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Abstract

Large kinetic mechanisms are required in order to accurately model combustion systems. If no parameterization

of the thermo-chemical state-space is used, solution of the species transport equations can become computationally

prohibitive as the resulting system contains a wide range of time and length scales. Parameterization of the thermo-

chemical state-space with an a priori prescription of the dimension of the underlying manifold would lead to a reduced

yet accurate description. To this end, the potential o�ered by Principal Component Analysis (PCA) in identifying

low-dimensional manifolds is very appealing. The present work seeks to advance the understanding and application

of the PC-transport approach by analyzing the ability to parameterize the thermo-chemical state with the PCA basis

using nonlinear regression. In order to demonstrate the accuracy of the method within a numerical solver, unsteady

perfectly stirred reactor (PSR) calculations are shown using the PC-transport approach. The PSR analysis extends

previous investigations by the authors to more complex fuels (methane and propane), showing the ability of the

approach to deal with relatively large kinetic mechanisms. The ability to achieve highly accurate mapping through

Gaussian Process based nonlinear regression is also shown. In addition, a novel method based on local regression of

the PC source terms is also investigated which leads to improved results.

Keywords: Combustion; Nonlinear Regression; Local Regression; Low-dimensional manifolds; Principal

Component Analysis.

1. Introduction

The numerical modeling of turbulent combustion is a very challenging task as it combines the complex phenom-

ena of turbulence and chemical reactions. This study becomes even more challenging when large detailed kinetic

mechanisms are used in order to understand some special features such as pollutant formation. A detailed combus-

tion mechanism for a simple fuel such as methane involves 53 species and 325 chemical reactions [1]. Moreover, the

number of species and reactions increases with increasing fuel complexity. The coupling of the kinetic equations with

the set of Navier-Stokes equations results in a problem that is too complex to be solved by the current computational

means. In a CFD calculation, the number of species tracked impacts the memory usage and CPU time. It is thus

important to minimize this number by the use of a simpler but representative set of variables. Therefore, there

is a need for methods allowing to parameterize e�ciently the thermo-chemical state of a reacting system with a

reduced number of optimal reaction variables. Among those, Principal Component Analysis (PCA) appears as an
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ideal candidate to ful�ll the purpose [2�8]. PCA o�ers the possibility of automatically reducing the dimensionality

of data sets consisting of a large number of correlated variables, while retaining most of the variation present in

the original data. After reduction, the new set of variables, called principal components (PCs), are othogonal, un-

correlated and linear combinations of the original variables. By retaining the PCs containing most of the variance

and transporting them in a numerical simulation, the dimensionality of the system can be higly reduced. Another

advantage of PCA resides in the fact that the PCs can be obtained through data sets based on simple systems (such

as canonical reactors) and then applied to a similar, more complex system [9]. A methodology based on PCA was

proposed [5] for the identi�cation of the controlling dynamics in reacting systems and for the consistent reduction of

very large kinetic mechanisms. Sutherland and Parente [8] proposed a combustion model based on the concepts from

PCA (PC-score approach). They derived transport equations for the principal components (PCs), and proposed a

model where the state-space variables are constructed directly from the PCs. The PCA-based modeling approach

was enhanced [3, 10, 11] by combining PCA with nonlinear regression techniques, allowing a nonlinear mapping of the

thermo-chemical state and the corresponding source terms onto the basis identi�ed by the principal components. As

a result, the nonlinear nature of chemical manifolds is better captured, thus, maximizing the potential size reduction

provided by the method. Isaac et al. [4] and Echekki and Mirgolbabaei [2] provided the �rst a posteriori studies

on the use of the PC-score approach. In particular, Isaac et al. showed in [4] the potential of PC-transport based

combustion models coupled with nonlinear regression techniques. The model was tested on an unsteady calculation

of a perfectly stirred reactor (PSR) burning syngas. The authors showed that Gaussian Process Regression (GPR)

technique produced the most accurate reconstruction, showing remarkable accuracy for the prediction of temperature

and major and minor species with 2 transported variables instead of 11. The approach was also tested for the �rst

time within a CFD solver.

