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Abstract

Unlike the real line, the d-dimensional space Rd, for d ≥ 2, is not canonically ordered. As
a consequence, such fundamental and strongly order-related univariate concepts as quantile
and distribution functions, and their empirical counterparts, involving ranks and signs, do not
canonically extend to the multivariate context. Palliating that lack of a canonical ordering
has remained an open problem for more than half a century, and has generated an abundant
literature, motivating, among others, the development of statistical depth and copula-based
methods. We show here that, unlike the many definitions that have been proposed in the
literature, the measure transportation-based ones introduced in Chernozhukov et al. (2017)
enjoy all the properties (distribution-freeness and the maximal invariance property that entails
preservation of semiparametric efficiency) that make univariate quantiles and ranks success-
ful tools for semiparametric statistical inference. We therefore propose a new center-outward
definition of multivariate distribution and quantile functions, along with their empirical coun-
terparts, for which we establish a Glivenko-Cantelli result. Our approach, based on results by
McCann (1995), is geometric rather than analytical and, contrary to the Monge-Kantorovich
one in Chernozhukov et al. (2017) (which assumes compact supports, hence finite moments
of all orders), does not require any moment assumptions. The resulting ranks and signs are
shown to be strictly distribution-free, and maximal invariant under the action of a class of
(order-preserving) transformations generating the family of absolutely continuous distribu-
tions; that maximal invariance, in view of a general result by Hallin and Werker (2003), is the
theoretical foundation of the semiparametric efficiency preservation property of ranks. The
corresponding quantiles are equivariant under the same transformations.

AMS 1980 subject classification: 62M15, 62G35.
Keywords: Multivariate distribution function; multivariate quantiles, multivariate ranks; mul-
tivariate signs; multivariate order-preserving transformation; Glivenko-Cantelli; invariance/equi-
variance; gradient of convex function.
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1 Introduction

Unlike the real line, the real space Rd, for d ≥ 2, is not canonically ordered. As a consequence,
such fundamental concepts as quantile and distribution functions, which are strongly related
to the ordering of the observation space, and their empirical counterparts—ranks and empiri-
cal quantiles—playing, in dimension d = 1, a fundamental role in statistical inference, do not
canonically extend to dimension d ≥ 2.

Of course, a classical concept of distribution function—the familiar one, based on marginal
orderings—does exist. That concept, from a probabilistic point of view, does the job in the sense
of characterizing the underlying distribution. However, the corresponding quantile function does
not mean much (see, e.g., Genest and Rivest (2001)), and the corresponding empirical versions
(related to their population counterparts via a Glivenko-Cantelli result) do not possess any of the
properties that make them successful inferential tools in dimension d = 1.

That observation about traditional multivariate distribution functions is not new: palliating
the lack of a “natural” ordering of Rd—hence, defining statistically sound concepts of distribution
and quantile functions—has remained an open problem for more than half a century, and has
generated an abundant literature that includes, among others, the theory of copulas and the
theory of statistical depth.

A number of most ingenious solutions have been proposed, each of them extending some
chosen features of the well-understood univariate concepts, with which they coincide for d = 1.
Coinciding, for d = 1, with the classical concepts obviously is important, but it is hardly sufficient
for qualifying as a statistically pertinent multivariate extension. For statisticians, distribution and
quantile functions are not just probabilistic notions: above all, their empirical versions (empirical
quantiles and ranks) constitute fundamental tools for inference. A multivariate extension yielding
quantiles and ranks that do not match, in dimension d ≥ 2, the properties that make traditional
ranks natural and successful tools for inference in dimension one is not a statistically sound
extension.

The approach we are adopting here is placing those inferential concerns at the heart of the
problem.

1.1 Ranks and rank-based inference

To facilitate the exposition, let us focus on ranks and their role in testing problems. Rank-
based methods naturally enter the picture in the context of semiparametric statistical models

or experiments under which the distribution P
(n)
θθθ,f of some observation X = (X1, . . . , Xn)′ (with

real-valued Xi’s), besides the finite-dimensional parameter of interest θθθ, also depends on the
unspecified density f of some unobserved underlying residual univariate white noise, Zi(θθθ), say.

More precisely, assume that X ∼ P
(n)
θθθ,f iff the θθθ-residuals Z1(θθθ), . . . , Zn(θθθ) are i.i.d. with density f

(although i.i.d.-ness can be relaxed into exchangeability, we will stick to i.i.d.-ness). In such

models—call them i.i.d. noise models—testing H
(n)
0 : θθθ = θθθ0 (with unspecified f) reduces to

the problem of testing that Z1(θθθ0), . . . , Zn(θθθ0) is i.i.d. white noise with unspecified density f .
Typical examples are linear models, with Zi(θθθ) = Xi − c′iθθθ (ci a q-vector of covariates, θθθ ∈ Rq),
or autoregressive models, with Zi(θ) = Xi − θXi−1 (where i denotes time and θ ∈ (−1, 1)), etc.

Invariance arguments suggest tests based on the ranks of Z1(θθθ0), . . . , Zn(θθθ0). Those tests
are distribution-free under H0—a finite-sample property holding in all fixed-θθθ0 submodels. That
distribution-freeness property is often considered as the trademark and main virtue of (univariate)

ranks; it guarantees the validity of rank-based procedures (for testing H
(n)
0 ), irrespective of the
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actual density f .
Distribution-freeness (validity under unspecified f) alone is not sufficient, though, for ex-

plaining the success of ranks, and efficiency is no less important: other distribution-free methods
indeed can be constructed, such as sign or runs tests, that do not perform as well (in i.i.d. noise
models) as the rank-based ones. When Wilcoxon’s two-sample location test (Wilcoxon 1945) was
introduced on purely heuristic grounds, it was not expected to be particularly powerful. Its unex-
pectedly high efficiency (compared to the corresponding Student test) soon was noticed, though,
and confirmed, if not explained, in Hodges and Lehmann’s famous “0.864 paper” (Hodges and
Lehmann 1956). Further surprising results on the power of rank-based methods came with the
celebrated Chernoff and Savage (1958) result that normal-score rank-based tests, in two-sample
location or regression, are uniformly more powerful (in a local asymptotic sense) than their Stu-
dent competitors. Similar results have been established later on (Hallin (1994) and Hallin and
Tribel (2000) in a time series context; Paindaveine (2006) and Hallin and Paindaveine (2008)
in an elliptical context), where rank-based methods are shown to outperform their traditional
counterparts.

A general theoretical explanation for this somewhat intriguing and unexpected efficiency of
ranks was provided in Hallin and Werker (2003). In the semiparametric context of i.i.d. noise
models involving some unspecified density f , indeed, the best performance one can hope for, when
performing inference on the parameter of interest θθθ, is semiparametric efficiency—as developed
in the classical monograph by Bickel, Klaassen, Ritov and Wellner (1993). The traditional para-
metric information bounds (related to the Fisher information matrices) there are replaced with
semiparametric efficiency bounds which in general are strictly less favorable—the unavoidable
cost of not knowing the actual f . The main result in Hallin and Werker (2003) shows that, in
i.i.d. noise models, those semiparametric efficiency bounds still can be reached by means of rank-
based methods. This is what we refer to as the semiparametric efficiency preservation property
of ranks: intuitively (we refer to Hallin and Werker (2003) for a more rigorous and formal state-
ment), this means that, in a local and asymptotic sense, all the information about the parameter
of interest θθθ is contained in the residual ranks, while the corresponding order statistic of residuals
only contains information on the nuisance f .

Summing up, the theoretical reasons for the success of ranks for univariate statistical inference
in semiparametric models are twofold:

(DF) (distribution-freeness, a validity-related exact, finite-sample property): the vector of (θθθ-

residual) ranks is distribution-free over the (nonparametric) family {P(n)
θθθ,f |f ∈ F

1}, where Fd

stands for the family of nonvanishing densities over Rd (d ≥ 1) (see Section 2 for a more
precise definition), and

(HW) (semiparametric efficiency preservation, a local and asymptotic efficiency property): the

semiparametric efficiency bound (at arbitrary (θθθ, f)) can be reached, under P
(n)
θθθ,f , via rank-

based procedures (tests that are measurable with respect to the ranks of θθθ-residuals Zi(θθθ)).

The key property behind (HW) is the more fundamental maximal invariance property (see
Section 7.1 and Chapter 6 of Lehmann and Romano (2005) for definitions and details) of ranks

(HW∗) (an exact, finite-sample property) the ranks of θθθ-residuals are maximal invariant with re-
spect to a class G(n)(θθθ) of transformations of Rn generating the fixed-θθθ submodel (that is,

yielding a unique orbit in the family {P(n)
θθθ,f |f ∈ F

1} of fixed-θθθ model distributions).
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In Hallin and Werker (2003), the generating class G(n)(θθθ) happens to be a group—something
which (see Section 7.2) will not be the case in dimension d ≥ 2. That group structure, however,

plays no role in their proofs: it is sufficient that, for any couple P
(n)
θθθ,f , P

(n)
θθθ,h of distributions in the

fixed-θθθ submodel, there exist a transformation in G(n)(θθθ) pushing P
(n)
θθθ,f forward to P

(n)
θθθ,h.

The (unessential) restriction, in (DF), to nonvanishing densities avoids trivial problems at
the boundary of bounded supports, while (HW) (unlike (HW∗)) is tacitly restricted to the sub-
set F1

∗ ⊂ F1 of densities f satisfying the regularity conditions (uniform local asymptotic nor-
mality, etc.) required for semiparametric efficiency to make sense. Those conditions, however,
depend on the model under study; in order to avoid specifying any F1

∗ , in this paper, we focus
on (HW∗).

Properties (DF) and (HW) are those a statistician would like to see satisfied, with Fd and Fd∗
substituted for F1 and F1

∗ , by the concept of ranks associated with the empirical counterpart of
any sensible definition of a multivariate distribution function.

1.2 Multivariate ranks and the ordering of Rd, d ≥ 2

The problem of ordering Rd for d ≥ 2, thus defining multivariate concepts of ranks, signs, empirical
distribution functions and quantiles, is not new, and has a rather long history in statistics. Many
concepts have been proposed in the literature, a complete list of which cannot be given here.
Focusing again on ranks, four types of multivariate ranks, essentially, can be found:

(a) Componentwise ranks. The idea of componentwise ranks goes back as far as Hodges (1955),
Bickel (1965) or Puri and Sen (1966, 1967, 1969). It culminates in the monograph by
Puri and Sen (1971), where inference procedures based on componentwise ranks are pro-
posed, basically, for all classical problems of multivariate analysis; more recent references
are Chaudhuri and Sengupta (1993), Nordhausen, Oja, and Tyler (2006), Segers, van den
Akker, and Werker (2015), ... to quote only a very few. Time-series testing methods
based on the same ranks have been considered in Hallin, Ingenbleek, and Puri (1989).
Componentwise ranks actually are intimately related to copula transforms, of which they
constitute the empirical version: rather than solving the tricky problem of ordering Rd,
they bypass it by considering d univariate marginal rankings. As a consequence, they cru-
cially depend on the choice of a coordinate system. Unless the underlying distribution has
independent components (see Nordhausen et al. (2009), Ilmonen and Paindaveine (2011),
or Hallin and Mehta (2015)), componentwise ranks in general are not even asymptotically
distribution-free. Nor are they invariant under any model-generating class of transforma-
tions; a transformation-retransformation approach has been proposed by Chakraborty and
Chaudhuri (1996, 1998), which ensures affine-invariance—but the group of affine transfor-
mations is not a generating group in this context. As a consequence, neither (DF), (HW∗)
nor (HW) are satisfied.

