As we said above, we are assuming that the variation of the strain tensor uij
is very small so, following the lines of [133, 134], we can envisage a process
which we can extract a physical meaning of the solution (11.8), even if it is
not single-valued. Consider a small planar box on the graphene sheet (but

very large compared with the lattice length `) situated at ~R (see Figure 11.6).

In the case of unstrained graphene ( ~A = 0), the solutions for the π electrons

have the form3 ψ†0(~r− ~R) = ψ†0|0 >. Now, the idea is to strain the graphene
sheet in such a way that in the box the strain is homogeneous (constant shift
~w of the Dirac point as in the previous Section) and the associated magnetic
field is almost zero in that region. The solution of the π electrons in the box

3Because we are in the second quantization formalism, ψ are operators and the wave-
packets are these operators applied to the vacuum.
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Figure 11.5: Two samples of graphene unstrained sheets. Sample 2 is clockwise
rotated respect to sample 1 by π/2 radians.

R r

c
Figure 11.6: Loop C of the box (in blue) situated at ~R. All the fermions inside
the box could be described as ψ(~r − ~R).
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could be written using the Dirac’s prescription (11.8)

ψ(~r − ~R) = e−i
∫ ~r
~R
~A(~r′)· ~dr′ψ0(~r − ~R). (11.9)

We can see that ψ in (11.9) is single-valued in ~r and ~R locally. Now let the
box be transported around a loop C. After completion of the loop, there will
be a geometrical phase change that can be computed using Berry’s formula
[96]

γ(C) = i

∮
C

ψ†(~r − ~R)∇~Rψ(~r − ~R) · d~R (11.10)

Taking into account that the ψ are normalized, we end up with the result

γ(C) = −
∮
C

A(~R) · ~dR = −Φ, (11.11)

where Φ is the magnetic flux enclosed in the loop.

11.3 Discussion

We conclude that when only strain is present, the only gauge field that
has unambiguous physical effects is the one just discussed in this Chapter.
The structure we saw there, is reminiscent of the gauge field arising in the
Aharonov-Bohm effect, although strictly speaking, in order to have this effect,
we need a magnetic flux line crossing the loop C and a zero magnetic field
outside the line. This is also reflected by the fact that the flux obtained
in (11.11) is not constant and depends on the area enclosed by the loop.
However, it could be possible to imagine a strain vector concentrated in some
region of the graphene and assumed to be zero outside this region. Then, this
procedure, recover the Aharonov-Bohm result. The Aharonov-Bohm effect
is not new in the graphene literature and some examples of strain vectors
were proposed in order to see this effect with particular procedures, see for
instance [135, 136].

This gauge field could not have guessed from a top-down approach based
on the standard QFT in curved spacetime. In fact, we saw here that
if we define standard classical functions on graphene membrane the only
fields emerging are the metric and the spin connection, both which do not
reproduce the behaviour of this pseudogauge field. This U(1) field can be
put in correspondence with quantum field theoretical structures, such as the
quantum anomalies. To see it, one just needs to realize that the origin of
such gauge field is entirely quantum mechanical, and related to the fact that
a “translation” in configuration space T : ~x→ ~x+ ~u, that is the straining of
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the graphene membrane, is necessarily associated with a “translation”4 in
momentum space B : ~k → ~k + ~v. Hence, in the first quantization language
of the wave functions, those operations are carried on by quantum operators
U : T × B → C that, for the very meaning of quantum mechanics (that is
the Heisenberg uncertainty principle) need to obey

U(T1, B1)U(T2, B2) = e(~u1~v2−~u2~v1)U(T2, B2)U(T1, B1) , (11.12)

that are recognized, in the second quantization language, as instances of the
nontriviality of the quantum field theoretical vacuum, and in turn of the
quantum anomaly [138].

Therefore, our simple table-top laboratory, can help explore yet another
arena of fundamental physics, that is the deep meaning of the quantum
anomaly5.

On the other hand, this pseudogauge field, for the use of graphene we have
in mind, is intriguing also because, as explained in the paper, it is a memory
of the lattice structure (that is the physics of the wavelengths comparable to
`, the lattice spacing) in the continuum limit (that is the physics of the large
wavelengths). That means it is a relic at a low energy of the high-energy
behaviour of the system. This is yet another reason why we cannot reproduce
this field from a top-down approach because in such approach the isotropy
of the graphene membrane is tacitly assumed.

Effects of this kind would be of paramount importance to bring high energy
theoretical constructions under the control of experiments. One example that
comes to mind is the standard model extension of [140–142], where tensorial
fields that are relics of the Lorentz invariant high-energy string theory combine
with the fields of the Standard Model (SM) and their derivatives within
Lorentz violating terms that have the form

T (k)
µ...ν(SM fields and derivatives)µ...ν , (11.13)

where T (k) ∼ `kPlanck. In our “graphene universe” `Planck ≈ `.

To explore these scenarios, and to address the full variety of possible gauge
fields in graphene, namely those arising beyond the pure strain limitation,
would be a good future project.

4A better name for this operation is ”Galilean boost”, that is why we use “B” for it.
On this note see, e.g., [137].

5In our view, the very existence of a quantum anomaly is a sign of lack of understanding
of how nature works at the most fundamental level, or, in other words, it is a sign of our
ignorance of what is a proper quantum Noether theorem [139].
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Appendix A

General definitions and useful
Dirac matrices properties

A.1 D = 3

Through this work we extensively use the Clifford algebra in D = 3. Some
basic properties and definitions are1

{γa, γb} = 2ηab , γab ≡ γ[aγb] =
1

2
[γa, γb] , γab = εabcγ

c ,

1

2
[γab, γc] = ηbcγa − ηacγb , γabc = εabc =

1

2
{γab, γc} = γ[a|γbγ|c]

Let ψ be a two-component Dirac spinor with odd Grassman parity . We
define its Dirac conjugate by

ψ = iψ†γ0. (A.1)

or explicitly as ψ̄β = iψα∗(γ0)αβ, α, β = 1, 2. With this prescription, we have
the conjugacy properties

(χψ)∗ = ψχ,

(χγaψ)∗ = −(ψγaχ). (A.2)

(γaψ) = −ψγa
1We adopt the convention ε012 = −ε012 = 1 and the definition T[a1...ap] =

1
p!δ

b1...bp
a1...apTb1...bp , where the generalized Kronecker delta can be written as the following

determinant δ
b1...bp
a1...ap =

∣∣∣∣∣∣∣
δa1b1 . . . δa1bp
...

. . .
...

δ
ap
b1

. . . δ
ap
bp

∣∣∣∣∣∣∣. In the coordinate basis, we define εij ≡ εtij .
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A.2 D = 4

The γ-matrices in Minkowskian D = 4 with ηµν = diag(−1, 1, 1, 1), are in
a 4× 4 spinorial-representation of the Clifford algebra {γa, γb} = 2ηab, and
γab = 1

2
[γa, γb]. The indices of the tangent space a, b take the values 0,1,2

and 3.

From this properties, a number of useful representation independent identities
follow,

1. (Three γ’s product property)

γaγbγc = ηabγc − ηacγb + ηbcγa − εabcdγ5γ
d .