The present work seeks to advance the understanding and application of the PC-transport approach by applying

this method to more complex fuels such as methane and propane. First, 0-D simulation of a PSR is used to generate

the database for model training. Then, the solution of a steady and unsteady PSR calculation using the PC-transport

approach for large kinetic mechanisms is compared with the full solution. Next, the PC-transport approach is coupled

with nonlinear regression (PC-GPR) in order to increase the size reduction potential of PCA. Finally, the �rst study

on an enhancement of the classical PC-transport approach by the use of local nonlinear regression (PC-L-GPR) is

also shown. It should be pointed out that the objective of the present work was to demonstrate the applicability

of GPR regression for accurate source term regression. To this purpose, the choice of a PSR is quite obvious as it

allows to focus on such an aspect without the in�uence of transport processes.

2. Principal Component Analysis

Principal Component Analysis [12] is a useful statistical technique that has found application in combustion for

its ability of identifying low-dimensional manifolds. In high dimension data sets, where graphical representation is

not possible, PCA can be a powerful tool as it identi�es correlations and patterns in a data set. Once these patterns

have been identi�ed, the data set can be compressed by reducing the number of dimensions without much loss of

information. PCA analyzes the covariance between variables in a data set and identi�es a linear representation of

the system through orthogonal vectors, each one having a signi�cance proportional to its eigenvalue.
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In order to perform principal component analysis, a data-set X (n×Q) consisting of n observations of Q indepen-

dent variables is needed. Then, the data must be centered (by subtracting its mean) and scaled (using an appropriate

scaling method): centering is used to convert observations into �uctuations over the mean, while scaling is done in

order to compare the data evenly (if they have di�erent units or order of magnitudes):

XSC = (X−X)D−1 (1)

where X is (n×Q) matrix containing the mean of each variable and D is a (n×Q) matrix containing the scaling

factor of each variable. Several scaling methods can be found in the litterature: auto scaling, range scaling, pareto

scaling, variable stability scaling and level scaling [6].

Then, one can compute the covariance matrix S de�ned as (the notation X will be used in the following instead

of XSC for the sake of simplicity):

S =
1

n− 1
XTX

The diagonal elements of S represent the variance of each variable, while the o�-diagonal values show the co-

variance between two variables. Since S is a square matrix ( of size (Q×Q) ), an eigenvalue decomposition can be

performed yielding the eigenvectors and eigenvalues of the system:

S = ALAT

where A (Q×Q) and L (Q×Q) are respectively the eigenvectors of S (also called principal components, PCs) and

the eigenvalues of S, in decreasing order. The eigenvectors matrix A, also called the basis matrix, is used to obtain

the principal component scores, Z (n×Q), by projecting the original data set X on that basis:

Z = XA (2)

Eq. 2 indicates that the original data set can be uniquely recovered using the PCs and their scores:

X = ZA−1

where A−1 = AT. Then, using a subset of A by retaining only q PCs (with q < Q), noted Aq, an approximation of

X based on the �rst q eigenvectors (Xq) is obtained:

X u Xq = ZqAT
q

where Xq is the approximation of X based on the �rst q eigenvectors of Q, and Zq is the (n × q) matrix of the

principal component scores. In the PC analysis, the largest eigenvalues correspond to the �rst columns of A. This

means the largest amount of variance in the original variables is described by the �rst PCs. Thus, the truncation is

made on the last eigenvectors (corresponding to the smallest eigenvalues). By removing the last PCs, the dimension

of the system is reduced while retaining most of the variation in the system.