(b) Spatial ranks and signs. This class of multivariate ranks includes several very ingenuous,
elegant and appealing concepts, proposed by several authors (Möttönen and Oja (1995);
Möttönen et al. (1997); Chaudhuri (1996); Koltchinskii (1997); Oja and Randles, (2004),
Oja (2010), and many others). Similar ideas have been developed by Choi and Marden
(1997) and, more recently, in high dimension by Biswas, Mukhopadhyay and Ghosh (2014)
and Chakraborthy and Chaudhuri (2014, 2017). We refer to Marden (1999), Oja (1999)
or the monograph by Oja (2010) for a systematic exposition and exhaustive list of refer-
ences. All those concepts are extending the traditional univariate ones. As a rule, however,

4



they fail to achieve distribution-freeness (Biswas et al. (2014) is an exception, but fails
on semiparametric efficiency). Their invariance properties at best extend to classes (actu-
ally, groups) of rotations, scale or affine transformations, which are not generating groups:
neither (HW∗) nor (HW) are satisfied.

(c) Depth-based ranks (Liu (1992), Liu and Singh (1993); He and Wang (1997); Zuo and
He (2006); Zuo and Serfling (2000); ... ; see Serfling (2002, 2012) for a general introduction
on statistical depth, Hallin et al. (2010) for the related concept of quantile, Zuo (2018)
for a state-of-the art survey in a regression context). Depth-based ranks, in general, are
distribution-free, hence satisfy (DF). At best (except for the Monge-Kantorovich depth
recently proposed by Chernozhukov et al. (2017), to be considered below), they also are
affine-invariant; affine transformations, however, fail to be a generating group: neither
(HW∗) nor (HW) hold.

(d) Mahalanobis ranks and signs/interdirections. When considered jointly with interdirections
(Randles (1989)), lift interdirections (Oja and Paindaveine (2005)), Tyler angles or Maha-
lanobis signs (see Hallin and Paindaveine (2002a, c)), Mahalanobis ranks do satisfy both
(DF) and (HW∗), hence (HW), but in elliptical models only—when f is limited to the
family of elliptical densities. There, they have been used, quite successfully, in a variety
of multivariate models, including one-sample location (Hallin and Paindaveine 2002a), k-
sample location (Um and Randles 1998), serial dependence (Hallin and Paindaveine 2002b),
linear models with VARMA errors (Hallin and Paindaveine 2004a, 2005, 2006a), VAR order
identification (Hallin and Paindaveine 2004b), shape (Hallin and Paindaveine 2006b; Hallin,
Oja and Paindaveine 2006), homogeneity of scatter (Hallin and Paindaveine 2008), principal
and common principal components (Hallin, Paindaveine and Verdebout 2010, 2013, 2014).
Unfortunately, the tests developed in those references cease to be valid, and R-estimators
no longer are root-n consistent, under non-elliptical densities.

None of those multivariate rank concepts, thus, is enjoying properties (DF) nor (HW)—except,
but only over the class of elliptically symmetric distributions, the (pseudo)-Mahalanobis/elliptical
ranks and signs. A few other concepts have been proposed as well, related to cone orderings
(Belloni and Winkler 2011; Hamel and Kostner 2016), which require some subjective (or problem-
specific) preliminary choices, and similarly fail to achieve (DF) and (HW).

The fact that, contrary to the real line R, the real space Rd for d ≥ 2 does not admit a
canonical ordering places an essential difference between dimension d = 1 and dimensions d ≥ 2.
Whereas the same “exogenous” left-to-right ordering of R applies both in population and in the
sample, pertinent orderings of Rd are bound to be “endogenous”, that is, distribution-specific
in populations, and data-driven (hence, random) in samples. This is the case for the concepts
developed under (b)-(d) above; it also holds for the concept we are proposing in this paper.
Each distribution, each sample, thus is to produce its own ordering, inducing (related forms of)
quantile and distribution functions, and classes of order-preserving transformations. As a re-
sult, datasets, at best, can be expected to produce, via adequate concepts of multivariate ranks
and signs, consistent empirical versions of the unavailable underlying population ordering. That
consistency typically takes the form of a Glivenko-Cantelli result (GC) connecting an empirical
center-outward distribution function to its population version. It is essential, for such a result, to
hold without any moment assumptions: moment assumptions (as in Chernozhukov et al. (2017),
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where consistency is established under compactly supported distributions—hence under the ex-
istence of finite moments of all orders), as a rule, are inappropriate in the intrinsically ordinal
context of distribution and quantile functions.

No ordering of Rd, d ≥ 2 moreover can be expected to be of the one-sided “left-to-right” type,
since “left” and “right” do not make sense anymore. A depth-type center-outward ordering is by
far more sensible. All this calls for revisiting the traditional univariate concepts from a center-
outward perspective, while disentangling the population concepts from their sample counterparts.

1.3 Outline of the paper

In this paper, we show that the so-called Monge-Kantorovich ranks and signs recently proposed by
Chernozhukov et al. (2017), unlike the many concepts that have been considered so far, do enjoy
distribution-freeness (DF) and the maximal invariance property (HW∗) which typically entails
(HW). We do not go all the way, in this paper, to prove the implication from (HW∗) to (HW),
though: although following along the same lines, essentially, as in Hallin and Werker (2003), a
formal proof indeed requires model-specific regularity assumptions, and asymptotic representation
results, in the Hájek style, for the new linear rank statistics. Such results are beyond the scope
and page limitations of this paper, and are the subject of ongoing work.

Using nontechnical arguments, we also show how those multivariate ranks and signs very nat-
urally and intuitively emerge from revisiting classical univariate concepts, to which they reduce
for d = 1. In particular, we propose a measure transportation-based concept of center-outward
distribution function, for which we establish a Glivenko-Cantelli property in the absence of any
moment assumptions. Refraining from moment assumptions calls for an approach which is en-
tirely different from the Monge-Kantorovich optimization perspective adopted in Chernozhukov
et al. (2017). The techniques considered there (and in most of the measure-transportation lit-
erature) indeed are deeply rooted in the analytical features of the Monge-Kantorovich problem,
which focuses on minimizing an expected quadratic loss which, in the absence of finite second-
order moments, no longer make sense. The tools we are using here are of a more fundamental
geometric nature, exploiting the concept of cyclical monotonicity and the approach initiated by
McCann (1995) (see Section 2.1 for details). This fact is emphasized by a shift in the terminology:
as our approach is no longer based on Monge-Kantorovich optimization techniques, we consis-
tently adopt the terminology center-outward ranks and signs for the ranks and signs associated
with empirical center-outward distribution functions, despite the fact that they coincide with the
Monge-Kantorovich ranks and signs introduced in Chernozhukov et al. (2017).

Section 2 provides, for those who are not familiar with measure transportation, a very succinct
and elementary account of some classical facts in the area.

In Section 3, we start with revisiting the traditional concepts of univariate distribution/quantile
functions and their empirical counterparts. Those traditional concepts strongly depend on the
left-to-right nature of the canonical ordering of R. As this left-to-right feature cannot be ex-
pected to extend to higher dimension, rather than the classical distribution function F , we adopt
a center-outward form 2F − 1, the empirical version of which naturally leads to center-outward
ranks and signs. We then establish (Section 3.4), still for d = 1, a characterization of those center-
outward distribution functions, ranks and signs in terms of measure transportation results. That
characterization extends without any change to arbitrary dimension, and is exploited in Section 4
to define center-outward distribution functions, ranks and signs in Rd.

Section 5 deals, for arbitrary d, with the Glivenko-Cantelli property of empirical center-
outward distribution functions. Sections 6 and 7 study the distributional and invariance/equi-
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variance properties of central-outward ranks and signs, establishing (DF), the independence be-
tween ranks, signs and the order statistics, and the maximal invariance property (HW∗) which,
as explained, leads to (HW)—hence indicating that center-outward ranks and signs fully qualify
as statistically meaningful multivariate extensions of the traditional concepts, with which they
coincide for d = 1.

1.4 Notation

Throughout, Fd stands for the family of nonvanishing Lebesgue densities over Rd, d ∈ N—to
be precise, the family of all densities f such that, for all D ∈ R+ there exist ΛD;f ≥ λD;f

in (0,∞) such that λD;f ≤ f(x) ≤ ΛD;f for ‖x‖ ≤ D; let Pd denote the corresponding family

of distributions, P(n)
d the joint distribution of i.i.d. n-tuples with common distribution in Pd.

The probability measures and distribution functions associated with densitiesf, g, ... are denoted

by Pf ,Pg, ..., and F,G, ..., respectively; P
(n)
f , P

(n)
g , ... stand for the distributions of i.i.d. n-tuples

with densities f , g, ... The notation Sd, Sd−1 is used for the (open) unit ball and the unit sphere
in Rd, respectively.

2 Measure transportation:Monge,Kantorovich,Brenier,McCann

Starting from a very practical problem—How should one best move given piles of sand to fill up
given holes of the same total volume?—Gaspard Monge (1746-1818), with his 1781 Mémoire sur
la Théorie des Déblais et des Remblais, initiated a profound mathematical theory anticipating dif-
ferent areas of differential geometry, linear programming, nonlinear partial differential equations,
and probability.

In modern notation, the simplest and most intuitive—if not most general—formulation of
Monge’s problem is (in probabilistic form) as follows. Let P1 and P2 belong to the family P of
probability measures over (for simplicity) (Rd,Bd), and let L : R2d → [0,∞] be a Borel-measurable
loss function: L(x1,x2) represents the cost of transporting x1 to x2. The objective is to find a
measurable (transport) map TP1;P2 : Rd → Rd solving the minimization problem

inf
T

∫
Rd

L
(
x, T (x)

)
dP1 subject to T#P1 = P2 (2.1)

where T ranges over the set of measurable map from Rd to Rd, and T#P1 is the so-called push
forward of P1 by T (in statistics, a more classical but heavier notation for T#P1 would be PTX

1

or T̄P1, where T̄ is the transformation of P induced by T ; see Lehmann and Romano (2005)).
For simplicity, and with a slight abuse of language, we will say that T is mapping P1 to P2.
A map TP1;P2 achieving the infimum in (2.1) is called an optimal transport map, in short, an
optimal transport, of P1 to P2. In the sequel, we shall restrict to the quadratic (or L2) loss
function L(x1,x2) = ‖x1 − x2‖22.