2. (Three γ’s +γ5 product property)

γ5γaγbγc = γ5[ηabγc − ηacγb + ηbcγa] + εabcdγ
d ,

3. (Four γ’s +γ5 product property)

γ5γaγbγcγd =εabcd1+ γ5[ηabηcd − ηacηbd + ηadηbc]

+ γ5[ηabγcd − ηacγbd + ηadγbc + ηbcγad − ηbdγac + ηcdγab] ,

In the representation chosen here, the Dirac matrices are written in
terms of the sigma Pauli matrices and 2× 2 identity [22]

γ0 = −γ0 =

(
0 −1
1 0

)
γi = γi =

(
0 σi
σi 0

)
, (A.3)

with also the γ5 matrices are defined as

γ5 = iγ0γ1γ2γ3 =

(
1 0
0 −1

)
. (A.4)

We take the following convention for the Levi-Civita skew-symmetric
tensor

ε0123 = −ε0123 = 1, (A.5)

and, for the spatial Levi-Civita, the following orientation ε0ijk = εijk.
In this case, we can take advantage of the Pauli matrices properties

σiσj = δij + iεijkσk , (A.6)
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and vectorial product notation to write(
~A× ~B

)i
= εijkAjBk,

~A · ( ~B × ~C) = εijkAiBjCk, (A.7)

for ~A, ~B and ~C arbitrary spatial vectors.

Some useful properties, could be derived from the Pauli sigma matrices
algebra, which are

~σ × (~σ × ~A) = −2 ~A+ i~σ × ~A , (A.8)

( ~A× ~σ)× ~σ = −2 ~A+ i ~A× ~σ , (A.9)

~σ(~σ · ~A) = ~A− i~σ × ~A . (A.10)
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Appendix B

Graded Lie Algebra
Representations

B.1 Representation of the osp(2, 2) superalge-

bra

Let zA = (εα;xi) a vector constructed from odd Grassmann numbers εα,
α ∈ {1, . . . ,M}, and xi, i ∈ {1, . . . , N} real numbers. Defining the matrix

GAB =

(
Cαβ 0

0 δij

)
,

where Cαβ is the charge conjugation matrix. The orthosymplectic group
OSp(N |M) is the group which leaves invariant the quadratic form [143]

zAGABz
B = εαCαβε

β + xixi . (B.1)

We can see immediately from (B.1) that the OSp(M |N) group contains the
direct product of the simplectic group Sp(M) and the special ortogonal group

SO(N), i.e., Sp(M)⊗SO(N) ⊂ OSp(M |N). This group has M(M+1)+N(N−1)
2

bosonic generators and M ×N fermionic generators.

In Chapter 2, we deal with a particular case of the orthosymplectic group,
i.e., the graded Lie algebra osp(2|2). A particular representation for such a
algebra in 3× 3 matrices for the bosonic generators is [12]

K =

 i
2

0 0
0 i

2
0

0 0 i

 , Ja =

 1
2
γa

0
0

0 0 0

 , (B.2)
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while for the fermionic generators,

Q1 =

 0 0 0
0 0 0
1 0 0

 , Q2 =

 0 0 0
0 0 0
0 1 0

 ,

Q1 =

 0 0 1
0 0 0
0 0 0

 , Q2 =

 0 0 0
0 0 1
0 0 0

 . (B.3)

We can verify directly from (B.2-B.3) that

[Ja,Jb] = εabcJ
c, [Ja,Q

α] = −1

2
(γa)

α
βQ

β,
[
Ja,Qα

]
=

1

2
(γa)

β
αQβ,

[Z,Qα] =
i

2
Qα,

[
Z,Qα

]
= − i

2
Qα,

{
Qα,Qβ

}
= (γa)αβJa − iδαβZ,

which is exactly (2.3). As shown in (B.2-B.3), these generators have vanishing
supertrace. However, the non-vanishing quadratic supertraces are

〈JaJb〉 =
1

2
ηab, 〈ZZ〉 =

1

2
, 〈QαQβ〉 = δβα, 〈QαQβ〉 = −δαβ . (B.4)

The covariant derivative Dµ induced by (2.3) appears naturally in (2.5).
Acting on a Lorentz vector Σa and 1/2-spinors (ψα and ψα) this reads

DµΣa = ∂µΣa + ε c
ab ω

b
µΣc,

−→
Dµψ

α = ∂µψ
α − i

2
Aµψ

α +
1

2
ωaµ(γa)

α
βψ

β, (B.5)

ψα
←−
Dµ = ∂µψα +

i

2
Aµψα −

1

2
ψβ(γa)

β
αω

a
µ = (

−→
Dµψ)α.

B.2 Representation of the usp(2, 1|2) superal-

gebra

The following matrices provide a natural representation for the usp(2, 1|2)
superalgebra,

Ja =

[
1
2

(γa)
α
β 02×2

02×2 02×2

]
, TI =

[
02×2 02×2

02×2 − i
2
(uσIu

†)i j

]
, (B.6)

where γa, a = 0, 1, 2, are Dirac matrices, with α, β = 1, 2, and σI , I = 1, 2, 3,
are Pauli matrices, with i, j = 1, 2. A metric to raise and lower latin indexes
is given by [uij] = iσ2. A generic supermatrix M has the following index
structure:

M =

[
Mα

β Mα
j

M i
β M i

j

]
.
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In terms of components, (B.6) are given by

(Ja)AB =
1

2
(γa)

A
B , (TI)AB = − i

2
uAi(σI)i

jujB , (B.7)

A direct calculation shows that1

[Ja, Jb] = εab
cJc ,

[TI ,TJ ] = εIJ
KTK ,

and [Ja,TI ] = 0. The fermionic generators

(Qα
i )AB = δAi δ

α
B , (Qi

α)AB = δAα δ
i
B , (B.8)

are defined so that

(ψQ)AB =

[
02×2 02×2

ψ
A

B 02×2

]
, (Qψ)AB =

[
02×2 ψAB
02×2 02×2

]
.

Direct computation gives

{Qα
i ,Q

β
j } = 0, {Qi

α,Q
j

β} = 0,

and

[{Qα
i , Q

β

j }]AC = δji δ
A
β δ

α
C + δαβ δ

A
i δ

j
C , (B.9)

The completeness relations for Dirac and Pauli matrices can be used to recast
this as

{Qα
i ,Q

j

β} = δji (γ
a)αβJa − iδαβ (σI) j

i TI − iδ
j
i δ
α
βZ ,

where Z is a new bosonic generator represented by a diagonal matrix with
vanishing supertrace,

ZAB =
i

2
(δAα δ

α
B + δAi δ

i
B) .

This generator is a central charge that commutes with all generators in the
superalgebra. The only non-vanishing commutators are

[Ja,Qα
i ] = −1

2
(γa)

α
β Q

β
i , [Ja,Q

i

α] =
1

2
(γa)

β
αQ

i

β ,

[TI ,Qα
i ] =

i

2
(σI)

j
i Qα

j , [TI ,Q
i

α] = − i
2

(σI)
i
j Qj

α .