2.1. PC-score Approach

In the work of Sutherland and Parente [8], a model based on transport equations for the PCs is proposed derived

from the general species transport equation:

∂

∂t
(ρYk) +∇ (ρūYk) = ∇ (ρDk∇Yk) + Rk k = 1, ..., ns (3)
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where Yk is the mass fraction of species k and Rk is its corresponding source term (with ns the total number of

species in the system), Dk the di�usion coe�cent for species k , ρ the density and ū the velocity vector. Transport

equations for the PC scores (Z) can be formulated from Eq. 3 given the basis matrix A and the scaling factors dk:

∂

∂t
(ρz) +∇ (ρūz) = ∇ (ρDz∇z) + sz (4)

sz =

Q∑
k=1

Rk

dk
Akq (5)

where z = Zt
i represents an individual score realization. One of the major weaknesses of classic PCA is that a

multi-linear model is used to approximate a highly nonlinear manifold. The nonlinearity of chemical manifolds can

be attributed to the high nonlinearity of chemical source terms (Arrhenius). This can be visualized in Fig. 1, showing

the �rst principal component source term sz1, as a function of the �rst two principal components for the propane

case.

In the present work, PCA is used to identify the most appropriate basis to parameterize the empirical low-

dimensional manifolds and de�ne transport equations in the new space (see Eq. 4 and 5). Then, both the state space

and the source terms are non-linearly regressed onto the new basis using several approaches, described in Section 3.

The non-linear regression of the chemical state space and of the corresponding source terms is intended to overcome

the shortcomings associated to the multi-linear nature of PCA, and to reduce the number of components required

for an accurate description of the state-space. The method belongs to the family of Empirical Low-Dimensional

Manifolds (eLDMs) [7], and it is based on the idea that compositions occurring in combustion systems lie close to a

low-dimensional manifold. eLDMs require samples for the construction of reduced models, which might be seen as a

limitation of the approach, as all system states are required before model reduction. However, although initial studies

on PCA models involved DNS data of turbulent combustion [7, 8], recent studies have demonstrated [2, 13, 14] that

PCA-based models can be trained on simple and inexpensive systems, such as 0D reactors and 1D �ames, and then

applied to model complex systems, such as �ame-vortex interaction [15], �ame-turbulence interactions [4] as well as

turbulent premixed �ames [13].
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Figure 1: Manifold of Source Term 1 (sZ1) in function of PC1 and PC2

3. Regression Models

In this study, the state-space variables (Yk, T, ρ, ...) and the PC source terms (sZq
) are mapped to the PC basis

using nonlinear regression:

φ ≈ fφ (Zq)

where fφ is the nonlinear regression function and φ represent the dependant variables (i.e. Yk, T, ρ and sZq
). In a

previous study [4], the authors compared di�erent regression models in their ability to accurately map the highly

nonlinear functions (such as the chemical source terms) on the plane PCA manifold. These models include:

• Linear Regression Model (LIN) in which the state-space is mapped to the PC using a linear function [16]

• Mutivariate Adaptive Regression Splines (MARS) where the model is build from product spline basis functions

[17]

• Arti�cial Neural Networks (ANN) that uses the concept of networking various layers of estimation resulting in

a highly accurate output layer [18]

• Support Vector Regression (SVR) which is a subset of support vector machines (SVM) and in which the idea

is again to create a model which predicts sZ given Z using learning machines which implement the structural

risk minimization inductive principle [19]

• Gaussian Process Regression (GPR), which is based on the idea that dependent variables can be described by a

gaussian distribution [20, 21]. In particular, it was shown that GPR produced the most accurate reconstruction

of the state-space variable, using only 2 transport equations instead of 11 in the full system without regression.

In the present work, we will focus on the use of GPR for state space and source term parameterization. The

choice of GPR is due to its semi-parametric nature, that increases the generality of the approach. GPR employs
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Gaussian mixtures to capture information about the relation between data and input parameters, making predictions

of non-observed system states more reliable than in fully parametric approaches [20].

3.1. Gaussian Process Regression

Gausian Processes (GPs) does not assume a speci�c model for the regression function. Rather, GPs generate

data in the domain of interest such that any �nite subset of the range follows a multivariate Gaussian distribution.

The dependant variables can thus be described by a gaussian distribution:

φ ≈ GP (m(x),K(x, x
′
)

where m is a mean function and K is a covariance function (or kernel). The mean function is often assumed to be

zero. The covariance function used here is the Squared Exponential:

K(x, x
′
) = σ2

f exp

[
−(x− x′

)2

2l2

]

with σ2
f being the signal variance and l the characterictic lenght scale. These two parameters of the covariance

function are called hyper-parameters. After an initial guess, those hyper-parameters are optimized using a Gaussian

likelihood function.