The problem looks simple but it is not. Monge himself (who moreover was considering the
more delicate loss L(x1,x2) = ‖x1−x2‖2) did not solve it, and relatively little progress was made
until the 1940s, when renewed interest in the topic was triggered by the contributions of Leonid
Vitalievitch Kantorovich (1912-1986; Nobel Prize in Economics in 1975) and his groundbreaking
duality approach. Among the most powerful ensuing results is the Polar Factorization Theorem
by Brenier (1987, 1991; see Chapter 3 in Villani (2003)) which implies, among other things,
that for L2 loss, if P1 and P2 are absolutely continuous with finite second-order moments, the
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solution of Monge’s problem exists, is (a.e.) unique, and the gradient of a convex (potential)
function—a form of multivariate monotonicity. The subject ever since has been a very active
domain of mathematical analysis, with applications in various fields, from fluid mechanics to
economics (see Galichon (2016)), learning, and statistics (Carlier et al. (2016); Panaretos and
Zemel (2016, 2018)). It was popularized recently by the French Fields medalist Cédric Villani,
with two monographs (Villani 2003, 2009), where we refer to for background reading, along with
the two volumes by Rachev and Rüschendorf (1998), where the scope is somewhat closer to
probabilistic and statistical concerns.

Whether described as in (2.1), or relaxed into the more general coupling form adopted by
Kantorovich, the so-called Monge-Kantorovich problem remains an optimization problem, though,
which only makes sense under densities for which expected costs are finite—under finite variances,
thus, for quadratic loss. Such moments assumption, in a general context of distribution functions,
ranks and quantiles, is not appropriate. Brenier’s Polar Factorization Theorem relies on similar
assumptions, but inspired a remarkable result by McCann (1995, page 310), hereafter the McCann
Theorem. The nature of that theorem is geometric rather than analytical and, contrary to Monge,
Kantorovitch and Brenier, does not require any moment restrictions. McCann’s Theorem implies
that, for any given absolutely continuous P2, there exists, in the class of gradients of convex
functions, a P1-essentially unique element pushing P1 forward to P2. Under the existence of
finite moments of order two, that mapping moreover coincides with the L2-optimal (in the Monge-
Kantorivich sense) transport of P1 to P2.

Those measure transportation results are the basis of Carlier et al. (2016)’s concept of vector
quantile regression, and of Chernozhukov et al. (2017)’s concept of Monge-Kantorovich depth and
related quantiles, ranks and signs; see also Ekeland et al. (2012) for precursory ideas. While
Carlier et al. (2016) consider mappings to the unit cube, Chernozhukov et al. (2017) deal with
mappings to general reference distributions, including the uniform over the unit ball. On the
other hand, they emphasize the consistent estimation of Monge-Kantorovich depth/quantile con-
tours, with techniques requiring compactly supported distributions (hence finite moments of all
orders, which is quite regrettable when defining a quantile concept); their proofs strongly exploit
Kantorovich’s duality approach.

In the present paper, we privilege mappings to the uniform distribution over the unit ball,
which enjoys better invariance/equivariance properties than the unit cube—the latter indeed is
not unique, and possesses edges and vertices, which are “special points”—and naturally extends
the elliptical case. Moreover, we are focusing on the inferential properties of quantiles, ranks and
signs and, adopting McCann’s geometric point of view, we manage to waive moment assump-
tions which, as we already stressed, are inappropriate in the context. The focus, applicability
and mathematical nature of our approach, thus, is quite different from that of Chernozhukov
et al. (2017).

Yet another approach is taken in a recent paper by Faugeras and Rüschendorf (2018), who
propose combining a copula transform with a mapping in the Chernozhukov et al. (2017) style.
This takes care of the compact support/second-order moment restriction, but results in a con-
cept that heavily depends on the original coordinate system, which compromises the maximal
invariance property (HW∗) leading to (HW).

3 Distribution and quantile functions, ranks and signs in R

The concept of empirical distribution function, hence the concepts of ranks, signs, order statistics,
and quantiles, are well understood and abundantly studied in dimension one. Before introducing
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multivariate extensions, we therefore briefly revisit the traditional versions of those fundamental
concepts and some of their main properties.

3.1 Traditional univariate concepts

Denote by Z(n) :=
(
Z

(n)
1 , . . . , Z

(n)
n

)
an n-tuple of real-valued random variables—observations or

residuals associated with some parameter θθθ of interest, which we emphasize, when needed, by

writing Z
(n)
i = Z

(n)
i (θθθ). We throughout consider the case that the Z

(n)
i ’s are (under parameter

value θθθ for the Z
(n)
i (θθθ)’s) i.i.d. with density f ∈ F1, distribution Pf and distribution function F .

In dimension one, the definition of ranks is based on the canonical left-to-right ordering ≥
of the real line, which is not data-driven: the rank of Z

(n)
i among Z

(n)
1 , . . . , Z

(n)
n is traditionally

defined as
R

(n)
i := #{j| Z(n)

j ≤ Z(n)
i }, i = 1, . . . n; (3.1)

the vector R(n) :=
(
R

(n)
1 , . . . , R

(n)
n

)
then is some random permutation of {1, . . . , n}. Intimately

related with the concept of ranks is the dual concept of order statistics, with the rth order

statistic Z
(n)
(r) , r = 1 . . . , n implicitly defined by

Z
(n)

(R
(n)
i )

= Z
(n)
i , i = 1, . . . , n. (3.2)

Under the assumptions made, the vector of order statistic Z
(n)
( . ) :=

(
Z

(n)
(1) , . . . , Z

(n)
(n)

)
is sufficient and

complete, while R(n) is uniform over the n! permutations of {1, . . . , n}, hence distribution-free.
Basu’s Theorem (Basu (1955); see, e.g., page 152 of Lehmann and Romano (2005)) moreover

implies that R(n) and Z
(n)
( . ) are mutually independent.

For the empirical distribution function F (n), the classical definition yields

F (n) : z ∈ R 7→ F (n)(z) :=


0 if z < minj

{
Z

(n)
j

}
R

(n)
i

n+ 1
if Z

(n)
i = max

{
Z

(n)
j

∣∣ Z(n)
j ≤ z

}
;

the denominator is chosen as (n + 1) rather than n so that all F (n)(Z
(n)
i )’s take values in the

open interval (0, 1). The restriction
(
F (n)(Z

(n)
1 ), . . . , F (n)(Z

(n)
n )
)

of F (n) to Z(n) then is uniformly
distributed over the n! permutations of the regular grid

{1/(n+ 1), 2/(n+ 1), . . . , n/(n+ 1)}, (3.3)

hence distribution-free and independent of the order statistic.
The Glivenko-Cantelli Theorem tells us that

sup
z∈R

∣∣∣F (n)(z)− F (z)
∣∣∣ −→ 0 a.s. as n→∞; (3.4)

which, under the assumptions made (nonvanishing densities), is equivalent to the apparently
weaker property (GC) that

max
1≤i≤n

∣∣∣F (n)(Z
(n)
i )− F (Z

(n)
i )
∣∣∣ −→ 0 a.s. as n→∞ (3.5)

9



Actually, F (n) is entirely determined by its restriction to the observations Z
(n)
i —namely, by the n

couples (Z
(n)
i , F (n)(Z

(n)
i )), i = 1, . . . , n. All other values of F (n) constitute an arbitrary inter-

polation carrying no further information—any choice of a nondecreasing interpolation would be
equally legitimate and, in particular, would satisfy the same Glivenko-Cantelli property (3.4).
From now on, we use the notation F (n) for that restriction (a data-driven mapping of the obser-
vations to the grid (3.3); any monotone nondecreasing interpolation will be denoted by F̄ (n).

3.2 Center-outward distribution and quantile function in R

For the purpose of multidimensional generalizations, though, let us consider slightly modified con-
cepts of distribution function, quantiles, ranks, and signs. Define the center-outward distribution
function F± of a distribution Pf ∈ P1 as F± := 2F − 1.

Clearly, being linear transformations of each other, F and F± carry the same information
about Pf . Just as F , the center-outward distribution function F± is a probability-integral transfor-
mation: denoting by U1 the uniform distribution over the one-dimensional unit ball S1 = (−1, 1),

Z ∼ Pf iff U := F±(Z) ∼ U1. (3.6)

Boldface is used in order to emphasize the interpretation of F± as a vector-valued quantity:
while ‖F±(z)‖ = |2F (z)− 1| is the U1-probability contents of the interval (±‖F±(z)‖) (the one-
dimensional ball with radius ‖F±(z)‖), the unit vector S±(z) := F±(z)/‖F±(z)‖ (a point on the
unit sphere S0 = {−1, 1}; S±(0) can be defined arbitrarily) is a direction or a sign—the sign of
the deviation z −Med(Pf ) of z from the median Med(Pf ) := F−1(1/2) = F−1

± (0) of Pf . Those
interpretations, as we shall see, will carry over to dimension d ≥ 2.

A quantile function usually is defined as the inverse of a distribution function. Inverting F±

(which, for Pf ∈ P1, is strictly increasing) yields the center-outward quantile function

Q± : u ∈ S1 = (−1, 1) 7→ Q±(u) := F−1
± (u).

Quantiles thus are indexed by the points u of the unit ball S1 = (−1, 1); ‖u‖ ∈ (0, 1] is to be
interpreted as a quantile level. The sets{

Q±(u)
∣∣ ‖u‖ = u

}
=
{
z−u , z

+
u

}
and the closed intervals {

Q±(u)
∣∣ ‖u‖ ≤ u} =

[
z−u , z

+
u

]
where z−u and z+

u are such that Pf
[
z−u ,Med(Pf )

]
= Pf

[
Med(Pf ), z+

u

]
= u/2 accordingly have the

interpretation of quantile contours and quantile regions, at quantile level u ∈ [0, 1].
While traditional distribution and quantile functions are associated with nested half-lines

of the form (−∞, zu] carrying probability u ∈ (0, 1), the center-outward ones are about nested
intervals [z−u , z

+
u ] (all containing Med(Pf )) with Pf -probability contents u ∈ [0, 1), the geometry of

which, unlike the traditional collection of half-lines (which is fixed), is adapted to the underlying
distribution Pf . The translation of the center-outward concept in terms of the traditional one is
straightforward, though, as z−u = zu and z+

u = z1−u, where zα := F−1(α).
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3.3 Center-outward ranks and signs in R

Turning to a sample Z
(n)
1 , . . . , Z

(n)
n , define the center-outward rank R

(n)
±;i of Z

(n)
i as

R
(n)
±;i :=


∣∣∣R(n)

i −
n+1

2

∣∣∣ if n is odd∣∣∣R(n)
i −

n+1
2

∣∣∣+ 1
2 if n is even,

(3.7)

its empirical sign as S
(n)
±;i := I[R

(n)
i > (n + 1)/2] − I[R

(n)
i < (n + 1)/2], and the value at Z

(n)
i of

the empirical center-outward distribution function as

F
(n)
± (Z

(n)
i ) := S

(n)
±;i

R
(n)
±;i

bn/2c+ 1
=

 2F (n)(Z
(n)
i )− 1 if n is odd

n+ 1

n+ 2

(
2F (n)(Z

(n)
i )− 1

)
+

1

n+ 2
if n is even,

(3.8)

with values on the regular grids

−bn/2c
bn/2c+ 1

, . . . ,
−2

bn/2c+ 1
,

−1

bn/2c+ 1
, 0 ,

1

bn/2c+ 1
,

2

bn/2c+ 1
, . . . ,

bn/2c
bn/2c+ 1

(3.9)

(n odd), and

−bn/2c
bn/2c+ 1

, . . . ,
−2

bn/2c+ 1
,

−1

bn/2c+ 1
,

1

bn/2c+ 1
,

2

bn/2c+ 1
, . . . ,

bn/2c
bn/2c+ 1

(3.10)

(n even). Those grids are the intersection between the two unit vectors u = ±1 and the circles
with radii 1/(bn/2c+ 1), 2/(bn/2c+ 1), . . ., and bn/2c/(bn/2c+ 1), centered at the origin—
along with the origin when n is odd.