1Flat Lorentz and SU(2) indexes in the adjoint representations are lowered and raised
using the Lorentzian and Euclidean metrics ηab and δIJ , respectively.
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This completes the algebra. It can be directly checked that each of these
generators have vanishing supertrace, while the supertrace of quadratic terms
are

〈Ja Jb〉 =
1

2
ηab ,

〈TI TJ〉 =
1

2
δIJ ,

〈Qα
i Qj

β〉 = −δαβ δ
j
i .

B.3 Representation of the usp(2, 2|1) superal-

gebra

The generators Ja and Jab form the 4D algebra

[Ja,Jb] = s2Jab , [Ja,Jbc] = ηabJc − ηacJb , (B.10)

[Jab,Jcd] = ηadJbc − ηacJbd + ηbcJad − ηbdJac , (B.11)

which corresponds to anti-de Sitter (so(3, 2)) for s = 1 and to de Sitter
(so(4, 1)) for s = i. The supercharge Q belongs to a spin 1/2 representation,
that is

[Ja,Q
α] = − s

2
(γa)

α
βQ

β, [Ja,Qα] = s
2
Qβ(γa)

β
α
, (B.12)

[Jab,Q
α] = −1

2
(γab)

α
βQ

β, [Jab,Qα] = 1
2
Qβ(γab)

β
α
. (B.13)

Since Q is complex, it has the following commutators with the U(1) generator

[K,Qα] = iQα , [K,Qα] = −iQα . (B.14)

The algebra is completed by the anticommutators of supercharges,

{Qα,Qβ} = − i
s

(γa)αβJa +
i

2
(γab)αβJab − δαβK , (B.15)
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together with the trivial anticommutators {Qα,Qβ} = 0 = {Qα,Qβ}. An
explicit 6× 6 representation for the supercharges is the following

(Qα)AB = −i


04×4

0
0
0
0

CαA

δαB 0 0
0 0 0 0 0 0

 = −i(δA5 δαB + CαAδ6
B) , (B.16)

(Qα)AB =


04×4 δAα

0
0
0
0

0 0 0 0 0 0
CαB 0 0

 = δAα δ
5
B + δA6 CαB , (B.17)

where Cαβ = −Cβα is the charge conjugation matrix, and Cαβ is its inverse.
In this representation, the U(1) and (A)dS generators are

(K)AB =


04×4

0
0
0
0

0
0
0
0

0 0 0 0 i 0
0 0 0 0 0 −i

 = i(δA5 δ
5
B − δA6 δ6

B) , (B.18)

(Ja)
A
B =


s
2
γa

0
0
0
0

0
0
0
0

0 0 0 0 0 0
0 0 0 0 0 0

 =
s

2
(γa)

α
βδ

A
α δ

β
B , (B.19)

(Jab)
A
B =


1
2
γab

0
0
0
0

0
0
0
0

0 0 0 0 0 0
0 0 0 0 0 0

 =
1

2
(γab)

α
βδ

A
α δ

β
B . (B.20)
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Appendix C

Dynamical details on
unconventional SUSY in D = 3

C.1 Momenta, Constraints and Poisson brack-

ets

For the starting action (3.1), the canonical momenta associated to the
dynamical fields are given by

πi ≈ ∂L
∂Ȧi

=
1

2
εijAj, πia ≈

∂L
∂ω̇ai

=
1

2
εijηabω

b
j , pia ≈

∂L
∂ėai

= −2εijηabe
b
jψψ

χα ≈ ∂LL
∂ψ̇α

= −εij(γij)αβψβ , χα ≈
∂RL
∂ψ̇α

= εijψβ(γij)
β
α. (C.1)

The non-vanishing Poisson brackets between the fields and their respective
momenta are defined as in [26] 1{
Ai, π

j
}

= −
{
πj, Ai

}
= δji ,

{
ωai , π

j
b

}
= −

{
πjb , ω

a
i

}
=
{
eai , p

j
b

}
= −

{
pjb, e

a
i

}
= δji δ

a
b ,{

ψα, χβ
}

=
{
χβ, ψ

α
}

= δαβ ,
{
ψα, χ

β
}

=
{
χβ, ψα

}
= −δβα. (C.2)

It is worth to note the relative sign between the two brackets on the last line:
This choice is consistent with ψα = iψβ∗(γ0)βα and χα = iχβ∗(γ0)βα. Now,
the primary constraints (3.5) satisfy

{ϕia, ϕ
j
b} = 4εijηabψ̄ψ, {Ω, ϕjb} = 2εijeai γaγbψ, {Ω̄, ϕjb} = 2εijeai ψ̄γbγa,

{Ω̄,Ω} = 2εijγij, {φi, φj} = −εij, {φia, φ
j
b} = −εijηab . (C.3)

1Hereafter we will omit the δ2(x − y) factors when computing the brackets. Spinor
indexes may also be omitted for simplicity.
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Using (C.3) and the definitions (3.7) one can show that the generators J̃a,
K̃ and Υ satisfy the following:

{J̃a, φib} = ε c
ab φic, {J̃a,Ω} = −1

2
γaΩ, {J̃a, Ω̄} =

1

2
Ω̄γa, {J̃a, ϕib} = ε c

ab ϕic ,

{J̃a, Jb} = ε c
ab Jc , {J̃a, Kb} = ε c

ab Kc, {K̃,Ω} =
i

2
Ω, {K̃, Ω̄} = − i

2
Ω̄,(C.4)

{Υ, ϕja} = −ϕja, {Υ, Ka} = −Ka, {Υ,Ω} = Ω, {Υ, Ω̄} = Ω̄,

where the remaining brackets with constraints (3.2)-(3.5) vanish strongly.
We then conclude that the constraints J̃a, K̃,Υ, together with the generator
Hi, are first-class.

The consistency of the primary constraints (3.5) with respect to the extended
Hamiltonian (3.6) yields the following set of equations

0 =
{
φi, HT

}
= εij

(
∂jAt + 2ieat e

b
iψγabψ − λj

)
,

0 =
{
φia, HT

}
= εij

(
ηabDjω

b
t + 2εabce

b
te
c
jψψ − ηabΛb

j

)
,

0 =
{
ϕia, HT

}
= 2εij

(
εabcω

b
te
c
jψψ − iAtebjψγabψ − 2ηab∂j

(
ebtψψ

)
− εabcωbjectψψ (C.5)

+ebt(ψ
←−
D jγaγbψ + ψγbγa

−→
D jψ) + 2ηabλ

b
jψψ + ebj

(
Λγbγaψ + ψγaγbΛ

))
,

0 = {Ω, HT} = −εij
(
iAte

a
i e
b
jγabψ + εabcω

a
t e
b
ie
c
jψ + 2ηabe

a
tT

b
ijψ − 2eat e

b
iγaγbDjψ

+2Dj

(
eat e

b
iγbγaψ

)
+ 2λai e

b
jγbγaψ − 2eai e

b
jγabΛ

)
,

0 =
{

Ω, HT

}
= εij

(
iAte

a
i e
b
jψγab − εabcωat ebiecjψ − 2ηabe

a
tT

b
ijψ + 2eat e

b
i(ψ
←−
D j)γbγa

−2
(
eat e

b
iψγaγb

)←−
D j − 2λai e

b
jψγaγb − 2eai e

b
jΛγab

)
.