4. Local regression

In order to improve further the accuracy of the regression and increase PCA's potential for size reduction, a

novel approach is proposed where the PC-score approach is coupled with locally regressed state-space (PC-L-GPR).

The idea is to divide the PC state-space into bins or clusters, and to perform a GP regression seperately in each

of these bins. As a consequence, a better regression would be obtained (if each bin is chosen appropriately) and

the computational time required for GPR will also be reduced. In order to de�ne such bins, a conditioning variable

has to be chosen. This variable should be able to capture the general characteristics of the state-space. Possible

candidates are the PCs source terms, as the latter are highly nonlinear over the PC space. Clustering the source terms

manifolds such as they can be approximated by quasi-linear functions in each bin would simplify and accelerate the

regression algorithm. As to the author's knowledge, this approach has not yet been tested previously in the context

of PC-transport approach.

4.1. Single Conditioned

In order to divide the state-space into bins, a conditioning variable has to be chosen. As stated above, the PC

source terms are appropriate candidates as they are highly nonlinear over the PC space and need to be accurately

mapped in order to obtain high accuracy in a simulation. Indeed, if the PC source terms are well captured by the

regression, the PC's will be accurately calculated, thus all the other variables. A good candidate would be the �rst

PC source term sZ1
, as the latter is highly correlated with the major species and also contains most of the variance

in the system. Figure 2 shows the �rst source term's manifold in a 2D PC space. The bin borders are chosen to the

extrema of sZ1 . This results in two bins as shown on Figure 2 , the border being represented by the red line. It can

be seen that in each bin, sZ1
is a rather smoothly increasing (or decreasing) function of Z1 and Z2. Regressing each

of these two bins seperately is easier, more accurate and faster than regressing the whole manifold at once (i.e. global
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Figure 2: Clustering based on the extrema of sZ1 for both sZ1 (a) and sZ2 (b) (propane case, Polimi mechanism)

regression). It must be noted that the manifold of sZ2
was also clustered based on the extrema of sZ1

(Figure 2 b)),

but those extrema do not necessarily fall within the ones of sZ2 . Although this approach leads to improved results

compared to global regression (cfr. Section 6.2.2), they can be further improved even using the double conditioning

method (cfr. Section 4.2). Local regression provides better results when the bins and conditioning variable are chosen

correctly (cfr. Section 6.2.2). In order to handle the discontinuties that could occur at the boundaries of the bins,

the clusters were arti�cially extended across the bin border, by providing an overlap of 2% at the boundaries of the

cluster region, to ensure smoothness of the soluton and avoid discontinuities.

4.2. Double Conditioned

In some cases, local regression with a single conditioning variable can still provide unsatisfactory results. In such

cases, the accuracy of the results can be further improved by using a second conditioning variable. In the case of

PC-transport where the �rst conditioning variable is sZ1 , a natural choice for the second conditionig variable would

be the second PC source term sZ2 . Thus, sZ1 is regressed locally based on clusters de�ned by its extrema, while sZ2

is regressed locally in clusters de�ned by its own extrema (i.e. not based on sZ1
extrema). Figure 3 shows the �rst

and second source terms' manifolds for the propane case, together with the clusters borders.
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5. Perfectly Stirred Reactor and Test Cases

The objective of the present work was to extend previous investigation on syngas [4] to more complex fuels, with

a signi�cantly large number of species and reactions. In [4], the proposed PCA approach was demonstrated on the

unsteady solution of a perfectly stirred reactor (PSR). The solution from the full set of equations was compared to

the standard PC-transport approach, and the PC-transport approach using nonlinear regression.