If Z
(n)
1 , . . . , Z

(n)
n are i.i.d. with some density f , the signs S

(n)
±;i are uniform over the unit

sphere S0, and independent of the ranks R
(n)
±;i; each rank is uniformly distributed over the in-

tegers (0, 1, 2, . . . , bn/2c) (n odd), the integers (1, 2, . . . , bn/2c = n/2) (n even), while the n-

tuple
(
F

(n)
± (Z

(n)
1 ), . . . ,F

(n)
± (Z

(n)
n )
)

is uniform over the n! permutations of the grid (3.9) (n odd),
over the n! permutations of the grid (3.10) (n even).

Formula (3.8) looks complicated, but it is not: the center-outward ranks, actually, result
from ordering from left to right the bn/2c observations sitting to the right of the median (with

sign S
(n)
±;i = 1), and ordering from right to left the bn/2c observations sitting to the left of the

median (with sign S
(n)
±;i = −1); the regular grids (3.9) and (3.10) on [-1,1 ] are replacing the

traditional regular grid (3.3) of F (n)(Z
(n)
i ) values over [0,1].

In view of (3.8), the Glivenko-Cantelli result (3.5) for F (n) straightforwardly extends to F
(n)
± :

max
1≤i≤n

∥∥∥F(n)
± (Z

(n)
i )− F±(Z

(n)
i )
∥∥∥ −→ 0 a.s. as n→∞ (3.11)

If F
(n)
± is to be defined over the whole real line, any nondecreasing interpolation F̄

(n)
± of

the n couples (Z
(n)
i ,F

(n)
± (Z

(n)
i )) provides a solution. Clearly, infinitely many choices are possible,

and all of them yield a Glivenko-Cantelli statement under supz∈R form (similar to (3.4)). Some
are continuously differentiable, some are simply continuous (e.g., a linear interpolation), some
are discontinuous, some are strictly increasing, some are step functions. Among them is the
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Figure 1: A classical distribution function F and its empirical counterpart F (n), n = 7 (top

panel), along with (bottom panel) their center-outward versions F
(n)
± and F

(n)
± , the latter with

left-continuous piecewise interpolation on the left-hand side of the (empirical) median, right-
continuous piecewise interpolation on the the right-hand side of the median.

continuous-from-the-left on the left-hand side of the (empirical) median, and continuous-from-
the-right on the right-hand side of the median piecewise constant interpolation shown in Figure 2,
which is the “most slowly center-outward increasing” one.

Clearly, the traditional ranks R
(n)
i and the center-outward F (n)(Z

(n)
i ), i = 1, . . . , n, generate

the same σ-field: all classical rank statistics therefore can be rewritten in terms of signs and
center-outward ranks. Traditional ranks, and center-outward ranks complemented with the signs,
therefore, are equivalent statistics.

3.4 Relation to measure transportation

The probability-integral transformation z 7→ F±(z) from R to the unit ball S1 = (−1, 1) is
mapping the distribution P ∈ P1 to the uniform distribution U1 over (−1, 1). As a monotone
increasing function, it is the gradient (here, the derivative) of a convex function ψ (which is defined
up to an additive constant). It follows from McCann’s Theorem that it is the (essentially) unique
gradient of a convex function mapping Pf to U1. Therefore, this characterization can be adopted
as the definition of F±. The huge advantage of this measure transportation-based definition is
that it does not involve the canonical ordering of R, and therefore readily extends to Pd, d ≥ 2.
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4 Distribution and quantile functions, ranks and signs in Rd

We are now ready to propose our definition of distribution and quantile functions in Rd, along
with their empirical counterparts. To start with, observe that U1, which is the Lebesgue-uniform
distribution over the unit ball S1, is also the product of the uniform measure over the unit
sphere S0 = {−1, 1} with a uniform measure over the unit interval of distances from the origin.
We similarly define Ud as the product of the uniform measure over the unit sphere Sd−1 with a
uniform measure over the unit interval of distances to the origin; while we still call it uniform
over the unit ball, Ud no longer coincides, for d ≥ 2, with the Lebesgue-uniform measure over Sd.

4.1 Center-outward distribution and quantile functions in Rd

Before turning to the definition of center-outward distribution and quantile functions in Rd, we
need the following property, which guarantees the existence, uniqueness and continuity of the
concepts, and is borrowed, with some minor modifications, from Theorem 1.1 in Figalli (2018).

Proposition 4.1 Let P ∈ Pd. Then,

(i) the gradient of convex function ∇Ψ pushing P forward to the uniform Ud over the unit
ball Sd is unique; the set K := {x|∇Ψ(x) = 0} is compact and has Lebesgue measure zero;

(ii) the restriction of ∇Ψ to Rd \Kis a homeomorphism from Rd \K to Sd \ {0}, with inverse
(defined on Sd\{0}) ∇Ψ∗, where Ψ∗ is the Legendre transform of Ψ; for d = 1, 2, however, K
consists of a single point, and ∇Ψ is a homeomorphism from Rd to Sd;

(iii) if P has Lebesgue density f , f(x) = c−1
d HΨ∗(x)‖∇Ψ(x)‖1−d, x ∈ Rd\K, where the norming

constant cd := 2πd/2/Γ(d/2) is the area of the unit sphere Sd−1 and HΨ∗ the Hessian of Ψ∗.

The following definitions then coincide, for d = 1, with the univariate ones given in Section 3.2.

Definition 4.1 Let P ∈ Pd. The (center-outward) distribution function F± of P is the unique
gradient of a convex function mapping Rd to the open unit ball Sd and pushing P forward to
the uniform Ud over Sd. The corresponding (center-outward) quantile function is Q± := F−1

± .
Denoting by q S̄d and qSd−1 the closed ball and the hypersphere with radius q ∈ (0, 1) centered at
the origin, the quantile function Q± characterizes quantile regions C(q) := Q±(q S̄d) and quantile
contours C(q) := Q±(qSd−1), respectively, of order q; the elements of C(0) = C(0) = Q±(0) (a
compact set with Lebesgue measure zero) are called center-outward medians.

The following elementary properties of F± and Q± readily follow from the definition, or are
immediate consequences of Proposition 4.1; details are left to the reader.

Proposition 4.2 Let P have a density f ∈ Fd. Then,

(i) F± is a probability integral transformation of Rd: namely, Z ∼ P iff F±(Z) ∼ Ud;

(ii) for d = 1, 2, F± and Q± are homeomorphisms between Rd and Sd, respectively, and the
center-outward median Q±(0) is uniquely defined; for d ≥ 3, the restrictions of F± and Q±

to Rd \Q±(0) and Sd \ {0} are homeomorphisms between Rd \Q±(0) and Sd \ {0}, and the
center-outward medians form a compact set of measure zero;
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(iii) the quantile regions C(q), with boundaries C(q), are connected, compact, and nested as q
increases from 0 to 1; their probability contents is q, q ∈ [0, 1).

The center-outward distribution and quantile functions F± and Q± thus preserve the proba-
bility integral transformation nature of univariate distribution functions, and the interpretation
of univariate quantile contours as the boundaries . The terminology quantile region and quantile
contour of order q is justified (for P ∈ Pd) by (iii).

For any given distribution P ∈ Pd, F± induces a (partial) ordering of Rd similar to the
ordering induced on the unit ball by the system of polar coordinates, and actually coincides with
the “vector rank transformation” considered in Chernozhukov et al. (2017); the compact support
and Cafarelli assumptions made there are not needed here, though. The quantile contours C(q)
also have the interpretation of depth contours associated with the Monge-Kantorovich depth
concept considered in the same reference.

4.2 Center-outward ranks and signs in Rd

Turning to the sample situation, let Z(n) :=
(
Z

(n)
1 , . . . ,Z

(n)
n

)
denote an n-tuple of random

vectors— observations or residuals associated with some parameter θθθ of interest. We throughout

consider the case that the Z
(n)
i ’s are (possibly, under parameter value θθθ) i.i.d. with density f ∈ Fd,

distribution P and center-outward distribution function F±.

For the empirical counterpart F
(n)
± of F±, we propose the following extension of the univariate

concept described in Section 3.3. Assuming d ≥ 2, let n factorize into

n = nRnS + n0, nR, nS , n0 ∈ N, 0 ≤ n0 < min(nR, nS) (4.1)

where nR → ∞ and nS → ∞ as n → ∞; (4.1) is extending to d ≥ 2 the factorization of n
into n = bn2 c2+n0 with n0 = 0 (n even) or n0 = 1 (n odd) that leads, for d = 1, to the grids (3.9)
and (3.10).

Next, consider a sequence of “regular grids” of nRnS points in the unit ball Sd obtained as
the intersection between

– a “regular” nS-tuple (u1, . . .unS ) of unit vectors, and

– the nR hyperspheres centered at the origin, with radii
1

nR + 1
,

2

nR + 1
, . . . ,

nR
nR + 1

,

along with n0 copies of the origin whenever n0 > 0. In theory, by a “regular” nS-tuple (u1, . . .unS ),
we only mean that the sequence of uniform discrete distributions over {u1, . . .unS} converges
weakly, as nS → ∞, to the uniform distribution over Sd−1. In practice, each nS-tuple should
be “as uniform as possible”. For d = 2, perfect regularity can be achieved by dividing the unit
circle into nS arcs of equal length 2π/nS . Starting with d = 3, however, this typically is no
longer possible. A random array of nS independent and uniformly distributed unit vectors does
satisfy (almost surely) the weak convergence requirement. More regular deterministic arrays
(with faster convergence) can be considered, though, such as the low-discrepancy sequences of the
type considered in numerical integration and Monte-Carlo methods (see, e.g., Niederreiter (1992),
Judd (1998), Dick and Pillichshammer (2014), or Santner et al. (2003)), which are current practice
in numerical integration and the design of computer experiments.