This system of (14 + 4n) equations determines up to an equal number of
Lagrange multipliers, leaving seven free parameters. This means that in a
generic sector (maximum rank), there are S = 14+4n second-class and F = 7
first-class constraints. Also, if one choose (eat , ω

a
t , At) as the free parameters,

the consistency of the secondary constraints Ka, Ja and K can be readily
shown to follow. In Appendix C.2 we exhibit a solution for (C.5).

C.2 Solving the consistency equations

Let us now choose tensors ζa and T abc = T a[bc], depending on the dynamical
fields, such that

T abce
b
ie
c
j = T aij (C.6)

= Die
a
j −Dje

a
i ,

eai ζa = Diψ . (C.7)



C.2. SOLVING THE CONSISTENCY EQUATIONS 141

Equation (C.6) relates the nine Lorentz covariant components T abc to the three
field dependent quantities on the RHS. Similarly, equation (C.7) expresses
the vector-spinor ζa as a function of two components on the RHS. This means
there are six real and one spinorial indeterminate components respectively2,
which will be fixed by the consistency equations. Now, let us take the
Lagrange multipliers in equation (3.6) as

λbj = −vebj − εbcdωctedj +Dje
b
t + T bace

a
t e
c
j ,

Λ = vψ +
i

2
Atψ −

1

2
ωctγcψ + eat ζa ,

Λ̄ = vψ̄ − i

2
Atψ̄ +

1

2
ωct ψ̄γc + ζ̄ae

a
t , (C.8)

Λb
j = Djω

b
t + 2ecte

a
j ε
b
caψ̄ψ ,

λj = ∂jAt + 2ieat e
b
jεabcψ̄γ

cψ .

After inserting (C.8) into the consistency conditions (C.5), these reduce to

0 = ebte
c
j(ηadT

d
cbψ̄ψ − ψ̄γaγ[cζb] − ζ̄[bγc]γaψ) , (C.9)

0 = |e|εabc(γabζc −
1

2
γaγdT

d
bcψ) , (C.10)

together with the conjugate of the last equation. For an arbitrary dreibein,
equation (C.10) can be used to fix the remaining free component of ζa as
a function of the dynamical fields and T abc. On the other hand, using the
constraint Ka ≈ 0, one can show that (C.9) correspond to six independent
equations for an equal number of free components in T abc, once ζa is replaced.

Note now that the parameter v does not show up in (C.9,C.10), this indicates
that the complete set of equations is not independent. In fact, one can readily
check that the following shift

T abc → T abc + 2βδa[bE
t
c] , ζc → ζc − βEt

cψ , (C.11)

leaves (C.6,C.7) and (C.9,C.10) invariant. This is related to the Weyl invari-
ance, shifting the multiplier v → v − β in (C.8). We thus have the following
picture: If the three components eat remain arbitrary, then one can solve
the (14 + 4n) multipliers as in (C.8), but this leaves a degeneracy in v to
be fixed afterwards. Otherwise one may restrict one of the components eat

2For |e| 6= 0, one can put for instance ζa = EiaDiψ+Etaξ and T abc = EibE
j
cT

a
ij+Et[bE

i
c]ξ

a
i

for arbitrary ξ and ξai .
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while leaving the scaling parameter v completely free, as we explain below.
In view of the counting argument of Section 3.2, we expect in general that
one combination among the eight parameters (At, ω

a
t , e

a
t , v) will be found

fixed in a generic sector, so that the number of functionally independent
first-class constraints is reduced to F = 7. Note that the degeneracy in v
also suggests there could be certain configurations of the dynamical fields
such that (C.9,C.10) have no solution: The consistency equations would lead
to secondary constraints in this sectors.

The above reasoning is illustrated with the spin-1/2 sector described in
Section 3.1.2. In that case one chooses the gauge v = 0 a priori, and then
proceed to count the DOF considering the residual symmetries. This gauge
fixing is equivalent to choose the solution

T abc = 2αεabc , (C.12)

ζa = γaψ , (C.13)

for (C.6,C.7) and (C.9,C.10), provided (3.19,3.18). Inserting this into the
multipliers (C.8) and then into the total Hamiltonian (3.6), one directly gets
the form (3.27). Note that this Hamiltonian preserves the gauge, and pos-
sesses only seven free parameters (At, ω

a
t , e

a
t ) corresponding to the generators

of residual symmetries.

On the other hand, in a generic sector one can always use the ‘degenerate
gauge’ (3.13) for counting purposes. Using Ka ≈ 0, this election is readily
seen to close the consistencies (C.9,C.10) and puts the total Hamiltonian in
the form (3.12). However, by doing so one needs to assume there is in fact
a solution for ζa and T abc, in order to extend the sector for non-degenerate
choices with |e| 6= 0. Thus, in any generic sector, a realization of the first-class
constraints can be easily obtained by means of the degenerate gauge, leaving
also F = 7 free parameters (At, ω

a
t , ξ

i, v).



Appendix D

Killing spinors

In this Appendix we present a detailed computation of the Killing spinors
mentioned in Table 4.1. The radial, time, and angle components of this
equation read

0 =∂rψ +
1

2

(ε
l
−Nϕ

)
f−1γ1ψ

− 1

2

(η
s
− V ϕ

)
h−1σ1ψ , (D.1)

0 =∂tψ +
ε

2l

(
fγ0 + r

(ε
l

+Nϕ
)
γ2

)
ψ

+
η

2s

(
ihσ2 − r

(η
s

+ V ϕ
)
σ3

)
ψ , (D.2)

0 =∂ϕψ +
1

2

(
fγ0 + r

(ε
l

+Nϕ
)
γ2

)
ψ

+
1

2

(
ihσ2 − r

(η
s

+ V ϕ
)
σ3

)
ψ . (D.3)

With X and Y defined in (4.96,4.97), (D.1) becomes

∂rψ =
d

dr
(−εγ1 lnX)ψ +

d

dr
(ησ1 lnY )ψ, (D.4)

and the solution of (D.4) can be written as

ψ = UXUY ξ . (D.5)

Here ξ is an r-independent spinor with UX and UY defined in (4.92) and
(4.93). Replacing (D.5) in (D.2) and (D.3), and using the properties of these
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projectors 1 leads to

0 =∂tξ +
ε

2l
γ0

[(
−M +

εJ

l

)
γ−ε + γε

]
ξ

+
iη

2s
σ2

[(
−W +

ηK

s

)
ση − σ−η

]
ξ ,

0 =∂ϕξ +
1

2
γ0

[(
−M +

εJ

l

)
γ−ε + γε

]
ξ

+
i

2
σ2

[(
W − ηK

s

)
ση − σ−η

]
ξ ,

whose solution is given by (4.91). Next, we present those solutions with well
defined periodicity conditions for different values of (Ml, J) and (Wl,K). As
the SO(1, 2) and SU(2) sector are decoupled, we will consider in detail only
the cases where M = W and |J | l = |K| s. The remaining cases in Table 4.1
can be obtained from these in a straightforward way.