In this work, the analysis of the proposed PC model in its ability to handle complex fuels and large kinetic

mechanisms was done in a similar way. The data sets for PCA were generated by performing unsteady simulations

by varying the residence time in the vessel from extinction to equilibrium. For each residence time, the temporal

solution was saved until steady-state was reached. The vessel was initialized at equilibrium conditions (constant

pressure and enthalpy) and the inlet conditions for the reactor were set at an equivalence ratio of 1. The initial

conditions for the reactor are set at the equilibrium conditions of the inlet and the system is run until a steady-state

solution is reached. The PSR is modeled assuming constant volume, residence time and pressure. The ideal gas law

was used to model the behaviour of the mixture. Thermodynamic properties were obtained through the Cantera

software package [22]. Two di�erent fuels were investigated:

• methane (CH4), burned with pure oxygen. The mechanism used was the GRI 3.0 [1], without species containing

nitrogen (resulting in 34 species). The inlet temperature was set to 300K. One hundred cases were run between

residence time of 1e−4 s to 1e−6 s. The PCA database generated in this way contained ∼ 100,000 points.

• propane (C3H8), burned with air. Two di�erent kinetic schemes were used: the San Diego Mechanism [23]

(subsequently referred as San Diego), without nitrogen species (50 species, 230 reactions) and the Primary Ref-

erence Fuels Polimi_PRF_PAH_HT_1412 kinetic mechanism [24] (subsequently referred as Polimi), without

nitrogen species (162 species, ∼6,000 reactions). The inlet temperatures were set to 1300K for the San Diego

scheme and to 1500K for the Polimi mechanisms. One hundred cases were run between residence time of 1e−1 s

to 1e−7 s. The PCA database consisted of ∼ 110,000 points for the San Diego scheme and of ∼ 420,000 points

for the Polimi one.

The PCA process described in the previous section is then applied to the database to create the basis matrix Aq,

and the regression functions fφ for the state-space variables, φ. Gaussian Process Regression was done using 1, and

2 PC's as independant variables. The implementation of the PSR equations was done using MATLAB together with

the Cvode toolbox and Cantera. The temporal solution to the equations is obtained using the Newton nonlinear

solver, and the BDF multistep method. Governing equations for species transport and energy were implemented and

solved:
∂mi

∂t
= ṁi,in − ṁi + ωi ·MWi · V (6)

where mi (kg) and ωi (kmol/m3/s) are the mass and the net molar production rate of the ith species, MWi is the

molecular weight of the ith species and V (m3) the volume of the reactor. or the mass �ow rates (kg/s), ṁi,in is the

mass �ow of the ith species entering the reactor and ṁi,out is the mass �ow exiting the reactor. The residence time

τ (/s) in the reactor is de�ned as:

τ =
ρV

ṁ
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where ρ is the density of the mixture inside the reactor. For the energy equation:

∂H

∂t
= ṁinhin − ṁh+ V

dP

dt
(7)

where H is the enthalpy of the system and h is the speci�c enthalpy (J/kg), ṁin is the total mass �ow entering the

reactor and ṁ the total mass �ow rate leaving the system. The last term of Eq. 7 being zero as the PSR operates

in constant pressure conditions. In this study, no accumulation of mass inside the reactor has been assumed, thus

ṁin = ṁout = ṁ, but ṁ can change due to a change in density.

6. Results and Discussion

In this section, the proposed method is demonstrated in a PSR, comparing the calculations using the full set of

equations to the standard PC-transport approach and to the PC-transport approach using nonlinear regression. This

demonstration is done for two di�erent fuels: a simple one, methane (CH4), and a more complex, propane (C3H8).

But �rst, an analysis is performed on the e�ects of several scaling methods used in PCA (Eq. 1).

6.1. Scaling

As mentioned in [6], scaling has an important e�ect on the accuracy of the method. It can change the PCA

structure by altering the relative importance of various species, and the choice of a particular scaling method is

motivated by the goal of the resulting PCA to reconstruct speci�c variables. In [4], the authors showed that pareto

scaling method is able to achieve the greatest reduction, and produces a highly regressible surface for a syngas

mechanism. This was also consistently showed in other previous investigations [6, 14, 25�27]. In order to assess the

accuracy of the various scaling methods presented in Section 2, a similar study was performed for the methane and

propane cases on the species and PCs source terms. The rms error was used as a mean of quantifying the error in

the reconstruction of species mass fractions and PCs source terms. The de�nition of the rms error used here is:

rms error =

√∑n
i=1 (xpredicted,i − xi)2

n

Figure 4 shows the rms error for the mass fraction of CH4 for the methane case, and for the various scaling methods
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Figure 4: Rms error values for CH4 mass fraction while varying q, the number of PCs, and the scaling method (methane case).