The resulting grid of nRnS points then is such that the discrete distribution with probability
masses 1/n at each gridpoint and probability mass n0/n at the origin—call it uniform over the
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augmented grid—converges weakly to the uniform Ud over the ball Sd—recall that, by uniform, we
mean the product of a uniform over Sd−1 (the distribution of a multivariate sign) and a uniform
over the unit radius (the distribution of a distance to the origin). That grid, along with the n0

copies of the origin, is called the augmented grid (n points).

Figure 2: A regular grid of n = nRns points over S2.

We then define F
(n)
± (Z

(n)
i ), i = 1, . . . , n as the solution of an optimal coupling problem be-

tween the observations and the augmented grid. Let T denote the set of all possible bijective

mappings between Z
(n)
1 , . . . ,Z

(n)
n and the n points of the augmented grid just described. Under

the assumption made, the Z
(n)
i ’s are all distinct with probability one, so that T contains n!/n0!

classes of n0! indistinguishable couplings each (two couplings T1 and T2 are indistinguishable

if T1(Z
(n)
i ) = T2(Z

(n)
i ) for all i).

Definition 4.2 The empirical center-outward distribution function is the (random) mapping

F
(n)
± : Z(n) :=

(
Z

(n)
1 , . . . ,Z(n)

n

)
7→
(
F

(n)
± (Z

(n)
1 ), . . . ,F

(n)
± (Z(n)

n )
)

satisfying
n∑
i=1

∥∥Z(n)
i − F

(n)
± (Z

(n)
i )
∥∥2

= min
T∈T

n∑
i=1

∥∥Z(n)
i − T (Z

(n)
i )
∥∥2

(4.2)

or, equivalently,

n∑
i=1

∥∥Z(n)
i − F

(n)
± (Z

(n)
i )
∥∥2

= min
π

n∑
i=1

∥∥Z(n)
π(i) − F

(n)
± (Z

(n)
i )
∥∥2

(4.3)
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where the set {F(n)
± (Z

(n)
i )| i = 1, . . . , n} coincides with the n points of the augmented grid and π

ranges over the n! possible permutations of {1, 2, . . . , n}.

The n-tuple {(
Z

(n)
1 ,F

(n)
± (Z

(n)
1 )
)
, . . . ,

(
Z(n)
n ,F

(n)
± (Z(n)

n )
)}

(4.4)

is thus any of the (n0! with probability one) indistinguishable couplings between the n observations
and the n points of the augmented grid that minimize, over the n! possible couplings, the sum
(the mean) of within-pairs squared distances—a trivial and purely formal multiplicity that does
not occur for n0 = 0 or 1. Determining such a coupling is a standard optimal assignment problem,
which clearly takes the form of a linear program for which efficient operations research algorithms
are available.

Reinterpreting (4.2)-(4.3) as a (conditional on the sample) expected transportation cost, the
same optimal coupling(s) also constitute(s) the optimal L2 transport mapping the sample empiri-
cal distribution to the uniform discrete distribution over the augmented grid (and, conversely, the
two problems being entirely symmetric, the optimal L2 transport mapping the uniform discrete
distribution over the augmented grid to the sample empirical distribution). Classical results (see,
again, McCann (1995)) then show that optimality is achieved (that is, (4.2)-(4.3) is satisfied) iff
the so-called cyclical monotonicity property holds for the n-tuple (4.4). Except for a set Nnd

0

with Lebesgue measure zero in Rnd (those points for which the minimal distance, in (4.2)-(4.3),
is the same for at least two permutations of the grid—a finite collection of linear subspaces with
dimension less than nd), and apart from the trivial multiplicity just mentioned, the solution is
unique.

Definition 4.3 A subset S of Rd×Rd is said to be cyclically monotone if, for any finite collection
of points {(x1,y1), . . . , (xk,yk)} ⊆ S,

〈y1, x2 − x1〉+ 〈y2, x3 − x2〉+ . . .+ 〈yk, x1 − xk〉 ≤ 0. (4.5)

The subdifferential of of a convex function does enjoy cyclical monotonicity, which heuristically
can be interpreted as a discrete version of the fact that a smooth convex function has a positive
semi-definite second-order differential.

Note that a finite subset S = {(x1,y1), . . . , (xn,yn)} of Rd×Rd is cyclically monotone iff (4.5)
holds for k = n—equivalently, iff, among all pairings of (x1, . . . ,xn) and (y1, . . . ,yn), S maxi-
mizes

∑n
i=1〈xi,yi〉 (that is, maximizes an empirical correlation), or minimizes

∑n
i=1 ‖yi − xi‖2

(an empirical distance). In other words, a finite subset S is cyclically monotone iff the cou-
ples (xi,yi) are a solution of the optimal assignment problem with assignment cost ‖yi − xi‖2.
The L2 transportation cost considered here is thus closely related to the concept of convexity
and the geometric property of cyclical monotonicity; it does not play the statistical role of an
estimation loss function—the L2 distance between the empirical transport and its population
counterpart is never considered—its expectation anyway could be infinite.

Associated with our definition of an empirical center-outward distribution function F
(n)
± are

the following concepts of

– center-outward ranks R
(n)
±,i := (nR + 1)‖F(n)

± (Z
(n)
i )‖,

– center-outward signs S
(n)
±,i := F

(n)
± (Z

(n)
i )/‖F(n)

± (Z
(n)
i )‖ (if F

(n)
± (Z

(n)
i ) = 0, put S

(n)
±,i := 0),

– center-outward quantile contours C(n)

±;Z(n)(j/nR) := {Z(n)
i |R

(n)
±,i = j/(nR + 1)}, and
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– center-outward quantile regions C(n)

±;Z(n)(j/nR) := {Z(n)
i |R

(n)
±,i ≤ j/(nR + 1)},

i = 0, 1, . . . , n, j = 0, 1, . . . , nR; j/nR is an empirical probability contents, to be interpreted
as a quantile order. The center-outward quantile contours and regions defined here are finite
collections of observed points; the problem of turning them into continuous contours enclosing
compact regions is treated in del Barrio et al. (2018).

Up to this point, we have defined multivariate generalizations of the univariate concepts of
center-outward distribution and quantile functions, center-outward ranks and signs, all reducing
to their univariate analogues in case d = 1. However, it remains to show that those extensions
are adequate in the sense that they enjoy in Rd the strong properties that make the success of
their univariate counterparts—namely,

(GC) a Glivenko-Cantelli-type asymptotic relation between F
(n)
± and F±,

(DF) finite-n distribution-freeness (with respect to f ∈ Fd), and

(HW∗) the maximal invariance property leading to semiparametric preservation.

Establishing those three properties is the objective of Sections 5, 6, and 7, respectively.

5 Glivenko-Cantelli

With the definitions adopted in Section 4, the traditional Glivenko-Cantelli theorem, under its
center-outward form (3.11), holds, essentially ne varietur, in Rd.

Proposition 5.1 Let Z
(n)
i , . . . ,Z

(n)
i be i.i.d. with distribution P ∈ Pd. Then,

max
1≤i≤n

∥∥∥F(n)
± (Z

(n)
i )− F±(Z

(n)
i )
∥∥∥ −→ 0 a.s. as n→∞. (5.1)

This proposition considerably reinforces, under more general assumptions (no second-order
moments), an early strong consistency result by Cuesta-Albertos et al. (1997). The proof of (5.1)
is postponed to Section 8.2.

Section 4 so far only provides a definition of F
(n)
± computed at the sample values Z

(n)
i . If F

(n)
± is

to be defined at all z ∈ Rd, an interpolation F̄
(n)
± , similar for instance to the one shown, for d = 1,

in Figure 2, has to be constructed. Such interpolation should belong to the class of gradients
of convex functions from Rd to Sd, so that the resulting contours (the curves or hypersurfaces

with equation ‖F̄(n)
± (z)‖ = ‖F(n)

± (Z
(n)
i )‖ for some i) have the nature of (continuous) quantile

contours. Moreover, they still should enjoy (now under a supz∈Rd form similar to (3.4)) the
Glivenko-Cantelli strong consistency property. Constructing such interpolations is considerably
more delicate for d ≥ 2 than in the univariate case, and is the subject of the companion paper
by del Barrio et al. (2018), where we also refer to for numerical implementation and pictures.
Here, we restrict to the max1≤i≤n form (5.1) of Glivenko-Cantelli. It should be insisted, though,
that this limitation is not really restrictive, as such interpolations do not bring any additional
information on the population distribution, and are mainly intended for a graphical depiction of
contours (in dimension d ≤ 3, thus).

Proposition 5.1 has an important corollary in the case of elliptical densities. Recall that a
d-dimensional random vector X has elliptical distribution Pµ,Σ,f with location µ ∈ Rd, positive
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definite symmetric d×d scatter matrix Σ and radial density f iff Z := Σ−1/2(X−µ) has spherical
distribution P0,I,f , which holds iff

Fell(Z) :=
Z

‖Z‖
F
(
‖Z‖

)
∼ Ud, (5.2)

where F , with density f , is the distribution function of ‖Z‖.
The mapping Z 7→ Fell(Z) is thus a probability-integral transformation; it is shown in Cher-

nozhukov et al. (2017) (Section 2.4) that it actually coincides with Z’s center-outward distribution

function F±. Let X
(n)
i , i = 1, . . . , n be an i.i.d. n-tuple: the empirical version of Fell, based on

Mahalanobis ranks (the ranks R
(n)
i of the estimated residuals Z

(n)
i := Σ̂

(n)−1/2
(Xi − µ̂(n))) and

Mahalanobis signs (the unit vectors U
(n)
i := Σ̂

(n)−1/2
(Xi − µ̂(n))/‖Σ̂(n)−1/2

(Xi − µ̂(n))‖) is, for
the ith observation,

F
(n)
ell (Z

(n)
i ) :=

R
(n)
i

n+ 1
U

(n)
i ,

where µ̂(n) and Σ̂
(n)

are, when X
(n)
i , i = 1, . . . , n are i.i.d. with elliptical distribution Pµ,Σ,f ,

symmetric and weakly consistent estimators of µ and Σ, respectively.

Proposition 5.2 Let Let X
(n)
i , i = 1, . . . , n be an i.i.d. with elliptical distribution Pµ,Σ,f , and

assume that µ̂(n) and Σ̂
(n)

are strongly consistent estimators of µ and Σ, respectively. Then, Fell

and F± coincide, and

max
1≤i≤n

‖F(n)
ell (Z

(n)
i )− F

(n)
± (Z

(n)
i )‖, hence also max

1≤i≤n
‖F(n)

ell (Z
(n)
i )− F±(Z

(n)
i )‖

tend to zero a.s., as n → ∞, where Fell is given in (5.2) and F± denotes the center-outward
distribution function of P0,I,f .