D.1 Case M = W = −1; J = K = 0

In this case, the functions X and Y take the form

X =
(r
l

+ n
)1/2

, n =

(
r2

l2
+ 1

)1/2

Y =
(r
s

+ ñ
)1/2

, ñ =

(
r2

s2
+ 1

)1/2

,

and (4.91) reduces to

ψ =

[(
n+ 1

2

)1/2

− ε
(
n− 1

2

)1/2

γ1

]
×
(
cos θ(ε/l) − γ0 sin θ(ε/l)

)
×

[(
ñ+ 1

2

)1/2

+ η

(
ñ− 1

2

)1/2

σ1

]
×
(
cos θ(η/s) − iσ2 sin θ(η/s)

)
ψ0 . (D.6)

As ψ0 has the form

ψ0 =

(
a
b

)
⊗
(
c
d

)
,

1These projectors satisfy (i) γ2± = γ±, (ii) γ±γ∓ = 0, (iii) γ+ + γ− = 1, (iv) γ0,2γ± =
γ∓γ0,2, (v) γ1γ± = ±γ1, and similarly for σ±.
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with a, b, c, d arbitrary real numbers, it can be spanned in a four dimensional
basis. Therefore, there are four spinors for each value of ε and η leading to a
total of sixteen Killing spinors.

D.2 Case M = J = W = K = 0

In this case Uγ = exp
[
−1

2
θ(ε/l) (γ0 + εγ2)

]
and Uσ = exp

[
i
2
θ(η/s) (σ2 − iησ3)

]
.

Since (γ0 + εγ2) is nilpotent, we can write Uγ = 1 − 1
2
θ(ε/l) (γ0 + εγ2), and

similarly for Uσ. Hence, in order to get rid of the linear dependence of ψ in
θ(ε/l) and θ(η/s), ψ0 must be in the kernel of (γ0 + εγ2) and (σ2 − iησ3), i.e.,

(γ0 + εγ2)ψ0 = 0 = ψ0 (σ2 − iησ3) ,

which is satisfied provided ψ0 is one of the eigenvector of γ1 and σ1 depending
on ε and η. Hence ψ0 can have the form

ψ
(ε,η)
0 =

(
1
−ε

)
⊗
(

1
η

)
,

As in this case X =
(

2r
l

)1/2
and Y =

(
2r
s

)1/2
, we obtain

ψ =
2r√
ls
ψ

(ε,η)
0 . (D.7)

Therefore, in this case there are four Killing spinors, one for each value of ε
and η.

D.3 Case M,W > 0; M = |J |/l, W = |K|/y

Let us consider the first the option M = J/l, W = K/y. Then, (4.102) and
(4.103) take the form[

γ0

((
−M +

εJ

l

)
γ−ε + γε

)]2

= M (1− ε) ,[
−iσ2

((
W − ηK

s

)
ση + σ−η

)]2

= W (1− η) .

Nilpotency is achieved in this case for ε = η = 1 leading to ψ = U
(+)
X U

(+)
γ U

(+)
σ U

(+)
Y ψ0,

where U
(+)
X = UX |ε=+1 and U

(+)
Y = UY |η=+1. Since θ(1/l)γ0γ+ and θ(1/s)σ−σ2

are nilpotent,

U (+)
γ = 1− θ(1/l)γ0γ+, and U (+)

σ = 1 + iθ(1/s)σ−σ2.
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Hence, ψ0 must be in the kernel of γ+ and σ−,

γ+ψ0 = 0 = ψ0σ− ,

which is satisfied by

ψ0 =

(
1
−1

)
⊗
(

1
1

)
.

As in this case X =
√

2r
l
− Ml

r
, Y =

√
2r
s
− Ws

r
, we finally arrive to

ψ =

√(
2r

l
− Ml

r

)(
2r

s
− Ws

r

)
ψ0 . (D.8)

Therefore, in this case there is only one Killing spinor. A similar analysis
can be done for all the possible particular cases of |J | = Ml and |K| = Ws
leading essentially to the same result. Hence, the extreme case has always
only one well-defined Killing spinor.



Appendix E

Spinor decompositions

E.1 Two-component form decomposition

For the sake of simplicity, and because of the chiral symmetry in the massless
case in Chapter 6, it is better to work with the two-component spinors
(left chiral-component) instead of the four-component formalism. The two-
component four vector spinors Ψµ and Ψ†µ can be defined as the eigenvectors
of the left-projection operator PL = 1

2
(1 + γ5), i.e.,

PLψµ =

(
Ψµ

0

)
ψ†µPL =

(
Ψ†µ 0

)
.

E.2 Spin projector operators

It is useful to decompose the left-handed spinor Ψα
i into the 3/2-spin and

1/2- spin components. This can be done using the spin projector operators
introduced by Frondsal [144, 145]. One can define the following operators

(P i
3/2j)

α
β =

(
δijδ

α
β −

1

3
(σiσj)

α
β

)
,

(P i
1/2j)

α
β =

1

3
(σiσj)

α
β . (E.1)
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We can verify by inspection that

(P i
3/2j)

α
β(P j

3/2k)
β
γ = (P i

3/2k)
α
γ ,

(P i
1/2j)

α
β(P j

1/2k)
β
γ = (P i

1/2k)
α
γ ,

(P i
3/2j)

α
β(P j

1/2k)
β
γ = (P i

1/2j)
α
β(P j

3/2k)
β
γ = 0 (Orthogonality) ,

(P i
3/2j)

α
β + (P i

1/2j)
α
β = δijδ

α
β (Completeness) ,

(P i
3/2j)

α
β(σj)βγ = (σi)

α
β(P i

3/2j)
β
α = 0 .

These properties show that (E.1) are indeed projectors operators. We can
observe that, as projectors, they have eigenvalues 0 or 1. Indeed, suppose
a projector P has a non-null eigenvector v with eigenvalue λ, then using
P 2 = P , we have λ2v = P 2(v) = P (v) = λv, but, as v 6= ~0, is necessarily
true that λ2 = λ, which proves the above claim. Therefore, the trace of each
projector tell us the dimension number they span. We have then

(P i
3/2i)

α
α = 4 ,

(P i
1/2i)

α
α = 2 .

This means indeed (P3/2) projects over a vectorial space of dimension four
(3/2−spin field) and (P1/2) over a vectorial space of dimension two (1/2−spin
field). With the completeness property, we can decompose the left-handed
fermions as

Ψ†iα = Ψ†jβδ
j
i δ
β
α = Ψ†jβ

[
(P j

3/2i)
β
α + (P j

1/2i)
β
α

]
= Ψ†3/2iα + Ψ†1/2iα ,

Ψα
i = δijδ

α
βΨβ

j =
[
(P j

3/2i)
α
β + (P j

1/2i)
α
β

]
Ψβ
j = Ψα

3/2i + Ψα
1/2i .