while varying the number of principal components, q. It is clear from Fig. 4 that pareto scaling provides the lowest
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error in the reconstruction for CH4, and this for all the range of q, while all other methods show similar behaviour. It

can also be seen that a signi�cant decrease in the rms error is not achieved until q = 31, and this is observed with all

the scaling methods. With q = 31, only a minor reduction is achieved. This is due to the linear nature of PCA based

models, which try to model highly nonlinear reaction rates on a linear basis. An alternative approach to overcome

this issue can be the use of nonlinear regression functions, which can be used to map the nonlinear reaction rates or

nonlinear species concentrations to the lower dimensional representation given by the PCs. A similar analysis of the

in�uence of scaling methods was also done for the propane cases, which led to the same conclusion, i.e. that pareto

scaling provides the lowest error in the reconstruction of all species (major and minor).

6.2. Standard PC-score Approach vs PC-score with Gaussian Process Regression

The standard PC-score approach based on Eq. 4 and 5 was tested for both methane and propane, and compared

to the full solution, i.e. the solution based on the transport of all species (Eq. 6 and 7). Then, the non linear state-

space variables were mapped to the linear PC basis using Gaussian Process Regression (GPR). GPR was performed

on all variables (temperature, species and score source terms) using 5,000 sample points evenly distributed over the

PC space. Error quanti�cation is done through the coe�cient of determination R2:

R2 =

∑n
i=1 (xpredicted,i − x̄)

2∑n
i=1 (xi − x̄)

2

where x̄ is the mean value of an observed variable.

6.2.1. Methane case
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Figure 5: PSR temperature as a function of the residence time, with the solid line representing the full solution. The markers represent
the results for the standard PC-score model while varying q (a), and the PC-score with GPR regression (b) using q = 1 and 2 PCs
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Figure 6: Species mass fraction as a function of the residence time, with the solid line representing the full solution. The markers represent
the results for the standard PC-score model while varying q (left plots), and the PC-score with GPR regression (right plots) using q = 1
and 2 PCs
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Figure 5 and 6 show the solution using the standard PC-score model (i.e. without regression) and the solution

using the PC-score model together with GPR (PC-GPR) for the methane case. It can be seen that using the standard

PC-score approach, at least 25 components out of 34 are required in order to obtain an accurate solution, which

correspond to a model reduction of 26%. However, when using GPR, the reduction potential is highly increased:

using only 2 PCs, the results show remarkable accuracy for the model with regression over the range of residence

times for the predicted temperatures, and both major and minor species. A similar degree of accuracy is not observed

in the model without regression until q = 25. Also, using PC-GPR with q = 1 does not provide su�cient accuracy

in the ignition region, where the ignition delay is under-estimated. Moving to q = 2 allows to capture the ignition

adequately. The regression of φ using Gaussian Process and pareto scaling yielded an R2 of 0.999 for all variables

using q = 2, and an R2 of 0.986 or higher with q = 1.

6.2.2. Propane case - Polimi mechanism

Figure 7 shows the temperature pro�le for the combustion of propane and air using the Polimi mechanism. As

far as the standard PC-score approach is concerned, it can be seen that at least 142 components out of 162 are

required in order to get an accurate description using a reduced model, which represent a model reduction of 12%.