This result connects the center-outward ranks and signs with the well-studied elliptical ranks

and signs. The consistency of F
(n)
ell , however, only holds under the assumption of ellipticity,

whereas F
(n)
± remains consistent under any density f ∈ Fd. Note also that F

(n)
ell determines n

ellipsoidal contours (n distinct values for the F
(n)
ell (Z

(n)
i )’s), while F

(n)
± only determines nR of them

(which for finite n do not define an ellipsoid). See Section 8.2 for a proof.

6 Distribution-freeness

Call order statistic the un-ordered n-tuple Z(n)—equivalently, an arbitrarily ordered version of the

same, such as Z
(n)
( . ) :=

(
Z

(n)
(1) , . . . ,Z

(n)
(n)

)
, where Z

(n)
(i) is such that its first component is the ith order

statistic of the n-tuple of first components. The following result extends to the center-outward
case the usual finite-sample distributional properties of the order statistic and the vector of ranks;
see Section 8.3 for a proof.

Proposition 6.1 Let Z
(n)
1 , . . . ,Z

(n)
n be i.i.d. with distribution P ∈ Pd, center-outward distribution

function F±, and empirical center-outward distribution function F
(n)
± . Then,

(i) the order statistic Z
(n)
( . ) is sufficient and complete,
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(ii) (DF)
(
F

(n)
± (Z

(n)
1 ), . . . ,F

(n)
± (Z

(n)
n )
)

is uniformly distributed over the n!/n0! permutations with
repetitions of the augmented grid described in Section 4.2 with the origin counted as n0

indistinguishable points,

(iii) for n0 = 0 or 1, the vector of center-outward ranks
(
R

(n)
±,1, . . . , R

(n)
±,n

)
and the vector of center-

outward signs
(
S

(n)
±,1, . . . ,S

(n)
±,n

)
are mutually independent, and

(iv) Z
(n)
( . ) and

(
F

(n)
± (Z

(n)
1 ), . . . ,F

(n)
± (Z

(n)
n )
)

are mutually P-independent.

In (iii), we assume n0 = 0 or 1; for other values of n0, a mild dependence is induced by the
fact that the origin plays an n0-tuple role in the matching between the observations and the
grid; that dependence rapidly fades away as n increases. Also,note that, still for n0 = 0 or 1
(hence, n0! = 1), the the n!/n0! permutations with repetitions in (ii) reduce to the n! “ordinary”
permutations of the gridpoint.

7 Invariance, equivariance, and semiparametric efficiency

7.1 Maximal invariance and semiparametric efficiency

Hallin and Werker (2003) have established for d = 1 the close connection between semipara-
metric efficiency and maximal invariance—a connection that explains the good performances of
rank-based inference in semiparametric models where the infinite-dimensional nuisance is the
unspecified density of some unobserved underlying white noise.

More precisely, denote by X(n) = (X
(n)
1 , . . . ,X

(n)
n ) the observation described by the semipara-

metric model P(n) = {P(n)
θθθ;f | θθθ ∈ Rk, f ∈ Fd} where θθθ ∈ Rk is some Euclidean parameter of

interest and f ∈ Fd some unspecified white noise density. Assume, for each θθθ, the existence of
an invertible residual function Z(n)(θθθ) : x(n) ∈ Rnd 7→ Z(n)(x(n);θθθ) =

(
Z1(θθθ), . . . ,Zn(θθθ)

)
, with

inverse Z
(n)
← (θθθ), such that, letting Z

(n)
i (θθθ) := Zi(X

(n);θθθ),

X(n) ∼ P
(n)
θθθ;f iff Z

(n)
1 (θθθ), . . . ,Z(n)

n (θθθ) i.i.d. with density f.

Assume that the (parametric) fixed-f submodels P(n)
f := {P(n)

θθθ;f | θθθ ∈ Rk}, f ∈ Fd are locally

asymptotically normal with central sequences ∆∆∆
(n)
f (θθθ), and regular enough for semiparametric effi-

ciency in the manner of Bickel et al. (1993) to make sense (which, in general, requires restricting Fd

to some subfamily Fd∗ in a way that depends on the model under study). Denote by ∆∆∆
(n)∗
f (θθθ)

the corresponding semiparametrically efficient central sequences (the projection of ∆∆∆
(n)
f (θθθ) along

the so-called tangent spaces). Assume moreover that, for any θθθ, the (nonparametric) fixed-θθθ sub-

model P(n)
θθθ := {P(n)

θθθ;f | f ∈ F
d}, θθθ ∈ Rk is generated by a class of transformations G(n)

θθθ = {g(n)
θθθ } act-

ing on Rnd, admitting T
(n)
θθθ (X(n)) as maximal invariant—that is, assume that, for any f, g ∈ Fd,

there exists g
(n)
θθθ;f,g ∈ G

(n)
θθθ and T

(n)
θθθ such that

P
(n)
θθθ;g = g

(n)
θθθ;f,g#P

(n)
θθθ;f , (7.1)

and, for any x(n), y(n) ∈ Rnd, there exists g
(n)
θθθ ∈ G(n)

θθθ such that

y(n) = g
(n)
θθθ x(n) iff T

(n)
θθθ (y(n)) = T

(n)
θθθ (x(n)). (7.2)
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Then, typically (Hallin and Werker 2003), under P
(n)
θθθ;f , as n→∞,

∆∆∆˜(n)
f (θθθ) := E

[
∆∆∆

(n)
f (θθθ)| T(n)

θθθ (X(n))
]

= ∆∆∆
(n)∗
f (θθθ) + oP(1). (7.3)

.
The huge advantage of ∆∆∆˜(n)

f (θθθ) over ∆∆∆
(n)∗
f (θθθ) is that, being measurable with respect to the

maximal invariant T
(n)
θθθ of a generating family of transformations, ∆∆∆˜(n)

f (θθθ), contrary to ∆∆∆
(n)∗
f (θθθ),

is distribution-free under P(n)
θθθ : its distribution under P

(n)
θθθ;g does not depend on g ∈ Fd. As a

consequence, the semiparametric efficiency bounds associated with some reference density f can

be attained by distribution-free ∆∆∆˜(n)
f (θθθ)-based, hence T

(n)
θθθ -measurable, inference—the validity of

which holds under P
(n)
θθθ;g for any g ∈ Fd. Call this the semiparametric efficiency preservation

property of T
(n)
θθθ .

Typically, the family G(n)
θθθ is the residual-transformation-retransformation version

Z(n)
← (θθθ)◦ G(n)◦ Z(n)(θθθ) =

{
g

(n)
θθθ = Z(n)

← (θθθ)◦ g(n)◦ Z(n)(θθθ)
∣∣ g(n)∈ G(n)

}
of some family G(n) := {g(n)} of transformations acting on the residuals Z(n)(θθθ), with maximal
invariant T(n)

(
Z(n)(θθθ)

)
. Equation (7.1) then takes the form (for all f, g ∈ Fd)

P(n)
g = g

(n)
f,g#P

(n)
f for some g

(n)
f,g ∈ G

(n). (7.4)

Denoting by g⊗n a transformation of Rnd factorizing as g⊗n : (z1, . . . , zn) ∈ Rnd 7→ (gz1, . . . , gzn)
where g is acting on Rd, this type of result holds, when d = 1, with

G(n) =
{
g(n) = g⊗n| g : R→ R monotone increasing continuous, lim

z→±∞
g(z) = ±∞

}
(7.5)

and g⊗nf,g =
(
G−1◦ F

)⊗n
. A maximal invariant is the vector T(n) =

(
R

(n)
1 , . . . , R

(n)
n

)
of (residual)

ranks, where R
(n)
i is the rank of Z

(n)
i among Z

(n)
1 , . . . , Z

(n)
n —equivalently, the center-outward n-

tuple
(
F

(n)
± (Z

(n)
1 ), . . . ,F

(n)
± (Z

(n)
n ); see Hallin and Werker (2003) or Hallin and La Vecchia (2018)

for examples.
In the sequel, for the sake of simplicity, we are dropping the nature of Z(n) as a θθθ-residual.

7.2 Maximal invariance of F
(n)
±

Much attention always has been given in the literature to the invariance and equivariance proper-
ties of multivariate quantile and related concepts (see, e.g., Serfling (2010)). Empirical quantiles
and ranks typically are expected to be equivariant and invariant, respectively, under the class G(n)

of “order-preserving transformations”. Looking at it more closely, however, such a property is
somewhat tautological, as order-preserving transformations are precisely those for which orderings
(hence, the ranks) are invariant, hence the quantiles equivariant.

In dimension d = 1, the order-preserving transformations g(n) ∈ G(n) (see (7.5)) factorize
as g⊗n, where the collection of marginal g’s acting on R does not depend on Z(n) since the
ordering itself is canonically defined irrespective of Z(n). In the general case (d ≥ 2), empirical

(center-outward) orderings, characterized by F
(n)
± and Q

(n)
± , are data-driven, hence depend on

the observation Z(n) = (Z
(n)
1 , . . . ,Z

(n)
n ). Unsurprisingly, the class of empirical-order-preserving
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transformations of Rnd, of the form G(n)

Z(n) , also is data-driven; as a consequence, it is no longer a
group.

Throughout, let us assume that the regular grid used for the definition of empirical distribution

functions is fixed. When dependence on z(n) is to be emphasized, we write F
(n)

±;z(n) , F̄
(n)

±;z(n) ,

Q
(n)

±;z(n) , C
(n)

±;z(n) , C
(n)

±;z(n) , etc. Denoting by FP
± and QP

± the center-outward distribution and quantile

functions, respectively, associated with P ∈ Pd, let Fd± := {FP
±|P ∈ Pd} and Qd± := {QP

±|P ∈ Pd}.
For any z(n) ∈ Rnd at which F

(n)

±;z(n) is uniquely defined (which happens Lebesgue-a.e.), con-

sider the class of transformations (acting on Rnd)

G(n)

z(n) :=
{
g⊗n| g = Q± ◦ F̄

(n)

±;z(n)

}
(7.6)

with Q± ranging over Qd±, and F̄
(n)

±;z(n) over the collection of homeomorphic gradients of convex

functions interpolating the n-tuple
(
z

(n)
1 ,F

(n)

±;z(n)(z
(n)
1 )
)
, . . . ,

(
z

(n)
n ,F

(n)

±;z(n)(z
(n)
n )
)

(the existence of

which is established in del Barrio et al. (2018)); in the sequel, we call this a homeomorphic

interpolation of F
(n)

±;z(n) .

The maximal invariance property (HW∗) of of F
(n)
± and the related equivariance of the corre-

sponding empirical center-outward quantile contours and regions then take the following form.