We can split also some operators into spinor projectors components. For
instance,

εijk(σj)
α
β = −i(P ik

3/2)αβ + 2i(P ik
1/2)αβ . (E.2)

E.3 Transversal and longitudinal decomposi-

tion

Besides the left-handed–right-handed and 3/2−spin–1/2−spin decomposi-
tions, we can distinguish the transversal and longitudinal part of a 3/2−spin
as

Ψ†iα = Ψ†3/2T iα + Ψ†3/2Liα ,

Ψα
i = Ψα

3/2T i + Ψα
3/2Li ,

where ∂iΨ†3/2T iα = ∂iΨα
3/2T i = 0 and, locally Ψ†3/2Liα = ∂iΘ

†
α and Ψα

3/2Li =
∂iΘ

α.



Appendix F

Constraint brackets of the
massless Rarita-Schwinger
theory

F.1 Gauged Massless Rarita-Schwinger the-

ory

In this section of the Appendix, we will write in more detail the constraint
Poisson brackets for the gauged RS theory given in Section (7.2.2). De-
manding preservation in time of the primary constraints φ0, χ†0α , χ0α (7.9),
it is obtained the secondary constraints (7.11). The non-vanishing Poisson
brackets between them are,

{
k(x), χiα(y)

}
= −ig

2
εijk(σj)

α
βΨβ

k(x)δ(3)(x− y) ,{
k(x), χ†iα (y)

}
= −ig

2
εijkΨ†jβ(x)(σk)

β
αδ

(3)(x− y) ,{
Kα(x), χ†iβ (y)

}
=

1

2
εijk(σj)

α
β

−→
D

(x)
k δ(3)(x− y) ,{

K†α(x), χiβ(y)
}

=
1

2
εijkδ(3)(x− y)

←−
D

(x)
j (σk)

β
α , (F.1)

{k(x), Kα(y)} =
ig

2
εijk(σi)

α
βΨβ

j (y)∂
(x)
k δ(3)(x− y) ,{

k(x), K†α(y)
}

=
ig

2
εijkΨ†i (y)(σj)

β
α∂

(x)
k δ(3)(x− y) .
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Preservation in time of the rest of primary constraints in (7.9), determines
the Lagrange multipliers Λ†iα and Λα

i as,

χ̇iα(x) =
{
χiα(x), HT

}
=

1

2
εijk
(
−→
D jΨ

α
k + (σj)

α
β(
−→
DkΨ

β
0 +

ig

2
A0Ψβ

k − Λβ
k)

)
≈ 0

=⇒ Λα
i ≈ igA0Ψα

i +
−→
D iΨ

α
0 + iεijk

−→
D jΨ

α
k ,

χ̇†iα (x) =
{
χ†iα (x), HT

}
=

1

2
εijk
(

Ψ†kα
←−
D j + (Ψ†0β

←−
Dk +

ig

2
A0Ψ†jβ + Λ†jβ)(σj)

β
α

)
≈ 0

=⇒ Λ†iα ≈ −igA0Ψ†iα + Ψ†0α
←−
D i − iεijkΨ†kα

←−
D j .

In fact, as the action (7.1) is of first order, it is linear in time derivative.
Therefore, the Lagrange multipliers Λ†iα and Λα

i are Ψ̇†iα and Ψ̇α
i , respectively.

We now descent to the next level of the Dirac procedure demanding preser-
vation in time of the secondary constraint, obtaining the tertiary constraints
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(7.12), whose non-vanishing Poisson brackets are

{
V α(x), χ†0β (y)

}
=

ig

4
εijk(σi)

α
βFjkδ

(3)(x− y) ,{
V †α (x), χ0β(y)

}
=

ig

4
εijkFij(σk)

β
αδ

(3)(x− y) ,{
V α(x), χ†iβ (y)

}
= −ig

4
εijkFjkδ

α
β δ

(3)(x− y)− 2εijk(σj)
β
απkδ

(3)(x− y) ,{
V †α (x), χiβ(y)

}
= −ig

4
εijkFjkδ

β
αδ

(3)(x− y)− 2εijkπj(σk)
β
αδ

(3)(x− y) ,

{V α(x), k(y)} =
ig

2
εijkΨα

k (x)∂
(y)
i ∂

(x)
j δ(3)(x− y) + 2εijk(σi)

α
βΨβ

0∂
(x)
j ∂

(y)
k δ(3)(x− y) ,{

V †α (x), k(y)
}

=
ig

2
εijkΨ†iα(x)∂

(x)
j ∂

(y)
k δ(3)(x− y) + 2εijkΨ†0β(x)(σk)

β
α∂

(y)
i ∂

(x)
j δ(3)(x− y) ,{

V α(x), Kβ(y)
}

= −g
2

4

(
~σ × ~Ψ

)α
·
(
~σ × ~Ψ

)β
δ(3)(x− y) ,{

V †α (x), Kβ(y)
}

= −g
2

4

(
~Ψ† × ~σ

)
α
·
(
~σ × ~Ψ

)β
δ(3)(x− y) ,{

V α(x), K†β(y)
}

= −g
2

4

(
~σ × ~Ψ

)α
·
(
~Ψ† × ~σ

)
β
δ(3)(x− y) , (F.2){

V †α (x), K†β(y)
}

= −g
2

4

(
~Ψ† × ~σ

)
α
·
(
~Ψ† × ~σ

)
β
δ(3)(x− y) ,{

V α(x), V β(y)
}

= −g
2

4
(~σ × ~Ψ(x))α ·

(
~∇(y)δ(3)(x− y)× (~σΨ0(y) + ~Ψ(y))

)β
+
g2

4

(
~∇(x)δ(3)(x− y)× (~σΨ0(x) + ~Ψ(x))

)α
· (~σ × ~Ψ(y))β{

V α(x), V †β (y)
}

= −g
2

4

(
~∇(x)δ(3)(x− y)× (~σΨ0(x)− ~Ψ(x))

)α
· (~Ψ†(y)× ~σ)β

−g
2

4
(~σ × ~Ψ(x))α ·

(
~∇(y)δ(3)(x− y)× (Ψ†0(y)~σ − ~Ψ†(y))

)
β{

V †α (x), V †β (y)
}

=
g2

4

(
~∇(x)δ(3)(x− y)× (Ψ†0(x)~σ − ~Ψ†(x))

)
α
· (~Ψ†(y)× ~σ)β

−g
2

4
(~Ψ†(x)× ~σ)α ·

(
~∇(y)δ(3)(x− y)× (Ψ†0(y)~σ − ~Ψ†(y))

)
β
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Demanding preservation of the tertiary constraints (7.12),

V̇ α(x) = −2[~∇× ~π · ~Ψ]α + 2[~∇× ~π · ~σΨ0]α − ~Σ · ~Λα − 2[~π · ~σ × ~Λ]α + (~Σ · ~σΛ0)α[
−~∇× ~Σ + ig