When adding the potential of GPR (PC-GPR), this number can be reduced to 2, leading to fair solution, but not yet

satisfying. Indeed, a signi�cant deviation from the full solution can be observed in the ignition/extinction region. In

order to improve the model even further, the potential of using GPR locally, together with the PC-score approach

(PC-L-GPR), is assessed. In this study, the �rst principal component's source term, sZ1, was chosen as the variable

on which the clustering should be conditioned. The data-set was thus single conditioned on sZ1. This choice can

be justi�ed knowing that the �rst PC's source term is highly correlated with the major species, thus containing

most of the variance in the system, and also very nonlinear. The clustering algorithm used in this work searches

for the extrema of the conditioning variable, and de�nes the borders of the bins at those extrema. This allows

to have a monotonic increasing (or decreasing) variable in each bin, thus making the job easier for the regression

algorithm. In the present analysis, 2 bins were identi�ed (cfr. Figure 2). It can be observed on Figure 7b that

using local regression with only 2 components instead of 162 (reduction of 98%) improves signi�cantly the accuracy

of the model, especially in the ignition/extinction region, leading to an almost perfect match. Figure 8 shows some

of the species mass fraction. Again, it can be seen that using local regression allows to increase the accuracy in the

predictions, both for major and minor species.

12



10
−7

10
−5

10
−3

10
−1

1500

2000

2500

3000

Residence Time [s]

T
em

p
er

at
u

re
 [

K
]

 

 

full solution
PC score 142
PC score 162

(a)

10
−7

10
−5

10
−3

10
−1

1500

2000

2500

3000

Residence Time [s]

T
em

p
er

at
u

re
 [

K
]

 

 

full solution
PC−GPR (q=2)
PC−L−GPR (2 bins, q=2)

(b)

Figure 7: PSR temperature as a function of the residence time (Polimi), with the solid line representing the full solution. The markers
represent the results for the standard PC-score model while varying q (a), and the PC-score with global and local GPR regression (b)
using q=2 PCs and single conditioning

10
−7

10
−5

10
−3

10
−1

0

0.02

0.04

0.06

0.08

0.1

0.12

Residence Time [s]

C
O

2
m

as
s 

fr
ac

ti
o

n
 [

/]

 

 

full solution
PC score 142
PC score 162

(a)

10
−7

10
−5

10
−3

10
−1

0

0.02

0.04

0.06

0.08

0.1

0.12

Residence Time [s]

C
O

2
m

as
s 

fr
ac

ti
o

n
 [

/]

 

 

full solution
PC−GPR (q=2)
PC−L−GPR(2bins, q=2)

(b)

10
−7

10
−5

10
−3

10
−1

0

0.005

0.01

0.015

Residence Time [s]

O
H

m
as

s 
fr

ac
ti

o
n

 [
/]

 

 

(c)

10
−7

10
−5

10
−3

10
−1

0

0.005

0.01

0.015

Residence Time [s]

O
H

m
as

s 
fr

ac
ti

o
n

 [
/]

 

 

(d)

Figure 8: Species mass fraction as a function of the residence time (Polimi), with the solid line representing the full solution. The markers
represent the results for the standard PC-score model while varying q (left plots), and the PC-score with GPR regression (right plots)
using q = 2 PCs

6.2.3. Propane case - San Diego mechanism

Figure 9 shows the temperature pro�le for the combustion of propane and air using the San Diego mechanism. It

can be seen on Figure 9a that using the standard PC-score approach at least 36 components out of 50 are required

in order to get an accurate description using a reduced model, which represent a model reduction of 28%. When

coupling GPR with PC-score (PC-GPR), the solution obtained using only 2 components is accurate enough, except

in the ignition/extinction region. In order to increase the accuracy in that region as well, the potential of PC-score
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with local GRP (PC-L-GPR) was assessed. Here again, the data-set was single conditioned based on sZ1. Again, 2

bins were identi�ed for the San Diego mechanism (cfr. Figure 3a). Figure 9b shows a signi�cant improvement in the

accuracy of the model in the ignition/extinction region while using only 2 components instead of 50 (reduction of

96%). Figure 10 shows some of the major and minor species mass fraction pro�les, where it can be seen that using

local regression allows to increase the accuracy of the predictions.
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Figure 9: PSR temperature as a function of the residence time (San Diego), with the solid line representing the full solution. The markers
represent the results for the standard PC-score model while varying q (a), and the PC-score with global and local GPR regression (b)
using q=2 PCs and single conditioning
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(h)