Proposition 7.1 (HW∗) (i) The class of transformations G(n)

Z(n) is, Z(n)-a.s., a class of order-

preserving transformations of Rnd, with maximal invariant F
(n)

±;Z(n): namely, except for a set

of z(n) and y(n) values of measure zero, F
(n)

±;z(n) = F
(n)

±;y(n) (equivalently, the ranks and signs

of z(n) = (z
(n)
1 , . . . , z

(n)
n ) and those of z(n) = (z

(n)
1 , . . . ,y

(n)
n ) coincide) iff y(n) = g⊗nz(n) for

some g⊗n in G(n)

z(n).

(ii) Each class G(n)

z(n) (except for a set of z(n) values of measure zero) is a generating class for P(n)
d ,

that is, for any f, h ∈ Fd, there exists g⊗n in G(n)

z(n) such that g⊗n#P
(n)
f = P

(n)
h .

Turning to the quantile contours and regions, we have the following equivariance counterparts
to the invariance properties of Proposition 7.1.

Proposition 7.2 The empirical quantile contours and regions C(n)

±;Z(n) and C(n)

±;Z(n) are Z(n)-a.s.

equivariant under the class of transformations G(n)

Z(n) defined in (7.6): except for a a set of values

of Lebesgue measure zero, for any g⊗n ∈ G(n)

Z(n) with g of the form g = Q± ◦ F̄
(n)

±;Z(n),

C(n)

±;g⊗nZ(n)(j/nR) = Q± ◦ F
(n)

±;Z(n)

(
C(n)

±;Z(n)(j/nR)
)

(7.7)

and
C(n)

±;g⊗nZ(n)(j/nR) = Q± ◦ F
(n)

±;Z(n)

(
C(n)

±;Z(n)(j/nR)
)

(7.8)

for all j = 0, . . . , nR.

Finally, for the the population concepts F± and Q±, and the population quantile contours and
regions, the of order-preserving transformations quite naturally are distribution-specific, with the
following obvious invariance/equivariance properties.
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Proposition 7.3 Let g = gPQ := QQ
± ◦ FP

±, P,Q ∈ Pd. Then,

Fg#P
± ◦ g = FP

±, Qg#P
± = g ◦QP

±,

gCP(q) = CQ(q) and gCP(q) = CQ(q), q ∈ (0, 1).

8 Proofs

8.1 Proof of Proposition 4.1.

Parts (i) and (ii) of Proposition 4.1 are borrowed from Theorem 1.1 and the subsequent comments
in Figalli (2018). Part (iii) follows from Equation (1.2) (same reference) and the fact that Ud has
Lebesgue density fU(u) =

[
1/cd‖u‖d−1

]
I[u ∈ Sd \ {0}]. �

8.2 Proof of Propositions 5.1 and 5.2 (Glivenko-Cantelli)

Let us start with some preliminary lemmas, all from McCann (1995). Throughout this section, µ
and ν denote probability measures on Rd, P(Rd) the set of all probability distributions on Rd,
P(Rd ×Rd) the set of all probability distributions on Rd ×Rd, and Γ(µ, ν) the set of probability
distributions in P(Rd ×Rd) with given marginals µ and ν in P(Rd). A measure γ in P(Rd ×Rd)
is said to have cyclically monotone support if there exists a closed Borel set S in Rd × Rd such
that γ(S) = 1 and S is cyclically monotone.

Lemma 8.1 (McCann 1995, Corollary 14). Let µ, ν ∈ P(Rd), and suppose that one of those two
measures vanishes on all sets of Hausdorff dimension d− 1. Then, there exists one and only one
measure γ ∈ Γ(µ, ν) having cyclically monotone support.

Lemma 8.2 (McCann 1995, Lemma 9). Let γ(n) ∈ P(Rd × Rd) converge weakly as n → ∞
to γ ∈ P(Rd × Rd). Then,

(i) if γ(n) has cyclically monotone support for all n, so does γ;

(ii) if γ(n) ∈ Γ(µ(n), ν(n)) where µ(n) and ν(n) converge weakly, as n → ∞, to µ and ν, respec-
tively, then γ ∈ Γ(µ, ν).

Next, recall that the subdifferential ∂ψ of a convex function ψ : Rd → R is the collection
of pairs (x,y) ∈ Rd × Rd such that ψ(z) ≥ ψ(x) + 〈y, z − x〉, z ∈ Rd, that is, such that ψ(z)
lies entirely “above” the (supporting) hyperplane {z : y′(z − x) = 0}; y is called a subgradient
of ψ at x. A convex function being Lebesgue-a.e. differentiable, the subdifferential of a convex
function ψ coincides Lebesgue-a.e. with the collection {(x,∇ψ(x))}.

Lemma 8.3 (McCann 1995, Proposition 10). Suppose that γ ∈ Γ(µ, ν) is supported on the
subdifferential ∂ψ of some convex function ψ on Rd (meaning that the support of γ is a subset
of ∂ψ). Assume that µ vanishes on Borel sets of Hausdorff dimension d− 1. Then, ∇ψ pushes µ
forward to ν, that is,

γ = ( identity×∇ψ)#µ

where ( identity×∇ψ)x := (x,∇ψ(x)).

Finally, the following lemma by Rockafellar (1966) establishes a strong relation between cycli-
cal monotonicity and convex functions (Rockafellar’s statement actually holds for more general
topological vector space).
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Lemma 8.4 (Rockafellar 1966, Theorem 1). The subdifferential ∂ψ of a convex function ψ on Rd
enjoys cyclical monotonicity. Conversely, any cyclically monotone set S of Rd ×Rd is contained
in the subdifferential ∂ψ of some convex function ψ on Rd.

This implies the existence of a gradient of convex function running through any n-tuple of
cyclically monotone couples ((x1,y1), . . . , (xn,yn)) ∈ Rd × Rd. We now turn to the proof of the
Glivenko-Cantelli result (5.1) of Proposition 5.1.

Proof of Proposition 5.1. Let the n-tuple Z
(n)
1 , . . . ,Z

(n)
n be i.i.d. with distribution P ∈ Pd

and center-outward distribution function F±. Denote by (Ω,A,P) the (unimportant) probability

space underlying the observation of the sequence of Z
(n)
i ’s, n ∈ N, by γ(n) = (identity×F

(n)
± )#µ(n)

the empirical distribution of the couples (Z
(n)
i ,F

(n)
± (Z

(n)
i )), with marginals µ(n) and U (n), and

by γ = (identity×F±)#P (with marginals P,Ud) the joint distribution of (Z,F±(Z)). Here, µ(n),

hence also γ(n) are random measures, with realizations µ
(n)
ω and γ

(n)
ω .

A sequence γ
(n)
ω , n ∈ N, is P-a.s. asymptotically tight since µ

(n)
ω converges weakly to P

with probability one, and U(n) has uniformly bounded support. By Prohorov’s theorem, subse-

quences γ
(nk)
ω can be extracted that converge weakly (to some γ∞ω ’s).

Those γ
(nk)
ω ’s by construction have cyclically monotone supports, and their marginals µ

(nk)
ω

and U(nk) converge weakly to P and Ud. Hence, by Lemma 8.2, all limiting γ∞ω ’s have cyclically
monotone supports, and marginals P and Ud, respectively.

In view of Lemma 8.1, there exists only one γ with cyclically monotone supports and mar-

ginals P and Ud. Hence, irrespective of the choice of the weakly converging subsequence γ
(nk)
ω ,

all limiting γ∞ω ’s coincide with γ, which implies that the original sequence is converging weakly
to γ. Moreover, that limit is the same for any ω in some Ω1 ⊆ Ω such that P(Ω1) = 1.

Rockafellar’s Theorem (Lemma 8.4) provides a convex function ψ the subgradient of which
contains the support of γ. Lemma 8.3 and the definition of F± concludes that

γ = (identity×∇ψ)#P = (identity× F±)#P.

Summing up, we have proved—mainly, by reorganizing elements of McCann’s own proofs—the
following result.

Lemma 8.5 Let Z
(n)
1 , . . . ,Z

(n)
n be i.i.d. with distribution P ∈ Pd and center-outward distribution

function F±. Let µ(n) be the corresponding empirical distribution, and F
(n)
± the corresponding

empirical center-outward distribution function. As n→∞,

γ(n) := ( identity× F
(n)
± )#µ(n) converges weakly to γ = (identity× F±)#P P− a.s.

Interesting as it is, this result is only about almost sure weak convergence, which is not
sufficient for a Glivenko-Cantelli result. To proceed further, let us turn to polar coordinates, and

consider separately the Glivenko-Cantelli behaviour of ‖F(n)
± ‖ and that of the spherical coordinates

of F
(n)
± /‖F(n)

± ‖.
Writing τS for the open ball τSd, consider the set of indicators (defined on Rd × Sd)

F‖ · ‖ :=
{
fτ := I[F−1

± (τS)× τS], τ ∈ (0, 1)
}
,
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and let us show that F‖ · ‖ is a P-Glivenko-Cantelli class for any absolutely continuous P, that is,

sup
τ∈[0,1)

‖γ(n)(fτ )− γ(fτ )‖ −→n→∞ 0 P− a.s.

where γ(n)(·) and γ(·), as usual, denote expectations. It readily follows from Lemma 8.5 that∣∣γ(n)(fτ )− γ(fτ )
∣∣ =

∣∣γ(n)(F−1
± (τS)× τS)− γ(F−1

± (τS)× τS)
∣∣

converges to zero P-a.s. for any τ ∈ (0, 1). To establish the uniformity over τ ∈ (0, 1) of this
convergence, consider, for ε > 0,

t1, t2, . . . , td1/εe := 0, ε, 2ε, . . . , 1

such that tj − tj−1 = Ud

(
tjS \ tj−1S

)
≤ ε, and the brackets (ftj−1 , ftj ]. Those brackets have P-,

hence γ-size at most ε. Their total number can be chosen less than (1/ε) + 1. That number is
finite for any ε > 0, which entails uniformity:

sup
τ

∣∣∣γ(n)(F−1
± (τS)× τS)− γ(F−1

± (τS)× τS)
∣∣∣ −→ 0 P-a.s., n→∞

hence also

max
1≤i≤n

∣∣∣γ(n)
(
F−1

± (‖F±(Z
(n)
i )‖S)× ‖F±(Z

(n)
i )‖S

)
− γ
(
F−1

± (‖F±(Z
(n)
i )‖S)× ‖F±(Z

(n)
i )‖S

)∣∣∣ (8.9)

−→ 0 P-a.s., n→∞.

Now, by definition,

γ
(
F−1

± (‖F±(Z
(n)
i )‖S)× ‖F±(Z

(n)
i )‖S

)
= ‖F±(Z

(n)
i )‖, (8.10)

and

γ(n)
(
F−1

± (‖F±(Z
(n)
i )‖S)× ‖F±(Z

(n)
i )‖S

)
(8.11)

= γ(n)
(
F

(n)−1
± (‖F±(Z

(n)
i )‖S)

⋂
F−1

± (‖F±(Z
(n)
i )‖S× ‖F(n)

± (Z
(n)
i )‖S

)
.