(
~Ψ† × ~σΨ0 + Ψ†0~σ × ~Ψ− ~Ψ

† × ~Ψ
)]
· (~σ × ~Ψ)α ≈ 0

=⇒ Λα0 ≈
~Σ · (~σ)αβ
~Σ · ~Σ

(
2[~∇× ~π · ~Ψ]β − 2[~∇× ~π · ~σΨ0]β + ~Σ · ~Λα + 2[~π · ~σ × ~Λ]β+[
~∇× ~Σ− ig

(
~Ψ† × ~σΨ0 + Ψ†0~σ × ~Ψ− ~Ψ† × ~Ψ

)]
· (~σ × ~Ψ)β

)
V̇ †α(x) = 2[~Ψ† · ~∇× ~π]α − 2[Ψ†0~σ · ~∇× ~π]α + ~Λ†α · ~Σ− 2[~Λ† × ~σ · ~π]α − (Λ†0~σ)α · ~Σ

(~Ψ† × ~σ)α ·
[
−~∇× ~Σ + ig

(
~Ψ†0~σ × ~Ψ + ~Ψ† × ~σΨ0 − ~Ψ† × ~Ψ

)]
≈ 0

=⇒ Λ†0α ≈

(
2[~Ψ† · ~∇× ~π]β − 2[Ψ†0~σ · ~∇× ~π]β + ~Λ†β · ~Σ− 2[~Λ† × ~σ · ~π]β+

(~Ψ† × ~σ)β ·
[
−~∇× ~Σ + ig

(
~Ψ†0~σ × ~Ψ + ~Ψ† × ~σΨ0 − ~Ψ† × ~Ψ

)] ) (~σ)βα · ~Σ
~Σ · ~Σ

.

We can check that no extra constraints are produced, meaning the algorithm
to find constraints is over at this level [26, 121].

F.2 Extended gauged Rarita-Schwinger the-

ory

Now, we show the constraints and their Poisson brackets regarding to the
extended gauged RS theory presented in Chapter 8. Demanding preservation
in time of the primary constraints φ0, χ†0α , χ0α (8.11), it is obtained the
secondary constraints (8.13). The non-vanishing Poisson brackets between
them are,

{
k(x), χiα(y)

}
= − ig

2
εijk(σj)

α
βΨβ

k(x)δ(3)(x− y) ,{
k(x), χ†iα (y)

}
= − ig

2
εijkΨ†jβ(x)(σk)βαδ

(3)(x− y) ,

{k(x), ϕα(y)} =
ig

4
εijk(σk) α

β ξβ(x)∂
(x)
i ∂

(y)
j δ(3)(x− y) +

g2

4
εijkFij(σk) α

β ξβ(x)δ(3)(x− y) ,{
k(x), ϕ†α(y)

}
= − ig

4
εijkξ†β(x)(σk)βα∂

(x)
i ∂

(y)
j δ(3)(x− y) +

g2

4
εijkFijξ

†
β(x)(σk)βαδ

(3)(x− y) ,

{k(x),Kα(y)} = − ig
2
εijk(σi)

α
βΨβ

k(y)∂
(x)
j δ(3)(x− y)− ig

2
εijk(σi)

α
βξ
β(y)∂

(x)
j ∂

(y)
k δ(3)(x− y) ,{

k(x),K†α(y)
}

=
ig

2
εijkΨ†i (y)(σj)

β
α∂

(x)
k δ(3)(x− y) +

ig

2
εijkξ†β(y)(σi)

β
α∂

(x)
j ∂

(y)
k δ(3)(x− y) ,{

Kα(x), χ†iβ (y)
}

=
1

2
εijk(σj)

α
β

−→
D

(x)
k δ(3)(x− y) , (F.3){

K†α(x), χiβ(y)
}

=
1

2
εijkδ(3)(x− y)

←−
D

(x)
j (σk)βα ,{

Kα(x), ϕ†β(y)
}

=
ig

4
εijk(σi)

α
βFjk(x)δ(3)(x− y) ,{

K†α(x), ϕβ(y)
}

=
ig

4
εijkFij(x)(σk)βαδ

(3)(x− y) .
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Preservation in time of the rest of primary constraints χ†i, χi, ϕ†, ϕ determines
a possible set of Lagrange multipliers.

χ̇iα(x) =
{
χiα(x), HT

}
=⇒ Λαi ≈ igA0Ψαi +

−→
D iΨ

α
0 + iεijk

−→
DjΨ

α
k + ig

[
Ei −

i

2
Σi
]
,

χ̇†iα (x) =
{
χ†iα (x), HT

}
=⇒ Λ†iα ≈ −igA0Ψ†iα + Ψ†0α

←−
D i + iεijkΨ†jα

←−
Dk + ig

[
Ei +

i

2
Σi
]
,

ϕ̇α(x) = {ϕα(x), HT }

=⇒ λα ≈ igA0ξ
α + Ψα0 +

1

~Σ · ~Σ

[
2( ~E × ~Σ) · ~ϑ+ 2i( ~E · ~Σ)(~σ · ~ϑ)− 2i( ~E · ~σ)(~Σ · ~ϑ) + (~Σ · ~σ)(~Σ · ~ϑ)

]α
,

ϕ̇†α(x) =
{
ϕ†α(x), HT

}
=⇒ λ†α ≈ −igA0ξ

†
α + Ψ†0α +

1

~Σ · ~Σ

[
−2( ~E × ~Σ) · ~ϑ† + 2i( ~E · ~Σ)(~ϑ† · ~σ)− 2i(~Σ · ~ϑ†)(~σ · ~E)− (~Σ · ~ϑ†)(~σ · ~Σ)

]
α
,

where we used the properties (A.8-A.10). We defined also, to solve the last
two Lagrange multipliers λ†, λ, the quantities

ϑαi = Ψα
i −
−→
D iξ

α ,

ϑ†iα = Ψ†iα − ξ†α
←−
D i ,

assuming there is a frame where ~Σ 6= 0, in order to apply Lemma 7.2.1.



154 APPENDIX F. CONSTRAINT BRACKETS RS THEORY



Appendix G

From (2 + 1)-dimensional
Lagrangian to static
two-dimensional Hamiltonian
of π electrons

To be specific, let us focus on the case on negative constant Gaussian
curvature, although similar formulae must hold the pure strain/fully flat case.
The coordinates are

T = et/r
√
e2σ(ỹ) + r2

X = et/reσ(ỹ) cos x̃

Y = et/reσ(ỹ) sin x̃

and

Σ = −1

2
ln(T 2 −X2 − Y 2) + ln r = −t/r .

To write the Hamiltonian in the q̃ coordinates, we have to consider the action
(10.16)

S = i

∫
dTdXdY e2Σ

[
ψ̄γ0(∂T + ΣT )ψ + ψ̄γ1(∂X + ΣX)ψ + ψ̄γ2(∂Y + ΣY )ψ

]
.