Figure 10: Species mass fraction as a function of the residence time (San Diego), with the solid line representing the full solution. The
markers represent the results for the standard PC-score model while varying q (left plots), and the PC-score with GPR regression (right
plots) using q = 2 PCs

The single conditioned PC-L-GPR model gives quite satisfactory results, but these could be further improved by
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double conditioning the data set before using GPR. Indeed, clustering the �rst source term based on its own extrema

increased the accuracy of the regression of sZ1, but that clustering does not necessarily fall on the extrema of the

second source term sZ2(cfr. Figure 3). By clustering the sZ2 based on its own extrema, its subsequent regression

can be strongly improved. Figure 11a shows the temperature pro�le with a comparison between single conditioned

and double conditioned PC-L-GPR model. It can be seen that double conditioning the data set prior to applying the

regression improves the accuracy of the result even further, leading to a perfect match between the reduced model

and the full solution. The same conclusion can be drawn when looking at major and minor species pro�les as shown

on Figure 11b-d.
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(d)

Figure 11: Temperature (a) and species mass fraction (b-d) as a function of the residence time (San Diego), with the solid line representing
the full solution. The ′+′ markers represent the results for the PC-L-GPR model with single conditionig and the ′∗′ markers show the
solution using PC-L-GPR with double conditioning.

6.3. Transient behaviour

The reduced model generation using the PC-GPR approach is now validated in a transient system. An accurate

representation of the transient solution is also essential in order to guarantee reliable results. Figure 12 shows the

temporal evolution of temperature and some species mass fraction for the methane case, with a residence time inside

the reactor of 2 · 10−5s. As previously, the reactor was initialized at the chemical equilibrium solution at constant

enthalpy and pressure. It can be observed that temperature and species mass fractions are accurately predicted in

time by the PC-GPR model, using only 2 PCs out of 35. Figure 13 shows the transient solution for the propane

case, using the Polimi mechanism, with a residence time inside the reactor of 1 · 10−5s. The temperature and species

mass fraction pro�les are shown for the full model and the PC-score with local GPR model, respectively. The

reduced model is able to provide a very accurate representation of the transient evolution within the reactor, as
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for the methane case, using only 2 PCs out of 162. The ability of the reduced approach to reproduce the unsteday

evolution of the chemical state using complex chemistry is very important towards its application in realistic turbulent

combustion simulations.
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(d)

Figure 12: PSR temperature (a) and major and minor species (b-d) as a function of time (methane case), for a residence time of 2 ·10−5s,
with the solid line representing the full solution. The markers represent the results for PC-score with GPR regression using q = 2 PCs

7. Conclusion

The present work investigates the applicability of the PC-transport approach, focusing on the application of

nonlinear regression to provide an accurate and compact parameterization of the thermo-chemical state. Steady and

unsteady perfectly stirred reactor (PSR) calculations were carried out using the PC-transport approach, coupled

to Gaussian Process Regression (GPR), for two di�erent fuels (methane and propane) and three di�erent kinetic

mechanisms of increasing complexity.

The PC-GPR model showed its ability to produce very accurate representation of all state space variables, includ-

ing temperature, major and minor species and source terms, using only a reduced number of principal components.

In particular, for methane, the use of GPR allows to model accurately the system with only q = 2 principal compo-

nents instead of the 34 variables in the original GRI-3.0 kinetic mechanism. For propane, the same approach lead to

a very signi�cant reduction, from 50 species, when using the San Diego mechanism, and 162 species, when using the

Polimi mechanism, to only 2 PCs.
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(d)

Figure 13: PSR temperature (a) and major and minor species (b-d) as a function of time (propane case, Polimi mechanism), for a
residence time of 1 · 10−5s, with the solid line representing the full solution. The markers represent the results for PC-score with local
GPR regression using q = 2 PCs

Moreover, the application of the PC-transport model using local nonlinear regression (PC-L-GPR) was demon-

strated. The use of local regressions within bins improved the accuracy of the PC-GPR approach while decreasing

the computational cost associated to the generation of the reduced model. In particular, the use of PC-L-GPR

provided an optimized mapping of the thermo-chemical state and the corresponding source terms.
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