Together, (8.9) and (8.11) entail

max
1≤i≤n

γ(n)
(
F

(n)−1
± (‖F±(Z

(n)
i )‖S) \ F−1

± (‖F±(Z
(n)
i )‖S)

)
= o(1) P-a.s., n→∞

hence

max
1≤i≤n

∣∣∣γ(n)
(
F

(n)−1
± (‖F±(Z

(n)
i )‖S)

⋂
F−1

± (‖F±(Z
(n)
i )‖S× ‖F(n)

± (Z
(n)
i )‖S

)
(8.12)

−γ(n)
(
F

(n)−1
± (‖F±(Z

(n)
i )‖S)× ‖F±(Z

(n)
i )‖S

)∣∣∣ = o(1) P-a.s., n→∞

But
γ(n)

(
F

(n)−1
± (‖F±(Z

(n)
i )‖S)× ‖F±(Z

(n)
i )‖S

)
= ‖F(n)

± (Z
(n)
i )‖; (8.13)

the claim thus follows from piecing together (8.9), (8.10), (8.12) and (8.13).
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A similar reasoning based on Lemma 8.5 and a bracketing argument can be invoked for the

parallel, meridian and hypermeridian coordinates of F±/‖F±‖ and F
(n)
± /‖F(n)

± ‖. Recall that a
point u on the unit sphere Sd−1 is represented, in hyperspherical coordinates, by d − 2 an-
gles ς1(u), . . . , ςd−2(u) ranging over [0, π] and one angle ςd−1(u) ranging over [0, 2π). Let e1, . . . , ed
denote an arbitrary orthonormal basis of Rd. That basis characterizes a hyperspherical system as
follows: ςj(u) is a polar angle measured from the zenith direction ej , j = 1, . . . , d−2, while ςd−1(u)
is an azimuth measured, in the hyperplane spanned by ed−1 and ed, from the azimuth reference
direction ed−1. The correspondence between the Euclidean coordinate system based on e1, . . . , ed
and the hyperspherical one is

u′e1 = cos(ς1)

u′e2 = sin(ς1) cos(ς2)

. . . = . . .

u′ed−1 = sin(ς1) sin(ς2) . . . sin(ςd−3) sin(ςd−2) cos(ςd−1)

u′ed = sin(ς1) sin(ς2) . . . sin(ςd−3) sin(ςd−2) sin(ςd−1).

A Glivenko-Cantelli result for ς
(n)
j , namely,

max
1≤i≤n

∣∣ς(n)
i;j − ςi;j

∣∣ −→ 0 a.s. as n→∞

where ς
(n)
i;j and ςi;j stand for the polar coordinates

ςj

(
F±(Z

(n)
i )/‖F±(Z

(n)
i )‖

)
and ςj

(
F

(n)
± (Z

(n)
i )/‖F(n)

± (Z
(n)
i )‖

)
,

respectively, then holds for all 1 ≤ j ≤ d−2. This follows along the same lines as for ‖F(n)
± (Z

(n)
i )‖,

with nested hyperspherical caps (with axes e1, . . . , ed−2, respectively) replacing the nested hy-
perspheres. For j = d − 1, the nested caps are replaced by nested hyperspherical lunes, i.e. hy-
perspherical domains comprised between two hyperplanes intersecting along ed−2, one of them
containing ed−1, the other one forming with the latter a dyhedral angle ςd−1. �

Proof of Proposition 5.2. Proposition 5.2 is an immediate consequence of Proposition 5.1,
the almost-sure continuous mapping theorem, and the fact (Section 2.4 in Chernozhukov et
al. (2017)) that, for spherical Z, Fell coincides with F±; details are left to the reader. �

8.3 Proof of Proposition 6.1 (Distribution-freeness)

Starting with Part (i), let S(n) := (S
(n)
1;1 , . . . , S

(n)
1;n , S

(n)
2;1 , . . . , S

(n)
2;n , S

(n)
d;1 , . . . , S

(n)
d;n , S

(n)
12 , . . . , S

(n)
1d ),

with S
(n)
j;k :=

∑n
i=1(Z

(n)
ij )k for j = 1, . . . , d and k = 1, . . . , n, and S

(n)
1j :=

∑n
i=1 Z

(n)
i1 Z

(n)
ij

for j = 1, . . . , d. It is easy to see, along the lines of in Example 2.4.1 of Lehmann and Ro-

mano (2005), that Z
(n)
( . ) and S(n) both induce the same sub-σ-field of the observation space Rnd.

Hence, Z
(n)
( . ) is sufficient and complete iff S(n) is. It follows from the Fisher factorization criterion

that Z
(n)
( . ) is sufficient for the model of n i.i.d. observations with distribution P ∈ Pd. That model

contains the parametric submodel of n i.i.d. observations with exponential distribution and com-
plete minimal sufficient statistic S(n). Minimal sufficiency and completeness therefore carry over

to Z
(n)
( . ) and the full model.
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Turning to Part (ii), assume, for simplicity, that n0 = 0 or 1 (else, replace the origin with n0

undistinguishable copies, and n! with the number n!/n0! of permutations with repetitions). That

the distribution of
(
Z

(n)
1 , . . . ,Z

(n)
n

)
is uniform over the n! permutations of the augmented grid is a

consequence of the optimal pairing between the observations and the augmented grid actually is an
optimal pairing between the elements of the order statistic and the augmented grid. Conditionally

on the order statistic Z
(n)
( . ) , the observations are uniformly distributed over the n! permutations

of Z
(n)
( . ) , so that the conditional distribution of the F(n)(Z

(n)
i )’s is (almost surely) uniform over

the n! permutations of the grid. Since that conditional distribution does not depend on the
conditioning variable, it is also unconditional.

Point (iii) finally is an immediate consequence of point (ii) and the classical Basu Theorem
(Basu 1955). �

8.4 Proof of Propositions 7.1 and 7.2 (Invariance/equivariance)

Proof of Proposition 7.1. (i) Let z(n) ∈ Rnd and y(n) ∈ Rnd be such that F
(n)

±;z(n)

and F
(n)

±;y(n) are well defined (which happens Lebesgue-a.e.); then, F
(n)

±;z(n)(z
(n)) = F

(n)

±;y(n)(y
(n))

iff y(n) = g⊗nz(n) with g = Q̄
(n)

±;y(n)◦F̄
(n)

±;z(n) , where Q̄
(n)

±;y(n) and F̄
(n)

±;z(n) are arbitrary homeomorphic

interpolations of Q
(n)

±;y(n) and F
(n)

±;z(n) , respectively, so that g⊗n is an element of the class G(n)

z(n) .

(ii) Choose g = Q± ◦ F̄
(n)

±;z(n) where F̄
(n)

±;z(n) is an arbitrary homeomorphic interpolations

of F
(n)

±;z(n) and Q± is the unique gradient of convex function pushing F̄
(n)

±;z(n)#Pf (an element

of P) forward to Ph. �

Proof of Proposition 7.2. Denoting by u
(n)
i , i = 1, . . . , n the n gridpoints, let

S(n)(j/nR) :=
{
u

(n)
i | ‖u

(n)
i ‖ = j/(nR + 1)

}
, j = 1, . . . , nR.

Put F± := (Q±)−1 and write Y
(n)
i := Q± ◦ F̄

(n)

±;Z(n)Z
(n)
i , i = 1, . . . , n. Since F± and F

(n)

±;Y(n)

coincide on the Y
(n)
i ’s, (7.7) holds iff

F±;Y(n)C(n)

±;Y(n)

(
j/nR

)
= F

(n)

±;Z(n)

(
C(n)

±;Z(n)(j/nR)
)
, j = 1, . . . , nR. (8.14)

This latter equality holds true, as both sides in (8.14) by definition reduce to S(n)(j/nR). The
result follows, and readily implies (7.8). �

9 Conclusions

The concepts of distribution and quantile functions, ranks and signs, are well understood, essen-
tially, in dimension one and in elliptical families, where they enjoy distribution-freeness and allow
(Hallin and Werker 2003) for the construction of semiparametrically efficient inference procedures
(tests and R-estimation) in models involving the unspecified density of some unobserved resid-
ual noise. A measure transportation-based characterization of a center-outward form of those
univariate concepts readily extends to the d-dimensional case. We show that the resulting new
concepts of distribution and quantile functions, ranks and signs enjoy in Rd the properties that
make their traditional versions successful inferential tools in the univariate case.
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In principle, our concepts open the door to a new theory of empirical processes, calling for
further results such as Donsker and iterated logarithm theorems, or Bahadur representations.
They also pave the way to a solution of the long-standing open problem of rank-based inference in
multivariate analysis in the absence of “any” distributional assumptions, offering a combination
of strict distribution-freeness and semiparametric efficiency none of the previous concepts of
multivariate ranks and signs can offer.

Many questions remain open, though, until those objectives can be attained.
(i) Several issues remain to be studied about the concepts themselves: how in finite samples

should we choose the factorization into nRnS+n0? should we combine several of them? should we
consider cross-validation? how? how should we smooth the discretely defined quantile contours?
what happens if we drop the assumption of nonvanishing densities?

(ii) How exactly should we construct efficient rank tests in specific problems? Proposition 5.2
suggests replacing, in the many test statistics derived, under elliptic symmetry, by Hallin, Pain-
daveine and Verdebout (see the references below), the Mahalanobis (elliptical) ranks and signs
with the center-outward ones. Can we similarly construct one-step R-estimators (a problem
which, for d ≥ 2, so far is solved under elliptical symmetry only)? This would result in a fairly
complete toolkit of distribution-free (hence “universally valid”) semiparametrically efficient-at-
elliptical-densities rank-based inference procedures for multivariate analysis and multivariate time
series problems.

(iii) Can goodness-of-fit tests be based, e.g. on Kolmogorov-Smirnov or Cramér-von Mises
distances between center-outward distribution functions?

(iv) Turning to quantiles, what are the properties of Q
(n)
± (0) as a multivariate median? can

we construct multivariate median tests? can we, on the model of Carlier et al. (2016) or Hallin et
al. (2010, 2015), perform multiple-output quantile regression (reconstruction of conditional center-
outward quantile contours as a function of covariates)? construct multivariate growthcharts (as
in McKeague et al. (2011))? How?

(v) Center-outward quantile contours are obvious candidates as multivariate value-at-risk
concepts, playing a central role in risk management; in that context, still in dimension d = 1,
the primitives of ordinary distribution or quantile functions enter the definitions of a number
of relevant quantities such as Lorenz curves, average values at risk, or expected shortfall, see
Gushchin and Borzykh (2017). The potential function Ψ characterizing the underlying F± and its
Legendre transform are natural multivariate extensions of those primitives, and likely to provide
useful generalizations of those concepts.

(vi) Finally, what happens in high dimension? in functional spaces? on spheres (directional
data)? on other Riemannian manifolds?
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