We have to write this in the q̃µ coordinates. We need the Jacobian

‖∂Q
µ

∂q̃ν
‖ = −e3t/r r e

2σ(ỹ) σỹ(ỹ)√
e2σ(ỹ) + r2

(G.1)
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the three terms

ΣT = − T

T 2 −X2 − Y 2
= −e

−t/r

r2

√
e2σ(ỹ) + r2

ΣX =
X

T 2 −X2 − Y 2
=
e−t/r

r2
eσ(ỹ) cos x̃

ΣY =
Y

T 2 −X2 − Y 2
=
e−t/r

r2
eσ(ỹ) sin x̃

and to re-express the derivatives, e.g., ∂X = x̃X∂x̃ + ỹX∂ỹ, etc., where, as
usual, σỹ(ỹ) = ∂ỹσ(ỹ), x̃X = ∂x̃/∂X, etc. Then we use

S =

∫
dtdx̃dỹL(q̃) =

∫
dtdx̃dỹ

[∥∥∥∥∂Q∂q̃
∥∥∥∥ (πψ∂Tψ)(q̃)−H

]
,

from which we can read off the Hamiltonian H =
∫
dx̃dỹH(q̃). The final

expression is

H = −i~vF
∫
dx̃dỹ

(
− r e2σ σỹ√

e2σ + r2

)[
ψ†

(
−
√
e2σ + r2

r2

)
ψ

+ ψ†γ0γ1
(
− e−σ sin x̃ ∂x̃ +

e−σ

σỹ

e2σ + r2

r2
cos x̃ ∂ỹ +

eσ

r2
cos x̃

)
ψ

+ ψ†γ0γ2
(
e−σ cos x̃ ∂x̃ +

e−σ

σỹ

e2σ + r2

r2
sin x̃ ∂ỹ +

eσ

r2
sin x̃

)
ψ
]

where we have reintroduced ~ and the Fermi velocity vF . Note that nothing
depends on t, as it must be.

The formula above for H gives a field of the type ψ†ψ in (G.2)

φ =
1

r
e2σσỹ ,

the A1 and A2 fields in the non-derivative terms of (G.2) and (G.2) (here we
identify A1 and A2 according the Pauli matrices τ 1 and τ 2)

A1 = −1

r

e3σ σỹ√
e2σ + r2

cos x̃ , A2 = −1

r

e3σ σỹ√
e2σ + r2

sin x̃ ,

and the space-dependent, inhomogeneous Fermi velocity tensor

[vF (σ(ỹ))] j̃
i = vF

(
v1x̃ v1ỹ

v2x̃ v2ỹ

)
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with

v1x̃ =
r eσ σỹ√
e2σ + r2

sin x̃

v1ỹ = −e
σ

r

√
e2σ + r2 cos x̃

v2x̃ = − r eσ σỹ√
e2σ + r2

cos x̃

v2ỹ = −e
σ

r

√
e2σ + r2 sin x̃

Therefore, obtaining the expression (10.25) we have in the main text.
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Appendix H

Some details of the
tight-binding computations

We start with the effective function of the hopping energy ti with respect to
intercarbon distance [45],

ti = −η exp

[
−β(
| ~s′i |
`
− 1)

]
, (H.1)

where η ' 2.8 eV is the equilibrium hopping energy, ~s′i (with i = 1, 2, 3)

are the variation of the basis vectors ~si, and β =
∣∣∣∂ log η
∂ log `

∣∣∣ is the Grüneisen

parameter. In order to deal with inhomogeneous strain, we consider the
expansion of (H.1) up to the first derivative of the strain tensor uij(~x), i.e.,

ti = η

[
1− β

`2
(si)

mumn(si)
n − β

2`2
(si)

k(si)
m(si)

n∂kumn

]
, (H.2)

where with some abuse of notation, (si)
m stands for the m component of the

vector ~si, the indices k,m, n are contracted (dummy indices) and ∂k ≡ ∂
∂xk

.
The tight-binding Hamiltonian, in the second quantization formalism1, could
be written as

H = −
∑
~x∈LA

i=3∑
i=1

(
a†(~x)tib(~x+ ~si) + c.c.

)
,

1If we use the second quantization formalism, some subtitles appear with respect to
the vacuum where the creation and annihilation operators act. This subtitles will not be
considerer here because the system is simple enough but, in the case of curved graphene,
extra care must be taken. This is because the presence of defects on the honeycomb makes
the vacuum nontrivial [31].
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where La stands for the sublattice A (see Figure 9.1) and, in order to have a
Hermitian Hamiltonian, we added the complex conjugate of the first term.
Using the following expressions for the Fourier transforms

a(~x) =
∑
~k

ei
~k·~xa~k , b(~x) =

∑
~k

ei
~k·~xb~k , um(~x) =

∑
~k

ei
~k·~xum~k ,

we can write the Hamiltonian in the Fourier space as

H = −η
∑
~k,~q

i=3∑
i=1

(
b†~k−~q, a

†
~k

)( 0 e−i(
~k−~q)·~siT †i,~q

ei(
~k−~q)·~siTi,~q 0

)(
b~k−~q
a~k

)
,

(H.3)
where we used the symmetry property of uij and defined Ti,~q as

Ti,~q = δ(~q) + i(si)
mum,~q(si)

n − (si)
j(si)

m(si)
nqjqmun,~q.

Now, we expand the Hamiltonian around one Dirac point K±. For the sake

of simplicity, we expand around ~K+ =
(

4π
3
√

3`
, 0
)

, such that ~k = ~K+ + ~p. We

can work a little bit more on the matrix content of (H.3) as(
0 T †i,~qe

−i( ~K+−~q)·~si

Ti,~qe
i( ~K+−~q)·~si 0

)
=
i

`
~σ·~siσ3 (I + iσ3(~p− ~q))

(
T †i,~q 0

0 Ti,~q

)
,

where in the last equality we made use of the identity2 [43](
0 e−i(

~K+−~q)·~si

ei(
~K+−~q)·~si 0

)
=
i

`
~σ · ~siσ3.

At this point, it will be useful to show the following identities [43]

i=3∑
i=1

(si)
m = 0,

1

`2

i=3∑
i=1

(si)
m(si)

n =
3

2
δmn,

1

`3

i=3∑
i=1

(si)
j(si)

m(si)
n = −3

4
Kjmn,

2In the case of expanding around the other inequivalent Dirac point ~K− =
(
− 4π

3
√
3`
, 0
)

,

the formula is (
0 e−i(

~K+−~q)·~si

ei(
~K+−~q)·~si 0

)
=
−i
`
~σ∗ · ~siσ3

.
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1

`4

i=3∑
i=1

(si)
j(si)

m(si)
n(si)

r =
3

8

(
δjmδnr + δjnδmr + δjrδmn

)
,

The tensor Kjmn, defined in the third identity, is an invariant under the
discrete C3 rotations. This tensor is very important in the discussion about
the anisotropy of the strain-induced gauge field. For our choice of basis vectors
{~si}, its only nonzero components are K222 = −K112 = −K121 = −K112 = 1.
We also note that the other three tensors are all isotropic. Making use of all
this, doing some standard algebra and going back to the configurations space
via the anti-Fourier transforms of a, b and um, we end up with the following
Hamiltonian for the inhomogeneous strain

H = −i
∑
~x

ψ†+σ
j
(
vjm∂m + ivFA

j − vFΓj
)
ψ+,

where vjm = vF
(
δjm − β

4
(unnδjm + 2ujm)

)
is the celebrated space-dependent

Fermi velocity [43], Aj = β
2`
εjpKpmnumn is the pseudogauge field, and Γj =

β
4

(
∂mujm + 1

2
∂jumm

)
is a connection-like coefficient. The Fermi velocity in

the unstrained graphene is vF = 3
2
η`.
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